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What are stencil codes?

• For a given point, a stencil is a pre-determined set of nearest
neighbors (possibly including itself)

• A stencil code updates every point in a regular grid with a
constant weighted subset of its neighbors (“applying a stencil”)

2D Stencil 3D Stencil



Stencil Applications

• Stencils are critical to many scientific applications:
– Diffusion, Electromagnetics, Computational Fluid Dynamics
– Both explicit and implicit iterative methods (e.g. Multigrid)
– Both uniform and adaptive block-structured meshes

• Many type of stencils
– 1D, 2D, 3D meshes
– Number of neighbors (5-

pt, 7-pt, 9-pt, 27-pt,…)
– Gauss-Seidel (update in

place) vs Jacobi iterations
(2 meshes)

• This talk focuses on 3D, 7-point, Jacobi iteration



Naïve Stencil Pseudocode (One iteration)

void stencil3d(double A[], double B[], int nx, int ny, int nz) {
for all grid indices in x-dim {
   for all grid indices in y-dim {
      for all grid indices in z-dim {
         B[center] = S0* A[center] +

        S1*(A[top] + A[bottom] +
      A[left] + A[right] +

           A[front] + A[back]);
 }

   }
   }
}



2D Poisson Stencil- Specific Form of SpMV

• Stencil uses an implicit matrix
– No indirect array accesses!
– Stores a single value for each diagonal

• 3D stencil is analagous (but with 7 nonzero diagonals)
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Reduce Memory Traffic!

• Stencil performance usually limited by memory bandwidth
• Goal: Increase performance by minimizing memory traffic

– Even more important for multicore!

• Concentrate on getting reuse both:
– within an iteration
– across iterations (Ax, A2x, …, Akx)

• Only interested in final result
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Naïve Algorithm

• Traverse the 3D grid in the usual way
– No exploitation of locality
– Grids that don’t fit in cache will suffer
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Cache Blocking- Single Iteration At a Time

• Guarantees reuse within an iteration
– “Shrinks” each plane so that three source planes fit into cache
– However, no reuse across iterations

• In 3D, there is tradeoff between cache blocking and prefetching
– Cache blocking reduces memory traffic by reusing data
– However, short stanza lengths do not allow prefetching to hide

memory latency
• Conclusion: When cache blocking, don’t cut in unit-stride

dimension!
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Time Skewing- Multiple Iterations At a Time

• Now we allow reuse across iterations
• Cache blocking now becomes trickier

– Need to shift block after each iteration to respect dependencies
– Requires cache block dimension c as a parameter (or else cache oblivious)
– We call this “Time Skewing” [Wonnacott ‘00]

• Simple 3-point 1D stencil with 4 cache blocks shown above



2-D Time Skewing Animation

No iterations
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• Since these are Jacobi iterations, we alternate writes between
the two arrays after each iteration

Cache Block #1 Cache Block #2
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Time Skewing Analysis

• Positives
– Exploits reuse across iterations
– No redundant computation
– No extra data structures

• Negatives
– Inherently sequential
– Need to find optimal cache block size

• Can use exhaustive search, performance model, or heuristic

– As number of iterations increases:
• Cache blocks can “fall” off the grid
• Work between cache blocks becomes more imbalanced



Time Skewing- Optimal Block Size Search
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Time Skewing- Optimal Block Size Search

• Reduced memory traffic does correlate to higher GFlop rates

G
O
O
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2-D Circular Queue Animation

Read array First iteration Second iteration Write array



Parallelizing Circular Queue

Stream out planes to
target grid

Stream in planes
from source grid

• Each processor receives a
colored block

• Redundant computation
when performing multiple
iterations



Circular Queue Analysis

• Positives
– Exploits reuse across iterations
– Easily parallelizable
– No need to alternate the source and target grids after each iteration

• Negatives
– Redundant computation

• Gets worse with more iterations

– Need to find optimal cache block size
• Can use exhaustive search, performance model, or heuristic

– Extra data structure needed
• However, minimal memory overhead



Algorithm Spacetime Diagrams
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Serial Performance

• Single core of 1 socket x 4
core Intel Xeon (Kentsfield)

• Single core of 1 socket x 2
core AMD Opteron
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Multicore Performance

# cores

• Left side:
– Intel Xeon

(Clovertown)
– 2 sockets x 4

cores
– Machine peak DP:

85.3 GFlops/s

• Right side:
– AMD Opteron

(Rev. F)
– 2 sockets x 2

cores
– Machine peak DP:

17.6 GFlops/s

1 iteration of 2563 Problem
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Stencil Code Conclusions

• Need to autotune!
– Choosing appropriate algorithm AND block sizes for each

architecture is not obvious
– Can be used with performance model
– My thesis work :)

• Appropriate blocking and streaming stores most important for
x86 multicore
– Streaming stores reduces mem. traffic from 24 B/pt. to 16 B/pt.

• Getting good performance out of x86 multicore chips is hard!
– Applied 6 different optimizations, all of which helped at some point
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Poisson’s Equation in 1D
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Graph and “stencil”

Discretize:
              d2u/dx2  =  f(x)
on regular mesh :
            ui  =  u(i*h)
to get:
             [ u i+1 – 2*u i + u i-1 ] / h2  =  f(x)
Write as solving:
            Tu = -h2 * f
for u where



Cache Blocking with Time Skewing Animation
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Cache Conscious Performance

• Cache conscious measured with optimal block size on each platform
• Itanium 2 and Opteron both improve



Cell Processor

• PowerPC core that controls 8 simple SIMD cores (“SPE”s)
• Memory hierarchy consists of:

– Registers
– Local memory
– External DRAM

• Application explicitly controls memory:
– Explicit DMA operations required to move data from DRAM to each

SPE’s local memory
– Effective for predictable data access patterns

• Cell code contains more low-level intrinsics than prior code



Excellent Cell Processor Performance

• Double-Precision (DP) Performance: 7.3 GFlops/s
• DP performance still relatively weak

– Only 1 floating point instruction every 7 cycles
– Problem becomes computation-bound when cache-blocked

• Single-Precision (SP) Performance: 65.8 GFlops/s!
– Problem now memory-bound even when cache-blocked

• If Cell had better DP performance or ran in SP, could take
further advantage of cache blocking



Summary - Computation Rate Comparison



Summary - Algorithmic Peak Comparison
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