
Simple but slow: O(n2) algorithms
Serial Algorithm

• Algorithm compares each particle with every
other particle and checks for the interaction
radius
• Most comparisons are outside interaction
range as shown in figure

OpenMP, Pthreads
• Algorithm simply splits the particles into p
equal sized subsets and accesses all non-owned
particles in the interaction check

MPI Algorithm
• Code gathers all particles on local node and
then compares with local particles.

Big Idea to go faster
• Before implementing parallelism work out best
serial algorithm

Legend

Current particle
Actual neighbor
Checked particle
Non-Checked particle

Interaction Radius

Faster O(n) serial algorithm – “Binning”
Main idea

• Since all far-field interactions are ignored
creating a “local neighborhood” through binning
can alleviate most of the unnecessary checks
since all grey particles can be ignored

Time complexity

• Checking only neighboring “bins“ reduces the
checks from O(n) for each particle to O(9d)
where d is the average number of particles in
each cell

• Since it is said within the statement of the
problem that density is uniform and we can see
in the common files that the domain size (x by
y) actually increases to maintain a constant
density we can consider the d number to be a
small constant (In practice 3-5 for a bin size =
interaction radius)

• Overall complexity becomes O(9d n) = O(n)

Legend

Current particle
Actual neighbor
Checked particle
Non-Checked particle

Interaction Radius

Local Bin

O(n) serial algorithm – “Binning”
Implementation details

• Particles need to be assigned to bins at every
timestep which presents at least two different
options:

1) deleting list and rebinning every timestep
(depending on how bins are implemented potentially
time-consuming)
2) maintaining bins and moving particles. (Can create a
lot of overhead in checking for new particles being
added to your bin – particles may “jump” past
neighbor bin)

Common problems

• If particles seem to be accelerating most likely
scenario is that interactions are not happening
when they should be

• In case of 2nd implementation of binning
remember to check for total particle count and
ensure no particles are lost in moving

Legend

Current particle
Actual neighbor
Checked particle
Non-Checked particle

Interaction Radius

Local Bin

O(n) Shared memory Implementation
Race conditions

• While the algorithm doesn’t change much
from the serial the biggest challenge is avoiding
excessive synchronization between threads
while ensuring that all threads are on the same
step of the algorithm (ex: rebinning, calculating
forces, moving particles, etc.) or at least that
they are not too far ahead to risk correctness

Common problems
• Dead lock between competing threads for a
particular set of bins if locking not implemented
carefully (avoid acquiring all locks needed at
once)
• Inaccurate results from race conditions for
updating particle acceleration (harder to spot)
• Slower performance than serial because of
excessive synchronization

Legend

Current particle
Actual neighbor
Checked particle
Non-Checked particle

Interaction Radius

Local Bin

O(n) MPI Implementation
Implementation options

• Can implement analogously to shared memory
implementation with messages instead of
shared variables
• Second implementation splits particles based
on location onto processors in addition to bins
and must implement proper particle movement
between processors

Common problems

• Takes much longer to code correctly

• Deadlock problems can occur if implemented
with blocking send/receive pairs

• Particles not interacting with neighboring bins
from other processors (both N,S,E,W and
diagonally)

• Particles disappearing at processor borders

Legend

Current particle
Actual neighbor
Checked particle
Non-Checked particle

Interaction Radius

Local Bin

Processor Boundary

