
D
RAFT

An interface for a self-optimizing
sparse matrix kernel library

Richard Vuduc and James W. Demmel and Katherine A. Yelick
{richie,demmel,yelick }@cs.berkeley.edu

March 14, 2005

Abstract

The BeBOP Optimized Sparse Kernel Interface (OSKI) is a collection of low-level
primitives that provide automatically tuned computational kernels on sparse matrices,
for use by solver libraries and applications. These kernels include sparse matrix-vector
multiply and sparse triangular solve, among others. The primary aim of this interface
is to hide the complex decision-making process needed to tune a kernel implementa-
tion for a particular user’s sparse matrix and machine, while also exposing the steps
and potentially non-trivial costs of tuning at run-time. Our interface also allows for
optional continuous profiling and periodic re-tuning, as well as user inspection and
control of the tuning process. This document presents and justifies the specific details
of this interface based on our experience in implementing automatically tuned sparse
kernels on modern cache-based superscalar machines.

1

D
RAFT

Contents

List of symbols 3

List of Tables 3

List of Listings 3

1 Goals and Motivation 5

2 An Introduction to the Tuning Interface by Example 6
2.1 Basic usage: gradually migrating applications 7
2.2 Providing explicit tuning hints . 10
2.3 Tuning based on implicit profiling . 12

3 Interface 13
3.1 Basic scalar types . 13
3.2 Creating and modifying matrix and vector objects 14

3.2.1 Creating matrix objects . 14
3.2.2 Changing matrix non-zero values . 16
3.2.3 Vector objects . 16

3.3 Executing kernels . 18
3.3.1 Applying the transpose of a matrix . 18
3.3.2 Aliasing . 19
3.3.3 Scalars vs. 1x1 matrix objects . 19
3.3.4 Compatible dimensions for matrix multiplication 19
3.3.5 Floating point exceptions . 19

3.4 Tuning . 19
3.4.1 Providing workload hints explicitly 22
3.4.2 Providing structural hints . 22
3.4.3 Initiating tuning . 23
3.4.4 Accessing the permuted form . 23

3.5 Saving and restoring tuning transformations 24
3.6 Handling errors . 24

4 Example: Biconjugate Gradients 28

5 A Tuning Transformation Language 29
5.1 Basic transformations . 29
5.2 A complex splitting example . 30
5.3 Example of reordering and splitting . 31
5.4 Switch-to-dense example . 31

6 Approaches that Complement Libraries 32

References 34

A Valid input matrix representations 38

D
RAFT

LIST OF SYMBOLS 3

B Bindings Reference 40
B.1 Matrix object creation and modification . 40
B.2 Vector object creation . 49
B.3 Kernels . 52
B.4 Tuning . 57
B.5 Permutations . 61
B.6 Saving and restoring tuning transformations 63
B.7 Error handling . 64

C BeBOP Library Integration Notes 66
C.1 PETSc . 66
C.2 MATLAB*P . 67

List of symbols

BCSR Block compressed sparse row format
VBR Variable block row format
UBCSR Unaligned block compressed sparse row for-

mat
BLAS Basic Linear Algebra Subroutines
CSC Compressed sparse column format
CSR Compressed sparse row format
FEM Finite element method
SpMV Sparse matrix-vector multiply
SpMM Sparse matrix-multiple vector multiply
SpTS Sparse triangular solve
SpTSM Sparse triangular solve with multiple right-

hand sides
BiCG Biconjugate gradient

List of Tables

1 Creating and modifying matrix and vector objects 14
2 Copy modes (type oski copymode t) . 16
3 Input matrix properties (type oski inmatprop t) 17
4 Dense multivector (dense matrix) storage modes (type oski storage t) 18
5 Sparse kernels . 18
6 Matrix transpose options (type oski matop t) 19
7 Matrix-transpose-times-matrix options (type oski ataop t) 19
8 Tuning primitives . 20
9 Available structural hints (type oski tunehint t) 21
10 Symbolic calling frequency constants (type int) 22
11 Symbolic vector views for workload hints (type oski vecview t) 22
12 Tuning status codes . 23
13 Extracting and applying permuted forms . 24
14 Saving and restoring tuning transformations 27
15 Error handling routines . 27

D
RAFT

LISTINGS 4

Listings

1 A usage example without tuning . 8
2 An example of basic explicit tuning . 11
3 An example of implicit tuning . 12
4 An example of extracting permutations . 25
5 An example of saving transformations . 26
6 An example of applying transformations . 26

D
RAFT

1 Goals and Motivation 5

1 Goals and Motivation

We present and justify the BeBOP Optimized Sparse Kernel Interface (OSKI), a collection
of low-level primitives that provide solver libraries and applications with automatically
tuned computational kernels on sparse matrices. These kernels include sparse matrix-
vector multiply (SpMV) and sparse triangular solve (SpTS), among others. Tuning refers to
the process of selecting the data structure and code transformations that lead to the fastest
implementation, given a kernel, machine, and matrix. The challenge is that we must often
defer tuning until run-time, since the matrix may be unknown until then. This need for
run-time tuning differs significantly from the case of dense kernels, where only install- or
compile-time tuning has proved sufficient in practice [11, 50].

Our interface reflects the need for and cost of run-time tuning, as extensively docu-
mented in our recent work on automatic tuning of sparse kernels [28, 46, 49, 30, 35, 47, 48,
25, 1]. We summarize 6 goals of our interface and the key findings behind each as follows:

1. Provide basic sparse kernel “building blocks”: We define an interface for basic
sparse operations like SpMV and SpTS, in the spirit of the widely-used Basic Linear
Algebra Subroutines (BLAS) [12]. We choose the performance-critical kernels needed
by sparse solver libraries and applications (particularly those based on iterative so-
lution methods). The target “users” are sparse solver library writers, and any other
user interested in performance-aware programming at the level of the BLAS.

The recent Sparse BLAS Standard [16, 12] inspired the OSKI design. The main differ-
ences are (i) we do not specify primitives for matrix construction, and instead assume
that the user can provide an assembled matrix in one of a few standard formats, and
(ii) we include explicit support for tuning, as discussed below. The current OSKI
interface includes ideas from an earlier design [49, Chapter 8].

2. Hide the complex process of tuning: Matrices in our interface are represented by
handles, thereby enabling the library to choose the data structure. This indirection is
needed because the best data structure and code transformations on modern hard-
ware may be difficult to determine, even in seemingly simple cases [28, 49].

For instance, many sparse matrices from applications have a natural block structure
that can be exploited by storing the matrix as a collection of blocks. For SpMV, do-
ing so enhances spatial and temporal locality. However, we have observed cases in
which SpMV on a matrix with an “obvious” block structure nevertheless runs in 38%
of the time of a conventional implementation (2.6× speedup) using a different, non-
obvious block structure [49]. Furthermore, we have shown that if a matrix has no
obvious block structure, SpMV can still execute in half the time (2× speedup) of a
conventional implementation by imposing block structure through explicitly stored
zeros, even though doing so results in extra work (flops) [49].

3. Offer higher-level memory hierarchy-friendly kernels: The particular kernels de-
fined in our interface are a superset of those available in similar library interfaces,
including the recent Sparse BLAS standard [16, 17] and the SPARSKIT library [39],
among others [19]. These additional “higher-level” kernels have inherently more op-
portunities for reuse and can execute much faster than their equivalent implementa-
tions in terms of the “standard” kernels.

For example, in addition to the SpMV operation y ← A · x, we include the kernel
y ← ATA· x in which A may be read from main memory only once. Compared to a
register-blocked two-step implementation, t ← A· x, y ← AT · t, a cache-interleaved

D
RAFT

2 An Introduction to the Tuning Interface by Example 6

implementation can be up to 1.8× faster, and up to 4.2× faster than an unblocked
two-step implementation [47].

4. Expose the cost of tuning: We require the user to request tuning explicitly; in the
case of SpMV, tuning can cost 40× as much as a single SpMV operation [49] and so
should only be done when the user expects sufficiently many calls to SpMV to justify
the cost [49].1

The explicit tuning call is optional if the user does not desire tuning, but may also be
called repeatedly to re-tune periodically (see Goal 5 below).

5. Support self-profiling: The user cannot always a priori predict, say, the number of
SpMV operations that will occur during an application run. We designed our in-
terface to allow the library to monitor transparently all operations performed on a
given matrix and use this information in deciding how aggressively (i.e., how much)
to tune. In principle, self-profiling enables the library to guess whether tuning will
be profitable (see Section 2.3 on page 12).

6. Allow for user inspection and control of the tuning process: To help the user reduce
the cost of tuning, the interface provides two mechanisms allowing her both to guide
and to see the results of the tuning process.

First, the user may provide explicit hints about the workload (e.g., the number of
SpMVs) and the kind of structure she believes the matrix possesses (e.g., uniform
blocks of size 3× 3, diagonals).

Second, the user may retrieve string-based summaries of what tuning transforma-
tions and other performance optimizations have been applied to a given matrix.
Thus, a user may see and save these results for re-application on future problems
(matrices) which the user believes has similar structure to a previously tuned matrix
(Section 3.5 on page 24). Moreover, Section 5 on page 29 discusses a format for these
summaries which allows a user to select optimizations manually, thereby allowing
her to experiment with alternative or experimental optimizations.

We use a library because it enables the use of run-time information for tuning, and
because of its potential immediate impact on applications. Our choice of primitives should
integrate readily into popular sparse solver libraries such as PETSc [6, 5], or even high-level
problem solving environments such as MATLAB [43, 22].2 We briefly discuss integration
with some systems such as PETSc in Appendix C on page 66. The library-based approach
complements other sophisticated techniques for generating sparse kernels, as discussed in
Section 6 on page 32.

2 An Introduction to the Tuning Interface by Example

This section introduces the C version3 of the OSKI interface by a series of examples. The
interface uses an object-oriented calling style, where the two main object types are (1) a
sparse matrix object, and (2) a dense (multiple) vector object. We anticipate that users will

1The cost of tuning is acceptable in important application contexts like solving linear systems or computing
eigenvalues by iterative methods, where hundreds (or more) of SpMVs can be required for a given matrix
[7, 15, 4, 40].

2Indeed, the ATLAS self-tuning library for the dense BLAS [50] and the FFTW library for discrete Fourier
transforms [20] are included in MATLAB.

3Fortran interfaces are also available.

D
RAFT

2.1 Basic usage: gradually migrating applications 7

use the library in different ways, so this section illustrates the library’s major design points
by discussing three such ways (Sections 2.1–2.3):

1. Gradual migration to tunable matrix objects and kernels (Section 2.1): To ease the
software development effort when switching an application to use OSKI, the inter-
face supports matrix data sharing when the user’s sparse matrix starts in a standard
array implementation of some basic sparse matrix format, e.g., compressed sparse
row (CSR) format and compressed sparse column (CSC) format. Furthermore, users
do not have to use any of the automatic tuning facilities, or may introduce the use of
tuned operations gradually over time.

2. Tuning using explicit workload and structural hints (Section 2.2 on page 10): Any
information the user can provide a priori is information the library in principle does
not need to rediscover, thereby reducing the overhead of tuning. In this case, users
may provide the library with structured hints to describe, for example, the expected
workload (i.e., which kernels will be used and how frequently), or whether there is
special non-zero structure (e.g., uniformly aligned dense blocks, symmetry). The user
calls a special “tune routine” to choose a new data structure performance-optimized
for the specified workload.

3. Tuning using an implicit workload (Section 2.3 on page 12): The library needs to
know the anticipated workload to decide when the overhead of tuning can be amor-
tized, but the user cannot always estimate this workload before execution. Rather
than specifying the workload explicitly, a user may rely on the library to monitor
kernel calls to determine the workload dynamically. The user must still explicitly
call the tune routine to perform optimizations, but this routine optimizes based on
an inferred workload.

In either 2 or 3, a user may re-tune periodically by repeatedly calling the tune routine.
Section 3 on page 13 summarizes the interface bindings, and the complete C bindings

appear in Appendix B on page 40. We discuss error-handling mechanisms in detail in
Section 3.6 on page 24.

2.1 Basic usage: gradually migrating applications

Listing 1 on the next page presents a simple example in C of computing one SpMV without
any tuning using our interface. This example shows how a user may gradually migrate
her code to use our interface, provided the application uses “standard” representations of
sparse matrices and dense vectors.

The sparse matrix in Listing 1 on the following page is a 3× 3 lower triangular matrix
with all ones on the diagonal. The input matrix, here declared statically in lines 6–8, is
stored in a CSR format using 2 integer arrays, Aptr and Aind, to represent the non-zero
pattern and one array of doubles, Aval, to store the non-zero values. The diagonal is not
stored explicitly. This representation is a “standard” way of implementing CSR format
in various sparse libraries [39, 38, 5]. This particular example assumes the convention of
0-based indices and does not store the diagonal explicitly.

Lines 9–10 declare and initialize two arrays, x and y, to represent the vectors. Again,
these declarations are “standard” implementations in that the user could call the dense
BLAS on these arrays to perform, for instance, dot products or scalar-times-vector products
(“axpy” operations in the BLAS terminology).

We create a tunable matrix object, A tunable, from the input matrix by a call to oski-
CreateMatCSR (lines 15–19) with the following arguments:

D
RAFT

2.1 Basic usage: gradually migrating applications 8

Listing 1: A usage example without tuning. This example illustrates basic object creation
and kernel execution in our interface. Here, we perform one sparse matrix-vector multiply
for a lower triangular matrix A with all ones on the diagonal, as shown in the leading
comment.

1 // This example computes y ← α ·A· x + β · y, where

// A =

 1 0 0
−2 1 0
.5 0 1

, x =

.25
.45
.65

, and y is initially

1
1
1

// A is a sparse lower triangular matrix with a unit diagonal, and x, y are dense vectors.

// User’s initial matrix and data
6 int Aptr[] = { 0, 0, 1, 2 };

int Aind[] = { 0, 0 };
double Aval[] = { −2, 0.5 };
double x[] = { .25, .45, .65 };
double y[] = { 1, 1, 1 };

11

double alpha = −1, beta = 1;

// Create a tunable sparse matrix object.
oski matrix t A tunable = oski CreateMatCSR(

16 Aptr, Aind, Aval, 3, 3, // CSR arrays
SHARE INPUTMAT, // ”copy mode”
// remaining args specify how to interpret non-zero pattern
3, INDEX ZERO BASED, MAT TRI LOWER, MAT UNIT DIAG IMPLICIT);

21 // Create wrappers around the dense vectors.
oski vecview t x view = oski CreateVecView(x, 3, STRIDE UNIT);
oski vecview t y view = oski CreateVecView(y, 3, STRIDE UNIT);

// Perform matrix vector multiply, y ← α ·A· x + β · y.
26 oski MatMult(A tunable, OP NORMAL, alpha, x view, beta, y view);

// Clean-up interface objects
oski DestroyMat(A tunable);
oski DestroyVecView(x view);

31 oski DestroyVecView(y view);

// Print result, y. Should be ”[.75 ; 1.05 ; .225]”
printf ("Answer: y = [%f ; %f ; %f]\n" , y[0], y[1], y[2]);

D
RAFT

2.1 Basic usage: gradually migrating applications 9

1. Arguments 1–3 specify the CSR arrays (line 16).

2. Arguments 4–5 specify the matrix dimensions (line 16).

3. The 6th argument to oski CreateMatCSR (line 17) specifies one of possible two copy
modes for the matrix object, to help control the number of copies of the assembled
matrix that may exist at any point in time. The value SHARE INPUTMAT indi-
cates that both the user and the library will share the CSR arrays Aptr, Aind, and
Aval, because the user promises (a) not to free the arrays before destroying the object
A tunable via a call to oski DestroyMat (line 29), and (b) to adhere to a particular set
of read/write conventions. The other available mode, COPY INPUTMAT, indicates
that the library must make a copy of these arrays before returning from this call, be-
cause the user may choose to free the arrays at any time. We discuss the semantics of
both modes in detail in Section 3 on page 13. In this example, the reader may regard
A tunable to be a wrapper around these arrays.

4. Arguments 7–10 tell the library how to interpret the CSR arrays (lines 19). Argument
7 is a count that says the next 3 arguments are semantic properties needed to interpret
the input matrix correctly. First, INDEX ZERO BASED says that the index values in
Aptr and Aind follow the C convention of starting at 0, as opposed to the typical
Fortran convention of starting at 1 (the default is 1-based indexing if not otherwise
specified). The value MAT TRI LOWER asserts the pattern is lower triangular and
MAT UNIT DIAG IMPLICIT asserts that no diagonal elements are specified explic-
itly but should be taken to be 1. The library may, at this call, check these properties
to ensure they are true if the cost of doing so is O(no. of non-zeros).

Since this exapmle uses the SHARE INPUTMAT copy mode and performs no tuning,
the user can be sure A tunable will not create any copies of the input matrix.

The routine oski CreateMatCSR accepts a variable number of arguments; only the first
6 arguments are required. If the user does not provide the optional arguments, the library
assumes the defaults discussed in Section 3.2 on page 14.

Dense vector objects of type oski vecview t, are always wrappers around user array
representations (lines 22–23). We refer to such wrappers as views. A vector view encap-
sulates basic information about an array, such as its length, or such as the stride between
consecutive elements of the vector within the array. As with the BLAS, a non-unit stride
allows a dense vector to be a submatrix. In addition, an object of type oski vecview t can
encapsulate multiple vectors (multivector) for kernels like sparse matrix-multiple vector
multiply (SpMM) or triangular solve with multiple simultaneous right-hand sides. The
multivector object would also store the number of vectors and the memory organization
(i.e., row vs. column major), as discussed Section 3.2.3 on page 16. Requiring the user to
create a view in both the single- and multiple-vector cases helps unify and simplify some
of the kernel argument lists.

The argument lists to kernels, such as oski MatMult for SpMV in this example (line
26), follow some of the conventions of the dense BLAS. For example, a user can specify the
constant OP TRANS as the second argument to apply AT instead of A, or specify other
values for α and β.

The calls to oski DestroyMat and oski DestroyVecView free any memory allocated
by the library to these objects (lines 29–31). However, since the user and library share the
arrays underlying A tunable, x view, and y view, the user is responsible for deallocating
these arrays (here, Aptr, Aind, Aval, x, and y).

That A tunable, x view, and y view are shared with the library implies the user can
continue to operate on the data to which these views point as she normally would. For

D
RAFT

2.2 Providing explicit tuning hints 10

instance, the user can call dense BLAS operations, such as a dot products or scalar-vector
multiply (the so-called “axpy” operation), on x and y, as shown in the biconjugate gradient
example of Section 4 on page 28. Moreover, the user might choose to introduce calls to the
OSKI kernels selectively, or gradually over time.

2.2 Providing explicit tuning hints

The user tunes a sparse matrix object by optionally providing one or more tuning “hints,”
followed by an explicit call to the matrix tuning routine, oski TuneMat. Hints describe
the expected workload, or assert performance-relevant structural properties of the matrix
non-zeros.

Listing 2 on the next page sketches a simple example in which we provide two tun-
ing hints. The first hint, made via a call to oski SetHintMatMult, specifies the expected
workload. We refer to such a hint as a workload hint. This example tells the library that
the likely workload consists of at least a total of 500 SpMV operations on the same ma-
trix. The argument list looks identical to the corresponding argument list for the kernel
call, oski MatMult, except that there is one additional parameter to specify the expected
frequency of SpMV operations. The frequency allows the library to decide whether there
are enough SpMV operations to hide the cost of tuning. For optimal tuning, the values of
these parameters should match the actual calls as closely as possible.

The constant SYMBOLIC VEC indicates that we will apply the matrix to a single vec-
tor with unit stride. Alternatively, we could use the constant SYMBOLIC MULTIVEC to
indicate that we will perform SpMM on at least two vectors. Better still, we could pass
an actual instance of a oski vecview t object which has the precise stride and data layout
information. Analagous routines exist for each of the other kernels in the system.

The second hint, made via a call to oski SetHint, is a structural hint telling the library
that we believe that the matrix non-zero structure is dominated by a single block size. Sev-
eral of the possible structural hints accept optional arguments that may be used to qualify
the hint—for this example, the user might explicitly specify a block size, though here she
instead uses the constant ARGS NONE to avoid doing so. The library implementation
might then know to try register blocking since it would be most likely to yield the fastest
implementation [28]. We describe a variety of other hints in Section 3.4 on page 19. These
hints are directly related to candidate optimizations explored in our work, and we expect
the list of hints to grow over time.

The actual tuning (i.e., possible change in data structure) occurs at the call to oski-
TuneMat. This example happens to execute SpMV exactly 500 times, though there is

certainly no requirement to do so. Indeed, instead of specifying an exact number or
estimate, the user may force the library to try a “moderate” level of tuning by specify-
ing the symbolic constant ALWAYS TUNE, or an “aggressive” level of tuning by specify-
ing ALWAYS TUNE AGGRESSIVELY. The relative amount of tuning is implementation-
dependent. These constants instruct the library to go ahead and try tuning at the next call
to oski TuneMat, assuming the application can always amortize cost. This facility might
be useful when, say, benchmarking an application on a test problem to gauge the potential
performance improvement from tuning.

Once A tunable has been created, a user may call the tuning hints as often as and
whenever she chooses. For example, suppose the user mixes calls to SpMV and ATA· x in
roughly equal proportion. The user can specify such a workload as follows:

oski SetHintMatMult(A tunable, . . ., 1000);
oski SetHintMatTransMatMult(A tunable, . . ., 1000);
// . . . other hints . . .
oski TuneMat(A tunable);

D
RAFT

2.2 Providing explicit tuning hints 11

Listing 2: An example of basic explicit tuning. This example creates a sparse matrix object
A tunable and then tunes it for a workload in which we expect to call SpMV 500 times. In
addition, we provide an additional hint to the library that the matrix non-zero structure is
dominated by a dense blocks of a single size, uniformly aligned. Later in the application,
we actually call SpMV a total of 500 times in some doubly nested loop.

1 // Create a tunable sparse matrix object.
A tunable = oski CreateMatCSR(. . .);

// Tell the library we expect to perform 500 SpMV operations with α = 1, β = 1.
oski SetHintMatMult(A tunable, OP NORMAL, 1.0, SYMBOLIC VEC, 1.0, SYMBOLIC VEC,

6 500); // workload hint
oski SetHint(A tunable, HINT SINGLE BLOCKSIZE, ARGS NONE); // structural hint
oski TuneMat(A tunable);

// . . .
11 {

oski vecview t x view = oski CreateVecView(. . .);
oski vecview t y view = oski CreateVecView(. . .);

for(i = 0; i < 100; i++) {
16 // . . .

for(k = 0; k < 5; k++) {
// . . .
oski MatMult(A tunable, OP NORMAL, 1.0, x view, 1.0, y view);
// . . .

21 }
// . . .

}
}

D
RAFT

2.3 Tuning based on implicit profiling 12

Listing 3: An example of implicit tuning. This example calls oski TuneMat periodically,
without explicitly providing any hints. At each call to oski TuneMat, the library poten-
tially knows more and more about how the user is using A tunable and may therefore tune
accordingly.

oski matrix t A tunable = oski CreateMatCSR(. . .);
oski vecview t x view = oski CreateVecView(. . .);
oski vecview t y view = oski CreateVecView(. . .);

5

oski SetHint(A tunable, HINT SINGLE BLOCKSIZE, 6, 6);

// . . .

10 for(i = 0; i < num times; i++) {
// . . .
while(!converged) {

// . . .
oski MatMult(A tunable, OP NORMAL, 1.0, x view, 1.0, y view);

15 // . . .
}
oski TuneMat(A tunable);
// . . . maybe change a few non-zero values for the next solve . . .

}

Then, oski TuneMat will try to choose a data structure that yields good performance over-
all for this workload.

Workload hints are cumulative, i.e., the call

oski SetHintMatMult(A tunable, . . ., 2000);

is equivalent to the two-call sequence

oski SetHintMatMult(A tunable, . . ., 1000);
oski SetHintMatMult(A tunable, . . ., 1000);

assuming the arguments given by “. . . ” are identical, and furthermore independent of
what other operations occur in between the two calls.

2.3 Tuning based on implicit profiling

Sparse matrix objects may also be tuned without any explicit hints. In this case, the library
may quietly monitor the number of times each is called with a particular matrix and kernel
arguments.

For instance, suppose that we cannot know statically the number of iterations that the
innermost while loop executes in Listing 3. At run-time, the library implementation can
log the calls to oski MatMult, so that if and when the application calls oski TuneMat, the
library can make an educated guess about whether SpMV is called a sufficient number of
times to hide the cost of tuning.

Hints may be ignored completely by the library, so the precise behavior when specify-
ing hints, particularly if they are interleaved between executions of oski TuneMat, cannot
be precisely defined. We provide some guidelines in Section 3.4 on page 19.

D
RAFT

3 Interface 13

3 Interface

The available library routines fall into 5 broad categories, summarized as follows:

1. Creating and modifying sparse matrix and dense vector objects (Section 3.2 on the
next page; Table 1 on the following page): A sparse matrix object must be created
from an existing user-allocated, pre-assembled matrix. We refer to this user-assembled
matrix as the input matrix. (Appendix A on page 38 defines currently supported input
matrix formats.) The user may specify whether the library and the user “share” the
input matrix arrays (Section 3.2.1 on the following page). When the library “tunes”
a matrix object, it may choose a new internal representation (sparse data structure).

Dense vector objects are wrappers around user-allocated dense arrays.

2. Executing kernels (Section 3.3 on page 18; Table 5 on page 18), e.g., sparse matrix-
vector multiply, triangular solve: The interfaces to our kernel routines mimic the
“look-and-feel” of the BLAS.

3. Tuning (Section 3.4 on page 19; Table 8 on page 20): Tuning occurs only if and when
the user calls a particular routine in our interface. In addition to this “tune” routine,
we also provide auxiliary routines that allow users to provide optional tuning hints.

4. Saving and restoring tuning transformations (Section 3.5 on page 24; Table 14 on
page 27): We provide a routine to allow the user to see a precise description, repre-
sented by a string, of the transformations that convert the input matrix data structure
to the tuned data structure.

The user may then call an additional routine to “execute” this program on the same
or similar input matrix, thereby providing a way to save and restore tuning trans-
formations across application runs, in the spirit of FFTW’s wisdom mechanism [20].
Moreover, the save/restore facility is an additional way for an advanced user to spec-
ify her own sequence of optimizing transformations.

The interface itself does not define the format of these string-based transformations.
However, we suggest a procedural, high-level scripting language, OSKI-Lua (de-
rived from the Lua language [26]), for representing such transformations. We pro-
vide a high-level overview of OSKI-Lua in Section 5 on page 29.

5. Error-handling (Section 3.6 on page 24; Table 15 on page 27): In addition to the error
codes and values returned by every routine in the interface, a user may optionally
specify her own handler to be called when errors occur to access additional diagnos-
tic information.

Tables 1–15 summarize the available routines. A user who only needs BLAS-like kernel
functionality for her numerical algorithms or applications only needs to know about the
object creation and kernel routines (Categories 1 and 2 above). Although tuning (i.e., Cat-
egories 3 and 4) is an important part of our overall design, its use is strictly optional.

The C bindings are presented in detail in Appendix B on page 40. The following text
provides an overview of the semantics and intent behind these bindings.

3.1 Basic scalar types

Most sparse matrix formats require storing both floating-point data for non-zero values
and integer index data. Our interface is defined in terms of two scalar types accordingly:

D
RAFT

3.2 Creating and modifying matrix and vector objects 14

Matrix oski CreateMatCSR Create a valid, tunable matrix object from a
objects CSR input matrix.

oski CreateMatCSC Create a valid, tunable matrix object from a
CSC input matrix.

oski CopyMat Clone a matrix object.
oski DestroyMat Free a matrix object.
oski GetMatEntry Get the value of a specific matrix entry.
oski SetMatEntry Set the value of a specific non-zero entry.
oski GetMatClique Get a block of values, specified as a clique.
oski SetMatClique Change a block of non-zero values

specified as a clique.
oski GetMatDiagValues Get values along a diagonal of a matrix.
oski SetMatDiagValues Change values along a diagonal.

Vector oski CreateVecView Create a view object for a single vector.
objects oski CreateMultiVecView Create a view object for a multivector.

oski CopyVecView Clone a vector view object.
oski DestroyVecView Free a (multi)vector view object.

Table 1: Creating and modifying matrix and vector objects. Bindings appear in Ap-
pendix B.1 on page 40.

oski value t and oski index t. By default, these types are bound to double and int, respec-
tively, but may be overridden at library build-time.

Our implementation of this interface also allows a user to generate, at library build-
time, separate interfaces bound to other ordinal and value type combinations to support
applications that need to use multiple types. These other interfaces are still C and Fortran
callable, but the names are “mangled” to include the selected type information.

In some instances in which a value of type oski value t is returned, a NaN value is
possible. Since oski value t may be bound to either a real or complex type, we denote
NaN’s by NaN VALUE throughout.

3.2 Creating and modifying matrix and vector objects

Our interface defines two basic abstract data types for matrices and vectors: oski matrix t
and oski vecview t, respectively. Available primitives to create and manipulate objects of
these types appears in Table 1, and C bindings appear in Appendix B.1 on page 40.

3.2.1 Creating matrix objects

The user creates a matrix object of type oski matrix t from a valid input matrix. Logically,
such an object represents at most one copy of a user’s input matrix tuned for some kernel
workload, with a fixed non-zero pattern for the entire lifetime of the object.

At present, we support 0- and 1-based CSR and CSC representations for the input ma-
trix. For detailed definitions of valid input formats, refer to Appendix A on page 38.

All of the supported input matrix formats use array representations, and a typical call
to create a matrix object from, say, CSR format looks like

A tunable = oski CreateMatCSR(Aptr, Aind, Aval, num rows, num cols, <copy mode>,
<k> , <property 1> , . . . , <property k>);

where A tunable is the newly created matrix object, Aptr, Aind, and Aval are user created
arrays that store the input matrix (here in a valid CSR format), <copy mode> specifies how

D
RAFT

3.2 Creating and modifying matrix and vector objects 15

the library should copy the input matrix data, and <property 1> through <property k>
specify how the library should interpret that data.

To make memory usage logically explicit, the interface supports two data copy modes.
These modes, defined by the scalar type oski copymode t (Table 2 on the following page),
are:

1. COPY INPUTMAT: The library makes a copy of the input matrix arrays, Aptr, Aind,
and Aval. The user may modify or free any of these arrays after the return from oski-
CreateMat without affecting the matrix object A tunable. Similarly, any changes to

the matrix object do not affect any of the input matrix arrays.

If the user does not or cannot free the input matrix arrays, then two copies of the
matrix will exist.

2. SHARE INPUTMAT: The user and the library agree to share the input matrix arrays
subject to the following conditions:

(a) The user promises that the input matrix arrays will not be freed or reallocated
before a call to oski DestroyMat on the handle A tunable.

(b) The user promises not to modify the elements of the input matrix arrays except
through the interface’s set-value routines (Section 3.2.2 on the next page). This
condition helps the library keep any of its internally maintained, tuned copies
consistent with the input matrix data.

(c) The library promises not to change any of the values in Aptr, Aind. This con-
dition fixes the pattern and maintains the properties of the input matrix data
given at creation time. Elements of Aval may change only on calls to the set-
value routines.

(d) The library promises to keep the input matrix arrays and any tuned copies syn-
chronized. This condition allows the user to continue to read these arrays as
needed. That is, if the user calls a set-value routine to change a non-zero value,
the library will update its internal tuned copy (if any) and the corresponding
non-zero value stored in the input matrix array Aval.

The significance of this shared mode is that, in the absence of explicit calls to the
tuning routine, only one copy of the matrix will exist, i.e., the user may consider
A tunable to be a wrapper or view of the input matrix.

Properties (<property 1> through <property k> in this example) are optional, and the
user should specify as many as needed for the library to interpret the non-zero pattern cor-
rectly. For instance, Listing 1 on page 8 creates a matrix with implicit ones on the diagonal
which are not stored, so the user must specify MAT UNIT DIAG IMPLICIT as a prop-
erty. A list of available properties appears in Table 3 on page 17, where default properties
assumed by the library are marked with a red asterisk (*).

The user may create a copy of A tunable by calling oski CopyMat. This copy is log-
ically equivalent to creating a matrix object in the COPY BUFFERS mode. The user frees
A tunable or its copies by a call to oski DestroyMat.

In addition to user-created matrix objects, there is one immutable pre-defined matrix
object with a special meaning: INVALID MAT. This matrix is returned when matrix cre-
ation fails, and is conceptually a constant analogous to the NULL constant for pointers in
C.

D
RAFT

3.2 Creating and modifying matrix and vector objects 16

SHARE INPUTMAT User and library agree to share the input matrix ar-
rays

COPY INPUTMAT The library copies the input matrix arrays, and the
user may free them immediately upon return from
the handle creation routine.

Table 2: Copy modes (type oski copymode t). Copy modes for the matrix creation rou-
tines, as discussed in detail in Section 3.2.1 on page 14.

3.2.2 Changing matrix non-zero values

The non-zero pattern of the input matrix fixes the non-zero pattern of A tunable, but the
user may modify the non-zero values. If the input matrix contains explicit zeros, the library
treats these entries as logical non-zeros whose values may be modified later. We provide
several routines to change non-zero values. To change individual entries, the user may
call oski SetMatEntry, and to change a block of values defined by a a clique, the user may
call oski SetMatClique. If A tunable is a shallow copy of the user’s matrix, the user’s
values array will also change. Logical non-zero values are subject to properties asserted at
matrix creation-time (see Appendix B.1 on page 40).

We also define primitives for obtaining all of the values along an arbitrary diagonal and
storing them into a dense array (oski GetMatDiagValues), and for setting all of the non-
zero values along an arbitrary diagonal from a dense array (oski SetMatDiagValues). The
same restriction on altering only non-zero values in the original matrix applies for these
routines.

Tuning may select a new data structure in which explicit zero entries are stored that
were implicitly 0 (i.e., not stored) in the input matrix. The behavior if the user tries to
change these entries is not defined, for two reasons. First, allowing the user to change
these entries would yield inconsistent behavior across platforms for the same matrix, since
whether a “filled-in” entry could be changed would depend on what data structure the
library chooses. Second, requiring that the library detect all such attempts to change these
entries might, in the worst case, require keeping a copy of the original input matrix pattern,
creating memory overhead. The specifications in Appendix B.1 on page 40 allow, but do
not require, the library implementation to report attempts to change implicit zeros to non-
zero values as errors.

3.2.3 Vector objects

Vector objects (type oski vecview t) are always views on the user’s dense array data. Such
objects may be views of either single column vectors, created by a call to oski CreateVec-
View, or multiple column vectors (multivectors), created by a call to oski CreateMulti-
VecView. A multivector consisting of k ≥ 1 vectors of length n each is just a dense n × k
matrix, but we use the term multivector to suggest a common case in applications in which
k is on the order of a “small” constant (e.g., 10 or less). A single vector is the same as the
multivector with k = 1.

This interface expects the user to store her multivector data as a dense matrix in either
row major (C default) or column major (Fortran default) array storage (Table 4 on page 18).
The interface also supports submatrices by allowing the user to provide the leading dimen-
sion (or stride), as is possible with the dense BLAS. Thus, users who need the BLAS can
continue to mix BLAS operations on their data with calls to the OSKI kernels.

In addition to user-created vector views, we define two special, immutable vector view
objects: SYMBOLIC VEC and SYMBOLIC MULTIVEC. Conceptually, these objects are

D
RAFT

3.2 Creating and modifying matrix and vector objects 17

*MAT GENERAL Input matrix specifies all non-zeros.
MAT TRI UPPER Only non-zeros in the upper triangle exist.
MAT TRI LOWER Only non-zeros in the lower triangle exist.
MAT SYMM UPPER Matrix is symmetric but only the upper triangle

is stored.
MAT SYMM LOWER Matrix is symmetric but only the lower triangle

is stored.
MAT SYMM FULL Matrix is symmetric and all non-zeros are stored.
MAT HERM UPPER Matrix is Hermitian but only the upper triangle

is stored.
MAT HERM LOWER Matrix is Hermitian but only the lower triangle

is stored.
MAT HERM FULL Matrix is Hermitian and all non-zeros are stored.
*MAT DIAG EXPLICIT Any non-zero diagonal entries are specified

explicitly.
MAT UNIT DIAG IMPLICIT No diagonal entries are stored, but should be

assumed to be equal to 1.
*INDEX ONE BASED Array indices start at 1 (default Fortran

convention).
INDEX ZERO BASED Array indices start at 0 (default C convention).
*INDEX UNSORTED Non-zero indices in CSR (CSC) format within each

row (column) appear in any order.
INDEX SORTED Non-zero indices in CSR (CSC) format within each

row (column) are sorted in increasing order.
*INDEX REPEATED Indices may appear multiple times.
INDEX UNIQUE Indices are unique.

Table 3: Input matrix properties (type oski inmatprop t). Upon the call to create a ma-
trix object, the user may characterize the input matrix by specifying one or more of the
above properties. Properties grouped within the same box are mutually exclusive. Default
properties marked by a red asterisk (*).

D
RAFT

3.3 Executing kernels 18

LAYOUT ROWMAJ The multivector is stored in row-major format (as in
C/C++).

LAYOUT COLMAJ The multivector is stored in column-major format (as
in Fortran).

Table 4: Dense multivector (dense matrix) storage modes (type oski storage t). Storage
modes for the dense multivector creation routines.

oski MatMult Sparse matrix-vector multiply (SpMV)
y ← α · op(A)· x
where op(A) ∈ {A,AT , AH}.

oski MatTrisolve Sparse triangular solve (SpTS)
x← α · op(A)−1 · x

oski MatTransMatMult y ← α · op2(A)· x + β · y
where op2(A) ∈ {AT A,AHA,AAT , AAH}

oski MatMultAndMatTransMult Simultaneous computation of
y ← α ·A· x + β · y

AND
z ← ω · op(A)· w + ζ · z

oski MatPowMult Matrix power multiplication
Computes y ← α · op(A)ρ · x + β · y

Table 5: Sparse kernels. This table summarizes all of the available sparse kernel routines.
The user selects single or multivector versions by passing in an appropriate vector view
(Section 3.2.3 on page 16). See Appendix B.3 on page 52 for bindings.

constants that may be used with the tuning workload specification routines to indicate
tuning for single vectors or multivectors instead of specifying instantiated view objects.
See Section 3.4 on the next page.

3.3 Executing kernels

We summarize the available kernels in Table 5, and present their bindings in Appendix B.3 on
page 52. In addition to both single vector and multivector versions of sparse matrix-vector
multiply (oski MatMult) and sparse triangular solve (oski MatTrisolve), we provide in-
terfaces for three “high-level” sparse kernels that provide more opportunities to reuse the
elements of A:

• Simultaneous multiplication of A and AT (or AH) by a dense multivector (oski Mat-
MultAndMatTransMult).

• Multiplication of AT · A or A · AT (or conjugate transpose variants) by a dense mul-
tivector (oski MatTransMatMult).

• Multiplication of a non-negative integer power of a matrix (oski MatPowMult).

We have recently reported on experimental justifications and suggested implementations
for these kernels [47, 49].

3.3.1 Applying the transpose of a matrix

We follow the BLAS convention of allowing the user to apply the transpose (or, for complex
data, the transpose or Hermitian transpose). See Table 6 on the following page for a list of

D
RAFT

3.4 Tuning 19

OP NORMAL Apply A.
OP TRANS Apply AT .
OP CONJ TRANS Apply AH = ĀT , the conjugate transpose of A.

Table 6: Matrix transpose options (type oski matop t). Constants that allow a user to
apply a matrix A, its transpose AT , or, for complex-valued matrices, its conjugate transpose
AH . These options are called op(A) in Table 5 on the preceding page.

OP AT A Apply AT A.
OP AH A Apply AHA.
OP A AT Apply AAT .
OP A AH Apply AAH .

Table 7: Matrix-transpose-times-matrix options (type oski ataop t). Constants that allow
a user to apply AT A, AHA, AAT , or AAH in calls to the routine, oski MatTransMatMult.
These options are called op2(A) in Table 5 on the page before.

transpose options provided by the scalar type oski matop t. The notation op(A) indicates
that any of A, AT , or AH may be applied, i.e., op(A) ∈ {A,AT , AH}.

The high-level kernel oski MatTransMatMult has inherently more matrix reuse op-
portunities. This kernel allows the user to apply any of the four matrix operations listed in
Table 7, given a matrix A: AAT , AT A, AAH , and AHA.

3.3.2 Aliasing

The interface guarantees correct results only if multivector view object input arguments do
not alias any multivector view object output arguments, i.e., if input and output views do
not view the same user data. If such aliasing occurs, the results are not defined.

3.3.3 Scalars vs. 1x1 matrix objects

An object of type oski matrix t created with dimensions 1 × 1 is not treated as a scalar by
the kernel routines. Therefore, such an object may only be applied to a single vector and
not a n× k multivector object when k ≥ 2.

3.3.4 Compatible dimensions for matrix multiplication

All of the kernels apply a matrix op(A) to a (multi)vector x and store the result in another
(multi)vector y. Let m×n be the dimensions of op(A), let p×k be the dimensions of x, and
let q × l be the dimensions of y. We say these dimensions are compatible if m = q, n = p,
and k = l.

3.3.5 Floating point exceptions

None of the kernels attempt to detect or to trap floating point exceptions.

3.4 Tuning

The user tunes a valid matrix object at any time and as frequently as she desires for a
given matrix object of type oski matrix t. The library tunes by selecting a data structure

D
RAFT

3.4 Tuning 20

oski SetHintMatMult Workload hints specify the expected
oski SetHintMatTrisolve options and frequency of the
oski SetHintMatTransMatMult corresponding kernel call.
oski SetHintMatMult and MatTransMult
oski SetHintMatPowMult
oski SetHint Specify hints about the non-zero

structure that may be relevant
to tuning. For a list of available
hints, see Table 9 on the following page.

oski TuneMat Tune the matrix data structure using
all hints and implicit workload data
accumulated so far.

Table 8: Tuning primitives. The user tunes a matrix object by first specifying work-
load and structural hints, followed by an explicit call to the tuning routine, oski TuneMat.
Bindings appear in Appendix B.4 on page 57.

customized for the user’s matrix, kernel workload, and machine.4 The interface defines
three groups of tuning operations, listed in Table 8 and summarized as follows:

• Workload specification (Section 3.4.1 on page 22): These primitives allow the user
to specify which kernels she will execute and how frequently she expects to execute
each one. There is one workload specification routine per kernel.

• Structural hint specification (Section 3.4.2 on page 22): The user may optionally
influence the tuning decisions by providing hints about the non-zero structure of the
matrix. For example, the user may tell the library that she believes the structure of
the matrix consists predominantly of uniformly aligned 6× 6 dense blocks.

• Explicit tuning (Section 3.4.3 on page 23): The user must explicitly call the “tune rou-
tine,” oski TuneMat, to initiate tuning. Conceptually, this routine marks the point in
program execution at which the library may spend time changing the data structure.
The tune routine uses any hints about the non-zero structure or workload, whether
they are specified explicitly by the user via calls to the above tuning primitives or
they are gathered implicitly during any kernel calls made during the lifetime of the
matrix object.

Section 2 on page 6 illustrates the common ways in which we expect users to use the
interface to tune.

The library may optimize kernel performance by permuting the rows and columns of
the matrix to reduce the bandwidth [27, 44, 13, 23, 14] or to create dense block structure
[36]. That is, the library may compute a tuned matrix representation Â = Pr ·A ·P T

c for the
user’s matrix A, where Pr and Pc are permutation matrices. However, this optimization
requires each kernel to permute its vectors on entry and exit to maintain the correctness of
the interfaces. Section 3.4.4 on page 23 discusses functionality that allows the user, if she
so desires, to determine if reordering has taken place and access Pr, P T

c , and Â directly to
reduce the number of permutations.

4The interface also permits an implementation of this interface to generate code or perform other
instruction-level tuning at run-time as well.

D
RAFT

3.4 Tuning 21

Hint Arguments Description
1 HINT NO BLOCKS none Matrix contains little or no dense

block substructure.
HINT SINGLE BLOCKSIZE [int r, c] Matrix structure is dominated by

a single block size, r × c.
HINT MULTIPLE BLOCKSIZES [int k, r1, c1,

. . . , rk, ck]
Matrix structure consists of at
least k ≥ 1 multiple block
sizes. These sizes include r1 ×
c1, . . . , rk × ck.

2 HINT ALIGNED BLOCKS none Any dense blocks are uniformly
aligned. That is, let (i, j) be the
(1, 1) element of a block of size
r×c. Then, (i−1) mod r = (j−1)
mod c = 0.

HINT UNALIGNED BLOCKS none Any dense blocks are not aligned,
or the alignment is unknown.

3 HINT SYMM PATTERN none The matrix non-zero pattern is
structurally symmetric, or nearly
so.

HINT NONSYMM PATTERN none The matrix non-zero pattern is
structurally “very” unsymmetric.

4 HINT RANDOM PATTERN none The matrix non-zeros (or non-
zero blocks) are nearly dis-
tributed uniformly randomly
over all positions.

HINT CORRELATED PATTERN none The row indices and column in-
dices for non-zeros are highly cor-
related.

5 HINT NO DIAGS none The matrix contains little if any
explicit diagonal structure.

HINT DIAGS [int k, d1,
. . . , dk]

The matrix has structure best
represented by multiple diago-
nals. The diagonal lengths in-
clude d1, . . . , dk, possibly among
other lengths.

Table 9: Available structural hints (type oski tunehint t). The user may provide ad-
ditional hints, via a call to the routine oski SetHint, about the non-zero structure of the
matrix which may be useful to tuning. Several of the hints allow the user to specify addi-
tional arguments, shown in column 2. All arguments are optional. The table groups hints
into 5 mutually exclusive sets, e.g., a user should only specify one of HINT NO BLOCKS,
HINT SINGLE BLOCKSIZE, and HINT MULTIPLE BLOCKSIZES if she specifies any of
these hints at all.

D
RAFT

3.4 Tuning 22

ALWAYS TUNE The user expects “many” calls, and the li-
brary may therefore elect to do some basic
tuning.

ALWAYS TUNE AGGRESSIVELY The user expects a sufficient number of calls
that the library may tune aggressively.

Table 10: Symbolic calling frequency constants (type int). Instead of providing a numer-
ical estimate of the number of calls the user expects to make when specifying a workload
hint, the user may use one of the above symbolic constants.

SYMBOLIC VEC A symbolic single vector view.
SYMBOLIC MULTIVEC A symbolic multivector view consisting of at

least two vectors.

Table 11: Symbolic vector views for workload hints (type oski vecview t). Instead of
passing an actual vector view object to the workload hint routine (Table 8 on page 20), the
user may pass in one of the above symbolic views.

3.4.1 Providing workload hints explicitly

Each of the kernels listed in Table 5 on page 18 has a corresponding workload hint routine.
The user calls these routines to tell the library which kernels she will call and with what
arguments for a given matrix object, and the expected frequency of such calls. The routines
for specifying workload hints (Table 8 on page 20) all have an argument signature of the
form

oski SetHint<KERNEL>(A tunable, <KERNEL_PARAMS>, num calls);

where num calls is an integer. This hint tells the library that we will call the specified
<KERNEL> on the object A tunable with the arguments <KERNEL PARAMS>, and that
we expect to make num calls such calls.

Instead of specifying an estimate of the number of calls explicitly, the user may sub-
stitute the symbolic constant ALWAYS TUNE or ALWAYS TUNE AGGRESSIVELY to tell
the library to go ahead and assume the application can amortize cost (see Table 10). The
use of two constants allows a library implementation to provide two levels of tuning when
the user cannot estimate the number of calls.

Where a kernel expects a vector view object to be passed as an argument, the user
may pass to the workload hint either SYMBOLIC VEC or SYMBOLIC MULTIVEC instead
of an actual vector view object (Table 11). The user should use SYMBOLIC VEC if she
anticipates using a single vector, or SYMBOLIC MULTIVEC if she anticipates using at
least two vectors. Specifying actual vector view objects is preferred since they will contain
additional information relevant to tuning, including storage layout for multivectors (i.e.,
row vs. column major) and strides or leading dimensions.

3.4.2 Providing structural hints

A user provides one or more structural hints by calling oski SetHint as illustrated in Sec-
tions 2.2–2.3. Providing these hints is entirely optional, but a library implementation may
use these hints to constrain a tuning search.

Some hints allow the user to provide additional information. For instance, consider
the hint, HINT SINGLE BLOCKSIZE, which tells the library that the matrix structure is
dominated by dense blocks of a particular size. Rather than just indicate the presence of a
single block size by the following call

D
RAFT

3.4 Tuning 23

TUNESTAT NEW The library selected a new data structure for
the matrix based on the current workload
data and hints.

TUNESTAT AS IS The library did not change the data structure.

Table 12: Tuning status codes. Status codes returned by oski TuneMat in the event that
no error occurred during tuning.

oski SetHint(A tunable, HINT SINGLE BLOCKSIZE, ARGS NONE);

the user may specify the block size explicitly if it is known:

oski SetHint(A tunable, HINT SINGLE BLOCKSIZE, 6, 6); // 6× 6 blocks

In this case, either call is “correct” since specifying the block size is optional. See Table 9 on
page 21 for a list of hints, their arguments, and whether the arguments are optional or
required.

A library implementation is free to ignore all hints, so there is no strict definition of the
library’s behavior if, for example, the user provides conflicting hints. We recommend that
implementations use the following interpretation of multiple hints:

• If more than one hint from a mutually exclusive group is specified, assume the latter
is true. For example, if the user specifies HINT SINGLE BLOCKSIZE followed by
HINT NO BLOCKS, then no-block hint should override the single-block size hint.

• Hints from different groups should be joined by a logical ‘and.’ That is, if the user
specifies HINT SINGLE BLOCKSIZE and HINT SYMM PATTERN, this combina-
tion should be interpreted as the user claiming the matrix is both nearly structurally
symmetric and dominated by a single block size.

3.4.3 Initiating tuning

This interface defines a single routine, oski TuneMat, which marks the point in program
execution at which tuning may occur. As discussed in its binding (Section B.4 on page 57),
oski TuneMat returns one of the integer status codes shown in Table 12 to indicate whether
it changed the data structure (TUNESTAT NEW) or not (TUNESTAT AS IS).

3.4.4 Accessing the permuted form

The interface defines several routines (Table 13 on the following page) that allow the user
to determine whether the library has optimized kernel performance by reordering the rows
and columns of the matrix (by calling oski IsMatPermuted), to extract the corresponding
permutations (oski ViewPermutedMat, oski ViewPermutedMatRowPerm, oski View-
PermutedMatColPerm), and to apply these permutations to vector view objects (oski-
PermuteVecView).

Given the user’s matrix A, suppose that tuning produces the representation A = P T
r ·

Â · Pc, where Pr and Pc are permutation matrices and multiplying by Â is much faster
than multiplying by A. This form corresponds to reordering the rows and columns of A—
by pre- and post-multiplying A by Pr and P T

c —to produce an optimized matrix Â. To
compute y ← A · x correctly while maintaining its interface and taking advantage of fast
multiplication by Â, the kernel oski MatMult must instead compute Pr · y ← Â· (Pc · x).
Carrying out this computation in-place requires permuting x and y on entry, and then

D
RAFT

3.5 Saving and restoring tuning transformations 24

oski IsMatPermuted Determine whether a matrix has been tuned
by reordering its rows or columns.

oski ViewPermutedMat Returns a read-only matrix object for the re-
ordered copy of A, Â.

oski ViewPermutedMatRowPerm Returns the row permutation Pr.
oski ViewPermutedMatColPerm Returns the column permutation Pc.
oski PermuteVecView Apply a permutation object (or its inverse/-

transpose) to a vector view.

Table 13: Extracting and applying permuted forms. If tuning produces a tuned matrix
Â = Pr ·A·P T

c , the above routines allow the user to detect and to extract read-only views of
Pr, Pc, and Â, and apply the permutations Pr and Pc. Bindings appear in Appendix B.5 on
page 61.

again on return. If tuning produces such a permuted matrix, all kernels perform these
permutations as necessary.

Since the user may be able to reduce the permutation cost by permuting only once be-
fore executing her algorithm, and perhaps again after her algorithm completes, we provide
several routines to extract view objects of Pr, Pc, and Â. These objects are views of the inter-
nal tuned representation of A. Therefore, they are valid for the lifetime of the matrix object
that represents A, they do not have to be deallocated explicitly by the user. Moreover, if A
is re-tuned, these representations will be updated automatically.

We provide an additional type for permutations, oski perm t, and the routines listed in
Table 13. An object of type oski perm t may equal a special symbolic constant representing
an identity permutation of any size, PERM IDENTITY. This constant may be used in either
of the routines to apply a permutation or its inverse to a vector view.

Listing 4 on the following page sketches the way in which a user might use these rou-
tines in her application. It reduces the number of permutations performed if Pr = Pc,
a condition easily tested (line 20) by directly comparing the corresponding permutation
variables Pr and Pc.

3.5 Saving and restoring tuning transformations

The interface defines basic facilities that allow users to view the tuning transformations
which have been applied to a matrix, to edit these transformations, and to re-apply them
(Table 14 on page 27). To get a string describing how the input matrix data structure was
transformed during tuning, the user calls oski GetMatTransforms. This routine returns a
newly allocated string containing the transformations description. To set the data structure
(i.e., to apply some set of transformations to the input matrix data structure), the user calls
oski ApplyMatTransforms. Such a call is equivalent to calling oski TuneMat, except that
instead of allowing the library to decide what data structure to use, we are specifying
it explicitly. We illustrate the usage of these two routines in Listing 5 on page 26 and
Listing 6 on page 26.

We do not mandate the precise format of the string, but strongly encourage the use of
a human-readable format. Section 5 on page 29 provides several examples of transforma-
tions exprssed in a high-level procedural language based on Lua [26].

3.6 Handling errors

The OSKI interface provides two methods for handling errors:

D
RAFT

3.6 Handling errors 25

Listing 4: An example of extracting permutations. This example computes y ← Ak ·
x. Suppose the library tunes by symmetrically reordering the rows and columns, i.e., by
computing A = P T · Â ·P where P is a permutation matrix and multiplying by Â is “much
faster” than multiplying by A. Then, this example shows how to pre- and post-permute
x, y only each, instead of at every multiplication A · x.
// Create A, x, and y.
oski matrix t A tunable = . . . ;
oski vecview t x view = . . . , y view = . . . ;

4

// Store permuted form. Declared as ‘const’ since they will be read-only.
const oski perm t Pr, Pc; // Stores Pr, Pc

const oski matrix t A fast; // Stores Â

9 int iter , max power = 3; // k

// Tune for our computation
oski SetHintMatMult(A tunable, OP NORMAL, 1, x view, 1, y view, max power);
oski TuneMat(A tunable);

14

// Extract permuted form, Â = Pr ·A · PT
c

A fast = oski ViewPermutedMat(A tunable);
Pr = oski ViewPermutedMatRowPerm(A tunable);
Pc = oski ViewPermutedMatColPerm(A tunable);

19

if (Pr == Pc) // May reduce the number of permutations needed?
{

// Compute y ← A
k· x in three steps.

// 1. y ← Pr · y, x← Pc · x
24 oski PermuteVecView(Pr, OP NORMAL, y view);

oski PermuteVecView(Pc, OP NORMAL, x view);

// 2. y ← A
k· x

for(iter = 0; iter < max power; iter++)
29 oski MatMult(A fast, OP NORMAL, 1.0, x view, 1.0, y view);

// 3. y ← PT
r · y, x← PT

c · x
oski PermuteVecView(Pr, OP TRANS, y view);
oski PermuteVecView(Pc, OP TRANS, x view);

34 }
else // use a conventional implementation

for(iter = 0; iter < max power; iter++)
oski MatMult(A tunable, OP NORMAL, 1.0, x view, 1.0, y view);

39 // Clean-up
oski DestroyMat(A tunable); // Invalidates Pr, Pc, and A fast
oski DestroyVecView(x view); oski DestroyVecView(y view);

D
RAFT

3.6 Handling errors 26

Listing 5: An example of saving transformations. This example extracts the tuning trans-
formations applied to a matrix object A tunable and saves them to a file.
oski matrix t A tunable = oski CreateMatCSR(. . .);

char∗ xforms; // stores transformations
FILE∗ fp saved xforms = fopen("./my_xform.txt" , "wt"); // text file for output

5

// ...

// Tune the matrix object
oski TuneMat(A tunable);

10

// ...

// Extract transformations
xforms = oski GetMatTransforms(A tunable);

15 printf ("--- Matrix transformations ---\n%s\n--- end ---\n" , xforms);

// Save to a file
fprintf (fp saved xforms, "%s\n" , xforms);
fclose (fp saved xforms);

20

free (xforms);

// ...

Listing 6: An example of applying transformations. This example reads a string repre-
sentation of tuning transformations from a file and applies them to an untuned matrix.
FILE∗ fp saved xforms = fopen("./my_xform.txt" , "rt"); // text file for input

2

// Buffer for storing transformation read from the file. The actual size of this buffer should
// should be the file size, but we use some maximum constant here for illustration purposes.
char xforms[SOME MAX BUFFER SIZE];
int num chars read;

7

oski matrix t A tunable = oski CreateMat CSR(. . .);

// Read transformations.
num chars read = fread(xforms, sizeof(char), SOME MAX BUFFER SIZE−1, fp saved xforms);

12 xforms[num chars read] = NULL;

// Execute one un-tuned matrix multiply.
oski MatMult(A tunable, . . .);

17 // Change matrix data structure.
oski ApplyMatTransforms(A tunable, xforms);

// Now perform matrix multiply in the new data structure.
oski MatMult(A tunable, . . .);

22

// . . .

D
RAFT

3.6 Handling errors 27

oski GetMatTransforms Retrieve a string representation of the tuning
transformations that have been applied to a
given matrix.

oski ApplyMatTransforms Apply tuning transformations to a given ma-
trix.

Table 14: Saving and restoring tuning transformations. The interface defines a basic fa-
cility to allow users to view the tuning transformations that have been applied to matrix,
and later re-apply those (or other) transformations to another matrix. Bindings appear in
Appendix B.6 on page 63.

oski GetErrorHandler Returns a pointer to the current error han-
dling routine.

oski SetErrorHandler Changes the current error handling routine
to a user-supplied handler.

oski HandleErrorDefault The default error handler provided by the li-
brary.

Table 15: Error handling routines. Bindings appear in Appendix B.7 on page 64.

1. Error code returns: Many of the routines in the interface return an integer error code
(of type int). All of the possible error codes are negative, providing a simple way for
an application to check for an error on return from any OSKI routine.

2. Error handling routines: The library calls an error handling routine when an error
occurs. By default, this routine is oski HandleErrorDefault. However, the user may
also replace this routine with her own handler, or replace it with NULL to disable
error handler calling entirely.

When an error condition is detected within a OSKI routine, it is always handled using
the following procedure:

• The routine calls the current error handler.

• Regardless of which error handler is called (if any), the routine may return an error
code.

A user may change the error handler by calling oski SetErrorHandler, or retrieve the
current error handler by calling oski GetErrorHandler. The error handling routines are
summarized in Table 15.

An error handling routine has the following signature (oski errhandler t):

void your handler(int error code, const char∗ message,
const char∗ source filename, unsigned long line number,
const char∗ format string, . . .);

The first 4 parameters describe the error and its source location. The arguments beginning
at format string are printf-compatible arguments that provide a flexible way to provide
supplemental error information.

For example, the following code shows how the error handler might be called from
within the the SpMV kernel, oski MatMult, when the user incorrectly tries to apply a
matrix A tunable with dimensions m×n to a vector of length veclen, where n 6=veclen:

507 if (n 6=veclen) {
508 your handler(ERR DIM MISMATCH, "oski_MatMult: Mismatched dimensions" ,

D
RAFT

4 Example: Biconjugate Gradients 28

"oski_MatMult.c" , 507,
510 "Matrix dimensions: %d x %d, Vector length: %d\n" , m, n, veclen);

return ERR DIM MISMATCH;
512 }

4 Example: Biconjugate Gradients

We present a subroutine implementation of the biconjugate gradient (BiCG) algorithm
(without preconditioning) for solving a system of linear equations [40, Chapter 7, p. 223].
This example mixes calls to OSKI and the dense BLAS.
// Solves the n× n system A · x = b for x using the BiCG algorithm.
// The vector x should be initialized with a starting guess.
int SolveLinSys using BiCG(const oski matrix t A, int n, const double∗ b, double∗ x)

4 {
int converged = 0; // == 1 when algorithm has converged.
double ∗workspace; // Temporary vector storage space.
double ∗p, ∗ps, ∗y, ∗ys, ∗r , ∗rs ; // Temporary vectors of length n each
oski vecview t p view, ps view, y view, ys view, r view, x view; // For OSKI

9

// Argument error checking
assert (n > 0);
assert (A 6=INVALID MAT);
assert (x 6=NULL);

14 assert (b 6=NULL);

// Allocate 6 temporary vectors as a block.
workspace = (double ∗)malloc(sizeof(double) ∗ n ∗ 6);
assert (workspace 6=NULL);

19

p = workspace; ps = workspace + n;
y = workspace + 2∗n; ys = workspace + 3∗n;
r = workspace + 4∗n; rs = workspace + 5∗n;

24 p view = oski CreateVecView(p, n, STRIDE UNIT);
ps view = oski CreateVecView(ps, n, STRIDE UNIT);
y view = oski CreateVecView(y, n, STRIDE UNIT);
ys view = oski CreateVecView(ys, n, STRIDE UNIT);
r view = oski CreateVecView(r, n, STRIDE UNIT);

29 rs view = oski CreateVecView(rs, n, STRIDE UNIT);

// Compute residual r0 ← b, r0 ← r0 −A· x0

dcopy(n, b, 1, r , 1);
oski MatMult(A, OP NORMAL, −1.0, x view, 1.0, r view);

34

dcopy(n, r , 1, rs , 1); // r∗0 ← r
dcopy(n, r , 1, p, 1); // p0 ← r
dcopy(n, r , 1, ps, 1); // p∗0 ← r

39 while(!converged) {
// Inner loop, iteration j (starting at j = 0)
double r dot rs, alpha, beta;

// Simultaneously compute: y ← A· pj , y∗ ← AT · p∗j
44 oski MatMultAndMatTransMult(A, 1.0, p view, 0.0, y view,

OP TRANS, 1.0, ps view, 0.0, ys view);

D
RAFT

5 A Tuning Transformation Language 29

// αj ←
(
rT
j · r∗j

)
/

(
(A· pj)T · p∗j

)
r dot rs = ddot(n, r , 1, rs , 1);

49 alpha = r dot rs / ddot(n, y, 1, ps, 1);

daxpy(n, alpha, p, 1, x, 1); // xj+1 ← xj + αj · pj

daxpy(n, −alpha, y, 1, r , 1); // rj+1 ← rj − αj ·A· pj

daxpy(n, −alpha, ys, 1, rs , 1); // r∗j+1 ← r∗j − αj ·AT · p∗j
54 beta = ddot(n, r , 1, rs , 1) / r dot rs ; // βj ←

(
rT
j+1 · r∗j+1

)
/

(
rT
j · r∗j

)
// pj+1 ← rj+1 + βj · pj

dscal(n, beta, p, 1);
daxpy(n, 1.0, r , 1, p, 1);

59

// p∗j+1 ← r∗j+1 + βj · p∗j
dscal(n, beta, ps, 1);
daxpy(n, 1.0, rs , 1, ps, 1);

64 // Check for convergence
converged = . . .;

}

oski DestroyVecView(r view); oski DestroyVecView(x view);
69 oski DestroyVecView(y view); oski DestroyVecView(ys view);

oski DestroyVecView(p view); oski DestroyVecView(ps view);
free (workspace);

}

This example does not explicitly tune, but if this solver is embedded as a subroutine call
in some larger non-linear solver, one could imagine calling oski TuneMat just after a call
to this routine.

5 A Tuning Transformation Language

This section provides an overview, illustrated by example, of a dynamically typed, pro-
cedural object-oriented scripting language for describing how to convert an input matrix
into a tuned matrix data structure. The syntax of the language, OSKI-Lua, is based on the
scripting language Lua [26]. A call to oski GetMatTransforms (Section 3.5 on page 24)
returns a program in this language. Moreover, a user may write her own sequence of
transformations as a program in this language, and then call oski ApplyMatTransforms
to execute the program, thereby creating a specific data structure.

The rest of this section presents a number of examples intended to give the reader
a sense of what the transformation language could look like. A detailed specification is
forthcoming.

5.1 Basic transformations

The simplest OSKI-Lua program is one which performs no transformations on the input
matrix data structure:

No tuning
return InputMat;

D
RAFT

5.2 A complex splitting example 30

All OSKI-Lua programs have a predefined object named InputMat represents the input
matrix in CSR or CSC format, and must return a matrix object. This program simply returns
the input matrix as-is.

The input matrix is transformed by applying functions that create new matrix objects,
usually in different data structures. These alternative (“tuned”) matrix data structures are
defined as types in the language, and instantiating an object of a particular type typically
transforms an existing data structure into a new data structure. The following example
converts the input matrix into a 4× 2 block compressed sparse row (BCSR) format:

Convert input matrix to 4× 2 register blocked format
return BCSR:new(InputMat, 4, 2);

Here, BCSR is a type and new is a method that takes a matrix object and block size as
input, and returns a matrix object in the new format. Since instantiating objects in this way
is quite common, we define a shorthand notation in which :new is omitted, i.e.,

return BCSR(InputMat, 4, 2);

In our implementation, BCSR:new(A, r, c) has a native conversion routine for the case
of A in either CSR or CSC format; any other format will be implicitly converted to one of
these formats first.

5.2 A complex splitting example

The following example illustrates a more complex transformation. Let A = A1 + A2 + A3

be a splitting of an input matrix A where A1 is stored in 4× 2 unaligned block compressed
sparse row (UBCSR) format, A2 is stored in 2× 2 UBCSR, and A3 is stored in CSR format:

1 # Let A = A1 + A2 + A3 where
2 # A1 is in 4× 2 UBCSR format
3 # A2 is in 2× 2 UBCSR format
4 # A3 is in CSR format
5 T = VBR(InputMat);
6

7 # First, split A = A1 + Aleftover,
8 # where Aleftover is in CSR format
9 A1, A leftover = T.extract blocks(4, 2);

10

11 # Next, split Aleftover = A2 + A3

12 T = VBR(A leftover);
13 A2, A3 = T.extract blocks(2, 2);
14

15 return A1 + A2 + A3;

(UBCSR essentially adds an additional set of row indices to BCSR format to allow a flexible
alignment of block rows.)

The splitting in this example is based on first converting the input matrix to variable
block row (VBR) format (line 5): the rows are partitioned into block rows of varying size,
the columns into block columns, and only non-zero blocks are stored. The constructor
VBR determines this partitioning automatically, though other optional arguments exist for
controlling how the partitions are formed.

The VBR type has a method, extract blocks, which greedily extracts blocks of the spec-
ified size, and returns two matrix objects: one in UBCSR containing all blocks, and the
other in CSR to hold the leftover elements.5 This method is first called (line 9) to extract
4× 2 blocks, and repeated to extract 2× 2 blocks from the leftovers (line 13).

5A naturally occuring 5× 4 block will be extracted as two 4× 2 blocks, with the leftover elements assigned
to A leftover.

D
RAFT

5.3 Example of reordering and splitting 31

The summation in the return statement (line 15) is a symbolic summation. The expres-
sion A1+A2+A3 implicitly evaluates to an object of type SUM. Indeed, this statement is
equivalent to creating an object via

return SUM(A1, A2, A3);

A garbage collector automatically disposes of the temporary variables, T and A leftover.

5.3 Example of reordering and splitting

A reordering transformation for creating dense blocks, based on approximating a solution
to the Traveling Salesman Problem, is implemented as a function that returns row and
column permutations and a reordered matrix in CSR. The following example computes a
(symmetric) reordering A = P T · Â ·P , where the reordered matrix Â is further split into a
sum A1 + A2 where A1 is stored in 2× 2 BCSR, and A2 is stored in CSR.

1 # Compute Â = P ·A · PT

2 A hat, P = reorder TSP(InputMat);
3

4 # Split: Â = A1 + A2, where A1 is 2× 2 BCSR and A2 is CSR
5 A1, A2 = A hat.extract blocks(2, 2);
6

7 # Tuned result
8 A tuned = transpose(P) ∗ (A1 + A2) ∗ P;
9 return A tuned;

The function reorder TSP (line 2) executes our implementation of Pinar and Heath’s TSP-
based reordering algorithm [36]. The first output variable, A hat, stores the reordered ma-
trix in CSR format. The second argument holds the row permutation. Since a column
permutation is not assigned on output, reorder TSP will apply the same permutation to
both the rows and the columns.

The call to extract blocks (line 5) uses a greedy algorithm to select 2 × 2 blocks from
A hat, and returns the result in BCSR format in A1. This extract blocks method, a member
of the CSR type, differs from the method of the same name used in the example of Sec-
tion 5.2 on the preceding page, since that method was a member of the VBR (and not CSR)
type.

The assignment to A tuned (line 8) creates a matrix object which is symbolically equal to
the right-hand side and which implicitly evaluates to creating an object via the statement:

A tuned = PERMFORM(transpose(P), SUM(A1, A2), P);

5.4 Switch-to-dense example

We recently demonstrated the efficacy of a switch-to-dense optimization for sparse triangu-
lar solve [48]. If L is a lower triangular matrix, this transformation partitions L as follows:

L =
(

L1 0
L2 LD

)
where L1 is a sparse lower triangular matrix, L2 is a sparse rectangular matrix, and LD is
a dense lower triangular matrix. In practice, LD may account for as many as 90% of all of
the non-zeros in L, and L1 and L2 may contain naturally occurring block structure [48].

OSKI-Lua as a special function, split s2d, and type, TRIPART, for expressing a partition
of this form.

D
RAFT

6 Approaches that Complement Libraries 32

1 ASSERT(is lower(InputMat));
2 L1, L2, LD = split s2d(InputMat);
3 return TRIPART(L1, L2, LD);

The ASSERT statement (line 1) can be used to verify that the input matrix satisfies certain
properties. As written, the partition boundaries are determined by split s2d automatically
[48], but could also be specified explicitly:

1 ASSERT(is lower(InputMat));
2 switch point = 25382; # L2 and LD begin at row 25382
3 L1, L2, LD = split s2d(InputMat, switch point);
4 return TRIPART(L1, L2, LD);

6 Approaches that Complement Libraries

There are a number of complementary approaches to a library implementation. One is to
implement a library using a language with generic programming constructs such as tem-
plates in C++ [34]. Both Blitz++ [45] and the Matrix Template Library (MTL) [41] have
adopted this approach to building generic libraries in C++ that mimic dense BLAS func-
tionality. The use of templates faciliates the generation of large numbers of library routines
with relatively small amount of code, and flexibly handles issues of producing libraries
that can handle different precisions. Sophisticated use of templates furthermore allows
some limited optimization, such as unrolling. In some cases, loop-fusion like transfor-
mations have been implemented using templates [45]. However, this approach lacks an
explicit mechanism for dealing with run-time search. Furthermore, the template mech-
anism for code generation can put enormous stress (in terms of memory and execution
time) on the compiler.6

Another approach which extends the generic programming idea is compiler-based
sparse code generation via restructuring compilers, pursued by Bik [8, 9, 10], Stodghill,
et al. [42, 2, 32, 31], and Pugh and Shpeisman [37, 29]. These are clean, general approaches
to code generation: the user expresses separately both the kernels (as dense code with ran-
dom access to matrix elements) and a formal specification of a desired sparse data struc-
ture; a restructuring compiler combines the two descriptions to produce a sparse imple-
mentation. In addition, since any kernel can in principle be expressed, this overcomes a
library approach in which all possible kernels must be pre-defined. Nevertheless, we view
this technology as complementary to the overall library approach: while sparse compil-
ers could be used to provide the underlying implementations of sparse primitives, they
do not explicitly make use of matrix structural information available, in general, only at
run-time.7

A third approach is to extend an existing library or system. There are a number of
application-level libraries (e.g., PETSc [6, 5], among others [21, 39, 38, 24]) and high-level
application tools (e.g., MATLAB [43, 22], Octave [18], approaches that apply compiler anal-
yses and transformations to MATLAB code [3, 33]) that provide high-level sparse kernel
support. Integration with these systems has a number of advantages, including the ability
to hide data structure details and the tuning process from the user, and the large potential
user base. However, our goal is to provide building blocks in the spirit of the BLAS with

6This concern is “practical” in nature and could be overcome through better compiler front-end technology.
Another minor but related concern is the lack of consistency in how well aspects of the template mechanism
are supported, making portability an issue.

7Technically, Bik’s sparse compiler does use matrix non-zero structure information [10], but is restricted in
the following two senses: (1) it assumes that the matrix is available at “compile-time,” and (2) it supports a
limited number of fixed data structures.

D
RAFT

6 Approaches that Complement Libraries 33

the steps and costs of tuning exposed. This model of development has been very successful
with other numerical libraries, examples of which include the integration of ATLAS and
FFTW tuning systems into the commercial MATLAB system. Thus, it should be possible
to integrate the OSKI library into an existing system as well.

Acknowledgements

We thank Rajesh Nishtala, Rob Schreiber, Matt Knepley, Michael Heroux, and Viral Shah,
for discussion on the key ideas behind and early drafts of this document.

D
RAFT

REFERENCES 34

References

[1] Berkeley Benchmarking and OPtimization (BeBOP) Group home page, 2004.
bebop.cs.berkeley.edu .

[2] N. AHMED, N. MATEEV, K. PINGALI, AND P. STODGHILL, A framework for sparse
matrix code synthesis from high-level specifications, in Proceedings of Supercomput-
ing 2000, Dallas, TX, November 2000.

[3] G. ALMÁSI AND D. PADUA, MaJIC: Compiling MATLAB for speed and responsive-
ness, in Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, Berlin, Germany, June 2002.

[4] Z. BAI, J. DEMMEL, J. DONGARRA, A. RUHE, AND H. VAN DER VORST, eds., Tem-
plates for the solution of algebraic eigenvalue problems: a practical guide, SIAM,
Philadelphia, PA, USA, 2000.

[5] S. BALAY, K. BUSCHELMAN, W. D. GROPP, D. KAUSHIK, M. KNEPLEY, L. C.
MCINNES, B. F. SMITH, AND H. ZHANG, PETSc User’s Manual, Tech. Rep. ANL-
95/11 - Revision 2.1.5, Argonne National Laboratory, 2002. www.mcs.anl.gov/petsc.

[6] S. BALAY, W. D. GROPP, L. C. MCINNES, AND B. F. SMITH, Efficient management
of parallelism in object oriented numerical software libraries, in Modern Software
Tools in Scientific Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, eds.,
Birkhauser Press, 1997, pp. 163–202.

[7] R. BARRETT, M. BERRY, T. F. CHAN, J. DEMMEL, J. DONATO, J. DONGARRA, V. EI-
JKHOUT, R. POZO, C. ROMINE, AND H. V. DER VORST, Templates for the Solution of
Linear Systems: Building Blocks for Iterative Methods, 2nd Edition, SIAM, Philadel-
phia, PA, USA, 1994.

[8] A. J. C. BIK, Compiler Support for Sparse Matrix Codes, PhD thesis, Leiden Univer-
sity, 1996.

[9] A. J. C. BIK, P. J. H. BIRKHAUS, P. M. W. KNIJNENBURG, AND H. A. G. WIJSHOFF,
The automatic generation of sparse primitives, ACM Transactions on Mathematical
Software, 24 (1998), pp. 190–225.

[10] A. J. C. BIK AND H. A. G. WIJSHOFF, Automatic nonzero structure analysis, SIAM
Journal on Computing, 28 (1999), pp. 1576–1587.

[11] J. BILMES, K. ASANOVIĆ, C. CHIN, AND J. DEMMEL, Optimizing matrix multiply
using PHiPAC: a portable, high-performance, ANSI C coding methodology, in Pro-
ceedings of the International Conference on Supercomputing, Vienna, Austria, July
1997, ACM SIGARC.

[12] S. L. BLACKFORD, J. W. DEMMEL, J. DONGARRA, I. S. DUFF, S. HAMMARLING,
G. HENRY, M. HEROUX, L. KAUFMAN, A. LUMSDAINE, A. PETITET, R. POZO,
K. REMINGTON, AND R. C. WHALEY, An updated set of basic linear algebra subpro-
grams (BLAS), ACM Transactions on Mathematical Software, 28 (2002), pp. 135–151.

[13] D. A. BURGESS AND M. B. GILES, Renumbering unstructured grids to improve the
performance of codes on hierarchical memory machines, tech. rep., Numerical Analy-
sis Group, Oxford University Computing Laboratory, Wolfson Building, Parks Road,
Oxford, OX1 3QD, 1995.

D
RAFT

REFERENCES 35

[14] E. CUTHILL AND J. MCKEE, Reducing the bandwidth of sparse symmetric matrices,
in Proceedings of the ACM National Conference, 1969.

[15] J. W. DEMMEL, Applied Numerical Linear Algebra, SIAM, 1997.

[16] I. S. DUFF, M. A. HEROUX, AND R. POZO, An overview of the sparse basic linear al-
gebra subprograms: The new standard from the BLAS technical forum, ACM Trans-
actions on Mathematical Software, 28 (2002), pp. 239–267.

[17] I. S. DUFF AND C. VÖMEL, Algorithm 818: A reference model implementation of the
sparse BLAS in Fortran 95, ACM Transactions on Mathematical Software, 28 (2002),
pp. 268–283.

[18] J. W. EATON, Octave, 2003. www.octave.org .

[19] S. FILIPPONE AND M. COLAJANNI, PSBLAS: A library for parallel linear algebra com-
putation on sparse matrices, ACM Transactions on Mathematical Software, 26 (2000),
pp. 527–550.

[20] M. FRIGO AND S. JOHNSON, FFTW: An adaptive software architecture for the FFT,
in Proceedings of the International Conference on Acoustics, Speech, and Signal Pro-
cessing, Seattle, Washington, May 1998.

[21] A. GEORGE AND J. W. H. LIU, The design of a user interface for a sparse matrix
package, ACM Transactions on Mathematical Software, 5 (1979), pp. 139–162.

[22] J. R. GILBERT, C. MOLER, AND R. SCHREIBER, Sparse matrices in MATLAB: Design
and implementation, SIAM Journal on Matrix Analysis and Applications, 13 (1992),
pp. 333–356.

[23] G. HEBER, R. BISWAS, AND G. R. RAO, Self-avoiding walks over adaptive unstruc-
tured grids, Concurrency: Practice and Experience, 12 (2000), pp. 85–109.

[24] B.-O. HEIMSUND, JMP: A sparse matrix library in Java, 2003.
http://www.mi.uib.no/ ∼bjornoh/jmp .

[25] C. HSU, Effects of block size on the block Lanczos algorithm, June 2003. Senior thesis.

[26] R. IERUSALIMSCHY, L. H. DE FIGEIREDO, AND W. CELES, Lua 5.0 Reference Manual,
Tech. Rep. MCC-14/03, PUC-Rio, April 2003. www.lua.org .

[27] E.-J. IM AND K. A. YELICK, Optimizing sparse matrix vector multiplication on SMPs,
in Proceedings of the SIAM Conference on Parallel Processing for Scientific Comput-
ing, San Antonio, TX, USA, March 1999.

[28] E.-J. IM, K. A. YELICK, AND R. VUDUC, SPARSITY: Framework for optimizing sparse
matrix-vector multiply, International Journal of High Performance Computing Appli-
cations, 18 (2004), pp. 135–158.

[29] J. IRWIN, J.-M. LOINGTIER, J. GILBERT, G. KICZALES, J. LAMPING, A. MENDHEKAR,
AND T. SHPEISMAN, Aspect-oriented programming of sparse matrix code, in Pro-
ceedings of the International Scientific Computing in Object-Oriented Parallel Envi-
ronments, Marina del Rey, CA, USA, December 1997.

D
RAFT

REFERENCES 36

[30] B. C. LEE, R. W. VUDUC, J. W. DEMMEL, K. A. YELICK, M. DELORIMIER, AND

L. ZHONG, Performance optimizations and bounds for sparse symmetric matrix-
multiple vector multiply, Tech. Rep. UCB/CSD-03-1297, University of California,
Berkeley, Berkeley, CA, USA, November 2003.

[31] N. MATEEV, K. PINGALI, AND P. STODGHILL, The Bernoulli Generic Matrix Library,
Tech. Rep. TR-2000-1808, Cornell University, 2000.

[32] N. MATEEV, K. PINGALI, P. STODGHILL, AND V. KOTLYAR, Next-generation generic
programming and its application to sparse matrix computations, in International
Conference on Supercomputing, 2000.

[33] V. MENON AND K. PINGALI, A case for source-level transformations in MATLAB,
in Proceedings of the 2nd Conference on Domain-Specific Languages, Austin, TX,
October 1999.

[34] D. R. MUSSER AND A. A. STEPANOV, Algorithm-oriented generic libraries, Software:
Practice and Experience, 24 (1994), pp. 632–642.

[35] R. NISHTALA, R. VUDUC, J. DEMMEL, AND K. YELICK, When cache blocking sparse
matrix vector multiply works and why, in Proceedings of the PARA’04 Workshop on
the State-of-the-art in Scientific Computing, Copenhagen, Denmark, June 2004. (to
appear).

[36] A. PINAR AND M. HEATH, Improving performance of sparse matrix-vector multipli-
cation, in Proceedings of Supercomputing, 1999.

[37] W. PUGH AND T. SHPEISMAN, Generation of efficient code for sparse matrix compu-
tations, in Proceedings of the 11th Workshop on Languages and Compilers for Parallel
Computing, LNCS, August 1998.

[38] K. REMINGTON AND R. POZO, NIST Sparse BLAS: User’s Guide, tech. rep., NIST,
1996. gams.nist.gov/spblas .

[39] Y. SAAD, SPARSKIT: A basic toolkit for sparse matrix computations, 1994.
www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html .

[40] , Iterative methods for sparse linear systems, SIAM, 2003.

[41] J. G. SIEK AND A. LUMSDAINE, A rational approach to portable high performance:
the Basic Linear Algebra Instruction Set (BLAIS) and the Fixed Algorithm Size Tem-
plate (fast) library, in Proceedings of ECOOP, Brussels, Belgium, 1998.

[42] P. STODGHILL, A Relational Approach to the Automatic Generation of Sequential
Sparse Matrix Codes, PhD thesis, Cornell University, August 1997.

[43] I. THE MATHWORKS, Matlab, 2003. www.mathworks.com .

[44] S. TOLEDO, Improving memory-system performance of sparse matrix-vector multi-
plication, in Proceedings of the 8th SIAM Conference on Parallel Processing for Sci-
entific Computing, March 1997.

[45] T. VELDHUIZEN, Arrays in Blitz++, in Proceedings of ISCOPE, vol. 1505 of LNCS,
Springer-Verlag, 1998.

D
RAFT

REFERENCES 37

[46] R. VUDUC, J. W. DEMMEL, K. A. YELICK, S. KAMIL, R. NISHTALA, AND B. LEE, Per-
formance optimizations and bounds for sparse matrix-vector multiply, in Proceed-
ings of Supercomputing, Baltimore, MD, USA, November 2002.

[47] R. VUDUC, A. GYULASSY, J. W. DEMMEL, AND K. A. YELICK, Memory hierarchy
optimizations and bounds for sparse AT Ax, in Proceedings of the ICCS Workshop on
Parallel Linear Algebra, P. M. A. Sloot, D. Abramson, A. V. Bogdanov, J. J. Dongarra,
A. Y. Zomaya, and Y. E. Gorbachev, eds., vol. LNCS 2660, Melbourne, Australia, June
2003, Springer, pp. 705–714.

[48] R. VUDUC, S. KAMIL, J. HSU, R. NISHTALA, J. W. DEMMEL, AND K. A. YELICK,
Automatic performance tuning and analysis of sparse triangular solve, in ICS 2002:
Workshop on Performance Optimization via High-Level Languages and Libraries,
New York, USA, June 2002.

[49] R. W. VUDUC, Automatic performance tuning of sparse matrix kernels, PhD thesis,
University of California, Berkeley, December 2003.

[50] R. C. WHALEY, A. PETITET, AND J. DONGARRA, Automated empirical optimizations
of software and the ATLAS project, Parallel Computing, 27 (2001), pp. 3–25.

D
RAFT

A Valid input matrix representations 38

A Valid input matrix representations

The user creates a sparse matrix object in our interface from a pre-assembled input matrix.
At present, we support the matrix representations listed below. Each representation de-
fines a mathematical matrix A of size m × n whose element values we denote by A(i, j)
where 1 ≤ i ≤ m and 1 ≤ j ≤ n.

• Packed 3-array compressed sparse row using 0-based indices: The user provides 3
arrays corresponding to A: Aptr, Aind, whose elements are non-negative integers,
and Aval, whose elements are real or complex values. These arrays satisfy the fol-
lowing conditions:

1. Aptr is of length at least Aptr[m + 1], Aptr[0] ≥ 0, and for all 0 ≤ i < m,
Aptr[i] ≤ Aptr[i + 1].

2. Aind is of length at least Aptr[m]. Each element of Aind lies between 0 and n−1
inclusive.

3. Aval is of length at least Aptr[m].

A matrix element A(i, j) is computed from this representation as follows. Let Kij

be the set {k : Aptr[i − 1] ≤ k < Aptr[i] and Aind[k] = j − 1}. Then A(i, j) =∑
k∈K Aval[k]. (That is, repeated elements are summed.)

• Packed 3-array compressed sparse row using 1-based indices: The user provides 3
arrays, Aptr, Aind, and Aval corresponding to A. These arrays satisfy the following
conditions:

1. Aptr is of length at least Aptr[m + 1], Aptr[0] ≥ 1, and for all 0 ≤ i < m,
Aptr[i] ≤ Aptr[i + 1].

2. Aind is of length at least Aptr[m]. Each element of Aind lies between 1 and n
inclusive.

3. Aval is of length at least Aptr[m].

A matrix element A(i, j) is computed from this representation as follows. Let Kij be
the set {k : Aptr[i−1] ≤ k < Aptr[i] and Aind[k] = j}. Then A(i, j) =

∑
k∈K Aval[k].

(Repeated elements are summed.)

• Packed 3-array compressed sparse column using 0-based indices: The user pro-
vides 3 arrays, Aptr, Aind, and Aval corresponding to A. These arrays satisfy the
following conditions:

1. Aptr is of length at least Aptr[n + 1], Aptr[0] ≥ 0, and for all 0 ≤ j < n,
Aptr[j] ≤ Aptr[j + 1].

2. Aind is of length at least Aptr[n]. Each element of Aind lies between 0 and m−1
inclusive.

3. Aval is of length at least Aptr[n].

A matrix element A(i, j) is computed from this representation as follows. Let Kij

be the set {k : Aptr[j − 1] ≤ k < Aptr[j] and Aind[k] = i − 1}. Then A(i, j) =∑
k∈K Aval[k]. (Repeated elements are summed.)

• Packed 3-array compressed sparse column using 1-based indices: The user pro-
vides 3 arrays, Aptr, Aind, and Aval corresponding to A. These arrays satisfy the
following conditions:

D
RAFT

A Valid input matrix representations 39

1. Aptr is of length at least Aptr[n + 1], Aptr[0] ≥ 1, and for all 0 ≤ j < n,
Aptr[j] ≤ Aptr[j + 1].

2. Aind is of length at least Aptr[n]. Each element of Aind lies between 1 and m
inclusive.

3. Aval is of length at least Aptr[n].

A matrix element A(i, j) is computed from this representation as follows. Let Kij

be the set {k : Aptr[j − 1] ≤ k < Aptr[j] and Aind[k] = i}. Then A(i, j) =∑
k∈K Aval[k]. (Repeated elements are summed.)

D
RAFT

B Bindings Reference 40

B Bindings Reference

We define each routine in the interface using the formatting conventions used in the fol-
lowing example for a function to compute the factorial of a non-negative integer:

int
factorial (int n);

Given an integer n ≥ 0, returns n! = n× (n− 1)× · · · × 3× 2× 1 if n ≥ 1, or 1 if n = 0.

Parameters:
n [input] n ≥ 0

Non-negative integer of which to compute a factorial.

Actions and Returns:
An integer whose value equals n! if n is greater than 1, or 1 if n equals 0. The return value is

undefined if n! exceeds the maximum positive integer of type int.

Error conditions and actions:
Aborts program if n is less than 0.

Example:
int n = 4;
int ans = factorial (n);
printf ("%d! == %d\n" , n, ans); // Should print ‘4! == 24 ’

The specification indicates any argument preconditions (under “Parameters:”), return val-
ues and side effects (“Actions and Returns:”), possible error conditions and actions (“Error
conditions and actions:”), and short usage examples (“Example:”).

As discussed in Section 3.6 on page 24, the interface provides two error-handling mech-
anisms: return codes and error-handling functions. By convention, readers can assume
that any routine returning integers (type int) will return negative values on errors. In ad-
dition, all routines call an error handler if one is available in a given context according to
the process described in Section 3.6. For all routines, a violation of argument preconditions
is always considered an error condition.

Many of the specifications refer to the mathematical matrix A defined by a given matrix
object. We take this matrix to have dimensions m×n, and with elements A(i, j) referenced
beginning at position (1, 1), i.e., 1 ≤ i ≤ m and 1 ≤ j ≤ n. However, since we are
presenting the C interface, note that all array indexing will be zero-based.

B.1 Matrix object creation and modification

oski matrix t
oski CreateMatCSR(

oski index t∗ Aptr, oski index t∗ Aind, oski value t∗ Aval,
oski index t num rows, oski index t num cols,
oski copymode t mode,
int k, [oski inmatprop t property 1, . . ., oski inmatprop t property k]);

Creates and returns a valid tunable matrix object from a compressed sparse row (CSR) representa-
tion.

Parameters:

D
RAFT

B.1 Matrix object creation and modification 41

num rows × num cols [input] num rows ≥ 0, num cols ≥ 0
Dimensions of the input matrix.

Aptr, Aind, Aval [input] Aptr, Aind, Aval 6=NULL
The input matrix pattern and values must correspond to a valid CSR representation, as defined in
Appendix A on page 38.

mode [input] See Table 2 on page 16.
Specifies the copy mode for the arrays Aptr, Aind, and Aval. See Section 3.2.1 on page 14 for a
detailed explanation.

k [input] k ≥0
The number of qualifying properties.

property 1, . . . property k [input; optional] See Table 3 on page 17.
The user may assert that the input matrix satisfies zero or more properties listed in Table 3 on
page 17. Grouped properties are mutually exclusive, and specifying two or more properties from
the same group generates an error (see below). The user must supply exactlyk properties.

Actions and Returns:
A valid, tunable matrix object, or INVALID MAT on error. Any kernel operations or tuning opera-
tions may be called using this object.

Error conditions and actions:
Possible error conditions include:

1. Any of the argument preconditions above are not satisfied [ERR BAD ARG].
2. More than 1 property from the same group are specified (see Table 3 on page 17) [ERR IN-

MATPROP CONFLICT].
3. The input matrix arrays do not correspond to a valid CSR representation [ERR NOT CSR],

or are incompatible with any of the asserted properties [ERR FALSE INMATPROP]. As an example
of the latter error, if the user asserts that the matrix is symmetric but the number of rows is not equal
to the number of columns, then an error is generated.

Example:
See Listing 1 on page 8.

oski matrix t
oski CreateMatCSC(

oski index t∗ Aptr, oski index t∗ Aind, oski value t∗ Aval,
oski index t num rows, oski index t num cols,
oski copymode t mode,
int k, [oski inmatprop t property 1, . . ., oski inmatprop t property k]);

Creates and returns a valid tunable matrix object from a compressed sparse column (CSC) repre-
sentation.

Parameters:
num rows × num cols [input] num rows ≥ 0, num cols ≥ 0
Dimensions of the input matrix.

Aptr, Aind, Aval [input] Aptr, Aind, Aval 6=NULL
The input matrix pattern and values must correspond to a valid CSC representation, as defined in
Appendix A on page 38.

mode [input] See Table 2 on page 16.
Specifies the copy mode for the arrays Aptr, Aind, and Aval. See Section 3.2.1 on page 14 for a
detailed explanation.

D
RAFT

B.1 Matrix object creation and modification 42

k [input] k ≥0
The number of qualifying properties.

property 1, . . . property k [input; optional] See Table 3 on page 17.
The user may assert that the input matrix satisfies zero or more properties listed in Table 3 on
page 17. Grouped properties are mutually exclusive, and specifying two or more properties from
the same group generates an error (see below).

Actions and Returns:
A valid, tunable matrix object, or INVALID MAT on error. Any kernel operations or tuning opera-
tions may be called using this object.

Error conditions and actions:
Possible error conditions include:

1. Any of the argument preconditions above are not satisfied [ERR BAD ARG].
2. More than 1 property from the same group are specified (see Table 3 on page 17) [ERR IN-

MATPROP CONFLICT].
3. The input matrix arrays do not correspond to a valid CSC representation [ERR NOT CSC],

or are incompatible with any of the asserted properties [ERR FALSE INMATPROP].

oski value t
oski GetMatEntry(const oski matrix t A tunable, oski index t row, oski index t col);

Returns the value of a matrix element.

Parameters:
A tunable [input] A tunableis valid.
The object representing some m× n matrix A.

row, col [input] 1 ≤ row ≤m, 1 ≤col ≤n
Specifies the element whose value is to be returned. The precondition above must be satisfied. Note
that matrix entries are referenced using 1-based indices, regardless of the convention used when
the matrix was created.

Actions and Returns:
If row and col are valid, then this routine returns the value of the element A(row,col). Otherwise,
it returns NaN VALUE.

Error conditions and actions:
Possible error conditions include:

1. Invalid matrix [ERR BAD MAT].
2. Position row, col is out-of-range [ERR BAD ENTRY].

Example:
// Let A be the matrix shown in Listing 1 on page 8, and stored in A tunable.
// The following should prints ”A(2,2) = 1”, ”A(2,3) = 0”, and ”A(3,1) = .5”
printf ("A(2,2) = %f\n" , oski GetMatEntry(A tunable, 2, 2));
printf ("A(2,3) = %f\n" , oski GetMatEntry(A tunable, 2, 3));
printf ("A(3,1) = %f\n" , oski GetMatEntry(A tunable, 3, 1));

int
oski SetMatEntry(oski matrix t A tunable, oski index t row, oski index t col,

oski value t val);

Changes the value of the specified matrix element.

D
RAFT

B.1 Matrix object creation and modification 43

Parameters:
A tunable [input/output] A tunable is valid
The object representing some m× n matrix A.

row, col [input] 1 ≤ row ≤m, 1 ≤col ≤n
Specifies the element whose value is to be modified. This element must have had an associated
element stored explicitly in the input matrix when A tunable was created.

If the user asserted that her input matrix was symmetric or Hermitian when the matrix was
created, these properties are preserved with this change in value. In contrast, asserting a tuning
hint to say the matrix is structurally symmetric does not cause this routine to insert both A(i, j) and
A(j, i).

Actions and Returns:
Returns 0 and sets A(row,col) ←val. If the matrix was created as either symmetric or Hermitian
(including the semantic properties, MAT SYMM FULL and MAT HERM FULL), this routine logi-
cally sets A(col,row) to be val also. On error, A tunable remains unchanged and an error code is
returned.

NOTE: When A tunable is tuned, the tuned data structure may store additional explicit zeros
to improve performance. The user should avoid changing entries that were not explicitly stored
when A tunable was created.

Error conditions and actions:
Possible error conditions include:

1. Invalid matrix [ERR BAD MAT].
2. The position (row,col) is out-of-range [ERR BAD ENTRY].
3. The position (row,col) was not explicitly stored when A tunable was created (i.e., the spec-

ified entry should always be logically zero) [ERR ZERO ENTRY]. This condition cannot always be
enforced (e.g., if tuning has replaced the data structure and freed the original), so this error will not
always be generated.

4. Changing (row,col) would violate one of the asserted semantic properties when A tunable
was created [ERR INMATPROP CONFLICT]. For instance, suppose A(i, j) is in the upper triangle
of a matrix in which MAT TRI LOWER was asserted is an error condition; or, suppose the caller
asks to change a diagonal element to a non-unit value when MAT UNIT DIAG IMPLICIT was
asserted.

Example:

// First, create A =

 1 −2 .5
−2 1 0
.5 0 1

, a sparse symmetric matrix with a unit diagonal.

int Aptr[] = {1, 3, 3, 3}, Aind[] = {1, 2}; // Uses 1-based indices!
double Aval[] = {−2, 0.5};

oski matrix t A tunable = oski CreateMatCSR(Aptr, Aind, Aval, 3, 3, SHARE INPUTMAT,
2, MAT SYMM UPPER, MAT UNIT DIAG IMPLICIT);

printf ("A(1,3) = %f\n" , oski GetMatEntry(A tunable, 1, 3)); // prints ”A(1,3) = 0.5”
printf ("A(3,1) = %f\n" , oski GetMatEntry(A tunable, 3, 1)); // prints ”A(3,1) = 0.5”

// Change A(3,1) and A(1,3) to -.5.
oski SetMatEntry(A tunable, 3, 1, −.5);

printf ("A(1,3) = %f\n" , oski GetMatEntry(A tunable, 1, 3)); // prints ”A(1,3) = -0.5”
printf ("A(3,1) = %f\n" , oski GetMatEntry(A tunable, 3, 1)); // prints ”A(3,1) = -0.5”

int
oski GetMatClique(const oski matrix t A tunable,

const oski index t∗ rows, oski index t num rows,
const oski index t∗ cols , oski index t num cols,
oski vecview t vals);

D
RAFT

B.1 Matrix object creation and modification 44

Returns a block of values, defined by a clique, from a matrix.

Parameters:
A tunable [input] A tunable is valid
The object representing some m× n matrix A.

num rows, num cols [input] num rows ≥1, num cols ≥1
Dimensions of the block of values.

rows, cols [input] rows 6=NULL, cols 6=NULL
Indices defining the block of values. The array rows must be of length at least num rows, and cols
must be of length at least num cols. The entries of rows and cols must satisfy

1 ≤rows[i] ≤m for all 0 ≤i < num rows, and
1 ≤cols[j] ≤n for all 0 ≤j < num cols.

vals [output] vals is valid.
The object vals is a multivector view (see Section 3.2.3 on page 16) of a logical two-dimensional
array to be used to store the block of values. We use a view here to allow the user to specify row or
column major storage and the leading dimension of the array.

Actions and Returns:
Let X be the num rows×num cols matrix corresponding to vals. If rows and cols are valid (as
discussed above), then this routine sets X(r, c)← A(i, j), where i =rows[r − 1] and j =cols[c− 1],
for all 1 ≤r ≤num rows and 1 ≤c ≤num cols, and returns 0. Otherwise, this routine returns an
error code and leaves X unchanged.

Error conditions and actions:
Possible errors conditions include:

1. Invalid matrix [ERR BAD MAT].
2. An invalid row, col was given [ERR BAD ENTRY].

Example:
// Let A be the matrix shown in Listing 1 on page 8, and stored in A tunable.
int rows[] = { 1, 3 };
int cols [] = { 1, 3 };
double vals[] = { −1, −1, −1, −1 };

oski vecview t vals view = oski CreateMultiVecView(vals, 2, 2, LAYOUT ROWMAJ, 2);

oski GetMatClique(A tunable, rows, 2, cols, 2, vals view);

printf ("A(1,1) == %f\n" , vals[0]); // prints ”A(1,1) == 1”
printf ("A(1,3) == %f\n" , vals[1]); // prints ”A(1,3) == 0”
printf ("A(3,1) == %f\n" , vals[2]); // prints ”A(3,1) == 0.5”
printf ("A(3,3) == %f\n" , vals[3]); // prints ”A(3,3) == 1”

int
oski SetMatClique(oski matrix t A tunable,

const oski index t∗ rows, oski index t num rows,
const oski index t∗ cols , oski index t num cols,
const oski vecview t vals);

Changes a block of values, defined by a clique, in a matrix.

Parameters:
A tunable [output] A tunable is valid

D
RAFT

B.1 Matrix object creation and modification 45

The object representing some m× n matrix A.

num rows, num cols [input] num rows ≥1, num cols ≥1
Dimensions of the block of values.

rows, cols [input] rows 6=NULL, cols 6=NULL
Indices defining the block of values. The array rows must be of length at least num rows, and cols
must be of length at least num cols. The entries of rows and cols must satisfy

1 ≤rows[i] ≤m for all 0 ≤i < num rows, and
1 ≤cols[j] ≤n for all 0 ≤j < num cols.

vals [input] vals is valid.
The object vals is a multivector view (see Section 3.2.3 on page 16) of a logical two-dimensional
array to be used to store the block of values. We use a view here to allow the user to specify row or
column major storage and the leading dimension of the array.

Actions and Returns:
Let X be the num rows×num cols matrix corresponding to vals. If rows and cols are valid (as
discussed above), then this routine sets A(i, j)← X(r, c), where i =rows[r − 1] and j =cols[c− 1],
for all 1 ≤r ≤num rows and 1 ≤c ≤num cols, and returns 0. Otherwise, this routine returns an
error code and leaves X unchanged.

If the matrix was created as either symmetric or Hermitian (including the semantic properties,
MAT SYMM FULL and MAT HERM FULL), this routine logically sets A(i, j) and A(j, i). If both
(i, j) and (j, i) are explicitly specified by the clique, the behavior is undefined if the corresponding
values in vals are inconsistent.

If an entry A(i, j) is specified by the clique and appears multiple times within the clique with
inconsistent values in vals, the behavior is undefined.

NOTE: When A tunable is tuned, the tuned data structure may store additional explicit zeros
to improve performance. The user should avoid changing entries that were not explicitly stored
when A tunable was created.

Error conditions and actions:
Possible error conditions include:

1. Invalid matrix [ERR BAD MAT].
2. The position (row,col) is out-of-range [ERR BAD ENTRY].
3. The position (row,col) was not explicitly stored when A tunable was created (i.e., the spec-

ified entry should always be logically zero) [ERR ZERO ENTRY]. This condition cannot always be
enforced (e.g., if tuning has replaced the data structure and freed the original), so this error will not
always be generated.

4. Changing (row,col) would violate one of the asserted semantic properties when A tunable
was created [ERR INMATPROP CONFLICT]. For instance, suppose A(i, j) is in the upper triangle
of a matrix in which MAT TRI LOWER was asserted is an error condition; or, suppose the caller
asks to change a diagonal element to a non-unit value when MAT UNIT DIAG IMPLICIT was
asserted.

Example:

// First, create A =

 1 −2 .5
−2 1 0
.5 0 1

, a sparse symmetric matrix with a unit diagonal.

int Aptr[] = {1, 3, 3, 3}, Aind[] = {1, 2}; // Uses 1-based indices!
double Aval[] = {−2, 0.5};

oski matrix t A tunable = oski CreateMatCSR(Aptr, Aind, Aval, 3, 3, SHARE INPUTMAT,
2, MAT SYMM UPPER, MAT UNIT DIAG IMPLICIT);

// Clique of values to change, using 1-based indices to match matrix.

// The new values are
(

1 .125
.125 1

)
.

int rows[] = { 1, 2 };
int cols [] = { 1, 2 };
double vals[] = { −1, −1, −1, −1 }; // in row major order

D
RAFT

B.1 Matrix object creation and modification 46

double new vals[] = { 1, .125, .125, 1 }; // in row major order

oski vecview t vals view = oski CreateMultiVecView(vals, 2, 2, LAYOUT ROWMAJ, 2);
oski vecview t new vals view = oski CreateMultiVecView(new vals, 2, 2, LAYOUT ROWMAJ, 2);

// Retrieve the submatrix of values,
(

1 −2
−2 1

)
.

oski GetMatClique(A tunable, rows, 2, cols, 2, vals view);
printf ("A(1,1) == %f\n" , vals[0]); // prints ”A(1,1) == 1”
printf ("A(1,2) == %f\n" , vals[1]); // prints ”A(1,2) == -2”
printf ("A(2,1) == %f\n" , vals[2]); // prints ”A(2,1) == -2”
printf ("A(2,2) == %f\n" , vals[3]); // prints ”A(2,2) == 1”

// Change the above values to
(

1 .125
.125 1

)
oski SetMatClique(A tunable, rows, 2, cols, 2, new vals view);
oski GetMatClique(A tunable, rows, 2, cols, 2, vals view);
printf ("A(1,1) == %f\n" , vals[0]); // prints ”A(1,1) == 1”
printf ("A(1,2) == %f\n" , vals[1]); // prints ”A(1,2) == 0.125”
printf ("A(2,1) == %f\n" , vals[2]); // prints ”A(2,1) == 0.125”
printf ("A(2,2) == %f\n" , vals[3]); // prints ”A(2,2) == 1”

int
oski GetMatDiagValues(const oski matrix t A tunable, oski index t diag num,

oski vecview t diag vals);

Extract the diagonal d from A, i.e., all entries A(i, j) such that j − i = d.

Parameters:
A tunable [input] A tunable is valid.
The m× n matrix A from which to extract diagonal entries.

diag num [input] 1−m ≤diag num ≤n−1
Number d of the diagonal to extract.

diag vals [output] diag vals is a valid view.
Let X be the r × s (multi)vector object into which to store the diagonal values, such that s ≥ 1 and
r is at least the length of the diagonal, i.e., r ≥ min {max{m,n} − d, min{m,n}}.

Actions and Returns:
For all j − i = d, stores A(i, j) in X(k, 1), where k = min{i, j}, and returns 0. On error, returns an
error code.

Error conditions and actions:
Possible error conditions include:

1. Providing an invalid matrix [ERR BAD MAT].
2. Providing an invalid vector view, or a vector view with invalid dimensions [ERR BAD -

VECVIEW].
3. Specifying an invalid diagonal [ERR BAD ARG].

Example:

// First, create A =

 1 −2 .5
−2 1 0
.5 0 1

, a sparse symmetric matrix with a unit diagonal.

int Aptr[] = {1, 3, 3, 3}, Aind[] = {1, 2}; // Uses 1-based indices!
double Aval[] = {−2, 0.5};
double diag vals[] = { 0, 0, 0 };

D
RAFT

B.1 Matrix object creation and modification 47

oski vecview t diag vals view = oski CreateVecView(diag vals, 3, STRIDE UNIT);

oski matrix t A tunable = oski CreateMatCSR(Aptr, Aind, Aval, 3, 3, SHARE INPUTMAT,
2, MAT SYMM UPPER, MAT UNIT DIAG IMPLICIT);

// Prints ”Main diagonal = [1, 1, 1]”
oski GetMatDiagValues(A tunable, 0, diag vals view);
printf ("Main diagonal = [%f, %f, %f]\n" , diag vals[0], diag vals[1], diag vals[2]);

// Prints ”First superdiagonal = [-2, 0]”
oski GetMatDiagValues(A tunable, 1, diag vals view);
printf ("First superdiagonal = [%f, %f]\n" , diag vals[0], diag vals[1]);

// Prints ”Second subdiagonal = [0.5]”
oski GetMatDiagValues(A tunable, −2, diag vals view);
printf ("Second subdiagonal = [%f]\n" , diag vals[0]);

int
oski SetMatDiagValues(oski matrix t A tunable, oski index t diag num,

const oski vecview t diag vals);

Sets the values along diagonal d of A, i.e., all entries A(i, j) such that j − i = d.

Parameters:
A tunable [input/output] A tunable is valid.
The m× n matrix A in which to change diagonal entries.

diag num [input] 1−m ≤diag num ≤n−1
Number d of the diagonal to change.

diag vals [output] diag vals is a valid view.
Let X be the r × s (multi)vector object into which to store the diagonal values, such that s ≥ 1 and
r is at least the length of the diagonal, i.e., r ≥ min {max{m,n} − d, min{m,n}}.

Actions and Returns:
For all j − i = d such that A(i, j) was an explicitly stored entry when A tunable was created, sets
A(i, j) ← X(k, 1), where k = min{i, j}, and returns 0. On error, returns an error code and leaves
A tunable unchanged.

If the matrix was created as either symmetric or Hermitian (including the semantic properties,
MAT SYMM FULL and MAT HERM FULL), this routine also (logically) changes the correspond-
ing symmetric diagonal −diag num.

NOTE: When A tunable is tuned, the tuned data structure may store additional explicit zeros
to improve performance. The user should avoid changing entries that were not explicitly stored
when A tunable was created. If the user attempts to change such an entry by specifying a non-zero
value in a corresponding entry of diag vals, the value may or may not be changed.

Error conditions and actions:
Possible error conditions include:

1. Providing an invalid matrix [ERR BAD MAT].
2. Providing an invalid vector view, or a vector view with invalid dimensions [ERR BAD -

VECVIEW].
3. Specifying an invalid diagonal [ERR BAD ENTRY].
4. Specifying the main diagonal when A tunable was created with MAT UNIT DIAG IMPLI-

CIT.

Example:

D
RAFT

B.1 Matrix object creation and modification 48

// First, create A =

 1 −2 .5
−2 1 .25
.5 0 1

, a sparse symmetric matrix with a unit diagonal.

int Aptr[] = {1, 3, 4, 4}, Aind[] = {1, 2, 3}; // Uses 1-based indices!
double Aval[] = {−2, 0.5, 0.25};
double diag vals[] = { 0, 0, 0 };
oski vecview t diag vals view = oski CreateVecView(diag vals, 3, STRIDE UNIT);

oski matrix t A tunable = oski CreateMat CSR(Aptr, Aind, Aval, 3, 3, SHARE INPUTMAT,
2, MAT SYMM UPPER, MAT UNIT DIAG IMPLICIT);

// Prints ”First superdiagonal = [-2, 0.25]”
oski GetMatDiagValues(A tunable, 1, diag vals view);
printf ("First superdiagonal = [%f, %f]\n" , diag vals[0], diag vals[1]);

// Change first superdiagonal to be [-1, -2]
diag vals[0] = −1;
diag vals[1] = −2;
oski SetMatDiagValues(A tunable, 1, diag vals view);

// Prints ”First superdiagonal = [-1, -2]”
diag vals[0] = 0;
diag vals[1] = 0;
oski GetMatDiagValues(A tunable, 1, diag vals view);
printf ("First superdiagonal = [%f, %f]\n" , diag vals[0], diag vals[1]);

oski matrix t
oski CopyMat(const oski matrix t A tunable);

Creates a copy of a matrix object.

Parameters:
A tunable [input] A tunable is valid
The object representing some m× n matrix A.

Actions and Returns:
Returns a new matrix object, or INVALID MAT on error. The new matrix object is equivalent to the
matrix object the user would obtain if she performed the following steps:

1. Re-execute the original call to oski CreateMatCSR/oski CreateMatCSC to create a new,
untuned matrix object, A copy, in the copy mode COPY INPUTMAT. Thus, A copy may exist
independently of A tunable and of any data upon which A tunable might depend.

2. Get the tuning transformations that have been applied to A tunable by the time of this call.
Equivalently, execute oski GetMatTransformations(A tunable) and store the result.

3. Apply these transformations to A copy.

Error conditions and actions:
Possible error conditions include an invalid source matrix object [ERR BAD MAT] or an out-of-
memory condition while creating the clone [ERR OUT OF MEMORY].

Example:
// Let A be the matrix shown in Listing 1 on page 8, and stored in A tunable
// assuming zero-based indices.
int rows[] = { 0, 2 };
int cols [] = { 0, 2 };
double vals[] = { −1, −1, −1, −1 };

oski vecview t vals view = oski CreateMultiVecView(vals, 2, 2, LAYOUT ROWMAJ, 2);

D
RAFT

B.2 Vector object creation 49

oski matrix t A copy;

// For testing purposes, record and print a 2x2 clique of values.
oski GetMatClique(A tunable, rows, 2, cols, 2, vals view);
printf ("A(1,1) == %f\n" , vals[0]); // prints ”A(1,1) == 1”
printf ("A(1,3) == %f\n" , vals[1]); // prints ”A(1,3) == 0”
printf ("A(3,1) == %f\n" , vals[2]); // prints ”A(3,1) == 0.5”
printf ("A(3,3) == %f\n" , vals[3]); // prints ”A(3,3) == 1”

// Create a clone
A copy = oski CopyMat(A tunable);

// The clone is independent of the original, so we may delete the original.
oski DestroyMat(A tunable);

// Clear temporary clique value storage
memset(vals, 0, sizeof (double) ∗ 4); // clear vals array
printf ("vals[0] == %f\n" , vals[0]); // prints ”vals[0] == 0”
printf ("vals[1] == %f\n" , vals[1]); // prints ”vals[1] == 0”
printf ("vals[2] == %f\n" , vals[2]); // prints ”vals[2] == 0”
printf ("vals[3] == %f\n" , vals[3]); // prints ”vals[3] == 0”

// Verify that the correct values were copied
oski GetMatClique(A copy, rows, 2, cols, 2, vals view);
printf ("A(1,1) == %f\n" , vals[0]); // prints ”A(1,1) == 1”
printf ("A(1,3) == %f\n" , vals[1]); // prints ”A(1,3) == 0”
printf ("A(3,1) == %f\n" , vals[2]); // prints ”A(3,1) == 0.5”
printf ("A(3,3) == %f\n" , vals[3]); // prints ”A(3,3) == 1”

int
oski DestroyMat(oski matrix t A tunable);

Frees object memory associated with a given matrix object. The object is no longer usable.

Parameters:
A tunable [input/output] A tunable is valid
The object representing some m× n matrix A.

Actions and Returns:
Returns 0 if the object memory was fully successfully freed, or an error code on error.

Error conditions and actions:
Regardless of the return value, A tunable should not be used after this call. Possible error condi-
tions include an invalid matrix object [ERR BAD MAT].

Example:
See Listing 1 on page 8.

B.2 Vector object creation

oski vecview t
oski CreateVecView(oski value t∗ x, oski index t length,

oski index t inc);

D
RAFT

B.2 Vector object creation 50

Creates a valid view on a single dense column vector x.

Parameters:
length [input] length ≥0
Number of vector elements.

inc [input] inc > 0
Stride, or distance in the user’s dense array, between logically consecutive elements of x. Specifying
STRIDE UNIT is the same as setting inc = 1.

x [input] x 6=NULL
A pointer to the user’s dense array representation of the vector x. Element xi of the logical vector
x, for all 1 ≤ i ≤length, lies at position x[(i−1)∗inc].

Actions and Returns:
Returns a valid vector view object for x, or INVALID VEC on error.

Error conditions and actions:
An error occurs if any of the argument preconditions are not satisfied [ERR BAD ARG].

Example:
See Listing 1 on page 8.

oski vecview t
oski CreateMultiVecView(oski value t∗ X,

oski index t length, oski index t num vecs,
oski storage t orient , oski index t lead dim);

Creates a view on k dense column vectors X =
(
x1 · · ·xk

)
, stored as a submatrix in the user’s data.

Parameters:
length [input] length ≥0
Number of elements in each column vector.

num vecs [input] num vecs ≥0
The number of column vectors, i.e., k as shown above.

orient [input]
Specifies whether the multivector is stored in row-major (LAYOUT ROWMAJ) or column-major
(LAYOUT COLMAJ) order.

lead dim [input] lead dim ≥0
This parameter specifies the leading dimension, as specified in the BLAS standard. The leading
dimension is the distance in X between the first element of each row vector, and must be at least
num vecs, if orient == LAYOUT ROWMAJ. If instead orient == LAYOUT COLMAJ, then the lead-
ing dimension is the distance in X between the first element of each column vector, and must be at
least length.

X [input] X 6=NULL
Pointer to the user’s dense array representation of X . For each 1 ≤ i ≤ length and 1 ≤ j ≤num vecs,
element xij (the ith element of the jth column, is stored at one of the following positions:

1. If orient == LAYOUT ROWMAJ, then xij is stored at element X[i∗lead dim + j].
2. If orient == LAYOUT COLMAJ, then xij is stored at element X[i + j∗lead dim].

Actions and Returns:
Returns a valid multivector view on the data stored in X, or INVALID VEC on error.

D
RAFT

B.2 Vector object creation 51

Error conditions and actions:
Returns INVALID VEC and calls the global error handler on an error. Possible error conditions
include:

1. Any of the above argument preconditions are not satisfied [ERR BAD ARG].
2. The leading dimension is invalid for the specified storage orientation [ERR BAD LEAD-

DIM].

Example:
// Let A be the matrix shown in Listing 1 on page 8, and stored in A tunable,
// assuming zero-based indices.

// Let Y =
(
y1 y2

)
=

1 −1
1 −1
1 −1

 initially, and let X =
(
x1 x2

)
=

.25 −.25
.45 −.45
.65 −.65

// The following example computes Y ← Y + A ·X .

double Y[] = { 1, −1, 1, −1, 1, −1 }; // in row-major order
oski vecview t Y view = oski CreateMultiVecView(Y, 3, 2, LAYOUT ROWMAJ, 2);

double X[] = { .25, .45, .65, −.25, −.45, −.65 }; // in column-major order
oski vecview t X view = oski CreateMultiVecView(X, 3, 2, LAYOUT COLMAJ, 3);

oski MatMult(A tunable, OP NORMAL, 1, X view, 1, Y view);

// Views no longer needed.
oski DestroyVecView(X view);
oski DestroyVecView(Y view);

// Print result. Should be:
// ”y1 = [1.25 ; 0.95 ; 1.775];”
// ”y2 = [-1.25 ; -0.95 ; -1.775];”
printf ("y1 = [%f ; %f ; %f];\n" , Y[0], Y[2], Y[4]);
printf ("y2 = [%f ; %f ; %f];\n" , Y[1], Y[3], Y[5]);

int
oski DestroyVecView(oski vecview t x view);

Destroy a vector view.

Parameters:
x view [input/output] x view is valid
A vector view object to destroy. No action is taken if x view is one of the predefined symbolic
vectors, such as INVALID VEC, SYMBOLIC VEC, or SYMBOLIC MULTIVEC.

Actions and Returns:
Returns 0 if the object memory (excluding the data on which this object views) was successfully
freed, or an error code otherwise.

Error conditions and actions:
Regardless of the return value, x view should not be returned after this call (unless x view is equal
to one of the predefined vector constants). The global error handler is called on error. Possible error
conditions include providing an invalid vector [ERR BAD VECVIEW].

Example:
See Listing 1 on page 8, and the example for the routine oski CreateMultiVecView.

D
RAFT

B.3 Kernels 52

oski vecview t
oski CopyVecView(const oski vecview t x view);

Creates a copy of the given (multi)vector view.

Parameters:
x view [input] x view is valid.
A vector view object to clone.

Actions and Returns:
Returns another view object that views the same data as the source view object. If x view is one
of the symbolic vector constants (e.g., INVALID VEC, SYMBOLIC VEC, SYMBOLIC MULTIVEC),
then that same constant is returned and no new object is created. On error, returns INVALID VEC.

Error conditions and actions:
Returns INVALID VEC on error, and calls the global error handler. Error conditions include speci-
fying an invalid vector view object [ERR BAD VECVIEW], or an out-of-memory condition [ERR -
OUT OF MEMORY].

Example:
// Let A, x, and y be as specified in Listing 1 on page 8 and stored in
// A tunable, x view, and y view, respectively.

// Make a copy of the original view on x
oski vecview t x copy view = oski CopyVecView(x view);

// Dispose of original view
oski DestroyVecView(x view);

// Multiply with the copy
oski MatMult(A tunable, OP NORMAL, −1, x copy view, 1, y view);

// Finished with all objects
oski DestroyMat(A tunable);
oski DestroyVecView(x copy view);
oski DestroyVecView(y view);

// Print result, y. Should be ”[.75 ; 1.05 ; .225]”
printf ("Answer: y = [%f ; %f ; %f]\n" , y[0], y[1], y[2]);

B.3 Kernels

int
oski MatMult(const oski matrix t A tunable, oski matop t opA,

oski value t alpha, const oski vecview t x view,
oski value t beta, oski vecview t y view);

Computes y ← α · op(A)· x + β · y, where op(A) ∈ {A,AT , AH}.

Parameters:
A tunable [input] A tunable is valid.
An object for a matrix A.

opA [input] See Table 6 on page 19.
Specifies op(A).

D
RAFT

B.3 Kernels 53

alpha, beta [input]
Scalar constants α, β, respectively.

x view [input] x view is valid.
View object for a (multi)vector x.

y view [input/output] y view is valid.
View object for a (multi)vector y.

Actions and Returns:
Computes y ← α · op(A) · x + β · y and returns 0 only if the dimensions of op(A), x, and y are
compatible. If the dimensions are compatible but any dimension is 0, this routine returns 0 but
y view is left unchanged. Otherwise, returns an error code and leaves y view unchanged.

Error conditions and actions:
Possible error conditions include unsatisfied argument preconditions [ERR BAD ARG, ERR BAD-
MAT, ERR BAD VECVIEW], or incompatible input/output operand dimensions [ERR DIM MIS-

MATCH].

Example:
See Listing 1 on page 8.

int
oski MatTrisolve(const oski matrix t T tunable, oski matop t opT,

oski value t alpha, oski vecview t x view);

Computes x← α · op(T)−1 · x, where T is a triangular matrix.

Parameters:
T tunable [input] T tunable is valid, square, and triangular.
Matrix object for an n× n upper or lower triangular matrix T .

opT [input] See Table 6 on page 19.
Specifies op(T).

alpha [input]
Scalar constant α.

x view [input/output] x view is valid.
View object for a (multi)vector x.

Actions and Returns:
If op(T) and x have compatible dimensions, computes x← α ·op(T)−1·x and returns 0. Otherwise,
returns an error code.

Error conditions and actions:
Possible error conditions include unsatisfied argument preconditions [ERR BAD ARG, ERR BAD-
MAT, ERR BAD VECVIEW] and incompatible operand dimensions [ERR DIM MISMATCH].

Example:
// Let A tunable be object corresponding to the the sparse lower triangular matrix A
// shown in Listing 1 on page 8. The following example solves A · x = b, where
// bT =

(
.1 0 .35

)
.

double x[] = { .1, 0, .35 };
oski vecview t x view = oski CreateVecView(x, 3, STRIDE UNIT);

D
RAFT

B.3 Kernels 54

oski MatTrisolve(A tunable, OP NORMAL, 1.0, x view);

// Should print the solution, ”x == [0.1 ; 0.2 ; 0.3]”
printf ("x == [%f ; %f ; %f]\n" , x[0], x[1], x[2]);

int
oski MatTransMatMult(const oski matrix t A tunable, oski ataop t opA,

oski value t alpha, const oski vecview t x view,
oski value t beta, oski vecview t y view, oski vecview t t view);

Computes y ← α · op(A) · x + β · y, where op(A) ∈ {AAT , AT A,AAH , AHA}. Also optionally
computes t ← A · x if op(A) ∈ {AT A,AHA}, t ← AT · x if op(A) = AAT , or t ← AH · x if
op(A) = AAH , at the caller’s request.

Parameters:
A tunable [input] A tunable is valid.
An object for a matrix A.

opA [input] See Table 7 on page 19.
Specifies op(A).

alpha, beta [input]
The scalar constants α, β, respectively.

x view [input] x view is valid.
View object for a (multi)vector x.

y view [input/output] y view is valid.
View object for a (multi)vector y.

t view [output] t view may be valid or INVALID MAT.
An optional view object for a (multi)vector t.

Actions and Returns:
Returns an error code and leaves y (and t, if specified) unchanged on error. Otherwise, returns 0
and computes y ← α · op(A)· x + β · y. On a 0-return, also computes t if t view is specified and not
equal to INVALID MAT.

Error conditions and actions:
Possible error conditions include unsatisfied argument preconditions [ERR BAD ARG, ERR BAD-
MAT, ERR BAD VECVIEW] and incompatible operand dimensions [ERR DIM MISMATCH].

Example:
// Let A tunable be an object corresponding to the sparse lower triangular matrix
// shown in Figure 1 on page 8, and let xT =

(
.1 .2 .3

)
. The following code computes

// t← A · x, and y ← AT A · x.

// Set-up vectors
double x[] = { .1, .2, .3 };
oski vecview t x view = oski CreateVecView(x, 3, STRIDE UNIT);

double t[] = { −1, −1, −1 };
oski vecview t t view = oski CreateVecView(t, 3, STRIDE UNIT);

double y[] = { 1, 1, 1 };

D
RAFT

B.3 Kernels 55

oski vecview t y view = oski CreateVecView(y, 3, STRIDE UNIT);

// Execute kernel: t← A· x, y ← ATA· x
oski MatTransMatMult(A tunable, OP AT A, 1, x view, 0, y view, t view);

// Print results. Should display
// ”t == [0.1 ; 0 ; 0.35];”
// ”y == [0.275 ; 0 ; 0.35];”
printf ("t == [%f ; %f ; %f];\n" , t[0], t[1], t[2]);
printf ("y == [%f ; %f ; %f];\n" , y[0], y[1], y[2]);

int
oski MatMultAndMatTransMult(const oski matrix t A tunable,

oski value t alpha, const oski vecview t x view,
oski value t beta, oski vecview t y view,
oski matop t opA,
oski value t omega, const oski vecview t w view,
oski value t zeta , oski vecview t z view);

Computes y ← α ·A· x + β · y and z ← ω · op(A)· x + ζ · z, where op(A) ∈ {A,AT , AH}.

Parameters:
A tunable [input] A tunable is valid.
An object for a matrix A.

alpha, beta, omega, zeta [input]
The scalar constants α, β, ω, ζ, respectively.

opA [input] See Table 6 on page 19.
Specifies op(A).

x view, w view [input] x view, w view are valid.
View objects for (multi)vectors x and w, respectively.

y view, z view [input/output] y view, z view are valid.
View objects for (multi)vectors y and z, respectively.

Actions and Returns:
If A, x, and y have compatible dimensions, and if op(A), w, and z have compatible dimensions,
then this routine computes y ← α ·A·x+β · y and z ← ω ·op(A)·w + ζ · z and returns 0. Otherwise,
returns an error code and takes no action.

Error conditions and actions:
Possible error conditions include unsatisfied argument preconditions [ERR BAD ARG, ERR BAD-
MAT, ERR BAD VECVIEW] and incompatible operand dimensions [ERR DIM MISMATCH].

Example:
// Let A tunable be a matrix object for the sparse lower triangular matrix A shown in
// Listing 1 on page 8, and let xT =

(
.1 .2 .3

)
. This example computes

// y ← A· x and z ← AT · x.

double x[] = { .1, .2, .3 };
oski vecview t x view = oski CreateVecView(x, 3, STRIDE UNIT);

double y[] = { −1, −1, −1 };
oski vecview t y view = oski CreateVecView(y, 3, STRIDE UNIT);

D
RAFT

B.3 Kernels 56

double z[] = { 1, 1, 1 };
oski vecview t z view = oski CreateVecView(z, 3, STRIDE UNIT);

// Compute y ← A· x and z ← AT · x.
oski MatMult and MatTransMult(A tunable, 1, x view, 0, y view,

OP TRANS, 1, x view, 0, z view);

// Print results. Should print
// ”y == [0.1 ; 0 ; 0.35];”
// ”z == [-0.15 ; 0.2 ; 0.3];”
printf ("y == [%f ; %f ; %f];" , y[0], y[1], y[2]);
printf ("z == [%f ; %f ; %f];" , z[0], z[1], z[2]);

int
oski MatPowMult(const oski matrix t A tunable, oski matop t opA, int power,

oski value t alpha, const oski vecview t x view,
oski value t beta, oski vecview t y view, oski vecview t T view);

Computes a power of a matrix times a vector, or y ← α ·op(A)
ρ

·x+β · y. Also optionally computes
T =

(
t1 · · · tρ−1

)
, where tk ← op(A)

k

· x for all 1 ≤ k < ρ.

A tunable [input] A tunable is valid.
An object for a matrix A. If ρ > 1, then A must be square.

opA [input] See Table 6 on page 19.
Specifies op(A).

power [input] power ≥0
Power ρ of the matrix A to apply.

alpha, beta [input]
The scalar constants α, β, respectively.

x view [input] x view is a valid, single vector.
View object for the vector x.

y view [input/output] y view is valid, single vector.
View object for the vector y.

T view [output] T view is a valid multivector view of at least ρ− 1 vectors, orNULL.
If non-NULL, T view is a view object for the multivector T =

(
t1 · · · tρ−1

)
.

Actions and Returns:
Let A be an n×n matrix. The vectors x and y must be single vectors of length n. If T is specified via
a valid T view object, then T must have dimensions n× (ρ− 1). If all these conditions are satisfied,
then this routine computes y ← A

ρ·x+β ·y, tk ← A
k·x for all 1 ≤ k < ρ (if appropriate), and returns

0. Otherwise, no action is taken and an error code is returned.

Error conditions and actions:
Possible error conditions include unsatisfied argument preconditions [ERR BAD ARG, ERR BAD-
MAT, ERR BAD VECVIEW] and incompatible operand dimensions [ERR DIM MISMATCH].

Example:

// First create a matrix A =

.25 0 0
0 .75 0

.75 .25 1

 in CSR format using 1-based indices.

D
RAFT

B.4 Tuning 57

int Aptr[] = { 1, 2, 3, 6 }; // 1-based
int Aind[] = { 1, 2, 1, 2, 3 }; // 1-based
double Aval[] = { .25, .75, .75, .25, 1 };
oski matrix t A tunable = oski CreateMatCSR(Aptr, Aind, Aval, 3, 3, SHARE INPUTMAT, 0);

// Create a vector xT =
(
1 1 1

)
.

double x[] = { 1, 1, 1 };
oski vecview t x view = oski CreateVecView(x, 3, STRIDE UNIT);

// Result vector y
double y[] = { −1, −1, −1 };
oski vecview t y view = oski CreateVecView(y, 3, STRIDE UNIT);

// Storage space to keep intermediate vectors, T =
(
t1 t2

)
.

// Initially, let tT1 =
(
.1 .1 .1

)
, and tT2 =

(
.2 .2 .2

)
.

double T[] = { .1, .1, .1, .2, .2, .2 }; // in column-major order
oski vecview t T view = oski CreateMultiVecView(T, 3, 2, LAYOUT COLMAJ, 3);

// Compute y ← A
3· x and the intermediate vectors t1, t2.

oski MatPowMult(A tunable, OP NORMAL, 3, 1.0, x view, 0.0, y view, T view);

// Print results:
// ”t1 = A*x = [0.25 ; 0.75 ; 2];”
// ”t2 = Aˆ2*x = [0.0625 ; 0.5625 ; 2.375];”
// ”y = Aˆ3*x = [0.015625 ; 0.421875 ; 2.5625];”
printf ("t1 = A*x = [%f ; %f ; %f];\n" , T[0], T[1], T[2]);
printf ("t2 = Aˆ2*x = [%f ; %f ; %f];\n" , T[3], T[4], T[5]);
printf ("y = Aˆ3*x = [%f ; %f ; %f];\n" , y[0], y[1], y[2]);

B.4 Tuning

int
oski SetHintMatMult(oski matrix t A tunable, oski matop t opA,

oski value t alpha, const oski vecview t x view,
oski value t beta, const oski vecview t y view,
int num calls);

Workload hint for the kernel operation oski MatMult which computes y ← α · op(A) · x + β · y,
where op(A) ∈ {A,AT , AH}.

Parameters:
A tunable [input/output] A tunable is valid.
An object for a matrix A.

opA [input] See Table 6 on page 19.
Specifies op(A).

alpha, beta [input]
Scalar constants α, β, respectively.

x view, y view[input] Vectors are valid or symbolic (see Table 11 on page 22).
View object for a (multi)vector x and y, respectively..

num calls [input] num calls is non-negative or symbolic (see Table 10 on page 22).
The number of times this kernel will be called with these arguments.

D
RAFT

B.4 Tuning 58

Actions and Returns:
Registers the workload hint with A tunable and returns 0 only if the dimensions of op(A), x, and
y are compatible. Otherwise, returns an error code.

Error conditions and actions:
Possible error conditions include unsatisfied argument preconditions [ERR BAD ARG, ERR BAD-
MAT, ERR BAD VECVIEW] and incompatible operand dimensions [ERR DIM MISMATCH].

Example:
See Listing 2 on page 11.

int
oski SetHintMatTrisolve(oski matrix t T tunable, oski matop t opT,

oski value t alpha, const oski vecview t x view,
int num calls);

Workload hint for the kernel operation oski MatTrisolve which computes x ← α · op(T)−1 · x,
where T is a triangular matrix.

Parameters:
T tunable [input/output] T tunable is valid, square, and triangular.
Matrix object for an n× n upper or lower triangular matrix T .

opT [input] See Table 6 on page 19.
Specifies op(T).

alpha [input]
Scalar constant α.

x view [input] x view is valid or symbolic (see Table 11 on page 22).
View object for a (multi)vector x.

num calls [input] num calls is non-negative or symbolic (see Table 10 on page 22).
The number of times this kernel will be called with these arguments.

Actions and Returns:
Registers the workload hint with A tunable and returns 0 only if the dimensions of op(T) and x
have compatible dimensions. Otherwise, returns an error code.

Error conditions and actions:
Possible error conditions include unsatisfied argument preconditions [ERR BAD ARG, ERR BAD-
MAT, ERR BAD VECVIEW] and incompatible operand dimensions [ERR DIM MISMATCH].

int
oski SetHintMatTransMatMult(oski matrix t A tunable, oski ataop t opA,

oski value t alpha, const oski vecview t x view,
oski value t beta, const oski vecview t y view,
[const oski vecview t t view,]
int num calls);

Workload hint for the kernel operation oski MatTransMatMult which computes y ← α · op(A) ·
x + β · y, where op(A) ∈ {AAT , AT A,AAH , AHA}, and also optionally computes t ← A · x if
op(A) ∈ {AT A,AHA}, t← AT · x if op(A) = AAT , or t← AH · x if op(A) = AAH .

Parameters:

D
RAFT

B.4 Tuning 59

A tunable [input/output] A tunable is valid.
An object for a matrix A.

opA [input] See Table 7 on page 19.
Specifies op(A).

alpha, beta [input]
The scalar constants α, β, respectively.

x view, y view [input] x view, y view are valid or symbolic (see Table 11 on page 22).
View objects for (multi)vector objects x, y, respectively. for a (multi)vector x.

t view [input] May be valid, symbolic, or INVALID MAT.
An optional view object for a (multi)vector t.

num calls [input] num calls is non-negative or symbolic (see Table 10 on page 22).
The number of times this kernel will be called with these arguments.

Actions and Returns:
Registers the workload hint with A tunable and returns 0 only if the argument dimensions are
compatible. Otherwise, returns an error code.

Error conditions and actions:
Possible error conditions include unsatisfied argument preconditions [ERR BAD ARG, ERR BAD-
MAT, ERR BAD VECVIEW] and incompatible operand dimensions [ERR DIM MISMATCH].

int
oski SetHintMatMultAndMatTransMult(oski matrix t A tunable,

oski value t alpha, const oski vecview t x view,
oski value t beta, const oski vecview t y view,
oski matop t opA,
oski value t omega, const oski vecview t w view,
oski value t zeta , const oski vecview t z view,
int num calls);

Workload hint for the kernel operation oski MatMultAndMatTransMult which computes y ←
α ·A· x + β · y and z ← ω · op(A)· x + ζ · z, where op(A) ∈ {A,AT , AH}.

Parameters:
A tunable [input/output] A tunable is valid.
An object for a matrix A.

alpha, beta, omega, zeta [input]
The scalar constants α, β, ω, ζ, respectively.

opA [input] See Table 6 on page 19.
Specifies op(A).

x view, y view, w view, z view [input] Vectors are valid or symbolic (see Table 11 on page 22).
View objects for (multi)vectors x, y, w, and z, respectively.

num calls [input] num calls is non-negative or symbolic (see Table 10 on page 22).
The number of times this kernel will be called with these arguments.

Actions and Returns:

D
RAFT

B.4 Tuning 60

If A, x, and y have compatible dimensions, and if op(A), w, and z have compatible dimensions,
then this routine registers the workload hint with A tunable and returns 0. Otherwise, returns an
error code.

Error conditions and actions:
Possible error conditions include unsatisfied argument preconditions [ERR BAD ARG, ERR BAD-
MAT, ERR BAD VECVIEW] and incompatible operand dimensions [ERR DIM MISMATCH].

int
oski SetHintMatPowMult(oski matrix t A tunable, oski matop t opA, int power,

oski value t alpha, const oski vecview t x view,
oski value t beta, const oski vecview t y view,
const oski vecview t T view,
int num calls);

Workload hint for the kernel operation oski MatPowMult which computes a power of a matrix
times a vector, or y ← α · op(A)

ρ

· x + β · y. Also optionally computes T =
(
t1 · · · tρ−1

)
, where

tk ← op(A)
k

· x for all 1 ≤ k < ρ.

A tunable [input/output] A tunable is valid and square.
An object for a matrix A.

opA [input] See Table 6 on page 19.
Specifies op(A).

power [input] power ≥0
Power ρ of the matrix A to apply.

alpha, beta [input]
The scalar constants α, β, respectively.

x view, y view [input] Vectors are valid or symbolic (see Table 11 on page 22) single vectors.
View objects for the vectors x, y.

T view [input] A valid or symbolic multivector, or INVALID MAT.
If not equal to INVALID MAT, T view is either a view object for the multivector T =

(
t1 · · · tρ−1

)
,

or SYMBOLIC MULTIVEC.

num calls [input] num calls is non-negative or symbolic (see Table 10 on page 22).
The number of times this kernel will be called with these arguments.

Actions and Returns:
Registers the workload hint with A tunable and returns 0 if the operand dimensions are compati-
ble. Otherwise, returns an error code.

Error conditions and actions:
Possible error conditions include unsatisfied argument preconditions [ERR BAD ARG, ERR BAD-
MAT, ERR BAD VECVIEW] and incompatible operand dimensions [ERR DIM MISMATCH].

int
oski SetHint(oski matrix t A tunable, oski tunehint t hint [, ...]);

Register a hint about the matrix structure with a matrix object.

Parameters:
A tunable [input/output] A tunable is valid.

D
RAFT

B.5 Permutations 61

Matrix object for which to register a structural hint.

hint [input] See Table 9 on page 21.
User-specified structural hint. This hint may be followed by optional arguments, as listed and
typed in Table 9 on page 21.

Actions and Returns:
Returns 0 if the hint is recognized and A tunable is valid, or an error code otherwise.

Error conditions and actions:
Possible error conditions include an invalid matrix object [ERR BAD MAT], or specifying a hint
with the wrong number of hint arguments [ERR BAD HINT ARG].

Example:
See Listing 2 on page 11.

int
oski TuneMat(oski matrix t A tunable);

Tune the matrix object using all hints and implicit profiling data.

Parameters:
A tunable [input/output] A tunable is valid.
Matrix object to tune.

Actions and Returns:
Returns a non-negative status code whose possible values are defined by the constants listed in
Table 12 on page 23, or an error code otherwise.

Error conditions and actions:
Possible error conditions include providing an invalid matrix [ERR BAD MAT].

Example:
See Listing 2 on page 11 and Listing 3 on page 12.

B.5 Permutations

int
oski IsMatPermuted(const oski matrix t A tunable);

Checks whether a matrix has been tuned by reordering.

Parameters:
A tunable [input] A tunable is valid.
A matrix object corresponding to some matrix A.

Actions and Returns:
Returns 1 if A tunable has been tuned by reordering. That is, if tuning produced a representation
A = PT

r · ÂPc, where either Pr or Pc is not equal to the identity matrix I , then this routine returns
1. If Pr = Pc = I , then this routine returns 0. Returns an error code on error.

Error conditions and actions:
Possible error conditions include providing an invalid matrix [ERR BAD MAT].

D
RAFT

B.5 Permutations 62

Example:
See Listing 4 on page 25.

const oski matrix t
oski ViewPermutedMat(const oski matrix t A tunable);

Given a matrix A, possibly reordered during tuning to the form Â = Pr ·A ·PT
c , returns a read-only

object corresponding to Â.

Parameters:
A tunable [input] A tunable is valid.
A matrix object corresponding to some matrix A.

Actions and Returns:
Returns a read-only matrix object representing Â. This return is exactly equal to A tunable if the
matrix is not reordered, i.e., if Pr = Pc = I , the identity matrix. Returns INVALID MAT on error.

Error conditions and actions:
Possible error conditions include providing an invalid matrix [ERR BAD MAT].

Example:
See Listing 4 on page 25.

const oski perm t
oski ViewPermutedMatRowPerm(const oski matrix t A tunable);

Given a matrix A, possibly reordered during tuning to the form Â = Pr ·A ·PT
c , returns a read-only

object corresponding to Pr.

Parameters:
A tunable [input] A tunable is valid.
A matrix object corresponding to some matrix A.

Actions and Returns:
Returns a read-only permutation object representing Pr. This return is exactly equal to PERM IDENTITY
if the matrix is not reordered, i.e., if Pr = Pc = I , the identity matrix. Returns INVALID PERM on
error.

Error conditions and actions:
This routine calls the error handler and returns INVALID MAT if any argument preconditions are
not satisfied.

Example:
See Listing 4 on page 25.

const oski perm t
oski ViewPermutedMatColPerm(const oski matrix t A tunable);

Given a matrix A, possibly reordered during tuning to the form Â = Pr ·A ·PT
c , returns a read-only

object corresponding to Pc.

Parameters:
A tunable [input] A tunable is valid.
A matrix object corresponding to some matrix A.

D
RAFT

B.6 Saving and restoring tuning transformations 63

Actions and Returns:
Returns a read-only permutation object representing Pc. This return is exactly equal to PERM IDENTITY
if the matrix is not reordered, i.e., if Pr = Pc = I , the identity matrix. Returns INVALID PERM on
error.

Error conditions and actions:
This routine calls the error handler and returns INVALID MAT if any argument preconditions are
not satisfied.

Example:
See Listing 4 on page 25.

int
oski PermuteVecView(const oski perm t P, oski matop t opP, oski vecview t x view);

Permute a vector view object, i.e., computes x← op(P)· x.

Parameters:
P [input] P is valid.
An object corresponding to some permutation, P .

opP [input]
Specifies op(P).

x view [input/output] x view is valid.
The view object corresponding to the (multi)vector x.

Actions and Returns:
Permutes the elements of x and returns 0. On error, returns an error code and leaves x view un-
changed.

Error conditions and actions:
Possible error conditions include providing an invalid permutation [ERR BAD PERM] or vector
[ERR BAD VECVIEW].

Example:
See Listing 4 on page 25.

B.6 Saving and restoring tuning transformations

char ∗
oski GetMatTransforms(const oski matrix t A tunable);

Returns a string representation of the data structure transformations that were applied to the given
matrix during tuning.

Parameters:
A tunable [input] A tunable is valid.
The matrix object to which from which to extract the specified data structure transformations.

Actions and Returns:
Returns a newly-allocated string representation of the transformations that were applied to the
given matrix during tuning, or NULL on error. The user must deallocate the returned string by an
appropriate call to the C free() routine. Returns NULL on error.

Error conditions and actions:

D
RAFT

B.7 Error handling 64

Possible error codes include providing an invalid matrix [ERR BAD MAT].

Example:
See Listing 5 on page 26.

int
oski ApplyMatTransforms(const oski matrix t A tunable, const char∗ xforms);

Replace the current data structure for a given matrix object with a new data structure specified by
a given string.

Parameters:
A tunable [input] A tunable is valid.
The matrix object to which to apply the specified data structure transformations.

xforms [input]
A string representation of the data structure transformations to be applied to the matrix represented
by A tunable. The conditions xforms == NULL and xforms equivalent to the empty string are both
equivalent to requesting no changes to the data structure.

Actions and Returns:
Returns 0 if the transformations were successfully applied, or an error code otherwise. On success,
the data structure specified by xforms replaces the existing tuned data structure if any.

Error conditions and actions:
Possible error conditions include an invalid matrix [ERR BAD MAT], a syntax error while process-
ing xforms [ERR BAD SYNTAX], and an out-of-memory condition [ERR OUT OF MEMORY].

Example:
See Listing 6 on page 26.

B.7 Error handling

oski errhandler t
oski GetErrorHandler(void);

Returns a pointer to the current error handling routine.

Actions and Returns:
Returns a pointer to the current error handler, or NULL if there is no registered error handler.

oski errhandler t
oski SetErrorHandler(oski errhandler t new handler);

Changes the current error handler.

Parameters:
new handler [input] A valid error handling routine, or NULL.
Pointer to a new function to handle errors.

Actions and Returns:
This routine changes the curent error handler to be new handler and returns a pointer to the pre-
vious error handler.

D
RAFT

B.7 Error handling 65

void
oski HandleErrorDefault(int error code,

const char∗ message, const char∗ source filename, unsigned long line number,
const char∗ format string, . . .);

The default error handler, called when one of the OSKI routines detects an error condition.

Parameters:
message [input]
A descriptive string message describing the error or its context. The string message == NULL if no
message is available.

source filename [input]
The name of the source file in which the error occurred, or NULL if not applicable.

line number [input]
The line number at which the error occurred, or a non-positive value if not applicable.

format string [input] A printf-compatible format string.
A formatting string for use with the printf routine. This argument (and any remaining arguments)
may be passed to a printf-like function to provide any supplemental information.

Actions and Returns:
This routine dumps a message describing the error to standard error.

D
RAFT

C BeBOP Library Integration Notes 66

C BeBOP Library Integration Notes

The following subsections discuss integration of OSKI with specific higher-level libraries
and applications.

C.1 PETSc

The PETSc (Portable Extensible Toolkit for Scientific computing) library provides a portable
interface for distributed iterative sparse linear solvers based on MPI, and is a primary inte-
gration target of our interface [6, 5]. PETSc is written in C in an object-oriented style which
defines an abstract matrix interface (type Mat); specific matrix formats are concrete types
derived from this interface that implement the interface. Available formats at the time of
this writing include serial CSR (type MatAIJ), distributed CSR (MatMPIAIJ), serial and dis-
tributed block compressed sparse row format (MatBAIJ and MatMPIBAIJ, respectively, for
square block sizes up to 8 × 8), and a matrix-free “format” (MatShell, implemented using
callbacks to user-defined routines) among others.

The simplest way to integrate OSKI into PETSc is to define a new concrete type (say,
MatOSKI) based on the distributed compressed sparse row format MatMPIAIJ, with the
following modifications:

• PETSc distributes blocks of consecutive rows of the matrix across the processors.
Internally, each processor stores its rows in two packed 3-array 0-based CSR data
structures (Appendix A on page 38): one for a diagonal block, and one for all re-
maining elements. PETSc determines the distribution and sets up the corresponding
data structures when the user calls a special matrix assembly routine. The MatOSKI
type would store two additional handles on each processor corresponding to the rep-
resentation.

• Since the abstract matrix interface defines a large number of possible “methods,”
each BeBOP handle would be created using the shared copy mode (SHARE INPUT-
MAT, as discussed in Section 3.2.1 on page 14) so that not all methods would have to
be specialized initially. The cost of this arrangement is that there may be two copies
of the matrix (the local CSR data structure and a tuned data structure).

• At a minimum, an initial implementation of MatOSKI should implement the follow-
ing methods defined by Mat: matrix assembly, get/set non-zero values, and SpMV
kernel calls.

• Tuning could be performed in the implicit self-profiling style described in Section 2.3 on
page 12, since PETSc will not necessarily a priori which solver the user will call (and
therefore it will not known the number of SpMV operations). The call to oski Tune-
Mat could be inserted after each SpMV call since such calls will be low-overhead
calls until tuning occurs.

• Symmetric matrices in PETSc are stored in full storage format, though a special tag
identifies the matrix as symmetric. For MatOSKI, we may specify that the diagonal
block is symmetric by providing the appropriate hint at handle creation time (see
Table 3 on page 17).

• The default error handler for each OSKI handle should be replaced with a routine
that prints an error message to PETSc’s error log.

D
RAFT

C.2 MATLAB*P 67

• We recommend that additional routines and command-line options be created, con-
forming to PETSc’s calling style, to provide access to the following OSKI interface
features: always tuning at matrix assembly, and saving and restoring tuning trans-
formations. Such routines and options would act as “no-ops” if the user called them
on a matrix not of type MatOSKI.

Users can use the usual PETSc mechanisms to select this type either on the command-line
at run-time, or by explicitly requesting it via an appropriate function call in their applica-
tions. For most users, this amounts to a one-line change in their source code.

C.2 MATLAB*P

MATLAB*P is a research prototype system providing distributed parallel extensions to
MATLAB [43]. Internally, matrices are stored in CSC format.

Since MATLAB*P is intended for use interactively, the amount of time available for
tuning may be limited. Therefore, we recommend using OSKI in the implicit self-profiling
mode described in Section 2.3 on page 12.

	List of symbols
	List of Tables
	List of Listings
	1 Goals and Motivation
	2 An Introduction to the Tuning Interface by Example
	2.1 Basic usage: gradually migrating applications
	2.2 Providing explicit tuning hints
	2.3 Tuning based on implicit profiling

	3 Interface
	3.1 Basic scalar types
	3.2 Creating and modifying matrix and vector objects
	3.2.1 Creating matrix objects
	3.2.2 Changing matrix non-zero values
	3.2.3 Vector objects

	3.3 Executing kernels
	3.3.1 Applying the transpose of a matrix
	3.3.2 Aliasing
	3.3.3 Scalars vs. 1x1 matrix objects
	3.3.4 Compatible dimensions for matrix multiplication
	3.3.5 Floating point exceptions

	3.4 Tuning
	3.4.1 Providing workload hints explicitly
	3.4.2 Providing structural hints
	3.4.3 Initiating tuning
	3.4.4 Accessing the permuted form

	3.5 Saving and restoring tuning transformations
	3.6 Handling errors

	4 Example: Biconjugate Gradients
	5 A Tuning Transformation Language
	5.1 Basic transformations
	5.2 A complex splitting example
	5.3 Example of reordering and splitting
	5.4 Switch-to-dense example

	6 Approaches that Complement Libraries
	References
	A Valid input matrix representations
	B Bindings Reference
	B.1 Matrix object creation and modification
	B.2 Vector object creation
	B.3 Kernels
	B.4 Tuning
	B.5 Permutations
	B.6 Saving and restoring tuning transformations
	B.7 Error handling

	C BeBOP Library Integration Notes
	C.1 PETSc
	C.2 MATLAB*P

