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Abstract

This report presents uniprocessor automatic tuning techniques for the
sparse matrix operation, y = ATAx, where A is a sparse matrix and
x, y are dense vectors. We describe an implementation of this com-
putational kernel which brings A through the memory hierarchy only
once, and which can be combined naturally with the register blocking
optimization previously proposed in the Sparsity tuning system for
sparse matrix-vector multiply (SpM×V). Extensive experiments, on a
benchmark set of 44 matrices and 4 platforms, show that speedups of
up to 4.2× are possible compared to a conventional implementation
that computes t = Ax and y = AT t as separate steps. In addition, we
develop platform-specific upper-bounds on the performance of our im-
plementations. We analyze how closely our implementations approach
these bounds, and show when low-level tuning techniques (e.g., better
instruction scheduling) are likely to yield a significant pay-off. Finally,
we present a hybrid off-line/run-time heuristic which in practice au-
tomatically selects optimal (or near-optimal) values of the key tuning
parameters, the register block sizes.

There are at least three implications of this work. First, sparse
ATAx should be a basic primitive in sparse matrix libraries, based on
its utility to applications and the potential pay-off from automatically
tuning it. Second, our upper bound analysis shows that there is an
opportunity to apply automatic low-level tuning methods, in the spirit
of tuning systems such as ATLAS and PHiPAC for dense linear algebra,
to further improve the performance of this kernel. Third, the success
of our heuristic provides additional validation of the Sparsity tuning
methodology.

1 Introduction

This report considers automatic performance tuning of the sparse matrix op-
eration, y ← y+ATAx, where A is a sparse matrix and x, y are dense vectors.
This computational kernel1—SpATA hereafter—is the inner-loop of interior
point methods for mathematical programming [28] problems, algorithms for
computing the singular value decomposition [9], and Kleinberg’s HITS al-
gorithm for finding hubs and authorities in graphs [18], among others. The
challenge in tuning this kernel, and sparse kernels in general, is choosing a
sparse data structure and algorithm that best exploits the non-zero struc-
ture of the matrix for a given memory hierarchy and microarchitecture: this
task can be daunting and time-consuming because the best implementation

1We restrict our attention to ATAx here, though the same ideas apply to the compu-
tation of AATx.
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will vary across machines, compilers, and matrices. A purely static (compile-
time) approach to this problem is limited since the matrix may not be known
until run-time; any run-time approach must balance the cost optimizing at
run-time against the potential performance gain.

Our approach to automatic tuning of SpATA builds on prior experience
with dense linear algebra [4, 29], sparse matrix-vector multiply (SpM×V)
[15, 16, 26], and sparse triangular solve (SpTS) [27]. In this study, we apply
the specific tuning methodology first proposed for the Sparsity system for
SpM×V [15]. We show how SpATA can be algorithmically cache-blocked
to reuse A in a way that also allows register-level blocking to exploit dense
subblocks (Section 2). The set of these implementations, parameterized by
block size, defines an implementation space. We search this space by first
benchmarking these implementations on a synethetic matrix off-line (i.e.,
once per platform), and then predicting the best block size by evaluating
a heuristic performance model that combines an estimated property of the
matrix non-zero structure with the benchmark data.

Our experiments on four hardware platforms (Table 1) and 44 sparse
matrices (Table 2) show that we can obtain speedups between 1.5×–4.2×
over a reference implementation which computes t = Ax and y = AT t as
separate steps. Furthermore, if each of these reference steps is tuned by
register-level blocking with an optimal choice of block size, our implementa-
tion is still up to 1.8× faster. We also show that our search heuristic nearly
always chooses optimal or near-optimal tuning parameters (i.e., yielding
performance within 5–10% of the best).

We evaluate our SpATA performance relative to fundamental limits—or,
upper bounds—on performance (Section 3). We have used similar bounds
for SpM×V to show that the performance (Mflop/s) of Sparsity-generated
code is often within 20% of the upper bound, implying that the benefits
of additional low-level tuning (e.g., better instruction scheduling) will be
limited [26]. Indeed, this result suggested that one area from which further
performance improvements would have to come is higher-level kernels, like
SpATA, that can reuse the matrix. In this report, we derive upper bounds
on the performance of our SpATA implementations. We show that our
implementations typically achieve between 20%–40% of this bound. Since we
rely on the compiler to schedule our fully unrolled code, this finding suggests
that the additional cache-reuse due to our algorithmic blocking of SpATA
exposes new opportunities for low-level tuning; i.e., future work should apply
automatic low-level tuning methods, in the spirit of ATLAS/PHiPAC, to
further improve the performance of this kernel.
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Sun Intel IBM Intel
Property Ultra 2i Pentium III Power3 Itanium
Clock rate (MHz) 333 500 375 800
Peak Main Memory Bandwidth (MB/s) 500 680 1600 2100
Peak Flop Rate (Mflop/s) 667 500 1500 3200
DGEMM, n = 1000 (Mflop/s) 425 331 1300 2200
DGEMV, n = 2000 (Mflop/s) 58 96 260 315
STREAM Triad Bandwidth (MB/s) 250 350 715 1100
No. of FP regs (double) 16 8 32 128
L1 size (KB), line size (B), latency (cy) 16,16,1 16,32,1 64,128,.5 16,32,1 (int)
L2 size (KB), line size (B), latency (cy) 2048,64,7 512,32,18 8192,128,9 96,64,6-9
L3 size (KB), line size (B), latency (cy) n/a n/a n/a 2048,64,21-24
Memory latency (cycles, ≈) 36-66 cy 26–60 35-139 cy 36-85 cy
Compiler Sun Intel IBM Intel

C v6.1 C v6.0 C v5.0 C v6.0

Table 1: Characteristics of the evaluation platforms [17, 1, 24].
Memory access latencies were measured using the Saavedra microbenchmark
[22]. Dense BLAS numbers are reported for ATLAS 3.4.1 [29] on the Ultra
2i and Pentium III, IBM ESSL v3.1 on the Power3, and the Intel Math
Kernel Library v5.2 on Itanium.

2 Memory Hierarchy Optimizations for Sparse ATAx

We assume a baseline implementation of y = ATAx that first computes
t = Ax followed by y = AT t. For large matrices A, this implementation
brings A through the memory hierarchy twice. However, we can compute
ATAx by reading A from main memory only once. Denote the rows of A by
aT1 , a

T
2 , . . . , a

T
m. Then, the operation ATAx can be expressed algorithmically

as follows:

y = ATAx = (a1 . . . am)

 aT1
. . .
aTm

x =
m∑
i=1

ai(aTi x). (1)

That is, for each row aTi , we can compute the dot product ti = aTi x, followed
by an accumulation of the scaled vector tiai into y—thus, the row aTi is read
from memory into cache to compute the dot product, assuming sufficient
cache capacity, and then reused on the accumulate step.

Moreover, we can take each aTi to be a block of rows instead of just a sin-
gle row. Doing so allows us to combine the cache optimization of Equation
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Name Application Area Dimension Nonzeros
1 dense1000 Dense Matrix 1000 1000000
2 raefsky3 Fluid structure interaction 21200 1488768
3 olafu Accuracy problem 16146 1015156
4 bcsstk35 Stiff matrix automobile frame 30237 1450163
5 venkat01 Flow simulation 62424 1717792
6 crystk02 FEM Crystal free vibration 13965 968583
7 crystk03 FEM Crystal free vibration 24696 1751178
8 nasasrb Shuttle rocket booster 54870 2677324
9 3dtube 3-D pressure tube 45330 3213332

10 ct20stif CT20 Engine block 52329 2698463
11 bai Airfoil eigenvalue calculation 23560 484256
12 raefsky4 buckling problem 19779 1328611
13 ex11 3D steady flow caculation 16614 1096948
14 rdist1 Chemical process separation 4134 94408
15 vavasis3 2D PDE problem 41092 1683902
16 orani678 Economic modeling 2529 90185
17 rim FEM fluid mechanics problem 22560 1014951
18 memplus Circuit Simulation 17758 126150
19 gemat11 Power flow 4929 33185
20 lhr10 Light hydrocarbon recovery 10672 232633
21 goodwin Fluid mechanics problem 7320 324784
22 bayer02 Chemical process simulation 13935 63679
23 bayer10 Chemical process simulation 13436 94926
24 coater2 Simulation of coating flows 9540 207308
25 finan512 Financial portfolio optimization 74752 596992
26 onetone2 Harmonic balance method 36057 227628
27 pwt Structural engineering problem 36519 326107
28 vibrobox Structure of vibroacoustic problem 12328 342828
29 wang4 Semiconductor device simulation 26068 177196
30 lnsp3937 Fluid flow modeling 3937 25407
31 lns3937 Fluid flow modeling 3937 25407
32 sherman5 Oil reservoir modeling 3312 20793
33 sherman3 Oil reservoir modeling 5005 20033
34 orsreg1 Oil reservoir simulation 2205 14133
35 saylr4 Oil reservoir modeling 3564 22316
36 shyy161 Viscous flow calculation 76480 329762
37 wang3 Semiconductor device simulation 26064 177168
38 mcfe astrophysics 765 24382
39 jpwh991 Circuit physics modeling 991 6027
40 gupta1 Linear programming matrix 31802 2164210
41 lpcreb Linear Programming problem 9648×77137 260785
42 lpcred Linear Programming problem 8926×73948 246614
43 lpfit2p Linear Programming problem 3000×13525 50284
44 lpnug20 Linear Programming problem 15240×72600 304800

Table 2: Matrix benchmark suite. These are the same matrices used in
the original evaluations of Sparsity [15].
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(1) with previously proposed register-level optimizations that exploit natu-
rally occuring dense block substructure [16]. Below, we review the register
blocking optimization (Section 2.1), and describe our heuristic to choose the
key tuning parameter, the register block size (Section 2.2). We provide the
experimental motivation for this heuristic in Section 4.1.

2.1 Register blocking: improving register reuse

Register blocking, originally proposed in the Sparsity system [16] for SpM×V,
improves register reuse by reorganizing the matrix data structure into a se-
quence of “small” dense blocks, where the block sizes are chosen to keep
small blocks of the x and y vectors in registers. An m×n sparse matrix
in r×c register blocked format is divided logically into m

r ×
n
c submatrices,

where each submatrix is of size r×c. Only those blocks containing at least
one non-zero are stored. Multiplying by A proceeds block-by-block: for each
block, we reuse the corresponding r elements of y and c elements of x by
keeping them in registers. For simplicity, assume that r divides m and c
divides n.

We use the blocked compressed sparse row (BCSR) storage format [21].
Blocks within the same block row are stored consecutively, and the elements
of each block are stored in row-major order. A 2×2 example of BCSR
is shown in Figure 1, where we assume zero-based array indexing. When
r = c = 1, BCSR reduces to compressed sparse row (CSR) storage. BCSR
can store fewer column indices than CSR (one per block instead of one per
non-zero), reducing storage and instruction overhead. We fully unroll the
r×c submatrix computation to reduce loop overhead and expose scheduling
opportunities to the compiler. An example of the 2×2 code appears in
Figure 2.

Figure 1 also shows that creating blocks may require filling in explicit
zeros. We define the fill ratio to be the number of stored values (i.e., in-
cluding zeros) divided by the number of true non-zeros. We may trade-off
extra computation (i.e., fill ratio > 1) for improved efficiency from uniform
code and memory access.

2.2 Selecting the r×c register block size

To select the register block size r×c, we adapt the Sparsity v2.0 heuristic
for SpM×V [26] to SpATA. There are 3 steps. First, we collect a one-time
register profile to characterize the platform. For SpATA, we evaluate the
performance (Mflop/s) of the register blocked SpATA for all block sizes on
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A =


a00 a01 0 0 a04 a05

a10 a11 0 0 a14 a15

0 0 a22 0 a24 a25

0 0 a32 a33 a34 a35


b row ptr =

(
0 2 4

)
, b col idx =

(
0 4 2 4

)
b value =

(
a00 a01 a10 a11 a04 a05 a14 a15 a22 0 a32 a33 a24 a25 a34 a35

)

Figure 1: 2×2 block compressed sparse row (BCSR) storage. BCSR
format uses three arrays. The elements of each block are stored in the
b value array. Only the first column index of the (0,0) entry of each block is
stored in b col idx array; the b row ptr array points to block row starting
positions in the b col idx array. Blocks are stored in row-major order.
(Figure taken from Im [15].)

a dense matrix stored in sparse BCSR format. These measurements are
independent of the sparse matrix, and therefore only need to be made once
per architecture. Second, when the matrix is known at run-time, we estimate
the fill ratio for all block sizes. We recently described a sampling scheme
for performing this step accurately and efficiently [26]. Third, we select the
block size r×c that maximizes

Estimated Mflop/s =
Mflop/s on a dense matrix in r×c BCSR

Estimated fill ratio for r×c blocking
. (2)

The overhead of picking a register block size and converting into our data
structure can all be performed once per matrix and amortized over many
uses. This run-time overhead is between 5–20 executions of näıve SpATA
[26]. Thus, the optimizations we propose are most suitable when SpATA
must be performed many times (e.g., in sparse iterative methods).

3 Upper Bounds on Performance

We use performance upper bounds to estimate the best possible perfor-
mance given a matrix and data structure but independent of any particular
instruction mix or ordering. Code generators in automatic tuning systems
for dense linear algebra, such as ATLAS or PHiPAC [29, 4], vary the instruc-
tion schedule during the tuning process. In our work on sparse kernel tuning,
we have focused on data structure transformations, relying on the compiler
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void spmv_bcsr_2x2_ata( int mb, const int* ptr, const int* ind,

const double* val,

const double* x, double* y, double* t )

{

int i;

/* for each block row i of A */

1 for( i = 0; i < mb; i++, t += 2 )

{

int j;

2 register double t0 = 0, t1 = 0;

3 const int* ind_t = ind;

4 const double* val_t = val;

/* compute (block row of A) times x */

5 for( j = ptr[i]; j < ptr[i+1]; j++, ind_t++, val_t += 2*2 )

{

6 t0 += val_t[0*2+0] * x[ind_t[0]+0];

7 t1 += val_t[1*2+0] * x[ind_t[0]+0];

8 t0 += val_t[0*2+1] * x[ind_t[0]+1];

9 t1 += val_t[1*2+1] * x[ind_t[0]+1];

}

10 t[0] = t0;

11 t[1] = t1;

/* compute y <-- (block row of A)^T times t */

12 for( j = ptr[i]; j < ptr[i+1]; j++, ind++, val += 2*2 )

{

13 double* yp = y + ind[0];

14 register double y0 = 0, y1 = 0;

15 y0 += val[0*2+0] * t0;

16 y1 += val[0*2+1] * t0;

17 y0 += val[1*2+0] * t1;

18 y1 += val[1*2+1] * t1;

19 yp[0] += y0;

20 yp[1] += y1;

}

}

}

Figure 2: Cache-optimized, 2×2 SpATA implementation. Here, A is
stored in 2×2 BCSR format (see Figure 1), where A has 2*mb rows.
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to produce efficient schedules. An upper bound allows us to estimate the
likely pay-off from low-level tuning.

Our bounds for the cache-optimized, register blocked implementations of
SpATA described in Section 2 are based on bounds we developed previously
for SpM×V [26]. In particular, we make the following assumptions to derive
upper bounds:

1. SpATA is memory bound since most of the time is spent streaming
through matrix data. Thus, we bound time from below by considering
only the cost of memory operations. Furthermore, we assume write-
back caches (true of the platforms considered in Table 1) and sufficient
store buffer capacity so that we can consider only loads and ignore the
cost of stores.

2. Our model of execution time charges for cache and memory latency, as
opposed to assuming that data can be retrieved from memory at the
manufacturer’s reported peak main memory bandwidth. When data
resides in the internal cache (L1 on these machines), we assume that
all accesses to this data can be fully pipelined, and therefore commit at
the maximum load/store commit rate. Table 1 shows this effective L1
access latency.2 We refer the reader to Section 5 of our prior paper [26]
for a more careful analysis of the STREAM benchmarks that justifies
this assumption.

3. As shown below in Equation (5), we can get a lower bound on memory
costs by computing a lower bound on cache misses. Therefore, we
consider only compulsory and capacity misses, i.e., we ignore conflict
misses. Also, we account for cache capacity and cache line size, but
assume full associativity.

4. We do not consider the cost of TLB misses. Since operations like
SpATA, SpM×V, and SpTS essentially spend most of their time stream-
ing through the matrix using stride 1 accesses, there are always very
few TLB misses.3

Let the total time of SpATA be T seconds. Then, the performance P in
2For example, on the Sun Ultra 2i platform, the L1 load latency is really 2 cycles [24].

However, this processor can commit 1 load per cycle, so we charge a 1 cycle latency for
L1 accesses in the bound. The IBM Power3 has a 1 cycle access latency but can commit
2 loads per cycle; we therefore show the effective L1 latency in Table 1 as .5 cycles.

3We have verified this experimentally using hardware counters.
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Mflop/s is

P =
4k
T
× 10−6 (3)

where k is the number of non-zeros in the m×n sparse matrix A, excluding
explicitly filled in zeros.4 To get an upper bound on performance, we need
a lower bound on T . We present our lower bound on T , which incorporates
Assumptions 1 and 2, in Section 3.1, below. Our expression for T in turn
uses lower bounds on cache misses (Assumption 3) described in Section 3.2.

3.1 A latency-based execution time model

We model execution time by counting only the cost of memory accesses.
Consider a machine with κ cache levels, where the access latency at cache
level i is αi seconds, and the memory access latency is αmem. Suppose
SpATA executes Hi cache accesses (or cache hits) and Mi cache misses at
each level i, and that the total number of loads is L. We charge αi for
each access to cache level i; thus, the execution time T , ignoring the cost of
non-memory operations, is

T =
κ∑
i=1

αiHi + αmemMκ (4)

= α1L+
κ−1∑
i=1

(αi+1 − αi)Mi + αmemMκ (5)

where we use H1 = L−M1 and Hi = Mi−1 −Mi for 2 ≤ i ≤ κ. According
to Equation (5), we can minimize T by minimizing Mi, assuming αi+1 ≥ αi.
In Section 3.2, we give expressions for L,Mi to evaluate Equation (5).

3.2 A lower bound on cache misses

Following Equation (5), we obtain a lower bound on Mi for SpATA by
counting compulsory and capacity misses but ignoring conflict misses. The
bound is a function of the cache configuration and matrix data structure.

Let Ci be the size of each cache i in double-precision words, and let li
be the line size, in doubles, with C1 ≤ . . . ≤ Cκ, and l1 ≤ . . . ≤ lκ. Suppose
γ integer indices use the same storage as 1 double.5 To get lower bounds,

4That is, T is a function of the machine architecture and data structure, so we can
fairly compare different values of P for fixed A and machine.

5For all the machines in this study, we use 32-bit integers; thus, γ = 2.
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assume full associativity and complete user-control over how data is placed
in cache.

We describe the BCSR data structure as follows. Let k̂ = k̂(r, c) be the
number of stored values, so the fill ratio is k̂/k, and the number of stored
blocks is k̂

rc . Then, the total number of loads L is L = LA +Lx +Ly, where

LA = 2

(
k̂ +

k̂

rc

)
+
m

r
Lx =

k̂

r
Ly =

k̂

r
. (6)

LA contains terms for the values, block column indices, and row pointers;
the factor of 2 accounts for reading A twice (once to compute Ax, and once
for AT times the result). Lx and Ly are the total number of loads required
to read x and y, where we load c elements of each vector for each of the k̂

rc
blocks.

We must account for the amount of data, or working set, required to
multiply by a block row and its transpose in order to model capacity misses
correctly. For the moment, assume that all block rows have the same number
of r×c blocks; then, each block row has k̂

rc ×
r
m = k̂

cm blocks. We define the
matrix working set, Ŵ , to be the size of matrix data for a block row:

Ŵ =
k̂

m
r +

1
γ

k̂

cm
+

1
γ

(7)

The total size of the matrix data in doubles is m
r Ŵ . We define the vector

working set, V̂ , to be the size of the corresponding vector elements for x and
y:

V̂ = 2k̂/m (8)

i.e., there are k̂
m non-zeros per row, each of which corresponds to a vector

element to be reused within a block row; the factor of 2 counts both x and
y elements.

For each cache level i, we compute a lower bound on the misses Mi

according to one of the following 2 cases, depending on the relative values
of Ci, Ŵ , and V̂ .

1. Ŵ + V̂ ≤ Ci: Entire working set fits in cache.
Since there is sufficient cache capacity, we incur only compulsory misses
on the matrix and vector elements:

Mi ≥
1
li

(m
r
Ŵ + 2n

)
. (9)
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2. Ŵ + V̂ > Ci: The working set exceeds the maximum cache capacity.
In addition to the compulsory misses shown in Equation (9), we incur
a capacity miss for each element of the total working set that exceeds
the cache capacity:

Mi ≥
1
li

[m
r
Ŵ + 2n+

m

r
(Ŵ + V̂ − Ci)

]
. (10)

We refer the reader to Appendix A for detailed derivations. Note that
Equations (9)–(10) have a factor of 1

li
, i.e., our lower bound optimistically

assumes we will incur only 1 miss per cache line in the best case. To mitigate
the effect of this assumption, we could refine these bounds by taking Ŵ and
V̂ to be functions of the non-zero structure of each block row. Finally, we
remark that we do account for architecture-specific features, such as the fact
that on the Itanium platform, only integer data is cached in L1.

4 Experimental Results and Analysis

Below, we present (1) an experimental example of SpATA in practice which
justifies our approach to search, and motivates our register block size selec-
tion heuristic, (2) an experimental validation of the cache miss bounds model
described in Section 3.2, and (3) an experimental evaluation of our cache-
optimized, register-blocked implementations of SpATA with respect to the
upper bounds described in Section 3.1. We conducted our experiments on
the 4 platforms shown in Table 1 for the 44 matrices listed in Table 2. These
matrices are numbered consistently with prior work on Sparsity, and can
be categorized as follows.

• Matrix 1: A dense matrix in sparse format, shown for reference.

• Matrices 2–17: Matrices from finite element method (FEM) applica-
tions. Matrices 2–9 have a predominantly uniform block structure (a
single block size aligned uniformly), while matrices 10–17 have a more
irregular block structure (multiple block sizes, or a single block size
with blocks not aligned on a fixed grid).

• Matrices 18–39: Matrices from various non-FEM applications, includ-
ing chemical process simulation, oil reservoir modeling, and macroe-
conomic modeling applications, among others.

• Matrices 40–44: Matrices from linear programming problems.
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We instrumented our code with the PAPI hardware counter library (v2.1)
to measure cycle and cache miss counts, among other metrics [6].

Note that when we present results for a particular platform, we omit
matrices which fit within the largest cache level to avoid reporting inflated
performance results. Furthermore, when reporting performance in Mflop/s,
we do not count the extra flops due to the explicit zeros caused by fill.

4.1 Experimental motivation for our approach

To motivate our search-based approach to tuning, we consider an example
which illustrates thtat (1) even in the simplest example, non-zero structure
alone is insufficient to dictate the optimal choice of block size in practice, (2)
performance can be an irregular function of block size, and (3) performance
is a strong function of the architecture.

Figure 3 (left) shows a spy plot of matrix #2 (raefsky3) from our bench-
mark suite, and Figure 3 (right) shows the upper leftmost 80×80 subma-
trix. The non-zero structure of this matrix consists entirely of dense 8×8
subblocks, uniformly aligned on an 8×8 grid as shown. Therefore, an 8×8
blocking does not require filling in explicit zeros. Furthermore, our perfor-
mance upper bounds predict that the 8×8 format would be the best choice
since that block size leads to the smallest index overhead. An application
developer is likely to choose this block size, or perhaps 4×4, the next small-
est, square factor. (Note that the popular library, PETSc, supports only
square block sizes at the time of this writing [2].)

We ran an experiment in which we tried the cache-optimized, register
blocked implementation for all r×c where r, c ∈ {1, 2, 4, 8}. We would expect
that increasing the block size should lead to uniform improvements in per-
formance, according to our bounds model. Figure 4 shows our experimental
results on each of the four evaluation platforms. Specifically, we show the 16
r×c implementations, each color-coded by its performance in Mflop/s and
labeled by its speedup relative to the unblocked (1×1) cache-optimized code
(lower-left square in each plot).

On the Ultra 2i, performance increases with block size as we expect, and
8×8 has the best performance (just over 100 Mflop/s and a 2.3× speedup).
However, choosing 8×8 or even 4×4 block sizes does not yield the optimal
performance on all platforms: on the Pentium III, the 4×2 implementation
is the fastest. On the Power3, 8×8 is better than no blocking, but much
worse than the optimal 4×4; the Power3 has twice as many double-precision
floating point registers as the Ultra 2i, so register pressure does not explain
why 8×8 is relatively slower than 4×4 on the Power3. On the Itanium, the
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Matrix 02−raefsky3: 8x8 blocked submatrix (1:80, 1:80)

Figure 3: Spy plots of Matrix #2 (raefsky3). (Left) The matrix consists
primarily of three bands. (Right) These bands consist entirely of 8×8 blocks,
aligned uniformly as shown by this 80×80 submatrix.

4×4 code is anomalously slower than all of the “neighboring” implementa-
tions (e.g., 2×2, 8×8, 4×4, 4×2, . . . ). In short, performance is a strong
function of the architecture, and the optimal block size cannot necessarily
be predicted by considering only non-zero structure or anticipated register
usage.

Indeed, the purpose of collecting the register profiles (off-line benchmark-
ing data) as described in Section 2.2 is to capture the machine-dependent
structure in performance, independent of any particular sparse matrix. Fig-
ure 5 shows the profile data on our evaluation platforms—we see a dramatic
variation in performance as a function of the platform.

4.2 Validation of the cache miss model

Figure 6 compares the load and cache miss counts given by our model, Equa-
tions (6)–(10), to those observed using PAPI. We measured the performance
(Mflop/s) for all block sizes to determine empirically the best block size,
ropt×copt, for each matrix and platform. Figure 6 shows, at the matrix- and
machine-dependent block size ropt×copt, (1) the ratio of measured load oper-
ations to the loads predicted by Equation (6) (shown as solid squares), and
(2) the ratio of measured L1, L2, and L3 cache misses to the lower bound,
Equations (9)–(10) (shown as circles, asterisks, and ×s, respectively). Fur-
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Figure 4: Variations in performance on different architectures: ma-
trix #2 (raefsky3). For each of the four evaluation platforms, we show
the performance of the cache-optimized, register blocked code on Matrix #2,
for all r×c block sizes where r, c ∈ {1, 2, 4, 8}. Each square is an implemen-
tation, color-coded by its performance (Mflop/s) and labeled by its speedup
over the unblocked (1×1), cache-optimized code. The best implementations
are 8×8 on the Ultra 2i (top-left), 4×2 on the Pentium III (top-right), 4×4
on the Power3 (bottom-left), and 8×8 on the Itanium (bottom-right).
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Figure 5: Register profiles (off-line benchmarks) capture machine-
dependent structure. For each of the four evaluation platforms, we show
the performance of the cache-optimized, register blocked code on a dense
matrix stored in sparse r×c format, for all r×c up to 8×8. Each square is
an implementation, shaded by its performance (Mflop/s) and labeled by its
speedup over the unblocked (1×1), cache-optimized code. Profiles are shown
for the Ultra 2i (top-left), Pentium III (top-right), Power3 (bottom-left), and
Itanium (bottom-right).
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thermore, for each category (i.e., loads, L1 misses, L2 misses, . . . ), we show
the median ratio as a dashed horizontal line. Since our model is indeed a
lower bound, all ratios are at least 1; if our model exactly predicted reality,
then all ratios would equal 1. We make the following observations:

• L2 and L3 cache miss counts tend to be very accurate: the observed
counts are typically within 5–10% of the lower bound, indicating that
cache capacity is sufficient to justify ignore conflict misses at these
levels.

• The ratio of observed L1 miss counts to the model is relatively high
on the Ultra 2i (median ratio of 1.34×) and the Pentium III (1.23×),
compared to the Power3 (1.16×) and Itanium (1.00×). One explana-
tion is the lack of L1 cache capacity, which causes more misses than
predicted by our model. Recall that the model assumes the full cache
capacity is available and that there are no conflicts. On the Itanium,
although the cache size is the same as that on the Ultra 2i, less ca-
pacity is needed relative to the Ultra 2i because only integer data is
cached in L1.

• On the Pentium III and Itanium, the observed load counts are high
relative to the model. On the Pentium III, separate load and store
counters were not available, so stores are included in the counts. Man-
ually accounting for these stores yields the expected number of loads
to within 10% when spilling does not occur (not shown). A secondary
reason is that spilling occurs with a few of the implementations (con-
firmed by inspection of the assembly code).

On the Itanium, prefetch instructions (inserted by the compiler) are
counted as loads by the hardware counter for load instructions. (By
contrast, prefetches are also inserted by the IBM compiler, but are not
counted as loads.)

• On matrices 15 and 40–44 (linear programming), observed miss counts
(particularly L1 misses) tend to be much higher than for the other ma-
trices. These matrices tend to have a much more random distribution
of non-zeros than the others, and therefore our assumption of being
able to exploit spatial locality fully (the 1

li
factor in Equations (9)–(10))

does not hold. Thus, we expect the upper bound to be optimistic for
these matrices.

In summary, we claim that the data show our lower bound cache miss esti-
mates are reasonable, and that we are able to account for discrepancies based
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Figure 6: Cache miss model validation. We show the ratio (y-axis) of
measured loads and cache misses to the counts predicted by our lower bound
model, Equations (6)–(10), for each matrix (x-axis). We show data for each
of the following four platforms: Sun Ultra 2i (top-left), Intel Pentium III
(top-right), IBM Power3 (bottom-left), and Intel Itanium (bottom-right). Of
these platforms, only the Itanium has three levels of cache. The median of
the ratios is shown as a dotted horizontal line, with its value labeled to the
right of each plot.
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on both our modeling assumptions and our knowledge of each architecture.
For the interested reader, we include raw load/store counts in Appendix B.

4.3 Performance evaluation of our SpATA implementations

Our performance evaluation results are summarized in Figures 7–10, which
compare the performance (Mflop/s; y-axis) of the following bounds and
implementations for each matrix (x-axis):

• Upper bound, or analytic upper bound (shown as a solid line): This
line shows the fastest (highest) value of our performance upper bound,
Equations (3)–(10), over all r×c block sizes up to 8×8. We denote the
block size shown by rup×cup.

• PAPI upper bound (shown by triangles): The “PAPI upper bound”
is also an upper bound, except that we substitute true loads and misses
as measured by PAPI for L and Mi in Equation (5). In some sense,
the PAPI bound is the true bound since misses are “modeled” exactly;
the gap between the PAPI bound and the upper bound indicates how
well Equations (6)–(10) reflect reality. The data points shown are for
the same block size rup×cup used in the analytic upper bound.

Note that the block sizes (rup×cup) used in the analytic and PAPI
upper bounds are not necessarily the same as those used in Section
4.2. Nevertheless, the observations of Section 4.2 are qualitatively the
same. We chose to use the best model bound in order to show the best
possible performance expected, assuming ideal scheduling.

• Best cache optimized, register blocked implementation (squares):
We implemented the optimization described in Section 2, These points
show the best observed performance over all block sizes up to 8×8.
We denote the block size shown by ropt×copt, which may differ from
rup×cup.

• Heuristic cache optimized, register blocked implementation (solid
circles): These points show the performance of the cache optimized
implementation using a register block size, rheur×cheur, chosen by the
heuristic.

• Register blocking only (diamonds): This implementation computes
t = Ax and y = AT t as separate steps but with register blocking.
The same block size, rreg×creg, is used in both steps, and the best
performance over all block sizes up to 8×8 is shown.
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• Cache optimization only (shown by asterisks): This code imple-
ments the algorithmically cache optimized version of SpATA shown
in Equation (1), but without any register-level blocking (i.e., with
r = c = 1).

• Reference implementation (×’s): The reference computes t = Ax
and y = AT t as separate steps, with no register-level blocking.

Note that on each platform, we have omitted matrices which are small rela-
tive to the cache size to avoid reporting inflated performance data. Appendix
C show the values of ropt×copt, rheur×cheur, and rreg×creg used in Figures
7–10. We draw the following 5 high-level conclusions based on Figures 7–10.

1. The cache optimization leads to uniformly good performance improve-
ments. Applying the cache optimization, even without register blocking,
leads to speedups ranging from up to 1.2× on the Itanium and Power3 plat-
forms, to just over 1.6× on the Ultra 2i and Pentium III platforms. These
speedups do not vary significantly across matrices, suggesting that this op-
timization is always worth trying.

2. Register blocking and the cache optimization can be combined to good
effect. When the algorithmic cache blocking and register blocking are com-
bined, we observe speedups from 1.2× up to 4.2× over the reference code.
Furthermore, if we compare the best, combined implementation to the reg-
ister blocking only code, we see speedups of up to 1.8×.

Moreover, the effect of combining the register blocking and the cache
optimization is synergistic: the observed, combined speedup is at least
the product (the register blocking only speedup) × (the cache-optimization
only speedup), when rreg×creg and ropt×copt match. Indeed, the combined
speedup is greater than this ratio on the Ultra 2i, Power3, and Itanium
platforms. In Appendix D, we show speedup versions of Figures 7–10 in or-
der to make the claim of synergy explicit. One possible explanation is that
the compilers on these three platforms schedule instructions for in-cache
workloads better than out-of-cache workloads. Some indirect evidence of
this claim is shown in Appendix C, where the best implementations have
surprisingly high fill ratios (1.5 or more).

3. Our heuristic always chooses a near-optimal block size. Indeed, the
performance of the block size selected by the heuristic is within 10% of the
exhaustive best in all but four instances—in those four cases, the heuristic
performance is within 15% of the best.

In Appendix C, we summarize this data in detail, showing the optimal
block sizes for SpATA, both with and without the cache and register block-
ing optimizations. We also consider the case in which we use the optimal
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register blocking only block size, rreg×creg, with the cache optimization.
On all platforms except the Power3, we find a number of cases in which
the choice of rreg×creg with the cache optimization is more than 10% worse
than choosing the ropt×copt block size predicted by our heuristic. Therefore,
using a SpATA-specific heuristic leads to more robust block size selection.

4. Our implementations are within 20–30% of the PAPI upper bound for
FEM matrices, but within only about 40–50% on other matrices. The gap
between actual performance and the upper bound is larger than what we ob-
served previously for SpM×V and SpTS [26, 27]. This result suggests that
a larger pay-off is expected from low-level tuning by, for instance, apply-
ing tuning techniques used in systems such as ATLAS/PHiPAC to further
improve performance.

5. Our analytic model of misses is accurate for FEM matrices, but less
accurate for the others. For the FEM matrices 1–17, the PAPI upper bound
is typically within 10–15% of the analytic upper bound, indicating that our
analytic model of misses is accurate in these cases. For the matrices 18–44,
the gap between the analytic upper bound and the PAPI upper bound in-
creases with increasing matrix number because our cache miss lower bounds
assume maximum spatial locality in the accesses to x, indicated by the fac-
tor of 1

li
in Equations (9)–(10). We discuss this effect in Section 4.2. FEM

matrices have naturally dense block structure and can benefit from spatial
locality; matrices with more random structure (e.g., linear programming
matrices 40–44) cannot. In principle, we can refine our lower bounds to
account for this by a more detailed examination of the non-zero structure.

The gap between the analytic and PAPI upper bounds is larger (as a
fraction of the analytic upper bound) on the Pentium III than on the other
three platforms. As discussed in Section 4.2, this is due to two factors:
(1) we did not have separate counters for load and store operations, so we
are charging for stores as well in the PAPI upper bound, and (2) in some
cases, the limited number of registers on the Pentium III (8 registers) led
to spilling in some implementations (confirmed by inspection of the load
operation counts and inspection of the assembly code).

For additional analysis of the performance bound model, we refer the
reader to Appendix E. There, we breakdown execution time according to
the time spent at each cache and memory level. We discuss what the model
implies about the design of cache architectures for SpATA in particular, and
streaming applications more generally.
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Figure 7: SpATA performance on the Sun Ultra 2i platform. A
speedup version of this plot appears in Appendix D.
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Figure 8: SpATA performance on the Intel Pentium III platform. A
speedup version of this plot appears in Appendix D.
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Figure 9: SpATA performance on the IBM Power3 platform. A
speedup version of this plot appears in Appendix D.
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Figure 10: SpATA performance on the Intel Itanium platform. A
speedup version of this plot appears in Appendix D.
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5 Related Work

For dense algorithms, a variety of sophisticated static models for select-
ing transformations and tuning parameters have been developed each with
the goal of providing a compiler with sufficiently precise models for select-
ing memory hierarchy transformations and parameters such as tile sizes
[8, 11, 19, 7, 30]. However, it is difficult to apply these analyses directly to
sparse matrix kernels due to the presence of indirect and irregular memory
access patterns. Nevertheless, there have been a number of notable modeling
attempts in the sparse case for SpM×V. Temam and Jalby [25], Heras, et
al. [14], and Fraguela, et al. [10] have developed sophisticated probabilistic
cache miss models for SpM×V, but assume uniform distribution of non-zero
entries. These models vary in their ability to account for self- and cross-
interference misses. To obtain lower bounds, we account only for conflict
and capacity misses, though refinements are possible (see Section 4).

Gropp, et al., use bounds like the ones we develop to analyze and tune
a computational fluid dynamics code [12]; Heber, et al., develop, study, and
tune a fracture mechanics code [13] on Itanium. However, we are interested
in tuning for matrices that come from a variety of domains and machine
architectures. Furthermore, in our bounds we explicitly model execution
time (instead of just modeling misses) in order to evaluate the extent to
which our tuned implementations achieve optimal performance.

Work in sparse compilers, e.g., Bik et al. [3], Pugh and Shpeisman [20],
and the Bernoulli compiler [23], complements our own work. These projects
focus on the expression of sparse kernels and data structures for code gener-
ation, and will likely prove valuable to generating our implementations. One
distinction of our work is our use of a hybrid off-line, on-line, architecture-
specific model for selecting transformations (tuning parameters).

6 Conclusions and Future Directions

The speedups of up to 4.2× that we have observed indicate that there is
tremendous potential to boost performance in applications dominated by
SpATA. The implementation of our heuristic and its accuracy in choosing
a block size helps to validate the approach to tuning parameter selection
originally proposed in the Sparsity. We are incorporating this kernel and
these optimizations in an automatically tuned sparse library based on the
Sparse BLAS standard [5].

Our upper bounds indicate that there is a more room for improvement us-
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ing low-level tuning techniques than with prior work on SpM×V and SpTS.
Applying automated search techniques to improve scheduling, as developed
in ATLAS and PHiPAC, is a natural extension of this work. We have also
identified refinements to the bounds that make explicit use of matrix non-
zero structure (e.g., making the working set size block row structure depen-
dent, and accounting for the degree of actual spatial locality in source vector
accesses). Such models could be used to study how performance varies with
architectural parameters, in the spirit of SpM×V modeling work by Temam
and Jalby [25].

Additional reuse is possible when multiplying by multiple vectors instead
of a single vector. Preliminary results on Itanium for sparse matrix-multiple-
vector mltiplication show speedups of 6.5 to 9 over single-vector code [26].
This is a natural opportunity for future work with SpATA as well. We are
exploring this optimization and other higher-level kernels with matrix reuse
(e.g., Akx, matrix triple products).
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A Cache Miss Lower Bounds for SpATA

Below, we derive each of the 2 cases given in Section 3.2. We assume the same
notation. To simplify the discussion, let li = 1; the case of li > 1 reduces each of
the miss counts below by a factor of 1

li
, as shown in Equations (9)–(10).

1. Ŵ + V̂ ≤ Ci: The total working set fits in cache.
In this case, there is sufficient cache capacity to hold both the matrix and
vector working sets in cache. Therefore, we incur only compulsory misses: 1
miss for each of the m

r Ŵ matrix data words, and 1 miss for each of the 2n
vector elements (x and y).

2. Ŵ + V̂ > Ci: The total working set exceeds the cache size.
To obtain a lower bound in this case, suppose (1) the cache is fully asso-
ciative, and (2) we have complete control over how data is placed in the
cache. Suppose we choose to devote a fraction α of the cache to the matrix
elements, and a fraction 1 − α of the cache to the vector elements. The
following condition ensures that α lies in a valid subset of the interval [0, 1]:

max

{
0, 1− V̂

Ci

}
≤ α ≤ min

{
Ŵ

Ci
, 1

}
.

(The case of α at the lower bound means that we devote the maximum
possible number of elements to the vector working set, and as few as possible
to the matrix working set. When α meets the upper bound, we devote as
many cache lines as possible to the matrix and as few as possible to the
vector.)
First consider misses on the matrix. In addition to the m

r Ŵ compulsory
misses, we incur capacity misses: for each block row of A, each of the Ŵ−αCi
words exceeding the alotted capacity for the matrix will miss. Summing the
capacity misses over all mr block rows and adding the compulsory misses, we

find m
r Ŵ + m

r

(
Ŵ − αCi

)
misses to the matrix elements.

A similar argument applies to the x and y vectors. There are 2n compulsory
misses and, for each block row, V̂ − (1 − α)Ci capacity misses, or 2n +
m
r

[
V̂ − (1− α)Ci

]
misses in all.

Thus, a lower bound on cache misses in this case is

Mi ≥
m

r
Ŵ +

m

r
(Ŵ − αCi) + 2n+

m

r

[
V̂ − (1− α)Ci

]
=

m

r
Ŵ + 2n+

m

r
(Ŵ + V̂ − Ci)

which is independent of how cache capacity is allocated among the matrix
and vector data, i.e., independent of α.
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Note that we can further refine the bounds by considering each block row in-
dividually, i.e., taking Ŵ and V̂ to be functions of the non-zero structure of the
actual block row. For the particular matrices used in this study, this refinement of
the bounds would have produced tighter upper bounds.

Finally, we note that in this study we also account for architecture-specific
features. For instance, on the Itanium platform, only integer data is cached in L1.

B Raw PAPI Load and Miss Count Data

Figures 11–14 shown the raw load and cache miss count data reported by PAPI.

C Tabulated Performance Data

Tables 3–6 list the block sizes and corresponding performance values and measure-
ments for Figures 7–10. In particular, each table shows the following data:

• Best cache optimized, register blocked block size (ropt×copt) and per-
formance: Best block size and corresponding performance based on an ex-
haustive search over block sizes.

• Heuristic cache optimized, register blocked block size (rheur×cheur)
and performance: Block size chosen by the heuristic and its corresponding
performance. Items in this column marked with a * show when this choice of
block size yields performance that is more than 10% worse than the optimal
block size, ropt×copt.

• Register blocking only block size (rreg×creg) and performance.

• Cache optimized, register blocked implementation using the same block
size, rreg×creg, as in the register blocking only case. Items in this column
marked with a * show when this choice of block size yields performance that
is more than 10% worse than the optimal block size, ropt×copt. That is,
marked items show when the SpATA-specific heuristic makes a better choice
than using the optimal block size based only on SpM×V performance.

D Speedup Plots

Figures 15–18 compare the observed speedup when register blocking and the cache
optimization are combined with the product (register blocking only speedup) ×
(cache optimization only speedup). When the former exceeds the latter, we say
there is a synergistic effect from combining the two optimizations. This effect
occurs on all the platforms but the Pentium III, where the observed speedup and
the product of individual speedups are nearly equal.

30



1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 21 25 27 28 36 40 44
100

101

102

matrix no.

no
. o

f l
oa

ds
 (m

ill
io

ns
)

Load Counts [ultra−solaris]

Lower Bound Model
Measured (PAPI)

1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 21 25 27 28 36 40 44

100

matrix no.

no
. o

f m
is

se
s 

(m
ill

io
ns

)

L1 Misses [ultra−solaris]

Lower Bound Model
Measured (PAPI)

1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 21 25 27 28 36 40 44
10−2

10−1

100

matrix no.

no
. o

f m
is

se
s 

(m
ill

io
ns

)

L2 Misses [ultra−solaris]

Lower Bound Model
Measured (PAPI)

Figure 11: Raw load and cache miss count data: Sun Ultra 2i.
Counts reported by PAPI for load instructions (top), L1 misses (middle),
and L2 misses (bottom). Note the logarithmic scale on the y-axis.
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Figure 12: Raw load and cache miss count data: Intel Pentium III.
Counts reported by PAPI for load instructions (top), L1 misses (middle),
and L2 misses (bottom). Note the logarithmic scale on the y-axis.
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Figure 13: Raw load and cache miss count data: IBM Power3.
Counts reported by PAPI for load instructions (top), L1 misses (middle),
and L2 misses (bottom). Note the logarithmic scale on the y-axis.
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Figure 14: Raw load and cache miss count data: Intel Itanium.
Counts reported by PAPI for load instructions (top), L1 misses (middle),
L2 misses (bottom-left), and L3 misses (bottom-right). Note the logarithmic
scale on the y-axis.
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cache-opt.
Best Heuristic + reg. block

cache-opt. + reg. blocking cache-opt. + reg. blocking Reg. blocking only rreg×creg

No. ropt×copt Fill Mflop/s rheur×cheur Fill Mflop/s rreg×creg Fill Mflop/s Mflop/s

1 7×7 1.00 103.1 7×7 1.00 103.1 8×5 1.00 64.7 100.5

2 8×8 1.00 105.5 4×8 1.00 98.0 8×2 1.00 61.0 96.2

3 6×6 1.12 89.4 6×6 1.12 89.4 6×6 1.12 52.5 89.4

4 6×3 1.12 84.7 6×6 1.19 83.4 6×2 1.13 51.2 82.7

5 4×4 1.00 80.6 4×4 1.00 80.6 4×4 1.00 51.3 80.6

6 3×3 1.00 85.0 3×3 1.00 85.0 3×3 1.00 52.1 85.0

7 3×3 1.00 85.8 3×3 1.00 85.8 3×3 1.00 52.1 85.8

8 6×2 1.13 90.4 6×6 1.15 85.5 6×6 1.15 50.9 85.5

9 3×3 1.02 80.7 3×3 1.02 80.7 3×3 1.02 50.6 80.7

10 2×2 1.21 61.0 5×2 1.58 57.5 2×2 1.21 35.9 61.0

11 2×2 1.23 54.9 2×2 1.23 54.9 2×2 1.23 32.3 54.9

12 2×2 1.24 60.8 3×2 1.36 60.7 3×2 1.36 36.8 60.7

13 3×2 1.40 59.5 3×2 1.40 59.5 3×2 1.40 35.9 59.5

15 2×1 1.00 50.9 2×1 1.00 50.9 2×1 1.00 33.5 50.9

17 2×1 1.36 47.2 7×1 2.09 42.3* 1×1 1.00 28.7 43.7

21 2×1 1.38 49.0 7×1 2.10 42.1* 1×1 1.00 29.9 42.9*

25 2×1 1.71 28.6 1×1 1.00 28.1 1×1 1.00 21.8 28.1

27 2×1 1.53 35.7 1×1 1.00 32.0* 1×1 1.00 22.0 32.0*

28 1×1 1.00 38.4 1×1 1.00 38.4 1×1 1.00 27.3 38.4

36 1×1 1.00 27.9 1×1 1.00 27.9 1×1 1.00 18.7 27.9

40 1×1 1.00 34.7 1×1 1.00 34.7 1×1 1.00 27.5 34.7

44 1×1 1.00 30.2 1×1 1.00 30.2 1×1 1.00 22.2 30.2

Table 3: Block size summary data for the Sun Ultra 2i platform. An
asterisk (*) by a heuristic performance value indicates that this performance
was less than 90% of the best performance.
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cache-opt.
Best Heuristic + reg. block

cache-opt. + reg. blocking cache-opt. + reg. blocking Reg. blocking only rreg×creg

No. ropt×copt Fill Mflop/s rheur×cheur Fill Mflop/s rreg×creg Fill Mflop/s Mflop/s

1 8×4 1.00 126.3 8×4 1.00 126.3 6×2 1.00 91.3 111.4*

2 4×2 1.00 142.1 8×4 1.00 124.1* 4×8 1.00 85.7 137.0

3 3×6 1.12 126.5 3×3 1.12 123.8 6×2 1.12 80.5 105.5*

4 3×3 1.06 127.0 3×3 1.06 127.0 6×2 1.13 78.8 102.0*

5 4×2 1.00 118.6 4×2 1.00 118.6 4×2 1.00 76.2 118.6

6 3×3 1.00 137.2 3×3 1.00 137.2 3×3 1.00 80.4 137.2

7 3×3 1.00 137.1 3×3 1.00 137.1 3×3 1.00 80.4 137.1

8 3×3 1.11 120.9 3×3 1.11 120.9 6×2 1.13 79.1 102.6*

9 3×3 1.02 126.1 3×3 1.02 126.1 3×3 1.02 77.9 126.1

10 4×2 1.45 93.7 4×2 1.45 93.7 4×2 1.45 56.6 93.7

11 2×2 1.23 81.4 2×2 1.23 81.4 2×2 1.23 51.5 81.4

12 4×2 1.48 96.0 3×2 1.36 95.4 3×2 1.36 57.4 95.4

13 3×2 1.40 92.8 3×2 1.40 92.8 3×2 1.40 55.8 92.8

14 3×2 1.47 84.2 3×2 1.47 84.2 3×2 1.47 50.4 84.2

15 2×1 1.00 69.1 2×1 1.00 69.1 2×1 1.00 52.7 69.1

16 4×2 1.66 80.2 4×1 1.43 78.0 4×1 1.43 51.7 78.0

17 3×1 1.59 67.6 4×1 1.75 67.4 6×1 1.98 44.2 54.5*

18 2×1 1.36 43.1 2×1 1.36 43.1 2×1 1.36 32.4 43.1

20 1×2 1.17 68.2 1×2 1.17 68.2 1×2 1.17 43.1 68.2

21 3×1 1.59 67.9 4×1 1.77 67.1 5×1 1.88 43.5 65.7

23 2×1 1.46 48.8 1×1 1.00 46.7 2×1 1.46 32.3 48.8

24 1×1 1.00 57.2 1×1 1.00 57.2 2×1 1.52 37.3 57.1

25 1×1 1.00 42.8 1×1 1.00 42.8 1×1 1.00 29.5 42.8

26 1×1 1.00 41.9 1×1 1.00 41.9 1×1 1.00 28.0 41.9

27 2×1 1.53 46.7 1×1 1.00 46.4 2×1 1.53 32.1 46.7

28 1×1 1.00 53.5 1×1 1.00 53.5 1×1 1.00 35.1 53.5

29 2×2 1.98 44.7 1×1 1.00 43.5 2×2 1.98 29.0 44.7

36 1×1 1.00 37.2 1×1 1.00 37.2 1×1 1.00 26.9 37.2

37 2×2 1.98 44.8 1×1 1.00 43.4 2×2 1.98 29.0 44.8

40 1×1 1.00 48.3 1×1 1.00 48.3 1×1 1.00 35.2 48.3

41 1×1 1.00 34.6 1×1 1.00 34.6 1×1 1.00 28.6 34.6

42 1×1 1.00 34.8 1×1 1.00 34.8 1×1 1.00 28.6 34.8

44 1×1 1.00 29.1 1×1 1.00 29.1 1×1 1.00 26.1 29.1

Table 4: Block size summary data for the Intel Pentium III plat-
form. An asterisk (*) by a heuristic performance value indicates that this
performance was less than 90% of the best performance.
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Figure 15: Combined effect of register blocking and the cache op-
timization on the Sun Ultra 2i platform. Here, we see the synergis-
tic effect of combining register blocking and cache blocking—the observed
speedup of combining these optimizations (squares) is greater than the
product of (cache optimization only speedup) and (register blocking only
speedup), shown as a solid line.
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Figure 16: Combined effect of register blocking and the cache op-
timization on the Intel Pentium III platform. The observed speedup
of combining register and cache optimizations equals the product of (cache
optimization only speedup) and (register blocking only speedup), shown as
a solid line.

38



1 2 4 5 7 8 9 10 12 13 15 40
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

matrix no.

S
pe

ed
up

 o
ve

r N
ai

ve

ATAx Performance [power3−aix]

Cache + Reg (best)
(Cache only) * (Reg only)
Reg only
Cache only
Reference

Figure 17: Combined effect of register blocking and the cache op-
timization on the IBM Power3 platform. Here, we see the synergis-
tic effect of combining register blocking and cache blocking—the observed
speedup of combining these optimizations (squares) is greater than the
product of (cache optimization only speedup) and (register blocking only
speedup), shown as a solid line.
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Figure 18: Combined effect of register blocking and the cache op-
timization on the Intel Itanium platform. Here, we see the syn-
ergistic effect of combining register blocking and cache blocking—the ob-
served speedup of combining these optimizations (squares) is greater than
the product of (cache optimization only speedup) and (register blocking only
speedup), shown as a solid line.
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cache-opt.
Best Heuristic + reg. block

cache-opt. + reg. blocking cache-opt. + reg. blocking Reg. blocking only rreg×creg

No. ropt×copt Fill Mflop/s rheur×cheur Fill Mflop/s rreg×creg Fill Mflop/s Mflop/s

1 4×4 1.00 264.6 4×4 1.00 264.6 2×4 1.00 174.9 254.8

2 4×4 1.00 275.3 4×4 1.00 275.3 4×2 1.00 177.3 267.3

4 3×6 1.12 238.7 3×3 1.06 233.8 3×2 1.07 160.0 232.7

5 4×4 1.00 237.4 4×4 1.00 237.4 4×2 1.00 162.5 232.7

7 3×3 1.00 241.0 3×3 1.00 241.0 3×3 1.00 163.4 241.0

8 3×6 1.13 224.6 6×2 1.13 216.5 2×2 1.10 144.7 207.5

9 3×3 1.02 234.1 3×3 1.02 234.1 3×3 1.02 152.7 234.1

10 2×1 1.10 189.2 2×1 1.10 189.2 2×1 1.10 137.8 189.2

12 2×2 1.24 194.5 2×1 1.13 192.8 2×1 1.13 142.6 192.8

13 2×1 1.14 194.7 2×1 1.14 194.7 2×1 1.14 147.0 194.7

15 2×1 1.00 182.2 2×1 1.00 182.2 2×1 1.00 145.0 182.2

40 1×1 1.00 139.1 1×1 1.00 139.1 1×1 1.00 125.4 139.1

Table 5: Block size summary data for the IBM Power3 platform. An
asterisk (*) by a heuristic performance value indicates that this performance
was less than 90% of the best performance.

E Execution Time Breakdown

Equation (4) includes a term at each level of the memory hierarchy, from the L1
cache to main memory. Figures 19–22 shows the contribution of each term to the
total execution time, according to (1) our analytic counts, Equations (6)–(10), and
(2) the observed PAPI counts. Data for the rup×cup block size is shown.

In Figure 19 (top), observe that our bounds model charges 40–50% of the exe-
cution time on the Ultra 2i to memory accesses (Figure 19, top). However, on the
other three platforms, the model evidently charges 50–75% of the execution time
to memory accesses. Furthermore, on the Pentium III, Power3, and Itanium ma-
chines, the time spent in the largest level cache is practically negligible according
to the model—i.e., the external cache is essentially transparent, failing to reduce
the overall cost of memory operations. Note that (1) SpATA spends most of its
time streaming through the matrix, and (2) the cache line sizes of the on-chip and
off-chip caches are the same on the Pentium III, Power3, and Itanium. Thus, a
compulsory miss on an element of the matrix in the on-chip cache is also a miss in
the off-chip cache. In hardware, this effect could have been alleviated by ensuring
that the line sizes are strictly increasing with increasing cache level.

In Figures 19–22 (bottom), we evaluate the execution time model using true
cache miss counts. Since the true counts agree with the model for the external
caches (see Section 4.2), we see the top and bottom plots of each figure match well.
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cache-opt.
Best Heuristic + reg. block

cache-opt. + reg. blocking cache-opt. + reg. blocking Reg. blocking only rreg×creg

No. ropt×copt Fill Mflop/s rheur×cheur Fill Mflop/s rreg×creg Fill Mflop/s Mflop/s

1 8×8 1.00 347.1 8×8 1.00 347.1 8×1 1.00 233.7 314.9

2 8×8 1.00 323.4 8×8 1.00 323.4 8×1 1.00 216.1 297.3

3 6×6 1.12 249.1 6×6 1.12 249.1 3×1 1.06 164.4 200.1*

4 3×3 1.06 235.4 3×3 1.06 235.4 2×2 1.07 163.3 207.7*

5 4×2 1.00 238.6 4×2 1.00 238.6 4×2 1.00 170.5 238.6

6 3×3 1.00 256.4 3×3 1.00 256.4 3×1 1.00 174.4 212.7*

7 3×3 1.00 257.2 3×3 1.00 257.2 3×1 1.00 174.7 213.0*

8 6×6 1.15 237.6 6×6 1.15 237.6 3×1 1.06 160.1 197.9*

9 3×3 1.02 252.2 3×3 1.02 252.2 3×1 1.01 171.1 208.2*

10 4×2 1.45 183.6 4×2 1.45 183.6 4×1 1.33 145.8 180.5

11 2×2 1.23 158.7 2×2 1.23 158.7 2×2 1.23 122.5 158.7

12 4×2 1.48 187.4 4×2 1.48 187.4 4×1 1.37 148.8 182.5

13 4×2 1.54 181.2 4×2 1.54 181.2 4×1 1.40 146.0 179.2

15 2×2 1.35 145.7 2×2 1.35 145.7 2×2 1.35 124.9 145.7

17 4×1 1.75 142.4 4×1 1.75 142.4 4×1 1.75 115.3 142.4

21 4×1 1.77 140.9 4×1 1.77 140.9 4×1 1.77 113.7 140.9

25 3×1 2.37 67.4 2×1 1.71 64.5 2×1 1.71 53.0 64.5

27 3×1 1.94 85.4 3×1 1.94 85.4 3×1 1.94 63.8 85.4

28 2×2 2.54 86.2 1×1 1.00 84.4 1×1 1.00 70.6 84.4

36 3×1 2.31 65.1 2×2 2.31 62.1 3×1 2.31 47.2 65.1

40 3×1 1.99 97.0 3×1 1.99 97.0 3×1 1.99 84.9 97.0

44 1×1 1.00 48.9 1×1 1.00 48.9 1×1 1.00 47.4 48.9

Table 6: Block size summary data for the Intel Itanium platform.
An asterisk (*) by a heuristic performance value indicates that this perfor-
mance was less than 90% of the best performance.
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Figure 19: Execution time breakdown on the Sun Ultra 2i platform.
(Top) Fraction of time spent in the L1 cache, L2 cache, and main memory
for each matrix, according to the terms of Equation (4) and our analytic
load and miss counts, Equations (6)–(10). (Bottom) Fraction of time spent
in each level of the memory hierarchy, where we evaluate Equation (4) by
substituting the true, measured cache hits as reported by PAPI.
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Figure 20: Execution time breakdown on the Intel Pentium III
platform.
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Figure 21: Execution time breakdown on the IBM Power3 platform.
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Figure 22: Execution time breakdown on the Intel Itanium plat-
form.
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