
Performance Optimizations and Bounds for

Sparse Matrix Kernels

Richard Vuduc James W. Demmel∗ Katherine A. Yelick
Shoaib Kamil Rajesh Nishtala

Benjamin Lee

Computer Science Division
University of California, Berkeley

Berkeley, California, USA
{richie,demmel,yelick,skamil,rajeshn,blee20}@cs.berkeley.edu

Abstract

Building high-performance implementations of sparse matrix-vector
multiply (SpM×V), an important and ubiquitous computational kernel, is
fundamentally limited by a variety of factors: the increasing performance
gap between processors and memory, the storage and instruction overhead
of manipulating sparse data structures, and the irregular memory access
due to sparse storage. Moreover, the complexity of modeling execution
of modern microprocessors makes selecting the best data structure and
SpM×V implementation for a given sparse matrix a difficult task.

In this paper, we consider a range of performance bounds and models
for SpM×V, both practical and hypothetical, which quantify these limits.
The models vary both in cost and by what information is assumed—
from the purely static to those that assume perfect knowledge of run-time
information available via processor hardware counters. We evaluate these
models and bounds on a variety of hardware platforms and matrices, and
show that the task of selecting the best implementation and data structure
for a particular matrix will require a combination of modeling and run-
time searching.

Furthermore, we use our performance bounds to show that our previ-
ously developed optimization technique, register blocking, which improves
register-level reuse by exploiting naturally occurring dense subblocks, is
unlikely to be improved upon significantly by additional low-level instruc-
tion scheduling efforts. Instead, we examine our recent efforts to overcome
the fundamental limits through the use other kernels: multiplication with
symmetric matrices, by multiple vectors, and higher-level kernels like mul-
tiplication of a vector by ATA.

∗CS Division and Department of Mathematics

1

1 Introduction

general intro goes here
architectural trends affecting performance
We are interested in using performance bounds and models to answer the

following three questions:

• How close are our register blocking implementations to the best possible?
An answer would indicate how much improvement can be gained by low-
level scheduling (i.e., rearranging the innermost, unrolled loops).

• What are the limits of what models can do to select transformations?
REFINE THIS QUESTION

notational stuff: operation is y = y+Ax, where A is an m×n sparse matrix,
and x and y are vectors. We refer to x as the source vector, and y as the
destination vector.

related work:
Cache and memory behavior have been well-studied for dense matrix kernels.

A variety of sophisticated static models have been developed, each with the goal
of providing a compiler with sufficiently precise models for selecting memory
hierarchy transformations and parameters such as tile sizes [6, 9, 19, 5, 28].

Analysis tools for the sparse case are less well-developed, though there have
been a number of notable efforts. Temam and Jalby [26], Heras, et al.[13], and
Fraguela, et al.[8] have developed Temam and Jalby have formulated analytic
models of the cache miss behavior of SpM×V for single and multiple vectors.
These models vary in their ability to account for self- and cross-interference
misses. One weakness of all the models is that only

prior modeling efforts for the irregular case: [26], [13], [8], [20]
prior use of bounds in performance tuning: [10]
Bik’s work on non-zero data structure selection: [2]
multilevel blocking with multiple vectors: [21]
other related: [25], [17], [11], [22].

2 Experimental Setup

The following is a brief summary of our experimental setup and methodology,
which we assume throughout the remainder of the paper.

Platforms

All of our experimental evaluations are performed on machines based on the
microprocessors shown in Table 1. The table summarizes their hardware and
compiler configurations, and our measurements of key dense kernels for ref-
erence. Latency estimates shown were obtained from published sources and
confirmed experimentally using the memory system microbenchmark due to
Saavedra-Barrera [24].

2

Sun Intel IBM Intel
Property Ultra 2i Pentium III Power3 Itanium

Clock rate 333 MHz 500 MHz 375 MHz 800 MHz
Peak Main 500 MB/s 680 MB/s 1.6 GB/s 2.1 GB/s
Memory
Bandwidth
Peak Flop 667 Mflop/s 500 Mflop/s 1.5 Gflop/s 3.2 Gflop/s
Rate

DGEMM 425 Mflop/s 331 Mflop/s 1.3 Gflop/s 2.2 Gflop/s
(n = 1000)
DGEMV 58 Mflop/s 96 Mflop/s 260 Mflop/s 345 Mflop/s
(n = 1000)
STREAM Triad 250 MB/s 350 MB/s 715 MB/s 1.1 GB/s
Bandwidth

L1 data 16 KB 16 KB 64 KB 16 KB
cache size
L1 line size 16 B 32 B 128 B 32 B
L1 latency 2 cy 1 cy 1 cy 2 cy (int)

L2 cache size 2 MB 512 KB 8 MB 96 KB
L2 line size 64 B 32 B 128 B 64 B
L2 latency 7 cy 18 cy 9 cy 6 cy (int)

9 cy (double)

L3 cache size N/A N/A N/A 2 MB
L3 line size 64 B
L3 latency 21 cy (int)

24 cy (double)

TLB entries 64 64 256 32 (L1 TLB)
96 (L2 TLB)

Page size 8 KB 4 KB 4 KB 4 KB
Largest 36 cy 26 cy 35 cy 36 cy (int)
Cache + TLB 47 cy (double)
latency (≈)

Maximum 66 cy 60 cy 139 cy 85 cy
memory
latency (≈)

sizeof(double) 8 B 8 B 8 B 8 B
sizeof(int) 4 B 4 B 4 B 4 B

Compiler Sun C Intel C IBM C Intel C
v6.1 v5.0.1 v5.0 v5.0.1

Flags -dalign -O3 -tpp6 -O3 -O3

-xtarget=native -xK -unroll -qalias=allp

-xO5 -qarch=pwr3

-xarch=v8plusa -qtune=pwr3

-xrestrict=all

Table 1: Basic data for the machines used in our experiments. Performance
figures for the BLAS on the Sun Ultra 2i platform are the best of Sun’s perfor-
mance library v6.0 and ATLAS 3.2.0 [27]; on the Pentium III (Katmai) plat-
form: figures reported are the best of Intel’s MKL v5.2, ATLAS 3.3.5 [27], and
ITXGEMM 1.1 [12]; on the Power3 platform: IBM ESSL 3.1.2; on the Itanium
platform: Intel MKL v5.2.

3

Matrices

We evaluate the SpM×V implementations on the matrix benchmark suite used
by Im [14]. Table 2 summarizes the size and source of each matrix. Most of
the matrices are available in the collections at NIST (MatrixMarket [3]) and the
University of Florida [7].

The matrices in Table 2 are arranged in roughly four groups. Matrix 1 is
a dense matrix stored in sparse format; matrices 2–17 arise in finite element
method (FEM) applications; 18–39 come from assorted applications; 40–44 are
linear programming examples.

Timing

We use the PAPI library for access to hardware counters on all platforms [4];
we use the cycle counters as timers. Counter values reported are the median of
25 consecutive trials.1

The largest cache on some machines (notably, the Power3) is large enough to
contain some of the matrices. To avoid inflated findings, within a platform we
report performance results only on the subset of out-of-cache matrices. Figures
will still always use the numbering scheme shown in Table 2.

For SpM×V, reported performance in Mflop/s always uses “ideal” flops.
That is, if a transformation of the matrix requires filling in explicit zeros (as
with register blocking, described in Section 3), these extra zeros are not counted
as flops when determining performance.

3 Improving Register Reuse

This section provides a brief overview of Sparsity’s register blocking optimiza-
tion, a technique for improving register reuse over that of a conventional im-
plementation. For concreteness, we assume a baseline that stores the matrix in
compressed sparse row (CSR) format.2

In the register blocked implementation, consider an m×n matrix, divided
logically into m

r ×
n
c submatrices, where each submatrix is of size r×c. Assume

for simplicity that r divides m and that c divides n. For sparse matrices, only
those blocks which contain at least one non-zero are stored. The computation
of SpM×V proceeds by iteration over blocks. For each block, we can reuse the
corresponding c elements of the source vector and r elements of the destination
vector by keeping them in registers, assuming a sufficient number is available.

In Sparsity, the implementation of register blocking uses the blocked vari-
ant of compressed sparse row (BCSR) storage format. Blocks within the same
block row are stored consecutively, and the elements of each block are stored
consecutively in row-major order.3 A 2×2 example of BCSR is shown in Figure

1The standard deviation of these trials is typically less than 1% of the median.
2See Barrett, et al., [1] for a list of common formats.
3Row-major is Sparsity’s convention; column-major or other layouts are possible.

4

Name Application Area Dimension Nonzeros

1 dense1000 Dense Matrix 1000x 1000 1000000

2 raefsky3 Fluid structure interaction 21200x21200 1488768

3 olafu Accuracy problem 16146x16146 1015156

4 bcsstk35 Stiff matrix automobile frame 30237x30237 1450163

5 venkat01 Flow simulation 62424x62424 1717792

6 crystk02 FEM Crystal free vibration 13965x13965 968583

7 crystk03 FEM Crystal free vibration 24696x24696 1751178

8 nasasrb Shuttle rocket booster 54870x54870 2677324

9 3dtube 3-D pressure tube 45330x45330 3213332

10 ct20stif CT20 Engine block 52329x52329 2698463

11 bai Airfoil eigenvalue calculation 23560x23560 484256

12 raefsky4 buckling problem 19779x19779 1328611

13 ex11 3D steady flow caculation 16614x16614 1096948

14 rdist1 Chemical process separation 4134x 4134 94408

15 vavasis3 2D PDE problem 41092x41092 1683902

16 orani678 Economic modeling 2529x 2529 90185

17 rim FEM fluid mechanics problem 22560x22560 1014951

18 memplus Circuit Simulation 17758x17758 126150

19 gemat11 Power flow 4929x 4929 33185

20 lhr10 Light hydrocarbon recovery 10672x10672 232633

21 goodwin Fluid mechanics problem 7320x 7320 324784

22 bayer02 Chemical process simulation 13935x13935 63679

23 bayer10 Chemical process simulation 13436x13436 94926

24 coater2 Simulation of coating flows 9540x 9540 207308

25 finan512 Financial portfolio optimization 74752x74752 596992

26 onetone2 Harmonic balance method 36057x36057 227628

27 pwt Structural engineering problem 36519x36519 326107

28 vibrobox Structure of vibroacoustic problem 12328x12328 342828

29 wang4 Semiconductor device simulation 26068x26068 177196

30 lnsp3937 Fluid flow modeling 3937x 3937 25407

31 lns3937 Fluid flow modeling 3937x 3937 25407

32 sherman5 Oil reservoir modeling 3312x 3312 20793

33 sherman3 Oil reservoir modeling 5005x 5005 20033

34 orsreg1 Oil reservoir simulation 2205x 2205 14133

35 saylr4 Oil reservoir modeling 3564x 3564 22316

36 shyy161 Viscous flow calculation 76480x76480 329762

37 wang3 Semiconductor device simulation 26064x26064 177168

38 mcfe astrophysics 765x 765 24382

39 jpwh991 Circuit physics modeling 991x 991 6027

40 gupta1 Linear programming matrix 31802x31802 2164210

41 lpcreb Linear Programming problem 9648x77137 260785

42 lpcred Linear Programming problem 8926x73948 246614

43 lpfit2p Linear Programming problem 3000x13525 50284

44 lpnug20 Linear Programming problem 15240x72600 304800

Table 2: Matrix benchmark suite. These matrices were chosen to present con-
sist results with previous work on Sparsity. Matrices are categorized roughly
as follows: 1 is a dense matrix stored in sparse format; 2–17 arise in finite
element applications; 18–39 come from assorted applications; 40–44 are linear
programming examples.

5

A =


a00 a01 0 0 a04 a05

a10 a11 0 0 a14 a15

0 0 a22 0 a24 a25

0 0 a32 a33 a34 a35


b row start =

(
0 2 4

)
b col idx =

(
0 4 2 4

)
b value =(
a00 a01 a10 a11 a04 a05 a14 a15 a22 0 a32 a33 a24 a25 a34 a35

)

Figure 1: Block compressed sparse row (BCSR) storage format: BCSR
format uses three arrays. The elements of each dense 2 × 2 block are stored
contiguously in the b value array. Only the first column index of the (1,1)
entry of each block is stored in b col idx array; the b row start array points
to block row starting positions in the b col idx array. In Sparsity, blocks are
stored in row-major order. (Figure taken from Im [14].)

1. When r = c = 1, BCSR reduces to CSR.4

Note that BCSR potentially stores fewer column indices than CSR imple-
mentation (one per block instead of one per non-zero), reducing both storage
and data structure manipulation overhead. Furthermore, Sparsity implemen-
tations fully unroll the r×c submatrix computation, reducing loop overheads
and exposing scheduling opportunities to the compiler. An example of a 2×2
implementation is given in Appendix A.

However, the figure also shows that the imposition of a uniform block size
may require filling in explicit zero values, resulting in extra computation. We
define the fill ratio to be the number of stored values (original non-zeros plus ex-
plicit zeros) divided by the number of non-zeros in the original matrix. Whether
conversion to a register blocked format is profitable depends highly on the fill
and, in turn, the non-zero pattern of the matrix. By analogy to tiling in the
dense case, the most difficult aspect of applying register blocking is knowing
when (i.e., on which matrices) to apply it and how to select the block size.

This difficulty is striking when we examine register blocking performance
for various values of r and c. In Figure 2, we show, for our four hardware
platforms, the performance (Mflop/s) of block sizes up to 12×12 on a very
regular “sparse” problem: a dense 1000×1000 matrix stored in sparse (BCSR)
format.5 Performance is a strong function of the architecture, compiler, and
block size. Moreover, the irregularity of the spaces suggests that performance
will in general be difficult to model; however, the profiles shown clearly contain
a lot of information, which we exploit in our modeling efforts (Section 5).

4The performance of this code is comparable to that of the CSR implementation from the
NIST Sparse BLAS [23].

5Note that for the performance profiles shown, the matrix size is actually⌈
1000
r

⌉
r×
⌈

1000
c

⌉
c. For the block sizes considered, the true matrix size differs from the

1000×1000 case by no more than 2%.

6

40

45

50

55

60

65

70

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

column block size (c)

ro
w

 b
lo

ck
 s

iz
e

(r
)

Register Blocking Performance (Mflop/s) [Dense (n=1000); ultra−solaris]

2.03 1.98

1.98

1.98

1.971.96

1.95 1.94

1.94

1.94

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

column block size (c)

ro
w

 b
lo

ck
 s

iz
e

(r
)

Register Blocking Performance (Mflop/s) [Dense (n=1000); pentium3−linux−icc]

2.54

2.49

2.45

2.44

2.41

2.39

2.38

2.39 2.37

2.36

140

160

180

200

220

240

260

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

column block size (c)

ro
w

 b
lo

ck
 s

iz
e

(r
)

Register Blocking Performance (Mflop/s) [Dense (n=1000); power3−aix]

1.59

1.56

1.54 1.52

1.49

1.49

1.50

1.47

1.47

1.47

120

140

160

180

200

220

240

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

column block size (c)

ro
w

 b
lo

ck
 s

iz
e

(r
)

Register Blocking Performance (Mflop/s) [Dense (n=1000); itanium−linux−ecc]

1.55

1.55

1.53

1.49 1.49

1.48

1.45

1.46

1.42

1.40

Figure 2: The performance of r×c register blocked implementations on a dense
1000×1000 matrix stored in BCSR format, on block sizes up to 12×12. These
performance profiles are shown for the four platforms listed in Table 1. On each
platform, each square is an r×c implementation shaded by its performance,
in Mflop/s. The top 10 implementations are labeled by their speedup relative
to the 1×1 implementation. Though the performance has irregular structure
and therefore appears difficult to model, the best implementations differ in per-
formance by little more than 10%; furthermore, they appear “semi-clustered.”
Platforms (clockwise from upper-left): Sun Ultra 2i, Intel Pentium III, IBM
Power3, Intel Itanium.

7

4 Bounds on Register Blocking Performance

Below, develop a sequence of performance bounds of varying complexity to try to
understand performance plots like those shown in Figures 2. At the end of this
section, we evaluate the Sparsity implementations relative to these bounds.

4.1 Preliminaries

To be concrete, we fix the data structure to be the BCSR format outlined in
Section 3. We can count the number of loads and stores required for SpM×V
using this format as follows. Let A be an m×n matrix with k non-zeros. Let
Krc be the number of r×c non-zero blocks required to store the matrix in r×c
BCSR format; note that K1,1 = k. The matrix requires storage of Krcrc double
precision values, Krc integers for the column indices, and

⌈
m
r

⌉
+ 1 integers for

the row pointers. The fill ratio is frc = Krcrc
k , and is always at least 1.

Every matrix entry must be loaded once. We assume that SpM×V iterates
over block rows, and that all r entries of the destination vector can be kept
in registers for the duration of a block row multiply. Thus, we only need to
load each element of the destination vector once, and store each element once.
Finally, we assume that all c source vector elements can be kept in registers
during the multiplication of each block, thus requiring a total of Krcc = kfrc

r
loads of the source vector. In terms of the number of non-zeros and the fill ratio,
the total number of loads is

Loads = kfrc +
kfrc
rc

+
⌈m
r

⌉
+ 1︸ ︷︷ ︸

matrix

+
kfrc
r︸ ︷︷ ︸

source vec

+ m︸︷︷︸
dest vec

= kfrc

(
1 +

1
rc

+
1
r

)
+m+

⌈m
r

⌉
+ 1 (1)

and the total number of stores is m.
Observe that if there were little or no fill (e.g., for a dense matrix stored

in sparse format), then increasing the block size would reduce the overhead for
storing the column indices by 1

rc . Also note that the source vector load term
depends only on r, introducing a slight asymmetry in the number of loads as a
function of block size.

Finally, in the bounds we derive below, we denote the ratio of a double-
precision word (double in C) to an integer index (int) by γ.

4.2 Memory bandwidth bounds and estimates

Since SpM×V is memory-bandwidth limited, we can use the machine’s peak
memory bandwidth to compute the minimum time to move all of the matrix
and vector data from memory to the processor, and to write out the vector data.
If the bandwidth is β (in units of double-precision words per second), then the

8

time to move the matrix and vector data is

Tbw(r, c) =
kfrc

(
1 + 1

γrc

)
+ d

m
r e+1

γ + 2m+ n

β
(2)

Note that we count only the time to read the source vector once (nβ). Assuming
the latencies due to computation are completely hidden, our coarse performance
bound is simply the ideal flop count (2k) divided by this time. We refer to this
bound as the memory bandwidth bound.

An even more optimistic, though not entirely unreasonable, upper-bound
on performance is a modification equation 2 that excludes the indices. This
bound is not entirely unreasonable because some sparsity patterns (e.g., band
matrices) would not require any index storage.6

We can obtain a third estimate of performance using the bandwidth βSTREAM

reported by the STREAM microbenchmark [18], shown in Table 1. Note that
βSTREAM is not a bound but an estimate of sustained memory bandwidth, mea-
sured with respect to the vector scale operation z = y+αx for double-precision
vectors x, y, z and scalar α.

4.3 Bounds based on modeling cache misses

We can estimate a tighter, analytic upper-bound on performance by specifying
a lower bound on cache misses.

We start with the L1 cache. Let l1 be the L1-cache line size, in double-
precision words. One compulsory L1 read miss is incurred for every matrix
element (value and index) and destination vector element. The source vector
miss count is more complicated to predict. If the source vector size is less than
the L1 cache size, in the best case we would incur only n cold-start misses for
the source vector. Thus, a lower bound M

(1)
lower on L1 misses is

M
(1)
lower(r, c) =

1
l1

[
kfrc

(
1 +

1
γrc

)
+ n+

1
γ

(⌈m
r

⌉
+ 1
)

+m

]
. (3)

The factor of 1
l1

accounts for the L1 line size. An analogous expression applies
at the other cache levels by simply substituting the right line size.

In the worst case, we will miss on every access to a line of the source vector
in each block due to capacity and conflict (both self- and cross-interference)
misses; thus, an upper bound on misses is

M (1)
upper(r, c) =

1
l1

[
kfrc

(
1 +

1
γrc

+
1
r

)
+

1
γ

(⌈m
r

⌉
+ 1
)

+m

]
. (4)

A qualitative consequence of this simple model is that cache line size is
an important architectural parameter.7 This may help partially explain why,

6One could also think of this bound as a hypothetical bound on what the ultimate re-
ordering algorithm might achieve, i.e., if it could rearrange the matrix into a form sufficiently
structured so as to not require index storage.

7Though cache size is implicit in the miss lower bound.

9

for instance, both the Power3 and Itanium attain similar peak performance
in Figure 2: even though both the memory bandwidth and peak flop rate on
Itanium are higher, the L2 line size on the Power 3 is twice as large.

Armed with bounds on the number of cache misses, we can construct the
following simple model of execution time. As with the memory bandwidth
bound, we assume that we can overlap the latencies due to computation with
memory access. Let hi be the number of hits at cache level i, mi be the number
of misses.

Tlower =
κ−1∑
i=1

hiαi +mκαmem, (5)

where αi is the access time (in cycles or seconds) at cache level i, κ is the
lowest level of cache, and αmem be the memory access time. Assuming a perfect
nesting of the caches, so that a miss at level i is an access at level i + 1, then
hi+1 = mi−mi+1 for i ≥ 2, and h1 is the total number of load operations given
by equation (1).

To get an estimate of the upper bound on performance, we can substitute
the lower bounds on cache misses given by equation (3) to get a lower bound
on execution time, and convert to Mflop/s. Similarly, we can get a lower bound
on performance by substituting M (i)

upper for M (i)
lower.

Interaction with the TLB complicates our estimate of the average memory
access latency. We incorporate the TLB into our performance upper bound by
replacing the memory access latency αmem by the cache hit + TLB hit time
shown in Table . For the lower bound, we assume αmem is the full memory
access time. This assumption will tend to make the upper bound appear more
optimistic.

When appropriate, we apply slight refinements to this model to incorporate
features of our evaluation platforms. For instance, both the Power3 and the
Itanium can commit two loads per cycle if they hit in the L1 cache. Thus, we
reduce the L1 latency α1 by two to obtain a performance upper bound. Also,
we take into account the fact that on Itanium, the cache hit times depend on
whether the data is tied to integer or double-precision registers [16].

4.4 Evaluating the bounds

We performed an exhaustive search over all register block sizes up to 12×12 for
all matrices and platforms. Figures 3–6 show where the performance of the best
Sparsity implementations appear relative to our estimated bounds. Note that
the upper and lower bounds are functions of r, c; for both bounds, we show the
bound for r, c with the best performance.

On the Ultra 2i, Pentium III, and Itanium platforms, Sparsity implemen-
tations achieve 70–80% or more of the upper-bound on most of matrices in the
FEM set. Such matrices have natural dense structure which register blocking
is able to exploit; the proximity to the bound suggests that additional low-level
tuning of the register block implementations is unlikely to lead to significant
additional gains.

10

1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 21 25 27 28 36 40 44
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

matrix

Fr
ac

tio
n

of
 A

na
ly

tic
 U

pp
er

 B
ou

nd
 P

er
fo

rm
an

ce

Proximity to Estimated Upper Bound −− [ultra−solaris]

Reference
STREAM
Exhaustive Best
Analytic lower bound
Analytic upper bound
GEMV (n=1000)
Bandwidth (w/ indices)
Bandwidth (data only)

Figure 3: Proximity to the upper-bound estimate: Fraction of upper-bound
performance achieved for the various bounds in Section 4 and the best blocked
implementation (“exhaustive best”). The analytic upper bound is the best
performance according to the execution time model given by equation (5) for all
r, c. Similarly, the analytic lower bound is the best lower-bound performance for
all r, c. Where the reference implementation data point appears to be missing,
it actually coincides with the exhaustive best implementation. On the FEM
matrices, Sparsity performance is 70–80% of our estimated upper bound.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 23 24 25 26 27 28 29 36 37 40 41 42 44
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

matrix

Fr
ac

tio
n

of
 A

na
ly

tic
 U

pp
er

 B
ou

nd
 P

er
fo

rm
an

ce

Proximity to Estimated Upper Bound −− [pentium3−linux−icc]

Reference
STREAM
Exhaustive Best
Analytic lower bound
Analytic upper bound
GEMV (n=1000)
Bandwidth (w/ indices)
Bandwidth (data only)

Figure 4: Same as Figure 3 for the Pentium III. Sparsity implementations
achieve 80% or more of the upper-bound on many of the FEM matrices.

11

1 4 5 7 8 9 10 12 13 15 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

matrix

Fr
ac

tio
n

of
 A

na
ly

tic
 U

pp
er

 B
ou

nd
 P

er
fo

rm
an

ce

Proximity to Estimated Upper Bound −− [power3−aix]

Reference
STREAM
Exhaustive Best
Analytic lower bound
Analytic upper bound
GEMV (n=1000)
Bandwidth (w/ indices)
Bandwidth (data only)

Figure 5: Same as Figure 3 for the IBM Power3. Sparsity implementations
achieve anywhere between 60–85% of our upper-bound estimate.

1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 21 25 27 28 36 40 44
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

matrix

Fr
ac

tio
n

of
 A

na
ly

tic
 U

pp
er

 B
ou

nd
 P

er
fo

rm
an

ce

Proximity to Estimated Upper Bound −− [itanium−linux−ecc]

Reference
STREAM
Exhaustive Best
Analytic lower bound
Analytic upper bound
GEMV (n=1000)
Bandwidth (w/ indices)
Bandwidth (data only)

Figure 6: Same as Figure 3 for the Intel Itanium. Sparsity implementations
achieve 80% or more of the upper-bound on most of the FEM matrices.

12

The matrices from other applications display more varied behavior, though
they tend to perform closer to the lower performance bound than the upper,
typically ranging from 40%–60% of the upper bound performance. Recall that
the lower bound assumes that accesses to the source vector cache lines will
always miss, due either to capacity or conflict misses. This suggests that the
non-FEM matrices, possibly due to their particular sparsity patterns, exhibit
more conflicts or reduced spatial locality. Some form of reordering is likely to
be the most effective way to address this performance issue.

On the Power3, the implementations all fall between 60%–85% of the es-
timated upper bound. Although this fraction is low compared to the other
platforms, observe that the performance is comparable to the performance es-
timate using the STREAM benchmark.

Though these results are encouraging, they are also limited. The upper
bounds are based on expected upper-bounds with respect to our particular reg-
ister blocking data structure. It is possible that other data structures (for in-
stance, those that might remove the uniform block size assumption and therefore
change the dependence of frc on r, c) could do better.

Finally, note that on the Ultra 2i and Pentium III, it appears that the
Sparsity implementation is running faster than DGEMV on the dense matrix
stored in sparse format (matrix #1). It is likely that the vendor-supplied routine
in this case was not optimally tuned. The primary intention of showing DGEMV
is as a useful scale reference, not to advocate conversion from dense to sparse
formats.

5 Block Size Selection

Though we report the performance of the best implementation by exhaustive
search in the previous section, such searches can be costly: on Itanium, reor-
ganizing the matrix once (i.e., for one value of r×c) is 10–30 times the cost of
running the reference SpM×V once.

Since we are assuming selection will in general occur only when the final
matrix is known at run-time, the cost of an exhaustive search is prohibitive.8

Sparsity uses the hybrid off-line, on-line heuristic described below. The goal
of this section is to evaluate the cost and accuracy of the current heuristic and
a recently developed improvement. We use idealized static models as a way
of comparing indirectly to the best that might be expected of a purely static
model.

5.1 The Sparsity heuristic, and an improvement

The Sparsity block size selection heuristic is based on the following, simple
model of performance. Our goal is to choose an r, c that maximizes PA(r, c),

8Though we have reported results for searches of up to 12×12, in practice we have observed
block size selection as high as 8×8, and there is not obvious bound on application submatrix
density. Thus, it is not obvious where to prune.

13

the performance of an r×c blocked version of a matrix A. We estimate the
unknown function PA(r, c) as follows.

1. Determine the performance Pdense(r, c) (in Mflop/s) of an r×c register
blocked sparse matrix-vector multiply (SMVM) on a dense matrix stored
in sparse format. Examples of Pdense(r, c) are shown in Figure 2 and
discussed in Section 3. This performance is independent of any A, so
this step need be prformed only once per platform. We refer to the set
P = {∀r, c : Pdense(r, c)} as the register profile.9

2. When the specific matrix A is known, compute an estimate f̂A(r, c) of the
fill ratio. The idea is that estimating the fill ratio should be cheaper than
calculating it exactly, or reorganizing A into r×c blocks.

3. Choose r×c that maximizes

P̂A(r, c) =
Pdense(r, c)

f̂A(r, c)
(6)

The assumption is that P̂A(r, c) ≈ PA(r, c).

Equation (6) is the Sparsity performance model, and the three steps together
comprise a heuristic register block size selection procedure.

Current Sparsity heuristic

To keep the cost of the fill estimation step low, the current Sparsity system
does not compute f̂A(r, c) for all r, c. Instead, it first computes f̂A(1, c) for all c
by computing the fill for some fraction of the rows.10 Then, since the matrix is
stored internally in CSR format, Sparsity converts the matrix into CSC format
and computes f̂A(r, 1) on a fraction of the columns. Finally, Sparsity chooses
the row block size by maximizing

Pdense(r, r)

f̂A(r, 1)
. (7)

The system maximizes the analogous ratio for the columns, substituting c for
r. Note that this scheme uses only the diagonal entries of the profile to select
the block sizes.

The advantage of this scheme is that f̂A(r, 1) and f̂A(1, c) can be estimated
accurately and efficiently. However, for certain register profiles—notably, on
the Itanium, as shown in Figure 2 (bottom-right)—this scheme is problematic
since it assumes diagonals characterize off-diagonal performance. We refer to
this scheme as the current Sparsity heuristic.

9Though we have used a dense matrix, in principle, any matrix could be used to characterize
performance for classes or families of matrices.

10Currently, Sparsity samples every 100th row, i.e., 1% of all matrix rows.

14

A new heuristic

A natural improvement is to estimate f̂A(r, c) directly for all r, c. We can
perform this estimate by scanning a fraction of block rows and counting the
number of non-zero blocks that will be created. (Due to space constraints, we
omit a more detailed discussion of implementation.) We refer to this scheme as
the new heuristic.

5.2 Idealized static cache miss models

The current and new Sparsity heuristics rely on a partial one-time, off-line
computation and a run-time estimation. It is interesting to ask whether a
purely static model select the optimal (or near-optimal) block size more often.
Though we cannot answer this question definitively (for instance, by showing
no such model could exist), we use the following two idealized static models as
an estimate of the limits of static modeling.

Static Cache-Miss Model

The execution time model given by equation (5), which we use as a bound in
Section 4, can also be viewed as a nearly static model for selecting a register
block size, assuming we can accurate count cache misses via equations (3)–(4),
or more sophisticated variants [26, 13, 8]. The model is not truly static because
accurate estimates of the miss counts will in turn rely on accurate fill estimation,
as with the Sparsity heuristics, in general requiring access to the matrix which
may not be available until at run-time.

Nevertheless, for evaluation purposes in this paper, we idealize the execution
time model and assume we know the fill ratio exactly.

Data-based Miss Model

Instead of using estimates of cache misses, we assume an oracle can provide
perfect predictions at compile-time. To instantiate this model for evaluation on
a given matrix, we use post-mortem miss data collected for each matrix and all
block sizes using the PAPI hardware counters.

We emphasize that we cannot rule out the existence of better, truly static
models, but for evaluation purposes, the two models above are reasonable esti-
mates of the limits of static modeling.

5.3 Evaluation

We evaluate the heuristics along two dimensions: accuracy (quality of the se-
lected implementation) and time to evaluate the heuristic. (Due to space limi-
tations, we show representative results for the Ultra 2i and Itanium platforms.
Results for the Pentium III are similar to those of the Ultra 2i, and results for
the Power3 are similar to those on Itanium.)

15

Accuracy

Figure 7 summarizes the quality of the implementation chosen by each heuristic.
Comparing the current and new Sparsity heuristics, the new heuristic makes
fewer and less severe mispredictions. On the Ultra 2i, the new heuristic cor-
rectly selects the exhaustively best implementation on matrix #15; the current
heuristic chose an implementation that achieved 82% of the best performance.
On the Itanium, in 3 of the 22 cases, the current heuristic chose an implemen-
tation achieving only about 75% of the best performance (#6, #7, #9) which
were not mispredicted by the new heuristic.

Comparing the new heuristic to the idealized static models, we see that the
models, independent of whether they use analytic or true miss counts, make poor
selections (20% or more away from optimal) in 6 out of the 22 cases shown. The
execution time model appears to work well on the Ultra 2i but fares poorly on
the Itanium. Clearly, this observation does not rule out the existence of better
execution time models, but does suggest the level of modeling sophistication
that will be required to make accurate selections.

Time to select

Although the new heuristic appears more accurate and robust to the machine
to the machine profile than the current heuristic, the trade-off is the time to
make more accurate fill estimates. We show a preliminary evaluation of cost on
the Itanium in Figure 8. The new heuristic is about 2–5 times the cost of the
current heuristic, and on the order of one matrix reorganization. The cost of
the new heuristic is comparable to the cost of one matrix reorganization. Thus,
if the optimal block size turns out to be 1×1, then we must pay the price of the
analysis.

These costs are somewhat preliminary because the settings in the implemen-
tation of the new heuristic estimate the fill ratio to within 5–10%. This bound
could be much looser when the fill appears to be large. We intend to report on
these costs in more detail in the final paper, but the preliminary results serve
as a useful upper-bound.

6 Conclusions and Future Directions

The high-level themes of this paper are (1) the development and use of real-
istic bounds to guide evaluation, and (2) the use of hybrid off-line/run-time
techniques to address the apparent limitations of static modeling.

As an example of the first theme, our performance upper-bound led us to
the conclusion that more effort spent on low-level scheduling of the inner-most
loops of the register blocked code might yield additional improvements, but the
expected pay-off appears small. This suggests that we pursue opportunities for
tuning to exploit reuse in other kernels. An example of our recent work in this
direction is the application of register blocking in sparse matrix-dense matrix
multiply (SpM×M) [21, 8, 15]. This kernel can be exploited in iterative solvers

16

1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 21 25 27 28 36 40 44
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

matrix

Fr
ac

tio
n

of
 P

er
fo

rm
an

ce
 o

f E
xh

au
st

iv
e

B
es

t

Block Size Selection Accuracy −− [ultra−solaris]

Reference
Sparsity
Sparsity + New Heur.
Miss Model
Data−based Miss Model
Exhaustive Best

1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 21 25 27 28 36 40 44
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

matrix

Fr
ac

tio
n

of
 P

er
fo

rm
an

ce
 o

f E
xh

au
st

iv
e

B
es

t

Block Size Selection Accuracy −− [itanium−linux−ecc]

Reference
Sparsity
Sparsity + New Heur.
Miss Model
Data−based Miss Model
Exhaustive Best

Figure 7: Accuracy of block size selection on the Ultra 2i (top) and Itanium
(bottom): We evaluated the four block size selection techniques—a static miss
model, Sparsity’s hybrid off-line/on-line selection heuristic, a new variant of
the Sparsity heuristic, and exhaustive search—on the matrix benchmark suite.
The performance of the selected implementation is shown as a fraction of the
performance of the best implementation found by exhaustive search. The 1×1
implementation is shown for reference. On the Ultra, all of the heuristics get
within approximately 10% of the best most of the time. Matrix #15 (vavasis3)
is particularly troublesome for the Sparsity heuristic, resulting in a penalty of
15–20% on both platforms. On the Itanium, both of the static models make
more selection errors than the new heuristic. Evidently, the exact miss counts
are not enough to characterize the processor performance.17

2 3 4 5 6 7 8 9 10 11 12 13 15 17 21 25 27 28 36 40 44
100

101

102

matrix no.

no
. o

f S
M

V
M

s
(b

es
t n

ai
ve

)

Block Size Selection Overheads [itanium−ecc]

Reorg (1)
Current Heur.
New Heur.

Figure 8: The costs of block size selection. We compare the time to perform one
matrix reorganization, and the time to evaluate both the current and proposed
Sparsity selection heuristics. Note that the selection time for the new heuristic
includes the time to perform all register block sizes estimates up to 12×12. Also
note the logarithmic scale on the y-axis. Missing reorganization points indicate
that the optimal implementation was unblocked.

18

10 20 30 40 50 60 70 80 90
1

2

3

4

5

6

7

Baseline Performance (Mflop/s)

S
pe

ed
up

Multiple Vector Performance [ultra2i]

Dense
FEM
Assorted
Lin. Prog.

20 40 60 80 100 120 140 160 180
1

2

3

4

5

6

7

8

9

10

Baseline Performance (Mflop/s)

S
pe

ed
up

Multiple Vector Performance [itanium−ecc]

Dense
FEM
Assorted
Lin. Prog.

Figure 9: Speedup of the multiple vector optimization over the single vector im-
plementations on two platforms: Sun Ultra 2i (left) and Intel Itanium (right).
Each point corresponds to a matrix whose reference implementation perfor-
mance is given by the x-axis, and whose multiple vector speedup is shown on
the y-axis. Speedups of up to 6.5 and 9 are achievable on the Ultra and Itanium
platforms, respectively.

with multiple right-hand sides and also in block eigensolvers. On the Itanium
and Ultra 2i, as shown in Figure 9, we have observed speedups of up to 6.5 and 9
times that of SpM×V with a single right-hand side. Exploiting symmetry, both
numerical and structural, and higher-level kernels such as multiplication of dense
vectors by sparse matrix powers Ak or ATA, all provide ample directions for
future work.

On the theme of models, observe that with each additional kernel will come
new tuning spaces and the need to select from among many possible tuning
transformations. For register blocked SpM×V, we evaluated a heuristic for
selecting register blocking sizes which is robust to platform and matrix-specific
features. In this case, the heuristic is really a model which combines both off-line
computation (register profiles) and run-time computation (fill estimation). We
expect techniques of this sort to play a central role in transformation selection.

References

[1] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Ei-
jkhout, R. Pozo, C. Romine, and H. V. der Vorst. Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition. SIAM,
Philadelphia, PA, 1994.

[2] A. J. C. Bik and H. A. G. Wijshoff. Automatic nonzero structure analysis. SIAM
Journal on Computing, 28(5):1576–1587, 1999.

[3] R. F. Boisvert, R. Pozo, K. Remington, R. Barrett, and J. J. Dongarra. The
Matrix Market: A web resource for test matrix collections. In R. F. Boisvert,

19

editor, Quality of Numerical Software, Assessment and Enhancement, pages 125–
137, London, 1997. Chapman and Hall. math.nist.gov/MatrixMarket.

[4] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. A scalable cross-
platform infrastructure for application performance tuning using hardware coun-
ters. In Proceedings of Supercomputing, November 2000.

[5] S. Carr and K. Kennedy. Compiler blockability of numerical algorithms. In
Proceedings of Supercomputing, pages 114–124, 1992.

[6] S. Chatterjee, E. Parker, P. J. Hanlon, and A. R. Lebeck. Exact analysis of
the cache behavior of nested loops. In Proceedings of the ACM SIGPLAN 2001
Conference on Programming Language Design and Implementation, pages 286–
297, Snowbird, UT, USA, June 2001.

[7] T. Davis. UF Sparse Matrix Collection.
www.cise.ufl.edu/research/sparse/matrices.

[8] B. B. Fraguela, R. Doallo, and E. L. Zapata. Memory hierarchy performance
prediction for sparse blocked algorithms. Parallel Processing Letters, 9(3), March
1999.

[9] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations: a compiler frame-
work for analyzing and tuning memory behavior. ACM Transactions on Program-
ming Languages and Systems, 21(4):703–746, 1999.

[10] W. D. Gropp, D. K. Kasushik, D. E. Keyes, and B. F. Smith. Towards realistic
bounds for implicit CFD codes. In Proceedings of Parallel Computational Fluid
Dynamics, pages 241–248, 1999.

[11] G. Heber, A. J. Dolgert, M. Alt, K. A. Mazurkiewicz, and L. Stringer. Fracture
mechanics on the intel itanium architecture: A case study. In Workshop on
EPIC Architectures and Compiler Technology (ACM MICRO 34), Austin, TX,
December 2001.

[12] G. M. Henry. Flexible, high-performance matrix multiply via a self-modifying
runtime code. Technical Report TR-2001-46, University of Texas at Austin, De-
cember 2001.

[13] D. B. Heras, V. B. Perez, J. C. C. Dominguez, and F. F. Rivera. Modeling and
improving locality for irregular problems: sparse matrix-vector product on cache
memories as a case study. In HPCN Europe, pages 201–210, 1999.

[14] E.-J. Im. Optimizing the performance of sparse matrix-vector multiplication. PhD
thesis, University of California, Berkeley, May 2000.

[15] E.-J. Im and K. A. Yelick. Optimizing sparse matrix computations for register
reuse in SPARSITY. In Proceedings of the International Conference on Compu-
tational Science, volume 2073 of LNCS, pages 127–136. Springer, May 2001.

[16] Intel. Intel itanium processor reference manual for software optimization, Novem-
ber 2001.

[17] P. Knijnenburg, T. Kisuki, K. Gallivan, and M. O. Boyle. The effect of cache
models on iterative compilation for combined tiling and unrolling. In 3rd ACM
Workshop on Feedback-Directed Dynamic Optimization, December 2000.

[18] J. D. McCalpin. STREAM: Measuring sustainable memory bandwidth in high
performance computers. http://www.cs.virginia.edu/stream.

20

[19] K. S. McKinley, S. Carr, and C.-W. Tseng. Improving data locality with loop
transformations. ACM Transactions on Programming Languages and Systems,
18(4):424–453, July 1996.

[20] N. Mitchell, L. Carter, and J. Ferrante. A modal model of memory. In Proceedings
of the International Conference on Computational Science, volume 2073 of LNCS,
pages 81–96. Springer, May 2001.

[21] J. J. Navarro, E. Garćia, J. L. Larriba-Pey, and T. Juan. Algorithms for sparse
matrix computations on high-performance workstations. In Proceedings of the
10th ACM International Conference on Supercomputing, pages 301–308, Philadel-
pha, PA, USA, May 1996.

[22] A. Pinar and M. Heath. Improving performance of sparse matrix-vector multi-
plication. In Proceedings of Supercomputing, 1999.

[23] K. Remington and R. Pozo. NIST Sparse BLAS: User’s Guide. Technical report,
NIST, 1996. gams.nist.gov/spblas.

[24] R. H. Saavedra-Barrera. CPU Performance Evaluation and Execution Time Pre-
diction Using Narrow Spectrum Benchmarking. PhD thesis, University of Cali-
fornia, Berkeley, February 1992.

[25] M. M. Strout, L. Carter, and J. Ferrante. Rescheduling for locality in sparse
matrix computations. In Proceedings of the International Conference on Compu-
tational Science, volume 2073 of LNCS, pages 137–146. Springer, May 2001.

[26] O. Temam and W. Jalby. Characterizing the behavior of sparse algorithms on
caches. In Proceedings of Supercomputing ’92, 1992.

[27] C. Whaley and J. Dongarra. Automatically tuned linear algebra software. In
Proc. of Supercomp., 1998.

[28] M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In Proceedings
of the ACM SIGPLAN ’91 Conference on Programming Language Design and
Implementation, June 1991.

A Register Blocking 2×2 Example

The following is a C implementation of a 2x2 register blocked code. Here, bm is the
number of block rows, i.e., the number of rows in the matrix is 2*bm. The dense
sub-blocks are stored in row-major order.

void smvm_regblk_2x2(int bm, const int *row_start,
const int *col_idx, const double *value,
const double *x, double *y)

{
int i, jj;

/* loop over block rows */
1 for(i = 0; i < bm; i++, y += 2)

{
2 register double d0 = y[0];
3 register double d1 = y[1];
4 for(jj = row_start[i]; jj < row_start[i+1];

jj++, col_idx++, value += 2*2)
{

5 d0 += value[0] * x[*col_idx+0];
6 d1 += value[2] * x[*col_idx+0];
7 d0 += value[1] * x[*col_idx+1];

21

8 d1 += value[3] * x[*col_idx+1];
}

9 y[0] = d0;
10 y[1] = d1;

}
}

22

	1 Introduction
	2 Experimental Setup
	3 Improving Register Reuse
	4 Bounds on Register Blocking Performance
	4.1 Preliminaries
	4.2 Memory bandwidth bounds and estimates
	4.3 Bounds based on modeling cache misses
	4.4 Evaluating the bounds

	5 Block Size Selection
	5.1 The Sparsity heuristic, and an improvement
	5.2 Idealized static cache miss models
	5.3 Evaluation

	6 Conclusions and Future Directions
	A Register Blocking 22 Example

