Bandwidth Avoiding Stencil Computations

By Kaushik Datta, Sam Williams, Kathy Yelick, and Jim
Demmel, and others

Berkeley Benchmarking and Optimization Group
UC Berkeley
March 13, 2008

http://bebop.cs.berkeley.edu
kdatta@cs.berkeley.edu

« Stencil Introduction

» @Grid Traversal Algorithms

« Serial Performance Results
« Parallel Performance Results
» Conclusion

» Stencil Introduction

» @Grid Traversal Algorithms

« Serial Performance Results
« Parallel Performance Results
+ Conclusion

« For a given point, a stencilis a pre-determined set of nearest
neighbors (possibly including itself)

= A stencil code updates every point in a regular grid with a
constant weighted subset of its neighbors (“applying a stencil”)

oo o |7

2D Stencil 3D Stencil

« Stencils are critical to many scientific applications:
— Diffusion, Electromagnetics, Computational Fluid Dynamics
— Both explicit and implicit iterative methods (e.g. Multigrid)
— Both uniform and adaptive block-structured meshes

+ Many type of stencils =T
— 1D, 2D, 3D meshes i“‘i—"'&'
— Number of neighbors (5- ‘
pt, 7-pt, 9-pt, 27-pt,...)
— Gauss-Seidel (update in

place) vs Jacobi iterations
(2 meshes)

» This talk focuses on 3D, 7-point, Jacobi iteration

!.

Ny

-,

/
7N
\/
/
J/
/
o
N/
/

void stencil3d(double A[], double B[], int nx, int ny, int nz) {

for all grid indices in x-dim {
for all grid indices in y-dim {
for all grid indices in z-dim {
B[center] = S0* A[center] +
S1*(A[] + A[bottom] +
A[left] + A[right] +
A[front] + A[back]);

- <

(4 1 \ Graph and "stencil”
1 4 A -1
1 4 -1
-1 4 A -1
T= 4 4 4 1
-1 1 4 -1
-1 4
-1 1 4 -
\ -1 1 4

« Stencil uses an implicit matrix
— No indirect array accesses!
— Stores a single value for each diagonal
« 3D stencil is analagous (but with 7 nonzero diagonals)

« Stencil performance usually limited by memory bandwidth

+ Goal: Increase performance by minimizing memory traffic
— Even more important for multicore!

» Concentrate on getting reuse both:
— within an iteration
— across iterations (Ax, A2x, ..., AX)

* Only interested in final result

« Stencil Introduction

» Grid Traversal Algorithms

« Serial Performance Results
« Parallel Performance Results
+ Conclusion

+ One common technique

— (Cache blocking guarantees
reuse within an iteration

+ Two novel techniques

— Time Skewing and Circular
Queue also exploit reuse
across iterations

* Under certain circumstances

Intra-iteration Reuse

Inter-iteration Reuse

No* Yes
*
@)
=
Time
» | Cache Skewing
) -
>~ | Blocking | Circular

Queue

+ One common technique

— (Cache blocking guarantees
reuse within an iteration

+ Two novel techniques

— Time Skewing and Circular
Queue also exploit reuse
across iterations

* Under certain circumstances

Intra-iteration Reuse

Inter-iteration Reuse

No* Yes
*
@)
=
Time
» | Cache Skewing
) -
>~ | Blocking | Circular

Queue

« Traverse the 3D grid in the usual way
— No exploitation of locality
— Grids that don't fit in cache will suffer

X

T—» y (unit-stride)

ViV IVVIV|IV VNV

+ One common technique

— (Cache blocking guarantees
reuse within an iteration

+ Two novel techniques

— Time Skewing and Circular
Queue also exploit reuse
across iterations

* Under certain circumstances

Intra-iteration Reuse

Inter-iteration Reuse

No* Yes
*
@)
=
Time
»n | Cache Skewing
) -
>~ | Blocking | Circular

Queue

Guarantees reuse within an iteration
— “Shrinks” each plane so that three source planes fit into cache
— However, no reuse across iterations

>

X

T—» y (unit-stride)

In 3D, there is tradeoff between cache blocking and prefetching
— Cache blocking reduces memory traffic by reusing data

— However, short stanza lengths do not allow prefetching to hide
memory latency

Conclusion: When cache blocking, don’t cut in unit-stride
dimension!

VIVIV]IVY|V| V|V

vVivivivivy|v|Vv

v

* One common technique Inter-iteration Reuse
— Cache blocking guarantees No* Yes
reuse within an iteration

Q
+ Two novel techniques ;n:)
— Time Skewing and Circular o< %
Queue also exploit reuse S =
across iterations B
©
Q
=
|
g
S > | Blocking | Circular

Queue

* Under certain circumstances

- Now we allow reuse across iterations

« Cache blocking now becomes trickier
— Need to shift block after each iteration to respect dependencies
— Requires cache block dimension c as a parameter (or else cache oblivious)
— We call this “Time Skewing” [Wonnacott ‘00]

AN \ AN
2 0\\0\ .d‘\\? o O™ © 0 O O
()] Vs N Vi N
E1P 8 88 8 B8 8 8 8 8 8
= 1st . 2nd . 3rd \ 4th
0 o O O\\. @) O\Q O O\\. © O
&—Cc > AN >X
o 1 2 3 4 5 6 7 8 9 10 11 12 13
space

+ Simple 3-point 1D stencil with 4 cache blocks shown above

‘ Berkeley Benchmarkmg and OPtlmlzatmn Group.
... . . bebop os. berkeley edu

2-D Time Skewing Animation

No iterations
1 iteration

r'—-\flaf_ Dlt\ oD (T~ ARl A

\.-CILIIt..__I*)_._.‘ T D OAUI 1 DIUCN]| . .

1 2 iterations

3 iterations
4 iterations

Cache Blo¢ck# Gache Blockt#2 X

T—» y (unit-stride)

Since these are Jacobi iterations, we alternate writes between
the two arrays after each iteration

» Positives
— Exploits reuse across iterations
— No redundant computation
— No extra data structures

» Negatives
— Inherently sequential
— Need to find optimal cache block size
» Can use exhaustive search, performance model, or heuristic

— As number of iterations increases:
» Cache blocks can “fall” off the grid
e Work between cache blocks becomes more imbalanced

Y-Dimension of Cache Block

lteration #4: Mem. Read Traffic (Bytes/Stencil)

256

128

64

32

16

223 21.0 20.8 20.8 20.6

175 174 171 16.6

15.7 171 16.8

15.6 17.2

16.7

1.5

0.9

8 16 32 64 128 256
X-Dimension of Cache Block

Iteration #4: GFlop Rate

256
128
64
32

16

Y-Dimension of Cache Block

4 8 16 32 64 128 256
X-Dimension of Cache Block

Reduced memory traffic does correlate to higher GFlop rates

* One common technique Inter-iteration Reuse
— Cache blocking guarantees No* Yes

reuse within an iteration

Q
+ Two novel techniques %
— Time Skewing and Circular &£ %
Queue also exploit reuse g =
across iterations '4(—5
| -
Q .
= Time
Sy Cache Skewing
= > | Blocking | Circular

Queue

* Under certain circumstances

j><9
S

=

1>

Y IXTATATAIATA LA

NIXIATA T AT L X 1A

Read array

First iteration

Second iteration

Write array

Stream in planes
from source grid

Stream out planes to
target grid

Each processor receives a
colored block

Redundant computation
when performing multiple
iterations

» Positives
— Exploits reuse across iterations
— Easily parallelizable
— No need to alternate the source and target grids after each iteration

» Negatives
— Redundant computation
» Gets worse with more iterations
— Need to find optimal cache block size
» Can use exhaustive search, performance model, or heuristic

— Extra data structure needed
* However, minimal memory overhead

A

A A
V4
O
fs!
(a)]
i -
)
4
A4
(@)
S
(a)]
©
| -
o
A4
O
k!
(a)]
©
C
N
A4
O
S
o
fd
wn
L |
“oum

()

>

(v}

=2

AA

<

oun

Cache Blocking

space

<

ounl

Time Skewing

space

oun

Circular Queue

ace

« Stencil Introduction

» @Grid Traversal Algorithms

» Serial Performance Results
« Parallel Performance Results
+ Conclusion

GFlops/s

2563 Problem on Kentsfield

1.80
T —
1.60 / \\
1.40 N
1.20
E— —— —— —a

L_ - - ——
1.00 D R N
0.80
0.60

- Naive

0.40 | |-= Cache Blocking

Time Skewing
0.20 | |- Circular Queue
0.00

1 2 3 4 5

Number of Iterations

1.20

1.00

0.80

GFlops/s
o
o)
o

0.40

0.20 | |

0.00

256/~ 3 Problem on Opteron

—+— Naive
-=- Cache Blocking
Time Skewing

- Circular Queue

1 2 3 4 5
Number of Iterations

Single core of 1 socket x 4
core Intel Xeon (Kentsfield)

Single core of 1 socket x 2
core AMD Opteron

« Stencil Introduction

» @Grid Traversal Algorithms

« Serial Performance Results
» Parallel Performance Results
+ Conclusion

1 iteration of 2563 Problem

GFlops/s

5.00

4.50

4.00

w
ul
o

['] +Streaming Stores

[/ +SIMDization

[| +Prefetching

[] +Thread/Cache Blocking
[l +Unroll/Reordering

[I Naive

w
o
o

N
ul
o

2.00

1.50

1.00 |

0.50

0.00

1 2 4

Clovertown

8

cores

Opteron

Left side:

— Intel Xeon
(Clovertown)

— 2 sockets x 4
cores

— Machine peak DP:
85.3 GFlops/s

Right side:

— AMD Opteron
(Rev. F)

— 2 sockets x 2
cores

— Machine peak DP:
17.6 GFlops/s

« Stencil Introduction

» @Grid Traversal Algorithms

« Serial Performance Results
« Parallel Performance Results
» Conclusion

Need to autotune!

— Choosing appropriate algorithm AND block sizes for each
architecture is not obvious

— Can be used with performance model

— My thesis work :)
Appropriate blocking and streaming stores most important for
x86 multicore

— Streaming stores reduces mem. traffic from 24 B/pt. to 16 B/pt.
Getting good performance out of x86 multicore chips is hard!

— Applied 6 different optimizations, all of which helped at some point

Discretize:
d2u/dx?2 = f(x)
on regular mesh :
u; = u(i*h)

to get:

Write as solving:
Tu=-h2*f
for u where

(2

[Uips—2%u;+u;,;]/ h? = f(x)

Graph and “stencil”

S

ide)

-str

(un

V4

Ja]Un0n uone.a]|

y

3.5 . ,

[INaive Unaliased
I Cache Conscious
3 -
2.5
% ol 2.0
o
o
Ie
W 15+
o 1.3
1.1 1.1
1 -
0.5 0.5
Itanium 2 Opteron Power 5

Cache conscious measured with optimal block size on each platform

Itanium 2 and Opteron both improve

PowerPC core that controls 8 simple SIMD cores ("SPE"s)
Memory hierarchy consists of:

— Registers

— Local memory

— External DRAM

Application explicitly controls memory:

— Explicit DMA operations required to move data from DRAM to each
SPE’s local memory

— Effective for predictable data access patterns
Cell code contains more low-level intrinsics than prior code

Double-Precision (DP) Performance: 7.3 GFlops/s

DP performance still relatively weak

— Only 1 floating point instruction every 7 cycles

— Problem becomes computation-bound when cache-blocked
Single-Precision (SP) Performance: 65.8 GFlops/s!

— Problem now memory-bound even when cache-blocked

If Cell had better DP performance or ran in SP, could take
further advantage of cache blocking

7.75

7.25

6.75

GFlop Rate
o o o
N ~ N
(6] (6] (6]

N
o
o

[INaive Unaliased
I Cache Oblivious
I Cache Conscious

T

Itanium 2 Opteron

Power 5

2.4 GHz Cell 3.2 GHz Cell

100

[INaive Unaliased
I Cache Oblivious 87
I Cache Conscious

90

T
1

T

80

70

% of Algorithmic Peak

Itanium 2 Opteron Power5 2.4 GHz Cell 3.2 GHz Cell

« Stencil Introduction

» Grid Traversal Algorithms

« Serial Performance Results
« Parallel Performance Results
+ Conclusion

