
OSKI: A library of automatically tuned sparse

matrix kernels

Richard Vuduc1, James W Demmel2, and Katherine A Yelick3

1 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,
P.O. Box 808, L-365, Livermore, California 94550, USA
2 Department of Electrical Engineering and Computer Sciences, and Department of
Mathematics, University of California, Berkeley, 737 Soda Hall, Berkeley, California 94720,
USA
3 Department of Electrical Engineering and Computer Sciences, University of California,
Berkeley, 776 Soda Hall, Berkeley, California 94720, USA

E-mail: richie@llnl.gov1, {demmel,yelick}@eecs.berkeley.edu2,3

Abstract. The Optimized Sparse Kernel Interface (OSKI) is a collection of low-level primitives
that provide automatically tuned computational kernels on sparse matrices, for use by solver
libraries and applications. These kernels include sparse matrix-vector multiply and sparse
triangular solve, among others. The primary aim of this interface is to hide the complex decision-
making process needed to tune the performance of a kernel implementation for a particular user’s
sparse matrix and machine, while also exposing the steps and potentially non-trivial costs of
tuning at run-time. This paper provides an overview of OSKI, which is based on our research
on automatically tuned sparse kernels for modern cache-based superscalar machines.

1. Goals and Motivation
We describe the Optimized Sparse Kernel Interface (OSKI), a collection of low-level primitives
that provide automatically tuned computational kernels on sparse matrices, for use by solver
libraries and applications. The kernels include sparse matrix-vector multiply (SpMV) and sparse
triangular solve (SpTS), among others; “tuning” refers to the process of selecting the data
structure and code transformations that lead to the fastest implementation of a kernel, given
a machine and matrix. While conventional implementations of SpMV have historically run at
10% of machine peak or less, careful tuning can achieve up to 31% of peak and 4× speedups [1,
Chap. 1]. The challenge is that we must often defer tuning until run-time, since the matrix
may be unknown until then. The need for run-time tuning differs from the case of dense kernels
where only install- or compile-time tuning has proved sufficient in practice [2, 3].

OSKI reflects the need for and cost of run-time tuning, as extensively documented in our
recent work on automatic tuning of sparse kernels using the Sparsity framework [4, 5, 1, 6, 7,
8, 9, 10, 11]. The 6 goals of our interface and the key findings motivating each are as follows:

(i) Provide basic sparse kernel “building blocks”: We define an interface for basic sparse
operations like SpMV and SpTS, in the spirit of the widely-used Basic Linear Algebra
Subroutines (BLAS) [12] and recent Sparse BLAS Standard [13, 12]. We choose the
performance-critical kernels needed by sparse solver libraries and applications (particularly

those based on iterative solution methods). We target “users” who are sparse solver library
writers, or otherwise interested in performance-aware programming at the level of the BLAS.

(ii) Hide the complex process of tuning: Matrices in our interface are represented by
handles, thereby enabling the library to choose the data structure. We use this indirection
because the best data structure and code transformations on modern hardware may be
difficult to determine, even in seemingly simple cases [4, 1].
For example, since many sparse matrices have a natural block structure, we can enhance
the spatial and temporal locality of SpMV by storing the matrix as a collection of blocks.
However, we have observed cases in which SpMV on a matrix with an “obvious” block
structure nevertheless runs in 38% of the time of a conventional implementation (2.6×
speedup) using a different, non-obvious block structure [1]. Furthermore, we have shown
that if a matrix has no obvious block structure, SpMV can still execute in half the time (2×
speedup) of a conventional implementation by imposing block structure through explicitly
stored zeros, even though doing so results in extra work (flops) [1].

(iii) Offer higher-level memory hierarchy-friendly kernels: The kernels defined in our
interface are a superset of those available in similar library interfaces, including the Sparse
BLAS standard [13, 14] and the SPARSKIT library [15], among others [16]. Our “higher-
level” kernels are designed for cache-based machines and can execute much faster than their
equivalent implementations using “standard” kernels.
For example, in addition to the SpMV operation y ← A·x, we include the kernel y ← ATA·x
in which A may be read from main memory only once. Compared to a register-blocked two-
step implementation, t← A· x, y ← AT · t, a cache-interleaved implementation can be up to
1.8× faster, and up to 4.2× faster than an unblocked two-step implementation [8].

(iv) Expose the cost of tuning: We require the user to request tuning explicitly because of
its potential costs. In the case of SpMV, tuning can cost 40× as much as a single SpMV
operation [1]. Although this cost is dominated by the time simply to copy the matrix to
the new data structure (and so is comparable to just building the matrix in the first place),
it should nevertheless only be done when the user expects sufficiently many SpMV calls to
amortize this cost, as might be expected in iterative solvers [1].

(v) Support self-profiling: The user cannot always a priori predict, say, the number of SpMV
operations that will occur during an application run. We designed our interface to allow
the library to monitor transparently all operations performed on a given matrix, and then
use this information in deciding how aggressively to tune. Self-profiling enables the library
to guess whether tuning will be profitable (see Section 2.3).

(vi) Allow for user inspection and control of the tuning process: To help the user
reduce the cost of tuning, the interface provides two mechanisms that allow her both to
guide and to see the results of the tuning process (Section 3). First, the user may provide
explicit hints about the workload (e.g., the number of SpMVs) and the kind of structure
she believes the matrix possesses (e.g., uniform blocks of size 3× 3, or diagonals). Second,
the user may retrieve string-based summaries of what tuning transformations and other
performance optimizations have been applied to a given matrix. Thus, a user may see and
save these results for re-application on future problems (matrices) which the user believes
have similar structure to a previously tuned matrix. Moreover, a user may select and apply
transformations manually.

An implementation of OSKI is available [17]. The remainder of this paper highlights features
of OSKI by example, and the interested reader may consult the OSKI 1.0 User’s Guide for
details. We use a library-based approach because it enables the use of run-time information,
and because of its potential immediate impact on applications. OSKI could be integrated readily
into popular solver libraries such as PETSc [18, 19], or environments such as MATLAB [20, 21].

Listing 1. A usage example without tuning.
1 // This example computes y ← α ·A· x + β · y, where

2 // A =

 1 0 0
−2 1 0
.5 0 1

, x =

 .25
.45
.65

, and y is initially

 1
1
1

3 // A is a sparse lower triangular matrix with a unit diagonal, and x, y are dense vectors.
4

5 // User’s initial matrix and data
6 #define DIM 3 // matrix dimension
7 #define NNZ STORED // no. of stored non-zeros
8 int Aptr[DIM] = {0, 0, 1, 2}, Aind[NNZ STORED] = {0, 0};
9 double Aval[NNZ STORED] = {−2, 0.5};

10 double x[DIM] = {.25, .45, .65}, y[DIM] = {1, 1, 1};
11 double alpha = −1, beta = 1;
12

13 // Create a tunable sparse matrix object.
14 oski matrix t A tunable = oski CreateMatCSR
15 (Aptr, Aind, Aval, DIM, DIM, // CSR arrays
16 SHARE INPUTMAT, // ”copy mode”
17 // remaining args specify how to interpret non-zero pattern
18 3, INDEX ZERO BASED, MAT TRI LOWER, MAT UNIT DIAG IMPLICIT);
19

20 // Create wrappers around the dense vectors.
21 oski vecview t x view = oski CreateVecView (x, DIM, STRIDE UNIT);
22 oski vecview t y view = oski CreateVecView (y, DIM, STRIDE UNIT);
23

24 // Perform matrix vector multiply, y ← α ·A· x + β · y.
25 oski MatMult (A tunable, OP NORMAL, alpha, x view, beta, y view);
26

27 // Clean-up interface objects
28 oski DestroyMat (A tunable);
29 oski DestroyVecView (x view); oski DestroyVecView (y view);
30

31 // Print result, y. Should be ”[.75 ; 1.05 ; .225]”
32 printf ("Answer: y = [%f ; %f ; %f]\n", y[0], y[1], y[2]);

2. An Introduction to the Tuning Interface by Example
This section introduces the C version1 of OSKI using several examples. OSKI uses an object-
oriented calling style, where the two main object types are (1) a sparse matrix object, and (2)
a dense (multiple) vector object. We anticipate that users will use the library in different ways,
so this section illustrates the library’s major design points by discussing three such ways.

2.1. Basic usage: gradually migrating applications
To ease the development effort for existing applications, OSKI supports matrix data sharing
when the user’s sparse matrix starts in a standard array implementation of some basic sparse
matrix format, e.g., compressed sparse row (CSR) or column (CSC) formats. Furthermore, users
do not have to use any of the automatic tuning facilities, or may introduce the use of tuned
operations gradually over time.

1 Fortran interfaces are under development.

oski MatMult Sparse matrix-vector multiply (SpMV)
y ← α · op(A)· x
where op(A) ∈ {A,AT , AH}.

oski MatTrisolve Sparse triangular solve (SpTS)
x← α · op(A)−1 · x

oski MatTransMatMult y ← α · op2(A)· x + β · y
where op2(A) ∈ {AT A,AHA,AAT , AAH}

oski MatMultAndMatTransMult Simultaneous computation of
y ← α ·A· x + β · y, and
z ← ω · op(A)· w + ζ · z

oski MatPowMult Matrix power multiplication
Computes y ← α · op(A)ρ · x + β · y

Table 1. Sparse kernels available in OSKI.

The key feature of OSKI shown in the example of Listing 1 is that OSKI expects “standard
representations” of the user’s sparse matrix and dense vectors, to minimize changes to existing
applications. Listing 1 uses OSKI to compute one SpMV without any tuning. The input matrix
is 3× 3 lower triangular with all ones on the diagonal. The matrix is declared statically in lines
6–9 and stored in CSR format using 2 integer arrays, Aptr and Aind, to represent the non-zero
pattern and one array of doubles, Aval, to store the non-zero values. This example assumes
0-based indices and does not store the diagonal explicitly, and this overall representation is a
common way of implementing CSR in various sparse libraries [15, 22, 19]. Line 10 declares and
initializes two arrays, x and y, to represent the vectors. Like the matrix, these vector declarations
are “standard” implementations that the user could pass directly to, say, the dense BLAS to
perform dot products or scalar-times-vector products.

Listing 1 creates a tunable matrix object from the input matrix by calling oski CreateMat-
CSR (line 14). The arguments specify the untuned physical representation (arguments 1–5 in
line 16), the semantics of how to interpret this representation (arguments 7–10 in line 18), and
a copy mode (argument 6 in line 16) that controls the number of copies of the assembled matrix
that may exist at any point in time. The matrix creation routine is the most complex of all
of the available OSKI routines, but it supports the specification of a variety of input matrices,
as documented fully in the User’s Guide, whether the input matrix be symmetric/Hermitian,
triangular, use 0- or 1-based indices.

Similarly, dense vector objects are wrappers, or views, around user arrays (lines 21–22). A
vector view encapsulates basic information about an array, such as its length, or such as the
stride between consecutive elements of the vector within the array. As with the BLAS, a non-unit
stride allows a dense vector to be a submatrix. In addition, an object of type oski vecview t can
encapsulate multiple vectors (multivector) for kernels like sparse matrix-multiple vector multiply
(SpMM) or triangular solve with multiple simultaneous right-hand sides; a blocked SpMM can
be up to 2.5× faster than a blocked SpMV [4, 23]. The multivector object would also store the
number of vectors and the memory organization (i.e., row vs. column major). Requiring the
user to create a view in both the single- and multiple-vector cases helps unify and simplify some
of the kernel argument lists, in addition to the potential performance improvements.

The argument lists to kernels, such as oski MatMult for SpMV in this example (line 25),
follow some of the conventions of the dense BLAS. For example, a user can specify the constant
OP TRANS as the second argument to apply AT instead of A, or specify other values for α and
β. The list of available kernels appears in Table 1. Beyond SpMV and SpTS, this list includes
higher-level kernels designed to exploit memory hierarchies.

Listing 2. An example of basic explicit tuning.
1 // Create a tunable sparse matrix object.
2 A tunable = oski CreateMatCSR (. . .);
3

4 // Tell the library we expect to perform 500 SpMV operations with α = 1, β = 1.
5 oski SetHintMatMult (A tunable, OP NORMAL, 1.0, SYMBOLIC VEC,
6 1.0, SYMBOLIC VEC, 500);
7 oski SetHint (A tunable, HINT SINGLE BLOCKSIZE, 6, 6);
8 oski TuneMat (A tunable);
9 // . . .

10 x view = oski CreateVecView (. . .);
11 y view = oski CreateVecView (. . .);
12

13 for (i = 0; i < 100; i++) {
14 // . . .
15 for (k = 0; k < 5; k++) {
16 // . . .
17 oski MatMult (A tunable, OP NORMAL, 1.0, x view, 1.0, y view);
18 // . . .
19 }
20 // . . .
21 }

That A tunable, x view, and y view are shared with the library implies the user can continue
to operate on the data to which these views point as she normally would. For instance, the user
can call dense BLAS operations, such as a dot products or scalar-vector multiply, on x and y.
Moreover, the user might choose to introduce calls to the OSKI kernels selectively over time.

2.2. Providing explicit tuning hints
Any information the user can provide a priori is information the library does not need to
rediscover, thereby reducing the overhead of tuning. In this case, a user may provide the library
with structured hints to describe, for example, the expected workload (i.e., which kernels will
be used and how frequently), or whether there is special non-zero structure (e.g., uniformly
aligned dense blocks, symmetry). The user then calls a special “tune routine” to choose a new
data structure performance-optimized for the specified workload. We refer to this style of OSKI
usage as tuning with explicit hints.

Listing 2 shows how to provide hints. The first hint (lines 5–6) specifies the expected workload
will consist of at least a total of 500 SpMV operations on the same matrix. The argument list
is identical to the corresponding argument list for the kernel call, oski MatMult, except that
there is one additional parameter to specify the expected frequency of SpMV operations. The
frequency allows the library to decide whether there are enough SpMV operations to hide the
cost of tuning. For optimal tuning, the values of these parameters should match the actual calls
as closely as possible.

The constant SYMBOLIC VEC indicates that we will apply the matrix to a single vector
with unit stride. Alternatively, we could use the constant SYMBOLIC MULTIVEC to indicate
that we will perform sparse SpMM on at least two vectors. Better still, we could pass an actual
instance of a oski vecview t object which has the precise stride and data layout information.
Analagous routines exist for each of the other kernels in the system.

The second hint (line 7) is a structural hint indicating that the matrix non-zero structure may

Listing 3. An example of implicit tuning.
1 oski matrix t A tunable = oski CreateMatCSR (. . .);
2 oski vecview t x view = oski CreateVecView (. . .);
3 oski vecview t y view = oski CreateVecView (. . .);
4 oski SetHint (A tunable, HINT SINGLE BLOCKSIZE, 6, 6);
5 // . . .
6 for (i = 0; i < num times; i++) {
7 // . . .
8 while (!converged) {
9 // . . .

10 oski MatMult (A tunable, OP NORMAL, 1.0, x view, 1.0, y view);
11 // . . .
12 }
13 oski TuneMat (A tunable);
14 // . . .
15 }

be dominated by 6× 6 dense subblocks. Several of the possible structural hints accept optional
arguments that may be used to qualify the hint. The hints currently available are related to
candidate optimizations explored in our work, and the list of hints will grow over time.

The actual tuning (i.e., possible change in data structure) occurs at the call to oski Tune-
Mat. The OSKI library uses all hint information provided up to this call to tune, i.e., select a
new data structure which is likely to improve performance for the specified matrix and workload.
This new data structure is only used internally by OSKI at kernel calls, and so does not affect
the user’s original input matrix data structure. Note that the call to oski TuneMat marks
the point during program execution at which tuning (and therefore, its overhead) may occur,
thereby exposing the tuning step.

2.3. Tuning based on implicit profiling
The library needs a workload to decide when the overhead of tuning can be amortized, but
the user cannot always estimate this workload before execution as done in Section 2.2. In
OSKI, a user may instead rely on the library to monitor kernel calls to determine the workload
dynamically. The user must still call oski TuneMat to tune, but this call optimizes based on
a workload inferred from the kernel calls executed so far. Listing 3 provides no workload hints,
but calls oski TuneMat periodically (line 13). Internally, the library can monitor the calls to
oski MatMult, and at each call to oski TuneMat evaluate whether there seem to be enough
SpMV calls to hide the tuning cost.

3. Saving and Restoring Tuning Transformations
To promote transparency in the tuning process, OSKI allows the user to see a precise description,
represented by a string, of the transformations that create the tuned data structure. In OSKI
1.0, this string is a program expressed in a procedural, high-level scripting language, OSKI-Lua
(derived from the Lua language [24]). The user may subsequently “execute” this program on the
same or similar input matrix, thereby providing a way to save and restore tuning transformations
across application runs, a la FFTW’s wisdom mechanism [25]. Moreover, this mechanism allows
an advanced user to specify her own sequence of optimizing transformations, and allows OSKI
developers to extend OSKI to include new techniques.

Listing 4 contains a code fragment which reads a transformation string (OSKI-Lua program)
from a file, and applies it to a matrix using OSKI’s oski ApplyMatTransforms. This call

Listing 4. An example of applying transformations.
1 FILE∗ fp saved xforms = fopen ("./my_xform.txt", "rt"); // file containing transformation to apply
2 oski matrix t A tunable = oski CreateMat CSR (. . .);
3 char xforms[MAXBUFSIZE]; // transform to apply
4 fread (xforms, ..., fp saved xforms); // read transform from file
5 oski MatMult (A tunable, . . .); // untuned SpMV
6 oski ApplyMatTransforms (A tunable, xforms); // change data structure
7 oski MatMult (A tunable, . . .); // tuned SpMV

is equivalent to calling oski TuneMat, except that instead of allowing the library to decide
what data structure to use, we are specifying it explicitly. (OSKI has an analogous routine,
oski GetMatTransforms, to retrieve the last transformation applied to a matrix.)

The syntax of OSKI-Lua is based on the Lua scripting language [24]. The following example
computes a structural splitting, A = A1 + A2 + A3, where A1 is stored in 4× 2 UBCSR, A2 is
stored in 2 × 2 UBCSR, and A3 is stored in CSR(comments preceeded by #). This example
uses VBRas an intermediate format for determining how to split.

1 # Let A = A1 + A2 + A3, where A1 is in 4× 2 UBCSR,
2 # A2 is in 2× 2 UBCSR, and A3 is in CSR
3 T = VBR(InputMat);
4 # First, split A = A1 + Aleftover, where Aleftover is in CSRformat
5 A1, A leftover = T.extract blocks(4, 2);
6 # Next, split Aleftover = A2 + A3

7 T = VBR(A leftover);
8 A2, A3 = T.extract blocks(2, 2);
9 return A1 + A2 + A3;

(Structural splitting in this style yields speedups of up to 1.8× over a blocked but not split
implementation [26].)

When oski ApplyMatTransforms executes, it interprets the program to carry out the
transformation. The last line executed by every OSKI-Lua program returns the new data
structure—here, the union of the split components A1, A2, and A3, represented by the symbolic
summation in line 10. Garbage collection of temporaries is performed automatically.

4. Other Features
OSKI provides functionality beyond the core kernels and tuning facilities:

• Support for various scalar precisions: Like the BLAS, non-zero values may be real or
complex, single- or double-precision. In addition, the integer indices associated with the
sparse matrix may be C int or long.

• Changing/retrieving matrix entries: As long as the pattern remains fixed, the user may
change the values of any structural non-zero entries using OSKI’s get/set value routines.

• Explicit representation of permutations: During tuning, the library may decide to
permute the rows and columns of the matrix to improve locality, but to maintain correctness
it must permute input/output vectors at every kernel call. OSKI allows the user to detect,
extract, and apply these permutations herself if her algorithm can permute less frequently.
• Two error handling styles: Users can check the return value of any OSKI call for errors.

In addition, the user may supply her own error handler for logging or recovery purposes.

These features are described in complete detail in the OSKI 1.0 User’s Guide.

5. Related Work: Approaches that Complement Libraries
The Sparse BLAS Standard [13] inspired the OSKI design. The main differences are (i) we do
not specify primitives for matrix construction, and instead assume that the user can provide an
assembled matrix in one of a few formats, and (ii) we include explicit support for tuning.

A number of approaches complement the library approach. One is to implement a library
using a language with generic programming constructs such as templates in C++ [27]. Both
Blitz++ [28] and the Matrix Template Library (MTL) [29] have adopted this approach to
building generic libraries in C++ that mimic dense BLAS functionality. Templates faciliate
the generation of large numbers of routines from a compact representation, and flexibly handles
issues of producing libraries that can handle different precisions. Sophisticated use of templates
(template metaprogramming) also allows some optimization, such as unrolling and some forms
of loop fusion [28]. However, this approach does not address run-time tuning.

Compiler-based sparse code generation, via restructuring compilers, extends the generic
programming idea (Bik [30, 31, 32], Stodghill, et al [33, 34, 35, 36], and Pugh and
Shpeisman [37, 38]). These are clean, general approaches to code generation. The user
expresses separately both the kernels (as dense code with random access to matrix elements)
and a specification of the sparse data structure; a restructuring compiler combines the two
descriptions to produce a sparse implementation. Since any kernel can in principle be expressed,
this overcomes a library approach in which all possible kernels must be pre-defined. We view
this technology as complementary to the overall library approach; while sparse compilers could
be used to provide the underlying implementations of sparse primitives, they do not explicitly
make use of matrix structural information available, in general, only at run-time.

A third approach is to extend an existing library or system. There are a number of
application-level libraries (e.g., PETSc [18, 19], among others [39, 15, 22, 40]) and high-level
application tools (e.g., MATLAB [20, 21], Octave [41], approaches that apply compiler analyses
and transformations to MATLAB code [42, 43]) that provide high-level sparse kernel support.
Integration with these systems, which have large user bases, allows complete hiding of data
structure details and the tuning process from the user. The goal of OSKI is to provide building
blocks in the spirit of the BLAS with the steps and costs of tuning exposed. It should be possible
to integrate the OSKI library into an existing system as well, as has been done successfully with
the integration of ATLAS and FFTW tuning systems into MATLAB.

6. Conclusions and Future Work
OSKI is designed to provide a migration path for existing solver libraries and applications to
use high-performance implementations of sparse matrix kernels. An OSKI user whose sparse
matrix is already available pre-assembled in standard CSR or CSC array representations can
introduce calls to OSKI’s kernels selectively and gradually over time. Tuning is automatic, but
only occurs when the user explicitly requests it, thus allowing the user to decide when it is most
appropriate to tune in her application.

The OSKI 1.0 implementation [17] is a uniprocessor library that targets cache-based
superscalar machines. We are actively pursuing shared and distributed memory versions of
OSKI, as well as tuning specific to alternative architectures such as vector processor-based
machines. OSKI-based applications will be performance-portable on such platforms.

In addition, OSKI has been released as open-source. The implementation is modular, so that
new matrix formats and tuning heuristics can be added to an existing OSKI installation without
recompiling the core library, or even the application on systems with shared library support. We
are making our own sparse kernel tuning research [44, Sec. 4.3] available as modules in OSKI.

To reach still larger user communities, we are also implementing an OSKI matrix type for
PETSc. The OSKI 1.0 User’s Guide outlines how we envision OSKI being implemented into
other libraries, including the Sparse BLAS [13] and MATLAB*P [45].

References
[1] Richard Vuduc. Automatic performance tuning of sparse matrix kernels. PhD thesis, University of California,

Berkeley, Berkeley, CA, USA, December 2003.
[2] J. Bilmes, K. Asanović, C.W. Chin, and J. Demmel. Optimizing matrix multiply using PHiPAC: a portable,

high-performance, ANSI C coding methodology. In Proceedings of the International Conference on
Supercomputing, Vienna, Austria, July 1997. ACM SIGARC.

[3] R. Clint Whaley, Antoine Petitet, and Jack Dongarra. Automated empirical optimizations of software and
the ATLAS project. Parallel Computing, 27(1):3–25, 2001.

[4] Eun-Jin Im, Katherine Yelick, and Richard Vuduc. Sparsity: Optimization framework for sparse matrix
kernels. International Journal of High Performance Computing Applications, 18(1):135–158, 2004.

[5] Richard Vuduc, James W. Demmel, Katherine A. Yelick, Shoaib Kamil, Rajesh Nishtala, and Benjamin
Lee. Performance optimizations and bounds for sparse matrix-vector multiply. In Proceedings of
Supercomputing, Baltimore, MD, USA, November 2002.

[6] Benjamin C. Lee, Richard Vuduc, James W. Demmel, Katherine A. Yelick, Michael deLorimier, and Lijue
Zhong. Performance optimizations and bounds for sparse symmetric matrix-multiple vector multiply.
Technical Report UCB/CSD-03-1297, University of California, Berkeley, Berkeley, CA, USA, November
2003.

[7] Rajesh Nishtala, Richard Vuduc, James Demmel, and Katherine Yelick. When cache blocking sparse matrix
vector multiply works and why. In Proceedings of the PARA’04 Workshop on the State-of-the-art in
Scientific Computing, Copenhagen, Denmark, June 2004.

[8] Richard Vuduc, Attila Gyulassy, James W. Demmel, and Katherine A. Yelick. Memory hierarchy
optimizations and bounds for sparse AT Ax. In Proceedings of the ICCS Workshop on Parallel Linear
Algebra, volume LNCS, Melbourne, Australia, June 2003. Springer.

[9] Richard Vuduc, Shoaib Kamil, Jen Hsu, Rajesh Nishtala, James W. Demmel, and Katherine A. Yelick.
Automatic performance tuning and analysis of sparse triangular solve. In ICS 2002: Workshop on
Performance Optimization via High-Level Languages and Libraries, New York, USA, June 2002.

[10] Christopher Hsu. Effects of block size on the block Lanczos algorithm, June 2003. Senior thesis.
[11] Berkeley Benchmarking and OPtimization (BeBOP) Project, 2004. bebop.cs.berkeley.edu.
[12] Susan L. Blackford, James W. Demmel, Jack Dongarra, Iain S. Duff, Sven Hammarling, Greg Henry, Michael

Heroux, Linda Kaufman, Andrew Lumsdaine, Antoine Petitet, Roldan Pozo, Karin Remington, and
R. Clint Whaley. An updated set of basic linear algebra subprograms (BLAS). ACM Transactions
on Mathematical Software, 28(2):135–151, June 2002.

[13] Iain S. Duff, Michael A. Heroux, and Roland Pozo. An overview of the sparse basic linear algebra
subprograms: The new standard from the BLAS technical forum. ACM Transactions on Mathematical
Software, 28(2):239–267, June 2002.

[14] Iain S. Duff and Christof Vömel. Algorithm 818: A reference model implementation of the sparse BLAS in
Fortran 95. ACM Transactions on Mathematical Software, 28(2):268–283, June 2002.

[15] Yousef Saad. SPARSKIT: A basic toolkit for sparse matrix computations, 1994.
www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html.

[16] Salvatore Filippone and Michele Colajanni. PSBLAS: A library for parallel linear algebra computation on
sparse matrices. ACM Transactions on Mathematical Software, 26(4):527–550, December 2000.

[17] Richard Vuduc, James Demmel, and Katherine Yelick. OSKI: An interface for a self-optimizing library of
sparse matrix kernels, 2005. bebop.cs.berkeley.edu/oski.

[18] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. Efficient management
of parallelism in object oriented numerical software libraries. In E. Arge, A. M. Bruaset, and H. P.
Langtangen, editors, Modern Software Tools in Scientific Computing, pages 163–202. Birkhauser Press,
1997.

[19] Satish Balay, Kris Buschelman, William D. Gropp, Dinesh Kaushik, Matt Knepley, Lois Curfman McInnes,
Barry F. Smith, and Hong Zhang. PETSc User’s Manual. Technical Report ANL-95/11 - Revision 2.1.5,
Argonne National Laboratory, 2002. www.mcs.anl.gov/petsc.

[20] Matlab, 2003. The MathWorks, Inc. www.mathworks.com.
[21] John R. Gilbert, Cleve Moler, and Robert Schreiber. Sparse matrices in MATLAB: Design and

implementation. SIAM Journal on Matrix Analysis and Applications, 13(1):333–356, 1992.
[22] K. Remington and R. Pozo. NIST Sparse BLAS: User’s Guide. Technical report, NIST, 1996.

gams.nist.gov/spblas.
[23] Benjamin C. Lee, Richard Vuduc, James Demmel, and Katherine Yelick. Performance models for evaluation

and automatic tuning of symmetric sparse matrix-vector multiply. In Proceedings of the International
Conference on Parallel Processing, Montreal, Canada, August 2004.

[24] Roberto Ierusalimschy, Luiz Henrique de Figeiredo, and Waldemar Celes. Lua 5.0 Reference Manual.

Technical Report MCC-14/03, PUC-Rio, April 2003. www.lua.org.
[25] Matteo Frigo and Stephen Johnson. FFTW: An adaptive software architecture for the FFT. In Proceedings

of the International Conference on Acoustics, Speech, and Signal Processing, Seattle, Washington, May
1998.

[26] Richard Vuduc and Hyun-Jin Moon. Fast sparse matrix-vector multiplication by exploiting variable block
structure. Technical Report UCRL-TR-213454, Center for Applied Scientific Computing, Lawrence
Livermore National Laboratory, Livermore, CA, USA, July 2005.

[27] D. R. Musser and A. A. Stepanov. Algorithm-oriented generic libraries. Software: Practice and Experience,
24:632–642, 1994.

[28] Todd Veldhuizen. Arrays in Blitz++. In Proceedings of ISCOPE, volume 1505 of LNCS. Springer-Verlag,
1998.

[29] Jeremy G. Siek and Andrew Lumsdaine. A rational approach to portable high performance: the Basic Linear
Algebra Instruction Set (BLAIS) and the Fixed Algorithm Size Template (fast) library. In Proceedings of
ECOOP, Brussels, Belgium, 1998.

[30] Aart Johannes Casimir Bik. Compiler Support for Sparse Matrix Codes. PhD thesis, Leiden University,
1996.

[31] Aart J. C. Bik, Peter J. H. Birkhaus, Peter M. W. Knijnenburg, and Harry A. G. Wijshoff. The automatic
generation of sparse primitives. ACM TOMS, 24(2):190–225, July 1998.

[32] Aart J. C. Bik and Harry A. G. Wijshoff. Automatic nonzero structure analysis. SIAM Journal on
Computing, 28(5):1576–1587, 1999.

[33] Paul Stodghill. A Relational Approach to the Automatic Generation of Sequential Sparse Matrix Codes. PhD
thesis, Cornell University, August 1997.

[34] Nawaaz Ahmed, Nikolay Mateev, Keshav Pingali, and Paul Stodghill. A framework for sparse matrix code
synthesis from high-level specifications. In Proceedings of Supercomputing 2000, Dallas, TX, November
2000.

[35] Nikolay Mateev, Keshav Pingali, Paul Stodghill, and Vladimir Kotlyar. Next-generation generic
programming and its application to sparse matrix computations. In International Conference on
Supercomputing, 2000.

[36] Nikolay Mateev, Keshav Pingali, and Paul Stodghill. The Bernoulli Generic Matrix Library. Technical
Report TR-2000-1808, Cornell University, 2000.

[37] William Pugh and Tatiana Shpeisman. Generation of efficient code for sparse matrix computations. In
Proceedings of the 11th Workshop on Languages and Compilers for Parallel Computing, LNCS, August
1998.

[38] J. Irwin, J.-M. Loingtier, John Gilbert, G. Kiczales, J. Lamping, A. Mendhekar, and Tatiana Shpeisman.
Aspect-oriented programming of sparse matrix code. In Proceedings of the International Scientific
Computing in Object-Oriented Parallel Environments, Marina del Rey, CA, USA, December 1997.

[39] Alan George and Joseph W. H. Liu. The design of a user interface for a sparse matrix package. ACM
Transactions on Mathematical Software, 5(2):139–162, June 1979.

[40] Bjørn-Ove Heimsund. JMP: A sparse matrix library in Java, 2003. http://www.mi.uib.no/∼bjornoh/jmp.
[41] John W. Eaton. Octave, 2003. www.octave.org.
[42] George Almási and David Padua. MaJIC: Compiling MATLAB for speed and responsiveness. In Proceedings

of the ACM SIGPLAN Conference on Programming Language Design and Implementation, Berlin,
Germany, June 2002.

[43] Vijay Menon and Keshav Pingali. A case for source-level transformations in MATLAB. In Proceedings of
the 2nd Conference on Domain-Specific Languages, Austin, TX, October 1999.

[44] James Demmel, Jack Dongarra, Victor Eijkhout, Erika Fuentes, Antoine Petitet, Richard Vuduc, R. Clint
Whaley, and Katherine Yelick. Self adapting linear algebra algorithms and software. In Proceedings of
the IEEE: Special Issue on Program Generation, Optimization, and Adaptation, February 2005.

[45] Viral Shah and John R. Gilbert. Sparse matrices in Matlab *P: Design and implementation. In Proceedings
of the International Conference on High-Performance Computing, volume 3296 of LNCS, pages 144–155,
Bangalore, India, 2004. Springer.

