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Problem Context
• In solving a primal-dual optimization problem for 

a circuit design, computation of P=AHAt is
repeatedly executed. (100-120 times)

• H has a symmetric block diagonal structure,
Hi = Di+riri
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Two Implementations : 
One-Phase vs. Two-Phase 

Schemes
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Two-Phase scheme

•P=mult(A,Q=mult(H,At))

In Computing C=mult(A,B)
For B*i = each column of B,

For each nonzero of B*i, do the following

Efficient Sparse Vector Addition
using a sparse accumulator
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One-Phase Scheme
This scheme can take advantage of known 
structure of H, and symmetry of P, 
using the following equation.

A sparse accumulator is used in one-phase 
and row-based two-phase schemes.

Drawback : 
a summation of sparse matrices is slow.

Row-based One-phase Scheme
Instead of adding sparse matrices, add sparse
vectors for each row(column) of P.

Consider row k of P (let B*i =Airi)
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•Row-major structures of A and B are needed 
to access {j: akj != 0} and {i: bki != 0} efficiently.
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For i: bki != 0, do the similar,
without scaling factor, di

Compute a matrix B.
Create row-major structure of A and B.
For each row(column) of P,

For j: akj != 0, do the following

Improved One-phase Scheme

Utilizing the Symmetry of P
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• In computing akj dj A*j
t,  compute akj dj Ak:m,j

t

• by keeping an array of indices pointing to 
each A*j ’s next nonzero element, 
unnecessary access to A*j ’s is avoided.

(# of accesses to A*j = # of nonzeros of A*j )

A*j

Performance

Preprocessing

•In one-phase scheme
– counting the number of nonzeros in B and P 
(to determine the amount of memory allocation)
– computing the structure of matrix B
– constructing row-major structure of A and B

•In two-phase scheme
– generating At

– counting the number of nonzeros in P and Q

Memory Performance Modeling

• Memory Access
– Dominant factor in One-phase scheme :

access of elements of A in A*H*At :
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– Dominant factor in Two-phase scheme :
access of elements of A in A*B :

m(A) n(A) nnz(A) nnz(H) # fop. Mem.
1-phase 11M 11M
2-phase 24M 22M
1-phase 21M 20M
2-phase 45M 41M
1-phase 31M 29M
2-phase 66M 60M
1-phase 60M 57M
2-phase 129M 118M
1-phase 31M 50M
2-phase 66M 113M

set
5

41392 244501 1633K 963K

set
4

39768 217030 1913K 1028K

set
3

21096 112150 977K 528K

set
2

14872 77406 667K 361K

set
1

8648 42750 361K 195K

Example Matrix Set 
from Circuit Design Application

cache i-levelin  miss cache :
caches of level :
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• Cache Miss
For sequentially accessed elements,
spatial locality is assumed to be exploited. 

• Execution Time 

Conclusion

• Performance tuning of higher level sparse matrix
operation than matrix-vector multiplication

• Speedup up to 2.1x
• Less than half memory requirement
• An example of algebraic transformation

is used for performance tuning 
• Knowledge on the special structure of the matrix  

is used for the algebraic transformation.

Modeled and Measured Execution Time

Measured Performance

Speedup

Achieved Mflop rate

Overhead of Preprocessing
relative to execution time in two-phase scheme

We compare two approaches to compute the 
triple-product. While one-phase scheme has 
an advantage over two-phase scheme by
using a knowledge on the structure of matrix, 
the summation of sparse matrices becomes 
bottleneck.
Hence, we propose a row-based one-phase 
scheme, where the summation of sparse 
matrices is replaced by the summation of
sparse vectors, which can be computed 
efficiently using a sparse accumulator.
We also improved the performance of the 
row-based one-phase scheme through use 
of additional data structures.

We predict  lower and upper bounds of 
the execution time for one-phase and 
two-phase scheme using our memory model,
and it is confirmed by measurements 
that one-phase scheme has advantage 
of execution time and memory over 
two-phase scheme.
In addition, the preprocessing cost is lower
in one-phase scheme.  

Sparse accumulator
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