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OSKI: Optimized Sparse Kernel Interface

• Sparse kernels tuned for user’s matrix & machine
– Hides complexity of run-time tuning 
– Low-level BLAS-style functionality

• Sparse matrix-vector multiply (SpMV), triangular solve (TrSV), …

– Includes fast locality-aware kernels: ATA*x, …
– Initial target: cache-based superscalar uniprocessors

• Faster than standard implementations
– Up to 4x faster SpMV, 1.8x TrSV, 4x ATA*x

• For “advanced” users & solver library writers
– Available as stand-alone open-source library (pre-release)
– PETSc extension in progress

• Written in C (can call from Fortran)



Motivation: The Difficulty of Tuning

• n = 21216
• nnz = 1.5 M
• kernel: SpMV

• Source: NASA 
structural analysis 
problem

• 8x8 dense 
substructure



Speedups on Itanium 2: The Need for Search
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How OSKI Tunes (Overview)
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Extensibility: Advanced users may write & dynamically add “Code variants” and “Heuristic models” to system.



Cost of Tuning

• Non-trivial run-time tuning cost: up to ~40 mat-vecs
– Dominated by conversion time

• Design point: user calls “tune” routine explicitly
– Exposes cost
– Tuning time limited using estimated workload

• Provided by user or inferred by library
• User may save tuning results

– To apply on future runs with similar matrix
– Stored in “human-readable” format



How to Call OSKI: Basic Usage

• May gradually migrate existing apps
– Step 1: “Wrap” existing data structures
– Step 2: Make BLAS-like kernel calls

int* ptr = …, *ind = …;  double* val = …; /* Matrix, in CSR format */
double* x = …, *y = …; /* Let x and y be two dense vectors */

/* Compute y = β·y + α·A·x, 500 times */
for( i = 0; i < 500; i++ )

my_matmult( ptr, ind, val, α, x, β, y );
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How to Call OSKI: Basic Usage

• May gradually migrate existing apps
– Step 1: “Wrap” existing data structures
– Step 2: Make BLAS-like kernel calls

int* ptr = …, *ind = …;  double* val = …; /* Matrix, in CSR format */
double* x = …, *y = …; /* Let x and y be two dense vectors */
/* Step 1: Create OSKI wrappers around this data */
oski_matrix_t A_tunable = oski_CreateMatCSR(ptr, ind, val, num_rows, 

num_cols, SHARE_INPUTMAT, …);
oski_vecview_t x_view = oski_CreateVecView(x, num_cols, UNIT_STRIDE);
oski_vecview_t y_view = oski_CreateVecView(y, num_rows, UNIT_STRIDE);

/* Compute y = β·y + α·A·x, 500 times */
for( i = 0; i < 500; i++ )

oski_MatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view);/* Step 2 */



How to Call OSKI: Tune with Explicit Hints

• User calls “tune” routine
– May provide explicit tuning hints (OPTIONAL)

oski_matrix_t A_tunable = oski_CreateMatCSR( … );
/* … */

/* Tell OSKI we will call SpMV 500 times (workload hint) */
oski_SetHintMatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view, 500);
/* Tell OSKI we think the matrix has 8x8 blocks (structural hint) */
oski_SetHint(A_tunable, HINT_SINGLE_BLOCKSIZE, 8, 8);

oski_TuneMat(A_tunable); /* Ask OSKI to tune */

for( i = 0; i < 500; i++ )

oski_MatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view);



How the User Calls OSKI: Implicit Tuning

• Ask library to infer workload
– Library profiles all kernel calls
– May periodically re-tune

oski_matrix_t A_tunable = oski_CreateMatCSR( … );
/* … */

for( i = 0; i < 500; i++ ) {

oski_MatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view);
oski_TuneMat(A_tunable); /* Ask OSKI to tune */

}



Additional Features

• Embedded scripting language for selecting 
customized, complex transformations
– Mechanism to save/restore transformations

# In file, “my_xform.txt”
# Compute Afast = P*A*PT using 

Pinar’s reordering algorithm
A_fast, P =

reorder_TSP(InputMat);

# Split Afast = A1 + A2, where A1 in 2x2 
block format, A2 in CSR

A1, A2 =
A_fast.extract_blocks(2, 2);

return transpose(P)*(A1+A2)*P;

/* In “my_app.c” */
fp = fopen(“my_xform.txt”, “rt”);
fgets(buffer, BUFSIZE, fp);

oski_ApplyMatTransform(A_tunable, 
buffer);

oski_MatMult(A_tunable, …);



Additional Features

• GNU AutoTools (autoconf) based install process
• Support for several scalar type combinations

– {32-bit, 64-bit int} x {single, double, complex, double_complex}

• “Plug-in” extensibility
– Very advanced users may customize library (at run-time)

• New heuristics
• Alternative data structures & code variants



Optimizations Available in the Initial Release

• Optimizations for SpMV (bold → heuristics)
– Register blocking (RB): up to 4x over CSR
– Variable block splitting: 2.1x over CSR, 1.8x over RB
– Diagonals: 2x over CSR
– Reordering to create dense structure + splitting: 2x over CSR
– Symmetry: 2.8x over CSR, 2.6x over RB
– Cache blocking: 3x over CSR
– Multiple vectors (SpMM): 7x over CSR
– And combinations…

• Sparse triangular solve
– Hybrid sparse/dense data structure: 1.8x over CSR

• Higher-level kernels
– AAT*x, ATA*x: 4x over CSR, 1.8x over RB
– A2*x: 2x over CSR, 1.5x over RB



Current and Future Work

• Pre-release and docs available at 
bebop.cs.berkeley.edu/oski
– Fortran wrappers in progress
– Comments on interface welcome!

• Future work
– PETSc integration
– Port to additional architectures

• Vectors
• SMPs

– Additional heuristics
• Buttari, et al. (2005)



The End

(Extra slides follow)



Installation

• ./configure [options]           [detect system info]
– --with-blas={<lib>, no, yes}
– --with-papi={<lib>, no, yes}
– --with-index-type={int, long, <C-type>}
– --with-value-type={single, double, complex, doublecomplex}
– ...

• make                [build lib & run off-line benchmarks]
• make install
• make check       [optional testing]



Implementation

• Uses preprocessor to generate different integer/value 
type combinations from single set of sources

• Matrix type modules
– Each matrix type is its own dynamically loaded module
– Parameterized by scalar type, e.g., CSR<int, double>
– Types “registered” at run-time
– Module interface includes kernels, conversion, …

• Kernels
– Dispatch based on matrix type

• Each type implements SpMV + any subset of other 4 kernels
– Default implementations if matrix type does not implement 

particular kernel
– Self-profiling: time, number of calls



What Happens at Tuning Time?

• Available information
– Hints about matrix structure
– Workload hints from user (# of calls to each kernel w/ 

particular options)
– Trace: Observed calls and execution time
– Time to stream through matrix (at matrix creation time)

• Tuning procedure
– Estimate a “tuning budget” from trace & workload hints

• (fraction) * MAX(workload “time”, trace time)

– WHILE (time left for tuning) & (not tuned) DO
• Get and try a heuristic

• Currently does not re-tune



Heuristic Models

• Each in its own dynamically loadable module
• Module interface to a heuristic

– IsApplicable( <tuning info, e.g., matrix, trace, hints> );
– <estimated time> = GetEstimatedCost( … );
– <results> = Evaluate( … );
– Transform( matrix, results );



Requires High-Resolution Timers

• Inline assembly cycle counter readers for most 
platforms
– Adapted from FFTW-3.0 (MIT license)
– Includes x86-32, x86-64, IA-64, Sun, PowerPC, PA-RISC
– Also wraps around PAPI if available (configure-time)



Documentation & Testing

• Doxygen for API
• Large test suite

– ~30k line matrix multiply test program tries {precision} x 
{pattern} x {0,1-based inds} x {op(A)} x {x-orient} x {y-
orient}



Optimizations in the Initial OSKI Release

• Fully automatic heuristics for
– Sparse matrix-vector multiply

• Register-level blocking
• Register-level blocking + symmetry + multiple vectors
• Cache-level blocking

– Sparse triangular solve with register-level blocking and “switch-to-dense” 
optimization

– Sparse ATA*x with register-level blocking
• User may select other optimizations manually

– Diagonal storage optimizations, reordering, splitting; tiled matrix powers 
kernel (Ak*x)

– All available in dynamic libraries
– Accessible via high-level embedded script language
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