Minisymposia 9 and 34:
Avoiding Communication in Linear Algebra

Jim Demmel
UC Berkeley
bebop.cs.berkeley.edu
Motivation (1)

- Increasing parallelism to exploit
 - From Top500 to multicores in your laptop
- Exponentially growing gaps between
 - Floating point time $\ll 1/$Network BW \ll Network Latency
 - Improving 59%/year vs 26%/year vs 15%/year
 - Floating point time $\ll 1/$Memory BW \ll Memory Latency
 - Improving 59%/year vs 23%/year vs 5.5%/year
- Goal 1: reorganize linear algebra to avoid communication
 - Not just hiding communication (speedup $\leq 2x$)
 - Arbitrary speedups possible
Motivation (2)

- Algorithms and architectures getting more complex
- Performance harder to understand
- Can’t count on conventional compiler optimizations
- Goal 2: Automate algorithm reorganization
 - “Autotuning”
 - Emulate success of PHiPAC, ATLAS, FFTW, OSKI etc.
- Example:
 - Sparse-matrix-vector-multiply (SpMV) on multicore, Cell
 - Sam Williams, Rich Vuduc, Lenny Oliker, John Shalf, Kathy Yelick
Autotuned Performance of SpMV(1)

- Clovertown was already fully populated with DIMMs
- Gave Opteron as many DIMMs as Clovertown
- Firmware update for Niagara2
- Array padding to avoid inter-thread conflict misses
- PPE’s use ~1/3 of Cell chip area
Autotuned Performance of SpMV(2)

- Model faster cores by commenting out the inner kernel calls, but still performing all DMAs
- Enabled 1x1 BCOO
- ~16% improvement
Outline of Minisymposia 9 & 34

• Minimize communication in linear algebra, autotuning

• MS9: Direct Methods (now)
 – Dense LU: Laura Grigori
 – Dense QR: Julien Langou
 – Sparse LU: Hua Xiang

• MS34: Iterative methods (Thursday, 4-6pm)
 – Jacobi iteration with Stencils: Kaushik Datta
 – Gauss-Seidel iteration: Michelle Strout
 – Bases for Krylov Subspace Methods: Marghoob Mohiyuddin
 – Stable Krylov Subspace Methods: Mark Hoemmen
Locally Dependent Entries for $[x,Ax]$, A tridiagonal 2 processors

Can be computed without communication
Locally Dependent Entries for \([x, Ax, A^2x]\), A tridiagonal 2 processors

Can be computed without communication
Locally Dependent Entries for $[x, Ax, ..., A^3x]$, A tridiagonal
2 processors

Can be computed without communication
Locally Dependent Entries for $[x, Ax, \ldots, A^4x]$, A tridiagonal
2 processors

Can be computed without communication
Locally Dependent Entries for \([x, Ax, \ldots, A^8x], A\) tridiagonal
2 processors

Can be computed without communication
k=8 fold reuse of A
Remotely Dependent Entries for \([x, Ax, \ldots, A^8x]\), A tridiagonal matrix

2 processors

One message to get data needed to compute remotely dependent entries, \textit{not} \(k=8\)

Minimizes number of messages = latency cost

Price: redundant work \(\propto \) “surface/volume ratio”
Remotely Dependent Entries for \([x, Ax, \ldots, A^3x]\),
A irregular, multiple processors
Fewer Remotely Dependent Entries for $[x, Ax, \ldots, A^8x]$, A tridiagonal
2 processors

Reduce redundant work by half
Sequential \([x, Ax, \ldots, A^4x]\), with memory hierarchy

One read of matrix from slow memory, *not* \(k=4\)

Minimizes words moved = bandwidth cost

No redundant work
Design Goals for \([x,Ax,\ldots,A^kx]\)

- **Parallel case**
 - Goal: Constant number of messages, not O(k)
 - Minimizes latency cost
 - Possible price: extra flops and/or extra words sent, amount depends on surface/volume

- **Sequential case**
 - Goal: Move A, vectors once through memory hierarchy, not k times
 - Minimizes bandwidth cost
 - Possible price: extra flops, amount depends on surface/volume
Design Space for \([x, Ax, \ldots, A^k x] \)

(1)

- **Mathematical Operation**
 - Keep last vector \(A^k x\) only
 - Jacobi, Gauss Seidel
 - Keep all vectors
 - Krylov Subspace Methods
- **Preconditioning** \((Ay=b \Rightarrow MAy=Mb)\)
 - \([x, Ax, MAx, A^2 A x, A^3 A x, \ldots, (MA)^k x]\)
- **Improving conditioning of basis**
 - \(W = [x, p_1(A)x, p_2(A)x, \ldots, p_k(A)x]\)
 - \(p_i(A) = \text{degree } i \text{ polynomial chosen to reduce}\)
 \(\text{cond}(W)\)
Design Space for $[x, Ax, \ldots, A^kx]$ (2)

- Representation of sparse A
 - Zero pattern may be explicit or implicit
 - Nonzero entries may be explicit or implicit
 - Implicit \Rightarrow save memory, communication

<table>
<thead>
<tr>
<th>Explicit nonzeros</th>
<th>General sparse matrix</th>
<th>Image segmentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implicit nonzeros</td>
<td>Laplacian(graph), for graph partitioning</td>
<td>“Stencil matrix” Ex: tridiag(-1,2,-1)</td>
</tr>
</tbody>
</table>

- Representation of dense preconditioners M
 - Low rank off-diagonal blocks (semiseparable)
Design Space for \([x, Ax, \ldots, A^k x]\)

(3)

• Parallel implementation
 – From simple indexing, with redundant flops \(\propto\) surface/volume
 – To complicated indexing, with no redundant flops but some extra communication

• Sequential implementation
 – Depends on whether vectors fit in fast memory

• Reordering rows, columns of \(A\)
 – Important in parallel and sequential cases

• Plus all the optimizations for one SpMV!
Examples from later talks (MS34)

- Kaushik Datta
 - Autotuning of stencils in parallel case
 - Example: 66 Gflops on Cell (measured)

- Michelle Strout
 - Autotuning of Gauss-Seidel for general sparse A
 - Example speedup: 4.5x (measured)

- Marghoob Mohiyuddin
 - Tuning \([x, Ax, ..., A^kx]\) for general sparse A
 - Example speedups:
 - 22x on Petascale machine (modeled)
 - 3x on out-of-core (measured)

- Mark Hoemmen
 - How to use \([x, Ax, ..., A^kx]\) stably in GMRES, other Krylov methods
 - Requires communication avoiding QR decomposition ...
Minimizing Communication in QR

- QR decomposition of $m \times n$ matrix W, $m >> n$
 - P processors, block row layout
- Usual Algorithm
 - Compute Householder vector for each column
 - Number of messages $\propto n \log P$
- Communication Avoiding Algorithm
 - Reduction operation, with QR as operator
 - Number of messages $\propto \log P$

$$W = \begin{bmatrix} W_1 & W_2 & W_3 & W_4 \end{bmatrix} \rightarrow \begin{bmatrix} R_1 & R_2 & R_3 & R_4 \end{bmatrix} \rightarrow R_{12} \rightarrow R_{1234}$$
Design space for QR

- TSQR = Tall Skinny QR (m >> n)
 - Shape of reduction tree depends on architecture
 - Parallel: use “deep” tree, saves messages/latency
 - Sequential: use flat tree, saves words/bandwidth
 - Multicore: use mixture
 - QR([R_1 R_2]): save half the flops since R_i triangular
 - Recursive QR

- General QR
 - Use TSQR for panel factorizations

- If it works for QR, why not LU?
Examples from later talks (MS9)

- Laura Grigori
 - Dense LU
 - How to pivot stably?
 - 12x speeds (measured)

- Julien Langou
 - Dense QR
 - Speedups up to 5.8x (measured),
 23x(modeled)

- Hua Xiang
 - Sparse LU
 - More important to reduce communication
Summary

• Possible to reduce communication to theoretical minimum in various linear algebra computations
 – Parallel: $O(1)$ or $O(\log p)$ messages to take k steps, not $O(k)$ or $O(k \log p)$
 – Sequential: move data through memory once, not $O(k)$ times
 – Lots of speed up possible (modeled and measured)

• Lots of related work
 – Some ideas go back to 1960s, some new
 – Rising cost of communication forcing us to reorganize linear algebra (among other things!)

• Lots of open questions
 – For which preconditioners M can we avoid communication in $[x, Ax, MAx, AMAx, MAMAx, \ldots, (MA)^k x]$?
 – Can we avoid communication in direct eigensolvers?
bebop.cs.berkeley.edu