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1.  Introduction 

 

The problem of computing eigenvalues occurs in countless physical applications.  For a 

matrix A, an eigenvalue is a scalar λ such that for some nonzero vector x, Ax = λx.  The 

vector x is called the corresponding eigenvector.  We will refer to the eigenvalue and 

eigenvector collectively as an eigenpair.  The set of all eigenvalues is called the spectrum.  

Such a problem is an example of a standard eigenvalue problem (SEP).  In different 

situations such as structural problems, we are given two matrices, a mass matrix M and a 

stiffness matrix K.  Then an eigenvalue is a scalar λ such that Kx = λMx.  This type of 

problem is known as a generalized eigenvalue problem (GEP).  In my experiments I deal 

with large, sparse real symmetric matrices.  Real symmetric matrices have applications in 

clustering analysis (power systems), physics (arrangements of atoms in a disordered 

material), chemistry (calculation of bond energies in molecules), and much more.  The 

matrices I work with are of dimension ranging from 8070 to 54870. 

 

For different eigenproblems, there are many possible algorithms to choose from when 

deciding how to approach solving for eigenvalues.  Templates for the Solution of 

Algebraic Eigenvalue Problems [3] classifies eigenproblems by three characteristics.  

The first is the mathematical properties of the matrix being examined.  This includes 

whether the matrix is Hermitian (or real symmetric), and whether it is a standard or 

generalized problem.  The second characteristic to consider is the desired spectral 

properties of the problem.  This includes the required accuracy of the eigenvalues, 

whether we want the associated eigenvectors, and which and how many of the 

eigenvalues from the spectrum of the matrix we desire.  The third characteristic is the 

available operations and their costs.  Implementation of a specific algorithm may depend 

on a particular data structure and the cost of operations on such a structure; restrictions on 

how data is represented may restrict the options of available algorithms. 

 

Depending on the properties of the problem we are solving, Templates [3] provides a 

recommended algorithm to find eigenvalues.  Classes of algorithms include direct 

methods, Jacobi-Davidson methods, and Arnoldi methods.  My research will examine a 



particular variant of the Lanczos method, namely the block Lanczos method.  BLZPACK 

[8] (Block Lanczos Package) is a Fortran 77 implementation of the block Lanczos 

algorithm, written by Osni Marques.  My project consists of integrating BLZPACK with 

SPARSITY [7], a toolkit that generates efficient matrix-vector multiplication routines for 

matrices stored in a sparse format.  I will give a description of SPARSITY as well as 

BLZPACK and its interface in later sections.  BLZPACK is capable of solving both the 

standard and the generalized eigenvalue problems; however, my research focuses on the 

standard problem. 

 

The purpose of this project in particular is to examine the effects of changing the block 

size (explained later) when applying the block Lanczos algorithm.  My goal is to decrease 

the overall execution time of the algorithm by increasing the block size.  This involves 

observing the time spent in different sections of the algorithm, as well as carefully 

choosing optimal matrix subroutines.  This work complements that of the BEBOP group 

at Berkeley, whose interests include software performance tuning.  In particular, BEBOP 

explores SPARSITY performance in great detail.  The relevance to BLZPACK lies in 

matrix-vector multiplication unrolled across multiple vectors.  Depending on the matrix, 

the time spent for the operation A*[x1,...,xk] (i.e. a matrix A times k vectors) may be 

much less than k times the time spent on Ax (i.e. a matrix A times a vector, done k 

times).  BLZPACK can be used with A*[ x1,...,xk] for any k (known as block size); my 

work explores whether we can accelerate eigenvalue computation by using block size 

greater than 1.  The work performed by BLZPACK depends in a complicated fashion on 

the matrix, block size, number of desired eigenvalues, and other parameters; hence the 

answer to that question is not immediately obvious.  As I will show, there are cases when 

using a block size of 1 performs best, and also cases where a greater block size is better. 

 

A related problem of using a blocked procedure for solving linear systems of equations 

prompted the question of the usefulness of the analogous problem of computing 

eigenvalues.  GMRES [2] is a method for solving Ax = b, where A is large, sparse, and 

non-symmetric.  A blocked version LGMRES instead solves AX = B, incorporating fast 



matrix-multivector-multiply routines.  BLZPACK uses a similar approach involving 

Krylov subspaces, which will be explained in greater detail in Section 2. 

 

The first part of this report deals with the tools I work with: the Lanczos method (with a 

description of the algorithm), BLZPACK, and SPARSITY.  The second part is a 

collection of the data gathered from my experiments and the results and conclusions 

drawn from them. 



2.  Single-Vector Lanczos Method 

 

The class of Lanczos methods refers to procedures for solving for eigenvalues by relying 

on Lanczos recursion.  Lanczos recursion (or tridiagonalization) was introduced by 

Cornelius Lanczos in 1950.  In this section I will describe the algorithm for the single-

vector Lanczos method1. 

 

The simplest Lanczos method uses single-vector Lanczos recursion.  Given a real 

symmetric (square) matrix A of dimension n and an initial unit vector v1 (usually 

generated randomly), for j = 1,2,…,m the Lanczos matrices Tj are defined recursively as 

follows: 

Let z := Avi

αi := vi
Tz 

z := z - αivi - βi-1vi-1

βi := ||z||2

vi+1 := z/βi

 

The Lanczos matrix Tj is defined to be the real symmetric, tridiagonal matrix with 

diagonal entries αi for i = 1,2,...,j and subdiagonal and superdiagonal entries βi for i = 

1,2,...,j. 

 

The vectors αivi and βivi-1 are the orthogonal projections of the vector Avi onto vi and vi-1 

respectively.  For each i, the Lanczos vector vi+1 is determined by orthogonalizing Avi 

with respect to vi and vi-1.  The Lanczos matrices are determined by the scalar coefficients 

αi and βi+1 obtained in these orthogonalizations. 

 

In all Lanczos methods, solving for an eigenvalue of a matrix A is simplified by replacing 

A with one or more of the Lanczos matrices Tj’s.  Real symmetric tridiagonal matrices 

                                                 
1 The details here are a summary of more complete explanations from Chapter 2 of Lanczos Algorithms for 
Large Symmetric Eigenvalue Computations [4]. 



have small storage requirements and algorithms for their eigenpair computations are 

efficient [4]. 

 

The basic Lanczos procedure follows these steps: 

1. Given a real symmetric matrix A, construct (using Lanczos recursion) a family of 

real symmetric tridiagonal matrices Tj for j = 1,2,...,M. 

2. For some m ≤ M compute the relevant eigenvalues of the Lanczos matrix Tm.  

(Relevance refers to which eigenvalues from the spectrum are desired, e.g. the 

eigenvalue with highest absolute value.) 

3. Select some or all of these eigenvalues as approximations to eigenvalues of the 

given matrix A. 

4. For each eigenvalue µ of A for which an eigenvector is required, compute a unit 

eigenvector u such that Tmu = µu.  Map u into a vector y ≡ Vmu (where Vm is the 

matrix whose kth
 column is the kth Lanczos vector), which is used as an 

approximation to an eigenvector of A.  Such a vector y is known as a Ritz vector; 

eigenvalues of Lanczos matrices are called Ritz values of A. 

 

In the Lanczos recursion formulas, the original matrix A is used only for the product Avi; 

hence it is never modified.  For large sparse matrices, this enables storage optimizations, 

since a user only needs a subroutine which computes Ax for any vector x, which can be 

done in space linear in the dimension of the matrix.  Furthermore, the number of 

arithmetic operations required to generate a Lanczos matrix is proportional to the number 

of nonzero entries of A, as opposed to O(n3) (where n is the size of A) for procedures 

which completely transform A into a real symmetric tridiagonal matrix by performing an 

orthogonal similarity transformation. 

 

That the Lanczos matrices possess eigenvalues that can reasonably approximate those of 

A is not immediately clear.  The key facts (which I state without proof2) are that the 

Lanczos vectors form an orthonormal set of vectors, and that the eigenvalues of the 

Lanczos matrices are the eigenvalues of A restricted to the family of subspaces Kj ≡ 
                                                 
2 The proof is in Chapter 2 of Lanczos Algorithms [4]. 



sp{v1,Av1,A2v1,...,Aj-1v1}, known as Krylov subspaces.  If j is sufficiently large, the 

eigenvalues of Tn should be good approximations to the eigenvalues of A.  Continuing 

the Lanczos recursion until j = n (where n is the size of A), Tn is an orthogonal similarity 

transformation of A, and therefore has the same eigenvalues as A.  A Ritz vector Vju 

obtained from an eigenvector u of a given Tj is an approximation to a corresponding 

eigenvector of A. 

 

Error analysis is given in terms of the angle between a vector and a subspace, as 

explained in Chapter 2 of Lanczos Algorithms [4].  It turns out that Krylov subspaces are 

very good subspaces on which to compute eigenpair approximations.  An important result 

is that the error bound increases as we proceed into the spectrum; that is, extreme 

eigenvalues and corresponding eigenvectors have higher expected accuracy than 

eigenvalues in the interior of the spectrum.  (Depending on the particular implementation, 

however, this may not be the case.)  For this reason the basic Lanczos method is often a 

good algorithm to use when we desire a few extreme eigenvalues. 

 

The above description of the Lanczos algorithm assumes exact arithmetic; in practice this 

is usually not the case.  Indeed, in computer implementations, finite precision causes 

roundoff errors at every arithmetic operation.  Computed quantities will obviously differ 

from the theoretical values.  When constructing the Lanczos matrices Tj, the Lanczos 

vectors lose their orthogonality (and even linear independence) as j increases.  The 

Lanczos matrices are no longer orthogonal projections of A onto the subspaces sp{Vj}.  

The theoretical relationship between Tj and A and error estimates are no longer 

applicable.  It was originally assumed that a total reorthogonalization of the Lanczos 

vectors was required.  There are Lanczos methods which in fact use no 

reorthogonalization and employ modified recursion formulas.  However, the variant I will 

be working with uses selective orthogonalization and modified partial 

reorthogonalization to preserve orthogonality of the Lanczos vectors, as will be described 

later. 



3.  Block Lanczos Method 

 

Many eigenvalue algorithms have variants in which blocks of vectors are used instead of 

single vectors.  When multiplying by vectors, these blocks can be considered matrices 

themselves.  As a result, instead of performing matrix-vector operations (Level 2 BLAS 

routines [5]), matrix-matrix operations (Level 3 BLAS operations [5]) are used.  This 

allows for possible optimizations in the execution of the algorithm.  I/O costs are 

decreased by essentially a factor of the block size [1]. 

 

Lanczos methods in particular benefit from a blocked algorithm variant in another way.  

Depending on the implementation, single-vector methods sometimes have difficulty 

computing the multiplicities of eigenvalues, and for a multiple eigenvalue a complete 

basis for the subspace may not be directly computed.  A block Lanczos method may be 

better for computing multiplicities and bases for invariant subspaces corresponding to 

eigenvalues. 

 

As an alternative to the recurrence relations for the single-vector variant, we use the 

following approach3.  Define matrices B1 ≡ 0 and Q0 ≡ 0.  Let Q1 be an nxq matrix whose 

columns are orthonormalized, randomly generated vectors, where n is the size of the 

original matrix A and q is the block size.  For i = 1,2,...,s define Lanczos blocks Qi 

according to the following recursive equations: 

Let Z := AQi

Ai := Qi
TZ 

Z := Z – QiAi – Qi-1Bi-1

Factor Z = Qi+1Bi by Gram-Schmidt 

The blocks Qj for j = 1,2,...,s form an orthonormal basis for the Krylov subspace 

Ks(Q1,A) ≡ sp{Q1,AQ1,...,As-1Q1} corresponding to the first block.  The Lanczos matrices 

Ts are defined as the block tridiagonal matrices with A1,A2,...,As along the diagonal, and 

B1,B2,...,Bs along the subdiagonal, and B1
T,B2

T,...,Bs
T along the superdiagonal.  

                                                 
3 The Block Lanczos algorithm described here is a summary of the steps described in Chapter 7 of Lanczos 
Algorithms [4].  The proof of its correctness is there as well; I have not restated it here. 



Analogously to the single-vector case, we approximate eigenvalues of A by computing 

eigenvalues of the Ts matrices. 

 

When A is large enough, the cost of this algorithm should be dominated by the 

multiplication AQi, which is the operation for which we have specially tuned routines to 

evaluate. 



4.  BLZPACK4

 

BLZPACK [8] (Block Lanczos Package) is a Fortran 77 implementation of the Block 

Lanczos algorithm, written by Osni Marques.  It is designed to solve both the standard 

and generalized eigenvalue problems.  I work with the standard problem, in which we 

solve for eigenvalues λ and eigenvectors x that satisfy Ax = λx, where A is a real sparse 

symmetric matrix.  There are single precision and a double precision versions; I use the 

double precision version.  The main subroutine is BLZDRD, to which the user passes 

parameters and data I will describe in this section.  The only computations involving A 

are matrix-multiple-vector multiplications done outside the BLZDRD subroutine.  In this 

way, the representation for A and the implementation of matrix operations on A are 

completely decided by the user. 

 

The BLZDRD interface expects numerous arguments; here I will briefly run through the 

parameters relevant to my project.  Many parameters are ignored because they are 

meaningless for the standard problem. 

• NI: The number of active rows of temporary arrays in the block Lanczos 

algorithm on the current process.  BLZPACK can be run in sequential or parallel 

mode; for my project only the sequential mode is relevant, so NI is set to the 

dimension of A. 

• LNI: Dimension of temporary arrays; LNI and NI have the same value in all my 

experiments. 

• NREIG: The number of desired eigenpairs.  I run my experiments with NREIG = 

1, 10, and 50.  The eigenvalues returned are those with the greatest magnitude. 

• LEIG: Dimension of the array in which to store converged eigenvalues (this may 

be greater than NREIG).  I used LEIG = (NREIG*2)+10. 

• NVBSET: The number of vectors in a block.  This is the focus of the project; we 

try to see when an increase in the block size leads to an increase in overall 

performance.  With a block size of 1, the algorithm essentially works as a single-

vector Lanczos method.  I run the algorithm with block sizes from 1 to 9. 
                                                 
4 The information in this section can be found in greater detail in the BLZPACK User’s Guide [9]. 



• NSTART: Number of starting vectors given to BLZPACK; I use 0 for this value, 

which causes BLZPACK to generate random starting vectors. 

• NGEIG: Number of eigenpairs given as input; 0 is used. 

• LISTOR/LRSTOR: Amount of workspace to allocate.  For all experiments 107 

was used for both values. 

• THRSH: The threshold for convergence.  The default value ||A||√ε is used, where 

ε is the machine precision 2.2204 x 10-16, and ||A|| is estimated by means of the 

eigenvalue distribution computed by BLZPACK.  A computed eigenpair (λ, x) is 

considered converged iff ||Ax - λx|| ≤ THRSH. 

• NSTEPS: The maximum number of steps to be performed per run.  The default 

value is used, which is determined by BLZPACK based on allocated workspace 

(see LISTOR and LRSTOR).  If not enough eigenpairs have converged after 

NSTEPS, a restart is performed, using as initial vectors some linear combination 

of the unconverged eigenvectors. 

 

The block Lanczos algorithm is implemented as follows.  Lanczos vectors are denoted by 

Qj, and Qj is defined to be the basis of Lanczos vectors, [Q1 Q2 ... Qj].  Tj is the jth 

Lanczos matrix (block tridiagonal) as described in the previous section.  At initialization, 

set Q0 = 0.  Set R0 ≠ 0 randomly and factorize R0 as Q1B1 where Q1
TQ1 is the identity.  

On the jth Lanczos step: 

1. Compute Rj = AQj 

2. Rj := Rj – Qj-1Bj
T 

3. Aj := Qj
TRj 

4. Rj := Rj - QjAj 

5. Factorize Rj as Qj+1Bj+1 where Qj+1
TQj+1 is the identity 

6. If required, orthogonalize Qj and Qj+1 against the vectors in Qj-1 

7. Insert Qj into Qj and Aj, Bj into Tj 

8. Solve the reduced problem Tj 

 

There are further steps to test convergence of the computed eigenpairs.  If after some 

number of steps (set either by the user or by default) not enough eigenpairs have 



converged, Qj and Qj+1 are orthogonalized against specific previously computed vectors; 

this is referred to as selective orthogonalization.  The process is then restarted.  The 

orthogonalization in step 6 above is a modified partial orthogonalization.  These two 

orthogonalization strategies are employed as an alternative to total reorthogonalization 

for preserving the orthogonality of the Lanczos vectors. 



5.  Integrating SPARSITY Into BLZPACK 

 

SPARSITY5 [7] is a toolkit for generating optimized sparse matrix-vector multiplication 

routines, developed by Eun-Jin Im and Katherine Yelick.  SPARSITY employs register 

blocking, which reorganizes the data structure representing the matrix by identifying 

small blocks of nonzero elements and storing these blocks contiguously.  Further 

optimization is made possible generating code that unrolls across multiple vectors, so that 

the operation becomes more similar to a matrix-matrix multiplication, where one matrix 

is sparse and the other is dense.  The result of unrolling is often a speedup significant 

enough that the time for (A * k vectors) is much lower than k times the time for (A * a 

single vector).  SPARSITY examines a given matrix, and depending on the architecture, 

generates a suitable routine.  Ongoing research examines the effects of taking into 

account symmetry when generating code.  For the purposes of my project, I will refer to a 

particular SPARSITY-generated routine as a “rxcxv (symmetric or non-symmetric) 

implementation”, where rxc is the block size by which the matrix is blocked, and v is the 

number of right-hand-sides (vectors) to unroll across.  This project was completed on an 

UltraSPARC processor with a clock rate of 333 MHz, using f77 to compile BLZPACK 

and cc to compile the BLZPACK driver as well as SPARSITY-generated routines. 

 

To use BLZPACK, I wrote a driver in C which calls the BLZDRD routine, and between 

calls computes V := A*U using a SPARSITY-generated routine.  The particular routine is 

determined beforehand according to the matrix A and the block size of the block Lanczos 

algorithm.  Optimal implementations given the number of right-hand-sides were provided 

to me by Rich Vuduc and Benjamin Lee.  For the matrices, I ran the block Lanczos 

algorithm with NREIG = 1, 10, and 50, and with NVBSET = 1 to 9.  The goal was to find 

an example where a block size of greater than 1 gave a better performance than using a 

block size of 1 (which is the single-vector algorithm).  To see any improved performance, 

the speedup from using a multiple-vector matrix-vector-multiply routine over a single-

vector routine must at least outweigh the increase in the number of matrix-vector 

operations required by the algorithm.  Furthermore, that speedup should also dominate 

                                                 
5 The information on SPARSITY was taken from Eun-Jin’s Ph.D. thesis [5]. 



increases in other operations required by the block Lanczos algorithm, such as vector 

generation and reorthogonalization. 

 

The remainder of this report deals with the data given by BLZPACK, and the results 

drawn from it. 



6.  Nasasrb Matrix 

 

Nasasrb [6] is the matrix on which I performed the most extensive tests.  It has dimension 

54870, with 2677324 nonzeros, a density of 0.09%.  It is used in shuttle rocket booster 

applications.  I ran it through BLZPACK with 1, 10, and 50 required eigenpairs, with 

block sizes ranging from NVBSET = 1 to 9.  The results are shown in Figures 6.1-6.3 

below.  The matrix-vector-multiply implementations (see the previous section on 

SPARSITY for an explanation about my notation) for particular right-hand-sides are as 

follows: 

• 1 RHS: 3x3x1 symmetric 

• 2 RHS: 3x2x2 symmetric 

• 3 RHS: 2x1x3 symmetric 

• 4 RHS: 2x1x4 symmetric 

• 5 RHS: 3x2x5 non-symmetric 

• 6 RHS: 3x2x6 non-symmetric 

• 7 RHS: 2x3x7 non-symmetric 

• 8 RHS: 2x1x8 non-symmetric 

• 9 RHS: 2x1x9 non-symmetric 

 

From the results, we can see that increasing the block size from 1 does reduce the time 

spent doing matrix-vector operations (specifically, the A*U operation between calls to 

BLZDRD), at least up to block size 4 before increasing again.  Even with the increase in 

the number of matrix-vector operations required to satisfy BLZPACK’s stopping 

criterion based on convergence (see column labeled “# MVM Ops”), the speedup in the 

implementation (see column labeled “Time per MVM”) is enough to decrease the total 

time spent doing matrix-vector multiplies (see column labeled “Time for MVM Ops”).  

However, we can see that for all numbers of required eigenpairs, the total execution time 

(see column labeled “Total Time”) is always lowest with the single-vector case (block 

size 1).  Therefore, the single-vector procedure is the most time-efficient algorithm to 

use.  Note that overall time is not necessarily an increasing function of block size.  For 1 



and 10 required eigenpairs, the overall time with block size 4 is actually lower than with 

block size 3.  Nevertheless, it is still fastest with block size 1 in both cases. 

 

The percentage of time spent in A*U operations is about 30-40% for small block sizes, to 

10% or less for higher block sizes (see column “% Time Spent for MVM”).  Examining 

the data more closely reveals that the bottleneck is specifically in the reorthogonalization 

(see column “Time for Reorth”).  Therefore, any speedup gained by increasing block size 

is dominated by the increase in reorthogonalization costs, thus accounting for the increase 

in overall time.  Note that there is a speedup in the time it takes per matrix-vector 

multiply as we increase block size (see column “Time per MVM”); this is what we 

expect from SPARSITY, that multiplying multiple vectors is faster (per vector) than 

multiplying a single vector.  Still, it is not enough to outweigh other costs.  Aside from 

matrix-vector operations and reorthogonalization, BLZPACK spends its time in vector 

generation, solving the reduced problem, and computing Ritz vectors. 

 

Consulting with Osni Marques offered two insights on possible situations where using a 

block size greater than 1 might be advantageous.  First, the subroutines used to perform 

reorthogonalizations change when moving from 1 to multiple vectors.  With a single 

vector, BLAS-2 operations are used.  Using a bigger block size employs BLAS-3 

operations instead.  It is possible that continuing to use BLAS-2 operations on multiple 

vectors may change the performance.  However, Osni commented that while this may 

work for small matrices, it would almost surely not work for large ones.  The second idea 

was that while for this particular matrix (nasasrb) the single-vector procedure worked 

best, there may be matrices for which the A*U operations dominate the 

reorthogonalizations.  (Indeed, I will show later an example of matrices where this is the 

case.)  Then in those cases, a block implementation would improve performance. 

 

In the next sections, I discuss the results of running the same tests on different matrices.  

However, I chose to show results for block size up to 5 since anything higher generally 

did not help; in fact, calculating megaflop rates indicate that the matrix-vector-multiply 



routines generated by SPARSITY usually show decreased performance with right-hand-

sides greater than 5 or 6. 



Figure 6.1 nasasrb – 1 required eigenpair 
# 
Vectors 
in Block

# 
MVM 
Ops

Time for 
MVM Ops

Time per 
MVM

Time for 
Reorth Total Time

% Time 
Spent for 
MVM

% Time 
Spent 
Reorth

% Time 
Spent 
Other

1 84 6.40E+00 7.62E-02 5.38E+00 1.44E+01 44% 37% 18%
2 110 5.04E+00 4.58E-02 9.59E+00 2.17E+01 23% 44% 33%
3 120 5.07E+00 4.23E-02 1.34E+01 2.45E+01 21% 55% 25%
4 132 4.59E+00 3.48E-02 1.19E+01 2.36E+01 19% 50% 30%
5 150 5.97E+00 3.98E-02 1.61E+01 3.16E+01 19% 51% 30%
6 168 5.88E+00 3.50E-02 2.14E+01 4.14E+01 14% 52% 34%
7 182 6.79E+00 3.73E-02 2.28E+01 4.95E+01 14% 46% 40%
8 184 6.12E+00 3.33E-02 2.53E+01 5.33E+01 11% 47% 41%
9 234 8.49E+00 3.63E-02 2.99E+01 6.80E+01 12% 44% 44%  
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Figure 6.2 nasasrb – 10 required eigenpairs 
# 
Vectors 
in Block

# 
MVM 
Ops

Time for 
MVM Ops

Time per 
MVM

Time for 
Reorth Total Time

% Time 
Spent for 
MVM

% Time 
Spent 
Reorth

% Time 
Spent 
Other

1 90 6.84E+00 7.60E-02 6.23E+00 1.62E+01 42% 38% 19%
2 110 5.04E+00 4.58E-02 1.16E+01 2.17E+01 23% 53% 23%
3 135 5.68E+00 4.21E-02 1.65E+01 2.97E+01 19% 56% 25%
4 148 5.14E+00 3.47E-02 1.49E+01 2.86E+01 18% 52% 30%
5 170 6.75E+00 3.97E-02 2.07E+01 4.09E+01 17% 51% 33%
6 180 6.31E+00 3.51E-02 2.17E+01 4.50E+01 14% 48% 38%
7 182 6.81E+00 3.74E-02 2.29E+01 4.94E+01 14% 46% 40%
8 232 7.69E+00 3.31E-02 3.07E+01 6.84E+01 11% 45% 44%
9 270 9.83E+00 3.64E-02 3.44E+01 7.79E+01 13% 44% 43%
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Figure 6.3 nasasrb – 50 required eigenpairs 
# 
Vectors 
in Block

# 
MVM 
Ops

Time for 
MVM Ops

Time per 
MVM

Time for 
Reorth Total Time

% Time 
Spent for 
MVM

% Time 
Spent 
Reorth

% Time 
Spent 
Other

1 151 1.14E+01 7.55E-02 1.90E+01 3.73E+01 31% 51% 18%
2 170 7.80E+00 4.59E-02 2.96E+01 4.78E+01 16% 62% 22%
3 201 8.46E+00 4.21E-02 1.09E+01 5.64E+01 15% 55% 30%
4 344 1.19E+01 3.46E-02 4.98E+01 8.79E+01 14% 57% 30%
5 390 1.54E+01 3.95E-02 6.13E+01 1.15E+02 13% 53% 33%
6 612 2.14E+01 3.50E-02 1.05E+02 1.90E+02 11% 55% 33%
7 651 2.44E+01 3.75E-02 1.16E+02 2.21E+02 11% 52% 36%
8 848 2.82E+01 3.33E-02 1.64E+02 3.08E+02 9% 53% 38%
9 882 3.21E+01 3.64E-02 1.77E+02 3.39E+02 9% 52% 38%
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7.  Bcsstk, Crystk, and Vibrobox Matrices 

 

The bcsstk [6] matrix, used in an automobile frame application, has dimension 30237 and 

1450163 nonzeros, a density of 0.16%.  As before, the single-vector procedure is optimal 

for all numbers of required eigenvalues, even though execution time does not necessarily 

increase with block size.  The matrix-vector-multiply implementations used are as 

follows: 

• 1 RHS: 3x3x1 symmetric 

• 2 RHS: 3x2x2 symmetric 

• 3 RHS: 3x1x3 symmetric 

• 4 RHS: 2x1x4 symmetric 

• 5 RHS: 3x2x5 non-symmetric 

 

The crystk [6] matrix is used for crystal free vibration applications.  It has dimension 

24696 and 1751178 nonzeros, a density of 0.29%.  The single-vector procedure is 

optimal.  The matrix-vector-multiply implementations are: 

• 1 RHS: 3x3x1 symmetric 

• 2 RHS: 3x2x2 symmetric 

• 3 RHS: 3x1x3 symmetric 

• 4 RHS: 2x1x4 symmetric 

• 5 RHS: 3x1x5 non-symmetric 

 

The vibrobox [6] matrix is used for the structure of the vibroacoustic problem.  It has 

dimension 12328 with 34828 nonzeros, a density of 0.23%.  Once again, the single-

vector procedure is optimal.  Blocking of this matrix was not helpful in optimizing 

matrix-vector-multiply routines, so the 1x1xv (with v equal to the block size for the 

Lanczos algorithm) routine, using the symmetric version for block sizes 1 to 4 and non-

symmetric for block size 5. 



Figure 7.1 bcsstk – 1 required eigenpair 
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in Block

# 
MVM 
Ops

Time for 
MVM Ops

Time per 
MVM

Time for 
Reorth Total Time

% 
MVM

% 
Reorth

% 
Other

1 16 6.24E-01 3.90E-02 1.59E-01 1.30E+00 48% 12% 40%
2 28 7.17E-01 2.56E-02 6.51E-01 2.22E+00 32% 29% 38%
3 36 7.89E-01 2.19E-02 1.13E+00 3.10E+00 25% 36% 38%
4 44 7.99E-01 1.82E-02 1.23E+00 3.52E+00 23% 35% 42%
5 55 1.16E+00 2.11E-02 1.94E+00 5.08E+00 23% 38% 39%
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Figure 7.2 bcsstk – 10 required eigenpairs 
# 
Vectors 
in Block

# 
MVM 
Ops

Time for 
MVM Ops

Time per 
MVM

Time for 
Reorth Total Time

% 
MVM

% 
Reorth

% 
Other

1 45 1.79E+00 3.98E-02 1.34E+00 4.06E+00 44% 33% 23%
2 58 1.51E+00 2.60E-02 2.69E+00 5.69E+00 27% 47% 26%
3 72 1.57E+00 2.18E-02 3.86E+00 7.53E+00 21% 51% 28%
4 80 1.45E+00 1.81E-02 3.30E+00 7.28E+00 20% 45% 35%
5 100 2.12E+00 2.12E-02 5.18E+00 1.08E+01 20% 48% 32%  
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Figure 7.3 bcsstk – 50 required eigenpairs 
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Vectors 
in Block
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MVM 
Ops

Time for 
MVM Ops

Time per 
MVM

Time for 
Reorth Total Time

% 
MVM

% 
Reorth

% 
Other

1 150 5.99E+00 3.99E-02 1.68E+01 2.66E+01 23% 63% 14%
2 172 4.45E+00 2.59E-02 2.17E+01 3.16E+01 14% 69% 17%
3 324 7.12E+00 2.20E-02 3.87E+01 5.68E+01 13% 68% 19%
4 356 6.41E+00 1.80E-02 3.12E+01 5.02E+01 13% 62% 25%
5 420 8.86E+00 2.11E-02 3.69E+01 6.23E+01 14% 59% 27%  
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Figure 7.4 crystk – 1 required eigenpair 
Vectors 
in 
Block
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Ops
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Time for 
Reorth Total Time

%  
MVM

%  
Reorth
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Other

1 45 2.00E+00 4.44E-02 5.79E-01 3.27E+00 61% 18% 21%
2 96 2.71E+00 2.82E-02 2.97E+00 7.31E+00 37% 41% 22%
3 99 2.41E+00 2.43E-02 3.26E+00 7.63E+00 32% 43% 26%
4 108 2.41E+00 2.23E-02 2.66E+00 7.30E+00 33% 36% 31%
5 130 3.07E+00 2.36E-02 4.07E+00 1.03E+01 30% 40% 31%  
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Figure 7.5 crystk – 10 required eigenpairs 
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in 
Block
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Ops

Time for 
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Time for 
Reorth Total Time

%  
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Reorth
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Other

1 94 4.18E+00 4.45E-02 2.36E+00 7.86E+00 53% 30% 17%
2 132 3.74E+00 2.83E-02 5.33E+00 1.15E+01 33% 46% 21%
3 171 4.15E+00 2.43E-02 8.48E+00 1.64E+01 25% 52% 23%
4 156 3.52E+00 2.26E-02 4.91E+00 1.20E+01 29% 41% 30%
5 220 5.22E+00 2.37E-02 7.44E+00 1.85E+01 28% 40% 32%  
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Figure 7.6 crystk – 50 required eigenpairs 
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in Block
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Ops

Time for 
MVM Ops

Time per 
MVM

Time for 
Reorth Total Time

% 
MVM

% 
Reorth

% 
Other

1 301 1.35E+01 4.49E-02 2.13E+01 4.02E+01 34% 53% 13%
2 714 2.04E+01 2.86E-02 6.93E+01 1.04E+02 20% 67% 14%
3 1383 3.37E+01 2.44E-02 1.33E+02 1.98E+02 17% 67% 16%
4 1192 2.67E+01 2.24E-02 9.65E+01 1.51E+02 18% 64% 18%
5 1260 2.97E+01 2.36E-02 1.03E+02 1.67E+02 18% 62% 21%
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Figure 7.7 vibrobox – 1 required eigenpair 
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in Block

# 
MVM 
Ops

Time for 
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Time per 
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Time for 
Reorth Total Time

% 
MVM

% 
Reorth

% 
Other

1 53 8.76E-01 1.65E-02 3.58E-01 1.62E+00 54% 22% 24%
2 108 1.07E+00 9.91E-03 1.65E+00 3.70E+00 29% 45% 26%
3 153 1.29E+00 8.43E-03 3.31E+00 6.41E+00 20% 52% 28%
4 156 1.13E+00 7.24E-03 2.18E+00 5.27E+00 21% 41% 37%
5 240 1.94E+00 8.08E-03 3.96E+00 9.21E+00 21% 43% 36%  
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Figure 7.8 vibrobox – 10 required eigenpairs 
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1 123 2.13E+00 1.73E-02 1.83E+00 4.92E+00 43% 37% 20%
2 156 1.66E+00 1.06E-02 3.33E+00 6.74E+00 25% 49% 26%
3 180 1.55E+00 8.61E-03 4.10E+00 8.04E+00 19% 51% 30%
4 260 1.95E+00 7.50E-03 3.60E+00 8.90E+00 22% 40% 38%
5 300 2.37E+00 7.90E-03 4.93E+00 1.14E+01 21% 43% 36%
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Figure 7.9 vibrobox – 50 required eigenpairs 
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% 
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1 336 5.64E+00 1.68E-02 7.68E+00 1.66E+01 34% 46% 20%
2 900 9.86E+00 1.10E-02 2.44E+01 4.45E+01 22% 55% 23%
3 2094 1.90E+01 9.07E-03 6.30E+01 1.09E+02 17% 58% 25%
4 1748 1.43E+01 8.18E-03 3.67E+01 7.47E+01 19% 49% 32%
5 2410 1.87E+01 7.76E-03 5.78E+01 1.14E+02 16% 51% 33%
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8.  Protein Matrices 

 

The tests run on the previous matrices were repeated on two more, both used in protein 

applications.  The smaller one, pdb1FXK, has dimension 8070 and 1088905 nonzeros, a 

density of 1.67%.  The larger of the two protein matrices, pdb1TUP, gave more 

interesting results.  It has dimension 16323 and 2028247 nonzeros, a density of 7.61%.  

Blocking these matrices did not help, so the 1x1xv implementation was used for v 

=1,...,5, all with the symmetric version. 

 

As indicated by Figures 8.1-8.3, for the FXK protein matrix, the single-vector procedure 

was optimal.  From Figures 8.4 and 8.5, we can see that this is the case for the TUP 

matrix as well, when we require 1 or 10 eigenpairs.  However, Figure 8.6 shows that 

when we require 50 eigenpairs, using a block size of 2, 3, 4, or 5 performs better than the 

single-vector procedure, with 2 being the optimal. 

 

Note that for both matrices, the time spent performing A*U operations is around 80-90% 

of the total execution time for a block size of 1, and around 50-60% for higher block 

sizes.  In contrast to previous matrices, the algorithm is always spending more than half 

the total time on A*U operations.  In particular, reorthogonalization costs no longer 

dominate matrix-vector operation costs.  In accordance with Osni Marques’ suggestion 

mentioned earlier, we begin to see improved performance with increased block size when 

matrix-vector operations dominate the algorithm. 



Figure 8.1 pdb1FXK – 1 required eigenpair 
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in Block
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MVM Ops

Time per 
MVM
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1 82 8.12E+00 9.90E-02 4.70E-01 8.98E+00 90% 5% 4%
2 144 8.37E+00 5.81E-02 1.61E+00 1.11E+01 75% 15% 10%
3 180 8.16E+00 4.53E-02 2.14E+00 1.22E+01 67% 19% 14%
4 220 7.42E+00 3.37E-02 1.70E+00 1.12E+01 66% 15% 19%
5 320 1.04E+01 3.25E-02 2.61E+00 1.61E+01 65% 16% 19%

1 Eigenpair, MVM Time

0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

1.00E+01

1.20E+01

0 1 2 3 4 5 6

Block Size

Se
co

nd
s

1 Eigenpair, Total Time

0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

1.00E+01

1.20E+01

1.40E+01

1.60E+01

1.80E+01

0 1 2 3 4 5 6

Block Size

Se
co

nd
s

 



Figure 8.2 pdb1FXK – 10 required eigenpairs 
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Time for 
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1 162 1.60E+01 9.88E-02 1.81E+00 1.89E+01 85% 10% 6%
2 442 2.56E+01 5.79E-02 4.00E+00 3.47E+01 74% 16% 11%
3 609 2.73E+01 4.48E-02 8.92E+00 4.21E+01 65% 21% 14%
4 684 2.30E+01 3.36E-02 6.54E+00 3.61E+01 64% 18% 18%
5 675 2.27E+01 3.36E-02 6.90E+00 3.66E+01 62% 19% 19%
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Figure 8.3 pdb1FXK – 50 required eigenpairs 
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in Block
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Reorth Total Time

% 
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Reorth
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1 1468 1.45E+02 9.88E-02 2.91E+01 1.85E+02 78% 16% 6%
2 2340 1.36E+02 5.81E-02 3.95E+01 1.96E+02 69% 20% 10%
3 2880 1.30E+02 4.51E-02 5.87E+01 2.18E+02 60% 27% 13%
4 3396 1.15E+02 3.39E-02 5.84E+01 2.07E+02 56% 28% 16%
5 4335 1.46E+02 3.37E-02 7.40E+01 2.67E+02 55% 28% 18%
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Figure 8.4 pdb1TUP – 1 required eigenpair 
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Time per 
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Reorth Total Time

% 
MVM

% 
Reorth
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Other

1 54 1.03E+01 1.91E-01 4.92E-01 1.14E+01 90% 4% 5%
2 88 1.03E+01 1.17E-01 1.55E+00 1.29E+01 80% 12% 8%
3 132 1.22E+01 9.24E-02 3.09E+00 1.73E+01 71% 18% 12%
4 156 1.04E+01 6.67E-02 2.97E+00 1.58E+01 66% 19% 15%
5 180 1.13E+01 6.28E-02 3.72E+00 1.83E+01 62% 20% 18%  
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Figure 8.5 pdb1TUP – 10 required eigenpairs 
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1 152 2.91E+01 1.91E-01 3.74E+00 3.45E+01 84% 11% 5%
2 242 2.80E+01 1.16E-01 6.13E+00 3.76E+01 74% 16% 9%
3 486 4.56E+01 9.38E-02 1.49E+00 6.83E+01 67% 22% 11%
4 528 3.52E+01 6.67E-02 1.25E+00 5.66E+01 62% 22% 16%
5 670 4.24E+01 6.33E-02 1.66E+00 7.15E+01 59% 23% 17%  
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Figure 8.6 pdb1TUP – 50 required eigenpairs 
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1 3122 5.98E+02 1.92E-01 1.14E+02 7.47E+02 80% 15% 5%
2 2898 3.36E+02 1.16E-01 1.19E+02 4.97E+02 68% 24% 8%
3 4494 4.21E+02 9.37E-02 2.02E+02 6.98E+02 60% 29% 11%
4 5336 3.59E+02 6.73E-02 2.00E+02 6.50E+02 55% 31% 14%
5 5390 3.45E+02 6.40E-02 2.10E+02 6.59E+02 52% 32% 16%
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9.  Conclusion 

 

Figure 9.1 Comparing all the matrices 

Matrix
# Required 
Eigenpairs % MVM* % Reorth* % Other*

Increase in 
Overall Time**

nasasrb 1 44.44% 37.36% 18.19% 50.69%
density: 10 42.22% 38.46% 19.32% 33.95%

0.09% 50 30.56% 50.94% 18.50% 28.15%

bcsstk 1 48.00% 12.23% 39.77% 70.77%
density: 10 44.09% 33.00% 22.91% 40.15%

0.16% 50 22.52% 63.16% 14.32% 18.80%

crystk 1 61.16% 17.71% 21.13% 123.24%
density: 10 53.18% 30.03% 16.79% 46.31%

0.29% 50 33.58% 52.99% 14.43% 158.71%

vibrobox 1 54.07% 22.10% 23.83% 128.40%
density: 10 43.29% 37.20% 19.51% 37.00%

0.23% 50 33.98% 46.27% 19.76% 168.07%

pdb1FXK 1 90.42% 5.23% 4.34% 23.61%
density: 10 84.66% 9.58% 5.77% 83.60%

1.67% 50 78.38% 15.73% 5.89% 5.95%

pdb1TUP 1 90.35% 4.32% 5.33% 13.16%
density: 10 84.35% 10.84% 4.81% 8.99%

7.61% 50 80.05% 15.26% 4.69% -33.47%  
* Percentage of total execution time spent in the indicated operation, for block size = 1. 

** Increase in execution time when changing from block size 1 to the next best block 

size.  In all cases it is 2, except for crystk, 1 required eigenpair, where it is 4.  A negative 

amount indicates speedup. 

 

Figure 9.1 puts some of the statistics of all the matrices together.  No patterns seem 

immediately obvious.  One thing to note is that the only speedup comes with the matrix 

that is most dense (i.e. pdb1TUP).  Furthermore, the number of required eigenpairs has a 

significant effect on the difference in performance between block sizes 1 and 2.  Finally, 

as noted before, the matrices in which the increases in overall time are generally the 

lowest are those whose time spent in matrix-vector-multiply operations is greatest 

relative to total time (although there is an exception for pdb1FXK, 10 required 



eigenpairs).  However, not much can be said for those that spend less than half the total 

time on A*U operations; the behavior varies greatly between matrices. 

 

One question that may warrant further exploration is the behavior of the algorithm with 

respect to total number of matrix-vector multiplies are required before termination.  In the 

tables shown in the previous sections, I have indicated the number of such operations.  

When increasing the block size, this number changes unpredictably, even when restricted 

to a single matrix and varying the number of required eigenpairs.  In fact, the number of 

matrix-vector multiplies can more than double (vibrobox, 50 required eigenpairs), or stay 

relatively the same (bcsstk, 50 required eigenpairs), or even decrease (pdb1TUP, 50 

required eigenpairs).  If there were a way to modify the criterion for termination such that 

the number of matrix-vector multiplies are relatively equal (so that there is not a 

significant increase in the number of operations needed), results of the algorithm running 

time may be different.  Figure 9.2 shows the results of taking the number of matrix-vector 

multiplies in the single-vector procedure and estimating the running time of a blocked 

procedure (column “New Total Time”) by multiplying the blocked algorithm’s running 

time (column “Original Total Time”) by the number of matrix-vector multiplies in the 

single-vector procedure (column “New # MVM”) and dividing by the number of matrix-

vector multiplies in the blocked procedure (column “Original MVM”).  The block size I 

use is that which gave the best performance out of the sizes greater than 1.  In all cases it 

is 2 except for crystk, 1 required eigenpair, where it is 4. 

 



Figure 9.2 Performance with modified number of matrix-vector multiplies 

Matrix
# Req 
EP

Original 
# MVM

New # 
MVM

Original 
Total Time

New Total 
Time

Old 
Single-
Vector 
Time

Time 
Difference

nasasrb 1 110 84 2.17E+01 1.66E+01 1.44E+01 -2.17E+00
10 110 90 2.17E+01 1.78E+01 1.62E+01 -1.55E+00
50 170 151 4.78E+01 4.25E+01 3.73E+01 -5.16E+00

bcsstk 1 28 16 2.22E+00 1.27E+00 1.30E+00 3.14E-02
10 58 45 5.69E+00 4.41E+00 4.06E+00 -3.55E-01
50 172 150 3.16E+01 2.76E+01 2.66E+01 -9.58E-01

crystk 1 99 45 7.30E+00 3.32E+00 3.27E+00 -4.82E-02
10 132 94 1.15E+01 8.19E+00 7.86E+00 -3.29E-01
50 714 301 1.04E+02 4.38E+01 1.30E+00 -4.25E+01

vibrobox 1 108 53 3.70E+00 1.82E+00 1.62E+00 -1.96E-01
10 156 123 6.74E+00 5.31E+00 4.92E+00 -3.94E-01
50 900 336 4.45E+01 1.66E+01 1.66E+01 -1.33E-02

pdb1FXK 1 144 82 1.11E+01 6.32E+00 8.98E+00 2.66E+00
10 442 162 3.47E+01 1.27E+01 1.89E+01 6.18E+00
50 2340 1468 1.96E+02 1.23E+02 1.85E+02 6.20E+01

pdb1TUP 1 88 54 1.29E+01 7.92E+00 1.14E+01 3.48E+00
10 242 152 3.76E+01 2.36E+01 3.45E+01 1.09E+01
50 2898 *  

* No entry for this row because the single-vector procedure used more matrix-vector 

multiplies than with block size 2. 

 

For the first four matrices there is a negative time difference (i.e. the blocked algorithm is 

still slower than the unblocked algorithm), with one exception.  However, for bcsstk, 1 

required eigenpair, and for the two protein matrices, the difference is positive.  That is, if 

we were to perform the same number of matrix-vector multiplies in the blocked version 

as in the single-vector version of the algorithm on those matrices, we would see a 

speedup in the overall running time.  The time saved by using a more efficient (unrolled) 

matrix-vector-multiply routine is apparently enough to outweigh the increase in other 

costs in those examples. 

 

The behavior of the block Lanczos method is not well understood.  We have yet to 

determine why some particular problems require such varying numbers of matrix-vector 

multiplies when changing the block size.  Aside from the possible optimization by 

modifying the stopping criterion as just discussed, the results of this project seem to agree 



with the concluding suggestions of Lanczos Algorithms [4], which state that single-vector 

Lanczos procedures are cheaper, and generally recommended over, block Lanczos 

procedures. 
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