

pOSKI: Parallel Optimized Sparse Kernel Interface Library
User’s Guide for Version 1.0.0

Jong-Ho Byun Richard Lin

James W. Demmel Katherine A. Yelick
Berkeley Benchmarking and Optimization (BeBOP) Group

University of California, Berkeley
http://bebop.cs.berkeley.edu/poski

April 27, 2012
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Note: Some of this document is copied from the OSKI User’s Guide for Version 1.0.1h written by Richard
Vuduc, James Demmel and Katherine Yelick in 2007.

	
 2	

Contents
1	
 What	
 is	
 pOSKI	
 and	
 who	
 should	
 use	
 it?	
 ...	
 3	

1.1	
 What	
 optimizations	
 does	
 pOSKI	
 perform?	
 ...	
 3	

1.2	
 How	
 to	
 read	
 this	
 documentation	
 ..	
 3	

2	
 Installation	
 ..	
 4	

2.1	
 What	
 the	
 user	
 will	
 need	
 to	
 get	
 started	
 ...	
 4	

2.2	
 How	
 to	
 install	
 pOSKI	
 on	
 top	
 of	
 the	
 installed	
 OSKI	
 library	
 ...	
 4	

2.3	
 How	
 to	
 install	
 pOSKI	
 as	
 a	
 stand-­‐alone	
 library	
 ..	
 5	

2.4	
 Customizing	
 pOSKI	
 build	
 using	
 configure	
 ..	
 6	

3	
 Using	
 pOSKI:	
 A	
 First	
 Example	
 ..	
 7	

3.1	
 Initialize	
 pOSKI	
 ...	
 8	

3.2	
 Initialize	
 a	
 sample	
 matrix	
 and	
 vectors	
 ...	
 8	

3.3	
 Create	
 a	
 default	
 thread	
 object	
 ..	
 8	

3.4	
 Create	
 a	
 tunable-­‐matrix	
 object	
 ..	
 8	

3.5	
 Create	
 vector-­‐view	
 objects	
 ..	
 9	

3.6	
 Call	
 a	
 kernel	
 for	
 sparse	
 matrix-­‐vector	
 multiply	
 ...	
 9	

3.7	
 Clean-­‐up	
 and	
 close	
 pOSKI	
 ..	
 9	

3.8	
 Linking	
 ..	
 10	

4	
 User	
 Interface	
 ...	
 11	

4.1	
 Initial/Close	
 Handler	
 ..	
 11	

4.2	
 Thread	
 Handler	
 ...	
 11	

4.3	
 Partition	
 Handler	
 ..	
 13	

4.4	
 Matrix	
 Handler	
 ..	
 16	

4.5	
 Vector	
 Handler	
 ..	
 18	

4.6	
 Tuning	
 Handler	
 ...	
 19	

4.7	
 Kernel	
 Handler	
 ..	
 22	

5	
 Troubleshooting	
 ..	
 23	

5.1	
 Installation	
 problems	
 ...	
 23	

5.2	
 Run-­‐time	
 errors	
 ..	
 23	

5.3	
 Tuning	
 difficulties	
 ..	
 23	

References	
 ...	
 24	

Appendix	
 ..	
 25	

A.	
 Bindings	
 Reference	
 ...	
 25	

B.	
 	
 Threading	
 Models	
 ...	
 40	

C.	
 	
 Partitioning	
 Models	
 ..	
 42	

	
 3	

1 What is pOSKI and who should use it?
The parallel Optimized Sparse Kernel Interface (pOSKI) [11] is a collection of kernels that provide
automatically tuned (“autotuned”) high performance computational kernels for sparse matrices, such
as Sparse-Matrix-Vector-Multiplication (SpMV). pOSKI targets both uniprocessor and multicore
machines. pOSKI builds on prior work on OSKI [7,8,10], which provided autotuned kernels for
SpMV and other kernels on cache-based superscalar uniprocessors. The purpose of both pOSKI and
OSKI is to make it easy for developers of solver libraries, and of scientific and engineering
applications, to more easily attain high performance in commonly used sparse matrix operations, via
autotuning. Autotuning is done both at installation time (also called off-line tuning), ie. when pOSKI
is installed on a particular architecture, which allows extensive benchmarking of different kernel
implementations to identify the fastest ones, and at run-time, when more is known about the user’s
matrix, and the best data structure and kernel implementation can be selected quickly. pOSKI also
lets the user cheaply reuse a prior tuned data structure and implementation, exploiting the fact that the
same matrix structure is often reused.

pOSKI is a part of the on-going work by the Berkeley Benchmarking and Optimization (BeBOP)
group [10], a research program on automatic performance tuning and analysis at the University of
California, Berkeley.

	

1.1 What optimizations does pOSKI perform?

The primary aim of pOSKI is to provide parallel functionality, which includes additional
optimizations presented in previous work done [1, 5, 6] for sparse matrix computations, based on the
OSKI library. The optimizations include register blocking, thread blocking, software prefetching,
software pipelining, SIMD, and loop unrolling.
Automatic tuning in pOSKI happens in two phases: (a) off-line tuning, which is run automatically
during pOSKI installation on a particular machine, and (b) run-time tuning, when the user calls
pOSKI’s tuning routines with a particular sparse matrix.
For parallel functionality, pOSKI supports several parallel programming models (called threading
models) to create multiple threads on multicore architectures, and it also supports several partitioning
models to split a matrix into sub-matrices. For more detail on supported threading models and
partitioning models in pOSKI, see Section 4.
Note: This version of pOSKI supports only limited functionalities of OSKI library. For more detail
for user’s interface, see Section 4.

1.2 How to read this documentation
The fastest way to get started is to look at the material in Sections 2 and 3, which contains enough
information to build and install pOSKI and to write the first test program. If the user runs into
problems, see Section 5 for debugging hints, or post a question in the online forum through the
pOSKI home page [11] (bebop.cs.berkeley.edu/poski).

	
 4	

2 Installation
This section describes how to compile and install pOSKI-1.0.0 from its source. Automatic tuning in
pOSKI happens in two phases: off-line tuning, which is run automatically during pOSKI installation
on a particular machine, and (b) run-time tuning, when the user calls pOSKI’s tuning routines with a
particular sparse matrix.
Off-line tuning automatically performs the following operations: (1) generates code for various
implementations of the register block size, (2) collects the benchmark data of these implementations
on user’s machine, and (3) selects the best implementation for each register block size. These steps
are automated and should not require any manual intervention on user’s part.

Currently, pOSKI has been tested on the following environments:
• Architectures: Intel Core2 Duo processor (E8400), Intel Nehalem processor (x5550), Intel Core

i5-3550, Intel Core i7-3960X
• OS: Linux with kernel-2.6
• C Compilers: gcc-4.3, icc-11.1 with SSE3 or SSE4 supports
• Python 2.7.2+

2.1 What the user will need to get started
There are two ways to install pOSKI library on the user’s system: If OSKI-1.0.1h, the last version of
OSKI, is already installed, (1) the user can install pOSKI on top of the OSKI library (see Section
2.2), otherwise (2) the user can install pOSKI as a stand-alone library (see Section 2.3).

The user will also need to think about the following issues:
• In which directory will pOSKI be installed?

pOSKI installs itself in the subdirectories of /usr/local/ by default, but the user can override this.
In all of our examples, we will use ${POSKIDIR} as a placeholder for the directory of choice.
For more details, see Section 2.2 or 2.3.

• Which integer and floating-point precisions are needed?
Sparse matrices are stored using both scalar integer indices and floating-point values. pOSKI
currently supports only the “int-double” data type: the C language int for the integer types and
double for the floating-point types. If the user builds pOSKI on top of OSKI, the user must make
sure that the OSKI library was built using the “int-double” data type. By default, the OSKI
installation process builds “int-double” data type. For more details about the data types, see the
OSKI-1.0.1h User’s Guide Document [8].

• Does the user want to build static or shared libraries?
Currently, pOSKI builds only a shared library.

2.2 How to install pOSKI on top of the installed OSKI library

Follow these steps to compile and install pOSKI on top of installed OSKI. We show sample
command-lines for sh/csh-compatible shells, where % denotes the command-line prompt. For more
details about the default configuration parameters, see Section 2.4.

For getting started with installing OSKI, see the OSKI-1.0.1h User’s Guide Document [8].

	
 5	

(1) Download poski-1.0.0-part.tar.gz from the pOSKI home page.
(2) Unpack the distribution

% gunzip –c poski-1.0.0-part.tar.gz | tar –xvf –
This command unpacks the pOSKI distribution into a subdirectory named poski-v1.0.0.

(3) Set OSKIDIR
% export OSKIDIR = {directory path to installed directory of OSKI-1.0h}
% export OSKIBUILD = {directory path to built directory of OSKI-1.0h}

(4) Run the INSTALL.sh script file in poski-v1.0.0/ directory
% mkdir build-1.0.0
% cd build-1.0.0
% ../poski-v1.0.0/INSTALL.sh --prefix=${POSKIDIR}
As done in this example, we strongly recommend building pOSKI in a directory separate from the
source tree in Step 2. Here we use a directory named build-1.0.0.
User can run each command-line manually instead of running the INSTALL.sh script file.
The INSTALL.sh script file includes following actions:
a. Configure pOSKI for user’s platform:

% ../poski-v1.0.0/configure --prefix=${POSKIDIR}
This step configures poski-v1.0.0 with optional prefix. User may set a particular directory path
for pOSKI installation.

b. Compile pOSKI:
% make
This step compiles the source codes.

c. Off-line tuning:
% make benchmarks
This step runs “off-line tuning”. This step is optional with “--with-tune=yes” installation
option.

d. Test pOSKI:
% make check
This step runs user’s build of pOSKI through an extensive series of tests. This step is optional
with “--with-check=yes” installation option.

e. Install pOSKI:
% make install
This step installs all of the pOSKI files and benchmarking data into the directory,
${POSKIDIR}, specified in the first step a.

NOTE: Running times of each step can vary widely across platforms, taking anywhere between a few
minutes to several hours.

2.3 How to install pOSKI as a stand-alone library
Follow these steps to compile and install pOSKI as a stand-alone library. We show sample command-
lines for sh/csh-compatible shells, where % denotes the command-line prompt. For more details
about the default configuration parameters, see Section 2.4.

(1) Download poski-1.0.0-full.tar.gz from the pOSKI home page.
(2) Unpack the distribution

	
 6	

% gunzip –c poski-1.0.0-full.tar.gz | tar –xvf –
This command unpacks the pOSKI distribution into a subdirectory named poski-v.1.0.0.

(3) Run INSTALL.sh script file in poski-v1.0.0/ directory
% mkdir build-1.0.0
% cd build-1.0.0
% ../poski-v1.0.0/INSTALL.sh --with-oski=yes --prefix=${POSKIDIR}
See step 4 in Section 2.2 for more details.

NOTE: Running times of each step can vary widely across platforms, taking anywhere between a few
minutes to several hours.

2.4 Customizing pOSKI build using configure

The configure step can be customized in many ways. The most commonly used options are discussed
below. For a complete list, run:
 % ../poski-v1.0.0/INSTALL.sh --help

Some default variables of configuration:
(1) Installation directories

pOSKI directory: POSKIDIR=/usr/local/
OSKI directory: OSKIDIR=${POSKIDIR}/build_oski/

(2) Compiler and flags
C compiler: CC=gcc
C compiler flags: CFLAGS= –g –O3 –std=gnu99

(3) Data Type
Indices: POSKIINT=int
Values: POSKIVAL=double

2.4.1 Overriding the default compiler and/or flags
To specify the compiler and /or compiler flags, define the CC and/or CFLAGS environment variables
accordingly. For example, to use the Intel C compiler to build pOSKI, user can set the configuration
option of the INSTALL.sh script file as:
 % ../poski-v1.0.0/INSTALL.sh --cc=icc --prefix=${POSKIDIR}

2.4.2 Selecting other or additional scalar type precisions
Currently, pOSKI only uses the C compiler’s int data type to store integer indices, and double for
floating-point values. However, if the user wants to know what other data types OSKI supports, see
the OSKI-1.0.1h User’s Guide Document [8].

	
 7	

3 Using pOSKI: A First Example
This section introduces the C version of pOSKI by an example. The interface uses an object-oriented
calling style, where the four main object types are (1) thread object, (2) partition-matrix/vector
object, (3) tunable-matrix object, and (4) vector-view object. The thread object is used to create the
multiple threads. The default number of multiple threads (the number of threads) equals the number
of available cores on the user’s system. The partition-matrix (or vector) object is used to split a
matrix (or vector) into sub-matrices (or sub-vectors). The default number of sub-matrices (the
number of partitions) equals the number of threads. The tunable-matrix object is used for a sparse
matrix. The vector-view object is used for a dense vector. For more detail, see Section 4.
In addition to showing pOSKI’s basic usage and providing the user with a first example to test the
pOSKI installation, this example illustrates how the user can gradually migrate an existing
application to use pOSKI, provided that the application uses “standard” array representations of
sparse matrices in CSR format and dense vectors.
Example 3.1 shows 7 steps to use basic routines in pOSKI library to perform sparse matrix-vector
multiplication (SpMV), and Example 3.2 shows a sample Makefile for Example 3.1. Calls to pOSKI
routines are shown in blue bold-face, and pOSKI’s objects are shown in bold-face. The Example 3.1
shows the basics of calling pOSKI but does not perform any run-time tuning. To learn about run-time
tuning see Section 4.6.
For more detail on the user interface in the pOSKI library, see Section 4.

Example 3.1: This example illustrates basic object creation and kernel execution in pOSKI. Here, we
perform one sparse matrix-vector multiply for a sample sparse matrix A using the default thread and
partition objects.
/* This example computes SpMV (y = α�Ax + β�y) with default threading model and partitioning model. */
1. #include <stdio.h>
2. #include <poski.h>
3.
4. int main(int argc, char **argv)
5. {
6. STEP 1: /* Initialize pOSKI library */
7. poski_Init();
8.
9. STEP 2: /* Initialize Sparse matrix A in CSR format, and dense vectors */
10. int nrows=3; int ncols=3; int nnz=5;
11. int Aptr[4]={0, 1, 3, 5}; int Aind[5]={0, 0, 1, 0, 2}; double Aval[5]={1, -2, 1, 0.5, 1};
12. double x[3]={.25, .45, .65}; double y[3]={1, 1, 1};
13. double alpha = -1, beta = 1;
14.
15. STEP 3: /* Create a default thread object {with #threads = #available_cores} */
16. poski_threadarg_t *poski_thread = poski_InitThreads();
17.
18. STEP 4: /* Create a tunable-matrix object by wrapping the partitioned sub-matrices using a thread object and a

default partition-matrix object {with #partitions = #threads} */
19. poski_mat_t A_tunable =
20. poski_CreateMatCSR (Aptr, Aind, Aval, nrows, ncols, nnz, /* Sparse matrix A in CSR format */
21. SHARE_INPUTMAT, /* <matrix copy mode> */
22. poski_thread, /* <thread object> */
23. NULL, /* <partition-matrix object> (NULL: default) */
24. 2, INDEX_ZERO_BASED, MAT_GENERAL);/* specify how to interpret non-zero pattern */

	
 8	

25.
26. STEP 5: /* Create wrappers around the dense vectors with <partition-vector object> (NULL: default) */
27. poski_vec_t x_view = poski_CreateVec(x, 3, STRIDE_UNIT, NULL);
28. poski_vec_t y_view = poski_CreateVec(y, 3, STRIDE_UNIT, NULL);
29.
30. STEP 6: /* Partition input/output vectors and Perform matrix vector multiply (SpMV), y = α�Ax + β�y */
31. poski_MatMult(A_tunable, OP_NORMAL, alpha, x_view, beta, y_view);
32.
33. STEP 7: /* Clean-up interface objects and threads, and shut down pOSKI library */
34. poski_DestroyMat(A_tunable); poski_DestroyVec(x_view); poski_DestroyVec(y_view);
35. poski_DestroyThreads(poski_thread);
36. poski_Close();
37.
38. return 0;
39. }

3.1 Initialize pOSKI
To initialize the library, the user’s application should include poski.h (line 2) and call poski_Init (line
7). To release resources, the user should call poski_Close (line 36) at the end of the program to shut
down the library. For more detail, see Section 4.1.

3.2 Initialize a sample matrix and vectors
The user needs to create arrays of a sparse matrix in CSR format (here, Aptr, Aind, Aval, nrows,
ncols, and nnz) and arrays of dense vectors (here x and y) (lines 10-12). For more detail, see Section
4.4.

3.3 Create a default thread object
We create and initialize a thread object, poski_thread, of type poski_threadarg_t by a call to
poski_InitThreads (line 16). By using the default thread object, this routine creates reusable multiple
threads as threadpool. The number of threads equals the number of available cores on the system.
This step automatically checks the number of available cores on the system. For more detail, see
Section 4.2.

3.4 Create a tunable-matrix object
We create a tunable-matrix object, A_tunable, of type poski_mat_t from the input sparse matrix in
CSR format by a call to poski_CreateMatCSR (lines 19-24) with the following arguments:

(1) Arguments 1-3 (line 20) specify the arrays of a sparse matrix in CSR format.
(2) Arguments 4-5 (line 20) specify the sparse matrix dimensions.
(3) Argument 6 (line 20) specifies the number of non-zeros of the sparse matrix.
(4) Argument 7 (line 21) specifies one of two possible copy modes for the matrix object, to help

control the number of copies of the assembled matrix that may exist at any point in time. The
value SHARE_INPUTMAT indicates that both the user and the library will share the CSR arrays
Aptr, Aind, and Aval, because the user promises (a) not to free the arrays before destroying the
object A_tunable via a call to poski_DestroyMat (line 34), and (b) to adhere to a particular set of
read/write conventions. The other available mode, COPY_INPUTMAT, indicates that the library

	
 9	

must make a copy of these arrays before returning from this call, because user may choose to free
the arrays at any time. We discuss the semantics of both modes in detail in Section 4.4.

(5) Argument 8 (line 22) specifies the thread object of type poski_threadarg_t. The given thread
object is copied into the tunable-matrix object. As a default, the number of threads is the same as
the number of available cores on the system. For more detail on how to modify the default thread
object, see Section 4.2.

(6) Argument 9 (line 23) specifies the partition-matrix object of type poski_partitionarg_t. The value
NULL indicates to use the default partition object. In this example, the default partition object is
copied into the tunable-matrix object. For more detail on how to modify the default partition
object, see Section 4.3.

(7) Arguments 10-12 (line 24) tell the library how to interpret the arrays of the input sparse matrix in
CSR format. Argument 10 is a count that says the next 2 arguments are semantic properties
needed to interpret the input sparse matrix correctly. INDEX_ZERO_BASED says that the index
values in Aptr and Aind follow the C convention of starting at 0, as opposed to the typical Fortran
convention of starting at 1. The value MAT_GENERAL indicates that the input matrix specifies all
non-zeros. For more detail on matrix properties, see Section 4.4.

In this example, think of A_tunable as a wrapper around these arrays. Since this example uses the
SHARE_INPUTMAT copy mode and performs no tuning, pOSKI will not create any copies of the
input matrix. However, additional row-index arrays for sub-matrices are created when partitioning a
matrix into sub-matrices.

3.5 Create vector-view objects
Dense vector objects, x_view and y_view, of type poski_vec_t, are always wrappers around user array
representations (lines 27-28). We refer to such wrappers as views. A vector-view encapsulates basic
information about an array, such as its length or the stride between consecutive elements of the vector
within the array. The fourth argument is for specifying partition-vector object. In this example with
NULL argument as a default set, the vector is not specifically partitioned. However, if the fourth
argument is specified with a partition object, the vector will be partitioned. For more detail on vector-
view objects, see Section 4.5.

3.6 Call a kernel for sparse matrix-vector multiply
The argument lists of kernels, such as poski_MatMult for SpMV in this example (line 31), follow the
conventions of the BLAS. For example, a user can specify the constant OP_TRANS as the second
argument to multiply by AT instead of A, or specify other values for α and β. Here, the constant
OP_NORMAL indicates to multiply by A. This kernel call performs a check on the partition status of
the tunable-matrix and vector-view objects, and then performs an appropriate sparse matrix-vector
multiply in parallel. For more detail, see Section 4.7.

3.7 Clean-up and close pOSKI
The calls to poski_DestroyMat, poski_DestroyVec and poski_DestroyThreads free any memory
allocated by the library to these objects (lines 34-35). However, since the user and library share the
arrays underlying A_tunable, x_view, and y_view, user is responsible for freeing these arrays (here,
Aptr, Aind, Aval, x, and y).
The last step is to call poski_Close (line 36) at the end of the program to shut down the library.

	
 10	

3.8 Linking

The exact procedure for linking depends on the user’s platform. Example 3.2 shows a sample
Makefile that builds Example 3.1 on a Linux system.

Example 3.2: Makefile for the first example. This example is for using pOSKI built on top of OSKI.
1. #Location of installed OSKI library
2. OSKIDIR = {path_to_oski_build_directory}
3. OSKIINC = $(OSKIDIR)/include
4. OSKILIB = $(OSKIDIR)/lib/oski
5.
6. #Location of pOSKI library
7. POSKIDIR = {path_to_poski_build_directory}
8. POSKILIB = $(POSKIDIR)/lib
9. POSKIINC = $(POSKIDIR)/include/poski
10.
11. #OSKI & pOSKI link flags
12. OSKILIB_SHARED = –I$(OSKIINC) –Wl,–rpath –Wl,$(OSKILIB) –L$(OSKILIB) `cat

$(OSKILIB)/site-modules-shared.txt` –loski
13. POSKILIB_SHARED = –I$(POSKIINC) –Wl,–rpath –Wl,$(POSKILIB) –L$(POSKILIB) –

lposki
14. LDFLAGS_SHARED = $(OSKILIB_SHARED) $(POSKILIB_SHARED) –lm
15.
16. CC = icc
17. CFLAGS = –g –O3 –pthread –openmp
18.
19. SRC = example
20. all:$(SRC)-shared
21. $(SRC)-shared: $(SRC).o
22. $(CC) $(CFLAGS) –o $@ $(SRC).o $(LDFLAGS_SHARED)
23. .c.o:
24. $(CC) $(CFLAGS) $(LDFLAGS_SHARED) –o $@ –c $<
25. clean:
26. rm –rf $(SRC)-shared $(SRC).o core*~

Take note of a few aspects of this Makefile:
(1) OSKI directories:

Lines 2-4 refer to the various paths of OSKI directories.
(2) pOSKI installation directories:

Lines 7-9 refer to the various pOSKI installation paths.
(3) Setting the run-time link path:

Lines 12-14 refer to the executable run-time path to point to the directory containing the OSKI
and pOSKI library. For more details on setting OSKI’s site-module-file, see the OSKI-1.0.1h
User’s Guide Document [8].

If the user has difficulties or questions for testing this first example, please contact us through the
pOSKI home page.

	
 11	

4 User Interface
This section illustrates available user interfaces in the pOSKI library. The user interface is divided
into 7 broad categories; (1) Initial/Close Handler, (2) Thread Handler, (3) Partition Handler, (4)
Matrix Handler, (5) Vector Handler, (6) Tuning Handler, and (7) Kernel Handler.

4.1 Initial/Close Handler
This module includes the routines, shown in Table 4.1, to initialize and shut down the library. The
user must call poski_Init() as shown in Example 3.1 before calling other routines in the library. To
release resources, the user also calls poski_Close() at the end of user’s program to shut down the
library.

Routine Description

poski_Init Initialize pOSKI library.

poski_Close Shut down pOSKI library.

Table 4.1: Initialize/close the library. Bindings appear in Appendix A.1.

4.2 Thread Handler
This module includes the routines, shown in Table 4.2, to create/modify/destroy a thread object of
type poski_threadarg_t. Currently, the thread object contains information on the <threading model>,
<number of threads>, and <available cores on system>.
We define a thread object as global or local. The global thread object can be used multiple times
when the user creates multiple tunable-matrix objects. The local thread object is a copy of the global
thread object in a specified tunable-matrix object, and it can be used only for the matrix object.

Routine Description

poski_InitThreads Create a default thread object from available system cores.

poski_DestroyThreads Free a thread object.

poski_ThreadHint Specify hints about the threading model and the number of threads.
For a list of available options for the threading model, see Table 4.3.

poski_report_threadmodel Report information on the currently used threading model.

Table 4.2: Creating, modifying and destroying a thread object. Bindings appear in Appendix A.2.

4.2.1 Creating a thread object
User must call poski_InitThreads() as shown in Example 3.1 before calling the routines for partition,
matrix, vector, tuning, and kernel handlers. The routine checks the number of available cores on the
system, and creates a thread object with the default <threading model>, POSKI_THREADPOOL. The
available threading models are shown in Table 4.3. The POSKI_THREADPOOL tells the library to
create reusable threads once and may use them multiple times to perform multiple tasks, while other
threading models tell the library to create and destroy threads at each task. The default number of

	
 12	

threads is the number of available cores on the system. For more detail on the threading models, see
Appendix B.

Hint Option Description

<threading model>

*POSKI_THREADPOOL User and library agree to create reusable threads,
threadpool, once and to use it to perform
multiple tasks.

POSKI_PTHREAD User and library agree to create and destroy
threads at each task using Pthread.

POSKI_OPENMP User and library agree to create and destroy
threads at each task using OpenMP.

Table 4.3: Available options for the threading model. The default option is marked by an asterisk (*).

4.2.2 Modifying a thread object
The user may call poski_ThreadHints() to modify the thread object. The first and second arguments
of this routine are the <thread object> and <tunable-matrix object> which the user wants to modify.
The user must set at least one of these two objects or both. For instance, if the user wants to modify
only the local thread object in a specified tunable-matrix object, the user must assign NULL for the
first argument <thread object> and a valid tunable-matrix object for the second argument <tunable-
matrix object>. The third argument is <threading model> to set the user’s desired threading model,
and the last argument is <number of threads> to set the user’s desired number of threads. Moreover,
this routine automatically adjusts the number of threads to satisfy the following conditions:
(1) The number of threads must be between 1 and the number of available cores on the system.
(2) If the second argument <tunable-matrix object> is given, the number of threads must be equal to

(the number of partitions / k), where k is an integer.

For instance, when applying only the first condition, this routine sets the number of threads equal to
the number of available cores on the system if the given <number of threads> is greater than the
number of available cores on the system. Example 4.1 sketches two simple examples for using hints
to modify the thread object.

Example 4.1: This example illustrates basic thread object modification in pOSKI. Here, we create a
default thread object and modify it with the user’s hint in two different ways; (a) modification of a
global thread object, and (b) modification of a local thread object in a specified tunable-matrix object.
Here we assume the number of available cores on the system is 16, and the default partition object,
NULL, is used.
(a) Modification of a global thread object

poski_threadarg_t *poski_thread = poski_InitThreads();
poski_ThreadHints(poski_thread, NULL, POSKI_OPENMP, 8);
poski_mat_t A_tunable = poski _CreateMatCSR (…, poski_thread, NULL, …)

(b) Modification of a local thread object in a specified tunable-matrix object
poski_threadarg_t *poski_thread = poski_InitThreads();
poski_mat_t A_tunable = poski _CreateMatCSR (…, poski_thread, NULL, …)

	
 13	

poski_ThreadHints(NULL, A_tunable, POSKI_OPENMP, 8);
In Example 4.1(a), first we create a default thread object, poski_thread, as a global thread object that
is set with POSKI_THREADPOOL and 16 threads. Second, we modify only the global thread object,
poski_thread, with POSKI_OPENMP and 8 threads. Here, the given number of threads could be
adjusted to satisfy the first condition, although that is not necessary here. Then we create a tunable-
matrix object using the global thread object. Thus, poski_CreateMatCSR uses POSKI_OPENMP and
8 threads, and creates 8 sub-matrices if the default partition object is used. In this case, when user
calls kernel routines with the tunable-matrix object A_tunable, the kernel routines use
POSKI_OPENMP and 8 threads for 8 sub-matrices in parallel.
In Example 4.1(b), first we create a default thread object, poski_thread, as a global thread object that
is set with POSKI_THREADPOOL and 16 threads. Second, we create a tunable-matrix object using
the global thread object. Thus poski_CreateMatCSR uses POSKI_THREADPOOL and 16 threads,
and creates 16 sub-matrices if the default partition object is used. Then, we modify only the local
thread object in the tunable-matrix object with POSKI_OPENMP and 8 threads, while the global
thread object poski_thread remains the same as the default setting. Here, the given number of threads
could be adjusted to satisfy both first and second conditions, although that is not necessary here. In
this case, when user calls kernel routines with the tunable-matrix object A_tunable, the kernel
routines use POSKI_OPENMP and 8 threads for 16 sub-matrices in parallel.
The user may call this routine with both arguments <thread object> and <tunable-matrix object> to
modify both global and local thread objects.

4.2.3 Destroying a thread object
The user must call poski_DestroyThreads(), shown in Example 3.1, to free the global thread object.
This routine also destroys the reusable threads, threadpool, if the library creates it. The local thread
object is destroyed when the user destroys the tunable-matrix object.

4.3 Partition Handler
This module includes the routines, shown in Table 4.4 and Table 4.5, to create/destroy two partition
objects: (1) partition-matrix object of type poski_partitionarg_t for partitioning a matrix into sub-
matrices, and (2) a partition-vector object of type poski_partitionVec_t for partitioning a vector into
sub-vectors. Currently, the partition-matrix object contains information about the <partitioning
model> and <number of partitions>, and the partition-vector object contains information about the
<tunable-matrix object>, <kernel>, <transpose>, and <vector property>.
We define a partition object as global or local. The global partition object can be used multiple times
when the user creates multiple tunable-matrix or vector-view objects. The local partition object is a
copy of the global partition object in the specified tunable-matrix or vector-view object, and it can be
used only for the tunable-matrix or vector-view object.
The actual matrix partitioning occurs at the call to create a tunable-matrix object, and the actual
vector partitioning occurs at the call to create a vector-view object or at the call to perform a kernel
operation.

Routine Description

poski_PartitionMatHint Create a valid, partition-matrix object.

poski_DestroyPartitionMat Free a partition-matrix object.

	
 14	

poski_report_partitionmodel Report information of the currently used partitioning model.

Table 4.4: Creating and destroying a partition-matrix object. Bindings appear in Appendix A.3.

Routine Description

poski_PartitionVecHint Create a valid, partition-vector object.

poski_DestroyPartitionVec Free a partition-vector object.

Table 4.5: Creating and destroying a partition-vector object. Bindings appear in Appendix A.4.

4.3.1 Creating a partition object
User optionally call the routine poski_PartitionMatHint() or poski_PartitionVecHint(), to set a
desired partition object instead of using the default partition object. The options for partition-matrix
object are shown in Table 4.6, and the options for partition-vector object are shown in Table 4.7.
Currently, pOSKI supports only two partitioning models based on the one-dimensional row-wise
partitioning scheme. For more detail on the partitioning schemes, see Appendix C.

Hint Option Description

<partitioning model>
*OneD Use one-dimensional row-wise partition by rows.

SemiOneD Use one-dimensional row-wise partition by nonzeros.

Table 4.6: Available options for creating the partition-matrix object. The default option is marked by
an asterisk (*).

Hint Option Description

<vector property>
INPUTVEC Specify a vector as input of a kernel.

OUTPUTVEC Specify a vector as output of a kernel.

<kernel> See kernel types in Table 4.16. Specify a kernel

<transpose> See transpose options in Table 4.17. Specify a transpose

Table 4.7: Available options for creating the partition-vector object.

To create a desired partition-matrix object, the user must call poski_PartitionMatHint() with the
user’s desired settings. The first argument of this routine is <partitioning model> to set the particular
partitioning model, and second argument is <number of partitions> to set the desired number of
partitions to create sub-matrices. To use the desired partition-matrix object, a user must assign it
when the user creates a tunable-matrix object as shown in Example 4.2(a). Otherwise, the default
partition-matrix object is used to partition a matrix into sub-matrices at the call to create a tunable-
matrix object. The default <partitioning model> is OneD, and the default <number of partitions> is
the number of threads.
However, the given number of partitions will be automatically adjusted at the call to create a tunable-
matrix object. The actual number of partitions should satisfy the following conditions:
(1) The number of partitions should be equal to (the number of threads × k), where k is an integer.

	
 15	

(2) The number of partitions should be less than or equal to the number of rows when the default
<partitioning model>, OneD, is used, or the number of partitions should be less than or equal to
the number of non-zeros when the SemiOneD is used.

Similarly, the user must call poski_PartitionVecHint() to set the desired partition-vector object. A
partition-vector object depends on a particular partition-matrix object and kernel operation. The first
argument of this routine is <tunable-matrix object> to set a particular tunable-matrix object
corresponding to the vector, the second and third arguments of this routine are <kernel> and
<transpose> to set a particular kernel operation using the vector, and fourth argument is <vector
property> to set the usage of the vector for a particular kernel operation. To use a desired partition-
vector object, a user must assign it when the user creates a vector-view object as shown in Example
4.2(b). In this case, the routine performs actual vector partitioning into sub-matrices. Otherwise, the
default partition-vector object is used to partition a vector into sub-vectors when user calls a kernel
routine. If the vector-view-object using the specified partition-vector object is not matching for
performing a particular kernel operation at the call the kernel routine, the local partition-vector object
of the vector-view object will be automatically modified.
Example 4.2 shows two simple examples of creating a partition-matrix/vector object by calling
poski_PartitionMatHint() or poski_PartitionVecHint().

Example 4.2: This example illustrates basic partition object creation in pOSKI. Here, we create a
partition object with the user’s hint for (a) a matrix or (b) a vector.
(a) Create a partition-matrix object

poski_partitionarg_t *partitionMat = poski_PartitionMatHints(SemiOneD, 8, <kernel>, <transpose>);
poski_mat_t A_tunable = poski CreateMatCSR (…, partitionMat, …);

(b) Create a partition-vector object

poski_partitionVec_t *partitionVec =
 poski_PartitionVecHints(A_tunable, KERNEL_MatMult, OP_NORMAL, INPUTVEC};
poski_vec_t x_view = poski_CreateVec(…, partitionVec);

In Example 4.2(a), we create a partition-matrix object, partitionMat, with <partitioning model> =
SemiOneD and <number of partitions> = 8. Then, we assign the partition-matrix object at the call to
create a tunable-matrix object, A_tunable. Here the given partition-matrix object is copied as a local
object in A_tunable. However, the number of partitions in the local object may be adjusted to satisfy
the above conditions. For instance, if the number of threads is 6 in the local thread object and the
number of non-zeros is 10, the number of partitions in the local partition-matrix object is set to 6
instead of 8. In this case, total 6 sub-matrices are created.
In Example 4.2(b), we create a partition-vector object, partitionVec, with <tunable-matrix object> =
A_tunable, <kernel> = KERNEL_MatMult, <transpose> = OP_NORMAL, and <vector property> =
INPUTVEC. Here, A_tunable, KERNEL_MatMult and OP_NORMAL indicate that the vector is used
for performing a sparse matrix-vector multiply computation (SpMV) with A_tunable. INPUTVEC
indicates that the vector is used for an input vector of the specified kernel operation. The actual
vector partitioning occurs at the call poski_CreateVec() to create a vector-view object, x_view, using
the partition-vector object. Here, the number of partitioned sub-vectors is equal to the number of sub-
matrices.

	
 16	

4.3.2 Destroying a partition object
The user must call poski_DestroyPartitionMat()/poski_DestroyPartitionVec() to free the partition-
matrix/vector object if it was created. The local partition object will be destroyed when the user
destroys the tunable-matrix/vector-view object.

4.4 Matrix Handler
This module includes the routines, shown in Table 4.8, to create/modify/destroy a tunable-matrix
object of type poski_mat_t. Currently, pOSKI supports only an input sparse matrix in CSR format to
create a tunable-matrix object.

Routine Description

poski_CreateMatCSR
Create a valid, tunable-matrix object from arrays of an input sparse
matrix in CSR format.

poski_CreateMatCSRFile
Create a valid, tunable-matrix object from a sparse matrix object that
the poski_LoadMatrix routine creates from a file.

poski_DestroyMat Free a tunable-matrix object.

poski_LoadMatrix
Create a valid, sparse matrix object by loading a pattern of non-zeros
from a sparse matrix file.

poski_GetMatEntry Get a value of the specific matrix entry.

poski_SetMatEntry Set a value of the specific matrix entry.

poski_GetMatSubset Get a subset of values, specified as a clique or indexed list.

poski_SetMatSubset Set a subset of non-zero values, specified as a clique or indexed list.

Table 4.8: Creating, modifying and destroying a tunable-matrix object. Bindings appear in Appendix
A.5.

4.4.1 Creating a tunable-matrix object
As shown in Example 3.1, the user must call poski_CreateMatCSR() / poski_CreateMatCSRFile() to
create a tunable-matrix object of type poski_mat_t from valid inputs, <arrays of a sparse matrix in
CSR format> / <sparse matrix object>, <copy mode>, <thread object>, <partition-matrix object> and
{matrix properties}. The argument of <thread object> should not be set to NULL, but <partition-
matrix object> might be set to NULL for using the default partition-matrix object.
This routine performs the following three major operations: (1) share or copy the input sparse matrix
based on <copy mode>, (2) copy <thread object> and <partition-matrix object> as local objects in a
tunable-matrix object, and (3) create sub-matrices based on <partition-matrix object> in parallel with
using <thread object>.
To make memory usage logically explicit, the routine supports two data copy modes. These modes,
defined by the scalar type poski_copymode_t, are shown in Table 4.9. The optional {matrix
properties} for specifying how the library should interpret that data are shown in Table 4.10, and the
default properties assumed by the library are marked with an asterisk (*).

	
 17	

Mode Option Description

<copy mode>

SHARE_INPUTMAT
User and library agree to share the input sparse matrix
arrays.

COPY_INPUTMAT
The library copies the input sparse matrix arrays, and the
user may free them immediately upon return from the
handle creation routine.

Table 4.9: Available copy modes for the matrix creation routines.

Property Option Description

<non-zero pattern> *MAT_GENERAL Input matrix specifies all non-zeros.

<index>
INDEX_ONE_BASED Array indices start at 1.

*INDEX_ZERO_BASED Array indices start at 0 (default C convention).

Table 4.10: Available input matrix properties for the matrix creation routines.

We show two simple examples how to create a tunable-matrix object with a user’s input sparse
matrix in Example 4.3. The user can set an input matrix using sparse matrix arrays in CSR format or
a pattern of non-zeros in a file.

Example 4.3: This example illustrates how to create a basic tunable-matrix object in pOSKI. Here,
we create a tunable-matrix object using (a) arrays of a sparse matrix in CSR format or (b) a sparse-
matrix object from loading a pattern of non-zeros in a sparse matrix file.
(a) Creating a tunable-matrix object using arrays of a sparse matrix in CSR format

int nrows=3; int ncols=3; int nnz=5;
int Aptr[4]={0, 1, 3, 5}; int Aind[5]={0, 0, 1, 0, 2}; double Aval[5]={1, -2, 1, 0.5, 1};
poski_mat_t A_tunable = poski CreateMatCSR (Aptr, Aind, Aval, nrows, ncols, nnz, <copy_mode>,
 <thread object>, <partition-matrix object>, <k>, <property_1>, …, <property_k>);

(b) Creating a tunable-matrix object using a sparse-matrix object

poski_sparse_matrix_t *SpA = poski_LoadMatrix(<file name>, <file format>);
poski_mat_t A_tunable = poski CreateMatCSRFile (SpA, <copy_mode>, <thread object>,

<partition-matrix object>, <k>, <property_1>, …, <property_k>);

In Example 4.3(a), we create the arrays of a sparse matrix in CSR format, then we pass the arrays to
create a tunable-matrix by calling poski_CreateMatCSR().
In Example 4.3(b), we call poski_LoadMatrix() to create a sparse-matrix object from loading a
pattern of non-zeros in a sparse matrix file, then we assign the sparse-matrix object to create a
tunable-matrix by calling poski_CreateMatCSRFile(). Here, the argument <k> indicates the number
of assigned properties. The argument <file name> indicates the name of a sparse matrix file, and the
argument <file format> indicates the sparse matrix file format in {HB, MM}. Here, HB indicates
Harwell-Boeing file format, and MM indicates Matrix-Market file format. For an input pattern of
non-zeros in a file, pOSKI currently supports only Harwell-Boeing sparse matrix file format [3],
which is the most popular mechanism for text-file exchange of sparse matrix data.

	
 18	

After creating a tunable-matrix object, the user can modify the local thread object in the <tunable-
matrix object> while the local partition-matrix object is fixed in <tunable-matrix object>. For more
detail on how to modify the local thread object, see Section 4.2.

4.4.2 Modifying a tunable-matrix object
The non-zero pattern of the input matrix fixes the non-zero pattern of a tunable-matrix object,
A_tunable, but the user may modify the non-zero values. If the input matrix contains explicit zeros,
the library treats these entries as logical non-zeros whose values may be modified later. To modify an
individual value of a matrix, the user must call poski_SetMatEntry() with valid inputs:

poski_SetMatEntry (<tunable-matrix object>, <row>, <col>, <value>);

Here, the first argument is the <tunable-matrix object> of the user’s input matrix A, the second and
third arguments are the entry position of row and col in two-dimensional matrix format, and the last
argument <value> is the new value to be set. If A_tunable shares the user’s input matrix A, the user’s
values array will be also changed. Logical non-zero values are subject to properties asserted at matrix
creation-time. To get the individual value of a matrix, the user must call poski_GetMatEntry(
<tunable-matrix object>, <row>, <col>), and this call returns the value of A(row,col). The library
also supports changing or getting a subset of values defined by a clique (rectangular subblock) or as a
list of non-zero entries with pairs of subscripts. To modify a subset of values, the user may call
poski_SetMatSubset() or poski_GetMatSubset() with valid inputs. For more detail on how to handle a
subset of values, see Appendix A.5.
When the tunable-matrix object, A_tunable, is tuned, the tuned data structure may store additional
explicit zeros to improve performance. The user should avoid changing or getting entries that were
not explicitly stored in the input matrix A when A_tunable was created. The library will report these
attempts as errors.

4.4.3 Destroying a tunable-matrix object
The user must call poski_DestroyMat(), shown in Example 3.1, to free the tunable-matrix object. This
routine also cleans the local thread and partition-matrix objects in the tunable-matrix object.

4.5 Vector Handler
This module includes the routines, shown in Table 4.11, to create/destroy a vector-view object of
type poski_vec_t. Currently, pOSKI supports a vector-view object only for a single vector.

Routine Description

poski_CreateVec Create a valid, vector-view object from an input vector data.

poski_DestroyVec Free a vector-view object.

Table 4.11: Creating and destroying a vector-view object. Bindings appear in Appendix A.6.

	
 19	

4.5.1 Creating a vector-view object
As shown in Example 3.1, the user must call poski_CreateVec() to creates a vector-view object of
type poski_vec_t, which looks like

poski_vec_t x_view =
 poski_CreateVec(<vector data>, <vector length>, <distance>, <partition-vector object>);

Here, the argument <vector data> is an array of the vector data, <vector length> is the length of the
vector data, and <distance> is the distance between logically consecutive elements of the vector data.
Currently, pOSKI supports <distance> as only STRIDE_UNIT as shown in Table 4.12. The last
argument <partition-vector object> is the partition-vector object.
This routine may perform two or three major operations; (1) share the vector data, (2) copy
<partition-vector object> as a local object into the vector-view object, and (3) may create sub-vectors
based on <partition-vector object>. For instance, if <partition-vector object> is set to NULL as
default, no vector partitioning occurs at the call this routine. Otherwise, this routine partitions the
vector data into sub-vectors based on the specified <partition-vector object>.

Property Option Description

<distance> STRIDE_UNIT
Specifying the distance between logically consecutive elements
of a vector is 1.

Table 4.12: Available input vector properties for the vector-view creation routine.

4.5.2 Destroying a vector-view object
The user must call poski_DestroyVec(), shown in Example 3.1, to free the vector-view object. This
routine also cleans the local partition-vector object in the vector-view object.

4.6 Tuning Handler
This module includes the routines, shown in Table 4.13, to tune a tunable-matrix object. The library
tunes by selecting a data structure customized for the user’s sparse matrix, kernel workload, and
machine. The routine defines three groups of tuning operations as the list in Table 4.13.

Routine Description

poski_TuneHint_Structure Specify hints about the non-zero structure that may be relevant to
tuning. For a list of available hints, see Table 4.14.

poski_TuneHint_MatMult Workload hints specify the expected options and frequency of the
corresponding kernel call.

poski_TuneMat Tune the matrix data structure using all hints and implicit workload
data accumulated so far.

Table 4.13: Tuning primitives for a tunable-matrix object. Bindings appear in Appendix A.7.

	
 20	

4.6.1 Providing explicit structural hints
User may call poski_TuneHint_Structure() to provide one or more structural hints, shown in Table
4.14. Providing these hints is entirely optional, but a library implementation may use these hints to
constrain a tuning search.

Hint Option Arguments Description

<block>

HINT_NO_BLOCKS none
Matrix contains little or no dense block
substructure.

HINT_SINGLE_BLOCK [int r, c]
Matrix structure is dominated by a single
block size, r × c.

HINT_MULTIPLE_BLOCKS [int k, r1,c1,
…, rk, ck]

Matrix structure consists of at least k >=
1 multiple block sizes, These sizes
include r1 × c1, …, rk × ck

<align>
HINT_ALIGNED_BLOCKS none

Any dense blocks are uniformly aligned.
That is, let (i,j) be the (1,1) element of a
block of size r × c. Then, (i-1) mod r =
(j-1) mod c = 0.

HINT_UNALIGNED_BLOCKS none
Any dense blocks are not aligned, or the
alignment is unknown.

Table 4.14: Available structural hints for the matrix tuning routines.

The user should only specify one of the options with appropriate arguments for each hint to provide
additional information of the user’s sparse matrix structure. For instance, the <block> hint,
HINT_SINGLE_BLOCK, tells the library that the matrix structure is dominated by dense blocks of a
particular block size (r × c). The user may (a) set ARGS_NONE if the particular block size (r × c) is
unknown, or (b) specify the block size (r × c) explicitly if it is known:

(a) poski_TuneHint_Structure(A_tunable, HINT_SINGLE_BLOCKSIZE, ARGS_NONE);
(b) poski_TuneHint_Structure(A_tunable, HINT_SINGLE_BLOCKSIZE, 6, 6);

In these cases, either call is “correct” since specifying the block size is optional. However, if more
than one option is given for the same hint, the library assumes that the latter option is true. For
example, if the user specifies HINT_SINGLE_BLOCKSIZE followed by HINT_NO_BLOCKS, then
no-block option should override the single-block size option for <block> hint.

4.6.2 Providing explicit workload hints
The user may call poski_TuneHint_MatMult() to tell the library which kernel user will call and with
what arguments for a given matrix object, and the expected frequency of such calls. The routine for
specifying workload hints all have an argument signature of the form

poski_TuneHint_<kernel> (A_tunable, {kernel_params}, num_calls);

	
 21	

where, num_calls is an integer. This hint tells the library that the user will call the specified <kernel>
on the object A_tunable with the arguments {kernel_params}, and that the user expects to make
num_calls such calls. Instead of specifying an estimate of the number of calls explicitly, the user may
substitute the symbolic constant as shown in Table 4.15. The use of two constants allows a library
implementation to provide two level of tuning when the user cannot estimate the number of calls.

Hint Symbolic constant Description

<calls>
ALWAYS_TUNE

The user expects “many” calls, and the library
may therefore elect to do some basic tuning.

ALWAYS_TUNE_AGGRESSIVELY
The user expects a sufficient number of calls
that the library may tune aggressively.

Table 4.15: Available symbolic calling frequency constants for <calls> hint.

Where a kernel expects a vector-view object to be passed as an argument in {kernel_params}, the
user may pass to the workload hint one of symbolic constants, shown in Table 4.16, instead of an
actual vector-view object. Currently, pOSKI supports only SYMBOLIC_VEC for using a single
vector.

Hint Symbolic constant Description

<vec> SYMBOLIC_VEC A symbolic single vector-view.

Table 4.16: Available symbolic calling frequency constants for <vec> hint.

4.6.3 Explicit tuning
The user must explicitly call the “tune routine”, poski_TuneMat(), to tune a tunable-matrix object.
The argument of this routine is a valid <tunable-matrix object>. Conceptually, this routine marks the
point in program execution at which the library may spend time changing the data structure for each
sub-matrix of the tunable-matrix object in parallel. Therefore, each sub-matrix may have a different
data structure. This routine also uses any hints about the non-zero structure by calling
poski_TuneHint_Structure() or workload by calling poski_TuneHint_MatMult().

Example 4.4 shows a simple example of explicit tuning. The first hint, made via a call to
poski_TuneHint_Structure(), is a structural hint telling the library that the user believes that the
matrix non-zero structure is dominated by a single block size (r, c). For this example, the user might
explicitly specify a block size, though here we use the constant ARGS_NONE to avoid doing so. The
library implementation might then know to try register blocking since it would be most likely to yield
the fastest implementation of each sub-matrix in parallel. The second hint, made via a call to
poski_TuneHint_MatMult(), specifies the expected workload. We refer to such a hint as a workload
hint. This example tells the library that the likely workload consists of at least a total of 500 SpMV
operations on the same matrix. The argument list looks identical to the corresponding argument list
for the kernel call, poski_MatMult(), except that there is one additional parameter to specify the
expected frequency of SpMV operations. The frequency allows the library to decide whether there
are enough SpMV operations to hide the cost of tuning. For optimal tuning, the values of these
parameters should match the actual calls as closely as possible. The constant SYMBOLIC_VEC

	
 22	

indicates that we will apply the matrix to a single vector with unit stride. The user could pass an
actual instance of a vector-view object that has the precise stride and data layout information.
The actual tuning occurs at the call to poski_TuneMat(). This example happens to execute SpMV
exactly 500 times, though there is certainly no requirement to do so using symbolic calling frequency
constants as shown in Table 4.15.

Example 4.4: This example illustrates basic explicit tuning in pOSKI.
poski_mat_t A_tunable = poski _CreateMatCSR (…);
poski_TuneHint_Structure(A_tunable, HINT_SINGLE_BLOCK, ARGS_NONE);
poski_TuneHint_MatMult(A_tunable, OP_NORMAL, 1, SYMBOLIC_VEC, 1, SYMBOLIC_VEC, 500);
poski_TuneMat(A_tunable);
for (i=0; i<500; i++)

poski_MatMult(A_tunable, …);

4.7 Kernel Handler
This module includes the routines, shown in Table 4.17, to perform sparse matrix computations.
Currently pOSKI supports only a kernel for sparse matrix vector multiply (SpMV) by calling
poski_MatMult().
This routine performs three major operations: (1) check partition status of the tunable-matrix and
vectors, (2) run an appropriate sparse matrix-vector multiply in parallel, and (3) automatically run the
reduction operation in parallel if required. This routine performs the vector partitioning during the
first step if the vectors are not properly partitioned for the appropriate kernel with the matrix.

Routine Description

poski_MatMult
Sparse matrix vector multiply (SpMV)
y = α�op(A)x + β�y, where op(A) in {A, AT}.

Table 4.17: Available sparse matrix kernels. Bindings appear in Appendix A.8.

We follow the BLAS convention of allowing the user to apply the transpose. Currently supported
transpose options provided by the scalar type poski_transpose_t are listed in Table 4.18. The notation
op(A) indicates that any of A or AT may be applied, where op(A) in {A, AT}.

Property Option Description

<transpose>
OP_NORMAL Apply op(A) = A.

OP_TRANS Apply op(A) = AT.

Table 4.18: Available transpose options for sparse matrix-vector multiply.

	
 23	

5 Troubleshooting
If user is having difficulty with pOSKI, here are a few things to try to help track down the problem.

5.1 Installation problems
The configure script generates a log of its execution in config.log, so inspecting this file, or including
it in problem reports, can help identify configuration problems.

5.2 Run-time errors
When running the user’s application, if pOSKI reports errors that the user can’t otherwise figure out,
try setting the environment variable POSKI_MESSAGE_LEVEL to a value of 1 or higher before
running the user’s application:

% env POSKI_MESSAGE_LEVEL=10 ./user’s_application …

This causes the library to print diagnostic messages to standard error. Inspecting this output (or
including snippets of it in problem reports) may help identify the problem.

5.3 Tuning difficulties
If pOSKI does not seem to be tuning, first try enabling run-time debug messages at level 10. pOSKI’s
performance tuning heuristics will print data that helps explain why it failed to tune. Keep in mind
that pOSKI does a cost-benefit analysis to determine whether or not to tune, and a large number of
kernel calls may be required to trigger tuning.

	
 24	

References
[1] E.-­‐J.	
 Im,	
 and	
 K.	
 A.	
 Yelick.	
 Optimizing	
 sparse	
 matrix	
 vector	
 multiplication	
 on	
 SMPs.	
 San	
 Antonio,	

TX,	
 USA:	
 In	
 Proceedings	
 of	
 the	
 SIAM	
 Conference	
 on	
 Parallel	
 Processing	
 for	
 Scientific	

Computing,	
 1999.	

[2] E.-­‐J.	
 Im,	
 K.	
 A.	
 Yelick,	
 and	
 R.	
 Vuduc.	
 SPARSITY:	
 Framework	
 for	
 optimizing	
 sparse	
 matrix-­‐vector	

multiply.	
 International	
 Journal	
 of	
 High	
 Performance	
 Computing	
 Applications,	
 2004.	

[3] I.	
 Duff,	
 R.	
 Grimes,	
 and	
 J.	
 Lewis.	
 User's	
 Guide	
 for	
 the	
 Harwell-­‐Boeing	
 Sparse	
 Matrix	
 Collection.	

Technical	
 Report	
 TR/PA/92/86,	
 CERFACS,	
 1992.	

[4] I.	
 Duff,	
 R.	
 Grimes,	
 and	
 J.	
 Lewis.	
 Sparse	
 Matrix	
 Test	
 Problems.	
 ACM	
 Transactions	
 on	

Mathematical	
 Software,	
 1989.	

[5] S.	
 Williams,	
 L.	
 Oliker,	
 R.	
 Vuduc,	
 J.	
 Shalf,	
 K.	
 Yelick,	
 and	
 J.	
 Demmel.	
 Optimization	
 of	
 Sparse	
 Matrix-­‐
Vector	
 Multiplication	
 on	
 Emerging	
 Multicore	
 Platforms.	
 Supercomputing,	
 2007.	

[6] R.	
 Vuduc.	
 Automatic	
 performance	
 tuning	
 of	
 sparse	
 matrix	
 kernels.	
 PhD	
 thesis,	
 University	
 of	

California,	
 Berkeley,	
 2003.	

[7] R.	
 Vuduc,	
 J.	
 W.	
 Demmel,	
 and	
 K.	
 A.	
 Yelick.	
 OSKI:	
 A	
 library	
 of	
 automatically	
 tuned	
 sparse	
 matrix	

kernels.	
 in	
 Proc.	
 of	
 	
 SciDAC	
 2005,	
 J.	
 of	
 Physics:	
 Conference	
 Series,	
 San	
 Francisco,	
 CA	
 June	
 2005	

[8] R.	
 Vuduc,	
 J.	
 W.	
 Demmel,	
 and	
 K.	
 A.	
 Yelick.	
 The	
 Optimized	
 Sparse	
 Kernel	
 Interface	
 (OSKI)	
 Library:	

User's	
 Guide	
 for	
 Version	
 1.0.1h.	
 UC	
 Berkeley,	
 2007.	
 	
 	
 bebop.cs.berkeley.edu/oski/	

[9] R.	
 C.	
 Whaley.	
 Automatically	
 tuned	
 Linear	
 Algebra	
 Software	
 (ATLAS)	
 home	
 page.	
 http://math-­‐
atlas.sourceforge.net,	
 2005.	

	
 	
 	
 	
 	
 [10]	
 	
 	
 BeBOP:	
 Berkeley	
 Benchmarking	
 and	
 Optimization	
 Group,	
 bebop.cs.berkeley.edu	

	
 	
 	
 	
 	
 [11]	
 	
 	
 pOSKI:	
 	
 Parallel	
 Optimized	
 Sparse	
 Kernel	
 Interface.	
 	
 bebop.cs.berkeley.edu/poski	

	
 25	

Appendix
A. Bindings Reference
We define each routine in the interface using the formatting conventions used in the following example for a
function to compute the factorial of a non-negative integer:

int factorial (int n);

Given an integer n ≥ 0, returns n! = n x (n-1) x … x 2 x 1 if n ≥ 1, or 1 if n=0.

Parameters:
 n [input] n ≥ 0
 Non-negative integer of which to compute the factorial.
Actions and Returns:
 An integer whose value equals n! if n is greater than 1, or 1 if n equals 0.
 The return value is undefined if n! exceeds the maximum positive integer of type int.
Error conditions and actions:
 Aborts program if n is less than 0.
	

	
 26	

A.1 pOSKI library open and close
We summarize the routines for the pOSKI library and present their bindings.
	

poski_Init Initialize pOSKI library.
poski_Close Close poski library.
	

int poski_Init();

Initializes pOSKI library. User must call this function before calling other routines in the library.

Actions and Returns:
 Returns 0 if the pOSKI library was fully successfully initialized, or an error message on error.

Error conditions and actions:
 Possible error conditions include:

1. If initializing the log file failed [ERR_INIT_LOGFILE]
2. If initializing the debug level failed [ERR_INIT_DEBUG]
3. If initializing the module loader failed [ERR_INIT_MODULE]
4. If initializing the matrix type manager failed [ERR_INIT_MATTYPE]
5. If initializing the heuristic manager failed [ERR_INIT_HEURISTIC]

	

int poski_Close ();

Closes pOSKI library. The library is no longer usable.

Actions and Returns:
 Returns 0 if the pOSKI library was fully successfully closed, or an error message on error.

Error conditions and actions:
 Possible error conditions include:

1. If closing the log file failed [ERR_CLOSE_LOGFILE].
2. If closing the module loader failed [ERR_CLOSE_MODULE]
3. If closing the matrix type manager failed [ERR_CLOSE_MATTYPE]
4. If closing the heuristic manage failed [ERR_CLOSE_HEURISTIC]

	

	
 27	

A.2 Threading
We summarize the routines for threading and present their bindings.
	

poski_InitThreads Create a valid thread object.
poski_ThreadHints Modify the thread object.
poski_DestroyThreads Destroy the thread object
	

poski_threadarg_t* poski_InitThreads ();

Creates and returns a valid thread object based on #cores on system with the default threading model
POSKI_THREADPOOL using POSIX Threads (Pthreads) as a threadpool.
Note: NUMA affinities can be set at this call (future work).

Actions and Returns:
 A valid <thread object>, or aborts program with reporting an error message on error. Any creating matrix

operations, setting thread hints operations, kernel operations, or tuning operations may be called using this
object.

Error conditions and actions:
 Aborts program if initializing thread model failed.
 Possible error conditions include:

1. If invalid threading model is used [ERR_INVALID_THREAD].
2. If creating threads as a threadpool failed [ERR_CREATE_THREAD]

	

void poski_ThreadHints (poski_threadarg_t *poski_thread, poski_mat_t A_tunable, poski_threadtype_t ttype, int

nthreads);

Given thread type in {POSKI_THREADPOOL, POSKI_PTHREAD, POSKI_OPENMP} and number of threads by
user, overwrites the parallel context (threading model type and number of threads) in the thread object
(poski_thread) or the valid tunable-matrix object (A_tunable).
Note: user’s specified OpenMP environment can be set with this call (future work). We can add more threading
model such as TBB etc. in thread type (future work)

Parameters:
 poski_thread [input/output]
 A valid <thread object>, or NULL.
 A_tunable [input/output]
 A valid <tunable-matrix object> of a matrix A, or NULL.
 ttype [input]

The <threading model> that the user wants to use in {POSKI_THREADPOOL, POSKI_PTHREAD,
POSKI_OPENMP}.

 nthreads [input]
 The <number of threads> that the user wants to create.

Actions and Returns:
 Returns 0 if modifying the thread or matrix object was successful, or aborts program with reporting an error

message on error.
 Adjusts the number of threads to satisfy the following conditions:

1. The number of threads must be between 1 and the number of available cores on the system.
2. If the second argument <tunable-matrix object> is given, the number of threads must be equal to

	
 28	

(the number of partitions / k), where k is an integer.

Error conditions and actions:
 Aborts program if overwriting the thread object failed.
 Possible error conditions include:
 1. Any of the argument preconditions above are not satisfied [ERR_INVALID_ARG].
 2. If both thread and matrix objects are NULL [ERR_INVALID_OBJ].
	

int poski_DestroyThreads (poski_threadarg_t *thread);

Frees thread object memory associated with a given thread object. The object is no longer usable. If threadpool was
created, this routine also destroys the threadpool.

Parameters:
 thread [input]
 The valid <thread object>.

Actions and Returns:
 Returns 0 if the thread object memory was fully successfully freed, or an error code on error.

Error conditions and actions:
 Possible error conditions include:

1. Invalid <thread object> [ERR_INVALID_OBJ].
2. If destroying the threads failed [ERR_DESTROY_THREAD]

	

	

	

	
 29	

A.3 Matrix Partitioning
We summarize the routines for partitioning a matrix and present their bindings.
	

poski_PartitionMatHints Create valid <partition-matrix object> which includes information of partitioning

a matrix.
poski_DestroyPartitionMat Destroy the <partition-matrix object>.
	

poski_partitionarg_t* poski_PartitionMatHints (poski_partitiontype_t ptype, int npartitions, poski_kernel_t kernel,

poski_operation_t op);

Creates and returns valid matrix partition information based on input parameters.

Parameters:
 ptype [input]
 The partitioning model in {OneD, SemiOneD} which user wants to use.
 npartitions [input]
 The number of partitions which user wants to create sub-matrices.
 kernel, op [input]

The kernel operation which user wants to specify the partition of a matrix for a given kernel
operation.

Actions and Returns:
 A valid <partition-matrix object> or aborts program with reporting an error message on error. Any
creating matrix operations may be called using this object.
This routine will automatically adjust the number of partitions to satisfy the following conditions:
(1) The number of partitions should be equal to (the number of threads × k), where k is an integer.
(2) The number of partitions should be less than or equal to the number of non-zeros.
(3) When the default <partitioning model> OneD is used, the number of partitions should be less than or

equal to the number of rows.

Error conditions and actions:
 Possible error conditions include:
 1. Any of the argument preconditions above are not satisfied [ERR_INVALID_ARG].
	

int poski_DestroyPartitionMat (poski_partitionarg_t *partitionMat);

Frees object memory associated with a given <partition-matrix object>. The object is no longer usable.

Parameters:
 partitionMat [input]
 The valid <partition-matrix object>.

Actions and Returns:
 Returns 0 if the object memory was fully successfully freed, or an error code on error.

Error conditions and actions:
 Possible error conditions include:

1. Invalid <partition-matrix object> [ERR_INVALID_OBJ].

	
 30	

A.4 Vector Partitioning
We summarize the routines for partitioning a vector and present their bindings.
	

poski_PartitionVecHints Create a valid <partition-vector object> which includes information of partitioning

a vector.
poski_DestroyPartitionVec Destroy the <partition-vector object>.
	

poski_partitionVec_t* poski_PartitionVecHints (poski_mat_t A_tunable, poski_kernel_t kernel, poski_operation_t

op, poski_vecprop_t vecprop);

Creates and returns a valid <partition-vector object> which includes information based on input parameters.

Parameters:
 A_tunable [input]
 The valid <tunable-matrix object>of a matrix A.
 kernel, op [input]
 Specifies the kernel operation for the vector object.
 vecprop [input]
 Specifies the vector as input or output in {INPUTVEC, OUTPUTVEC}.

Actions and Returns:
 A valid <partition-vector object> or aborts program with reporting an error message on error. Any creating

vector operations or kernel operations may be called using this object.

Error conditions and actions:
 Possible error conditions include:

1. Any of the argument preconditions above are not satisfied [ERR_INVALID_ARG].

	

int poski_DestroyPartitionVec (poski_partitionVec_t *partitionVec);

Frees object memory associated with a given <partition-vector object>. The object is no longer usable.

Parameters:
 partitionVec [input]
 The valid <partition-vector object>.

Actions and Returns:
 Returns 0 if the object memory was fully successfully freed, or an error code on error.

Error conditions and actions:
 Possible error conditions include:

1. Invalid <partition-vector object> [ERR_INVALID_OBJ].

	

	
 31	

A.5 Matrix object
We summarize the routines for a matrix object and present their bindings.
	

poski_LoadMatrix Load sparse matrix in CSR format from a given file.
poski_CreateMatCSR Create tunable-matrix object from CSR format.
poski_CreateMatCSRFile Create tunable-matrix object from sparse matrix loaded from poski_LoadMatrix.
poski_DestroyMat Free a tunable-matrix object.
poski_GetMatEntry Get the value of a specific matrix entry.
poski_SetMatEntry Set the value of a specific matrix entry.
poski_GetMatSubset Get a subset of values, specified as a clique or indexed list.
poski_SetMatSubset Set a subset of non-zero values, specified as a clique or indexed list.
	

poski_sparse_matrix_t poski_LoadMatrix (char *filename, poski_filetype_t ftype);

Given file name and type, creates and returns sparse matrix in CSR format.

Parameters:
 filename [input] filename!=NULL
 The matrix file name.
 ftype [input]
 The matrix file type in {HB for Harwell-Boeing file format, MM for Matrix-Market file format}.

Actions and Returns:

 Returns a valid <sparse matrix object> in CSR format or aborts program with reporting an error message
on error.
Any creating matrix operations may be called using this object.

Error conditions and actions:
 Possible error conditions include:
 1. Any of the argument preconditions above are not satisfied [ERR_INVALID_ARG].
 2. The given matrix file does not correspond to a valid sparse matrix file [ERR_INVALID_FILE].
	

poski_mat_t poski_CreateMatCSR (poski_index_t *ptr, poski_index_t *ind, poski_value_t *val, poski_int_t nrows,

poski_int_t ncols, poski_copymode_t mode, poski_threadarg_t *threads,
poski_partitionarg_t *partition, int k, [poski_inmatprop_t property_1, …,
poski_inmatprop_t property_k]);

Creates and returns a valid tunable-matrix object including partitioned matrices (sub-matrices) from a compressed
sparse row (CSR) representation.

Parameters:
 ptr, ind, val [input]
 The input matrix pattern and values must correspond to a valid CSR representation.
 nrows, ncols [input]
 Dimensions of the input matrix.
 mode [input]
 Specifies the <copy mode> for the arrays ptr, ind, and val.
 threads [input]
 The <thread object> which includes the threading information.
 partitions [input]

	
 32	

 The <partition-matrix object> which includes the partitioning information, or NULL.
 k [input]
 The number of qualifying properties.
 property_1, …, property_k [input; optional]

 The user may assert that the input matrix satisfies zero or more properties listed in Table x on page
x. Grouped properties are mutually exclusive, and specifying two or more properties from the same
group generates an error. The user must supply exactly k properties.

Actions and Returns:
Returns a valid <tunable-matrix object> or aborts program with reporting an error message on error.
Any kernel operations, tuning operations, or setting thread model operations may be called using this object.

Error conditions and actions:
 Possible error conditions include:

1. Any of the argument preconditions above are not satisfied [ERR_INVALID_ARG].
2. More than 1 property from the same group are specified [ERR_INMATPROP_CONFLICT].
3. The input matrix arrays do not correspond to a valid CSR representation [ERR_NOT_CSR].
4. The input matrix arrays are incompatible with any of the asserted properties

[ERR_INMATPROP_FALSE].
5. Invalid <thread object> or <partition-matrix object> [ERR_INVALID_OBJ].

	

poski_mat_t poski_CreateMatCSRFile (poski_sparse_matrix_t *SpA, poski_copymode_t mode, poski_threadarg_t

*threads, poski_partitionarg_t *partition, int k, [poski_inmatprop_t
property_1, …, poski_inmatprop_t property_k]);

Creates and returns a valid tunable-matrix object including partitioned matrices (sub-matrices) from a compressed
sparse row (CSR) representation.

Parameters:
 SpA [input]
 The input <sparse matrix object> in CSR format.
 mode [input]
 Specifies the <copy mode> for the arrays ptr, ind, and val.
 threads [input]
 The <thread object> which includes the threading information.
 partitions [input]
 The <partition-matrix object> which incudes the partitioning information, or NULL.
 k [input]
 The number of qualifying properties.
 property_1, …, property_k [input; optional]
 The user may assert that the input matrix satisfies zero or more properties listed in Table x on page

x. Grouped properties are mutually exclusive, and specifying two or more properties from the same
group generates an error. The user must supply exactly k properties.

Actions and Returns:
 Returns a valid <tunable-matrix object> or aborts program with reporting an error message on error. Any

kernel operations, tuning operations, or setting thread model operations may be called using this object.

Error conditions and actions:
 Possible error conditions include:

	
 33	

1. Any of the argument preconditions above are not satisfied [ERR_INVALID_ARG].
2. More than 1 property from the same group are specified [ERR_INMATPROP_CONFLICT].
3. The input <sparse matrix object> does not correspond to a valid CSR representation

[ERR_INVALID_CSR].
4. The input <sparse matrix object> is incompatible with any of the asserted properties

[ERR_INMATPROP_FALSE].
5. Invalid <thread object> or <partition-matrix object> [ERR_INVALID_OBJ].

	

int poski_DestroyMat (poski_mat_t A_tunable);

Frees object memory associated with a given matrix object. The object is no longer usable.

Parameters:
 A_tunable [input]
 The <tunable-matrix object> of a matrix A.

Actions and Returns:
 Returns 0 if the <tunable-matrix object> memory was fully successfully freed, or an error code on error.

Error conditions and actions:
 Possible error conditions include:

1. Invalid <tunable-matrix object> [ERR_INVALID_OBJ].

	

poski_vaule_t poski_GetMatEntry(poski_mat_t A_tunable, poski_int_t row, poski_int_t col);

Returns the value of the specified matrix element in A(row, col).

Parameters:
 A_tunable [input]
 The <tunable-matrix object> of a matrix A.
 row, col [input]
 Specifies the element whose value is to be returned.

Actions and Returns:
 Returns the value of A(row, col), or an error code on error.

Error conditions and actions:
 Possible error conditions include:

1. Invalid <tunable-matrix object> [ERR_INVALID_OBJ].
2. Invalid element (row, col) [ERR_INVAILD_ELEMENT].

	

int poski_SetMatEntry(poski_mat_t A_tunable, poski_int_t row, poski_int_t col, poski_value_t val);

Changes the value of the specified matrix element in A(row, col).

Parameters:
 A_tunable [input/output]
 The <tunable-matrix object> of a matrix A.
 row, col [input]

	
 34	

 Specifies the element whose value is to be modified.
 val [input]
 The specified value to modify.

Actions and Returns:
 Returns 0 if setting A(row, col) = val is successful, or an error code on error.

Error conditions and actions:
 Possible error conditions include:

1. Invalid <tunable-matrix object> [ERR_INVALID_OBJ].
2. Invalid element (row, col) [ERR_INVAILD_ELEMENT].

	

int poski_GetMatSubset(poski_mat_t A_tunable, int numRows, int numCols, int rowStride, int colStride, poski_int_t
*rows, poski_int_t *cols, poski_value_t *vals, poski_subsettype_t subsettype);

Returns the values, defined by a subset, in a matrix.

Parameters:
 A_tunable [input]
 The <tunable-matrix object> of a matrix A.
 numRows, numCols [input]
 Number of rows or columns in the subset.
 rowStride, colStride [input]
 Stride between rows or columns of vals.
 rows, cols [input]
 Row or Column indices of the subset.
 vals [input/output]
 The values, defined by a subset, stored as an array.
 subsettype [input]
 The type of subset in {POKSI_BLOCKNENTRIES, POSKI_ARRAYENTRIES}.

Actions and Returns:
 Returns values in the subset.

If <subsettype> is set as POSKI_BLOCKENTRIES, this routine returns X(r,c) = A(i,j), where i=rows[r]
and j=cols[c], for all 0≤ r <numRows and 0≤ c <numCols. Here, X is the numRows×numCols matrix
corresponding to vals.
If <subsettype> is set as POSKI_ARRAYENTRIES, this routine makes an attempt to return vals[r] = A(i,j),
where i=rows[r] and j=cols[r], for all 0 ≤ r <numRows.
This routine will set X(r,c) or vals[r] to zero, and report an error message for each invalid entry A(i,j)
which is not explicitly stored when A_tunable was created. This routine also reports an error message for
each invalid entry A(i,j) which is out-of-range.
NOTE: When A_tunable is tuned, the tuned data structure may store additional explicit zeros to improve
performance. The user should avoid getting entries that were not explicitly stored when A_tunable was
created.

Error conditions and actions:
 Possible error conditions include:

1. Invalid <tunable-matrix object> [ERR_INVALID_OBJ].
2. Invalid <subsettype> [ERR_INVAILD_TYPE].

	

	
 35	

int poski_SetMatSubset(poski_mat_t A_tunable, int numRows, int numCols, int rowStride, int colStride, poski_int_t
*rows, poski_int_t *cols, poski_value_t *vals, poski_subsettype_t subsettype);

Changes the values, defined by a subset, in a matrix.

Parameters:
 A_tunable [input/output]
 The <tunable-matrix object> of a matrix A.
 numRows, numCols [input]
 Number of rows or columns in the subset.
 rowStride, colStride [input]
 Stride between rows or columns of vals.
 rows, cols [input]
 Row or Column indices of the subset.
 vals [input]
 The values, defined by a subset, stored as an array.
 subsettype [input]
 The type of subset in {POKSI_BLOCKENTRIES, POSKI_ARRAYENTRIES}.

Actions and Returns:
 Sets any entry in the subset, which was explicitly stored when A_tunable was created.

If <subsettype> is set as POSKI_BLOCKENTRIES, this routine makes an attempt to set A(i,j) = X(r,c),
where i=rows[r] and j=cols[c], for all 0≤ r <numRows and 0≤ c <numCols. Here, X is the
numRows×numCols matrix corresponding to vals.
If <subsettype> is set as POSKI_ARRAYENTRIES, this routine makes an attempt to set A(i,j) = vals[r],
where i=rows[r] and j=cols[r], for all 0 ≤ r <numRows.
This routine will report an error message for each invalid entry A(i,j) which is not explicitly stored when
A_tunable was created or which is out-of-range.
NOTE: When A_tunable is tuned, the tuned data structure may store additional explicit zeros to improve
performance. The user should avoid changing entries that were not explicitly stored when A_tunable was
created.

Error conditions and actions:
 Possible error conditions include:

1. Invalid <tunable-matrix object> [ERR_INVALID_OBJ].
2. Invalid subsettype [ERR_INVAILD_TYPE].

	
 36	

A.6 Vector object
We summarize the routines for a vector object and present their bindings.
	

poski_CreateVec Create a valid vector object.
poski_DestroyVec Free a vector object.
	

poski_vec_t poski_CreateVec (poski_value_t *x, poski_int_t length, poski_int_t inc, poski_partitionVec_t
*partitionvec);

Creates and returns a valid vector-view object on a single dense column vector x. If partitionvec==NULL, no
partitioning occurs.

Parameters:
 x [input]
 The input vector x (A pointer to the user’s dense array representation of the vector x).
 length [input]
 Number of vector elements.
 inc [input]

 Stride, or distance in the user’s dense array, between logically consecutive elements of x. Specifying
STRIDE_UNIT is the same as setting inc = 1.

 partitionvec [input]
 The <partition-vector object> which includes information of the vector partition, or NULL for
default.

Actions and Returns:
 A valid <vector-view object> or aborts program with reporting an error message on error. Any kernel

operation may be called using this object.

Error conditions and actions:
 Possible error conditions include:

1. Any of the argument preconditions above are not satisfied [ERR_INVALID_ARG].

	

int poski_DestroyVec (poski_vec_t x_view);

Frees object memory associated with a given <vector-view object>. The object is no longer usable.

Parameters:
 x_view [input]
 The <vector-view object> of a vector.

Actions and Returns:
 Returns 0 if the <vector-view object> memory was fully successfully freed, or an error code on error.

Error conditions and actions:
 Possible error conditions include:

1. Invalid <vector-view object> [ERR_INVALID_OBJ].

	
 	

	

	

	
 37	

A.7 Matrix Tuning
We summarize the routines for tuning a matrix and present their bindings.
	

poski_TuneHint_Structure Specify hints about the non-zero structure.
poski_TuneHint_MatMult Workload hints specify the expected options.
poski_TuneMat Tune the matrix data structure.
	

int poski_TuneHint_Structure (poski_mat_t A_tunable, poski_tunehint_t hint [, …]);

Registers a hint about the matrix structure with a <tunable-matrix object>.

Parameters:
 A_tunable [input/output]
 The <tunable-matrix object> of a matrix A for which to register a structural hint.
 hint [input]
 User-specified structural hint. This hint may be followed by optional arguments.

Actions and Returns:
 Returns 0 if the hint is recognized and A_tunable is valid, or an error code otherwise.

Error conditions and actions:
 Possible error conditions include:

1. Invalid <tunable-matrix object> [ERR_INVALID_OBJ].
2. Specifying a hint with the wrong hint arguments [ERR_BAD_HINT_ARG].

	

int poski_TuneHint_MatMult (poski_mat_t A_tunable, poski_operation_t op, poski_value_t alpha, poski_vec_t
x_view, poski_value_t beta, poski_vec_t y_view, int num_calls);

Workload hint for the kernel operation poski_MatMult which computes y = α�op(A)x + β�y, where op(A) in {A, AT}.

Parameters:
 A_tunable [input/output]
 The <tunable-matrix object> of a matrix A.
 op [input]
 Specifies op(A).
 alpha, beta [input]
 Scalar constants α and β, respectively.
 x_view, y_view [input]
 The valid <vector-view object> for a vector x and y, respectively.
 num_calls
 The number of times this kernel operation will be called with these arguments.

Actions and Returns:

 Registers the workload hint with A_tunable and return 0 only if the dimensions of op(A), x, and y are
compatible. Otherwise, return an error code.

Error conditions and actions:
 Possible error conditions include:

1. Invalid <tunable-matrix object> [ERR_INVALID_OBJ].

	
 38	

2. Invalid <vector-view object> [ERR_INVALID_OBJ].
3. Incompatible operand dimensions [ERR_DIM_MISMATCH].

	

int poski_TuneMat (poski_mat_t A_tunable);

Tunes the <tunable-matrix object> using all hints and implicit profiling data.

Parameters:
 A_tunable [input/output]
 The <tunable-matrix object> of a matrix A to tune.

Actions and Returns:

 Returns a non-negative status code whose possible values are defined by the constants lists, or an error code
otherwise.

Error conditions and actions:
 Possible error conditions include:

1. Invalid <tunable-matrix object> [ERR_INVALID_OBJ].

	

	

	
 39	

A.8 Kernel
We summarize the available kernels, and present their bindings.
	

poski_MatMult Sparse matrix-vector multiply (SpMV)

 y = α�op(A)x + β�y, where op(A) in {A, AT}.
	

int poski_MatMult (poski_mat_t A_tunable, poski_operation_t op, poski_value_t alpha, poski_vec_t x_view,
poski_value_t beta, poski_vec_t y_view);

Computes y = α�op(A)x + β�y, where op(A) in {A, AT}. If a vector is not partitioned or not properly partitioned, the
vector partitioning occurs before computing kernel at this call. If a reduction operation for sub-matrices is required,
it will occur at end of this call.

Parameters:
 A_tunable [input]
 The <tunable-matrix object> of a matrix A.
 op [input]
 Specifies op(A).
 alpha, beta [input]
 Scalar constants α and β, respectively.
 x_view, y_view [input]
 The valid <vector-view object> for a vector x and y, respectively.

Actions and Returns:

 Computes y = α�op(A)x + β�y, where op(A) in {A, AT} and return 0 only if the dimensions of op(A), x, and y
are compatible. If the dimensions are compatible but any dimension is 0, this routine returns 0 but y_view is
left unchanged. Otherwise, returns an error code and leaves y_view unchanged.

Error conditions and actions:
 Possible error conditions include:

1. Invalid <tunable-matrix object> [ERR_INVALID_OBJ].
2. Invalid <vector-view object> [ERR_INVALID_OBJ].
3. Incompatible operand dimensions [ERR_DIM_MISMATCH].

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
 	

	

	
 40	

B. Threading Models
Currently, pOSKI supports three simple threading models, shown in Example B.1:
(1) POSKI_THREADPOOL using POSIX Threads (Pthreads) as a threadpool, (2) POSKI_PTHREAD using
POSIX Threads (Pthreads), and (3) POSKI_OPENMP using OpenMP. The default threading model is
POSKI_THREADPOOL, and the default number of threads is the number of available cores on the system.
The POSKI_THREADPOOL tells the library to create reusable threads once and may use them multiple
times to perform multiple tasks, while other threading models tell the library to create and destroy threads at
each task.

Example B.1: This example illustrates basic pseudo codes of threading models to compute SpMV in pOSKI.

(a) POSKI_THREADPOOL: poski_MatMult_threadpool (A, op, alpha, x, beta, y)
set nthreads to A->threadargs.nthreads
set threadpool to A->threadargs.thread
set kernel to A->kernel
for i=0 to nthreads-1
 set threadpool[i].Job to KERNEL_MatMult
 set threadpool[i].kernel to kernel[i]
end for
wait for setting the threadpool arguments for all threads
for i=0 to nthreads-1 do in parallel using threadpool

compute SpMV(kernel[i]) per each thread
end for
Wait for finishing tasks for all threads

(b) POSKI_PTHREAD: poski_MatMult_pthread (A, op, alpha, x, beta, y)

set nthreads to A->threadargs.nthreads
set kernel to A->kernel
for i=0 to nthreads-1 do in parallel using Pthreads

 compute SpMV(kernel[i]) per each thread
end for
Wait for finishing tasks for all threads

(c) POSKI_OPENMP: poski_MatMult_openmp (A, op, alpha, x, beta, y)

set nthreads to A->threadargs.nthreads
set npartitions to A->partitionargs.npartitions
set kernel to A->kernel
for i=0 to npartitions-1 do in parallel using OpenMP with num_threads(nthreads)

compute SpMV(kernel[i]) per each partition
end for

	

pOSKI supports three threading models, as shown in Example B.1, for the following purposes: (1) how to
handle thread creation and destruction, and (2) how to schedule sub-matrices to threads and map threads to
cores.

B.1 How to handle thread creation and destruction in pOSKI?

	
 41	

When the user repeatedly calls pOSKI routines, the POSKI_THREADPOOL threading model may have
slightly better performance than others by avoiding the overhead of creating/destroying threads at each task.
However, the threads in the threadpool, which are using thread affinity and a spin lock, may conflict with
user’s own threads to share hardware resources.
When the user uses threads for other purposes between pOSKI calls, the user may use the
POSKI_PTHREAD or POSKI_OPENMP threading model to avoid the overhead of using thread affinity and
spin locks in the POSKI_THREADPOOL threading model.

B.2 How to handle schedule submatrices to threads and map threads to cores in pOSKI?
pOSKI currently handles scheduling and mapping based on basic NUMA-aware optimization as follows:

(a) If the user’s system supports the libnuma library, then pOSKI will try to use libnuma routines as
default for NUMA-aware optimization.
• Such as numa_set_membind(), numa_run_on_node()

(b) If libnuma is not supported, then pOSKI uses a first-touch policy for thread affinity.
• Such as CPU_SET(), pthread_setaffinity_np(), sched_setaffinity()

(c) The sub-matrices will be scheduled into threads based on cyclic distribution.
• For example, sub-matrix i will be assigned to thread tid=i%nthreads, where 0<i≤npartitions,

npartitions is the number of sub-matrices, and nthreads is the number of threads.

In the POSKI_THREADPOOL and POSKI_PTHREAD threading models, each sub-matrix uses static
scheduling and mapping to a core based on NUMA-aware optimization. However, in the POSKI_OPENMP
threading model, each sub-matrix uses default static scheduling in round-robin fashion based on OpenMP’s
policy, which may violate the pOSKI’s NUMA-aware optimization.

	
 42	

C. Partitioning Models
Currently,	
 pOSKI	
 supports	
 two	
 simple	
 partitioning	
 schemes,	
 shown	
 in	
 Figure	
 C.1,	
 based	
 on	
 one-­‐
dimensional	
 partition	
 scheme:	
 (a)	
 One-­‐dimensional	
 row-­‐wise	
 partition	
 by	
 rows	
 (OneD),	
 and	
 (b)	
 One-­‐
dimensional	
 row-­‐wise	
 partition	
 by	
 nonzeros	
 (SemiOneD).	
 We	
 describe	
 the	
 load-­‐balancing	
 approach	
 of	

both	
 partitioning	
 schemes,	
 which	
 try	
 to	
 assign	
 an	
 equal	
 number	
 of	
 nonzero	
 entries	
 to	
 each	
 partition.	

	

(a) OneD: One-Dimensional partition by rows (b) SemiOneD: One-Dimensional partition by nonzeros
Figure C.1: Partitioning techniques supported in current pOSKI library.

	

In	
 Figure	
 C.1,	
 we	
 partition	
 the	
 16×16	
 matrix	
 into	
 two	
 sub-­‐matrices.	
 Here,	
 the	
 blue	
 box	
 represents	
 the	

non-­‐zeros	
 in	
 first	
 sub-­‐matrix,	
 and	
 the	
 green	
 box	
 represents	
 the	
 non-­‐zeros	
 in	
 the	
 second	
 sub-­‐matrix.	
 In	

this	
 particular	
 examples,	
 both	
 schemes	
 show	
 good	
 load	
 balance;	
 the	
 total	
 of	
 51	
 non-­‐zeros	
 of	
 the	
 matrix	

are	
 divided	
 into	
 25	
 and	
 26	
 non-­‐zeros	
 for	
 two	
 sub-­‐matrices.	
 	

The	
 OneD	
 partitioning	
 scheme	
 is	
 very	
 well	
 suited	
 to	
 dense	
 matrices	
 and	
 matrices	
 with	
 uniform	

sparsity	
 pattern.	
 However,	
 it	
 may	
 be	
 hard	
 to	
 achieve	
 good	
 load	
 balance	
 on	
 sparse	
 matrices	
 with	
 a	
 non-­‐
uniform	
 sparsity	
 pattern	
 because	
 of	
 the	
 restriction	
 of	
 rectilinear	
 splits	
 on	
 rows	
 as	
 shown	
 in	
 Figure	

C.1(a).	
 This	
 scheme	
 also	
 limits	
 the	
 number	
 of	
 partitions	
 by	
 the	
 number	
 of	
 rows.	

The	
 SemiOneD	
 partitioning	
 scheme	
 is	
 used	
 to	
 solve	
 the	
 load-­‐balancing	
 problem	
 more	
 accurately	
 than	

the	
 OneD	
 partitioning	
 scheme.	
 However,	
 SemiOneD	
 may	
 require	
 additional	
 reductions	
 since	
 it	
 may	

split	
 a	
 single	
 row	
 into	
 several	
 sub-­‐matrices	
 as	
 shown	
 in	
 Figure	
 C.1(b).	
 The	
 maximum	
 number	
 of	

partitions	
 in	
 this	
 scheme	
 is	
 equal	
 to	
 the	
 number	
 of	
 non-­‐zeros	
 in	
 the	
 matrix.	

A summary of the partitioning schemes is shown in Table C.1. We plan to support other partitioning schemes,
like two-dimensional jagged-like partition, and graph or hyper-graph partitions, in a later version of pOSKI.
The two-dimensional partitioning schemes may require reduction operations in either Ax or ATx with same
data structure to consider NUMA-aware optimization for both. We also plan to support these partitioning

	
 43	

schemes with (1) reordering and (2) mapping with NUMA-aware optimization that may not require
reduction operations for both Ax and ATx.

 OneD SemiOneD
Load balance nnz / npartitions nnz / npartitions
Condition npartitions <= nrows, and

npartitions = k×nthreads, where k=1,2..
npartitions <= nnz, and
npartitions = k×nthreads, where k=1,2..

Search space O(nrows) O(nrows)
Required extra space Ω(nrows) Ω(nrows)
Reordering No No
Required
reduction

op(A) = A No Yes
op(A) = AT Yes Yes

Table C.1: The summary of two simple partitioning schemes supported in current pOSKI library.

