Communication Avoiding Gaussian Elimination

Laura GRIGORI*

Abstract

We present CALU, a Communication Avoiding al-
gorithm for the LU factorization of dense matrices dis-
tributed in a two-dimensional cyclic layout. The algo-
rithm is based on a new pivoting strateqy, which is sta-
ble in practice. The new algorithm is optimal (up to
polylogarithmic factors) in the amount of communica-
tion it performs.

Our experiments show that CALU leads to a re-
duction in the parallel time, in particular when the
latency time is an important factor of the overall
time. The factorization of a block-column, a subrou-
tine of CALU, outperforms the corresponding routine
PDGETF?2 from ScaLAPACK up to a factor of 4.37
on an IBM POWER 5 system and up to a factor of
5.58 on a Cray XT4 system. On square matrices of
order 10*, CALU outperforms the corresponding rou-
tine PDGETREF from ScaLAPACK by a factor of 1.24
on IBM POWER 5 and by a factor of 1.31 on Cray
XT1y.

1 Introduction

Solving linear systems of equations is one of the
most common operation in scientific computing. These
applications frequently lead to solving very large dense
sets of linear equations, often with millions of rows and
columns, and solving these problems is very time con-
suming.

In this paper we present a Communication-Avoiding
LU factorization (CALU) algorithm for computing the
LU factorization of a dense matrix A distributed in
a two-dimensional (2D) layout. CALU is based on a
new pivoting strategy, that we show it is numerically
stable in practice. CALU has two main characteris-
tics. First, it is latency avoiding, as the new pivoting
strategy allows for a significant decrease in the number
of messages exchanged during the factorization rela-
tive to conventional algorithms, though that comes at

*INRIA Saclay-Ile de France, Bat 490, Universite Paris-Sud
11, 91405 Orsay France (laura.grigori@inria.fr).

fComputer Science Division and Mathematics Department,
UC Berkeley, CA 94720-1776, USA (demmel@cs.berkeley.edu).

FINRIA Saclay-lle de France, Bat 490, Universite Paris-Sud
11, 91405 Orsay France (hua.xiang@inria.fr).

James W. DEMMEL?

Hua XIANG ¥

the cost of a small number of redundant computations.
We refer to the new pivoting strategy as ca-pivoting.
This approach is thus particularly beneficial on par-
allel architectures and for matrix sizes for which the
overhead of sending a message between two proces-
sors is an expensive factor in the algorithm. Moreover,
today’s technology trends predict that arithmetic will
continue to improve exponentially faster than band-
width, and bandwidth exponentially faster than la-
tency (see e.g. [8]). So CALU is well suited for fu-
ture parallel architectures, in which conventional al-
gorithms will spend more and more of their time com-
municating and less and less doing arithmetic. Second,
unlike conventional algorithms, CALU allows the us-
age of the best available sequential algorithm for com-
puting the LU factorization of a block-column, as for
example the recursive algorithms [9, 13].

CALU uses a block right-looking approach in which
a dense matrix A in a 2D layout is factorized by travers-
ing iteratively blocks of columns. At each iteration,
a block-column of width b is factored first. Then the
trailing matrix is updated, and the decomposition con-
tinues on the trailing matrix. The main difference with
respect to other block right-looking algorithms lies in
the factorization of a block-column, which is performed
very efficiently in CALU by using the new ca-pivoting
strategy as follows. Unlike conventional partial piv-
oting, the LU decomposition of the block-column is
performed in two steps. The first step, a preprocessing
step, identifies efficiently in parallel b pivot rows, that
provide good pivots for the LU factorization of the en-
tire block-column. We describe in detail later in the
paper how these rows are identified. The pivot rows
are permuted to be in the first b positions of the block-
column. In the second step the LU factorization with
no pivoting of the block-column is performed. We refer
to this approach for performing the LU factorization
of a block-column as TSLU (Tall Skinny LU), since a
block-column can be considered to be a matrix with
a 1D layout for which the vertical dimension (number
of rows) is much larger than the horizontal dimension
(number of columus).

The new algorithm CALU is optimal (up to poly-
logarithmic factors) in the amount of communication
it performs. This is shown in [5] where known lower
bounds on communication bandwidth for parallel ma-

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citatdon on the first page. To copy otherwise, to republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

SC2008 November 2008, Austin, Texas, USA 978-1-4244-2835-9/08 $25.00 ©2008 IEEE

trix multiplication are extended to determine lower
bounds on communication latency. These bounds are
used to provide lower bounds on both bandwidth and
latency for dense LU factorization. With an optimal
choice of matrix layout, CALU attains both the band-
width and the latency lower bounds, while the clas-
sic LU factorization as implemented in ScaLAPACK
PDGETRF routine [4] attains only the bandwidth
lower bounds. In addition, [5] presents also a commu-
nication avoiding QR (CAQR) factorization algorithm
that attains the same communication lower bounds.
CALU bears some similarities to CAQR algorithm dis-
cussed in [5]. Both algorithms use a reduction-like
computation for the panel factorization, thus decreas-
ing the communication cost. However the numerical
stability issues related to the LU factorization lead to a
number of significant differences. For instance, CALU
performs the panel factorization twice, but the update
of the trailing matrix is the same as in the classic LU
factorization. In CAQR, the panel factorization is per-
formed once, but there is some redundant computation
in the update of the trailing matrix.

In this paper we present performance models for
general matrix layouts that show that CALU over-
comes the latency bottleneck of the LU factoriza-
tion as implemented in the PDGETRF routine. In
PDGETRF, the LU decomposition of an m X n ma-
trix is performed in parallel using a block cyclic dis-
tribution of the matrix over a P, by P, grid of pro-
cessors, where P,. - P. = P and P is the number of
processors. The latency bottleneck in ScaLAPACK
lies in the LU factorization of a block-column that
is spread over P, processors, that leads to 2nlog, P,
messages communicated during the factorization. All
the other terms in the number of messages are of the
form O(n/b)logy P. + O(n/b)log, P., where b is the
size of the block used in the 2D distribution. CALU
sends only 3(n/b)log, P, +3(n/b)log, P. messages, i.e.
smaller by a factor of b. The price for fewer messages
is b(mn —n?/2)/ P, more floating point work, which is
a small fraction of the overall (mn? — n?®/3)/P work.

This paper focuses on comparing CALU with the
approach used in ScaLAPACK PDGETRF, and the
parallel implementation we present for CALU follows
the main steps used in ScaLAPACK. However, the
ca-pivoting scheme can be used in other parallel al-
gorithms implementing the LU factorization, leading
to the same reduction in communication. It could po-
tentially be used for example in the highly optimized
High Performance Linpack (HPL) benchmark, used in
determining the Top500 list [1].

The new ca-pivoting scheme used in CALU may lead
to a different row permutation than the classic LU fac-
torization. In this paper we present numerical results
that show that ca-pivoting scheme is stable in prac-
tice. We observe that it behaves as a threshold pivot-

ing, where the minimum threshold value in practical
experiments is 0.33. In other words, |L| is bounded
by 3, while in LU factorization with partial pivoting,
|L| is bounded by 1,where |L| denotes the matrix of
absolute values of the entries of L. Extensive testing
on many different matrices always resulted in residu-
als ||Az — b|| comparable to those from conventional
partial pivoting.

Several different pivoting strategies were recently
considered by other authors. For multicore/multi-
threaded architectures, an extension of pairwise piv-
oting for block algorithms is used in [3, 10]. For grid
computing, a technique reffered to as batched pivoting
is proposed in [7]. Since batched pivoting has some
similarities with ca-pivoting, we will discuss it more in
detail later in the paper. In [2] the authors consider
an approach in which the input matrix is transformed
by a random matrix such that with high probability
there is no need to pivot during Gaussian elimination.
This is motivated by GPUs, where the cost of pivot-
ing can be substantial; for a solution to this problem
for GPUs see [15]. Our pivoting strategy is different
in two aspects. The elimination of each column of A
leads to a rank-one update. This property, present
in LU with partial pivoting and in batched pivoting,
but not in pairwise pivoting, is shown experimentally
to be important for the stability of Gaussian elimina-
tion [14]. Our experimental results on sparse matrices
(not presented in this paper) from various real applica-
tions show that ca-pivoting strategy is stable for sparse
matrices as well. In contrast, batched pivoting can fail
for sparse matrices.

The rest of the paper is organized as follows. Sec-
tion 2 introduces CALU and the new ca-pivoting
scheme. Section 3 describes the parallel LU factor-
ization of a tall-skinny matrix using ca-pivoting, and
discusses its performance in terms of computation and
communication cost. Section 4 presents the parallel
CALU algorithm of a matrix distributed in a 2D lay-
out and discusses its computation and communication
cost. Section 5 compares the classic LU factorization
algorithms implemented in ScaLAPACK and the new
proposed CALU algorithm. Section 6 describes ex-
perimental results that first discuss the stability of
ca-pivoting scheme, and second evaluate the perfor-
mance of CALU on two computational systems, an
IBM POWER 5 system and a Cray XT4 system, lo-
cated at National Energy Research Scientific Comput-
ing Center (NERSC). And Section 7 presents the con-
clusions and our future work.

2 Description of CALU

In this section we describe the main steps of CALU
algorithm for computing the LU factorization of a ma-
trix A of size m x n. We use several notations. We

refer to the submatrix of A formed by elements of row
indices from i to j and column indices from d to e as
A(i: j,d: e). When A is partitioned in P block rows,
we use the notation A = [Ag; A1;--- ; Ap_1] where the
A; are stacked atop one another. If A is the result of
the multiplication of two matrices B and C, we refer
to the submatrix of A as (BC)(i: j,d: e).

CALU is a block algorithm that factorizes the in-
put matrix by traversing iteratively blocks of columns.
At the first iteration, the matrix A is partitioned as

follows: A N
A= 11 12
{ Azr Aso

where Ajq is of size b x b, Aoy is of size (m —b) x b, Aqo
is of size b x (n — b) and Ay is of size (m —b) x (n —
b). As other classic right looking algorithms, CALU
first computes the LU factorization of the first block-
column, then determines the block Uy, and updates
the trailing matrix Ass.

The main difference with respect to other existing
algorithms lies in the factorization of the first block-
column. CALU uses the new ca-pivoting strategy, con-
sisting in performing first a preprocessing step in which
a good set, of pivot rows is identified. Second, the pivot
rows are permuted in the first b positions of matrix
A and the LU factorization with no pivoting of the
first block-column is performed. CALU considers that
the first block-column is partitioned in P block-rows
[Ao; A1;...; Ap_1]. We consider P = 4 and we sup-
pose that m divides 4.

The preprocessing step starts by performing the LU
factorization with partial pivoting of each block-row
A;, as displayed in Equation 1. This leads to a de-
composition in which the first factor, Iy, is an m x m
block diagonal matrix, where each diagonal block o
is a permutation matrix. The second factor, Lo, is an
m X Pb block diagonal matrix, where each diagonal
block Lo is an m/P x b lower unit trapezoidal matrix.
The third factor, Uy, is a Pb x b matrix, where each
block Ujp is a b x b upper triangular factor. Note that
this step aims at identifying in each block-row a set of
b linearly independent, rows, which correspond to the
first b rows of 1L A;, with i =0...3.

From the P sets of local pivot rows, we perform a
binary tree (of depth log, P = 2 in our example) of
LU factorizations of matrices of size 2b x b to identify b
global pivot rows. The 2 LU factorizations at the leaves
of our depth-2 binary tree are shown in Equation 2,
combined in one matrix. This decomposition leads to
a Pb x Pb permutation matrix II;, a Pb x 2b factor L,
and a 2b x b factor Uy.

The global pivot rows are obtained after applying
one more LU decomposition (at the root of our depth-
2 binary tree) on the pivot rows identified previously.
This is displayed in Equation 3. Note that if one or
more zero pivots are encountered in one of these LU

factorizations, the factorization is still completed (the
correspoding U factor will be singular), and a number
of rows smaller than b are passed to the next step.

The permutations identified in the preprocessing
step are applied on the original matrix A. Then the LU
factorization with no pivoting of the first block-column
is performed, the block-row of U is computed and the
trailing matrix is updated. Note that Uy = Us. The
factorization continues on the trailing matrix /122. The
permutation matrices IIy, II;, IIs do not have the same
dimensions. By abuse of notation, we consider that
II,,II5 are extended by the appropriate identity ma-
trices to the dimension of IIj.

Ry L I U U
HTHTHTA _ |: 11 :||: ~ :||: 11 12
270 L21 In—b A22 In—b

The ca-pivoting strategy has several important char-
acteristics. First, when b =1 or P = 1, ca-pivoting is
equivalent to partial pivoting. Second, the elimination
of each column of A leads to a rank-1 update of the
trailing matrix. The rank-1 update property is shown
experimentally to be very important for the stability
of LU factorization [14]. A large rank update might
lead to an unstable LU factorization, as for example in
another strategy suitable for parallel computing called
parallel pivoting [14]. Third, the numerical tests pre-
sented in Section 6 show that it can be regarded as a
threshold pivoting strategy.

Batched pivoting [7] has some similarities with our
approach. To factor a block column partitioned as
[Ao; A1;...; Ap_1], batched pivoting identifies first b
rows, that are then used as pivots for the entire block
column. For this, each block A; is factored using Gaus-
sian elimination with partial pivoting, which corre-
sponds to the first computation in our preprocessing
step in Equation 1. From the P sets of b rows, the set
considered by some criterion as the best will be used to
factor the entire block column. Our approach is differ-
ent because it uses a binary tree of LU factorizations
to identify from the P sets of rows the final b rows that
will be used for pivoting. Also batched pivoting fails
when each block row A; is singular, while the block-
column is nonsingular. This can happen for example
in the case of sparse matrices.

3 TSLU algorithm

In this section we present TSLU, a parallel algo-
rithm for computing the LU factorization of an m x b
matrix A, with m > b, which is distributed over P
processors using a 1D layout. We also discuss its per-
formance in terms of flops and number of messages ex-
changed during the factorization. This algorithm will
be used in CALU for performing the factorization of a
block-column.

TSLU essentially does an all-reduction (with a but-

Ao oo LooUoo IToo Loo Uoo

AG,1:b) = A | _ | HhoLwUio | _ Mo) Lo | U
’ A Ha0L2oUszo Moo Loy Uso (1)

L As 1130 L30Uz0 T30 L3o Uso

= H()L()Uo
(T A) (1:b,1:b)
(ﬁgA) (m/P—|— 1: m/P—|— b,l : b) - [I 1E01U()1 :| N [1:[01 :|) [Eo1 :| |: U()l :|

(ﬁgA) (2m/P +1: 2m/P + b, 1: b) - 1111 L11U11 - 1114 L11 U1 (2)

(I§A) (3m/P+1:3m/P+b,1:b)

Il

=
)_Ih\
i

- (I:I?IZIOTA) (1:b,1:0)
(T TI§ A) (2m/P +1:2m/P +b,1:b)

terfly communication pattern) where the reduction op-
eration is Gaussian elimination on a pair of matrices of
size b x b stacked atop one another. For completeness,
we describe this all-reduction operation in more detail
as follows, and then show an example. The butterfly
method uses a tree-like computation as described in the
previous section, and takes place in (log, P 4 1) steps,
starting from the bottom level £ = 0 of a binary tree.
Each node of the binary tree is associated with a set of
processors. For the sake of simplicity, we suppose that
the processors are a power of two, numbered from 0 to
P —1, and that m divides P. We use notations similar
to [5]: fstP(i, k) denotes the first processor affected to
the node of the binary tree at level k to which proces-
sor i belongs; target(i, k) refers to the processor with
which processor i exchanges data at level k of the tree
in a butterfly pattern; tgtfstP(i, k) denotes the pro-
cessor with which fstP(i, k) exchanges data at level k;
level(i, k) denotes the node at level k of the binary tree
which is assigned to a set of processors that includes
processor i, and is computed as:

level(i, k) = |=%]

fstP(i, k) = 2Elevel(i, k)
target(i, k) fstP(i, k) + (i + 281) mod 2k
tgtfstP(i,k) = fstP(i k) +2F1

The algorithm starts with a local LU factorization on
each processor of the m/P x b block-rows that it owns.
Then at each level k£ of the binary tree and for each
node at this level, pairs of processors perform redun-
dantly an LU factorization. Consider for example a
processor i and the node at level k& which is mapped
on processor i, and identified as level(i, k). The fac-
tors L and U computed at this node are denoted as
Lle’uel(i,k),k: Ulevez(i,k),k- Processor ¢ and its target pro-
cessor exchange data and perform redundantly the LU
factorization of two matrices of size b x b.

Note that the sequence of local LU factorizations
performed in the first three steps of TSLU are not per-
formed in place (the input matrix is not overwritten).

] = Moz Lo2Uo2 = HaLaUs (3)

Hence TSLU needs an extra storage of size m x b to
store the resulting I and U factors of these factoriza-
tions and a vector of size b to store the permutation
vector.

TSLU algorithm
1. Let « be my processor number.

2. Compute the LU factorization of my m/P x b
group of rows A; = [ljoLioUip. Let B; be formed
by the b pivot rows, B; = (H%Ai) (1:b,1:0).

3. for k=1 to log, P do

if i > tgtfstP(i, k) then ¢ = target(i k), 7 =1
else ¢ =i, 7 = target(i, k)
endif

Let | = level(i, k).

(a) Processor ¢ exchanges its B; with Processor
T.

(b) Compute the LU factorization of the two ma-
trices By and B; of size b x b stacked one on
top of another:

5| =L
(c) Let B; be formed by the first b pivot rows of
.| 5
end for

4. Let the final permutation be I = T, .. .ﬁ10g2p
and permute the local A = IIT A.

5. Let U = Uy log, P» Where U is the upper triangular
factor of A.

6. Compute the local L factor, L; = A;U 1.

We illustrate the execution of this algorithm on a small
example in Figure 1, where we suppose that the matrix
A of size 16 x 2 is distributed following a 1D block cyclic
distribution, with blocks of size 2 x 2 on 4 processors.
Let

~12020012021410014 ’

1 4100141202100202

In this example, the 1st, 2nd, 9th, 10th rows are dis-
tributed on processor 0. First a local LU factorization
is performed by each processor. For processor 0, the
1st and 9th rows are used as pivots. Second the pro-
cessors 0 and 1 exchange the 2 rows used as pivots in
the local LU factorization. Then they perform redun-
dantly the LU factorization of the 4 x 2 matrix formed
by these rows stacked one on top of another. Similarly,
processors 2 and 3 exchange their rows and perform re-
dundantly the LU factorization of the matrix formed
by these rows. In the third step, processors 0 and 2 ex-
change the 2 pivot rows identified in the second step,
and perform an LU factorization on the 4 x 2 matrix
formed by these rows. The same computation is per-
formed by the processors 1 and 3. The rows identified
in the third step represent the pivots that will be used
to factorize the entire matrix A. In this simple exam-
ple, the pivot rows used by TSLU happen to be the
same as those used by Gaussian elimination with par-
tial pivoting.

A

2[4 214 411 411
01 200 2]4 14
24 210
01 112
200
g? 270 411 ali]_| [4]1
T2 2(1) 200 2]4 14
21
o2 10
270
112 01 114 42 1
41 1[4 02 14|
10 00
00 02
02
| 110] 21 42| 42 41
412 02 02| 14 1]a
10
42

Figure 1: Example of execution of TSLU on 4 processors.

To study the performance of TSLU, we use a classi-
cal model to describe a machine architecture in terms
of processor speed, network latency and bandwidth.
Here and in the rest of the paper, we use one param-
eter to describe the time per flop (add and multiply),
denoted v, and one parameter to count the time per
divide, denoted 4. We estimate the time for sending a
message of m words between two processors as a+m/[3,

where « denotes the latency and 3 the inverse of the
bandwidth. We approximate the time of broadcasts
and combines that involve P processors by assuming
log, P identical steps of communication and/or compu-
tation are needed. With these notations, the runtime
of TSLU is estimated to be (we omit low order terms):

TTSLU(m7b7 P) = [% + %(10g2 P — 1)j| FY+
+b(logy P+ 1)va+
+logy Pa + b? log, Pf3
(4)

4 Parallel CALU algorithm for matri-
ces distributed in a 2D layout

In this section we present a parallel algorithm that
implements the CALU method presented in Section 2.
We consider an m x n matrix block cyclically dis-
tributed over a bi-dimensional grid of processors P =
P, x P., using square blocks of dimension b x b. The
parallel algorithm uses a block right-looking approach,
as used for example in PDGETRF routine in ScalLA-
PACK or in HPL benchmark. That is, it iterates over
block-columns of A, and at each step first a block-
column of width b is factored. Then the trailing matrix
is permuted and updated, and the decomposition con-
tinues on the trailing matrix. The main difference with
the other algorithms is that CALU factors a block-
column using the TSLU factorization presented in Sec-
tion 3, which leads to an important reduction in the
number of messages exchanged during the factoriza-
tion.

Consider that the first j — 1 iterations of the LU
factorization were performed. That is, the first j — 1
block columns were factored and the trailing matrix
was permuted and updated. The active matrix at step
j is of dimension (m—(j—1)b) x (n—(j—1)b) = m; xn;.
For the clarity of presentation, we suppose that m and
n divide b. We describe here the main steps involved
in the j-th iteration of CALU:

1. The column of the grid that holds matrix block-
column j computes its LU factorization using
TSLU (Algorithm in Section 3).

2. Every processor in the processor column holding
the matrix block-column j broadcasts along its
processor row the locally stored subblock of L. It
also broadcasts an array of size b that stores the
permutation vector II; associated with the LU fac-
torization of block-column j.

3. The matrix A is permuted according to II;.

4. Every processor in the processor row holding the
matrix block-row j of U computes its local block.

5. Every processor in the processor row holding ma-
trix block-row j of U broadcasts its local block
down its column.

6. All processors update the trailing matrix.

In our current implementation, we use routines from
ScaLAPACK for several steps of CALU. Step 3 is per-
formed by a call to PDLASWP, step 4 is done by
PDTRSM, and steps 5 and 6 correspond to a call to
PDGEMM. However, CALU can be implemented dif-
ferently, and can incorporate techniques which allow
some overlap between computation and communica-
tion as the so-called look-ahead technique used in HPL
benchmark.

To estimate the performance of CALU, we assume
that the network bandwidth and latency is not nec-
essarily the same everywhere, e.g. it can be different
along columns of the grid than along rows of the grid.
We use a different bandwidth and latency for commu-
nication between processors in different rows and the
same column (. and f3.) versus different columns and
the same rows («,. and (3,.). This is a first step towards
understanding certain hierarchical parallel machines,
where there is high bandwidth among processors on
the same chip (or node or module) and lower between
processors on different chips (or nodes or modules).

The total computation time over a rectangular grid
of processors is given in Equation 5 (we omit some
lower order terms and the time of pivoting rows lo-
cally). In this estimation we consider that a total of
(2n/b) - log, P, messages are exchanged for swapping
rows of matrix A in step 3. This is because the swap-
ping of b rows occurs after each block-column factor-
ization. Hence, this operation can be implemented in
two steps, using 2log, P, messages. First each proces-
sor sends at most b rows that need to be swapped to
the root processor as a reduce operation. Second the
root, processor broadcasts the necessary rows to all the
processors in its processor column. However in our cur-
rent implementation we use PDLASWP, and this rou-
tine performs one message exchange for each row swap,
which leads to a total of nlog, P, messages exchanged
for step 3. In our current work, we are replacing this
routine by a routine that is implemented as explained
above, and we include the number of messages associ-
ated with the future routine instead of PDLASWP in
our time estimation.

5 Comparison with the ScaLAPACK’s
LU factorization

Consider that we decompose an m x n matrix which
is distributed block cyclically over a P, by P. grid
of processors, where P. - P. = P and m > n. The
two-dimensional block cyclic distribution uses square
blocks of dimension b x b. The algorithm loops over

n/b block-columns. At the j-th step, the first j — 1
block-columns of L and block-rows of U are already
computed. At this step, the block-column j of L is fac-
tored (call to PDGETF2) using pivoting. The pivot-
ing information is applied to the rest of the matrix (call
to PDLASW P). The block-row j of U is computed
using triangular solves (call to PDTRSM), and then
the trailing matrix is updated (call to PDGEMM).

Equation 6 represents the runtime estimation of
PDGETRF routine in ScaLAPACK LU. To be con-
sistent with the runtime estimation of CALU, we con-
sider for PDGETRF as well that the swapping of b rows
performed by a call to PDLASWP leads to 2 - log, P,
messages exchanged.

To better understand the differences between CALU
and the LU factorization implemented in ScaLAPACK,
we will compare the runtime estimation of the two fac-
torizations as given by Equation 5 and Equation 6.
Comparing the additions, multiplications flop counts,
CALU adds a lower order term of about b(mn —
n?/2)/P,. This term comes from TSLU, which per-
forms twice the factorization of a block-column, first
to get the pivot rows, and second to actually com-
pute the factors. Comparing the division flop counts,
CALU adds a lower order term of nlog, P, all from
the TSLUs of block-columns (the factorizations of
two b x b matrices). Comparing communication costs
within processor columns («. and . terms), for band-
width, both algorithms have the same communication
volume. For latency, CALU is lower by a factor of
b(1+1/log, P;). The reduction in the number of mes-
sages within processor columns comes from the reduc-
tion in the factorization of a block-column performed
by TSLU versus PDGETF2. Comparing communica-
tions costs within processor rows (o, and 3, terms), in
PDGETRF, the number of broadcasts within proces-
sor rows is already of the order of n/b, and hence both
algorithms have the same costs.

6 Experimental results

In this section, we evaluate the performance of
CALU algorithm, and the goal of our experiments is
three-fold. First, we study the numerical stability of
the new ca-pivoting strategy. Second, we evaluate the
performance improvement obtained in the panel fac-
torization by TSLU compared to the corresponding
routine in ScaLAPACK. And third, we evaluate the
performance of CALU and compare it to PDGETRF
routine in ScaLAPACK.

The experiments are performed on two computa-
tional systems at the National Energy Research Scien-
tific Computing Center (NERSC). The first system is
an IBM p575 POWER 5 system, which has 888 com-
pute processors distributed among 111 compute nodes.
Each processor is clocked at 1.9 GHz and has a theo-

Tecarv(m,n,P.,P.) = [% (mn2 - %3> + P% (mn - %2) 2b+ g;lc’ + %(10& P.— 1)} v+

+n(logy Pr + 1)va+

)
+logy P | 3o + (12 + 3—}5) Be| +)
+log, P. BTnO‘T + mn — %2) ﬁr}

Tppcerrr(m,n, Pr, Pe) = [% (m”2 - %g) + 5 (m” - %) b+ 72112312} Tt
+nYa+ 6
+[2n (14 2)log, Py +n] ac + (%M%)logg P et (©)

+log, P. {%”ar + P% (mn - %)

retical peak performance of 7.6 GFLOPs/s. Each node
of 8 processors has 32 Gbytes of memory. The com-
pute nodes are connected to each other with a high-
bandwidth, low-latency switching network. The peak
bandwidth is 3100 MB/s and the MPI Point to Point
internode latency is 4.5 usec [11]. On IBM POWER 5
we use the BLAS routines from the ESSL library (En-
gineering and Scientific Subroutine library). For all
the runs we used the maximum number of processors
available per node.

The second system is a Cray XT4 system with 9660
compute nodes. Each compute node has a 2.6 GHz
dual-core AMD Opteron processor with a theoretical
peak performance of 5.2 GFLOPs/s. Each compute
node has 4 GBytes of memory. In our comparisons
we use the routines PDGETRF and PDGETF2 from
the Cray Scientific Libraries package, LibSci. However
these routines have no significant optimization with
respect to the routines from ScaLAPACK [12]. In our
tests we use ScaLAPACK in mixed mode, that is MPI
is used in between compute nodes, and threaded BLAS
level parallelism on cores within a node. The threaded
BLAS used is libGoto library.

6.1 Stability of ca-pivoting strategy

In this section we show that CALU is as stable as
Gaussian elimination with partial pivoting. For this we
summarize results that express the stability of Gaus-
sian elimination in terms of the pivot growth and the
normwise backward stability attained. We perform our
tests in Matlab, using matrices from a normal distri-
bution with varying size from 1024 to 8192. We have
performed experiments on different matrices, as ma-
trices following different random distributions, dense
Toeplitz matrices, and we have obtained similar results
to those presented here.

The growth factor is computed using the values
of the elements of A during the elimination process.
We use the growth factor as defined by Trefethen and

o (k)
Schreiber [14], gr = w, where a%ﬁc) denotes

oA
the absolute value of the element of A at row 7 and

N

=

:

column j at the k-th step of elimination, and o4 is
the standard deviation of the initial element distribu-
tion. It is shown experimentally in [14] that in practice
gr ~ n?/3 for partial pivoting, and g7 ~ n'/? for com-
plete pivoting (at least for n < 1024).

In Figure 2 we display the value of the growth fac-
tor gr obtained for different block sizes and different
number of processors. Here two samples are used for
each test. From the point of view of stability, only
the number of rows in the process grid P, plays a role.
Hence we vary only P,, presented as P in Figure 2. We
observe that the growth factor of ca-pivoting grows as
¢-n?/3 (c being a small constant around 1.5), and has
the same behavior as partial pivoting.

The new ca-pivoting strategy does not ensure that
the element of maximum magnitude is used as pivot
at each step of factorization. Hence |L| is not bounded
by 1 as in Gaussian elimination with partial pivoting.
However, in practice the pivots used by ca-pivoting are
very close to the elements of maximum magnitude in
the respective columns. In our tests we also computed
the value of the minimum threshold in CALU, where
the threshold is computed at each step of factorization
i as the quotient of the pivot used at step i divided
by the maximum value in column ¢. We observed that
this value is always larger than 0.33, meaning that in
our tests |L| is bounded by 3. The average value of the
threshold is larger than 0.84. To evaluate the stability
of ca-pivoting in terms of normwise backward stability,
we compute three accuracy tests as performed in the
HPL benchmark, and denoted as HPL1, HPL2 and
HPL3. For stability, the expected values are of the
order of O(1), that is a slowly growing function of n.
In HPL, the accuracy tests are passed if the values of
the three quantities are smaller than 16.

HPL1 = |[|Az —b||oo/(€l]A]]1 * N),
HPL2 = [[Az —bl[co/ (e[| All[|2[[1),
HPL3 = [[Az = bl[co/(€]|Alloc||2[loc *).

We present in Table 1 the results obtained for the
three tests for CALU, when varying the matrix size,

P=256,b=32

P=256,0=16
P=128,b=64 0
P=128,b=32 e
P=128,0=16 .
P=64,b=128

==

<

-

700

600

500

P=64,b=32
P=64,b=16
2/3

400 ' n

300

200 -

I I I
1024 2048 4096 8192

100 v

Figure 2: The growth factor for matrices following a normal
distribution

the number of processors and the block size. For the
matrix of size m = n = 2F in Table 1, the sample
size is S = max{10 % 2!°=% 3}, We display in Table 2
the results obtained by LU factorization with partial
pivoting for the same matrix sizes, where S is the sam-
ple size. All the three tests, as performed in HPL,
are passed by CALU. Moreover, for all the test cases,
CALU leads to results of the same order of magnitude
(1072, 1073) as LU factorization with partial pivoting.

m=n| P b HPL1 HPL2 HPL3
256 | 32 | 5.06e-02 | 2.26e-02 | 4.54e-03

16 | 2.24e-02 | 2.15e-02 | 4.34e-03

64 | 4.78¢-02 | 2.21e-02 | 4.22¢-03

128 | 32 | 3.90e-02 | 2.12e-02 | 4.30e-03
213 16 | 6.67e-02 | 1.97¢-02 | 3.89¢-03
128 | 2.09e-02 | 2.07e-02 | 3.84¢-03

64 | 64 | 3.45e-02 | 2.05e-02 | 4.26e-03

32 | 6.64e-02 | 2.31e-02 | 4.85e-03

16 | 1.32e-02 | 2.08¢-02 | 4.24e-03

256 | 16 | 1.38e-02 | 1.94e-02 | 4.36e-03
128 | 32 | 2.35e-02 | 2.22¢-02 | 4.99¢-03

16 | 5.58e-01 | 2.11e-02 | 3.95e-03

212 64 | 1.22e-02 | 2.13e-02 | 4.55e-03
64 [32 | 2.39e-02 | 2.13e-02 | 4.56e-03

16 | 2.76e-02 | 2.10e-02 | 3.98e-03

128 | 16 | 3.74e-02 | 2.01e-02 | 4.36e-03
21t 64 | 32 | 5.52e-02 | 2.32e-02 | 5.16e-03
16 | 2.83e-02 | 2.06e-02 | 4.49¢-03

210 64 | 16 | 2.24e-02 | 2.11e-02 | 5.18e-03

Table 1: HPL accuracy tests for ca-pivoting strategy

6.2 Performance of TSLU

We evaluate the performance of TSLU using matri-
ces of a size m X n, a block size b = n, and varying

m=n | S HPL1 HPL2 HPL3
213 5 | 1.41e-01 | 1.40e-02 | 2.75e-03
212 5 | 1.22e-02 | 1.40e-02 | 3.02e-03
2t 5 | 1.86e-02 | 1.38e-02 | 3.01e-03
219 110 | 2.41e-02 | 1.57e-02 | 3.63e-03

Table 2: HPL accuracy tests for LU with partial pivoting

both m and n (m € {1035 - 103,10% 10%,10°} and
n € {50,100,150}). Our goal is to study the perfor-
mance improvement of TSLU compared to the ScalL.A-
PACK PDGETF2 routine. The time ratio between
PDGETF2 and TSLU obtained on the IBM POWER
5 system and the Cray XT4 system is displayed in Ta-
ble 3.

The improvement is expected in part due to using
a better LU factorization algorithm in the local se-
quential LU factorization (step 2 of Algorithm TSLU),
and in part due to reducing the latency cost. In our
algorithm we use the recursive LU factorization, the
RGETF2 routine as given in Appendix B of [9]. Re-
call that TSLU performs twice the number of flops
of PDGETF2. To better understand these issues, we
compare two different configurations of TSLU. In the
first one the local LU factorization performed by each
processor on its group of rows is done using the classic
LU factorization. We use the LAPACK DGETF2 rou-
tine, and the results for this configuration are displayed
in the columns denoted C1 in Table 3. In the second
one, displayed in the columns Rec, we use the recur-
sive LU factorization, the RGETF2 routine as given in
Appendix B of [9].

In each table we show results for fixed m and dif-
ferent values of n and number of processors. Several
results are missing in the plots, and this is because ei-
ther there was not enough memory to perform the fac-
torization or the input matrix is too small and some
processors are not involved in the operation.

On the IBM POWER 5 system, the best improve-
ment is obtained for the largest matrix in our test set
m = 10 and n = b = 150, where TSLU outperforms
PDGETF2 by a factor of 4.37 on 16 processors. The
improvement due to latency reduction is almost a fac-
tor 2. This shows that reducing the latency cost is an
important part of the overall improvement.

The best performance of TSLU on the IBM
POWER 5 system is 215 GFLOPs/s, and it is ob-
tained for m = 10% and n = 150 on 64 processors
(we count here the total number of flops performed by
TSLU). This represents 44% of the theoretical peak
performance. This performance corresponds to an im-
provement of 1.22 over PDGETF2.

For small matrices, we can notice that the improve-
ment comes mainly from reducing the latency cost. For
intermediate size matrices and a small number of pro-
cessors (up to 4, 8 processors), the improvement comes

IBM POWER 5
No of processors P = P, x P,
m | n==>ot 8 16 32 64
2% 2 2 x4 4x4 4x8 8 x 8

Rec Cl Rec Cl Rec Cl Rec Cl Rec Cl

10° 50 | 1.66 | 1.59 | 1.96 | 2.06 | 2.24 | 2.09 - - - -
10° 100 1.27 | 1.17 1.44 1.37 - - - - - -
10? 150 | 1.06 | 0.97 - - - - - - - -
5.10° 50 | 1.62 1.08 | 1.48 1.44 | 1.97 | 1.94 1.78 | 2.05 | 2.09 1.71
5-10° 100 | 0.98 | 0.85 1.13 1.04 1.36 1.29 1.39 1.47 - -
5-10° 150 1.08 | 0.81 1.00 1.01 1.06 | 0.96 | 0.99 | 0.97 - -
10" 50 1.24 | 087 | 1.71 | 0.88 | 1.78 1.68 1.66 | 1.94 | 2.18 1.76
10* 100 1.34 0.81 1.01 0.80 1.26 1.15 1.30 1.28 1.51 1.21
10* 150 | 3.07 | 0.88 1.03 | 0.78 1.01 0.89 1.00 | 0.97 1.06 | 0.80
10° 50 1.07 | 0.70 1.09 | 0.72 1.18 | 0.85 1.15 | 1.32 | 1.50 | 1.23
10° 100 1.00 | 0.70 1.04 | 0.67 | 1.09 | 0.73 1.21 1.03 1.19 1.01
10° 150 | 1.13 | 0.68 | 1.13 | 0.69 | 1.36 | 0.77 | 1.08 | 0.84 1.03 | 0.75
10° 50 1.36 | 0.71 1.27 | 0.71 1.25 | 0.70 1.12 | 0.69 | 2.01 0.82
10° 100 1.84 | 0.75 1.95 | 0.87 | 1.62 | 0.73 | 2.90 | 0.84 1.08 | 0.70
10° 150 | 2.32 | 0.81 | 2.34 | 0.89 | 4.37 | 0.90 | 3.42 | 0.85 1.22 0.70

Cray XT4
No of processors P = P, X P,
m | n==>b 8 16 32 64
2% 2 2 x4 4x4 4x8 8 x 8

Rec Cl Rec Cl Rec Cl Rec Cl Rec Cl

103 50 1.42 | 2.23 1.85 | 2.71 2.09 | 3.09 - - - -
10° 100 1.14 1.39 1.29 1.56 - - - - - -
103 150 | 1.12 | 0.91 - - - - - - - -
5.10° 50 1.22 1.42 1.65 | 2.15 1.97 | 2.72 | 2.10 | 3.06 1.04 | 2.59
5-10% 100 1.27 1.24 1.25 1.32 1.35 1.53 1.38 1.65 - -
5-10° 150 | 1.67 | 1.22 | 097 | 090 | 0.88 | 0.91 0.85 | 0.90 - -
10* 50 1.20 1.14 1.37 1.19 1.85 | 2.42 1.03 | 2.88 2.03 | 3.10
10* 100 2.19 1.34 1.56 1.44 1.30 1.41 0.94 1.56 1.36 1.94
10* 150 | 2.61 1.30 | 2.03 144 | 0.92 | 0.88 | 0.81 0.90 | 0.87 | 0.93
10° 50 2.12 1.13 2.23 1.37 2.29 1.50 1.20 1.47 1.76 1.88
10° 100 | 3.14 1.25 | 3.13 1.45 2.97 1.43 1.92 1.39 | 2.38 1.39
10° 150 | 3.78 1.30 | 3.57 1.47 | 3.14 1.30 | 2.12 1.26 2.34 1.15
10° 50 | 2.99 1.49 | 3.02 1.51 2.86 1.28 | 2.09 1.03 2.14 1.31
10° 100 | 4.51 1.65 | 4.55 1.71 4.04 1.36 | 3.04 | 1.13 | 3.07 | 1.27
10° 150 | 5.58 1.61 | 5.52 1.76 | 4.80 1.39 | 3.60 | 1.12 | 3.67 | 1.20

Table 3: Time ratio of PDGETF2 to TSLU obtained on IBM POWER 5 and Cray XT4 systems, using DGETF2 for the
local LU factorization (Cl), and using RGETF2 for the local LU factorization (Rec). The matrix factorized is m X n, with
a block of size b = n.

mainly from using recursion. For the same matrices
and a large number of processors, the improvement
comes from decreasing the latency cost. On small num-
ber of processors the recursion leads to important im-
provements for large matrices (m = 10°,10% and vary-
ing n), for instance a factor of 2.3 for m = 10° and
n = 150 on 4 processors. However, with increasing
number of processors, even for large matrices, reduc-
ing the latency plays an important role in the overall
improvement. The best results are obtained on 16 and
32 processors for the biggest matrices m = 10° and
n = 150, showing the overall improvement factors of
4.37 and 3.42 respectively.

On the Cray XT4 system, the best improvement
is seen for m = 10 and n = 150: a factor of 5.58
on 4 processors and a factor of 5.52 on 8 processors.
The best performance of the TSLU algorithm is 240
GFLOPs/s, obtained by TSLU on 64 processors for
m = 10% and n = 150. This represents 36% of the
theoretical peak performance and it corresponds to an
improvement of 3.67 over PDGETF2.

For the small matrices (m = 10% and n varying from
50 to 150 or m = 5-10% and n = 50 or 100) the best
results are obtained using classic LU, hence solely due
to reduction of the latency cost. For all the large ma-
trices, using recursive LU shows a better performance.

In summary, for all the cases tested, at least one
of the new TSLU algorithms outperforms the ScalLA-
PACK routine PDGETF2. For small matrices the us-
age of classic LU leads to better performance than the
recursive LU. This is in accordance with the results
in [9, 13] which show that the recursive algorithm do
not fare better than the classic algorithm for small ma-
trices. For larger matrices, recursive LU performs bet-
ter than classic LU. The improvements obtained by
TSLU are due to both reducing the latency and the
local LU factorization costs.

6.3 Performance of CALU

In this section we study the performance im-
provement of CALU compared to the ScaLAPACK
PDGETRF routine. We use matrices of a size m x m,
and varying both m and b (m € {1035 - 103,10%}
and b € {50,100,150}). The time ratio between
PDGETRF and CALU obtained on the IBM POWER
5 system and the Cray XT4 system are presented in
Table 4.

We have observed in Table 3 that for a small num-
ber of processors, the best performance for TSLU is
obtained when recursive LU is used for the local LU
factorization. The number of processors used for TSLU
corresponds to the number of rows P, in the 2D grid of
processors used for CALU. Since in our tests for CALU
P, is relatively small (with values going from 2 to 8),
in all our tests we use for the panel factorization TSLU
with recursive LU.

For IBM POWER 5 system, the first matrix (m =
103 and varying b) is relatively small, and thus we
do not expect any important speedup with increasing
number of processors. In fact, for m = 10° we see
no speedup for a number of processors larger than 16.
Still, this matrix is helpful in showing the improvement
due to the reduction of the latency cost. The best im-
provement is obtained for m = 10 and b = 50 (factors
of 2.23 on 16 processors and 2.29 respectively on 64
processors), mainly as a result of reducing the latency
cost. An important improvement is obtained also for
m = 5-10%, a factor of 1.67 on 32 processors and a
factor of 1.69 on 64 processors. For m = 10%, the best
improvement is a factor of 1.59 on 32 processors.

For Cray XT4 system, we notice that the improve-
ments are smaller than on the IBM POWER 5 system.
The best improvement obtained is a factor of 1.81 for
m = 103 and b = 100 on 64 processors. For m = 5-103,
the best improvements obtained are a factor of 1.38 on
8 processors and a factor of 1.36 on 64 processors, both
for b = 150. For m = 10%, the best improvements are
a factor of 1.38 on 32 processors and a factor of 1.33
on 64 processors.

The improvements presented in Table 4 are obtained
for a fixed number of processors and a fixed block size.
However the best improvements do not correspond al-
ways to the best performance of CALU or PDGETRF.
CALU can have a better performance for a different
block size or grid shape than PDGETRF. Hence, an
interesting question to answer is: for a given problem
size m and a given maximum number of processors,
what is the improvement obtained by the best CALU
with respect to the best PDGETRF? To answer this
question, we present in Table 5 the improvement ob-
tained by taking the best performance independently
for CALU and PDGETRF, when varying the number
of processors (from 8 to 64) and the block size (values
of 50, 100 and 150). For a given number of processors,
we use one grid shape, as in our previous experiments.
We also display the best performance for CALU and
PDGETRF in GFLOPs/s (GFlops columns), the block
size (b) and the number of processors for which the best
performance was obtained, and the percentage of theo-
retical peak performance obtained by CALU (columns
Prcut). The speedup is computed as follows:

minp<p,,,..» I'pDGETRF(M, M, P,b)

d P, =
speedup(m, m, Pnoz) minp<p,,,,.» Tcarv(m,m, P,b)

CALU leads to improvements up to 1.69 on IBM
POWER 5 and up to 1.53 on Cray XT4. Note that
the improvements are obtained when the performance
of the algorithm is a small percentage of the theoreti-
cal peak performance. The smallest percentage is ob-
tained on Cray XT4, for m = 10% and P = 32. This

IBM POWER 5
No of processors P = P, X P,
m=mn b 4 8 16 32 64
2x2 2x4 4 x4 4x8 8% 8
Impvt | GFlops | Impvt | GFlops | Impvt | GFlops | Impvt | GFlops | Impvt | GFlops
CALU CALU CALU CALU CALU
10° 50 1.57 9.79 1.59 11.9 2.23 11.8 2.07 11.5 2.25 9.8
10® | 100 1.48 8.84 1.47 10.5 1.91 10.6 1.91 11.2 2.29 10.9
10% | 150 1.36 8.26 1.41 9.9 1.70 9.5 - - - -
5-10° 50 1.05 21.5 1.09 39.4 1.31 61.2 1.51 95.5 1.69 118.6
5-10% | 100 1.06 21.1 1.13 37.3 1.21 56.7 1.67 84.1 1.66 103.1
5-10% | 150 1.04 20.6 1.08 35.1 1.18 52.3 1.26 74.8 1.45 89.1
10* 50 1.00 23.27 1.00 45.1 1.08 80.3 1.17 143.2 1.35 213.9
10* | 100 1.00 23.62 1.00 44 .4 1.10 78.0 1.19 133.2 1.24 197.6
10* | 150 1.01 23.47 1.02 42.3 1.33 74.1 1.59 122.1 1.17 173.8
CRAY XT4
No of processors P = P, X P,
m=mn b 4 8 16 32 64
2x2 2x4 4 x4 4x8 8% 8

Impvt | GFlops | Impvt | GFlops | Impvt | GFlops | Impvt | GFlops | Impvt | GFlops
CALU CALU CALU CALU CALU
10° 50 1.19 5.4 1.20 6.6 1.33 6.6 1.35 7.5 1.67 7.6
10% | 100 1.28 5.5 1.39 7.0 1.52 7.2 1.60 8.5 1.81 8.3
103 | 150 1.23 5.3 1.32 6.6 1.44 6.7 - - - -
5.10° 50 1.03 19.2 1.09 33.3 1.12 44.3 1.16 69.2 1.11 67.2
5-10% | 100 1.12 19.4 1.20 32.3 1.13 42.8 1.24 67.4 1.32 76.1
5-10% | 150 1.23 19.1 1.38 31.0 1.22 40.8 1.35 61.9 1.36 70.5
107 50 1.01 24.4 1.05 45.7 1.04 69.5 1.08 121.3 1.31 154.9
10* | 100 1.09 25.3 1.18 46.5 1.13 69.8 1.22 118.2 1.33 153.3
10* | 150 1.16 25.2 1.31 45.4 1.22 67.3 1.38 1114 1.30 140.3

Table 4: Time ratio of PDGETRF to CALU (Impvt columns) and performance for CALU in GFLOPs/s (GFlops columns)
obtained on IBM POWER 5 system. The matrix factorized is m x m, with a block of size b.

IBM Power 5

m | speedup CALU PDGETRF
GFlops | P b | Prent | GFlops | P b
10° 1.59 11.9 8 50 19.6 7.5 8 50
5-10° 1.69 118.6 | 64 50 24.4 70.0 | 64 50
10* 1.34 213.9 | 64 50 40.6 159.8 | 64 | 100

Cray XT4

m | speedup CALU PDGETRF
GFlops | P b | Prent | GFlops | P b
10° 1.53 8.5 | 32 | 100 2.5 5.54 | 32 50
5-10° 1.26 76.1 | 64 | 100 11.4 60.2 | 64 50
10* 1.31 154.9 | 64 50 23.2 118.1 | 64 50

Table 5: Speedup estimated as the ratio of best PDGETRF over best CALU for a given problem size, the best performance
for CALU and PDGETRF in GFLOPs/s (GFlops columns), the block size (b columns) and the number of processors (P
columns) for which the best performance was obtained. Prent denotes the percentage of theoretical peak performance
obtained by CALU.

is somehow expected, since this is a small matrix exe-
cuted on 32 dual-core processors. A better percentage
is obtained on IBM POWER 5, for example 40.6 for
m = 10* on 64 processors. However, even when the
percentage of peak performance is small, the Table 5
shows that CALU will let a user more efficiently use
the same resources than PDGETRF, and so it is always
worth using it.

7 Conclusions and future work

In this paper we have introduced CALU, a new al-
gorithm for computing the LU factorization of dense
matrices. This algorithm uses a new pivoting strategy,
the ca-pivoting, which is used to efficiently compute
the LU factorization of a block-column, and leads to
an important decrease in the number of messages of
CALU with respect to classic algorithms.

We have compared CALU with the corresponding
PDGETRF routine from ScaLAPACK. Our experi-
ments have shown that depending on the size of the
matrix and the characteristics of the underlying com-
puter architecture, it is either latency reduction or re-
cursion or both which are major factors in reducing
the parallel time of the LU factorization. Interestingly,
the gains due to latency reduction are not limited only
to the small matrices, but affects also the large ma-
trices. In these cases the recursion is very efficient
in reducing the local LU factorization time and thus
leaves the latency as the time consuming bottleneck,
which needs to be alleviated. The factorization of a
block-column, TSLU, outperforms the corresponding
routine PDGETF2 from ScaLAPACK up to a factor of
4.37 on the IBM POWERS system and up to a factor
of 5.58 on the Cray XT4 system. CALU outperforms
PDGETRF up to a factor of 2.29 on IBM POWERS5
and up to a factor of 1.81 on Cray XT4.

The factorization of a block-column lies on the criti-
cal path of the parallel LU factorization, and hence we
expect that the usage of ca-pivoting strategy by other
parallel LU algorithms, as HPL, will lead to improve-
ments of the overall time. This is the object of our
current research.

As future work, it will be interesting to study the
suitability of the new ca-pivoting strategy for parallel
LU on multicore architectures. Another direction con-
sists of using the ca-pivoting strategy for the LU fac-
torization or the incomplete LU factorization of sparse
matrices. This may pay off much more than the dense
case, since there is a higher proportion of communica-
tion versus computation.

Acknowledgments

The authors thank M. Hoemmen, J. Langou, and J.
Riedy for helpful discussions on this subject.

References

1]
2]

13l

4]

5]

(6]

7]

18]

[9]

[10]

[11]
[12]
[13]

[14]

[15]

Top 500 supercomputer sites. available at
www.top500.org.

M. Baboulin, J. Dongarra, and S. Tomov. Some Is-
sues in Dense Linear Algebra for Multicore and Special
Purpose Architectures. Technical Report UT-CS-08-
615, University of Tennessee, 2008. LAPACK Working
Note 200.

A. Buttari, J. Langou, J. Kurzak, and J. Dongarra.
A class of parallel tiled linear algebra algorithms for
multicore architectures. Technical Report UT-CS-07-
600, University of Tennessee, 2007. LAPACK Working
Note 191.

J. Choi, J. J. Dongarra, L. S. Ostrouchov, A. P. Pe-
titet, D. W. Walker, and R. C. Whaley. The Design
and Implementation of the ScaLAPACK LU, QR and
Cholesky Factorization Routines. Scientific Program-
ming, 5(3):173 184, 1996. ISSN 1058-9244.

J. Demmel, L. Grigori, M. Hoemmen, and J. Langou.
Communication-optimal parallel and sequential QR
and LU factorizations. Technical Report UCB/EECS-
2008-89, UC Berkeley, 2008. LAPACK Working Note
204.

J. J. Dongarra, P. Luszczek, and A. Petitet. The LIN-
PACK Benchmark: Past, Present and Future. Con-
currency: Practice and Ezperience, 15:803 820, 2003.
T. Endo and K. Taura. Highly Latency Tolerant Gaus-
sian Elimination. Proceedings of 6th IEEE/ACM In-
ternational Workshop on Grid Computing, pages 91—
98, 2005.

S. L. Graham, M. Snir, and C. A. Patterson, editors.
Getting Up To Speed: The Future Of Supercomputing.
National Academies Press, Washington, D.C., USA,
2005.

F. Gustavson. Recursion Leads to Automatic Variable
Blocking for Dense Linear-Algebra Algorithms. IBM
Journal of Research and Development, 41(6):737-755,
1997.

G. Quintana-Orti, E. S. Quintana-Orti, E. Chan,
F. G. Van Zee, and R. van de Geijn. Programming
algorithms-by-blocks for matrix computations on mul-
tithreaded architectures. Technical Report TR-08-04,
University of Texas at Austin, 2008. FLAME Working
Note 29.

D. Skinner. IBM SP Parallel Scaling Overview.

http://www.nersc.gov/news/reports/technical /seaborg scaling.

A. Tate. Personal communication.

S. Toledo. Locality of reference in LU Decomposition
with partial pivoting. SIAM J. Matriz Anal. Appl.,
18(4), 1997.

L. N. Trefethen and R. S. Schreiber. Average-case sta-
bility of Gaussian elimination. SIAM J. Matriz Anal.
Appl., 11(3):335-360, 1990.

V. Volkov and J. W. Demmel. Benchmarking GPUs
to Tune Dense Linear Algebra. Proceedings of the
ACM/IEEE SC08 Conference, 2008.

