

Effects of Block Size on the Block Lanczos Algorithm

by

Christopher Hsu

2003

Advisor
Professor James Demmel

Contents

1. Introduction

2. Single-Vector Lanczos Method

3. Block Lanczos Method

4. BLZPACK

5. Integrating SPARSITY Into BLZPACK

6. Nasasrb Matrix

7. Bcsstk, Crystk, and Vibrobox Matrices

8. Protein Matrices

9. Conclusion

10. Bibliography

Acknowledgements

First, I would like to thank Professor Demmel and Professor Yelick for supporting me as

a new member in a research group among members already familiar with the material I

had to spend weeks to learn. Their patience has allowed me to catch up and complete my

research for the semester. I would like to thank Professor Demmel especially for his

advice specific to my project, and for editing this report. I would also like to thank Rich

Vuduc for all his help in starting everything and with programming issues. I owe much

of my results to Benjamin Lee, who provided me with the information I needed to run all

my tests. I am grateful for the correspondence of Osni Marques, who provided

suggestions to point me in the right direction of obtaining the desired results. Finally, I

thank the BEBOP group members for all their support and insight.

1. Introduction

The problem of computing eigenvalues occurs in countless physical applications. For a

matrix A, an eigenvalue is a scalar λ such that for some nonzero vector x, Ax = λx. The

vector x is called the corresponding eigenvector. We will refer to the eigenvalue and

eigenvector collectively as an eigenpair. The set of all eigenvalues is called the spectrum.

Such a problem is an example of a standard eigenvalue problem (SEP). In different

situations such as structural problems, we are given two matrices, a mass matrix M and a

stiffness matrix K. Then an eigenvalue is a scalar λ such that Kx = λMx. This type of

problem is known as a generalized eigenvalue problem (GEP). In my experiments I deal

with large, sparse real symmetric matrices. Real symmetric matrices have applications in

clustering analysis (power systems), physics (arrangements of atoms in a disordered

material), chemistry (calculation of bond energies in molecules), and much more. The

matrices I work with are of dimension ranging from 8070 to 54870.

For different eigenproblems, there are many possible algorithms to choose from when

deciding how to approach solving for eigenvalues. Templates for the Solution of

Algebraic Eigenvalue Problems [3] classifies eigenproblems by three characteristics.

The first is the mathematical properties of the matrix being examined. This includes

whether the matrix is Hermitian (or real symmetric), and whether it is a standard or

generalized problem. The second characteristic to consider is the desired spectral

properties of the problem. This includes the required accuracy of the eigenvalues,

whether we want the associated eigenvectors, and which and how many of the

eigenvalues from the spectrum of the matrix we desire. The third characteristic is the

available operations and their costs. Implementation of a specific algorithm may depend

on a particular data structure and the cost of operations on such a structure; restrictions on

how data is represented may restrict the options of available algorithms.

Depending on the properties of the problem we are solving, Templates [3] provides a

recommended algorithm to find eigenvalues. Classes of algorithms include direct

methods, Jacobi-Davidson methods, and Arnoldi methods. My research will examine a

particular variant of the Lanczos method, namely the block Lanczos method. BLZPACK

[8] (Block Lanczos Package) is a Fortran 77 implementation of the block Lanczos

algorithm, written by Osni Marques. My project consists of integrating BLZPACK with

SPARSITY [7], a toolkit that generates efficient matrix-vector multiplication routines for

matrices stored in a sparse format. I will give a description of SPARSITY as well as

BLZPACK and its interface in later sections. BLZPACK is capable of solving both the

standard and the generalized eigenvalue problems; however, my research focuses on the

standard problem.

The purpose of this project in particular is to examine the effects of changing the block

size (explained later) when applying the block Lanczos algorithm. My goal is to decrease

the overall execution time of the algorithm by increasing the block size. This involves

observing the time spent in different sections of the algorithm, as well as carefully

choosing optimal matrix subroutines. This work complements that of the BEBOP group

at Berkeley, whose interests include software performance tuning. In particular, BEBOP

explores SPARSITY performance in great detail. The relevance to BLZPACK lies in

matrix-vector multiplication unrolled across multiple vectors. Depending on the matrix,

the time spent for the operation A*[x1,...,xk] (i.e. a matrix A times k vectors) may be

much less than k times the time spent on Ax (i.e. a matrix A times a vector, done k

times). BLZPACK can be used with A*[x1,...,xk] for any k (known as block size); my

work explores whether we can accelerate eigenvalue computation by using block size

greater than 1. The work performed by BLZPACK depends in a complicated fashion on

the matrix, block size, number of desired eigenvalues, and other parameters; hence the

answer to that question is not immediately obvious. As I will show, there are cases when

using a block size of 1 performs best, and also cases where a greater block size is better.

A related problem of using a blocked procedure for solving linear systems of equations

prompted the question of the usefulness of the analogous problem of computing

eigenvalues. GMRES [2] is a method for solving Ax = b, where A is large, sparse, and

non-symmetric. A blocked version LGMRES instead solves AX = B, incorporating fast

matrix-multivector-multiply routines. BLZPACK uses a similar approach involving

Krylov subspaces, which will be explained in greater detail in Section 2.

The first part of this report deals with the tools I work with: the Lanczos method (with a

description of the algorithm), BLZPACK, and SPARSITY. The second part is a

collection of the data gathered from my experiments and the results and conclusions

drawn from them.

2. Single-Vector Lanczos Method

The class of Lanczos methods refers to procedures for solving for eigenvalues by relying

on Lanczos recursion. Lanczos recursion (or tridiagonalization) was introduced by

Cornelius Lanczos in 1950. In this section I will describe the algorithm for the single-

vector Lanczos method1.

The simplest Lanczos method uses single-vector Lanczos recursion. Given a real

symmetric (square) matrix A of dimension n and an initial unit vector v1 (usually

generated randomly), for j = 1,2,…,m the Lanczos matrices Tj are defined recursively as

follows:

Let z := Avi

αi := vi
Tz

z := z - αivi - βi-1vi-1

βi := ||z||2

vi+1 := z/βi

The Lanczos matrix Tj is defined to be the real symmetric, tridiagonal matrix with

diagonal entries αi for i = 1,2,...,j and subdiagonal and superdiagonal entries βi for i =

1,2,...,j.

The vectors αivi and βivi-1 are the orthogonal projections of the vector Avi onto vi and vi-1

respectively. For each i, the Lanczos vector vi+1 is determined by orthogonalizing Avi

with respect to vi and vi-1. The Lanczos matrices are determined by the scalar coefficients

αi and βi+1 obtained in these orthogonalizations.

In all Lanczos methods, solving for an eigenvalue of a matrix A is simplified by replacing

A with one or more of the Lanczos matrices Tj’s. Real symmetric tridiagonal matrices

1 The details here are a summary of more complete explanations from Chapter 2 of Lanczos Algorithms for
Large Symmetric Eigenvalue Computations [4].

have small storage requirements and algorithms for their eigenpair computations are

efficient [4].

The basic Lanczos procedure follows these steps:

1. Given a real symmetric matrix A, construct (using Lanczos recursion) a family of

real symmetric tridiagonal matrices Tj for j = 1,2,...,M.

2. For some m ≤ M compute the relevant eigenvalues of the Lanczos matrix Tm.

(Relevance refers to which eigenvalues from the spectrum are desired, e.g. the

eigenvalue with highest absolute value.)

3. Select some or all of these eigenvalues as approximations to eigenvalues of the

given matrix A.

4. For each eigenvalue µ of A for which an eigenvector is required, compute a unit

eigenvector u such that Tmu = µu. Map u into a vector y ≡ Vmu (where Vm is the

matrix whose kth
 column is the kth Lanczos vector), which is used as an

approximation to an eigenvector of A. Such a vector y is known as a Ritz vector;

eigenvalues of Lanczos matrices are called Ritz values of A.

In the Lanczos recursion formulas, the original matrix A is used only for the product Avi;

hence it is never modified. For large sparse matrices, this enables storage optimizations,

since a user only needs a subroutine which computes Ax for any vector x, which can be

done in space linear in the dimension of the matrix. Furthermore, the number of

arithmetic operations required to generate a Lanczos matrix is proportional to the number

of nonzero entries of A, as opposed to O(n3) (where n is the size of A) for procedures

which completely transform A into a real symmetric tridiagonal matrix by performing an

orthogonal similarity transformation.

That the Lanczos matrices possess eigenvalues that can reasonably approximate those of

A is not immediately clear. The key facts (which I state without proof2) are that the

Lanczos vectors form an orthonormal set of vectors, and that the eigenvalues of the

Lanczos matrices are the eigenvalues of A restricted to the family of subspaces Kj ≡

2 The proof is in Chapter 2 of Lanczos Algorithms [4].

sp{v1,Av1,A2v1,...,Aj-1v1}, known as Krylov subspaces. If j is sufficiently large, the

eigenvalues of Tn should be good approximations to the eigenvalues of A. Continuing

the Lanczos recursion until j = n (where n is the size of A), Tn is an orthogonal similarity

transformation of A, and therefore has the same eigenvalues as A. A Ritz vector Vju

obtained from an eigenvector u of a given Tj is an approximation to a corresponding

eigenvector of A.

Error analysis is given in terms of the angle between a vector and a subspace, as

explained in Chapter 2 of Lanczos Algorithms [4]. It turns out that Krylov subspaces are

very good subspaces on which to compute eigenpair approximations. An important result

is that the error bound increases as we proceed into the spectrum; that is, extreme

eigenvalues and corresponding eigenvectors have higher expected accuracy than

eigenvalues in the interior of the spectrum. (Depending on the particular implementation,

however, this may not be the case.) For this reason the basic Lanczos method is often a

good algorithm to use when we desire a few extreme eigenvalues.

The above description of the Lanczos algorithm assumes exact arithmetic; in practice this

is usually not the case. Indeed, in computer implementations, finite precision causes

roundoff errors at every arithmetic operation. Computed quantities will obviously differ

from the theoretical values. When constructing the Lanczos matrices Tj, the Lanczos

vectors lose their orthogonality (and even linear independence) as j increases. The

Lanczos matrices are no longer orthogonal projections of A onto the subspaces sp{Vj}.

The theoretical relationship between Tj and A and error estimates are no longer

applicable. It was originally assumed that a total reorthogonalization of the Lanczos

vectors was required. There are Lanczos methods which in fact use no

reorthogonalization and employ modified recursion formulas. However, the variant I will

be working with uses selective orthogonalization and modified partial

reorthogonalization to preserve orthogonality of the Lanczos vectors, as will be described

later.

3. Block Lanczos Method

Many eigenvalue algorithms have variants in which blocks of vectors are used instead of

single vectors. When multiplying by vectors, these blocks can be considered matrices

themselves. As a result, instead of performing matrix-vector operations (Level 2 BLAS

routines [5]), matrix-matrix operations (Level 3 BLAS operations [5]) are used. This

allows for possible optimizations in the execution of the algorithm. I/O costs are

decreased by essentially a factor of the block size [1].

Lanczos methods in particular benefit from a blocked algorithm variant in another way.

Depending on the implementation, single-vector methods sometimes have difficulty

computing the multiplicities of eigenvalues, and for a multiple eigenvalue a complete

basis for the subspace may not be directly computed. A block Lanczos method may be

better for computing multiplicities and bases for invariant subspaces corresponding to

eigenvalues.

As an alternative to the recurrence relations for the single-vector variant, we use the

following approach3. Define matrices B1 ≡ 0 and Q0 ≡ 0. Let Q1 be an nxq matrix whose

columns are orthonormalized, randomly generated vectors, where n is the size of the

original matrix A and q is the block size. For i = 1,2,...,s define Lanczos blocks Qi

according to the following recursive equations:

Let Z := AQi

Ai := Qi
TZ

Z := Z – QiAi – Qi-1Bi-1

Factor Z = Qi+1Bi by Gram-Schmidt

The blocks Qj for j = 1,2,...,s form an orthonormal basis for the Krylov subspace

Ks(Q1,A) ≡ sp{Q1,AQ1,...,As-1Q1} corresponding to the first block. The Lanczos matrices

Ts are defined as the block tridiagonal matrices with A1,A2,...,As along the diagonal, and

B1,B2,...,Bs along the subdiagonal, and B1
T,B2

T,...,Bs
T along the superdiagonal.

3 The Block Lanczos algorithm described here is a summary of the steps described in Chapter 7 of Lanczos
Algorithms [4]. The proof of its correctness is there as well; I have not restated it here.

Analogously to the single-vector case, we approximate eigenvalues of A by computing

eigenvalues of the Ts matrices.

When A is large enough, the cost of this algorithm should be dominated by the

multiplication AQi, which is the operation for which we have specially tuned routines to

evaluate.

4. BLZPACK4

BLZPACK [8] (Block Lanczos Package) is a Fortran 77 implementation of the Block

Lanczos algorithm, written by Osni Marques. It is designed to solve both the standard

and generalized eigenvalue problems. I work with the standard problem, in which we

solve for eigenvalues λ and eigenvectors x that satisfy Ax = λx, where A is a real sparse

symmetric matrix. There are single precision and a double precision versions; I use the

double precision version. The main subroutine is BLZDRD, to which the user passes

parameters and data I will describe in this section. The only computations involving A

are matrix-multiple-vector multiplications done outside the BLZDRD subroutine. In this

way, the representation for A and the implementation of matrix operations on A are

completely decided by the user.

The BLZDRD interface expects numerous arguments; here I will briefly run through the

parameters relevant to my project. Many parameters are ignored because they are

meaningless for the standard problem.

• NI: The number of active rows of temporary arrays in the block Lanczos

algorithm on the current process. BLZPACK can be run in sequential or parallel

mode; for my project only the sequential mode is relevant, so NI is set to the

dimension of A.

• LNI: Dimension of temporary arrays; LNI and NI have the same value in all my

experiments.

• NREIG: The number of desired eigenpairs. I run my experiments with NREIG =

1, 10, and 50. The eigenvalues returned are those with the greatest magnitude.

• LEIG: Dimension of the array in which to store converged eigenvalues (this may

be greater than NREIG). I used LEIG = (NREIG*2)+10.

• NVBSET: The number of vectors in a block. This is the focus of the project; we

try to see when an increase in the block size leads to an increase in overall

performance. With a block size of 1, the algorithm essentially works as a single-

vector Lanczos method. I run the algorithm with block sizes from 1 to 9.

4 The information in this section can be found in greater detail in the BLZPACK User’s Guide [9].

• NSTART: Number of starting vectors given to BLZPACK; I use 0 for this value,

which causes BLZPACK to generate random starting vectors.

• NGEIG: Number of eigenpairs given as input; 0 is used.

• LISTOR/LRSTOR: Amount of workspace to allocate. For all experiments 107

was used for both values.

• THRSH: The threshold for convergence. The default value ||A||√ε is used, where

ε is the machine precision 2.2204 x 10-16, and ||A|| is estimated by means of the

eigenvalue distribution computed by BLZPACK. A computed eigenpair (λ, x) is

considered converged iff ||Ax - λx|| ≤ THRSH.

• NSTEPS: The maximum number of steps to be performed per run. The default

value is used, which is determined by BLZPACK based on allocated workspace

(see LISTOR and LRSTOR). If not enough eigenpairs have converged after

NSTEPS, a restart is performed, using as initial vectors some linear combination

of the unconverged eigenvectors.

The block Lanczos algorithm is implemented as follows. Lanczos vectors are denoted by

Qj, and Qj is defined to be the basis of Lanczos vectors, [Q1 Q2 ... Qj]. Tj is the jth

Lanczos matrix (block tridiagonal) as described in the previous section. At initialization,

set Q0 = 0. Set R0 ≠ 0 randomly and factorize R0 as Q1B1 where Q1
TQ1 is the identity.

On the jth Lanczos step:

1. Compute Rj = AQj

2. Rj := Rj – Qj-1Bj
T

3. Aj := Qj
TRj

4. Rj := Rj - QjAj

5. Factorize Rj as Qj+1Bj+1 where Qj+1
TQj+1 is the identity

6. If required, orthogonalize Qj and Qj+1 against the vectors in Qj-1

7. Insert Qj into Qj and Aj, Bj into Tj

8. Solve the reduced problem Tj

There are further steps to test convergence of the computed eigenpairs. If after some

number of steps (set either by the user or by default) not enough eigenpairs have

converged, Qj and Qj+1 are orthogonalized against specific previously computed vectors;

this is referred to as selective orthogonalization. The process is then restarted. The

orthogonalization in step 6 above is a modified partial orthogonalization. These two

orthogonalization strategies are employed as an alternative to total reorthogonalization

for preserving the orthogonality of the Lanczos vectors.

5. Integrating SPARSITY Into BLZPACK

SPARSITY5 [7] is a toolkit for generating optimized sparse matrix-vector multiplication

routines, developed by Eun-Jin Im and Katherine Yelick. SPARSITY employs register

blocking, which reorganizes the data structure representing the matrix by identifying

small blocks of nonzero elements and storing these blocks contiguously. Further

optimization is made possible generating code that unrolls across multiple vectors, so that

the operation becomes more similar to a matrix-matrix multiplication, where one matrix

is sparse and the other is dense. The result of unrolling is often a speedup significant

enough that the time for (A * k vectors) is much lower than k times the time for (A * a

single vector). SPARSITY examines a given matrix, and depending on the architecture,

generates a suitable routine. Ongoing research examines the effects of taking into

account symmetry when generating code. For the purposes of my project, I will refer to a

particular SPARSITY-generated routine as a “rxcxv (symmetric or non-symmetric)

implementation”, where rxc is the block size by which the matrix is blocked, and v is the

number of right-hand-sides (vectors) to unroll across. This project was completed on an

UltraSPARC processor with a clock rate of 333 MHz, using f77 to compile BLZPACK

and cc to compile the BLZPACK driver as well as SPARSITY-generated routines.

To use BLZPACK, I wrote a driver in C which calls the BLZDRD routine, and between

calls computes V := A*U using a SPARSITY-generated routine. The particular routine is

determined beforehand according to the matrix A and the block size of the block Lanczos

algorithm. Optimal implementations given the number of right-hand-sides were provided

to me by Rich Vuduc and Benjamin Lee. For the matrices, I ran the block Lanczos

algorithm with NREIG = 1, 10, and 50, and with NVBSET = 1 to 9. The goal was to find

an example where a block size of greater than 1 gave a better performance than using a

block size of 1 (which is the single-vector algorithm). To see any improved performance,

the speedup from using a multiple-vector matrix-vector-multiply routine over a single-

vector routine must at least outweigh the increase in the number of matrix-vector

operations required by the algorithm. Furthermore, that speedup should also dominate

5 The information on SPARSITY was taken from Eun-Jin’s Ph.D. thesis [5].

increases in other operations required by the block Lanczos algorithm, such as vector

generation and reorthogonalization.

The remainder of this report deals with the data given by BLZPACK, and the results

drawn from it.

6. Nasasrb Matrix

Nasasrb [6] is the matrix on which I performed the most extensive tests. It has dimension

54870, with 2677324 nonzeros, a density of 0.09%. It is used in shuttle rocket booster

applications. I ran it through BLZPACK with 1, 10, and 50 required eigenpairs, with

block sizes ranging from NVBSET = 1 to 9. The results are shown in Figures 6.1-6.3

below. The matrix-vector-multiply implementations (see the previous section on

SPARSITY for an explanation about my notation) for particular right-hand-sides are as

follows:

• 1 RHS: 3x3x1 symmetric

• 2 RHS: 3x2x2 symmetric

• 3 RHS: 2x1x3 symmetric

• 4 RHS: 2x1x4 symmetric

• 5 RHS: 3x2x5 non-symmetric

• 6 RHS: 3x2x6 non-symmetric

• 7 RHS: 2x3x7 non-symmetric

• 8 RHS: 2x1x8 non-symmetric

• 9 RHS: 2x1x9 non-symmetric

From the results, we can see that increasing the block size from 1 does reduce the time

spent doing matrix-vector operations (specifically, the A*U operation between calls to

BLZDRD), at least up to block size 4 before increasing again. Even with the increase in

the number of matrix-vector operations required to satisfy BLZPACK’s stopping

criterion based on convergence (see column labeled “# MVM Ops”), the speedup in the

implementation (see column labeled “Time per MVM”) is enough to decrease the total

time spent doing matrix-vector multiplies (see column labeled “Time for MVM Ops”).

However, we can see that for all numbers of required eigenpairs, the total execution time

(see column labeled “Total Time”) is always lowest with the single-vector case (block

size 1). Therefore, the single-vector procedure is the most time-efficient algorithm to

use. Note that overall time is not necessarily an increasing function of block size. For 1

and 10 required eigenpairs, the overall time with block size 4 is actually lower than with

block size 3. Nevertheless, it is still fastest with block size 1 in both cases.

The percentage of time spent in A*U operations is about 30-40% for small block sizes, to

10% or less for higher block sizes (see column “% Time Spent for MVM”). Examining

the data more closely reveals that the bottleneck is specifically in the reorthogonalization

(see column “Time for Reorth”). Therefore, any speedup gained by increasing block size

is dominated by the increase in reorthogonalization costs, thus accounting for the increase

in overall time. Note that there is a speedup in the time it takes per matrix-vector

multiply as we increase block size (see column “Time per MVM”); this is what we

expect from SPARSITY, that multiplying multiple vectors is faster (per vector) than

multiplying a single vector. Still, it is not enough to outweigh other costs. Aside from

matrix-vector operations and reorthogonalization, BLZPACK spends its time in vector

generation, solving the reduced problem, and computing Ritz vectors.

Consulting with Osni Marques offered two insights on possible situations where using a

block size greater than 1 might be advantageous. First, the subroutines used to perform

reorthogonalizations change when moving from 1 to multiple vectors. With a single

vector, BLAS-2 operations are used. Using a bigger block size employs BLAS-3

operations instead. It is possible that continuing to use BLAS-2 operations on multiple

vectors may change the performance. However, Osni commented that while this may

work for small matrices, it would almost surely not work for large ones. The second idea

was that while for this particular matrix (nasasrb) the single-vector procedure worked

best, there may be matrices for which the A*U operations dominate the

reorthogonalizations. (Indeed, I will show later an example of matrices where this is the

case.) Then in those cases, a block implementation would improve performance.

In the next sections, I discuss the results of running the same tests on different matrices.

However, I chose to show results for block size up to 5 since anything higher generally

did not help; in fact, calculating megaflop rates indicate that the matrix-vector-multiply

routines generated by SPARSITY usually show decreased performance with right-hand-

sides greater than 5 or 6.

Figure 6.1 nasasrb – 1 required eigenpair

Vectors
in Block

MVM
Ops

Time for
MVM Ops

Time per
MVM

Time for
Reorth Total Time

% Time
Spent for
MVM

% Time
Spent
Reorth

% Time
Spent
Other

1 84 6.40E+00 7.62E-02 5.38E+00 1.44E+01 44% 37% 18%
2 110 5.04E+00 4.58E-02 9.59E+00 2.17E+01 23% 44% 33%
3 120 5.07E+00 4.23E-02 1.34E+01 2.45E+01 21% 55% 25%
4 132 4.59E+00 3.48E-02 1.19E+01 2.36E+01 19% 50% 30%
5 150 5.97E+00 3.98E-02 1.61E+01 3.16E+01 19% 51% 30%
6 168 5.88E+00 3.50E-02 2.14E+01 4.14E+01 14% 52% 34%
7 182 6.79E+00 3.73E-02 2.28E+01 4.95E+01 14% 46% 40%
8 184 6.12E+00 3.33E-02 2.53E+01 5.33E+01 11% 47% 41%
9 234 8.49E+00 3.63E-02 2.99E+01 6.80E+01 12% 44% 44%

1 Eigenpair, MVM Time

0.00E+00

1.00E+00

2.00E+00

3.00E+00

4.00E+00

5.00E+00

6.00E+00

7.00E+00

8.00E+00

9.00E+00

0 2 4 6 8

Block Size

Se
co

nd
s

10

1 Eigenpair, Total Time

0.00E+00

1.00E+01

2.00E+01

3.00E+01

4.00E+01

5.00E+01

6.00E+01

7.00E+01

8.00E+01

0 2 4 6 8

Block Size

Se
co

nd
s

10

Figure 6.2 nasasrb – 10 required eigenpairs

Vectors
in Block

MVM
Ops

Time for
MVM Ops

Time per
MVM

Time for
Reorth Total Time

% Time
Spent for
MVM

% Time
Spent
Reorth

% Time
Spent
Other

1 90 6.84E+00 7.60E-02 6.23E+00 1.62E+01 42% 38% 19%
2 110 5.04E+00 4.58E-02 1.16E+01 2.17E+01 23% 53% 23%
3 135 5.68E+00 4.21E-02 1.65E+01 2.97E+01 19% 56% 25%
4 148 5.14E+00 3.47E-02 1.49E+01 2.86E+01 18% 52% 30%
5 170 6.75E+00 3.97E-02 2.07E+01 4.09E+01 17% 51% 33%
6 180 6.31E+00 3.51E-02 2.17E+01 4.50E+01 14% 48% 38%
7 182 6.81E+00 3.74E-02 2.29E+01 4.94E+01 14% 46% 40%
8 232 7.69E+00 3.31E-02 3.07E+01 6.84E+01 11% 45% 44%
9 270 9.83E+00 3.64E-02 3.44E+01 7.79E+01 13% 44% 43%

10 Eigenpairs, MVM Time

0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

1.00E+01

1.20E+01

0 2 4 6 8 10

Block Size

Se
co

nd
s

10 Eigenpairs, Total Time

0.00E+00

1.00E+01

2.00E+01

3.00E+01

4.00E+01

5.00E+01

6.00E+01

7.00E+01

8.00E+01

9.00E+01

0 2 4 6 8 10

Block Size

Se
co

nd
s

Figure 6.3 nasasrb – 50 required eigenpairs

Vectors
in Block

MVM
Ops

Time for
MVM Ops

Time per
MVM

Time for
Reorth Total Time

% Time
Spent for
MVM

% Time
Spent
Reorth

% Time
Spent
Other

1 151 1.14E+01 7.55E-02 1.90E+01 3.73E+01 31% 51% 18%
2 170 7.80E+00 4.59E-02 2.96E+01 4.78E+01 16% 62% 22%
3 201 8.46E+00 4.21E-02 1.09E+01 5.64E+01 15% 55% 30%
4 344 1.19E+01 3.46E-02 4.98E+01 8.79E+01 14% 57% 30%
5 390 1.54E+01 3.95E-02 6.13E+01 1.15E+02 13% 53% 33%
6 612 2.14E+01 3.50E-02 1.05E+02 1.90E+02 11% 55% 33%
7 651 2.44E+01 3.75E-02 1.16E+02 2.21E+02 11% 52% 36%
8 848 2.82E+01 3.33E-02 1.64E+02 3.08E+02 9% 53% 38%
9 882 3.21E+01 3.64E-02 1.77E+02 3.39E+02 9% 52% 38%

50 Eigenpairs, MVM Time

0.00E+00

5.00E+00

1.00E+01

1.50E+01

2.00E+01

2.50E+01

3.00E+01

3.50E+01

0 2 4 6 8 10

Block Size

Se
co

nd
s

50 Eigenpairs, Total Time

0.00E+00

5.00E+01

1.00E+02

1.50E+02

2.00E+02

2.50E+02

3.00E+02

3.50E+02

4.00E+02

0 2 4 6 8 10

Block Size

Se
co

nd
s

7. Bcsstk, Crystk, and Vibrobox Matrices

The bcsstk [6] matrix, used in an automobile frame application, has dimension 30237 and

1450163 nonzeros, a density of 0.16%. As before, the single-vector procedure is optimal

for all numbers of required eigenvalues, even though execution time does not necessarily

increase with block size. The matrix-vector-multiply implementations used are as

follows:

• 1 RHS: 3x3x1 symmetric

• 2 RHS: 3x2x2 symmetric

• 3 RHS: 3x1x3 symmetric

• 4 RHS: 2x1x4 symmetric

• 5 RHS: 3x2x5 non-symmetric

The crystk [6] matrix is used for crystal free vibration applications. It has dimension

24696 and 1751178 nonzeros, a density of 0.29%. The single-vector procedure is

optimal. The matrix-vector-multiply implementations are:

• 1 RHS: 3x3x1 symmetric

• 2 RHS: 3x2x2 symmetric

• 3 RHS: 3x1x3 symmetric

• 4 RHS: 2x1x4 symmetric

• 5 RHS: 3x1x5 non-symmetric

The vibrobox [6] matrix is used for the structure of the vibroacoustic problem. It has

dimension 12328 with 34828 nonzeros, a density of 0.23%. Once again, the single-

vector procedure is optimal. Blocking of this matrix was not helpful in optimizing

matrix-vector-multiply routines, so the 1x1xv (with v equal to the block size for the

Lanczos algorithm) routine, using the symmetric version for block sizes 1 to 4 and non-

symmetric for block size 5.

Figure 7.1 bcsstk – 1 required eigenpair

Vectors
in Block

MVM
Ops

Time for
MVM Ops

Time per
MVM

Time for
Reorth Total Time

%
MVM

%
Reorth

%
Other

1 16 6.24E-01 3.90E-02 1.59E-01 1.30E+00 48% 12% 40%
2 28 7.17E-01 2.56E-02 6.51E-01 2.22E+00 32% 29% 38%
3 36 7.89E-01 2.19E-02 1.13E+00 3.10E+00 25% 36% 38%
4 44 7.99E-01 1.82E-02 1.23E+00 3.52E+00 23% 35% 42%
5 55 1.16E+00 2.11E-02 1.94E+00 5.08E+00 23% 38% 39%

1 Eigenpair, MVM Time

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

1.40E+00

0 1 2 3 4 5 6

Block Size

Se
co

nd
s

1 Eigenpair, Total Time

0.00E+00

1.00E+00

2.00E+00

3.00E+00

4.00E+00

5.00E+00

6.00E+00

0 1 2 3 4 5 6

Block Size

Se
co

nd
s

Figure 7.2 bcsstk – 10 required eigenpairs

Vectors
in Block

MVM
Ops

Time for
MVM Ops

Time per
MVM

Time for
Reorth Total Time

%
MVM

%
Reorth

%
Other

1 45 1.79E+00 3.98E-02 1.34E+00 4.06E+00 44% 33% 23%
2 58 1.51E+00 2.60E-02 2.69E+00 5.69E+00 27% 47% 26%
3 72 1.57E+00 2.18E-02 3.86E+00 7.53E+00 21% 51% 28%
4 80 1.45E+00 1.81E-02 3.30E+00 7.28E+00 20% 45% 35%
5 100 2.12E+00 2.12E-02 5.18E+00 1.08E+01 20% 48% 32%

10 Eigenpairs, MVM Time

0.00E+00

5.00E-01

1.00E+00

1.50E+00

2.00E+00

2.50E+00

0 1 2 3 4 5

Block Size

Se
co

nd
s

6

10 Eigenpairs, Total Time

0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

1.00E+01

1.20E+01

0 1 2 3 4 5

Block Size

Se
co

nd
s

6

Figure 7.3 bcsstk – 50 required eigenpairs

Vectors
in Block

MVM
Ops

Time for
MVM Ops

Time per
MVM

Time for
Reorth Total Time

%
MVM

%
Reorth

%
Other

1 150 5.99E+00 3.99E-02 1.68E+01 2.66E+01 23% 63% 14%
2 172 4.45E+00 2.59E-02 2.17E+01 3.16E+01 14% 69% 17%
3 324 7.12E+00 2.20E-02 3.87E+01 5.68E+01 13% 68% 19%
4 356 6.41E+00 1.80E-02 3.12E+01 5.02E+01 13% 62% 25%
5 420 8.86E+00 2.11E-02 3.69E+01 6.23E+01 14% 59% 27%

50 Eigenpairs, MVM Time

0.00E+00

1.00E+00

2.00E+00

3.00E+00

4.00E+00

5.00E+00

6.00E+00

7.00E+00

8.00E+00

9.00E+00

1.00E+01

0 1 2 3 4 5

Block Size

Se
co

nd
s

6

50 Eigenpairs, Total Time

0.00E+00

1.00E+01

2.00E+01

3.00E+01

4.00E+01

5.00E+01

6.00E+01

7.00E+01

0 1 2 3 4 5

Block Size

Se
co

nd
s

6

Figure 7.4 crystk – 1 required eigenpair
Vectors
in
Block

MVM
Ops

Time for
MVM
Ops

Time per
MVM

Time for
Reorth Total Time

%
MVM

%
Reorth

%
Other

1 45 2.00E+00 4.44E-02 5.79E-01 3.27E+00 61% 18% 21%
2 96 2.71E+00 2.82E-02 2.97E+00 7.31E+00 37% 41% 22%
3 99 2.41E+00 2.43E-02 3.26E+00 7.63E+00 32% 43% 26%
4 108 2.41E+00 2.23E-02 2.66E+00 7.30E+00 33% 36% 31%
5 130 3.07E+00 2.36E-02 4.07E+00 1.03E+01 30% 40% 31%

1 Eigenpair, MVM Time

0.00E+00

5.00E-01

1.00E+00

1.50E+00

2.00E+00

2.50E+00

3.00E+00

3.50E+00

0 1 2 3 4 5

Block Size

Se
co

nd
s

6

1 Eigenpair, Total Time

0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

1.00E+01

1.20E+01

0 1 2 3 4 5

Block Size

Se
co

nd
s

6

Figure 7.5 crystk – 10 required eigenpairs
Vectors
in
Block

MVM
Ops

Time for
MVM
Ops

Time per
MVM

Time for
Reorth Total Time

%
MVM

%
Reorth

%
Other

1 94 4.18E+00 4.45E-02 2.36E+00 7.86E+00 53% 30% 17%
2 132 3.74E+00 2.83E-02 5.33E+00 1.15E+01 33% 46% 21%
3 171 4.15E+00 2.43E-02 8.48E+00 1.64E+01 25% 52% 23%
4 156 3.52E+00 2.26E-02 4.91E+00 1.20E+01 29% 41% 30%
5 220 5.22E+00 2.37E-02 7.44E+00 1.85E+01 28% 40% 32%

10 Eigenpairs, MVM Time

0.00E+00

1.00E+00

2.00E+00

3.00E+00

4.00E+00

5.00E+00

6.00E+00

0 1 2 3 4 5

Block Size

Se
co

nd
s

6

10 Eigenpairs, Total Time

0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

1.00E+01

1.20E+01

1.40E+01

1.60E+01

1.80E+01

2.00E+01

0 1 2 3 4 5

Bock Size

Se
co

nd
s

6

Figure 7.6 crystk – 50 required eigenpairs

Vectors
in Block

MVM
Ops

Time for
MVM Ops

Time per
MVM

Time for
Reorth Total Time

%
MVM

%
Reorth

%
Other

1 301 1.35E+01 4.49E-02 2.13E+01 4.02E+01 34% 53% 13%
2 714 2.04E+01 2.86E-02 6.93E+01 1.04E+02 20% 67% 14%
3 1383 3.37E+01 2.44E-02 1.33E+02 1.98E+02 17% 67% 16%
4 1192 2.67E+01 2.24E-02 9.65E+01 1.51E+02 18% 64% 18%
5 1260 2.97E+01 2.36E-02 1.03E+02 1.67E+02 18% 62% 21%

50 Eigenpairs, MVM Time

0.00E+00

5.00E+00

1.00E+01

1.50E+01

2.00E+01

2.50E+01

3.00E+01

3.50E+01

4.00E+01

0 1 2 3 4 5 6

Block Size

Se
co

nd
s

50 Eigenpairs, Total Time

0.00E+00

5.00E+01

1.00E+02

1.50E+02

2.00E+02

2.50E+02

0 1 2 3 4 5 6

Block Size

Se
co

nd
s

Figure 7.7 vibrobox – 1 required eigenpair

Vectors
in Block

MVM
Ops

Time for
MVM Ops

Time per
MVM

Time for
Reorth Total Time

%
MVM

%
Reorth

%
Other

1 53 8.76E-01 1.65E-02 3.58E-01 1.62E+00 54% 22% 24%
2 108 1.07E+00 9.91E-03 1.65E+00 3.70E+00 29% 45% 26%
3 153 1.29E+00 8.43E-03 3.31E+00 6.41E+00 20% 52% 28%
4 156 1.13E+00 7.24E-03 2.18E+00 5.27E+00 21% 41% 37%
5 240 1.94E+00 8.08E-03 3.96E+00 9.21E+00 21% 43% 36%

1 Eigenpair, MVM Time

0.00E+00

5.00E-01

1.00E+00

1.50E+00

2.00E+00

2.50E+00

0 1 2 3 4 5

Block Size

Se
co

nd
s

6

1 Eigenpair, Total Time

0.00E+00

1.00E+00

2.00E+00

3.00E+00

4.00E+00

5.00E+00

6.00E+00

7.00E+00

8.00E+00

9.00E+00

1.00E+01

0 1 2 3 4 5

Block Size

Se
co

nd
s

6

Figure 7.8 vibrobox – 10 required eigenpairs

Vectors
in Block

MVM
Ops

Time for
MVM Ops

Time per
MVM

Time for
Reorth Total Time

%
MVM

%
Reorth

%
Other

1 123 2.13E+00 1.73E-02 1.83E+00 4.92E+00 43% 37% 20%
2 156 1.66E+00 1.06E-02 3.33E+00 6.74E+00 25% 49% 26%
3 180 1.55E+00 8.61E-03 4.10E+00 8.04E+00 19% 51% 30%
4 260 1.95E+00 7.50E-03 3.60E+00 8.90E+00 22% 40% 38%
5 300 2.37E+00 7.90E-03 4.93E+00 1.14E+01 21% 43% 36%

10 Eigenpairs, MVM Time

0.00E+00

5.00E-01

1.00E+00

1.50E+00

2.00E+00

2.50E+00

0 1 2 3 4 5 6

Block Size

Se
co

nd
s

10 Eigenpairs, Total Time

0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

1.00E+01

1.20E+01

0 1 2 3 4 5 6

Block Size

Se
co

nd
s

Figure 7.9 vibrobox – 50 required eigenpairs

Vectors
in Block

MVM
Ops

Time for
MVM Ops

Time per
MVM

Time for
Reorth Total Time

%
MVM

%
Reorth

%
Other

1 336 5.64E+00 1.68E-02 7.68E+00 1.66E+01 34% 46% 20%
2 900 9.86E+00 1.10E-02 2.44E+01 4.45E+01 22% 55% 23%
3 2094 1.90E+01 9.07E-03 6.30E+01 1.09E+02 17% 58% 25%
4 1748 1.43E+01 8.18E-03 3.67E+01 7.47E+01 19% 49% 32%
5 2410 1.87E+01 7.76E-03 5.78E+01 1.14E+02 16% 51% 33%

50 Eigenpairs, MVM Time

0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

1.00E+01

1.20E+01

1.40E+01

1.60E+01

1.80E+01

2.00E+01

0 1 2 3 4 5 6

Block Size

Se
co

nd
s

50 Eigenpairs, Total Time

0.00E+00

2.00E+01

4.00E+01

6.00E+01

8.00E+01

1.00E+02

1.20E+02

0 1 2 3 4 5 6

Block Size

Se
co

nd
s

8. Protein Matrices

The tests run on the previous matrices were repeated on two more, both used in protein

applications. The smaller one, pdb1FXK, has dimension 8070 and 1088905 nonzeros, a

density of 1.67%. The larger of the two protein matrices, pdb1TUP, gave more

interesting results. It has dimension 16323 and 2028247 nonzeros, a density of 7.61%.

Blocking these matrices did not help, so the 1x1xv implementation was used for v

=1,...,5, all with the symmetric version.

As indicated by Figures 8.1-8.3, for the FXK protein matrix, the single-vector procedure

was optimal. From Figures 8.4 and 8.5, we can see that this is the case for the TUP

matrix as well, when we require 1 or 10 eigenpairs. However, Figure 8.6 shows that

when we require 50 eigenpairs, using a block size of 2, 3, 4, or 5 performs better than the

single-vector procedure, with 2 being the optimal.

Note that for both matrices, the time spent performing A*U operations is around 80-90%

of the total execution time for a block size of 1, and around 50-60% for higher block

sizes. In contrast to previous matrices, the algorithm is always spending more than half

the total time on A*U operations. In particular, reorthogonalization costs no longer

dominate matrix-vector operation costs. In accordance with Osni Marques’ suggestion

mentioned earlier, we begin to see improved performance with increased block size when

matrix-vector operations dominate the algorithm.

Figure 8.1 pdb1FXK – 1 required eigenpair

Vectors
in Block

MVM
Ops

Time for
MVM Ops

Time per
MVM

Time for
Reorth Total Time

%
MVM

%
Reorth

%
Other

1 82 8.12E+00 9.90E-02 4.70E-01 8.98E+00 90% 5% 4%
2 144 8.37E+00 5.81E-02 1.61E+00 1.11E+01 75% 15% 10%
3 180 8.16E+00 4.53E-02 2.14E+00 1.22E+01 67% 19% 14%
4 220 7.42E+00 3.37E-02 1.70E+00 1.12E+01 66% 15% 19%
5 320 1.04E+01 3.25E-02 2.61E+00 1.61E+01 65% 16% 19%

1 Eigenpair, MVM Time

0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

1.00E+01

1.20E+01

0 1 2 3 4 5 6

Block Size

Se
co

nd
s

1 Eigenpair, Total Time

0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

1.00E+01

1.20E+01

1.40E+01

1.60E+01

1.80E+01

0 1 2 3 4 5 6

Block Size

Se
co

nd
s

Figure 8.2 pdb1FXK – 10 required eigenpairs

Vectors
in Block

MVM
Ops

Time for
MVM Ops

Time per
MVM

Time for
Reorth Total Time

%
MVM

%
Reorth

%
Other

1 162 1.60E+01 9.88E-02 1.81E+00 1.89E+01 85% 10% 6%
2 442 2.56E+01 5.79E-02 4.00E+00 3.47E+01 74% 16% 11%
3 609 2.73E+01 4.48E-02 8.92E+00 4.21E+01 65% 21% 14%
4 684 2.30E+01 3.36E-02 6.54E+00 3.61E+01 64% 18% 18%
5 675 2.27E+01 3.36E-02 6.90E+00 3.66E+01 62% 19% 19%

10 Eigenpairs, MVM Time

0.00E+00

5.00E+00

1.00E+01

1.50E+01

2.00E+01

2.50E+01

3.00E+01

0 1 2 3 4 5 6

Block Size

Se
co

nd
s

10 Eigenpairs, Total Time

0.00E+00

5.00E+00

1.00E+01

1.50E+01

2.00E+01

2.50E+01

3.00E+01

3.50E+01

4.00E+01

4.50E+01

0 1 2 3 4 5 6

Block Size

Se
co

nd
s

Figure 8.3 pdb1FXK – 50 required eigenpairs

Vectors
in Block

MVM
Ops

Time for
MVM Ops

Time per
MVM

Time for
Reorth Total Time

%
MVM

%
Reorth

%
Other

1 1468 1.45E+02 9.88E-02 2.91E+01 1.85E+02 78% 16% 6%
2 2340 1.36E+02 5.81E-02 3.95E+01 1.96E+02 69% 20% 10%
3 2880 1.30E+02 4.51E-02 5.87E+01 2.18E+02 60% 27% 13%
4 3396 1.15E+02 3.39E-02 5.84E+01 2.07E+02 56% 28% 16%
5 4335 1.46E+02 3.37E-02 7.40E+01 2.67E+02 55% 28% 18%

50 Eigenpairs, MVM Time

0.00E+00

2.00E+01

4.00E+01

6.00E+01

8.00E+01

1.00E+02

1.20E+02

1.40E+02

1.60E+02

0 1 2 3 4 5 6

Block Size

Se
co

nd
s

50 Eigenpairs, Total Time

0.00E+00

5.00E+01

1.00E+02

1.50E+02

2.00E+02

2.50E+02

3.00E+02

0 1 2 3 4 5 6

Block Size

Se
co

nd
s

Figure 8.4 pdb1TUP – 1 required eigenpair

Vectors
in Block

MVM
Ops

Time for
MVM Ops

Time per
MVM

Time for
Reorth Total Time

%
MVM

%
Reorth

%
Other

1 54 1.03E+01 1.91E-01 4.92E-01 1.14E+01 90% 4% 5%
2 88 1.03E+01 1.17E-01 1.55E+00 1.29E+01 80% 12% 8%
3 132 1.22E+01 9.24E-02 3.09E+00 1.73E+01 71% 18% 12%
4 156 1.04E+01 6.67E-02 2.97E+00 1.58E+01 66% 19% 15%
5 180 1.13E+01 6.28E-02 3.72E+00 1.83E+01 62% 20% 18%

1 Eigenpair, MVM Time

1.00E+01

1.05E+01

1.10E+01

1.15E+01

1.20E+01

1.25E+01

0 1 2 3 4 5 6

Block Size

Se
co

nd
s

1 Eigenpair, Total Time

0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

1.00E+01

1.20E+01

1.40E+01

1.60E+01

1.80E+01

2.00E+01

0 1 2 3 4 5

Block Size

Se
co

nd
s

6

Figure 8.5 pdb1TUP – 10 required eigenpairs

Vectors
in Block

MVM
Ops

Time for
MVM Ops

Time per
MVM

Time for
Reorth Total Time

%
MVM

%
Reorth

%
Other

1 152 2.91E+01 1.91E-01 3.74E+00 3.45E+01 84% 11% 5%
2 242 2.80E+01 1.16E-01 6.13E+00 3.76E+01 74% 16% 9%
3 486 4.56E+01 9.38E-02 1.49E+00 6.83E+01 67% 22% 11%
4 528 3.52E+01 6.67E-02 1.25E+00 5.66E+01 62% 22% 16%
5 670 4.24E+01 6.33E-02 1.66E+00 7.15E+01 59% 23% 17%

10 Eigenpairs, MVM Time

0.00E+00

5.00E+00

1.00E+01

1.50E+01

2.00E+01

2.50E+01

3.00E+01

3.50E+01

4.00E+01

4.50E+01

5.00E+01

0 1 2 3 4 5

Block Size

Se
co

nd
s

6

10 Eigenpairs, Total Time

0.00E+00

1.00E+01

2.00E+01

3.00E+01

4.00E+01

5.00E+01

6.00E+01

7.00E+01

8.00E+01

0 1 2 3 4 5

Block Size

Se
co

nd
s

6

Figure 8.6 pdb1TUP – 50 required eigenpairs

Vectors
in Block

MVM
Ops

Time for
MVM Ops

Time per
MVM

Time for
Reorth Total Time

%
MVM

%
Reorth

%
Other

1 3122 5.98E+02 1.92E-01 1.14E+02 7.47E+02 80% 15% 5%
2 2898 3.36E+02 1.16E-01 1.19E+02 4.97E+02 68% 24% 8%
3 4494 4.21E+02 9.37E-02 2.02E+02 6.98E+02 60% 29% 11%
4 5336 3.59E+02 6.73E-02 2.00E+02 6.50E+02 55% 31% 14%
5 5390 3.45E+02 6.40E-02 2.10E+02 6.59E+02 52% 32% 16%

50 Eigenpairs, MVM Time

0.00E+00

1.00E+02

2.00E+02

3.00E+02

4.00E+02

5.00E+02

6.00E+02

7.00E+02

0 1 2 3 4 5 6

Block Size

Se
co

nd
s

50 Eigenpairs, Total Time

0.00E+00

1.00E+02

2.00E+02

3.00E+02

4.00E+02

5.00E+02

6.00E+02

7.00E+02

8.00E+02

0 1 2 3 4 5 6

Block Size

Se
co

nd
s

9. Conclusion

Figure 9.1 Comparing all the matrices

Matrix
Required
Eigenpairs % MVM* % Reorth* % Other*

Increase in
Overall Time**

nasasrb 1 44.44% 37.36% 18.19% 50.69%
density: 10 42.22% 38.46% 19.32% 33.95%

0.09% 50 30.56% 50.94% 18.50% 28.15%

bcsstk 1 48.00% 12.23% 39.77% 70.77%
density: 10 44.09% 33.00% 22.91% 40.15%

0.16% 50 22.52% 63.16% 14.32% 18.80%

crystk 1 61.16% 17.71% 21.13% 123.24%
density: 10 53.18% 30.03% 16.79% 46.31%

0.29% 50 33.58% 52.99% 14.43% 158.71%

vibrobox 1 54.07% 22.10% 23.83% 128.40%
density: 10 43.29% 37.20% 19.51% 37.00%

0.23% 50 33.98% 46.27% 19.76% 168.07%

pdb1FXK 1 90.42% 5.23% 4.34% 23.61%
density: 10 84.66% 9.58% 5.77% 83.60%

1.67% 50 78.38% 15.73% 5.89% 5.95%

pdb1TUP 1 90.35% 4.32% 5.33% 13.16%
density: 10 84.35% 10.84% 4.81% 8.99%

7.61% 50 80.05% 15.26% 4.69% -33.47%
* Percentage of total execution time spent in the indicated operation, for block size = 1.

** Increase in execution time when changing from block size 1 to the next best block

size. In all cases it is 2, except for crystk, 1 required eigenpair, where it is 4. A negative

amount indicates speedup.

Figure 9.1 puts some of the statistics of all the matrices together. No patterns seem

immediately obvious. One thing to note is that the only speedup comes with the matrix

that is most dense (i.e. pdb1TUP). Furthermore, the number of required eigenpairs has a

significant effect on the difference in performance between block sizes 1 and 2. Finally,

as noted before, the matrices in which the increases in overall time are generally the

lowest are those whose time spent in matrix-vector-multiply operations is greatest

relative to total time (although there is an exception for pdb1FXK, 10 required

eigenpairs). However, not much can be said for those that spend less than half the total

time on A*U operations; the behavior varies greatly between matrices.

One question that may warrant further exploration is the behavior of the algorithm with

respect to total number of matrix-vector multiplies are required before termination. In the

tables shown in the previous sections, I have indicated the number of such operations.

When increasing the block size, this number changes unpredictably, even when restricted

to a single matrix and varying the number of required eigenpairs. In fact, the number of

matrix-vector multiplies can more than double (vibrobox, 50 required eigenpairs), or stay

relatively the same (bcsstk, 50 required eigenpairs), or even decrease (pdb1TUP, 50

required eigenpairs). If there were a way to modify the criterion for termination such that

the number of matrix-vector multiplies are relatively equal (so that there is not a

significant increase in the number of operations needed), results of the algorithm running

time may be different. Figure 9.2 shows the results of taking the number of matrix-vector

multiplies in the single-vector procedure and estimating the running time of a blocked

procedure (column “New Total Time”) by multiplying the blocked algorithm’s running

time (column “Original Total Time”) by the number of matrix-vector multiplies in the

single-vector procedure (column “New # MVM”) and dividing by the number of matrix-

vector multiplies in the blocked procedure (column “Original MVM”). The block size I

use is that which gave the best performance out of the sizes greater than 1. In all cases it

is 2 except for crystk, 1 required eigenpair, where it is 4.

Figure 9.2 Performance with modified number of matrix-vector multiplies

Matrix
Req
EP

Original
MVM

New #
MVM

Original
Total Time

New Total
Time

Old
Single-
Vector
Time

Time
Difference

nasasrb 1 110 84 2.17E+01 1.66E+01 1.44E+01 -2.17E+00
10 110 90 2.17E+01 1.78E+01 1.62E+01 -1.55E+00
50 170 151 4.78E+01 4.25E+01 3.73E+01 -5.16E+00

bcsstk 1 28 16 2.22E+00 1.27E+00 1.30E+00 3.14E-02
10 58 45 5.69E+00 4.41E+00 4.06E+00 -3.55E-01
50 172 150 3.16E+01 2.76E+01 2.66E+01 -9.58E-01

crystk 1 99 45 7.30E+00 3.32E+00 3.27E+00 -4.82E-02
10 132 94 1.15E+01 8.19E+00 7.86E+00 -3.29E-01
50 714 301 1.04E+02 4.38E+01 1.30E+00 -4.25E+01

vibrobox 1 108 53 3.70E+00 1.82E+00 1.62E+00 -1.96E-01
10 156 123 6.74E+00 5.31E+00 4.92E+00 -3.94E-01
50 900 336 4.45E+01 1.66E+01 1.66E+01 -1.33E-02

pdb1FXK 1 144 82 1.11E+01 6.32E+00 8.98E+00 2.66E+00
10 442 162 3.47E+01 1.27E+01 1.89E+01 6.18E+00
50 2340 1468 1.96E+02 1.23E+02 1.85E+02 6.20E+01

pdb1TUP 1 88 54 1.29E+01 7.92E+00 1.14E+01 3.48E+00
10 242 152 3.76E+01 2.36E+01 3.45E+01 1.09E+01
50 2898 *

* No entry for this row because the single-vector procedure used more matrix-vector

multiplies than with block size 2.

For the first four matrices there is a negative time difference (i.e. the blocked algorithm is

still slower than the unblocked algorithm), with one exception. However, for bcsstk, 1

required eigenpair, and for the two protein matrices, the difference is positive. That is, if

we were to perform the same number of matrix-vector multiplies in the blocked version

as in the single-vector version of the algorithm on those matrices, we would see a

speedup in the overall running time. The time saved by using a more efficient (unrolled)

matrix-vector-multiply routine is apparently enough to outweigh the increase in other

costs in those examples.

The behavior of the block Lanczos method is not well understood. We have yet to

determine why some particular problems require such varying numbers of matrix-vector

multiplies when changing the block size. Aside from the possible optimization by

modifying the stopping criterion as just discussed, the results of this project seem to agree

with the concluding suggestions of Lanczos Algorithms [4], which state that single-vector

Lanczos procedures are cheaper, and generally recommended over, block Lanczos

procedures.

10. Bibliography

[1] Bai, Z., and Day, D. (2000). Block Lanczos Methods. Chapter 7 in [3].

http://www.cs.utk.edu/~dongarra/etemplates/node250.html SIAM, Philadelphia.

[2] Baker, A., Dennis, J., and Jessup, E. (2002). Toward Memory-Efficient Linear

Solvers. http://amath.colorado.edu/student/allisonb/cse03_slides.pdf Springer, Porto.

[3] Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., and van der Vorst, H. (2000). Templates

for the Solution of Algebraic Eigenvalue Problems: A Practical Guide.

http://www.cs.utk.edu/~dongarra/etemplates/index.html SIAM, Philadelphia.

[4] Cullum, J., and Willoughby, R. (2002). Lanczos Algorithms for Large Symmetric

Eigenvalue Computations Vol.1: Theory. SIAM, Philadelphia.

[5] Im, E. (2000). Optimizing the Performance of Sparse Matrix-Vector Multiplication.

http://www.cs.berkeley.edu/~ejim/publication/thesis-0.ps Ph.D. Thesis, UC Berkeley.

[6] Im, E. (2002). Sparse Matrices. http://www.cs.berkeley.edu/~ejim/matrices/

[7] Im, E. and Yelick, K. (2000) SPARSITY software.

http://www.cs.berkeley.edu/~ejim/sparsity/

[8] Marques, O. (2000). BLZPACK. http://www.nersc.gov/~osni/CODES/blzpack.shar

[9] Marques, O. (1999). BLZPACK User’s Guide.

http://www.nersc.gov/~osni/CODES/blzpack.shar

[10] Ruhe, A. (2000) Lanczos Method. Chapter 5 in [3].

http://www.cs.utk.edu/~dongarra/etemplates/node103.html SIAM, Philadelphia.

http://www.cs.utk.edu/~dongarra/etemplates/node250.html
http://amath.colorado.edu/student/allisonb/cse03_slides.pdf
http://www.cs.utk.edu/~dongarra/etemplates/index.html
http://www.cs.berkeley.edu/~ejim/publication/thesis-0.ps
http://www.cs.berkeley.edu/~ejim/matrices/
http://www.cs.berkeley.edu/~ejim/sparsity/
http://www.nersc.gov/~osni/CODES/blzpack.shar
http://www.nersc.gov/~osni/CODES/blzpack.shar
http://www.cs.utk.edu/~dongarra/etemplates/node103.html

	Effects of Block Size on the Block Lanczos Algorithm

