
BeBOPBerkeley Benchmarking and OPtimization Group
bebop.cs.berkeley.edu

A Computationally Efficient Triple Matrix Product
for a Class of Sparse Schur-complement Matrices

Eun-Jin Im, Kookmin University, Seoul, Korea, ejim@eecs.berkeley.edu
Ismail Bustany, Barcelona Design Inc., Ismail.Bustany@barcelonadesign.com
Cleve Ashcraft, Livermore Software Technology Corp.,

cleveashcraft@earthlink.net
James W. Demmel, U.C.Berkeley, demmel@eecs.berkeley.edu
Katherine A. Yelick, U.C.Berkeley, yelick@eecs.berkeley.edu

Problem Context
• In solving a primal-dual optimization problem for

a circuit design, computation of P=AHAt is
repeatedly executed. (100-120 times)

• H has a symmetric block diagonal structure,
Hi = Di+riri

t

X X =

Two Implementations :
One-Phase vs. Two-Phase

Schemes

A B C

X

B*i

j

A*j C*i

Two-Phase scheme

•P=mult(A,Q=mult(H,At))

In Computing C=mult(A,B)
For B*i = each column of B,

For each nonzero of B*i, do the following

Efficient Sparse Vector Addition
using a sparse accumulator

X X

A1 A2

H1

A1
t

H2

A2
t

P1 P2

∑∑ +===
i

t
iiii

t
iii

i

t
iiii rArAADAAHAPP)))((()(

Hin blocks of #

One-Phase Scheme
This scheme can take advantage of known
structure of H, and symmetry of P,
using the following equation.

A sparse accumulator is used in one-phase
and row-based two-phase schemes.

Drawback :
a summation of sparse matrices is slow.

Row-based One-phase Scheme
Instead of adding sparse matrices, add sparse
vectors for each row(column) of P.

Consider row k of P (let B*i =Airi)

∑ ∑

∑ ∑

∑∑

≠ ≠

+=

+=

+=

0: 0:
**

**

H of blocksunit -non of #

Ain col.s of #

****)()(

kj kiaj bi

t
iki

t
jjkj

j i

t
iki

t
jjkj

i
k

t
ii

j
k

t
jjjk

BbAda

BbAda

BBAdAP

•Row-major structures of A and B are needed
to access {j: akj != 0} and {i: bki != 0} efficiently.

∑ ∑
≠ ≠

+=
0: 0:

kj kiaj bi

t
iki

t
jjkjk BbAdaP

X X
A H At P

A*9A*3
d9

A*9
t

Pk*d3

A*3
t

Ask*

For i: bki != 0, do the similar,
without scaling factor, di

Compute a matrix B.
Create row-major structure of A and B.
For each row(column) of P,

For j: akj != 0, do the following

Improved One-phase Scheme

Utilizing the Symmetry of P

∑ ∑
≠ ≠

+=
0: 0:

kj kiaj bi

t
iki

t
jjkjk BbAdaP

• In computing akj dj A*j
t, compute akj dj Ak:m,j

t

• by keeping an array of indices pointing to
each A*j ’s next nonzero element,
unnecessary access to A*j ’s is avoided.

(# of accesses to A*j = # of nonzeros of A*j)

A*j

Performance

Preprocessing

•In one-phase scheme
– counting the number of nonzeros in B and P
(to determine the amount of memory allocation)
– computing the structure of matrix B
– constructing row-major structure of A and B

•In two-phase scheme
– generating At

– counting the number of nonzeros in P and Q

Memory Performance Modeling

• Memory Access
– Dominant factor in One-phase scheme :

access of elements of A in A*H*At :

∑ ∑∑ ∑
==

+
Bin col.s of #)(

1

Ain col.s of #)(

1

**

i

Bnnz

ki

Annz

k

ii

kk

∑
Ain col.s of #

**)(*)(
i

ii BnnzAnnz

– Dominant factor in Two-phase scheme :
access of elements of A in A*B :

m(A) n(A) nnz(A) nnz(H) # fop. Mem.
1-phase 11M 11M
2-phase 24M 22M
1-phase 21M 20M
2-phase 45M 41M
1-phase 31M 29M
2-phase 66M 60M
1-phase 60M 57M
2-phase 129M 118M
1-phase 31M 50M
2-phase 66M 113M

set
5

41392 244501 1633K 963K

set
4

39768 217030 1913K 1028K

set
3

21096 112150 977K 528K

set
2

14872 77406 667K 361K

set
1

8648 42750 361K 195K

Example Matrix Set
from Circuit Design Application

cache i-levelin miss cache :
caches of level :

memory oflatency :
cache i-level oflatency :

)()(accesses)memory (
1

1i
11

i

mem

i

kkmem

k

iii

M
k

MMT

α
α

ααααα −+−+= ∑
−

=
+

• Cache Miss
For sequentially accessed elements,
spatial locality is assumed to be exploited.

• Execution Time

Conclusion

• Performance tuning of higher level sparse matrix
operation than matrix-vector multiplication

• Speedup up to 2.1x
• Less than half memory requirement
• An example of algebraic transformation

is used for performance tuning
• Knowledge on the special structure of the matrix

is used for the algebraic transformation.

Modeled and Measured Execution Time

Measured Performance

Speedup

Achieved Mflop rate

Overhead of Preprocessing
relative to execution time in two-phase scheme

We compare two approaches to compute the
triple-product. While one-phase scheme has
an advantage over two-phase scheme by
using a knowledge on the structure of matrix,
the summation of sparse matrices becomes
bottleneck.
Hence, we propose a row-based one-phase
scheme, where the summation of sparse
matrices is replaced by the summation of
sparse vectors, which can be computed
efficiently using a sparse accumulator.
We also improved the performance of the
row-based one-phase scheme through use
of additional data structures.

We predict lower and upper bounds of
the execution time for one-phase and
two-phase scheme using our memory model,
and it is confirmed by measurements
that one-phase scheme has advantage
of execution time and memory over
two-phase scheme.
In addition, the preprocessing cost is lower
in one-phase scheme.

Sparse accumulator

e=b+d

a c

ai ei ci

value

index

e
In memory,

Sparse vectors

+
a

b

c

d

a

e

c

ai

bi

ci

0

2

1

a

c

e

N

N

N

N

ai

bi=di

ci

