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ABSTRACT

Numerical algorithms have two kinds of costs: arithmetic
and communication, by which we mean either moving data
between levels of a memory hierarchy (in the sequential
case) or over a network connecting processors (in the par-
allel case). Communication costs often dominate arithmetic
costs, so it is of interest to design algorithms minimizing
communication. In this paper we first extend known lower
bounds on the communication cost (both for bandwidth and
for latency) of conventional (O(n?)) matrix multiplication to
Cholesky factorization, which is used for solving dense sym-
metric positive definite linear systems. Second, we compare
the cost of various Cholesky decomposition implementations
to this lower bound, and draw the following conclusions:

(1) “Naive” sequential algorithms for Cholesky attain nei-
ther the bandwidth nor latency lower bounds.
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(2) The sequential blocked algorithm in LAPACK (with
the right block size), as well as various recursive algo-
rithms [AP00, GJO1, AGWO01, ST04], and one based
on work of Toledo [Tol97], can attain the bandwidth
lower bound.

(3) The LAPACK algorithm can also attain the latency
bound if used with blocked data structures rather than
column-wise or row-wise matrix data structures, though
the Toledo algorithm cannot.

(4) The recursive sequential algorithm due to [AP00] at-
tains the bandwidth and latency lower bounds at every
level of a multi-level memory hierarchy, in a “cache-
oblivious” way.

(5) The parallel implementation of Cholesky in the ScaL A-
PACK library (again with the right block-size) attains
both the bandwidth and latency lower bounds to within
a poly-logarithmic factor.

Combined with prior results in [DGHL08a, DGHLO08b, DGXO08]
this gives a complete set of communication-optimal algo-
rithms for O(n®) implementations of three basic factoriza-
tions of dense linear algebra: LU with pivoting, QR and
Cholesky. But it goes beyond this prior work on sequential
LU and QR by optimizing communication for any number
of levels of memory hierarchy.
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1. INTRODUCTION

Let A be a real symmetric and positive definite matrix.
Then there exists a real lower triangular matrix L so that
A=L-L" (L is unique if we restrict its diagonal elements
to be positive). This is called the Cholesky decomposition.
We are interested in finding efficient parallel and sequen-
tial algorithms for the Cholesky decomposition. Efficiency
is measured both by the number of arithmetic operations,
and by the amount of communication, either between levels
of a memory hierarchy on a sequential machine, or between
processors communicating over a network on a parallel ma-
chine. Since the time to move one word of data typically
exceeds the time to perform one arithmetic operation by a
large and growing factor, our goal will be to minimize com-
munication.

We model communication costs in more detail as follows.
In the sequential case, with two levels of memory hierarchy
(fast and slow), communication means reading data items
(words) from slow memory to fast memory and writing data
from fast memory to slow memory. If words are stored con-
tiguously, they can be read or written in a bundle which we
will call a message. We assume that a message of n words
can be communicated between fast and slow memory in time
a+ Bn where « is the latency (seconds per message) and [ is
the inverse bandwidth (seconds per word). We assume that
the matrix being factored initially resides in slow memory,
and is too large to fit in the smaller fast memory. Our goal is
to minimize the total number of words and the total number
of messages communicated between fast and slow memory *.

In the parallel case, we are interested in the communica-
tion among the processors. As in the sequential case, we as-
sume that a message of n consecutively stored words can be
communicated in time o + Gn. We assume that the matrix
is initially evenly distributed among all P processors, and
that there is only enough memory to store about 1/P-th of
a matrix per processor. As before, our goal is to minimize
the number of words and messages communicated. In order
to measure the communication complexity of a parallel al-
gorithm, we will count the number of words and messages
communicated along the critical path of the algorithm.

We consider classical algorithms for Cholesky decomposi-
tion, i.e., those that perform “the usual” O(n®) arithmetic
operations, possibly reordered by associativity and commu-
tativity of addition. That is, our results do not apply when
using distributivity to reorganize the algorithm (such as
Strassen-like algorithms); we also assume no pivoting is per-
formed. We define “classical” more carefully later. We show
that the communication complexity of any such Cholesky
algorithm shares essentially the same lower bound as does
the classical matrix multiplication (i.e., using the usual 2n3
arithmetic operations possibly reordered using associativity
and commutativity of addition).

'The sequential communication model used here is some-
times called the two-level I/O model or disk access machine
(DAM) model (see [AVS88], [BBF107], [CR06]). Our model
follows that of [HK81] and [ITT04] in that it assumes the
block-transfer size is one word of data (B = 1 in the common
notation).

THEOREM 1  (MAIN THEOREM). Any sequential or par-
allel classical algorithm for the Cholesky decomposition of n-
by-n matrices can be transformed into a classical algorithm
for 3-by-5 matriz multiplication, in such a way that the
bandwidth of the matriz multiplication algorithm is at most
a constant times the bandwidth of the Cholesky algorithm.

Therefore any bandwidth lower bound for classical matrix
multiplication applies to classical Cholesky, in a Big-O sense:
bandwidth =

Q(#arithmetic_operations/ fast_memory_size'’?)
Similarly, the latency lower bound for Cholesky is: latency =
Q(#arithmetic_operations fast_memory_size® )

In particular, since a sequential classical n-by-n matrix mul-

tiplication algorithm has a bandwidth lower bound of Q(n?®/M'/?)

where M is the fast memory size [HK81, ITT04], classical
Cholesky has the same lower bound (we discuss the parallel
case later). We always assume that M = O(n?), as other-
wise no communication is needed except reading the entire
input once and writing the output once.

To get the latency lower bound, we use the simple obser-
vation [DGHLO08a| that the number of messages is at least
the bandwidth lower bound divided by the maximum mes-
sage size, and that the maximum message size is at most fast
memory size in the sequential case (or the local memory size
in the parallel case). So for sequential matrix multiplication
this means the latency lower bound is Q(n®/M3/?).

Attainability of the latency lower bound depends on the
data structure more strongly than does attainability of the
bandwidth lower bound. As a simple example, consider com-
puting the sum of n < M numbers in slow memory, which
obviously requires reading these n words. If they are in
consecutive memory locations, this can be done in 1 read
operation, the minimum possible latency. But if they are
not consecutive, say they are separated by at least M — 1
words, this may require n read operations, the maximum
possible latency.

In the case of matrix multiplication, the well-known blocked
matrix multiplication algorithm for C' = A - B that multi-

plies and accumulates 1/%-byq/% submatrices of A, B

and C attains the bandwidth lower bound. But only if each
M

matrix is stored so that the 7~ entries of each of its sub-
matrices are contiguous (not the case with columnwise or
rowwise storage) can the latency lower bound be reached;
we call such a data structure contiguous block storage and
describe it in more detail below. Alternatively, one could try
to copy A and B from their input format (say columnwise)
to contiguous block storage doing (asymptotically) no more
communication than the subsequent matrix multiplication;
we will see this is possible provided M = Q(n). There will
be analogous requirements for Cholesky to attain its latency
lower bound.

In particular, we will draw the following conclusions
about the communication costs of sequential classical Cholesky,
as summarized in Table 1:

2

1. “Naive” sequential variants of Cholesky that operate on
single rows and columns (be they left-looking, right-

2We number our main conclusions consecutively from 1 to

6.



looking, etc.) attain neither the bandwidth nor the
latency lower bound.

2. A sequential blocked algorithm used in LAPACK (with
the correct block size) attains the bandwidth lower
bound, as do the recursive algorithms in [AP00, GJO1,
AGWO01, ST04]. A recursive algorithm analogous to
Toledo’s LU algorithm [Tol97] attains the bandwidth
lower bound in nearly all cases, expect possibly for an
O(log n) factor in the narrow range log—;n <M <n?

3. Whether the LAPACK algorithm also attains the latency
lower bound depends on the matrix layout: If the input
matrix is given in row-wise or column-wise format, and
this is not changed by the algorithm, then the latency
lower bound cannot be attained. But if the input ma-
trix is given in contiguous block storage, or M = Q(n)
so that it can be copied quickly to contiguous block for-
mat, then the latency lower bound can be attained by
the LAPACK algorithm?®. Toledo’s algorithm cannot
minimize latency (at least when M > n2/3).

So far we have discussed a two-level memory hierarchy,
with fast and slow memory. It is natural to ask about more
than 2 levels, since most computers have multiple levels (e.g.,
L1, L2, L3 caches, main memory, and disk). In this case,
an optimal algorithm should simultaneously minimize com-
munication between all pairs of adjacent levels of memory
hierarchy (e.g., minimize bandwidth and latency between L1
and L2, between L2 and L3, etc.).

In the case of sequential matrix multiplication, bandwidth
is minimized in this sense by simply applying the usual
blocked algorithm recursively, where each level of recursion
multiplies matrices that fit at a particular level of the mem-
ory hierarchy, by using the blocked algorithm to multiply
submatrices that fit in the next smaller level. This is easy
since matrix multiplication naturally breaks into smaller ma-
trix multiplications.

For matrix multiplication to minimize latency across all
memory hierarchy levels, it is necessary for all submatrices
of all sizes to be stored contiguously. This leads to a data
structure variously referred to as recursive block storage or
storage using space-filling curves, and described in [FLPR99,
AP00, EGJKO04].

Finally, sequential matrix multiplication can achieve com-
munication optimality as just described in one of two ways:
(1) We can choose the number of recursion levels and sizes of
the subblocks with prior knowledge of the number of levels
and sizes of the levels of memory hierarchy, a cache-aware
process called tuning. (2) We can simply always recur down
to 1-by-1 blocks (or some other small constant size), repeat-
edly dividing block sizes by 2 (perhaps padding submatrices
to have even dimensions as needed). Such an algorithm is
called cache-oblivious [FLPR99], and has the advantage of
simplicity and portability compared to a cache-aware algo-
rithm, though it might also have more overhead in practice.

3This can be done by reading M elements at a time, in a
columnwise order (which requires one message) then writ-
ing each of these elements to the right location of the new

matrix. We write these words using v M messages (one per
each relevant block). Thus, the total number of messages
3

is O (%) which is asymptotically dominated by -7 for

M > n.

It is indeed possible for sequential Cholesky to be orga-
nized to be optimal across multiple memory hierarchy levels
in all the senses just described, assuming we use recursive
block storage:

4. The recursive algorithm modelled on Toledo’s LU can be
implemented in a cache-oblivious way so as to mini-
mize bandwidth, but not latency *.

5. The cache-oblivious recursive Cholesky algorithm of Ahmed
and Pingali [AP00] minimizes both bandwidth and la-
tency for all matrices across all memory hierarchy lev-
els. None of the other algorithms do so.

Finally, we address the case of parallel Cholesky, where
there are P processors connected by a network with la-
tency « and reciprocal bandwidth 3. We consider only the
memory-scalable case, where each processor’s local memory
is of size M = O(n?/P), so that only O(1) copies of the ma-
trix are stored overall (the so-called “2D case”, see [ITT04]
for the general case, including 3D, for matrix multiplication).
The consequence of our Main Theorem is again a bandwidth
lower bound of the form Q(n®/(PM'?)) = Q(n*/P'/?),
and a latency lower bound of the form Q(n®/(PM?/?)) =
Q(PY/?).

ScaLAPACK attains a matching upper bound. It does so
by partitioning the matrix into submatrices and distributing
them to the processors in a block cyclic manner. See full
version of this paper for details [BDHS09].

6. With the right choice of block size b, namely the largest
possible value b = n/v/P, the Cholesky algorithm in
ScalLAPACK [BJCD™97] attains the above bandwidth
and latency lower bounds to within a factor of log P.
This is summarized in Table 2.

A ‘real’ computer may be more complicated than any
model we have discussed so far, with both parallelism and
multiple levels of memory hierarchy (where each sequen-
tial processor making up a parallel computer has multi-
ple levels of cache), or with multiple levels of parallelism
(i.e., where each ‘parallel processor’ itself consists of mul-
tiple processors), etc. And it may be ‘heterogenous’, with
functional units and communication channels of greatly dif-
fering speeds. We leave lower and upper communication
bounds on such processors for future work.

The rest of this paper is organized as follows. In Sec-
tion 2 we show the reduction from matrix multiplication
to Cholesky decomposition, thus extending the bandwidth
lower bounds of [HK81] and [ITT04] to a bandwidth lower
bound for the sequential and parallel implementations of
Cholesky decomposition. We also discuss latency lower bounds.
In the full version of this paper (see [BDHS09]) we recall
known Cholesky decomposition algorithms and compare their
bandwidth and latency costs with the lower bounds (see also
[B0O8]).

4Toledo’s algorithm is designed to retain numerical stabil-
ity for the LU case. The [AP00] algorithm deals with the
Cholesky case, therefore requires no pivoting for numerical
stability. Thus a simpler recursion suffices, and the latency
improves.



Cache
Bandwidth Latency Oblivious

Lower bound ” Q (\7%) | Q (MnTB/z) |
Naive: left/right looking

Column-major e(n?) S} <n2 + %) v
LAPACK [ABBT92]

Column-major (0] % 0] ("—A;) X

Contiguous blocks 0 \’}—SM O (M"Ts/z) X
Rectangular Recursive [Tol97]

Column-major © \;‘—Bﬁ +n?logn Q ("—1\;) v

Contiguous blocks (C] \7% +n’logn Q (nQ) v
Square Recursive [AP00]

“Recursive Packed Format” [AGWO01] O ;—% Q ”—1\; v

Column-major [AP0O] O % o ”ﬁg v

Contiguous blocks [AP0O] O &L—% (@] (M"Tiz,) v

Table 1: Sequential bandwidth and latency: lower bound vs. algorithms. M denotes the size of the fast
memory. We assume n° > M in this table. FLOPs count of all is O(n?).
Further details of these algorithms can be found in the full version of this paper [BDHSO09].

| | Bandwidth |  Latency | FLOPS
Lower-bound
General Q (ijﬁ) Q (#:;/2) Q %
2D layout: M =0 (%) () o (vP) oz
ScaLAPACK [BJCD'97]
General 0] ((\';—; + nb) log P) (0] (% log P) 0] (%3 + Ljﬁb + an)
Choosing b= L 0 (;—; log P) O(vPlog P) o ("Tf)

Table 2: Parallel, lower bound vs. algorithms. M denotes the size of the memory of each processor. P is the
number of processors. b is the block size.
Further details of these algorithms can be found in the full version of this paper [BDHSO09].



2. COMMUNICATION LOWER BOUNDS

Consider an algortihm for a parallel computer with P pro-
cessors that multiplies matrices in the ‘classical’ way (the
usual 2n® arithmetic operations possibly reordered using as-
sociativity and commutativity of addition) and each of the
processors has memory of size M. Irony et al. [ITTO04]
showed that at least one of the processors has to send or
receive this minimal number of words:

THEOREM 2  ([ITTO04]). Any ‘classical’ implementation
of matriz-multiplication of n X n matrices on a P processor

machine, each equipped with memory of size M, requires that

one of the processors sends or receives at least —*— — M

2\/§PM%
words. These can be entries of A, of B or of A- B.
If A and B are of size n X m and m X r respectively, then
the corresponding bound is —2™"+ — M
2v2PM 2
As any processor has memory of size M, any message it
sends or receives may deliver at most M words. Therefore

we deduce the following;:

COROLLARY 2.1. Any ‘classical’ implementation of matriz-
multiplication on a P processor machine, each processor equipped

with memory of size M, requires that one of the processors

. 3
sends or receives at least —*—7 — 1 messages.

2VIPM 3
If A and B are of size n X m and m X r respectively, then
the corresponding bound is —"— — 1
2v/2PM 2

For the case of P = 1 these give lower bounds for the band-
width and the latency of the sequential case. These lower
bounds for bandwidth for the sequential case were previ-
ously shown (up to some multiplicative constant factor) by
Hong and Kung [HK81].

It is easy to reduce matrix multiplication to LU decom-
position of a slightly larger order, as the following identity
shows:

I 0 -B I I 0 -B
AT o0|=[4T1 I A-B (1)
00 I 00 I I

This identity means that LU factorization can be used to
perform matrix multiplication; to accomodate pivoting A
and/or B can be scaled down to be too small to be chosen
as pivots, and A - B can be scaled up accordingly. Thus an
O(n®) implementation of LU that only uses associativity and
commutativity of addition to reorganize its operations (thus
eliminating Strassen-like algorithms) must perform at least
as much communication as a correspondingly reorganized
implementation of O(n3) matrix multiplication.

We wish to mimic this lower bound construction for Cholesky.

Consider the following reduction from matrix multiplication
to Cholesky decomposition. Let T" be the matrix defined be-
low, composed of 9 square blocks each of dimension n; then
the Cholesky decomposition of T is:

I AT -B
T = A IT4+A-AT 0 (2)
-BT 0 D
I I AT -B
= A I . I A-B
-BT (4.-B)Y X xT
= L- LT

where X is the Cholesky factor of D' = D—BTB—BT AT AB,
and D can be any symmetric matrix such that D’ is positive
definite.

Thus A - B is computed via this Cholesky decomposi-
tion. Intuitively this seems to show that the communication
complexity needed for computing matrix multiplication is a
lower bound to that of computing the Cholesky decomposi-
tion (of matrices 3 times larger) as A - B appears in LT, the
decomposition of T. Note however that A - AT appears in
T.

One has to consider the possibility that all the commu-
nication that is guaranteed by [ITT04] is in fact performed
when computing A - AT and so we have no non-trivial lower
bound for the Cholesky decomposition of T.5 Stated oth-
erwise, maybe computing A - B from A and B incurs less
communication cost if we are also given A - AT.5 So let us
instead consider the following approach to prove the lower
bound.

In addition to the real numbers R, consider new “starred”
numerical quantities, called 1* and 0*, with arithmetic prop-
erties detailed in the following tables. 1* and 0* mask any
real value in addition/substraction operation, but behave
similarly to 1 € R and 0 € R in multiplication and division
operations.

Consider this set of values and arithmetic operations. It
is commutative with respect to addition and to multiplica-
tion (by the symmetries of the corresponding tables). It is
associative with respect to addition: regardless of ordering
of summation, the sum is 1* if one of the addends is 17,
otherwise it is 0* if one of the addends is 0*. The set is also
associative with respect to multiplication: (a-b)-c = a-(b-c).
This is trivial if all factors are in R. As 1* is a multi-
plicative identity, it is also immediate if some of the factors
equal 1*. Otherwise, at least one of the factors is 0%, and
the product is 0. Distributivity, however, does not hold:
1-(I"+1")=1#£2=(1-1")+ (1-17).

Let us return to the construction. We set T” to be:

I AT _B
T = A C 0
-BT o C

where C has 1% on the diagonal and 0* everywhere else:

1* O* . O*
0o* 1* o*
C=
: 0"
O* . 0* 1*

One can verify that the (unique) Cholesky decomposition
of C is”

®Note that computing A - AT is asymptotically as hard as
matrix multiplication: take A = [X,0; Y7, 0]. Then A-AT =
[#, XY %, %]

SNote that the result of [ITT04] does not mean that both
A and B are communicated a lot, as one can communicate
each of the entries of B only once, and shift all other entries
many times, resulting in an inefficient algorithm, but such
that no non-trivial lower bound on the communication of
the elements of B can be given.

"By writing X -Y we mean the resulting matrix assuming the
straightforward n® matrix multiplication algorithm. This



ES S A ||1*|0*|y||/||1*|0*|y5£0||\/|| |
=] 1] 1 1" 1] 1] 0" Y 1" | 17 1/y 1* 1*
0* || 1* | 0" 0* 0* [ 0" | O 0 0* || 0" | — 0 0* 0*
z 170" | zty z ||z |0 |x- z || x| —| =z/y x>0 | V&

Table 3: Arithmetic Operations Tables. The variables x and y stand for any real values.

For comnsistency, —0* = 0" and —1* = 1".

™ 0 ... 0 1™ o0 --- 0F

c=|" F =c'.c”
: 0 : 1" o
o* -.- 0" 1" 0 ... 1"

()
Note that if a matrix X does not contain any “starred”
values 0* and 1* then X = C- X =X -C =C" - X =

X.C'=CT.X=X-CT and C+ X = C. Therefore, one
can confirm that the Cholesky decomposition of T" is:
I AT -B
T = A C 0 (4)
-B" 0 C
I I A" -B
= A c’ ¢ A-B
*BT (A . B)T Cl C/T
= L-L"
One can think of C' as masking the A - AT previously

appearing in the central block of T', therefore allowing the
lower bound of computing A - B to be accounted for by
the Cholesky decomposition, and not by the computation
of A-AT. More formally, let Alg be any ‘classical’ algo-
rithm for Cholesky factorization. We convert it to a matrix
multiplication algorithm as follows:

Algorithm 1 Matrix

Decomposition

Multiplication by Cholesky-

Input: Two n X n matrices, A and B.
1: Let Alg’ be Alg updated to correctly handle the new
0*,1* values. {note that Alg’ can be constructed off-

line.}
2: T' =T'(A, B) {constructed as in Equation (4).}
3 L= Alg/(T")

4: return (L32)7

The simplest conceptual way to do step (1) is to attach
an extra bit to every numerical value, indicating whether it

“starred” or not, and modify every arithmetic operation
to first check this bit before performing an operation. This
increases the bandwidth by at most a constant factor. Alter-
natively, we can use Signalling NaNs as defined in the IEEE
Floating Point Standard [IEE08] to encode 1* and 0 with
no extra bits.

If the instructions implementing Cholesky are scheduled
deterministically, there is another alternative: one can run
the algorithm “symbolically”, propagating 0* and 1* argu-
ments from the inputs forward, simplifying or eliminating

had to be stated clearly, as the distributivity does not hold
for the starred values.

arithmetic operations whose inputs contain 0* or 1*, and
also eliminating operations for which there is no path in
the directed acyclic graph (describing how outputs of each
operation propagate to inputs of other operations) to the
desired output A - B. The resulting Alg’ performs a strict
subset of the arithmetic and memory operations of the orig-
inal Cholesky algorithm.

We note that updating Alg to form Alg’ is done off-line,
so that step (1) does not actually take any time to perform
when Algorithm 1 is called.

We next verify the correctness of this reduction: that the
output of this procedure on input A, B is indeed the multi-
plication A - B, as long as Alg is a classical algorithm, in a
sense we now define carefully.

Let 7/ = L - LT be the Cholesky decomposition of T".
Then we have the following formulas:

L(i,i) = '(i8) = Y (L(ik))? ()
keli—1]
L(i,j) = L - > L(i,k)- L(j k)
L(5,3) ool
i>j (6)
where [t] = {1, ..., t}. By the no-pivoting and no-distributivity

restrictions to Alg, when an entry of L is computed, all the
entries on which it depends have already been computed and
combined by the above formulas, with the sums occurring
in any order. These dependencies form a dependency graph
which is a DAG (directed acyclic graph), and therefore im-
pose a partial ordering on the computation of the entries of
L (see Figure 1). That is, when an entry L(i, ) is computed,
by Equation (5), all the entries {L(i, k) }re[s—1) have already
been computed. Denote this set by S; ;, namely,

Sii = {L(4, k) Yrepi—1] (7)

Similarly, when an entry L(i,j) (for ¢ > j) is computed,
by Equation (6), all the entries {L(%,k)}re[j—1) and all the
entries {L(j, k)}re[;) have already been computed. Denote
this set by S;; namely,

Sig =L k) rej—1) U{L3, k) rey (8)

LEMMA 2.2. Any ordering of the computation of the ele-
ments of L that respects the partial ordering induced by the
above mentioned directed acyclic graph results in a correct
computation of A- B.

PROOF. We need to confirm that the starred entries 1*
and 0* of 7" do not somehow “contaminate” the desired en-
tries of LL,. The proof is by induction on the partial order on
pairs (¢, 7) implied by (7) and (8). The base case —the cor-
rectness of computing L(1,1)— is immediate. Assume by
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BT [[AB)T X BT (4B

Figure 1: Dependencies of L(i,j), for diagonal en-
tries (left) and other entries (right).

Dark grey represents the sets S;; (left) and S;;
(right). Light grey represents indirect dependen-
cies.

induction that all elements of S;; are correctly computed
and consider the computation of L(i,5) according to the
block in which it resides:

e If L(i,7) resides in block Li1, L21 or Lsi then S ;
contains only real values, and no arithmetic operations
with 0% or 1* occur (recall Figure 1 or Equations (4),(7)
and (8)). Therefore, the correctness follows from the
correctness of the original Cholesky decomposition al-
gorithm.

e If L(i,7) resides in Loz or Lss then S;; may contain
“starred” value (elements of C'). We treat separately
the case where L(4, ) is on the diagonal and the case
where it is not.

If i = j then by Equation (5) L(¢, ) is determined to be
1* since T"(i,4) = 1* and since adding to, subtracting
from and taking the square root of 1* all result in 1*
(recall Table 3 and Equation (5)).

If 4 > j then by the inductive assumption the divisor
L(j,7) of Equation (6) is correctly computed to be 1*
(recall Figure 1 and the definition of C’ in Equation
(3)). Therefore, no division by 0* is performed. More-
over, T'(i, j) is 0*. Then L(, j) is determined to be the
correct value 0, unless 1* is subtracted (recall Equa-
tion (6)). However, every subtracted product (recall
Equation (6)) is composed of two factors of the same
column but of different rows. Therefore, by the struc-
ture of C’, none of them is 1* so their product is not
1* and the value is computed correctly.

e If L(i,j) resides in L3y then S; ; may contain “starred”
values (see Figure 1, right-hand side, row j). However,
every subtraction performed (recall Equation (6)) is
composed of a product of two factors, of which one is
on the ith row (and on a column k < j). Hence, by in-
duction (on ¢, j), the (i, k) element has been computed
correctly to be a real value, and by the multiplication
properties so is the product. Therefore no masking
occurs.

This completes the proof of Lemma 2.2. []

We now know that Algorithm 1 correctly multiplies ma-
trices ‘classically’, and so has known communication lower

bounds given by Theorem 2 and Corollary 2.1. But it re-
mains to confirm that step 2 (setting up T”) and step 4 (re-
turning ng) do not require much communication, so that
these lower bounds apply to step 3, running Alg’ (recall
that step 1 may be performed off-line and so doesn’t count).
Since Alg’ is either a small modification of Cholesky to add
“star” labels to all data items (at most doubling the band-
width), or a subset of Cholesky with some operations omit-
ted (those with starred arguments, or not leading to the
desired output Ls2), a lower bound on communication for
Alg’ is also a lower bound for Cholesky.

Theorem 1 (Main Theorem). Any sequential or parallel
classical algorithm for the Cholesky decomposition of n-by-n
matrices can be transformed into a classical algorithm for % -
by-5 matriz-multiplication, in such a way that the bandwidth
of the matriz-multiplication algorithm is at most a constant
times the bandwidth of the Cholesky algorithm.

Therefore any bandwidth or latency lower bound for clas-
sical matrix multiplication applies to classical Cholesky in a
Big-O sense:

COROLLARY 2.3. In the sequential case, with a fast mem-
ory of size M, the bandwidth lower bound for Cholesky de-
composition, is Q(n®/M/?), and the latency lower bound is
Q(n®/M>/?).

ProoF. Constructing 7" (in any data format) requires
bandwidth of at most 18n? (copying a 3n-by-3n matrix, with
another factor of 2 if each entry has a flag indicating whether
it is “starred” or not), and extracting L3, requires another n?
of bandwidth. Furthermore, we can assume n? < n®/M?*/2,
i.e., that M < n?, ie., that the matrix is too large to fit
entirely in fast memory (the only case of interest). Thus the
bandwidth lower bound Q(n®/M'?) of Algorithm 1 dom-
inates the bandwidth costs of Steps 2 and 4, and so must
apply to Step 3 (Cholesky). Finally, the latency lower bound
for Step 3 is by a factor of M smaller than its bandwidth
lower bound, as desired. []

COROLLARY 2.4. In the parallel case (with a 2D layout
on P processors as described earlier), the bandwidth lower
bound for Cholesky decomposition is Q(n?/PY?), and the
latency lower bound is Q(PY/?).

PrROOF. The argument in the parallel case is analogous

to that of Corollary 2.3. The construction of input and
retrieval output at steps 2 and 4 of Algorithm 1 contribute

bandwidth of O (% ). Therefore the lower bound of the

bandwidth 2 (P’\‘/SM) is determined by Step 3, the Cholesky
decomposition. The lower bound on the latency of Step 3 is
therefore €2 (#2/2

words. Plugging in M = O (Lpz) yields B = Q(P1/2). 0

), as each message delivers at most M
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