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« For a given point, a stencilis a pre-determined set of nearest
neighbors (possibly including itself)

= A stencil code updates every point in a regular grid with a
constant weighted subset of its neighbors (“applying a stencil”)
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« Stencils are critical to many scientific applications:
— Diffusion, Electromagnetics, Computational Fluid Dynamics
— Both explicit and implicit iterative methods (e.g. Multigrid)
— Both uniform and adaptive block-structured meshes

+ Many type of stencils =T
— 1D, 2D, 3D meshes i“‘i—"'&'
— Number of neighbors (5- ‘
pt, 7-pt, 9-pt, 27-pt,...)
— Gauss-Seidel (update in

place) vs Jacobi iterations
(2 meshes)

» This talk focuses on 3D, 7-point, Jacobi iteration

!.

Ny

-,

/
7N
\/
/
J/
/
o
N/
/




void stencil3d(double A[], double B[], int nx, int ny, int nz) {

for all grid indices in x-dim {
for all grid indices in y-dim {
for all grid indices in z-dim {
B[center] = S0* A[center] +
S1*(A[ ] + A[bottom] +
A[left] + A[right] +
A[front] + A[back]);
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« Stencil uses an implicit matrix
— No indirect array accesses!
— Stores a single value for each diagonal
« 3D stencil is analagous (but with 7 nonzero diagonals)



« Stencil performance usually limited by memory bandwidth

+ Goal: Increase performance by minimizing memory traffic
— Even more important for multicore!

» Concentrate on getting reuse both:
— within an iteration
— across iterations (Ax, A2x, ..., AX)

* Only interested in final result
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« Traverse the 3D grid in the usual way
— No exploitation of locality
— Grids that don't fit in cache will suffer
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Guarantees reuse within an iteration
— “Shrinks” each plane so that three source planes fit into cache
— However, no reuse across iterations
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In 3D, there is tradeoff between cache blocking and prefetching
— Cache blocking reduces memory traffic by reusing data

— However, short stanza lengths do not allow prefetching to hide
memory latency

Conclusion: When cache blocking, don’t cut in unit-stride
dimension!
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* One common technique Inter-iteration Reuse
— Cache blocking guarantees No* Yes
reuse within an iteration
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- Now we allow reuse across iterations

« Cache blocking now becomes trickier
— Need to shift block after each iteration to respect dependencies
— Requires cache block dimension c as a parameter (or else cache oblivious)
—  We call this “Time Skewing” [Wonnacott ‘00]
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+  Simple 3-point 1D stencil with 4 cache blocks shown above
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2-D Time Skewing Animation
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Since these are Jacobi iterations, we alternate writes between
the two arrays after each iteration




» Positives
— Exploits reuse across iterations
— No redundant computation
— No extra data structures

» Negatives
— Inherently sequential
— Need to find optimal cache block size
» Can use exhaustive search, performance model, or heuristic

— As number of iterations increases:
» Cache blocks can “fall” off the grid
e Work between cache blocks becomes more imbalanced




Y-Dimension of Cache Block

lteration #4: Mem. Read Traffic (Bytes/Stencil)
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Iteration #4: GFlop Rate
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Reduced memory traffic does correlate to higher GFlop rates




* One common technique Inter-iteration Reuse
— Cache blocking guarantees No* Yes

reuse within an iteration
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Read array

First iteration

Second iteration

Write array




Stream in planes
from source grid

Stream out planes to
target grid

Each processor receives a
colored block

Redundant computation
when performing multiple
iterations



» Positives
— Exploits reuse across iterations
— Easily parallelizable
— No need to alternate the source and target grids after each iteration

» Negatives
— Redundant computation
» Gets worse with more iterations
— Need to find optimal cache block size
» Can use exhaustive search, performance model, or heuristic

— Extra data structure needed
* However, minimal memory overhead
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1 iteration of 2563 Problem
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Left side:

— Intel Xeon
(Clovertown)

— 2 sockets x 4
cores

— Machine peak DP:
85.3 GFlops/s

Right side:

— AMD Opteron
(Rev. F)

— 2 sockets x 2
cores

— Machine peak DP:
17.6 GFlops/s
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Need to autotune!

— Choosing appropriate algorithm AND block sizes for each
architecture is not obvious

— Can be used with performance model

— My thesis work :)
Appropriate blocking and streaming stores most important for
x86 multicore

— Streaming stores reduces mem. traffic from 24 B/pt. to 16 B/pt.
Getting good performance out of x86 multicore chips is hard!

— Applied 6 different optimizations, all of which helped at some point






Discretize:
d2u/dx?2 = f(x)
on regular mesh :
u; = u(i*h)

to get:

Write as solving:
Tu=-h2*f
for u where

(2

[Uips—2%u;+u;,; ]/ h? = f(x)

Graph and “stencil”
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PowerPC core that controls 8 simple SIMD cores ("SPE"s)
Memory hierarchy consists of:

— Registers

— Local memory

— External DRAM

Application explicitly controls memory:

— Explicit DMA operations required to move data from DRAM to each
SPE’s local memory

— Effective for predictable data access patterns
Cell code contains more low-level intrinsics than prior code



Double-Precision (DP) Performance: 7.3 GFlops/s

DP performance still relatively weak

— Only 1 floating point instruction every 7 cycles

— Problem becomes computation-bound when cache-blocked
Single-Precision (SP) Performance: 65.8 GFlops/s!

— Problem now memory-bound even when cache-blocked

If Cell had better DP performance or ran in SP, could take
further advantage of cache blocking
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