
CALU: A Communication Optimal LU Factorization

Algorithm

James Demmel
Laura Grigori
Hua Xiang

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-29

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-29.html

March 15, 2010

Copyright © 2010, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This work has been supported in part by the French National Research
Agency (ANR) through the COSINUS program (project PETAL no. ANR-
08-COSI-009), by Microsoft (Award #024263), by Intel (Award #024894)
and U.C. Discovery (Award #DIG07-10227).

CALU: A COMMUNICATION OPTIMAL LU FACTORIZATION

ALGORITHM

LAURA GRIGORI∗, JAMES W. DEMMEL†, AND HUA XIANG ‡

Abstract. Since the cost of communication (moving data) greatly exceeds the cost of doing
arithmetic on current and future computing platforms, we are motivated to devise algorithms that
communicate as little as possible, even if they do slightly more arithmetic, and as long as they still
get the right answer. This paper is about getting the right answer for such an algorithm.

It discusses CALU, a communication avoiding LU factorization algorithm based on a new pivoting
strategy, that we refer to as ca-pivoting. The reason to consider CALU is that it does an optimal
amount of communication, and asymptotically less than Gaussian elimination with partial pivoting
(GEPP), and so will be much faster on platforms where communication is expensive, as shown in
previous work.

We show that the Schur complement obtained after each step of performing CALU on a matrix
A is the same as the Schur complement obtained after performing GEPP on a larger matrix whose
entries are the same as the entries of A (sometimes slightly perturbed) and zeros. Hence we expect
that CALU will behave as GEPP and it will be also very stable in practice. In addition, extensive
experiments on random matrices and a set of special matrices show that CALU is stable in practice.
The upper bound on the growth factor of CALU is worse than of GEPP. However, we present
examples showing that neither GEPP nor CALU is uniformly more stable than the other.

Key words. LU factorization, communication optimal algorithm, numerical stability

AMS subject classifications. 65F50, 65F05, 68R10

1. Introduction. In this paper we discuss CALU, a communication avoiding
LU factorization algorithm. The main part of the paper focuses on showing that
CALU is stable in practice. We also show that CALU minimizes communication.
For this, we use lower bounds on communication for dense LU factorization that
were introduced in [5]. These bounds were obtained by showing through reduction
that lower bounds on dense matrix multiplication [15, 16] represent lower bounds for
dense LU factorization as well. These bounds show that a sequential algorithm that
computes the LU factorization of a dense n×n matrix transfers between slow and fast
memory at least Ω(n3/W 1/2) number of words and Ω(n3/W 3/2) number of messages,
where W denotes the fast memory size and we assume a message consists of at most
W words in consecutive memory locations. On a parallel machine with P processors,
if we consider that the local memory size used on each processor is on the order of
n2/P , so a lower bound on the number of words is Ω(n2/

√
P) and a lower bound on

the number of messages is Ω(
√

P). Here we consider square matrices, but later we
consider the more general case of an m × n matrix.

Gaussian elimination with partial pivoting (GEPP) is one of the most stable
algorithms for solving a linear system through LU factorization. At each step of the
algorithm, the maximum element in each column of L is permuted in diagonal position
and used as a pivot. Efficient implementations of this algorithm exist for sequential

∗INRIA Saclay - Ile de France, Laboratoire de Recherche en Informatique Universite Paris-Sud
11, France (laura.grigori@inria.fr). This work has been supported in part by French National
Research Agency (ANR) through COSINUS program (project PETAL no ANR-08-COSI-009).

†Computer Science Division and Mathematics Department, UC Berkeley, CA 94720-1776, USA
(demmel@cs.berkeley.edu). Research supported by Microsoft (Award #024263) and Intel (Award
#024894) funding and by matching funding by U.C. Discovery (Award #DIG07-10227).

‡School of Mathematics and Statistics, Wuhan University, Wuhan 430072, P. R. China
(hxiang@whu.edu.cn).

1

and parallel machines. In the sequential case, the DGETRF routine in LAPACK
implements a block GEPP factorization. The algorithm iterates over block columns
(panels). At each step, the LU factorization with partial pivoting of the current panel
is computed, a block row of U is determined, and the trailing matrix is updated.
Another efficient implementation is recursive GEPP [20, 11]. We will see later in the
paper that DGETRF minimizes neither the bandwidth nor the latency in some cases.
Recursive LU attains the bandwidth lower bound but not the latency lower bound in
general. In the parallel case, the PDGETRF routine in ScaLAPACK [3] distributes
the input matrix over processors using a block cyclic layout. With this partition,
every column is distributed over several processors. Finding the maximum element
in a column of L necessary for partial pivoting incurs one reduction operation among
processors. This gives an overall number of messages at least equal to the number of
columns of the matrix. Hence this algorithm cannot attain the latency lower bound
of Ω(

√
P) and is larger by a factor of at least n/

√
P .

CALU uses a new strategy that we refer to as ca-pivoting. This strategy has
the property that the communication for computing the panel factorization does not
depend on the number of columns. It depends only on the number of blocks in the
sequential case and on the number of processors in the parallel case. The panel
factorization is performed as follows. A preprocessing step aims at finding at low
communication cost b rows that can be used as pivots to factor the entire panel.
Then the b rows are permuted into the first positions and the LU factorization with
no pivoting of the entire panel is performed. The preprocessing step is performed as a
reduction operation with GEPP being the operator used to select pivot rows at each
node of the reduction tree. The reduction tree is selected depending on the underlying
architecture. In this paper we study in particular binary tree based and flat tree based
CALU. It has been shown in [10], where the algorithm has been presented for the first
time, that binary tree based CALU leads to important speedups in practice over
ScaLAPACK on distributed memory computers. In [7] the algorithm is adapted to
multicore architectures and is shown to lead to speedups for matrices with many more
rows than columns.

The main part of this paper focuses on the stability of CALU. First, we show
that the Schur complement obtained after each step of performing CALU on a matrix
A is the same as the Schur complement obtained after performing GEPP on a larger
matrix whose entries are the same as the entries of A (plus some randomly generated
ǫ entries) and zeros. Hence we expect that CALU will behave as GEPP and it will
be also very stable in practice. However, for CALU the upper bound on the growth
factor is worse than for GEPP. The growth factor plays an important role in the
backward error analysis of Gaussian elimination. It is computed using the values

of the elements of A during the elimination process, gW =
maxi,j,k |a(k)

ij |
maxi,j |aij | , where aij

denotes the absolute value of the element of A at row i and column j, and k denotes
the matrix obtained at the k-th step of elimination. For GEPP the upper bound of the
growth factor is 2n−1, while for CALU is on the order of 2nH , where n is the number
of columns of the input matrix and H is the depth of the reduction tree. For GEPP
the upper bound is attained on a small set of input matrices, that are variations of
one particular matrix, the Wilkinson matrix. We show in this paper that there are
very sparse matrices, formed by Kronecker products involving the Wilkinson matrix,
that nearly attain the bound. Moreover, there are Wilkinson-like matrices for which
GEPP is stable and CALU has exponential growth factor and vice-versa.

Second, we present experimental results for random matrices and for a set of

2

special matrices, including sparse matrices, for binary tree based and flat tree based
CALU. We discuss both the stability of the LU factorization and of the linear solver,
in terms of pivot growth and backward errors. The results show that in practice
CALU is stable. Later in the paper Figure 3.3 displays the ratio of the relative error
‖PA − LU‖/‖A‖, the normwise backward error, and the componentwise backward
error of CALU versus GEPP for all the matrices in our test set. It shows that CALU
leads to backward errors within a factor of 10 of the GEPP backward errors (except
for one matrix for which the ratio of the normwise backward error of CALU to GEPP
is within a factor of 26).

We also discuss the stability of block versions of pairwise pivoting [19] and par-
allel pivoting [21], two different pivoting schemes. These methods are of interest,
since with an optimal layout, block pairwise pivoting is communication optimal in
a sequential environment and block parallel pivoting is communication optimal in a
parallel environment. Block pairwise pivoting has been used in the context of multi-
core architectures [2]. It is simple to see that block parallel pivoting is unstable. With
an increasing number of blocks per panel (determined by the number of processors),
the growth factor is getting larger. In the extreme case when the block size is equal
to 1, the growth factor is exponential on random examples. For pairwise pivoting we
study the growth factor for the case when the block size is equal to 1. This method
is more stable, but it shows a growth more than linear of the factor with respect to
the matrix size. Hence a more thorough analysis for larger matrices is necessary to
understand the stability of pairwise pivoting.

The paper is organized as follows. Section 2 presents the algebra of CALU and
the new ca-pivoting scheme. Section 3 discusses the stability of CALU. It describes
similarities between GEPP and CALU and upper bounds of the growth factor of
CALU. It also presents experimental results for random matrices and several special
matrices showing that CALU is stable in practice. Section 4 discusses two alternative
approaches for solving linear systems via LU-like factorization. Section 5 presents
parallel and sequential CALU algorithms and their performance models. Section 6
recalls lower bounds on communication and shows that CALU attains them. Section
7 concludes the paper.

2. CALU Matrix Algebra. In this section we describe the main steps of the
CALU algorithm for computing the LU factorization of a matrix A of size m × n.
CALU uses a new pivoting strategy, that we refer to as ca-pivoting strategy. We
use several notations. We refer to the submatrix of A formed by elements of row
indices from i to j and column indices from d to e as A(i : j, d : e). If A is the result
of the multiplication of two matrices B and C, we refer to the submatrix of A as
(BC)(i : j, d : e). The matrix [B; C] is the matrix obtained by stacking the matrices
B and C atop one another.

CALU is a block algorithm that factorizes the input matrix by traversing itera-
tively blocks of columns. At the first iteration, the matrix A is partitioned as follows:

A =

[

A11 A12

A21 A22

]

where A11 is of size b × b, A21 is of size (m − b) × b, A12 is of size b × (n − b) and
A22 is of size (m − b) × (n − b). As in other classic right looking algorithms, CALU
first computes the LU factorization of the first block-column (panel), then determines
the block U12, and updates the trailing matrix A22. The algorithm continues on the
block A22.

3

The main difference with respect to other existing algorithms lies in the panel
factorization. The panel can be seen as a tall and skinny matrix, and so we refer to
its factorization as TSLU. It is performed in two steps. The first step is a preprocessing
step, which identifies at low communication cost a set of good pivot rows. These rows
are used as pivots in the second step for the LU factorization of the entire panel. That
is, in the second step the b pivot rows are permuted into the first b positions of the
panel, and the LU factorization with no pivoting of the panel is performed.

We illustrate ca-pivoting on the factorization of the first panel. CALU considers
that the panel is partitioned in P block-rows. We present here the simple case P = 4.
For the sake of simplicity, we suppose that m is a multiple of 4. The preprocessing
step is performed as a reduction operation, where GEPP is the operator used to select
new pivot rows at each node of the reduction tree. In the following we use a binary
reduction tree. We number its levels starting with 0 at the leaves.

The preprocessing starts by performing GEPP of each block-row Ai. This corre-
sponds to the reductions performed at the leaves of the binary tree (the right subscript
0 refers to the level in the reduction tree):

A(:, 1 : b) =

2

6

6

4

A0

A1

A2

A3

3

7

7

5

=

2

6

6

4

Π̄00L̄00Ū00

Π̄10L̄10Ū10

Π̄20L̄20Ū20

Π̄30L̄30Ū30

3

7

7

5

=

=

2

6

6

4

Π̄00

Π̄10

Π̄20

Π̄30

3

7

7

5

·

2

6

6

4

L̄00

L̄10

L̄20

L̄30

3

7

7

5

·

2

6

6

4

Ū00

Ū10

Ū20

Ū30

3

7

7

5

≡ Π̄0L̄0Ū0

In this decomposition, the first factor Π̄0 is an m × m block diagonal matrix, where
each diagonal block Π̄i0 is a permutation matrix. The second factor, L̄0, is an m ×
Pb block diagonal matrix, where each diagonal block L̄i0 is an m/P × b lower unit
trapezoidal matrix. The third factor, Ū0, is a Pb× b matrix, where each block Ūi0 is a
b×b upper triangular factor. Note that this step aims at identifying in each block-row
a set of b linearly independent rows, which correspond to the first b rows of Π̄T

i0Ai,
with i = 0 . . . 3.

From the P sets of local pivot rows, we perform a binary tree (of depth log2 P = 2
in our example) of GEPP factorizations of matrices of size 2b × b to identify b global
pivot rows. The 2 GEPP factorizations at the first level of our depth-2 binary tree
are shown here, combined in one matrix. This decomposition leads to a Pb × Pb
permutation matrix Π̄1, a Pb × 2b factor L̄1 and a 2b × b factor Ū1.

2

6

6

4

`

Π̄T
0 A

´

(1 : b, 1 : b)
`

Π̄T
0 A

´

(m/P + 1 : m/P + b, 1 : b)
`

Π̄T
0 A

´

(2m/P + 1 : 2m/P + b, 1 : b)
`

Π̄T
0 A

´

(3m/P + 1 : 3m/P + b, 1 : b)

3

7

7

5

=

»

Π̄01L̄01Ū01

Π̄11L̄11Ū11

–

=

»

Π̄01

Π̄11

–

·
»

L̄01

L̄11

–

·
»

Ū01

Ū11

–

≡ Π̄1L̄1Ū1

The global pivot rows are obtained after applying one more GEPP factorization
(at the root of our depth-2 binary tree) on the pivot rows identified previously. The
permutation matrices Π̄0, Π̄1 do not have the same dimensions. By abuse of notation,

4

we consider that Π̄1 is extended by the appropriate identity matrices to the dimension
of Π̄0.

[(

Π̄T
1 Π̄T

0 A
)

(1 : b, 1 : b)
(

Π̄T
1 Π̄T

0 A
)

(2m/P + 1 : 2m/P + b, 1 : b)

]

= Π̄02L̄02Ū02 ≡ Π̄2L̄2Ū2

The permutations identified in the preprocessing step are applied to the original
matrix A. Then the LU factorization with no pivoting of the first block-column is
performed, the block-row of U is computed and the trailing matrix is updated. Note
that U11 = Ū2. The factorization continues on the trailing matrix Ā. We consider
that Π̄2 is extended by the appropriate identity matrices to the dimension of Π̄0.

Π̄T
2 Π̄T

1 Π̄T
0 A =

[

L11

L21 In−b

]

·
[

Ib

Ā

]

·
[

U11 U12

U22

]

The ca-pivoting strategy has several important characteristics. First, when b =
1 or P = 1, ca-pivoting is equivalent to partial pivoting. Second, the elimination
of each column of A leads to a rank-1 update of the trailing matrix. The rank-1
update property is shown experimentally to be very important for the stability of LU
factorization [21]. A large rank update might lead to an unstable LU factorization,
as for example in another strategy suitable for parallel computing called parallel
pivoting [21].

Different reduction trees can be used during the preprocessing step of TSLU. We
illustrate them using an arrow notation having the following meaning. The function
f(B) computes GEPP of matrix B, and returns the b rows used as pivots. The input
matrix B is formed by stacking atop one another the matrices situated at the left
side of the arrows pointing to f(B). A binary tree of height two is represented in the
following picture:

A30

A20

A10

A00

→
→
→
→

f(A30)

f(A20)

f(A10)

f(A00)

ր
ց
ր
ց

f(A11)

f(A01)

ր
ց

f(A02)

A reduction tree of height one leads to the following factorization:

A30

A20

A10

A00

→
→
→
→

f(A30)

f(A20)

f(A10)

f(A00)

�
��3���:

XXXz

Q
QQs f(A01)

The flat tree based TSLU is illustrated using the arrow abbreviation as:

A30

A20

A10

A00

�������������:

���������:�����:
-f(A00)

-f(A01)
- f(A02)

- f(A03)

3. Numerical Stability of CALU. In this section we present results showing
that CALU has stability properties similar to Gaussian elimination with partial piv-
oting. First, we show that the Schur complement obtained after each step of CALU is

5

the same as the Schur complement obtained after performing GEPP on a larger ma-
trix whose entries are the same as the entries of the input matrix (sometimes slightly
perturbed) and zeros. Second, we show that the upper bound on the pivot growth for
CALU is much larger than for GEPP. However, the first result suggests that CALU
should be stable in practice. Another way to see this is that GEPP only gives big
pivot growth on a small set of input matrices (see, for example, [13]) which are all
variations of one particular matrix, the Wilkinson matrix. Furthermore there are
Wilkinson-like matrices for which GEPP gives modest growth factor but CALU gives
exponential growth (WEG−CALU in equation (3.1)), and vice-versa (WEG−GEPP in
equation (3.1)). These two examples (presented here slightly more generally) are from
V. Volkov [22]. This shows that GEPP is not uniformly more stable than CALU.

The matrices WEG−CALU and WEG−GEPP of size 6b × 2b are as following:

WEG−CALU =

Ib eeT

0 W
0 0
Ib 0
0 W

−Ib 2Ib − eeT

, WEG−GEPP =

Ib eeT

0 Ib

0 0
Ib 0
Ib 2Ib

0 2W

(3.1)

where W is a Wilkinson matrix of order b×b with W (i, j) = −1 for i > j, W (i, i) = 1,
and W (:, b) = 1, Ib is the identity matrix of dimension b× b, 0 is a matrix of size b× b
of zeros, and e is a vector of dimension b×1 with all elements of value 1. We consider
that CALU divides the input matrix into two blocks, each of dimension 3b × 2b. For
the WEG−CALU matrix, the growth factor of GEPP is 2 while the growth factor of
CALU is 2b−1. This is because CALU uses pivots from W matrix, while GEPP does
not. For the WEG−GEPP matrix, GEPP uses pivots from W matrix and hence has
an exponential growth of 2b−1. For this matrix, CALU does not use pivots from W
and its growth factor is 1.

Third, we quantify the stability of CALU using several metrics that include pivot
growth and attained normwise backward stability. We perform our tests in Matlab,
using matrices from a normal distribution with varying size from 1024 to 8192, and a
set of special matrices. We have also performed experiments on different matrices such
as matrices drawn from different random distributions and dense Toeplitz matrices,
and we have obtained similar results to those presented here.

3.1. Similarities with Gaussian elimination with partial pivoting. In this
section we discuss similarities that exist between computing the LU factorization of
a matrix A using CALU and computing the LU factorization using GEPP of a larger
matrix G. The matrix G is formed by elements of A, sometimes slightly perturbed,
and zeros. We first prove a related result.

Lemma 3.1. The U factor obtained from the CALU factorization of a nonsingular

matrix A is nonsingular.

Proof. Consider that CALU uses a binary tree to factor each panel. The panel
is of full rank. At each step of the preprocessing part of the panel factorization, two
(or more) blocks A1 and A2 are used to determine a third block B. Since Gaussian
elimination is used to choose pivot rows and determine B, row span([A1; A2]) =
row span(B). This is true at every node of the reduction tree, and hence there is
no loss of information. Therefore the final block of pivot rows is of full rank. This
reasoning applies to every panel factorization.

6

Before proving a general result that applies to CALU using any reduction tree,
we discuss first a simple case of a reduction tree of height one. In the following, Ib

denotes the identity matrix of size b × b. Let A be an m × n matrix partitioned as

A =

A11 A12

A21 A22

A31 A32

 ,

where A11, A21 are of size b×b, A31 is of size (m−2b)×b, A12, A22 are of size b×(n−b),
and A32 is of size (m−2b)×(n−b). In this example we consider that TSLU applied on
the first block column [A11; A21; A31] performs first GEPP of [A21; A31]. Without loss
of generality we consider that the permutation returned at this stage is the identity,
that is the pivots are chosen on the diagonal. Second, TSLU performs GEPP on
[A11; A21], and the pivot rows are referred to as Ā11. With the arrow notation defined
in section 2, the panel factorization uses the following tree (we do not display the
function f , instead each node of the tree displays the result of GEPP):

A31

A21

A11

ր
ց A21

-

�
�7
Ā11

We refer to the block obtained after performing TSLU on the first block column
and updating A32 as As

32. The goal of the following lemma is to show that As
32 can

be obtained from performing GEPP on a larger matrix. The result can be easily
generalized to any reduction tree of height one.

Lemma 3.2. Let A be a nonsingular m × n matrix partitioned as

A =

A11 A12

A21 A22

A31 A32

 ,

where A11, A21 are of size b × b, A31 is of size (m − 2b) × b, A12, A22 are of size

b × (n− b), and A32 is of size (m− 2b)× (n− b). Consider the GEPP factorizations

Π11 Π12

Π21 Π22

Im−2b

 ·

A11 A12

A21 A22

A31 A32

 =

Ā11 Ā12

Ā21 Ā22

A31 A32

 =

=

L̄11

L̄21 Ib

L̄31 Im−2b

 ·

Ū11 Ū12

Ās
22

As
32

(3.2)

and

Π

(

A21

A31

)

=

(

L21

L31

)

·
(

U21

)

, (3.3)

where we suppose that Π = Im−b.

The matrix As
32 can be obtained after 2b steps of GEPP factorization of a larger

matrix G, that is

G =

Ā11 Ā12

A21 A21

−A31 A32

 =

L̄11

A21Ū
−1
11 L21

−L31 Im−2b

 ·

Ū11 Ū12

U21 −L−1
21 A21Ū

−1
11 Ū12

As
32

7

Proof. The first b steps of GEPP applied on G pivot on the diagonal. This is
because equation (3.2) shows that the rows of A21 which could be chosen as pivots
are already part of Ā11. The second b steps pivot on the diagonal as well, as it can
be seen from equation (3.3).

The following equalities prove the lemma:

L31L
−1
21 A21Ū

−1
11 Ū12 + As

32 = L31U21Ū
−1
11 Ū12 + As

32 = A31Ū
−1
11 Ū12 + As

32 =

= L̄31Ū12 + As
32 = A32

In the following we prove a result that applies to any reduction tree. We consider
the CALU factorization of a nonsingular matrix A of size m × n. After factoring the
first block column, the rows of the lower triangular factor which were not involved
in the last GEPP factorization at the root of the reduction tree are not bounded
by 1 in absolute value as in GEPP. We consider such a row j and we refer to the
updated A(j, b+1 : n) after the first block column elimination as As(j, b+1 : n). The
following theorem shows that As(j, 1 : b) can be obtained by performing GEPP on
a larger matrix G whose entries are of the same magnitude as entries of the original
matrix A (sometimes slightly perturbed), and hence can be bounded. Before we prove
the theorem, we introduce some notations and also perturb slightly the blocks of A
that are used in the reduction tree and that are singular. We perturb them to make
them nonsingular, which simplifies the analysis, but the algorithm does not depend
on their nonsingularity.

Definition 3.3. Consider a reduction tree T of height H and a given node sk

situated at level k, where level H corresponds to the root of T . Let sk+1, . . . , sH be its

ancestor nodes , where sH is the root of the tree. For each node sh situated at level

h, the GEPP factorization Πsh,hAsh,h = Lsh,hUsh,h is performed. Thus Ash,h is the

cḃ × b submatrix gotten from stacking the b rows selected by each of sh’s c children

atop one another.

The matrices associated with the ancestor nodes of sk in T are defined for all

sh = sk, sk+1, . . . , sH and h = k . . .H as

Āh = (Πsh,hAsh,h)(1 : b, 1 : b) + diag(

b
∑

i=1

ǫiei),

where ǫi are randomly generated small numbers, ei = (. . . 1 . . .)T is a vector of di-

mension b × 1 with the only nonzero element 1 in position (i, 1) if Ush,h(i, i) = 0, the

vector of 0s otherwise. The matrix Āh consists of the b rows selected by node sh to

pass to its parent, modified by arbitrarily tiny perturbations on its diagonal if they are

needed to keep the b rows linearly independent. We then have with high probability a

nonsingular matrix Āh and its GEPP factorization

Āh = L̄hŪh.

Theorem 3.4. Let A be a nonsingular m× n matrix that is to be factored using

CALU. Consider the first block column factorization, and let Π be the permutation

8

returned after this step. Let j be the index of a row of A that is involved for the last

time in a GEPP factorization of the CALU reduction tree at node sk of level k.

Consider the matrices associated with the ancestor nodes of sk in T as described

in Definition 3.3, and let

ĀH = (ΠA)(1 : b, 1 : b)

ÂH = (ΠA)(1 : b, b + 1 : n).

The updated row As(j, b+1 : n) obtained after the first block column factorization

of A by CALU, that is

(

ĀH ÂH

A(j, 1 : b) A(j, b + 1 : n)

)

=

(

L̄H

L(j, 1 : b) 1

)

·
(

ŪH ÂH

As(j, b + 1 : n)

)

(3.4)

is equal to the updated row obtained after performing GEPP on the leading (H−k+1)b
columns of a larger matrix G of dimensions ((H − k + 1)b + 1)× ((H − k + 1)b + 1),
that is

G =

0

B

B

B

B

B

B

B

@

ĀH ÂH

ĀH−1 ĀH−1

ĀH−2 ĀH−2

.

.

.

.

.

.

Āk Āk

(−1)H−kA(j, 1 : b) A(j, b + 1 : n)

1

C

C

C

C

C

C

C

A

=

=

0

B

B

B

B

B

B

B

@

L̄H

ĀH−1Ū
−1
H L̄H−1

ĀH−2Ū
−1
H−1 L̄H−2

.

.

.

.

.

.

ĀkŪ−1
k+1 L̄k

(−1)H−kA(j, 1 : b)Ū−1
k 1

1

C

C

C

C

C

C

C

A

·

·

0

B

B

B

B

B

B

B

B

@

ŪH ÛH

ŪH−1 ÛH−1

ŪH−2 ÛH−2

.

.

.

.

.

.

Ūk Ûk

As(j, b + 1 : n)

1

C

C

C

C

C

C

C

C

A

(3.5)

where

ÛH−i =

L̄−1
H ÂH if i = 0

−L̄−1
H−iĀH−iŪH−i+1ÛH−i+1 if 0 < i ≤ H − k

(3.6)

9

Proof. From equation (3.5), As(j, b + 1 : n) can be computed as follows:

As(j, b + 1 : n) =

= A(j, b + 1 : n) −

`

0 . . . 0 (−1)H−kA(j, 1 : b)
´

·

0

B

B

B

@

0

B

B

B

@

ĀH

ĀH−1

. . .

Āk

1

C

C

C

A

·

0

B

B

B

@

Ib

Ib Ib

. . .
. . .

Ib Ib

1

C

C

C

A

1

C

C

C

A

−1

·

0

B

B

B

@

ÂH

0
...
0

1

C

C

C

A

= A(j, b + 1 : n) −

`

0 . . . 0 (−1)H−kA(j, 1 : b)
´

·

0

B

B

B

@

Ib

−Ib Ib

. . .
. . .

(−1)H−kIb . . . −Ib Ib

1

C

C

C

A

·

0

B

B

B

@

Ā−1
H

Ā−1
H−1

. . .

Ā−1
k

1

C

C

C

A

·

0

B

B

B

@

ÂH

0
...
0

1

C

C

C

A

= A(j, b + 1 : n) − A(j, 1 : b)Ā−1
H ÂH

The last equality represents the computation of As(j, b + 1 : n) obtained from
equation (3.4), and this ends the proof.

The following corollary shows similarities between CALU and GEPP of a larger
matrix. Since GEPP is stable in practice, we expect CALU to be also stable in
practice.

Corollary 3.5. The Schur complement obtained after each step of performing

CALU on a matrix A is equivalent to the Schur complement obtained after performing

GEPP on a larger matrix G whose entries are the same as the entries of A, sometimes

slightly perturbed, or zeros.

In the following theorem, we use the same approach as in Theorem 3.4 to bound
the L factor obtained from the CALU factorization of a matrix A.

Theorem 3.6. Let A be a nonsingular m × n matrix that is to be factored by

CALU based on a reduction tree of height H and using a block of size b. The factor

L is bounded in absolute value by 2bH .

Proof. Consider the first block column factorization, and let Π be the permutation
returned after this step. Let j be the index of a row of A that is involved only in a
GEPP factorization at the leaf (node s0, level 0) of the CALU reduction tree. Without
loss of generality, we suppose that Π(j, j) = 1, that is row j is not permuted from
its original position. Consider the matrices associated with the ancestor nodes of s0

in the reduction tree T as described in Definition 3.3. The jth row of the L factor
satisfies the relation:

(

ĀH

A(j, 1 : b)

)

=

(

L̄H

L(j, 1 : b)

)

ŪH

By using the relations |A(j, 1 : b) · Ū−1
0 | ≤ 1 and |Āi−1 · Ū−1

i | ≤ 1 for i = 1 . . .H ,

10

we have the following:

|L(j, 1 : b)| = |A(j, 1 : b) · Ū−1
H | =

= |A(j, 1 : b) · Ā−1
0 · Ā0 · Ā−1

1 · Ā1 . . . Ā−1
H−1 · ĀH−1 · Ū−1

H | =

= |A(j, 1 : b) · Ū−1
0 · L̄−1

0 · Ā0 · Ū−1
1 · L̄−1

1 · Ā1 . . . Ū−1
H−1 · L̄−1

H−1 · ĀH−1 · Ū−1
H | ≤

≤ |A(j, 1 : b) · Ū−1
0 | · |L̄−1

0 | · |Ā0 · Ū−1
1 | · |L̄−1

1 | . . . |L̄−1
H−1| · |ĀH−1 · Ū−1

H | ≤
≤ 2bH

The same reasoning applies to the following steps of factorization, and this ends the
proof.

Theorem 3.6 shows that |L| is bounded by 2bH . For a flat reduction tree with
H = n/b, this bound becomes of order 2n. This suggests that more levels in the
reduction tree we have, less stable the factorization may become.

We give an example of a matrix formed by Wilkinson-type sub-matrices whose fac-
tor L obtained from CALU factorization has an element of the order of 2(b−2)H−(b−1),
which is close to the bound in Theorem 3.6. With the same notation as in Theorems
3.4 and 3.6, the submatrices Āi are formed as following. Let W be a unit lower tri-
angular matrix of order b × b with W (i, j) = −1 for i > j (the same definition of a
Wilkinson-type matrix as before). Let v be a vector of dimension H + 1 defined as
following: v(1) = 1, and v(i) = v(i − 1)(2b−2 + 1) + 1 for all i = 2 : H + 1. Then
Āi = W + v(H − i + 1) · eb · eT

1 , and A(j, 1 : b) = (e1 + v(H + 1) · eb)
T .

The upper bound for |L| is much larger for CALU than for GEPP. However
we note that for the backward stability of the LU factorization, the growth factor
plays an important role, not |L|. Let A = LU be the Gaussian elimination without
pivoting of A. Then ‖|L||U |‖∞ is bounded using the growth factor gW by the relation
‖|L||U |‖∞ ≤ (1 + 2(n2 − n)gW)‖A‖∞ (Lemma 9.6 in section 9.3 of [12]). The growth

factor gW is defined in (3.7), where a
(k)
ij denotes the entry in position (i, j) obtained

after k steps of elimination.

gW =
maxi,j,k |a(k)

ij |
maxij |aij |

(3.7)

The growth factor of CALU is equal to the growth factor of matrix G in equation
(3.5) of Theorem 3.4. This theorem implies that the growth factor can be as large as
2b(H+1). It is shown in [13] that the L factor of matrices that attain the maximum
growth factor is a dense unit lower triangular matrix. Hence the growth factor of
matrix G in equation (3.5) cannot attain the maximum value of 2b(H+1), since its L
factor is lower block bidiagonal. In addition, matrix G has a special form as described
in equation (3.5). We were not able to find matrices that attain the worst case growth
factor, the largest growth factor we could observe is of order 2b. For matrices for which
a large |L| is attained, the growth factor is still of the order of 2b, since the largest
element in |L| is equal to the largest element in |A|. We conjecture that the growth
factor of G is bounded by 2b.

Table 3.1 summarizes bounds derived in this section for CALU and also recalls
bounds for GEPP. It considers a matrix of size m × (b + 1) and the general case of a
matrix of size m × n. It displays bounds for |L| and for the growth factor gW .

As an additional observation, we note that matrices whose L factor is lower block
bidiagonal can attain a growth factor within a constant factor of the maximum. One

11

Table 3.1

Bounds for |L| and for the growth factor g obtained from factoring a matrix of size m× (b +1)
and m × n using CALU and GEPP. CALU uses a reduction tree of height H and a block of size
b. For the matrix of size m × (b + 1), the result for CALU corresponds to the first step of panel
factorization.

matrix of size m × (b + 1)
CALU(b,H) GEPP

upper bound attained upper bound

|L| 2bH 2(b−2)H−(b−1) 1

gW 2b(H+1) 2b 2b

matrix of size m × n
CALU(b,H) GEPP

upper bound attained upper bound

|L| 2bH 2(b−2)H−(b−1) 1

gW 2n(H+1)−1 2n−1 2n−1

example is the following very sparse Ws matrix of dimension n× n with n = bH + 1,
formed by Kronecker products involving the Wilkinson-type matrix W ,

Ws =

(

IH ⊗ W + S ⊗ N eT
1

en−1

)

, (3.8)

where W is unit lower triangular of order b × b with W (i, j) = −1 for i > j, N is of
order b × b with N(i, j) = −1 for all i, j, IH is the identity matrix of order H × H , S
is a lower triangular matrix of order H ×H with S(i, j) = 1 for i = j +1, 0 otherwise,
e1 is the vector (1, 0, . . . , 0) of order 1 × n − 1, and en−1 is the vector (0, . . . , 0, 1) of
dimension 1 × n − 1. For example, when H = 3 this matrix becomes

W e1

N W
N W

eT
b

. (3.9)

The matrix Ws gets pivot growth of .25 ·2n−1 · (1−2−b)H−2. Hence by choosing b and
H so that H ≈ 2b, it gets pivot growth of about .1 · 2n−1, which is within a constant
factor of the maximum pivot growth 2n−1 of a dense n × n matrix.

3.2. Experimental results. We present experimental results showing that CALU
is stable in practice and compare them with those obtained from GEPP. The results
focus on CALU using a binary tree and CALU using a flat tree, as defined in section
2.

In this section we focus on matrices whose elements follow a normal distribution.
In Matlab notation, the test matrix is A = randn(n, n), and the right hand side is
b = randn(n, 1). The size of the matrix is chosen such that n is a power of 2, that is
n = 2k, and the sample size is max{10 ∗ 210−k, 3}. We discuss several metrics, that
concern the LU decomposition and the linear solver using it, such as the growth factor,
normwise and componentwise backward errors. Additional results, that consider as
well several special matrices [14] including sparse matrices are described in Appendix
B.

In this section we present results for the growth factor gT defined in (3.10), which
was introduced by Trefethen and Schreiber in [21]. The authors have introduced a

12

statistical model for the average growth factor, where σA is the standard deviation
of the initial element distribution of A. In the data presented here σA = 1. They
observed that the average growth factor gT is close to n2/3 for partial pivoting and
n1/2 for complete pivoting (at least for n 6 1024). In Appendix B we also present
results for gW , defined in (3.7), as well as the growth factor gD defined in (3.11), which

was introduced in [4]. As for gW , a
(k)
ij denotes the entry in position (i, j) obtained

after k steps of elimination.

gT =
maxi,j,k |a(k)

ij |
σA

(3.10)

gD = max
j

{

maxi |uij |
maxi |aij |

}

(3.11)

Figure 3.1 displays the values of the growth factor gT of the binary tree based
CALU, for different block sizes b and different number of processors P . As explained
in section 2, the block size determines the size of the panel, while the number of
processors determines the number of block rows in which the panel is partitioned.
This corresponds to the number of leaves of the binary tree. We observe that the
growth factor of binary tree based CALU grows as C · n2/3, where C is a small
constant around 1.5. We can also note that the growth factor of GEPP is of order
O(n2/3), which matches the result in [21].

1024 2048 4096 8192
100

200

300

400

500

600

700

av
er

ag
e

gr
ow

th
 fa

ct
or

matrix size

P=256,b=32
P=256,b=16
P=128,b=64
P=128,b=32
P=128,b=16
P=64, b=128
P=64, b=64
P=64, b=32
P=64, b=16
GEPP

n2/3

2*n2/3

3*n1/2

Fig. 3.1. Growth factor gT of binary tree based CALU for random matrices.

Figure 3.2 shows the values of the growth factor gT for flat tree based CALU with
varying block size b from 4 to 64. The curves of the growth factor lie between n2/3

and 2n2/3 in our tests on random matrices. The growth factor of both binary tree
based and flat tree based CALU have similar behavior to the growth factor of GEPP.

Table 3.2 presents results for the linear solver using binary tree based and flat
tree based CALU, together with GEPP for the comparison. The normwise backward
stability is evaluated by computing three accuracy tests as performed in the HPL
(High-Performance Linpack) benchmark [8], and denoted as HPL1, HPL2 and HPL3

13

64 128 256 512 1024 2048 4096 8192
10

20

40

80

160

320

640

matrix size

av
er

ag
e

gr
ow

th
 fa

ct
or

b=4
b=8
b=16
b=32
b=64
GEPP

n2/3

2*n2/3

Fig. 3.2. Growth factor gT of flat tree based CALU for random matrices.

(equations (3.12) to (3.14)).

HPL1 = ||Ax − b||∞/(ǫ||A||1 ∗ N), (3.12)

HPL2 = ||Ax − b||∞/(ǫ||A||1||x||1), (3.13)

HPL3 = ||Ax − b||∞/(ǫ||A||∞||x||∞ ∗ N). (3.14)

In HPL, the method is considered to be accurate if the values of the three quan-
tities are smaller than 16. More generally, the values should be of order O(1). We
also display the normwise backward error, using the 1-norm,

η :=
||r||

||A|| ||x|| + ||b|| . (3.15)

We also include results obtained by iterative refinement, which can be used to improve
the accuracy of the solution. For this, the componentwise backward error

w := max
i

|ri|
(|A| |x| + |b|)i

, (3.16)

is used, where the computed residual is r = b − Ax. The residual is computed in
working precision [18] as implemented in LAPACK [1]. The iterative refinement is
performed as long as the following three conditions are satisfied: (1) the componen-
twise backward error is larger than eps; (2) the componentwise backward error is
reduced by half; (3) the number of steps is smaller than 10. In Table 3.2, wb denotes
the componentwise backward error before iterative refinement and NIR denotes the
number of steps of iterative refinement. NIR is not always an integer since it repre-
sents an average. We note that for all the sizes tested in Table 3.2, CALU leads to
results within a factor of 10 of the GEPP results.

In Appendix B we present more detailed results on random matrices. We also
consider different special matrices, including sparse matrices, described in Table 7.1.
There we include different metrics, such as the norm of the factors, their conditioning,
the value of their maximum element, and the backward error of the LU factorization.

14

For the special matrices, we compare the binary tree based and the flat tree based
CALU with GEPP in Tables 7.4, 7.5 and 7.6.

The new ca-pivoting strategy does not ensure that the element of maximum mag-
nitude is used as pivot at each step of factorization. Hence |L| is not bounded by 1
as in Gaussian elimination with partial pivoting. To discuss this aspect, we compute
at each elimination step k the threshold τk, defined as the quotient of the pivot used
at step k divided by the maximum value in column k. In our tests we compute the
minimum value of the threshold τmin = mink τk and the average value of the threshold
τave = (

∑n−1
k=1 τk)/(n− 1), where n is the number of columns. The average maximum

element of L is 1/τmin. We observe that in practice the pivots used by ca-pivoting are
close to the elements of maximum magnitude in the respective columns. For binary
tree based and flat tree based CALU, the minimum threshold τmin is larger than 0.24
on all our test matrices. This means that in our tests |L| is bounded by 4.2.

For all the matrices in our test set, the componentwise backward error is reduced
to 10−16 after 2 or 3 steps of iterative refinement for all methods.

Figure 3.3 summarizes all our stability results for CALU. This figure displays the
ratio of the relative error ‖PA − LU‖/‖A‖, the normwise backward error η, and the
componentwise backward error w of CALU versus GEPP. Results for all the matrices
in our test set are presented: 20 random matrices from Table 3.2 and 37 special
matrices from Table 7.1.

10
−2

10
−1

10
0

10
1

10
2

ra
tio

 o
f C

A
LU

 to
 G

E
P

P

normwise backward error componentwise backward error

randn special matrices randn special matrices randn special matrices

BCALU FCALU BCALU FCALU BCALU FCALU BCALU FCALU BCALU FCALU BCALU FCALU

||PA−LU||/||A||

Fig. 3.3. A summary of all our experimental data, showing the ratio of CALU’s backward error
to GEPP’s backward error for all test matrices. Each vertical bar represents such a ratio for one
test matrix, so bars above 100 = 1 mean CALU’s backward error is larger, and bars below 1 mean
GEPP’s backward error is larger. There are a few examples where the backward error of each is
exactly 0, and the ratio 0/0 is shown as 1. As can be seen nearly all ratios are between 1 and 10,
with a few outliers up to 26 (GEPP more stable) and down to .06 (CALU more stable). For each
matrix and algorithm, the backward error is measured 3 ways. For the first third of the bars, labeled
‖PA − LU‖/‖A‖, this is backward error metric, using the Frobenius norm. For the middle third of
the bars, labeled “normwise backward error”, η in equation (3.15) is the metric. For the last third
of the bars, labeled “componentwise backward error”, w in equation (3.16) is the metric. The test
matrices are further labeled either as “randn”, which are randomly generated, or “special”, listed in
Table 7.1. Finally, each test matrix is done using both CALU with a binary reduction tree (labeled
BCALU) and with a flat reduction tree (labeled FCALU). Tables 7.2 -7.6 contain all the raw data.

15

The results presented in this section and in Appendix B show that binary tree
based and flat tree based CALU are stable, and have the same behavior as GEPP,
including the ill-conditioned matrices in our test set.

4. Alternative algorithms. We consider in this section several other approaches
to pivoting that avoid communication, and appear that they might be as stable as ca-
pivoting, but can in fact be unstable. These approaches are based as well on a block
algorithm, that factors the input matrix by traversing blocks of columns (panels) of
size b. But in contrast to CALU, they compute only once the panel factorization
as follows. Each panel factorization is performed by computing a sequence of LU
factorizations until all the elements below the diagonal are eliminated and an upper
triangular matrix is obtained. The idea of performing the LU factorization as a re-
duction operation is present as well. But the LU factorization performed at nodes of
the reduction tree uses U factors previously computed, and not rows of the original
matrix as in CALU.

We present first a factorization algorithm that uses a binary tree and is suit-
able for parallel computing. Every block column is partitioned in P block-rows
[A0; A1; . . . ; AP−1]. Consider for example P = 4 and suppose that the number of
rows m divides 4. We illustrate this factorization using an “arrow” abbreviation. In
this context, the notation has the following meaning: each U factor is obtained by
performing the LU factorization with partial pivoting of all the matrices at the other
ends of the arrows stacked atop one another.

The procedure starts by performing independently the LU factorization with par-
tial pivoting of each block row Ai. After this stage there are four U factors. The
algorithm continues by performing the LU factorization with partial pivoting of pairs
of U factors stacked atop one another, until the final U02 factor is obtained.

A3

A2

A1

A0

→
→
→
→

U30

U20

U10

U00

ր
ց
ր
ց

U11

U01

ր
ց

U02

A flat tree can be used as well, and the execution of the factorization on this
structure is illustrated using the “arrow” abbreviation as:

A3

A2

A1

A0

����������1

��������1�����:
-U00

-U01
- U02

-U03

When the block size b is equal to 1 and when the number of processors P is equal
to the number of rows m, the binary tree based and the flat tree based factorizations
correspond to two known algorithms in the literature, parallel pivoting and pairwise
pivoting (discussed for example in [21]). Hence, we refer to these extensions as block
parallel pivoting and block pairwise pivoting. Factorization algorithms based on block
pairwise pivoting are used in the context of multicore architectures [2, 17], and are
referred to as tiled algorithms in [2].

There are two important differences between these algorithms and the classic LU
factorization algorithm. First, in LU factorization, the elimination of each column
of A leads to a rank-1 update of the trailing matrix. The rank-1 update property
and the fact that the elements of L are bounded are two properties that are shown
experimentally to be very important for the stability of LU factorization [21]. It

16

Table 3.2

Stability of the linear solver using binary tree based and flat tree based CALU and GEPP.

n P b η wb NIR HPL1 HPL2 HPL3

Binary tree based CALU

8192

256
32 6.2E-15 4.1E-14 2 3.6E-2 2.2E-2 4.5E-3
16 5.8E-15 3.9E-14 2 4.5E-2 2.1E-2 4.1E-3

128
64 6.1E-15 4.2E-14 2 5.0E-2 2.2E-2 4.6E-3
32 6.3E-15 4.0E-14 2 2.5E-2 2.1E-2 4.4E-3
16 5.8E-15 4.0E-14 2 3.8E-2 2.1E-2 4.3E-3

64

128 5.8E-15 3.6E-14 2 8.3E-2 1.9E-2 3.9E-3
64 6.2E-15 4.3E-14 2 3.2E-2 2.3E-2 4.4E-3
32 6.3E-15 4.1E-14 2 4.4E-2 2.2E-2 4.5E-3
16 6.0E-15 4.1E-14 2 3.4E-2 2.2E-2 4.2E-3

4096

256 16 3.1E-15 2.1E-14 1.7 3.0E-2 2.2E-2 4.4E-3

128
32 3.2E-15 2.3E-14 2 3.7E-2 2.4E-2 5.1E-3
16 3.1E-15 1.8E-14 2 5.8E-2 1.9E-2 4.0E-3

64
64 3.2E-15 2.1E-14 1.7 3.1E-2 2.2E-2 4.6E-3
32 3.2E-15 2.2E-14 1.3 3.6E-2 2.3E-2 4.7E-3
16 3.1E-15 2.0E-14 2 9.4E-2 2.1E-2 4.3E-3

2048
128 16 1.7E-15 1.1E-14 1.8 6.9E-2 2.3E-2 5.1E-3

64
32 1.7E-15 1.0E-14 1.6 6.5E-2 2.1E-2 4.6E-3
16 1.6E-15 1.1E-14 1.8 4.7E-2 2.2E-2 4.9E-3

1024 64 16 8.7E-16 5.2E-15 1.6 1.2E-1 2.1E-2 4.7E-3
Flat tree based CALU

8096

- 4 4.1E-15 2.9E-14 2 1.4E-2 1.5E-2 3.1E-3
- 8 4.5E-15 3.1E-14 1.7 4.4E-2 1.6E-2 3.4E-3
- 16 5.6E-15 3.7E-14 2 1.9E-2 2.0E-2 3.3E-3
- 32 6.7E-15 4.4E-14 2 4.6E-2 2.4E-2 4.7E-3
- 64 6.5E-15 4.2E-14 2 5.5E-2 2.2E-2 4.6E-3

4096

- 4 2.2E-15 1.4E-14 2 9.3E-3 1.5E-2 3.1E-3
- 8 2.6E-15 1.7E-14 1.3 1.3E-2 1.8E-2 4.0E-3
- 16 3.0E-15 1.9E-14 1.7 2.6E-2 2.0E-2 3.9E-3
- 32 3.8E-15 2.4E-14 2 1.9E-2 2.5E-2 5.1E-3
- 64 3.4E-15 2.0E-14 2 6.0E-2 2.1E-2 4.1E-3

2048

- 4 1.3E-15 7.9E-15 1.8 1.3E-1 1.6E-2 3.7E-3
- 8 1.5E-15 8.7E-15 1.6 2.7E-2 1.8E-2 4.2E-3
- 16 1.6E-15 1.0E-14 2 2.1E-1 2.1E-2 4.5E-3
- 32 1.8E-15 1.1E-14 1.8 2.3E-1 2.3E-2 5.1E-3
- 64 1.7E-15 1.0E-14 1.2 4.1E-2 2.1E-2 4.5E-3

1024

- 4 7.0E-16 4.4E-15 1.4 2.2E-2 1.8E-2 4.0E-3
- 8 7.8E-16 4.9E-15 1.6 5.5E-2 2.0E-2 4.9E-3
- 16 9.2E-16 5.2E-15 1.2 1.1E-1 2.1E-2 4.8E-3
- 32 9.6E-16 5.8E-15 1.1 1.5E-1 2.3E-2 5.6E-3
- 64 8.7E-16 4.9E-15 1.3 7.9E-2 2.0E-2 4.5E-3

GEPP
8192 - 3.9E-15 2.6E-14 1.6 1.3E-2 1.4E-2 2.8E-3
4096 - 2.1E-15 1.4E-14 1.6 1.8E-2 1.4E-2 2.9E-3
2048 - 1.1E-15 7.4E-15 2 2.9E-2 1.5E-2 3.4E-3
1024 - 6.6E-16 4.0E-15 2 5.8E-2 1.6E-2 3.7E-3

17

is thought [21] that the rank-1 update inhibits potential element growth during the
factorization. A large rank update might lead to an unstable LU factorization. Parallel
pivoting is known to be unstable, see for example [21]. Note that it involves a rank
update equal to the number of rows at each step of elimination. The experiments
performed in [21] on random matrices show that pairwise pivoting uses in practice
a low rank update. Second, block parallel pivoting and block pairwise pivoting use
in their computation factorizations that involve U factors previously computed. This
can propagate ill-conditioning through the factorization.

We discuss here the stability in terms of pivot growth for block parallel pivoting
and pairwise pivoting. We perform our tests in Matlab, using matrices from a normal
distribution. The pivot growth of block parallel pivoting is displayed in figure 4.1.
We vary the number of processors P on which each block column is distributed, and
the block size b used in the algorithm. The matrix size varies from 2 to 1024. We can
see that the number of processors P has an important impact on the growth factor,
while b has little impact. The growth factor increases with increasing P , with an
exponential growth in the extreme case of parallel pivoting. Hence, for large number
of processors, block parallel pivoting is unstable. We note further that using iterative
refinement does not help improve the stability of the algorithm for large number of
processors. We conclude that block parallel pivoting is unstable.

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

matrix size

av
er

ag
e

gr
ow

th
 fa

ct
or

P=32

P=16

P=8

P=4
P=2
P=1

y=n1/2

parallel pivoting

Fig. 4.1. Growth factor of block parallel pivoting for varying block size b and number of pro-
cessors P .

The growth factor of pairwise pivoting is displayed in figure 4.2. The matrix size
varies from 2 to 15360 (the maximum size we were able to test with our code). We
note that for small matrix size, pairwise pivoting has a growth factor on the order
of n2/3. With increasing matrix size, the growth of the factor is faster than linear.
For n > 212, the growth factor becomes larger than n. This suggests that further
experiments are necessary to understand the stability of pairwise pivoting and its
block version.

We note that ca-pivoting bears some similarities to the batched pivoting strat-
egy [9]. To factor a block column partitioned as [A0; A1; . . . ; AP−1], batched pivoting
uses also two steps. It identifies first b rows, that are then used as pivots for the entire
block column. The identification of the b rows is different from CALU. In batched
pivoting, each block Ai is factored using Gaussian elimination with partial pivoting,

18

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 15360
10

0

10
1

10
2

10
3

10
4

10
5

matrix size

av
er

ag
e

gr
ow

th
 fa

ct
or

pairwise

n2/3

n

n2

Fig. 4.2. Growth factor of pairwise pivoting for varying matrix size.

which corresponds to the first computation in our preprocessing step. From the P sets
of b rows, the set considered by some criterion as the best will be used to factor the
entire block column. Hence, the different P sets are not combined as in CALU. Also
batched pivoting fails when each block row Ai is singular, while the block-column is
nonsingular. This can happen for example in the case of sparse matrices.

5. CALU algorithm. In this section we describe the CALU factorization algo-
rithm in more detail than before, in order to model its performance, and show that
it is optimal. We use the classical (γ, α, β) model that describes a parallel machine
in terms of the time per floating point operation (add and multiply) γ, the network
latency α, and the inverse of the bandwidth β. In this model the time to send a
message of n words is estimated to be α + nβ. A broadcast or a reduce of n words
between P processors is estimated to correspond to log2 P messages of size n. We
omit low order terms in our estimations.

CALU factors the input matrix by iterating over panels. At each iteration it
factors the current panel and then it updates the trailing matrix. The only difference
with GEPP lies in the panel factorization. The trailing matrix update can be per-
formed by any existing algorithm, depending on the underlying architecture. Hence
we will not detail this step in this section. We focus on the description of the TSLU
algorithm used for panel factorization.

As described in section 2, TSLU performs the panel factorization in two steps: a
preprocessing step to find good pivots, followed by the LU factorization of the panel
that uses these pivots. The preprocessing step is performed as a reduction operation,
with GEPP performed at each node of the reduction tree. The execution of TSLU is
driven by the reduction tree.

We will see later that for one level of parallelism, the binary tree leads to an
optimal algorithm. However today’s parallel machines have a more complex architec-
ture, with multiple levels of parallelism and memory hierarchies. The choice of the
reduction tree will depend on the machine architecture. In the following we describe
first parallel TSLU and CALU, and then sequential TSLU and CALU.

We present in Algorithm 1 a parallel implementation of TSLU that uses as input
an arbitrary all-reduction tree (that is the result is available on all processors). In

19

the preprocessing step, the algorithm traverses the reduction tree bottom-up. The
input matrix is distributed over P processors using a 1-D block row layout. At the
leaves, each processor computes independently the GEPP factorization of its block.
Then at each node of the reduction tree, the processors exchange the pivot rows they
have computed at the previous step. A matrix is formed by the pivot rows stacked
atop one another and it is factored using GEPP. The pivots used in the final GEPP
factorization at the root of the reduction tree are the pivots that will be used to
factor the entire panel. The description of TSLU follows the same approach as the
presentation of parallel TSQR in [5].

Algorithm 1 Parallel TSLU

Require: S is the set of P processors, i ∈ S is my processor’s index.
Require: All-reduction tree with height L.
Require: The m × b input matrix A(:, 1 : b) is distributed using a 1-D block row

layout; Ai,0 is the block of rows belonging to my processor i.
1: Compute Πi,0Ai,0 = Li,0Ui,0 using GEPP.
2: for k from 1 to L do

3: if I have any neighbors in the all-reduction tree at this level then

4: Let q be the number of neighbors.
5: Send (Πi,k−1Ai,k−1)(1 : b, 1 : b) to each neighbor j
6: Receive (Πj,k−1Aj,k−1)(1 : b, 1 : b) from each neighbor j
7: Form the matrix Ai,k of size qb × b by stacking the matrices

(Πj,k−1Aj,k−1)(1 : b, 1 : b) from all neighbors.
8: Compute Πi,kAi,k = Li,kUi,k using GEPP.
9: else

10: Ai,k := Πi,k−1Ai,k−1

11: Πi,k := Ib×b

12: end if

13: end for

14: Compute the final permutation Π̄ = Π̄L . . . Π̄1Π̄0, where Π̄i represents the per-
mutation matrix corresponding to each level in the reduction tree, formed by the
permutation matrices of the nodes at this level extended by appropriate identity
matrices to the dimension m × m.

15: Compute the Gaussian elimination with no pivoting of (Π̄A)(:, 1 : b) = LU
Ensure: Ui,L is the U factor obtained at step (15), for all processors i ∈ S.

For binary tree based parallel TSLU, the computation on the critical path is
composed of the GEPP factorization of a block of size mb/P × b and log2 P GEPP
factorizations of blocks of size 2b×b each. Its runtime estimation is displayed in Table
5.1.

Table 5.2 displays the runtime estimation of parallel CALU for an m × n matrix
distributed using a two-dimensional block cyclic layout. The algorithm is described
in detail in [10]. The panel factorization is performed using binary tree based TSLU.
The other steps of the algorithm are similar to the PDGETRF routine in ScaLAPACK
that implements Gaussian elimination with partial pivoting.

Sequential TSLU based on a flat tree consists of reading in memory blocks that
fit in the memory of size W and are as large as possible. The matrix is considered to
be partitioned in blocks of size b1 × b, where b1 ≥ b is chosen such that a b× b matrix
and a block fits in memory, that is b2 + b1b ≤ W . Hence b1 ≈ (W − b2)/b = W1/b,

20

Table 5.1

Performance models of parallel and sequential TSLU for ”tall-skinny” matrices of size m × b,
with m ≫ b. Parallel TSLU uses a binary tree and sequential TSLU uses a flat tree. Some lower
order terms are omitted.

Algorithm # flops # messages # words

Par. TSLU 2mb2

P + b3

3 (5 log2 P − 1) log2 P b2 log2 P

Seq. TSLU var. 1 2mb2 − b3

3
3mb

W−b2 + b 3mb + 2b2

Seq. TSLU var. 2 2mb2 − b3

3
5mb

W−b2 5mb

with W1 = W − b2, and W1 ≥ W/2. In the preprocessing step of TSLU, GEPP of the
first block is computed. The b rows are kept in memory, and then the second block
is read. In the preprocessing step the matrix is read once. Assuming that the blocks
are stored in contiguous memory, mb/b1b = mb/W1 messages are sent. At the end
of the preprocessing step, the b pivot rows are in fast memory. The pivoting needs
to be applied on the matrix. The rows that are in the first b positions and are not
used as pivots need to be stored at different locations in memory. The rows can be
read in fast memory using one message, since W > b2. Two approaches can be used
for writing the rows back to slow memory at their new positions. The first approach
consists of using one message for writing each row. We refer to this approach in table
5.1 as Seq. TSLU var. 1. This leads to a total of b+1 messages at most (2b2 words) to
permute the rows that are in the first b positions of A. The second approach consists
of permuting rows by reading in fast memory and writing back in slow memory blocks
of the matrix that are as large as possible, that is of size mb/(W − b2). At most the
whole matrix is read and written once. We refer to this approach in table 5.1 as
Seq. TSLU var. 2. This approach can lead to fewer number of messages exchanged,
at the cost of more words transferred, in particular when b > mb/(W − b2). To
reduce the number of messages, an implementation of the algorithm should choose
the first strategy if b = min(b, mb/(W − b2)), the second otherwise. During the LU
factorization with no pivoting, the matrix is read and written once. This leads to
2mb/(W − b2) messages.

For sequential CALU, we consider that the matrix is partitioned into P = Pr×Pc

blocks (here P does not refer to the number of processors, the algorithm is executed
on one processor). The size of each block m/Pr ×n/Pc is chosen such that 3 blocks fit
into memory, that is 3mn/P ≤ W . This is necessary for performing the updates on
the trailing matrix, when 3 blocks are necessary. This approach is similar to sequential
CAQR discussed in [5].

We analyze a sequential CALU based on a right-looking algorithm. At step k of
the algorithm, the LU factorization of panel k is computed using flat tree based TSLU.
Then the trailing matrix is permuted and updated. We choose to analyze a right-
looking variant for the ease of understanding. We note that the memory accesses are
the same for right-looking and left-looking for the panel factorization and the updates.
However the permutations are simpler to explain for the right-looking variant. The
detailed counts are presented in Appendix A.

The number of messages and the number of words of CALU increase with in-
creasing P and Pc. P is given by the size of the memory W and so fixed. Since we
impose that 3 blocks fit in fast memory, P = 3mn

W . Also we impose that the number
of rows of a block is larger or equal to the number of columns. Hence Pc is minimized
when it is equal to

√

nP/m, that is the blocks are square. This is similar to the

21

Table 5.2

Performance models of parallel (binary tree based) and sequential (flat tree based) CALU and
PDGETRF routine when factoring an m × n matrix, m ≥ n. For parallel CALU and PDGETRF,
the input matrix is distributed in a 2-D block cyclic layout on a Pr × Pc grid of processors with
square b × b blocks. For sequential CALU, the matrix is partitioned into P = 3mn

W
blocks. Some

lower order terms are omitted.

Parallel CALU

messages 3n
b

log2 Pr + 3n
b

log2 Pc

words
“

nb + 3n2

2Pc

”

log2 Pr + 1
Pr

“

mn − n2

2

”

log2 Pc

flops 1
P

“

mn2 − n3

3

”

+ 1
Pr

`

2mn − n2
´

b + n2b
2Pc

+ nb2

3
(5 log2 Pr − 1)

PDGETRF

messages 2n
`

1 + 2
b

´

log2 Pr + 3n
b

log2 Pc

words
“

nb
2

+ 3n2

2Pc

”

log2 Pr + log2 Pc
1

Pr

“

mn − n2

2

”

flops 1
P

“

mn2 − n3

3

”

+ 1
Pr

“

mn − n2

2

”

b + n2b
2Pc

Sequential CALU

messages 15
√

3mn2

2W3/2 + 15mn
2W

words 5
√

3mn2

2
√

W
− 5

√
3n3

6
√

W
+ 5

“

mn − n2

2

”

flops mn2 − n3

3
+ 2√

3
mn

√
W − 1√

3
n2

√
W

analysis performed for sequential CAQR [5]. We have then Pc =
√

3n√
W

, Pr =
√

3m√
W

, and

W1 = 2W
3 . With this choice, the runtime of sequential CALU is presented in Table

5.2.

6. Lower bounds on communication. In this section we discuss the optimal-
ity of CALU in terms of communication. We first recall communication complexity
bounds for dense matrix multiplication and dense LU factorization. A lower bound
on the volume of communication for the multiplication of two square dense matrices
of size n × n using a O(n3) sequential algorithm (not Strassen like) was introduced
first by Hong and Kung [15] in the sequential case. A simpler proof and its extension
to the parallel case is presented by Irony et al. in [16]. By using the simple fact that
the size of each message is limited by the size of the memory, a lower bound on the
number of messages can be deduced [5]. Memory here refers to fast memory in the
sequential case and to local memory of a processor in the parallel case.

It is shown in [6] that the lower bounds for matrix multiplication presented in
[15, 16] represent lower bounds for LU decomposition, using the following reduction
of matrix multiplication to LU:

I −B
A I

I

 =

I
A I

I

I −B
I A · B

I

 .

For sequential LU decomposition of a matrix of size m × n, a lower bound on
the number of words and number of messages communicated between fast and slow
memory is

words ≥ Ω

(

mn2

√
W

)

, (6.1)

messages ≥ Ω

(

mn2

W 3/2

)

, (6.2)

22

where W is the size of fast memory.

For parallel LU decomposition of a matrix of size m × n, the size of the local
memory of each processor is on the order of O(mn/P) words and the number of flops
the algorithm performs is at least (mn2 − n3)/P . A lower bound on the number of
words and number of messages at least one of the processors must communicate is:

words ≥ Ω

(
√

mn3

P

)

. (6.3)

messages ≥ Ω

(
√

nP

m

)

. (6.4)

In the following we show that CALU attains the lower bounds on communication.
We discuss first sequential TSLU and CALU, whose performance models are shown in
Tables 5.1 and 5.2. Sequential TSLU is optimal in terms of communication, modulo
constant factors. The number of messages exchanged is O(mb/W), that is on the order
of the number of messages necessary to read the matrix. The volume of communication
is O(mb), that is on the order of the size of the matrix. Sequential CALU attains the
lower bounds on communication, modulo constant factors, in terms of both number
of messages and volume of communication.

In contrast to CALU, previous algorithms do not always minimize communication.
We discuss here two algorithms, recursive LU [20, 11] and LAPACK’s DGETRF [1].

Recursive LU partitions the matrix along the columns into two submatrices. The
LU factorization is obtained by factoring the left half of the matrix, updating the right
half of the matrix, and then factoring the right half of the matrix. The factorizations
are performed recursively. The recursion is stopped when a column is reached. The
number of words transferred by this algorithm is O(mn2/

√
W) + mn. This can be

obtained by an analysis similar to the one performed for recursive QR [5]. Hence
recursive LU minimizes the number of words communicated. But it does not always
attain the lower bound for the number of messages. The base case for the recursion
is one column factorization. When the matrix is stored using square blocks of size√

W ×
√

W , the number of messages is at least O(mn/
√

W). When n < W , this is
larger than the lower bound on number of messages.

DGETRF uses a block algorithm to implement Gaussian elimination with partial
pivoting. As for sequential CALU, we consider that the matrix is partitioned into
Pr × Pc blocks, with P = Pr · Pc, and we analyze a right-looking variant of the
algorithm. With this partitioning, each block is of size m/Pr ×n/Pc, and P, Pr, Pc do
not refer to the number of processors, since the algorithm is sequential. The LAPACK
implementation of DGETRF refers to n/Pc as the “block size”. The size of the blocks
is chosen such that 3 blocks fit in memory, that is 3mn/P ≤ W . The communication
cost of the trailing matrix update is the same as for sequential CALU, described in
Appendix A. The overall communication cost due to the panel factorization is:

#words =

{

O (mn) if mn
Pc

≤ W

O
(

mn2

Pc

)

if mn
Pc

> W

#messages = O(nPr)

23

The total number of words communicated in DGETRF is:

#wordsDGETRF =

O
(

mn2

Pc

)

+ O (mnPc) if m > W

O
(

mn2

Pc

)

+ O (mnPc) if m ≤ W and mn
Pc

> W

O (mn) + O (mnPc) if m ≤ W and mn
Pc

≤ W

O (mn) if mn ≤ W

In the first case, m > W , one column does not fit in memory. We choose
Pc =

√
3n/

√
W , and Pr =

√
3m/

√
W . The number of words communicated is

O(mn2/
√

W). In this case DGETRF attains the bandwidth lower bound. In the
second case, at least one column fits in memory, but Pc is such that the panel does
not fit in memory. The number of words communicated is minimized by choosing
Pc =

√
n, and so the amount of words communicated is O(mn1.5). It exceeds the

lower bound by a factor of
√

W/
√

n, when W > n. In the third case, Pc is chosen
such that the panel fits in memory, that is Pc = mn/W . Then the number of words
communicated is O(m2n2/W), which exceeds the lower bound by a factor of m/

√
W .

In the last case the whole matrix fits in memory, and this case is trivial.
DGETRF does not always minimize the number of messages. Consider the case

m > W , when the matrix is partitioned in square blocks of size mn/P , such that the
number of words communicated is reduced. The panel factorization involves a total of
O(nPr) = O(mn√

W
) messages exchanged between slow and fast memory. If W = O(n),

this term attains the lower bound on number of messages. But not if n < W .
We discuss now parallel CALU, whose performance model is presented in table

5.2. To attain the communication bounds presented in equation (6.4), we need to
choose an optimal layout, that is optimal values for Pr, Pc and b. We choose the same
layout as optimal CAQR in [5]:

Pr =

√

mP

n
, Pc =

√

nP

m
and b = log−2

(
√

mP

n

)

·
√

mn

P
, (6.5)

The idea behind this layout is to choose b close to its maximum value, such that
the latency lower bound is attained, modulo polylog factors. In the same time, the
number of extra floating point operations performed due to this choice of b represent a
lower order term. With this layout, the performance of parallel CALU is given in 6.1.
It attains the lower bounds on both latency and bandwidth, modulo polylog factors.

We now compare CALU to parallel GEPP as for example implemented in the
routine PDGETRF of ScaLAPACK. For bandwidth, both algorithms have the same
communication cost. For latency, CALU is smaller by a factor of the order of b
(depending Pr and Pc). The reduction in the number of messages within processor
columns comes from the reduction in the factorization of a panel. Due to partial
pivoting, PDGETRF has an O(n log P) term in the number of messages. Hence it
does not attain the latency lower bound.

7. Conclusions. This paper discusses CALU, a communication optimal LU fac-
torization algorithm. The main part focuses on showing that CALU is stable in prac-
tice. First, we show that the growth factor of CALU is equivalent to performing
GEPP on a larger matrix, whose entries are the same as the entries of the input
matrix (slightly perturbed) and zeros. Since GEPP is stable in practice, we expect
CALU to be also stable in practice. Second, extensive experiments show that CALU
leads to results of (almost) the same order of magnitude as GEPP.

24

Parallel CALU with optimal layout Lower bound

Input matrix of size m × n

messages 3
q

nP
m

log2

„

q

mP
n

«

log P Ω(
q

nP
m

)

words
q

mn3

P

„

log−1

„

q

mP
n

«

+ log P2m
n

«

Ω(
q

mn3

P
)

flops 1
P

“

mn2 − n3

3

”

+ 5mn2

2Plog2

„

q

mP
n

« + 5mn2

3Plog3

„

q

mP
n

«

1
P

“

mn2 − n3

3

”

Input matrix of size n × n

messages 3
√

P log3 P Ω(
√

P)

words n2
√

P

`

2 log−1 P + 1.25 log P
´

Ω(n2
√

P
)

flops 1
P

2n3

3
+ 5n3

2P log2 P
+ 5n3

3P log3 P
1
P

“

mn2 − n3

3

”

Table 6.1

Performance models of parallel (binary tree based) CALU with optimal layout. The matrix
factored is of size m × n, m ≥ n and n × n. The values of Pr, Pc and b used in the optimal layout
are presented in equation (6.5). Some lower-order terms are omitted.

Two main directions are followed in our future work. The first direction focuses
on using a more stable factorization at each node of the reduction tree of CALU.
The goal is to decrease the upper bound of the growth factor of CALU. The second
direction focuses on the design and implementation of CALU on real machines that
are formed by multiple levels of memory hierarchy and heterogeneous parallel units.
We are interested in developing algorithms that are optimal over multiple levels of
the memory hierarchy and over different levels of parallelism and implement them.

Appendix A.

Runtime estimation of sequential CALU. We analyze the performance of sequen-
tial CALU. The number of memory accesses detailed for each iteration and each step
of the algorithm are as follows. At iteration k, the LU factorization of the current
panel is performed using TSLU. We present the total number of memory accesses
using the second approach for TSLU. We note W1 = W − n2/P 2

c .

#words var. 2 =
5n

Pc

Pc
∑

k=1

(

m − (k − 1)
n

Pc

)

≈ 5

(

mn − n2

2

)

#messages var. 2 =
5n

W1Pc

Pc
∑

k=1

(

m − (k − 1)
n

Pc

)

≈ 5

W1

(

mn − n2

2

)

The permutations used for the factorization of the panel at step k are applied on
the trailing matrix. We use the following strategy to perform the permutations for
each panel of the trailing matrix, similar to the strategy by blocks used for sequential
TSLU described in section 5. The rows that correspond to the first b positions of the
current panel are first read in memory with the first block. Then for each row that
needs to be pivoted, its corresponding block is read, and the rows are interchanged.

25

At most Pr blocks are modified, hence:

#words ≤ 2n

Pc

Pc
∑

k=1

(Pc − k)

(

m − (k − 1)
n

Pc

)

≈ (mn − n2

3
)Pc

#messages ≤
Pc
∑

k=1

2(Pc − k)Pr = PcP

The trailing matrix update iterates at each step k over the panels of the trailing
matrix. For each such panel, the update involves reading it in fast memory and
writing it back to slow memory, and reading in fast memory the current panel. This
leads to at most 3Pr messages exchanged.

#words ≤ 3n

Pc

Pc
∑

k=1

(Pc − k)

(

m − (k − 1)
n

Pc

)

≈ 3mn − n2

2
Pc

#messages ≤ 3Pr

Pc
∑

k=1

(Pc − k) ≈ 3PPc

2

We note that the number of messages and the number of words of CALU increase
with increasing P and Pc. P is given by the size of the memory W and so fixed.
Since we impose that 3 blocks fit in fast memory, P = 3mn

W . Also we impose that the
number of rows of a block is larger or equal to the number of columns. Hence Pc is
minimized when it is equal to

√

nP/m, that is the blocks are square. This is similar to

the analysis performed for sequential CAQR [5]. We have then Pc =
√

3n√
W

, Pr =
√

3m√
W

,

and W1 = 2W
3 . With this choice, the runtime of sequential CALU becomes:

TSeq.CALU var. 2 ≤
(

15
√

3mn2

2W 3/2
+

15mn

2W

)

α

+

(

5
√

3mn2

2
√

W
− 5

√
3n3

6
√

W
+ 5

(

mn − n2

2

)

)

β

+

(

mn2 − n3

3
+

2√
3
mn

√
W − 1√

3
n2

√
W

)

γ

Runtime estimation of parallel CALU. In the following we estimate the perfor-
mance of parallel CALU. The input matrix of size m× n is distributed over a grid of
processors of size Pr × Pc, Pr · Pc = P , using a block cyclic layout. The size of the
block is b. We detail the estimation at each iteration j of the algorithm. We note the
size of the active matrix mj × nj , with mj = m − (j − 1)b and nj = n − (j − 1)b.

1. Compute TSLU factorization of current panel j.

∑n/b
j=1

[[

2mjb2

Pr
+ b3

3 (5 log2 Pr − 1)
]

γ + log2 Prα + b2 log2 Prβ
]

≈
[

1
Pr

(

2mn− n2
)

b + nb2

3 (5 log2 Pr − 1)
]

γ + n
b log2 Prα + nb log2 Prβ

2. Broadcast the pivot information along the rows of the process grid.

26

n/b
∑

j=1

log2 Pc(α + bβ) = log2 Pc

(n

b
α + nβ

)

3. PDLAPIV : Apply the pivot information to the remainder of the rows. We
consider that this is performed using an all to all reduce operation.

n/b
∑

j=1

log2 Pr

(

α +
nb

Pc
β

)

=
n

b
log2 Prα +

n2

Pc
log2 Prβ

4. PDTRSM : Broadcast the b × b upper part of panel j of L along row of
processes owning block row j of U . Compute block row j of U .

n/b
∑

j=1

(

log2 Pcα + log2 Pc
b2

2
β +

nj − b

Pc
b2γ

)

=
n

b
log2 Pcα +

nb

2
log2 Pcβ +

n2b

2Pc
γ

5. PDGEMM : Broadcast the block column j of L along rows of processors of
the grid.

n/b
∑

j=1

log2 Pc

(

αr +
(mj − b)b

Pr
βr

)

= log2 Pc

(

n

b
αr +

1

Pr

(

mn − n2

2

)

βr

)

Broadcast the block row j of U along columns of processors of the grid.

n

b
log2 Prαc +

n2

2Pc
log2 Prβc

Perform a rank-b update on the trailing matrix.

n/b
∑

j=1

2b
mj − b

Pr

nj − b

Pc
≈ 1

P

(

mn2 − n3

3

)

γ

Appendix B. We present experimental results for binary tree based CALU and
flat tree based CALU, and we compare them with GEPP. We show results obtained
for the LU decomposition and the linear solver.

Tables 7.2 and 7.3 display the results obtained for random matrices. They show
the growth factors, the threshold, the norm of the factors L and U and their inverses,
and the relative error of the decomposition.

Tables 7.4, 7.5, and 7.6 display results obtained for the special matrices presented
in Table 7.1. We include in our set sparse matrices. The size of the tested matrices
is n = 4096. For binary tree based CALU we use P = 64, b = 8, and for flat tree
based CALU we use b = 8. With n = 4096 and b = 8, this means the flat tree
has 4096/8 = 512 leaf nodes and its height is 511. When iterative refinement fails
to reduce the componentwise backward error to the order of 10−16, we indicate the
number of iterations done before failing to converge and stopping by putting it in
parentheses.

27

Table 7.1: Special matrices in our test set.

No. Matrix Remarks

1 hadamard Hadamard matrix. hadamard(n), where n, n/12, or n/20 is power of
2.

2 house Householder matrix, A = eye(n) − β ∗ v ∗ v′, where [v, β, s] =
gallery(’house’, randn(n, 1)).

3 parter Parter matrix, a Toeplitz matrix with most of singular values near π.
gallery(’parter’, n), or A(i, j) = 1/(i − j + 0.5).

4 ris Ris matrix, matrix with elements A(i, j) = 0.5/(n − i − j + 1.5). The
eigenvalues cluster around −π/2 and π/2. gallery(’ris’, n).

5 kms Kac-Murdock-Szego Toeplitz matrix. Its inverse is tridiagonal.
gallery(’kms’, n) or gallery(’kms’, n, rand).

6 toeppen Pentadiagonal Toeplitz matrix (sparse).
7 condex Counter-example matrix to condition estimators. gallery(’condex’, n).
8 moler Moler matrix, a symmetric positive definite (spd) matrix.

gallery(’moler’, n).
9 circul Circulant matrix, gallery(’circul’, randn(n, 1)).
10 randcorr Random n × n correlation matrix with random eigenvalues from

a uniform distribution, a symmetric positive semi-definite matrix.
gallery(’randcorr’, n).

11 poisson Block tridiagonal matrix from Poisson’s equation (sparse), A =
gallery(’poisson’,sqrt(n)).

12 hankel Hankel matrix, A = hankel(c, r), where c=randn(n, 1), r=randn(n, 1),
and c(n) = r(1).

13 jordbloc Jordan block matrix (sparse).
14 compan Companion matrix (sparse), A = compan(randn(n+1,1)).
15 pei Pei matrix, a symmetric matrix. gallery(’pei’, n) or gallery(’pei’, n,

randn).
16 randcolu Random matrix with normalized cols and specified singular values.

gallery(’randcolu’, n).
17 sprandn Sparse normally distributed random matrix, A = sprandn(n, n,0.02).
18 riemann Matrix associated with the Riemann hypothesis. gallery(’riemann’, n).
19 compar Comparison matrix, gallery(’compar’, randn(n), unidrnd(2)−1).
20 tridiag Tridiagonal matrix (sparse).
21 chebspec Chebyshev spectral differentiation matrix, gallery(’chebspec’, n, 1).
22 lehmer Lehmer matrix, a symmetric positive definite matrix such that

A(i, j) = i/j for j ≥ i. Its inverse is tridiagonal. gallery(’lehmer’,
n).

23 toeppd Symmetric positive semi-definite Toeplitz matrix. gallery(’toeppd’, n).
24 minij Symmetric positive definite matrix with A(i, j) = min(i, j).

gallery(’minij’, n).
25 randsvd Random matrix with preassigned singular values and specified band-

width. gallery(’randsvd’, n).
26 forsythe Forsythe matrix, a perturbed Jordan block matrix (sparse).
27 fiedler Fiedler matrix, gallery(’fiedler’, n), or gallery(’fiedler’, randn(n, 1)).
28 dorr Dorr matrix, a diagonally dominant, ill-conditioned, tridiagonal matrix

(sparse).

29 demmel A = D∗(eye(n) + 10−7∗rand(n)), where D = diag(1014∗(0:n−1)/n) [4].
30 chebvand Chebyshev Vandermonde matrix based on n equally spaced points on

the interval [0, 1]. gallery(’chebvand’, n).
31 invhess A=gallery(’invhess’, n, rand(n−1, 1)). Its inverse is an upper Hessen-

berg matrix.

28

32 prolate Prolate matrix, a spd ill-conditioned Toeplitz matrix. gallery(’prolate’,
n).

33 frank Frank matrix, an upper Hessenberg matrix with ill-conditioned eigen-
values.

34 cauchy Cauchy matrix, gallery(’cauchy’, randn(n, 1), randn(n, 1)).
35 hilb Hilbert matrix with elements 1/(i + j − 1). A =hilb(n).
36 lotkin Lotkin matrix, the Hilbert matrix with its first row altered to all ones.

gallery(’lotkin’, n).
37 kahan Kahan matrix, an upper trapezoidal matrix.

29

Table 7.2

Stability of the LU decomposition for binary tree based CALU and GEPP on random matrices.

Binary tree based CALU

n P b gW gD gT τave τmin ||L||1 ||L−1||1 ||U ||1 ||U−1||1 ||PA−LU||F
||A||F

8192

256
32 8.5E+1 1.1E+2 4.9E+2 0.84 0.40 3.6E+3 3.3E+3 2.0E+5 2.4E+2 1.1E-13
16 8.9E+1 1.1E+2 5.2E+2 0.86 0.37 3.7E+3 3.3E+3 2.0E+5 9.0E+2 1.1E-13

128
64 8.6E+1 9.8E+1 4.7E+2 0.84 0.42 3.1E+3 3.2E+3 2.0E+5 4.2E+2 1.1E-13
32 9.0E+1 1.2E+2 5.1E+2 0.84 0.38 3.5E+3 3.3E+3 2.0E+5 2.2E+2 1.1E-13
16 8.5E+1 1.1E+2 4.9E+2 0.86 0.37 4.1E+3 3.2E+3 2.0E+5 5.1E+2 1.1E-13

64

128 7.2E+1 8.8E+1 3.9E+2 0.85 0.47 2.9E+3 3.1E+3 1.9E+5 4.6E+2 1.0E-13
64 8.2E+1 9.4E+1 4.7E+2 0.84 0.44 3.2E+3 3.2E+3 1.9E+5 2.2E+2 1.1E-13
32 7.4E+1 9.9E+1 4.3E+2 0.84 0.40 3.3E+3 3.3E+3 2.0E+5 3.0E+2 1.1E-13
16 8.3E+1 1.1E+2 5.0E+2 0.86 0.35 3.9E+3 3.2E+3 2.0E+5 6.8E+2 1.1E-13

4096

256 16 6.2E+1 7.5E+1 3.5E+2 0.87 0.41 1.7E+3 1.7E+3 7.4E+4 4.4E+2 5.6E-14

128
32 5.3E+1 7.3E+1 3.0E+2 0.86 0.40 1.7E+3 1.7E+3 7.5E+4 3.2E+2 5.7E-14
16 7.3E+1 9.0E+1 3.9E+2 0.87 0.38 1.9E+3 1.7E+3 7.4E+4 3.5E+2 5.7E-14

64
64 5.5E+1 7.0E+1 2.9E+2 0.86 0.46 1.5E+3 1.7E+3 7.1E+4 4.3E+2 5.6E-14
32 5.2E+1 6.8E+1 3.0E+2 0.86 0.41 1.7E+3 1.7E+3 7.5E+4 1.7E+2 5.8E-14
16 5.4E+1 6.8E+1 3.1E+2 0.88 0.39 1.7E+3 1.7E+3 7.4E+4 1.5E+3 5.6E-14

2048
128 16 4.1E+1 4.8E+1 2.1E+2 0.89 0.41 8.9E+2 8.7E+2 2.7E+4 3.5E+2 2.9E-14

64
32 3.6E+1 4.7E+1 1.9E+2 0.88 0.46 7.8E+2 9.1E+2 2.7E+4 1.6E+2 2.9E-14
16 3.7E+1 4.7E+1 1.9E+2 0.89 0.40 9.0E+2 8.8E+2 2.7E+4 1.4E+2 2.9E-14

1024 64 16 2.4E+1 3.4E+1 1.2E+2 0.90 0.43 4.7E+2 4.7E+2 1.0E+4 3.1E+2 1.4E-14
GEPP

8192 - 5.5E+1 7.6E+1 3.0E+2 1 1 1.9E+3 2.6E+3 8.7E+3 6.0E+2 7.2E-14
4096 - 3.6E+1 5.1E+1 2.0E+2 1 1 1.0E+3 1.4E+3 2.3E+4 1.9E+2 3.9E-14
2048 - 2.6E+1 3.6E+1 1.4E+2 1 1 5.5E+2 7.4E+2 6.1E+4 1.8E+2 2.0E-14
1024 - 1.8E+1 2.5E+1 9.3E+1 1 1 2.8E+2 4.1E+2 1.6E+5 4.3E+2 1.1E-14

3
0

Table 7.3

Stability of the LU decomposition for flat tree based CALU on random matrices.

n b gW gD gT τave τmin ||L||1 ||L−1||1 ||U ||1 ||U−1||1 ||PA−LU||F
||A||F

8192

4 7.0E+1 9.5E+1 3.8E+2 0.97 0.44 2.7E+3 2.7E+3 1.7E+5 3.5E+2 7.7E-14
8 8.4E+1 1.1E+2 4.8E+2 0.93 0.42 3.2E+3 2.9E+3 1.8E+5 7.3E+2 8.6E-14
16 1.0E+2 1.1E+2 5.8E+2 0.87 0.36 3.6E+3 3.1E+3 1.9E+5 2.1E+2 1.0E-13
32 1.0E+2 1.1E+2 5.7E+2 0.81 0.35 4.0E+3 3.4E+3 2.0E+5 3.9E+2 1.2E-13
64 9.6E+1 1.2E+2 5.5E+2 0.80 0.38 3.6E+3 3.3E+3 2.0E+5 1.6E+3 1.2E-13

4096

4 4.7E+1 6.4E+1 2.6E+2 0.97 0.48 1.2E+3 1.4E+3 6.3E+4 1.5E+2 4.1E-14
8 5.8E+1 7.1E+1 3.1E+2 0.93 0.40 1.5E+3 1.5E+3 6.8E+4 1.1E+2 4.6E-14
16 6.2E+1 7.0E+1 3.6E+2 0.88 0.35 2.2E+3 1.7E+3 7.1E+4 3.4E+2 5.4E-14
32 7.2E+1 7.9E+1 3.9E+2 0.83 0.37 1.9E+3 1.7E+3 7.6E+4 3.1E+2 6.2E-14
64 5.0E+1 6.1E+1 2.8E+2 0.83 0.42 1.7E+3 1.7E+3 7.1E+4 4.9E+2 5.9E-14

2048

4 3.2E+1 4.1E+1 1.7E+2 0.97 0.51 7.2E+2 7.7E+2 2.5E+4 6.2E+2 2.2E-14
8 3.5E+1 4.9E+1 1.8E+2 0.93 0.43 8.4E+2 8.2E+2 2.6E+4 1.7E+2 2.4E-14
16 3.8E+1 5.0E+1 2.0E+2 0.88 0.35 9.8E+2 8.9E+2 2.7E+4 1.0E+3 2.9E-14
32 3.7E+1 4.5E+1 1.9E+2 0.85 0.40 8.7E+2 8.9E+2 2.7E+4 8.8E+2 3.1E-14
64 3.7E+1 4.8E+1 1.9E+2 0.87 0.45 8.6E+2 8.7E+2 2.7E+4 2.2E+2 2.9E-14

1024

4 2.4E+1 2.8E+1 1.2E+2 0.97 0.48 3.5E+2 4.2E+2 9.2E+3 1.9E+2 1.1E-14
8 2.8E+1 3.4E+1 1.4E+2 0.94 0.42 4.5E+2 4.4E+2 9.9E+3 1.7E+2 1.3E-14
16 2.8E+1 3.4E+1 1.4E+2 0.90 0.39 4.7E+2 4.7E+2 9.9E+3 3.6E+2 1.4E-14
32 2.5E+1 3.3E+1 1.3E+2 0.88 0.44 4.4E+2 4.6E+2 9.9E+3 3.2E+2 1.5E-14
64 2.2E+1 2.8E+1 1.1E+2 0.91 0.50 3.9E+2 4.5E+2 9.7E+3 3.2E+2 1.4E-14

3
1

Table 7.4

Stability results for GEPP on special matrices.

matrix cond(A,2) gW ||L||1 ||L−1||1 max
ij |Uij | min

kk |Ukk| cond(U ,1) ||PA−LU||F
||A||F η wb NIR

w
el

l-
co

n
d
it
io

n
ed

hadamard 1.0E+0 4.1E+3 4.1E+3 4.1E+3 4.1E+3 1.0E+0 5.3E+5 0.0E+0 3.3E-16 4.6E-15 2
house 1.0E+0 5.1E+0 8.9E+2 2.6E+2 5.1E+0 5.7E-2 1.4E+4 2.0E-15 5.6E-17 6.3E-15 3
parter 4.8E+0 1.6E+0 4.8E+1 2.0E+0 3.1E+0 2.0E+0 2.3E+2 2.3E-15 8.3E-16 4.4E-15 3
ris 4.8E+0 1.6E+0 4.8E+1 2.0E+0 1.6E+0 1.0E+0 2.3E+2 2.3E-15 7.1E-16 4.7E-15 2
kms 9.1E+0 1.0E+0 2.0E+0 1.5E+0 1.0E+0 7.5E-1 3.0E+0 2.0E-16 1.1E-16 6.7E-16 1
toeppen 1.0E+1 1.1E+0 2.1E+0 9.0E+0 1.1E+1 1.0E+1 3.3E+1 1.1E-17 7.2E-17 3.0E-15 1
condex 1.0E+2 1.0E+0 2.0E+0 5.6E+0 1.0E+2 1.0E+0 7.8E+2 1.8E-15 9.7E-16 6.8E-15 3
moler 1.9E+2 1.0E+0 2.2E+1 2.0E+0 1.0E+0 1.0E+0 4.4E+1 3.8E-14 2.6E-16 1.7E-15 2
circul 3.7E+2 1.8E+2 1.0E+3 1.4E+3 6.4E+2 3.4E+0 1.2E+6 4.3E-14 2.1E-15 1.2E-14 1
randcorr 1.4E+3 1.0E+0 3.1E+1 5.7E+1 1.0E+0 2.3E-1 5.0E+4 1.6E-15 7.8E-17 8.0E-16 1
poisson 1.7E+3 1.0E+0 2.0E+0 3.4E+1 4.0E+0 3.2E+0 7.8E+1 2.8E-16 1.4E-16 7.5E-16 1
hankel 2.9E+3 6.2E+1 9.8E+2 1.5E+3 2.4E+2 4.5E+0 2.0E+6 4.2E-14 2.5E-15 1.6E-14 2
jordbloc 5.2E+3 1.0E+0 1.0E+0 1.0E+0 1.0E+0 1.0E+0 8.2E+3 0.0E+0 2.0E-17 8.3E-17 0
compan 7.5E+3 1.0E+0 2.0E+0 4.0E+0 7.9E+0 2.6E-1 7.8E+1 0.0E+0 2.0E-17 6.2E-13 1
pei 1.0E+4 1.0E+0 4.1E+3 9.8E+0 1.0E+0 3.9E-1 2.5E+1 7.0E-16 6.6E-18 2.3E-17 0
randcolu 1.5E+4 4.6E+1 9.9E+2 1.4E+3 3.2E+0 5.6E-2 1.1E+7 4.0E-14 2.3E-15 1.4E-14 1
sprandn 1.6E+4 7.4E+0 7.4E+2 1.5E+3 2.9E+1 1.7E+0 1.3E+7 3.4E-14 8.5E-15 9.3E-14 2
riemann 1.9E+4 1.0E+0 4.1E+3 3.5E+0 4.1E+3 1.0E+0 2.6E+6 5.7E-19 2.0E-16 1.7E-15 2
compar 1.8E+6 2.3E+1 9.8E+2 1.4E+3 1.1E+2 3.1E+0 2.7E+7 2.3E-14 1.2E-15 8.8E-15 1
tridiag 6.8E+6 1.0E+0 2.0E+0 1.5E+3 2.0E+0 1.0E+0 5.1E+3 1.4E-18 2.6E-17 1.2E-16 0
chebspec 1.3E+7 1.0E+0 5.4E+1 9.2E+0 7.1E+6 1.5E+3 4.2E+7 1.8E-15 2.9E-18 1.6E-15 1
lehmer 1.8E+7 1.0E+0 1.5E+3 2.0E+0 1.0E+0 4.9E-4 8.2E+3 1.5E-15 2.8E-17 1.7E-16 0
toeppd 2.1E+7 1.0E+0 4.2E+1 9.8E+2 2.0E+3 2.9E+2 1.3E+6 1.5E-15 5.0E-17 3.3E-16 1
minij 2.7E+7 1.0E+0 4.1E+3 2.0E+0 1.0E+0 1.0E+0 8.2E+3 0.0E+0 7.8E-19 4.2E-18 0
randsvd 6.7E+7 4.7E+0 9.9E+2 1.4E+3 6.4E-2 3.6E-7 1.4E+10 5.6E-15 3.4E-16 2.0E-15 2
forsythe 6.7E+7 1.0E+0 1.0E+0 1.0E+0 1.0E+0 1.5E-8 6.7E+7 0.0E+0 0.0E+0 0.0E+0 0

il
l-
co

n
d
it
io

n
ed

fiedler 2.5E+10 1.0E+0 1.7E+3 1.5E+1 7.9E+0 4.1E-7 2.9E+8 1.6E-16 3.3E-17 1.0E-15 1
dorr 7.4E+10 1.0E+0 2.0E+0 3.1E+2 3.4E+5 1.3E+0 1.7E+11 6.0E-18 2.3E-17 2.2E-15 1
demmel 1.0E+14 2.5E+0 1.2E+2 1.4E+2 1.6E+14 7.8E+3 1.7E+17 3.7E-15 7.1E-21 4.8E-9 2
chebvand 3.8E+19 2.0E+2 2.2E+3 3.1E+3 1.8E+2 9.0E-10 4.8E+22 5.1E-14 3.3E-17 2.6E-16 1
invhess 4.1E+19 2.0E+0 4.1E+3 2.0E+0 5.4E+0 4.9E-4 3.0E+48 1.2E-14 1.7E-17 2.4E-14 (1)
prolate 1.4E+20 1.2E+1 1.4E+3 4.6E+3 5.3E+0 5.9E-13 4.7E+23 1.6E-14 4.7E-16 6.3E-15 (1)
frank 1.7E+20 1.0E+0 2.0E+0 2.0E+0 4.1E+3 5.9E-24 1.9E+30 2.2E-18 4.9E-27 1.2E-23 0
cauchy 5.5E+21 1.0E+0 3.1E+2 1.9E+2 1.0E+7 2.3E-15 2.1E+24 1.4E-15 6.1E-19 5.2E-15 (1)
hilb 8.0E+21 1.0E+0 3.1E+3 1.3E+3 1.0E+0 4.2E-20 2.2E+22 2.2E-16 6.0E-19 2.0E-17 0
lotkin 5.4E+22 1.0E+0 2.6E+3 1.3E+3 1.0E+0 3.6E-19 2.3E+22 8.0E-17 3.0E-18 2.3E-15 (1)
kahan 1.1E+28 1.0E+0 1.0E+0 1.0E+0 1.0E+0 2.2E-13 4.1E+53 0.0E+0 9.7E-18 4.3E-16 1

3
2

Table 7.5

Stability of CALU based on a binary tree for special matrices.

matrix gW τave τmin ||L||1 ||L−1||1 max
ij |Uij | min

kk |Ukk| cond(U ,1) ||PA−LU||F
||A||F η wb NIR

hadamard 4.1E+3 1.00 1.00 4.1E+3 3.8E+3 4.1E+3 1.0E+0 1.2E+6 0.0E+0 2.9E-16 3.7E-15 2
house 5.1E+0 1.00 1.00 8.9E+2 2.6E+2 5.1E+0 5.7E-2 1.4E+4 2.0E-15 5.6E-17 6.8E-15 3
parter 1.6E+0 1.00 1.00 4.8E+1 2.0E+0 3.1E+0 2.0E+0 2.3E+2 2.3E-15 7.5E-16 4.1E-15 3
ris 1.6E+0 1.00 1.00 4.8E+1 2.0E+0 1.6E+0 1.0E+0 2.3E+2 2.3E-15 8.0E-16 4.2E-15 3
kms 1.0E+0 1.00 1.00 2.0E+0 1.5E+0 1.0E+0 7.5E-1 3.0E+0 2.0E-16 1.1E-16 5.9E-16 1
toeppen 1.1E+0 1.00 1.00 2.1E+0 9.0E+0 1.1E+1 1.0E+1 3.3E+1 1.1E-17 7.1E-17 1.3E-15 1
condex 1.0E+0 1.00 1.00 2.0E+0 5.6E+0 1.0E+2 1.0E+0 7.8E+2 1.8E-15 9.4E-16 4.8E-15 3
moler 1.0E+0 1.00 1.00 2.2E+1 2.0E+0 1.0E+0 1.0E+0 4.4E+1 3.8E-14 2.7E-16 1.8E-15 3
circul 2.3E+2 0.91 0.41 1.8E+3 1.7E+3 7.6E+2 3.1E+0 2.0E+6 5.7E-14 2.8E-15 1.6E-14 1
randcorr 1.0E+0 1.00 1.00 3.1E+1 5.7E+1 1.0E+0 2.3E-1 5.0E+4 1.6E-15 7.7E-17 7.7E-16 1
poisson 1.0E+0 1.00 1.00 2.0E+0 3.4E+1 4.0E+0 3.2E+0 7.8E+1 2.8E-16 1.4E-16 9.8E-16 1
hankel 9.3E+1 0.92 0.42 1.8E+3 1.7E+3 4.3E+2 2.5E+0 2.3E+6 5.3E-14 3.7E-15 2.2E-14 2
jordbloc 1.0E+0 1.00 1.00 1.0E+0 1.0E+0 1.0E+0 1.0E+0 8.2E+3 0.0E+0 2.0E-17 8.8E-17 0
compan 1.0E+0 1.00 1.00 2.0E+0 4.0E+0 7.9E+0 2.6E-1 7.8E+1 0.0E+0 9.9E-18 4.0E-14 1
pei 1.0E+0 1.00 1.00 4.1E+3 9.8E+0 1.0E+0 3.9E-1 2.5E+1 7.0E-16 3.6E-17 4.7E-17 0
randcolu 4.7E+1 0.91 0.40 2.1E+3 1.6E+3 3.8E+0 4.8E-2 1.4E+7 5.2E-14 2.9E-15 1.8E-14 2
sprandn 8.0E+0 0.93 0.41 1.2E+3 1.8E+3 3.6E+1 1.4E+0 2.4E+7 4.5E-14 9.6E-15 1.4E-13 2
riemann 1.0E+0 1.00 1.00 4.1E+3 5.1E+2 4.1E+3 1.0E+0 1.7E+8 2.5E-18 1.1E-16 1.4E-15 2
compar 3.5E+1 0.91 0.42 1.7E+3 1.6E+3 1.8E+2 2.8E+0 3.3E+7 3.0E-14 1.7E-15 1.1E-14 1
tridiag 1.0E+0 1.00 1.00 2.0E+0 1.5E+3 2.0E+0 1.0E+0 5.1E+3 1.4E-18 2.5E-17 1.1E-16 0
chebspec 1.0E+0 1.00 1.00 5.4E+1 9.2E+0 7.1E+6 1.5E+3 4.2E+7 1.8E-15 3.2E-18 1.6E-15 1
lehmer 1.0E+0 1.00 0.78 1.9E+3 5.0E+2 1.0E+0 4.9E-4 1.7E+6 1.5E-15 1.8E-17 9.3E-17 0
toeppd 1.0E+0 1.00 1.00 4.2E+1 9.8E+2 2.0E+3 2.9E+2 1.3E+6 1.5E-15 5.1E-17 4.3E-16 1
minij 1.0E+0 1.00 1.00 4.1E+3 2.0E+0 1.0E+0 1.0E+0 8.2E+3 0.0E+0 5.1E-19 3.5E-18 0
randsvd 8.3E+0 0.91 0.33 1.8E+3 1.6E+3 8.5E-2 3.0E-7 2.4E+10 7.4E-15 4.5E-16 2.5E-15 2
forsythe 1.0E+0 1.00 1.00 1.0E+0 1.0E+0 1.0E+0 1.5E-8 6.7E+7 0.0E+0 0.0E+0 0.0E+0 0
fiedler 1.0E+0 1.00 0.90 1.7E+3 1.5E+1 7.9E+0 4.1E-7 2.9E+8 1.6E-16 3.5E-17 6.4E-16 1
dorr 1.0E+0 1.00 1.00 2.0E+0 3.1E+2 3.4E+5 1.3E+0 1.7E+11 6.0E-18 2.6E-17 1.4E-15 1
demmel 2.8E+0 0.98 0.38 1.3E+2 1.3E+2 2.2E+14 6.2E+3 2.0E+17 3.8E-15 1.1E-20 9.8E-9 3
chebvand 3.1E+2 0.91 0.42 2.2E+3 3.4E+3 2.3E+2 8.4E-10 3.4E+23 6.6E-14 3.7E-17 3.2E-16 1
invhess 2.0E+0 1.00 1.00 4.1E+3 2.0E+0 5.4E+0 4.9E-4 3.0E+48 1.2E-14 1.2E-16 7.1E-14 (2)
prolate 1.7E+1 0.95 0.39 1.6E+3 5.8E+3 7.5E+0 6.6E-12 1.4E+23 2.0E-14 5.1E-16 9.1E-15 (1)
frank 1.0E+0 1.00 1.00 2.0E+0 2.0E+0 4.1E+3 5.9E-24 1.9E+30 2.2E-18 7.4E-28 1.8E-24 0
cauchy 1.0E+0 1.00 0.34 3.1E+2 2.0E+2 1.0E+7 2.3E-15 6.0E+24 1.4E-15 7.2E-19 7.4E-15 (1)
hilb 1.0E+0 0.92 0.37 3.2E+3 1.6E+3 1.0E+0 1.3E-19 1.8E+22 2.2E-16 5.5E-19 2.2E-17 0
lotkin 1.0E+0 0.93 0.48 2.7E+3 1.4E+3 1.0E+0 4.6E-19 7.5E+22 8.0E-17 2.2E-18 2.1E-16 0
kahan 1.0E+0 1.00 1.00 1.0E+0 1.0E+0 1.0E+0 2.2E-13 4.1E+53 0.0E+0 7.7E-18 2.1E-16 0

3
3

Table 7.6

Stability of CALU based on a flat tree for special matrices.

matrix gW τave τmin ||L||1 ||L−1||1 max
ij |Uij | min

kk |Ukk| cond(U ,1) ||PA−LU||F
||A||F η wb NIR

hadamard 4.1E+3 1.00 1.00 4.1E+3 4.1E+3 4.1E+3 1.0E+0 5.3E+5 0.0E+0 2.6E-16 2.6E-15 2
house 5.1E+0 1.00 1.00 8.9E+2 2.6E+2 5.1E+0 5.7E-2 1.4E+4 2.0E-15 7.1E-17 6.9E-15 3
parter 1.6E+0 1.00 1.00 4.8E+1 2.0E+0 3.1E+0 2.0E+0 2.3E+2 2.3E-15 7.3E-16 4.4E-15 3
ris 1.6E+0 1.00 1.00 4.8E+1 2.0E+0 1.6E+0 1.0E+0 2.3E+2 2.3E-15 7.2E-16 4.2E-15 2
kms 1.0E+0 1.00 1.00 2.0E+0 1.5E+0 1.0E+0 7.5E-1 3.0E+0 2.0E-16 1.0E-16 6.2E-16 1
toeppen 1.1E+0 1.00 1.00 2.1E+0 9.0E+0 1.1E+1 1.0E+1 3.3E+1 1.1E-17 6.9E-17 1.2E-15 2
condex 1.0E+0 1.00 1.00 2.0E+0 5.6E+0 1.0E+2 1.0E+0 7.8E+2 1.8E-15 9.1E-16 5.6E-15 3
moler 1.0E+0 1.00 1.00 2.2E+1 2.0E+0 1.0E+0 1.0E+0 4.4E+1 3.8E-14 2.7E-16 1.9E-15 1
circul 2.0E+2 0.93 0.39 1.6E+3 1.6E+3 6.3E+2 3.3E+0 2.6E+6 5.2E-14 2.7E-15 1.9E-14 2
randcorr 1.0E+0 1.00 1.00 3.1E+1 5.7E+1 1.0E+0 2.3E-1 5.0E+4 1.6E-15 7.6E-17 5.7E-16 1
poisson 1.0E+0 1.00 1.00 2.0E+0 3.4E+1 4.0E+0 3.2E+0 7.8E+1 2.8E-16 1.4E-16 1.1E-15 1
hankel 8.3E+1 0.93 0.40 1.7E+3 1.8E+3 3.4E+2 4.5E+0 2.8E+6 4.9E-14 3.2E-15 1.9E-14 2
jordbloc 1.0E+0 1.00 1.00 1.0E+0 1.0E+0 1.0E+0 1.0E+0 8.2E+3 0.0E+0 2.0E-17 8.5E-17 0
compan 1.0E+0 1.00 1.00 2.0E+0 4.0E+0 7.9E+0 2.6E-1 7.8E+1 0.0E+0 1.5E-17 8.1E-13 1
pei 1.0E+0 1.00 1.00 4.1E+3 9.8E+0 1.0E+0 3.9E-1 2.5E+1 7.0E-16 4.6E-17 6.3E-17 0
randcolu 5.6E+1 0.93 0.30 2.1E+3 1.6E+3 4.8E+0 5.6E-2 1.4E+7 4.8E-14 2.6E-15 1.5E-14 2
sprandn 8.3E+0 0.94 0.41 1.2E+3 1.8E+3 4.0E+1 1.4E+0 2.4E+7 4.2E-14 1.0E-14 1.3E-13 2
riemann 1.0E+0 1.00 1.00 4.1E+3 3.5E+0 4.1E+3 1.0E+0 2.6E+6 5.7E-19 1.7E-16 1.6E-15 1
compar 2.9E+1 0.93 0.41 1.6E+3 1.5E+3 1.3E+2 2.8E+0 2.2E+7 2.8E-14 1.7E-15 1.1E-14 1
tridiag 1.0E+0 1.00 1.00 2.0E+0 1.5E+3 2.0E+0 1.0E+0 5.1E+3 1.4E-18 2.5E-17 1.1E-16 0
chebspec 1.0E+0 1.00 1.00 5.4E+1 9.2E+0 7.1E+6 1.5E+3 4.2E+7 1.8E-15 2.6E-18 1.6E-15 1
lehmer 1.0E+0 1.00 1.00 1.5E+3 2.0E+0 1.0E+0 4.9E-4 8.2E+3 1.5E-15 2.8E-17 1.9E-16 0
toeppd 1.0E+0 1.00 1.00 4.2E+1 9.8E+2 2.0E+3 2.9E+2 1.3E+6 1.5E-15 5.1E-17 3.2E-16 1
minij 1.0E+0 1.00 1.00 4.1E+3 2.0E+0 1.0E+0 1.0E+0 8.2E+3 0.0E+0 7.7E-19 4.6E-18 0
randsvd 6.1E+0 0.93 0.44 1.4E+3 1.5E+3 7.7E-2 3.2E-7 2.1E+10 6.6E-15 4.3E-16 2.3E-15 2
forsythe 1.0E+0 1.00 1.00 1.0E+0 1.0E+0 1.0E+0 1.5E-8 6.7E+7 0.0E+0 0.0E+0 0.0E+0 0
fiedler 1.0E+0 1.00 1.00 1.7E+3 1.5E+1 7.9E+0 4.1E-7 2.9E+8 1.6E-16 2.7E-17 7.0E-16 1
dorr 1.0E+0 1.00 1.00 2.0E+0 3.1E+2 3.4E+5 1.3E+0 1.7E+11 6.0E-18 2.6E-17 1.3E-15 1
demmel 2.0E+0 0.98 0.37 1.2E+2 1.3E+2 1.6E+14 7.4E+3 2.1E+17 4.0E-15 7.6E-21 1.5E-8 2
chebvand 3.2E+2 0.93 0.32 3.7E+3 3.2E+3 3.2E+2 9.1E-10 4.7E+23 6.2E-14 3.7E-17 2.7E-16 1
invhess 2.0E+0 1.00 1.00 4.1E+3 2.0E+0 5.4E+0 4.9E-4 3.0E+48 1.2E-14 4.4E-16 2.0E-13 (2)
prolate 1.9E+1 0.95 0.30 1.3E+3 4.7E+3 8.2E+0 1.2E-11 4.9E+22 2.3E-14 4.9E-16 7.4E-15 (1)
frank 1.0E+0 1.00 1.00 2.0E+0 2.0E+0 4.1E+3 5.9E-24 1.9E+30 2.2E-18 5.2E-27 1.2E-23 0
cauchy 1.0E+0 1.00 0.47 3.1E+2 2.1E+2 1.0E+7 2.3E-15 1.7E+24 1.5E-15 6.0E-19 2.9E-15 (1)
hilb 1.0E+0 0.93 0.24 3.0E+3 1.6E+3 1.0E+0 3.1E-19 2.7E+21 2.2E-16 5.9E-19 2.1E-17 0
lotkin 1.0E+0 0.93 0.44 2.6E+3 1.9E+3 1.0E+0 2.4E-19 4.3E+22 8.1E-17 3.4E-18 2.3E-15 (2)
kahan 1.0E+0 1.00 1.00 1.0E+0 1.0E+0 1.0E+0 2.2E-13 4.1E+53 0.0E+0 9.3E-18 3.1E-16 1

3
4

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’
Guide, SIAM, Philadelphia, PA, USA, 1999.

[2] A Buttari, J Langou, J. Kurzak, and J. Dongarra, A class of parallel tiled linear algebra
algorithms for multicore architectures, Parallel Computing, 35 (2009), pp. 38–53.

[3] J. Choi, J. Dongarra, L. S. Ostrouchov, A. P. Petitet, D. W. Walker, and R. C.

Whaley, The Design and Implementation of the ScaLAPACK LU, QR and Cholesky
Factorization Routines, Scientific Programming, 5 (1996), pp. 173–184. ISSN 1058-9244.

[4] J. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.
[5] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou, Communication-optimal parallel and

sequential QR and LU factorizations, Tech. Report UCB/EECS-2008-89, UC Berkeley,
2008. LAPACK Working Note 204.

[6] J. W. Demmel, L. Grigori, M. Hoemmen, and J. Langou, Communication-avoiding parallel
and sequential QR and LU factorizations: theory and practice, Tech. Report UCB/EECS-
2008-89, University of California Berkeley, EECS Department, 2008. LAWN #204.

[7] S. Donfack, L. Grigori, and A. Kumar Gupta, Adapting communication-avoiding lu and
qr factorizations to multicore architectures, Proceedings of IPDPS, (2010).

[8] J. Dongarra, P. Luszczek, and A. Petitet, The LINPACK Benchmark: Past, Present and
Future, Concurrency: Practice and Experience, 15 (2003), pp. 803–820.

[9] T. Endo and K. Taura, Highly Latency Tolerant Gaussian Elimination, Proceedings of 6th
IEEE/ACM International Workshop on Grid Computing, (2005), pp. 91–98.

[10] L. Grigori, J. W. Demmel, and H. Xiang, Communication avoiding Gaussian elimination,
Proceedings of the ACM/IEEE SC08 Conference, (2008).

[11] F. Gustavson, Recursion Leads to Automatic Variable Blocking for Dense Linear-Algebra
Algorithms, IBM Journal of Research and Development, 41 (1997), pp. 737–755.

[12] N. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, second ed., 2002.
[13] N. Higham and D. J. Higham, Large growth factors in gaussian elimination with pivoting,

SIMAX, 10 (1989), pp. 155–164.
[14] Nicholas J. Higham, The Matrix Function Toolbox. http://www.ma.man.ac.uk/~higham/

mftoolbox.
[15] J.-W. Hong and H. T. Kung, I/O complexity: The Red-Blue Pebble Game, in STOC ’81:

Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing, New
York, NY, USA, 1981, ACM, pp. 326–333.

[16] D. Irony, S. Toledo, and A. Tiskin, Communication lower bounds for distributed-memory
matrix multiplication, J. Parallel Distrib. Comput., 64 (2004), pp. 1017–1026.

[17] G. Quintana-Orti, E. S. Quintana-Orti, E. Chan, F. G. Van Zee, and R. van de Geijn,
Programming algorithms-by-blocks for matrix computations on multithreaded architectures,
Tech. Report TR-08-04, University of Texas at Austin, 2008. FLAME Working Note 29.

[18] R. D. Skeel, Iterative refinement implies numerical stability for Gaussian elimination, Math.
Comput., 35 (1980), pp. 817–832.

[19] D. C. Sorensen, Analysis of pairwise pivoting in Gaussian elimination, IEEE Transactions
on Computers, 3 (1985), p. 274278.

[20] S. Toledo, Locality of reference in LU Decomposition with partial pivoting, SIAM J. Matrix
Anal. Appl., 18 (1997).

[21] L. N. Trefethen and R. S. Schreiber, Average-case stability of Gaussian elimination, SIAM
J. Matrix Anal. Appl., 11 (1990), pp. 335–360.

[22] V. Volkov, Private communication.

35

