A Computationally Efficient Triple Matrix Product
for a Class of Sparse Schur-complement Matrices

Two Implementations :
One-Phase vs. Two-Phase
Schemes

One-Phase Scheme

This scheme can take advantage of known
structure of H, and symmetry of P,

using the following equation.

#of blocksin H

P= >(R=AHA)=3 (ADA"+(Ar)(Ar)")

We compare two approaches to compute the

triple-product. While one-phase scheme has Hy

an advantage over two-phase scheme by Tl y
using a knowledge on the structure of matrix, fa X X S n
the summation of sparse matrices becomes "la" H,

bottleneck. A A

Hence, we propose a row-based one-phase

scheme, where the summation of sparse
matrices is replaced by the summation of
sparse vectors, which can be computed
efficiently using a sparse accumulator.

We also improved the performance of the
row-based one-phase scheme through use
of additional data structures.

Drawback :
a summation of sparse matrices is slow.

Row-based One-phase Scheme
Instead of adding sparse matrices, add sparse

Two-Phase scheme vectors for each row(column) of p.

Consider row k of P (let B.; =Ar;)

Fof cols in A .
S (AdA, +
1
=2 ayd,A + 3 bB.
7 T

= > ayd;A '+ Y byB.'

jiag 20 itbyg 20

P=mult(A,Q=mult(H,A?))

#of non -ugit blocks of H

P = (B.iB.i)y

In Computing C=mult(A,B)
For B.; = each column of B,
For each nonzero of B.;, do the following

*Row-major structures of A and B are needed
to access {j: g != 0} and {i: b; != 0} efficiently.

Improved One-phase Scheme
Po= > ayd;A '+ > bB.

jiag 20 iy 70

Efficient Sparse Vector Addition
using a sparse accumulator

e=b+d

Compute a matrix B.
Create row-major structure of A and B.
For each row(column) of P,

For j: g != 0, do the following

A H A P
Ask‘ MNE X

e

Sparse vectors Sparse accumulator

For i: b 1= 0, do the similar,
without scaling factor, d;

value

In memory,

A sparse accumulator is used in one-phase
and row-based two-phase schemes.

Utilizing the Symmetry of P

Po= Y ayd;A)+ > bB.

jiag 20 ity #0

Preprocessing

« In computing a,;d; A, compute a;d; A,

«In one-phase scheme
— counting the number of nonzeros in B and P
(to determine the amount of memory allocation)
— computing the structure of matrix B
— constructing row-major structure of A and B
«In two-phase scheme
— generating At
— counting the number of nonzeros in P and Q

* by keeping an array of indices pointing to
each A,’s next nonzero element,
unnecessary access to A,;'s is avoided.

(# of accesses to A,; = # of nonzeros of A;)

Eun-Jin Im, Kookmin University, Seoul, Korea, ejim@eecs.berkeley.edu

Ismail Bustany, Barcelona Design Inc., Ismail.Bustany@barcelonadesign.com

Cleve Ashcraft, Livermore Software Technology Corp.,
cleveashcraft@earthlink.net

James W. Demmel, U.C.Berkeley, demmel@eecs.berkeley.edu

Katherine A. Yelick, U.C.Berkeley, yelick@eecs.berkeley.edu

Berkeley Benchmarking and OPtimization Group
‘f bebop.cs.berkeley.edu
. Problem Context
E * In solving a primal-dual optimization problem for
. a circuit design, computation of P=AHAtis
ol repeatedly executed. (100-120 times)

* H has a symmetric block diagonal structure,
B H,=Di+rrf

Performance Modeled and Measured Execution Time

We predict lower and upper bounds of

the execution time for one-phase and

two-phase scheme using our memory model,

and it is confirmed by measurements

that one-phase scheme has advantage ’
of execution time and memory over i
two-phase scheme.

In addition, the preprocessing cost is lower

in one-phase scheme.

Memory Performance Modeling e

Memory Access
— Dominant factor in One-phase scheme :
access of elements of A in AXH*At:

ot olin A mz(A,)
Dk+
=) =

Measured Performance

Speedup

#of colsin B Mnz(B)

— Dominant factor in Two-phase scheme :
access of elements of Ain A*B :

#of colsin A

Y nnz(A;)*nnz(B,.)

Cache Miss
For sequentially accessed elements,
spatial locality is assumed to be exploited.

Execution Time

[

T = a,(memory accesses) +Z(zz‘,, —a)M, + @ — M,
=1

a; :latency of level-i cache

a,,, - latency of memory

k:level of caches

M, :cache miss in level - i cache

Achieved Mflop rate

P e dt

Example Matrix Set
from Circuit Design Application

e
Dotn S) Prcesase

m(A) |n(A) nnz(A) | nnz(H) # fop. |Mem.
set| 8648| 42750| 361K| 195K|1-phase| 11M| 11M
1 2-phase| 24m| 22m
set| 14872| 77406| 667K| 361K|1-phase| 21M| 20M
2 2-phase| 45M| 41M
set| 21096 | 112150 977K| 528K |1-phase| 31M| 29M
3 2-phase| 66M| 60M
set| 39768 | 217030 | 1913K | 1028K | 1-phase| 60M| 57M
4 2-phase | 129M | 118M .
set| 41392 | 244501 | 1633K| 963K |1-phase| 31M| 50M ~ Overhead of Preprocessing
5 2-phase| 66M | 113M relative to execution time in two-phase scheme

Conclusion

« Performance tuning of higher level sparse matrix e)
operation than matrix-vector multiplication
« Speedup up to 2.1x
« Less than half memory requirement
» An example of algebraic transformation P SRk han? 100 Powed dideinat

is used for performance tuning
« Knowledge on the special structure of the matrix
is used for the algebraic transformation.

