
Implicit and Explicit Optimizations
for Stencil Computations

Shoaib Kamil†, Kaushik Datta‡, Samuel Williams‡,
Leonid Oliker†, John Shalf†, Katherine Yelick†‡

†Lawrence Berkeley National Laboratory
1 Cyclotron Road

Berkeley, CA, 94720
{sakamil,loliker,jshalf,kayelick}@lbl.gov

‡Computer Science Department
University of California
Berkeley, CA, 94720

{kdatta,samw}@cs.berkeley.edu

ABSTRACT
Stencil-based kernels constitute the core of many scientific
applications on block-structured grids. Unfortunately, these
codes achieve a low fraction of peak performance, due pri-
marily to the disparity between processor and main mem-
ory speeds. We examine several optimizations on both the
conventional cache-based memory systems of the Itanium 2,
Opteron, and Power5, as well as the heterogeneous multi-
core design of the Cell processor. The optimizations tar-
get cache reuse across stencil sweeps, including both an
implicit cache oblivious approach and a cache-aware algo-
rithm blocked to match the cache structure. Finally, we con-
sider stencil computations on a machine with an explicitly-
managed memory hierarchy, the Cell processor. Overall,
results show that a cache-aware approach is significantly
faster than a cache oblivious approach and that the explic-
itly managed memory on Cell is more efficient: Relative to
the Power5, it has almost 2x more memory bandwidth and
is 3.7x faster.

1. INTRODUCTION
Partial differential equation (PDE) solvers constitute a

large fraction of scientific applications in such diverse ar-
eas as heat diffusion, electromagnetics, and fluid dynam-
ics. These applications are often implemented using itera-
tive finite-difference techniques, which sweep over a spatial
grid, performing nearest neighbor computations called sten-
cils. In a stencil operation, each point in a multidimensional
grid is updated with weighted contributions from a subset of
its neighbors in both time and space— thereby representing
the coefficients of the PDE for that data element. These
operations are then used to build solvers that range from
simple Jacobi iterations to complex multigrid and adaptive
mesh refinement methods [2].

Stencil computations perform global sweeps through data
structures that are typically much larger than the capacity of

Copyright 2006 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by a contractor or
affiliate of the U.S. Government. As such, the Government retains a nonex-
clusive, royalty-free right to publish or reproduce this article, or to allow
others to do so, for Government purposes only.
MSPC’06 October 22, 2006, San Jose, CA, USA
Copyright 2006 ACM 1-59593-578-9/06/0010 ...$5.00.

available data caches. As a result, stencil computations gen-
erally achieve a low fraction of theoretical peak performance,
since data from main memory cannot be transferred fast
enough to avoid stalling the computational units on modern
microprocessors. Cache blocking in the spatial dimension is
useful under a very limited set of circumstances [5]. Thus,
more contemporary approaches to stencil optimization are
geared towards techniques that leverage tiling in both the
spatial and temporal dimensions of computation using loop
skewing in order to increase data reuse within the cache hi-
erarchy. Initial work by Wolf [12] showed loop skewing gen-
erally did not improve performance, but subsequent studies
by McCalpin [6] et al and others [10, 13] have shown a mod-
ified form of loop skewing called time skewing can improve
performance for many stencil kernels.

Cache oblivious optimizations optimize algorithms with-
out using cache sizes as a tuning parameter. Such opti-
mizations have been shown to improve performance for some
classes of matrix operations [8] including matrix transpose,
fast fourier transform, and sorting [3]. More recently, Frigo
et al [4] showed the potential of cache oblivious optimiza-
tions for improving stencil kernel performance.

In this paper, we examine the implicit cache oblivious
tiling methodology which promises to efficiently utilize cache
resources without the need to consider the details of the
underlying cache infrastructure. Next, we compare perfor-
mance against an explicit the cache-aware algorithm known
as time skewing, where the blocking factor is carefully tuned
based on the stencil size and cache hierarchy details. For
both of these approaches we evaluate performance on the
Intel Itanium 2, AMD Opteron, and IBM Power5 micro-
processors, where data movement to on-chip caches is au-
tomatically (implicitly) managed by hardware (or compiler-
managed software) control. Our final stencil implementa-
tion is written for the non-conventional microarchitectural
paradigm of the recently-released STI (Sony/Toshiba/IBM)
Cell processor, whose local store memory is managed explic-
itly by software rather than depending on automatic cache
management policies implemented in hardware.

A unique contribution of our work is the comparative
evaluation of implicit and explicit stencil optimization algo-
rithms, as well as a study of the tradeoffs between implicitly-
and explicitly-managed local store memories. Experimental
results show that while the cache oblivious algorithm does
indeed reduce the number of cache misses compared to the

näıve approach, it can paradoxically degrade absolute per-
formance due primarily to sub-optimal compiler code gener-
ation for certain kernels. In addition, our exploration of the
cache oblivious algorithm shows that some refinements can
improve performance despite resulting in more cache traffic.
We also show that although the time skewed algorithm can
significantly improve performance, choosing the best block-
ing approach is non-intuitive, requiring an exhaustive search
of tiling sizes or an effective performance model to attain op-
timal performance. Finally, we demonstrate that explicitly-
managed local store architectures offer the opportunity to
fully utilize the available memory system and achieve im-
pressive results regardless of the underlying problem size.

2. EXPERIMENTAL SETUP
The experiments conducted in this work utilize the Sten-

cil Probe [5], a compact, self-contained serial microbench-
mark developed to explore the behavior of stencil compu-
tations on block-structured grids without the complexity of
full application codes. As such the Stencil Probe is suitable
for experimentation on architectures in varying stages of
implementation— from production CPUs to cycle-accurate
simulators. By modifying the operations in the inner loop
of the benchmark, the Stencil Probe can effectively mimic
the kernels of applications that use stencils on regular grids.
Previous work [5] has shown that the Stencil Probe is an
effective proxy for the behavior of larger applications. Thus
the Stencil Probe can be used to easily simulate the memory
access patterns and performance of large applications, while
testing for potential optimizations, without having to port
or modify the entire application.

2.1 Stencil Application
In this work, we examine the performance of a 3D seven-

point heat equation from the Chombo [1] framework. Chombo
is a set of tools for computing solutions of partial differen-
tial equations using finite difference methods on adaptively-
refined meshes. We use the kernel from heattut, a demo
application that is a simple 3D heat equation solver that
does not use Chombo’s more advanced capabilities. In gen-
eral, performing several sweeps through a grid at once is not
always possible because many applications perform other
work between stencil sweeps. Our sample application does
not, however, suffer from this limitation.

2.2 Hardware Platforms
Our study examines three leading microprocessor designs

used in high performance computing systems: the Itanium 2,
the AMD Opteron, and the IBM Power5. Additionally, we
examine stencil performance on the recently-released STI
Cell processor, which takes a radical departure from con-
ventional multiprocessors. An overview of each platform’s
architectural characteristics is shown in Table 1.

The 64-bit Itanium 2 system used in our study operates
at 1.4 GHz and is capable of issuing two FMAs per cycle for
a peak performance of 5.6 GFlop/s. The memory hierarchy
consists of 128 FP registers (of which 96 can rotate) and
three on-chip data caches (32KB L1, 256KB L2, and 3MB
L3). The Itanium 2 cannot store FP data in L1, making reg-
ister loads and spills potential sources for bottlenecks; how-
ever, a relatively large register set helps mitigate this issue.
The superscalar processor implements the Explicitly Par-
allel Instruction set Computing (EPIC) technology where

void stencil3d(double current[], double next[],

int xn, int yn, int zn, int tn)

{
for (int t = 0 to tn)

for (int x = 1 to xn − 1)
for (int y = 1 to yn − 1)
for (int z = 1 to zn − 1)
Xt

x,y,z =a∗Xt−1
x,y,z+b∗(Xt−1

x+1,y,z+Xt−1
x−1,y,zXt−1

x,y+1,z

+ Xt−1
x,y−1,z+Xt−1

x,y,z+1+Xt−1
x,y,z−1);

}

void stencil3d periodic(double current[],

double next[], int xn, int yn, int zn, int tn)

{
for (int t = 0 to tn)

for (int x = 0 to xn)

for (int y = 0 to yn)

for (int z = 0 to zn)

Xt
x%nx,y%ny,z%nz =a∗Xt−1

x%nx,y%ny,z%nz

+b ∗(Xt−1
x+1%nx,y%ny,z%nz+Xt−1

x−1%nx,y%ny,z%nz

+Xt−1
x%nx,y+1%ny,z%nz+Xt−1

x%nx,y−1%ny,z%nz

+Xt−1
x%nx,y%ny,z+1%nz+Xt−1

x%nx,y%ny,z−1%nz);

}
Figure 1: Pseudocode for the 3D näıve stencil ker-
nel, with non-periodic (top) and periodic (bottom)
boundary conditions.

instructions are organized into 128-bit VLIW bundles.
The primary floating-point horsepower of the 64-bit AMD

Opteron comes from its SIMD floating-point unit accessed
via the SSE2 or 3DNow instruction set extensions. The
Opteron utilizes a 128b SIMD FP multiplier and a 128b
SIMD FP adder, both of which are half-pumped. Thus our
2.2 GHz test system can execute two floating-point opera-
tions per cycle and deliver peak performance of 4.4 GFlop/s.
The L2 cache on our test system is a 1MB victim cache (al-
locates on evictions from L1). The peak aggregate memory
bandwidth is 5.2 Gigabytes/sec (either read or write), sup-
plied by two DDR-266 DRAM channels per CPU.

The latest processor in the IBM Power line, the Power5
processor is a superscalar RISC architecture capable of issu-
ing 2 FMAs per cycle. The 1.9 GHz test system has a 1.9MB
on-chip L2 cache as well as a massive 36MB L3 victim cache
on the DCM (dual chip module). The peak floating-point
performance of our test system is 7.6 GFlop/s. The memory
bandwidth is supplied by IBM’s proprietary SMI interfaces
that aggregate 8 DDR-266 DRAM channels to supply 10
Gigabytes/sec read and 5 Gigabytes/sec write performance
(15 GB/s peak aggregate bandwidth) per CPU.

STI’s Cell processor is a heterogeneous nine-core archi-
tecture that combines considerable floating point resources
with a power-efficient software-controlled memory hierarchy.
Instead of using identical cooperating commodity proces-
sors, Cell uses a conventional high performance PowerPC
core that controls eight simple SIMD cores, called syner-
gistic processing elements (SPEs). A key feature of each
SPE is the three-level software-controlled memory hierar-
chy. Instead of transferring data between the 128 registers
and DRAM via a cache hierarchy, loads and stores may only
access a small (256KB) private local store. The Cell proces-
sor utilizes explicit DMA operations to move data from main
memory to the local store of the SPE. Dedicated DMA en-

gines allow multiple concurrent DMA loads to run simulta-
neously with the SIMD execution unit, thereby mitigating
memory latency overhead via double-buffered DMA loads
and stores. The Cell processor is designed with an extremely
high single-precision performance of 25.6 GFlop/s per SPE
(204.8 GFlop/s collectively); however, double precision per-
formance lags significantly behind with only 1.8 GFlop/s per
SPE (14.6 GFlop/s collectively), for the 3.2 GHz part. The
XDR memory interface on Cell supplies 25 GB/s peak ag-
gregate memory bandwidth. Thus for Cell, double-precision
performance— not DRAM bandwidth— is generally the lim-
iting factor.

Itanium2 Opteron Power5 Cell SPE
Architecture VLIW super super dual

scalar scalar SIMD
Frequency (GHz) 1.4 2.2 1.9 3.2
Peak (GFlop/s) 5.6 4.4 7.6 1.83
DRAM (GB/s) 6.4 5.2 15∗ 25.6
FP Registers 128 16 32 128
(renamed/rotating) 96 88 120 0
Local Mem (KB) N/A N/A N/A 256
L1 D$ (KB) 32 64 64 N/A
L2 D$ (KB) 256 1024 1920 N/A
L3 D$ (MB) 3 N/A 36 N/A
Introduction 2003 2004 2004 2006
Cores Used 1 1 1 8
Compiler Used Intel 9.0 Pathscale XLC XLC

Table 1: Overview of architectural characteristics.

2.3 Performance Calculation Methodology
On all three conventional systems, we used the Perfor-

mance API (PAPI) library [7] to measure cache misses at
the various levels of the cache hierarchy. PAPI enables us
to use a standard cross-platform library to access perfor-
mance counters on each CPU. Unfortunately, on the Power5
and Opteron platforms, cache miss counters do not include
prefetched cache lines, thus preventing cache miss counters
from accurately reflecting overall memory traffic. There-
fore, we generally only show Itanium 2 cache miss numbers.
Memory traffic is calculated as the product of cache misses
and cache line size. However, on Cell, as all memory traffic
is explicit in the code, it can be computed directly. On the
Cell platform, both the SPE decrementers and PowerPC
timebase are used to calculate elapsed time, while on the
conventional machines, PAPI is used to access cycle timers.
Performance, as measured in GFlop/s, is calculated directly
based on eight flops per stencil, and one stencil per time
step for every point excluding the boundary (if present).

3. NAÏVE IMPLEMENTATION
Code for the 3D näıve periodic and non-periodic versions

are given in Figure 1. The non-periodic code is straight-
forward, but the periodic version is more complicated. In
the actual periodic implementation, several layers of ghost
cells were created. Instead of updating ghost cells after ev-
ery iteration, this allowed us to update all the ghost cells
before doing any computation. The extra ghost cells did in-
troduce slightly more computation and memory traffic, but

∗Total bandwidth of 15 GB/s (10 GB/s load, 5 GB/s store).

Non-Periodic Periodic
Comp. % of Comp. % of
Rate Algor. Rate Algor.

(GFlops/s) Peak (GFlops/s) Peak

Itanium 2 1.30 41 0.83 26
Opteron 0.49 17 0.51 17
Power5 1.97 45 0.99 23

Table 2: Performance of non-aliased näıve stencil
code on the three cache-based architectures for a
2563 problem.

this was still faster than the alternative. In addition, with-
out this optimization, our cache-aware algorithm could not
be implemented.

The stencil from this uses Jacobi iterations, so it is not
in-place. Thus each of the algorithms presented alternates
the source and target arrays after each iteration.

Table 2 shows the performance of the näıve stencil algo-
rithm on the three commodity architectures. The Opteron
platforms achieves a low percentage (< 20%) of algorithmic
peak, while the other two cannot achieve even half of their
algorithmic peak. This serves as our motivation.

4. IMPLICITLY BLOCKED:
CACHE OBLIVIOUS ALGORITHM

There are limited opportunities for cache reuse in sten-
cil computations when relying exclusively on spatial tiling
because each point is used a very small number of times.
Tiling in both the spatial and temporal dimensions opens
up additional opportunities for cache reuse for stencil-based
applications that allow multiple timesteps (or sweeps) to be
computed simultaneously. The cache oblivious stencil al-
gorithm [4] further leverages the idea of combining tempo-
ral and spatial blocking by organizing the computation in a
manner that doesn’t require any explicit information about
the cache hierarchy. The algorithm considers an (n + 1)-
dimensional spacetime trapezoid consisting of the n-dimensional
spatial grid together with an additional dimension in the
time (or sweep) direction. We briefly outline the recursive
algorithm below; details can be found in [4].

Consider the simplest case, where a two-dimensional space-
time region is composed of a one-dimensional space compo-
nent (from x0 to x1) and a dimension of time (from t0 to t1)
as shown in Figure 2(a). This trapezoid shows the traversal
of spacetime in an order that respects the data dependencies
imposed by the stencil, (i.e. which points can be validly cal-
culated without violating the data dependencies in spatial
and temporal dimensions).

In order to recursively operate on smaller spacetime trape-
zoids, we cut an existing trapezoid either in time or in space
and then recursively call the cache oblivious stencil func-
tion to operate on the two smaller trapezoids. Figure 2(b)
demonstrates an example of a space cut. Note that since
the stencil spacetime trapezoid itself has a slope (dx0 and
dx1), we must preserve these dependencies when perform-
ing a space cut, as demonstrated in Figure 2(b). The two
newly-created trapezoids, T1 and T2, can now be further
cut in a recursive fashion. In addition, note that no point
in the stencil computation of T1 depends on a point in T2,
allowing T1 to be completely calculated before processing
T2.

Similarly, a recursive cut can also be taken in the time

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 x 107

Iterations

Ca
ch

e
M

iss
es

Cache Oblivious Misses
Naive Cache Misses

Student Version of MATLAB

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5 x 1010

Iterations

Cy
cle

s

Cache Oblivious Cycles
Naive Cycles

Student Version of MATLAB

Figure 3: Performance of the initial cache oblivious implementation for a 2563 periodic problem on our
Itanium 2 test system. The algorithm reduces cache misses but performs worse.

space

tim
e dx0

t1

x0

t0

x1

dx1

(a)

space

ti
m

e dx0

t1

x0

t0

x1

dx1
T1 T2

(b)

space

ti
m

e dx0

t1

x0

t0

x1

dx1
T2

T1

(c)

Figure 2: (a) 2D trapezoid space-time region con-
sisting of a 1D space component and 1D time com-
ponent, and an example of cache oblivious recursive
(b) space cut and (c) time cut.

dimension, as show in Figure 2(c). Because the time depen-
dencies are simpler, the cut divides the time region (t0, t1)
into (t0, tn) and (tn, t1) regions which are then operated on
recursively. Again, recall that no point in the T1 compu-
tational domain depends on a point in T2. Note, however,
that cutting in time does not in itself improve cache be-
havior; instead, it allows the algorithm to continue cutting
in the space dimension by creating two trapezoids that are
shaped amenably for space cutting. The recursion calls the
function on smaller and smaller trapezoids until there is only
one timestep in the calculation, which is done in the usual
fashion (using a loop from x0 to x1). The multidimensional
algorithm is similar, but attempts to cut in each space di-
mension before cutting in time.

4.1 Periodic Performance
First, we compare performance between the implementa-

tion of the cache oblivious code given in [4] and the näıve
non-recursive version (consisting of four simple loops), using
the 3D heat equation within the Stencil Probe as described

in Section 2, both using periodic boundaries, because the
cache oblivious algorithm as originally designed uses peri-
odic boundaries. Figure 3 shows the raw performance (in
cycles) and measured cache misses for a 2563 problem on
our Itanium 2 test system.

Observe that the runtime of the cache oblivious approach
is substantially poorer than that of the näıve algorithm (this
is actually the case on all three cache-based platforms).
However, the cache oblivious approach is indeed effective
in dramatically improving cache efficiency compared with
the näıve implementation, as can be seen in the measured
number of cache misses in Figure 3. In fact, the cache miss
model developed in [4] accurately predicts the volume of
misses measured for the cache oblivious algorithm on the
Itanium 2, while the volume of misses for the näıve version is
exactly what is to be expected from the simple algorithm. It
is therefore critical to gain insight into the seemingly contra-
dictory trend of improving caching efficiency and worsening
performance, as much algorithmic effort has been invested
over several decades to improve program performance by
reducing cache misses.

In order to understand the performance potential of the
cache oblivious methodology, we explore a series of optimiza-
tions, building on those that successfully result in reduced
time-to-solution:

Speedup over Näıve
Optimization IA64 AMD64 Pwr5

Original 0.26 0.13 0.30
Inline Kernel 0.50 0.14 0.61
Inline Kernel + Explicit Stack 0.46 0.14 0.57
Inline Kernel + Early Cutoff 1.23 0.19 0.96
Inline Kernel + No Modulo 1.23 0.68 2.00
Inline Kernel + Early Cutoff
+ No Modulo 1.52 1.25 3.85
Inline Kernel + Early Cutoff
+ No Modulo + Preserve Stride-1 1.67 1.56 4.17
All Opts + Exhaustive Cutoff 1.69 1.59 4.17

Table 3: Summary of all attempted optimizations.

• Explicit inlining of the kernel. The original cache obliv-
ious algorithm in [4] performed a function call per
point. Instead, we inline the function.

• Using an explicit stack instead of recursion. Because

the algorithm is not tail-recursive, we cannot com-
pletely eliminate recursion. Instead, we attempted to
explicitly push and pop parameters on a user-controlled
stack in place of recursion. However, this did not yield
a speedup on any of our test platforms.

• Cut off recursion early. Instead of recurring down to
a single timestep, we stop the recursion when the vol-
ume of the 3D trapezoid reaches an arbitrary value.
This optimization results in somewhat greater memory
traffic when compared to the original cache oblivious
algorithm yet decreases overall runtime.

• Use indirection instead of modulo. We replaced the
modulo in the original algorithm with a lookup into a
preallocated table to obtain indices into the grid.

• Never cut in unit-stride dimension. Previous work [5]
showed that long unit-stride accesses were important
in achieving good performance. We preserve the long
unit-stride accesses by not cutting in space in the unit-
stride dimension. Although this raised total memory
traffic, it substantially improved overall performance.

Table 3 shows a comparative summary between näıve aliased
and cache oblivious performance for the periodic boundary
condition test case. Using the best set of optimizations, we
observe a speedup relative to the näıve version of 1.69 on
the Itanium 2 system, and speedups of 1.58 and 4.2 for the
Opteron and Power5 machines, respectively. This demon-
strates that the cache oblivious approach can indeed out-
perform the näıve computation for this kernel on a problem
with periodic boundaries through careful code design.

4.2 Non-Periodic Performance

Itanium 2 Opteron Power 5
0

0.5

1

1.5

2

2.5

3

3.5

G
Fl

op
 R

at
e

1.3 1.3

0.5 0.5
0.7 0.8

0.5 0.5 0.6
0.8

0.9 1.0
1.1

2.0

1.0 1.0 1.0 1.0

Naive
Naive Unaliased
1 Iteration Average
2 Iterations Average
3 Iterations Average
4 Iterations Average

Figure 4: Performance of non-periodic cache obliv-
ious implementation. Note that this chart shows
average performance over four iterations.

Thus far, we have focused on stencil computations with
periodicity in the boundary; however, most computational
science codes utilize non-periodic (or constant) boundary
conditions. Although the cache oblivious stencil algorithm
is better suited for periodic conditions, the algorithm can
be converted to use constant boundaries by setting the ini-
tial slopes of the grid edges grid to zero (thus ensuring the

timespace trapezoid is really a rectangle) and utilizing ghost
cells to ensure that the stencil does not access areas outside
of the grid.

Speedup over Näıve
Problem Memory Computation

Size Read Traffic Rate

1283 0.25 0.70
2563 0.41 0.55
5123 0.12 0.59

Table 4: Cache oblivious performance for four itera-
tions of varying problem sizes on the Itanium 2, with
non-periodic boundary conditions. Despite large re-
ductions in cache misses, the cache oblivious algo-
rithm performs up to 45% slower.

A summary of performance for one to four iterations us-
ing constant boundaries is shown in Figure 4. Note that the
non-periodic näıve algorithm is quite a bit faster than the
periodic version of the näıve algorithm on some architec-
tures. We attempted all the same optimizations used in the
non-periodic version and used the best-case performance.

In addition, the graph shows two different implementa-
tions of the näıve stencil code. This is because the Power5
platform shows drastically different computation rates de-
pending on whether the source and target arrays are aliased
or not. If they are unaliased, then the code achieves 2.0
GFlops/s. Otherwise, the code runs at 1.1 GFlops/s, likely
due to the xlc compiler’s inability to infer aliasing. We at-
tempted to improve performance with a no-alias directive,
but it had no effect. IBM engineers are currently investigat-
ing this problem.

Observe that (as expected) on the Opteron and Power5
platforms the cache oblivious and aliased näıve implemen-
tations show similar performance for a single iteration since
the cache oblivious approach essentially executes the same
code as the näıve case when there is a single iteration. How-
ever, on the Itanium 2, the compiler-generated code for
the cache oblivious case performs poorly compared with the
näıve version (about a third of the speed). This is apparent
in Figure 4, which shows that one iteration of cache oblivious
and one iteration of the näıve stencil have vastly different
performance on the Itanium 2, although they essentially ex-
ecute the same source code†.

As a result, the overall performance of the non-periodic
cache oblivious implementation is much worse than the näıve
case on the Itanium 2, at best achieving only 55% of näıve
performance at four iterations, despite reducing the overall
main memory read traffic substantially. On the Opteron,
however, we see that the cache oblivious implementation
outperforms the näıve implementation, achieving double the
performance. Lastly, on our Power5 test system, the cache
oblivious version of the code performs slightly slower than
the näıve version probably due to unavoidable aliasing is-
sues.

5. EXPLICITLY BLOCKED:
TIME SKEWING ALGORITHM

Unlike the cache oblivious algorithm, the time skewing
algorithm [6, 10, 13] uses explicit space cuts, requiring the

†The two versions calculate loop bounds slightly differently.

user to specify a cache block size. In the absence of a per-
formance model, we typically do not know which block size
will execute fastest. Therefore, for each platform where time
skewing is run, we perform a search to determine the opti-
mal block size. While the cache block’s x- and y-dimensions
(both non-contiguous in memory) are allowed to vary, the
z-dimension (the unit stride dimension) is left uncut to allow
for longer unit-stride memory streams.

5.1 Algorithm Description
Time skewing is a type of cache tiling, that attempts re-

duce main memory traffic by reusing values in cache as of-
ten as possible. Figure 5 shows a simplified diagram of time
skewing for a 3-point stencil. The grid is divided into cache
blocks by several skewed cuts, similar to the space cuts from
the cache oblivious algorithm (see Figure 2(b)). These cuts
are skewed in order to preserve the data dependencies of the
stencil. For example, the cut between the first and second
cache blocks allows the first cache block to be fully calcu-
lated before starting on the second cache block. In general,
this holds true between the nth and (n + 1)th cache blocks.
As long as the blocks are executed in the proper order, the
algorithm respects the stencil dependencies.

1 32 54 6 87 9

1

2

3

t

x

1st 2nd 4th

C
o

n
s
t. B

o
u

n
d

a
ry

C
o

n
s
t.

 B
o

u
n

d
a

ry

100 1211 13
space

3rdti
m

e

Figure 5: A simplified two-dimensional spacetime
diagram of time skewing with a 3-point stencil. The
cache blocks need to be executed in the order shown
to preserve dependencies. The X’s and O’s indicate
which of two arrays is being written to.

However, the blocks generated from time skewing do not
all perform the same amount of work, despite being equally
partitioned initially. For instance, the points in Figure 5
are equally divided for the first time step. However, as time
progresses, the shifting causes the cache blocks at the bound-
aries to perform unequal work. The number of points per
iteration slowly decreases for the first cache block, while it
slowly increases for the final cache block. For interior cache
blocks, the shifting does not change the number of points
per iteration, and so they all perform the same number of
stencil operations.

There are two major points of concern caused by this shift-
ing. The first is that extra cache misses may be incurred,
thereby hindering our efforts to minimize memory traffic.
Fortunately, this shift is always towards the completed por-
tion of the grid, so the needed points are often already res-
ident in cache. This helps in mitigating, if not eliminating,
the extra memory traffic.

The second concern is that the shifting limits the number
of iterations that can be performed. Specifically, some of the
cache blocks along the boundary can be shifted off the grid
as time progresses. Once a cache block is off the grid, any
further iterations will cause dependency violations. This is
seen in Figure 5, where the first cache block shifts completely

over the boundary after the third iteration. In these cases,
we can perform a time cut (as explained in Figure 2(c)) to
“restart” the algorithm. After the time cut, we can either
execute the remaining number of iterations or, if needed,
perform another time cut. Of course, this problem can also
be addressed by simply using a larger cache block.

A closer representation to our actual 3D time skewing
code is illustrated in Figure 6. By showing how the num-
ber of stencil operations performed varies within each cache
block, the diagram sheds light on how time skewing works
in higher dimensions.

Number of stencil operations performed in each cache block
Figure 6: Color coded plots of the number of stencils
operations performed on a 103 grid using four itera-
tion time skewing with 5x5x10 cache blocks. There
is one plot for each cache block. Blue halos represent
only a single stencil operation for that region, where
red blocks show the cores where the full four sten-
cils operations were performed. When processed in
order, the full 103 has completed four iterations—
i.e. a blue cell in four different cache blocks implies
one stencil performed in each cache block or four
total.

5.2 Performance
We first verified, on our Itanium 2 test machine, that per-

iteration memory traffic does in fact decrease with more it-
erations. Figure 7(a) confirms that for small block sizes,
overall memory traffic decreases drastically from the first it-
eration to the fourth. More importantly, during the fourth
iteration the memory traffic for the smaller cache blocks is
much lower than for the näıve case (the upper right corner of
the graph). Assuming the code is memory-bound, this sug-
gests that some of these block sizes will have lower running
times than the näıve case.

(a)

(b)
Figure 7: A search to find the optimal cache block size using time skewing. Each cache block’s z-dimension
(contiguous in memory) is uncut. The graphs show (a) main memory read traffic and (b) GFlop rates on
the Itanium 2 for a 2563 problem with constant boundaries. The graphs on the left show first iteration data,
while the right graphs show data for the fourth iteration.

Figure 7(b) shows that this is indeed the case. The fourth
iteration exhibits speedups of up to 60% over the näıve code.
Not surprisingly, the block sizes with the largest reductions
in memory traffic also showed the greatest improvements in
performance.

Table 5 shows how well time skewing performs for other
problem sizes on the Itanium 2. The general trend is that
the computational speedups are not as large as the decreases
in memory read traffic. This is because the problem has
now shifted from being memory bound to being computation
bound. At this point, further reductions in memory traffic
are no longer useful. However, the overall speedups are still
substantial. The computational speedup is particularly dra-
matic in the 5123 case, since the näıve case is especially slow
at this problem size. The problem is large enough so that
three planes of the source array and one plane of the target
array cannot fit into L3 cache (see [5]). Thus, the same point
in the source array needs to be brought into cache several
times during a single iteration. This is very expensive.

Time skewing addresses this problem by working with a

single cache block at a time. This effectively shrinks the size
of each plane, allowing all the iterations for a point to be
completed after bringing it into cache only once. The result
is a drastic drop in memory traffic (84%) and consequently
a large speedup in performance (1.67).

Speedup over Näıve
Problem Best Block Memory Read Computation

Size Size Traffic Rate

1283 4x4x128 0.29 1.33
2563 16x8x256 0.26 1.27
5123 16x4x512 0.16 1.67

Table 5: Time skewing for four iterations of varying
problem sizes on the Itanium 2.

Figure 8 shows the GFlop rates for the Opteron and Power5
in addition to the Itanium 2. The data shown is for the best
block size on each platform, which was determined by the
fastest running time for four iterations. As expected, the
graph indicates that for the Itanium 2 and Opteron, time

skewing produces a significant speedup over the näıve code
during later iterations.

However, compared to the aliased näıve code, time skew-
ing does not have any impact on the Power5. This is because
the time skewing code also does array aliasing. As explained
earlier, the xlc compiler generates conservative code when
the arrays are aliased, so both codes are limited by the com-
piler. By removing all array aliasing, the näıve stencil code
speeds up from 1.1 to 2.0 GFlops/s. We also attempted to
remove all aliasing from the time skewing code by inlining
the method calls, but in this case it did not help; the code
still ran at about 1.0 GFlops/s. We cannot fully explain
this– perhaps the xlc compiler is unable to optimize the ex-
tra loops involved in time skewing.

Itanium 2 Opteron Power 5
0

0.5

1

1.5

2

2.5

3

3.5

G
Fl

op
 R

at
e

1.3 1.3
1.4 1.4

2.2 2.2

0.5 0.5

0.8
1.0

1.3
1.4

1.1

2.0

1.1 1.1 1.1 1.1

Naive
Naive Unaliased
1st Iteration
2nd Iteration
3rd Iteration
4th Iteration

Figure 8: GFlop rates for time skewing, where each
platform’s best block size was determined by the
fastest running time for four iterations. This is a
2563 problem with constant boundaries. Note that
this chart shows performance per iteration, not av-
erage over all iterations.

6. EXPLICITLY BLOCKED:
SOFTWARE MANAGED MEMORY

Before implementing this stencil on a Cell SPE, we began
by examining some of the algorithmic limitations. First,
aggregate memory bandwidth for the Cell processor is an
astounding 25.6 GB/s. As each stencil operation requires at
least 8 bytes to be loaded and 8 bytes stored from DRAM,
we can expect that performance will be limited to at most
12.8 GFlop/s regardless of frequency. Second, we note that
double precision performance is fairly weak. Each adjacent
pair of stencil operations (16 flops) will require 7 SIMD float-
ing point instructions, each of which stalls the SPE for 7 cy-
cles. Thus peak performance per SPE will never surpass 1.04
GFlop/s @ 3.2 GHz. With only 8 SPEs (8.36 GFlop/s), it
will not be possible to fully utilize memory bandwidth, and
thus Cell, in double precision, will be heavily computation-
ally bound performing only a single iteration. Thus, there
is no benefit in time skewing in double precision on a sin-
gle Cell chip at even 3.2 GHz. It should be noted that in
single precision, the opposite is true. The 14x increase in
computational performance overwhelms the benefit of a 2x
decrease in memory traffic.

6.1 Local Store Blocking
Any well-performing implementation on a cacheless ar-

chitecture must be blocked for the local store size. This
paper implements a more generalized version of the block-
ing presented in [11]. In this case, six blocked planes must
be stored simultaneously within a single SPE’s local store.
Figure 9 presents a visualization of cache blocking and plane
streaming. As with the previous implementations discussed
in this paper, we chose not to cut in the unit-stride direc-
tion, and thus preserved long contiguous streams. A simple
algebraic relationship allows us to determine the maximum
dimensions of a local store block:

8bytes∗6planes∗(ZDimension+2)∗(BlockSize+2) < 224KB

For example, if the unit-stride dimension were 254, then
the maximum block size would be 16, and each plane includ-
ing ghost zones would be 256x18. We found that on Cell,
performance is most consistent and predictable if the unit
stride dimension plus ghost zones are a multiple of 16.

6.2 Register Blocking
For each phase, the stencil operation must be performed

on every point in the current local store block. Instead of
processing the plane in “pencils”, we process it in “ribbons”
where the ribbon width can easily hide any functional unit
latency. As Cell is heavily computationally bound, it is im-
perative that the inner kernel be as fast as possible. As
such we implemented it using SIMD instrinsics. This con-
stituted about 150 lines for a software pipelined four wide
ribbon that is extruded in the unit stride dimension two
elements (for SIMDization) at a time. The resultant code
requires about 56 cycles per pair of points. Although this
may sound excessive, we must remember the 49 stall cycles
consumed by double precision instructions. Thus each pair
of points only sees 7 cycles of overhead. It should be noted
that for optimal performance, register blocking necessitates
that the y-dimension of the grid be divisible by four and the
unit stride dimension be even— neither of which is unrea-
sonable.

6.3 Parallelization
Using the threaded approach to parallelization, we observe

that each local store block is completely independent and
presents no hazards aside from those between time steps.
Thus assigning batches of local store blocks to SPEs allows
for very simple and efficient parallelization on this architec-
ture. If, however, the selected maximum block dimension
leaves one or more SPEs heavily or lightly loaded, the code
will attempt to select the smallest block size (a single rib-
bon) in the hope that this will better load balance the ma-
chine. Thus for best performance, the y-dimension of the
grid should be divisible by four times the number of SPEs
the code is run on.

6.4 Performance
As unit stride dimension grows, the maximum local store

block width shrinks. However an inter-block ghost zone
must be maintained. As such the ratio of bytes transferred
to stencils performed can increase significantly. Conversely,
it should also be noted that an explicitly managed memory
allows for the elimination of cache misses associated with
writing to the target grid— i.e. one less double must be
loaded for each stencil operation. Cell performance is de-

Stream out planes to
target grid

Stream in planes
from source grid

Figure 9: Cell’s blocking strategy is designed to fa-
cilitate parallelization, as such a single domain is
blocked to fit in the local store and have no intra-
iteration dependencies. Planes are then streamed
into a queue containing the current time step, pro-
cessed, written to a queue for the next time step,
and streamed back to DRAM.

tailed in Table 6. It was clear that Cell is heavily computa-
tionally bound performing just one iteration at a time, and
the potential impact of inefficient blocking was completely
hidden by the significantly improved memory efficiency and
vastly improved memory bandwidth. We were able to run
on both a 2.4 GHz machine and a 3.2 GHz machine and
show nearly linear scaling that reinforces our assertion of
being computationally bound. It should be noted that at
3.2 GHz, each tiny, low power SPE delivers 0.92 GFlop/s,
which compares very favorably to the far larger, and power
hungry, Power5.

GFlop/s GFlop/s Read memory traffic
Problem size @2.4GHz @3.2GHz per stencil (in bytes)
126x128x128 5.36 6.94 9.29
254x256x256 5.47 7.35 9.14
510x512x64* 5.43 N/A 12.42

Table 6: Performance characteristics using 8 SPEs.
*There was insufficient memory on the prototype
blade to run the full problem, however performance
remains consistent on the simulator.

6.5 Time Skewing
Although Cell is currently computationally bound in dou-

ble precision, it clearly is not in single precision. A 4 step
time skewed version similar to the blocking algorithm de-
veloped by Sellappa and Chatterjee [9] was demonstrated
in [11]. Unlike the time skewing implementation described
earlier in this paper, the version on Cell was simplified to
allow for parallelization. In the 1D conceptualization, the
Cell version overlaps trapezoids, where the optimized ver-
sion utilizes non-overlapping parallelograms. This is less ef-
ficient as work is duplicated. Nevertheless, Cell delivers an
impressive 49.1 GFlop/s @ 2.4 GHz and a truly astounding

65.8 GFlop/s @ 3.2 GHz for single precision stencils.
Cell blades are a two chip (16 SPE) NUMA. Each chip

may access DRAM directly attached to it at 25.6 GB/s (51.2
combined), but are connected to each other via a substan-
tially slower I/O bus. Thus if memory affinity cannot be
guaranteed (i.e. a single thread per blade), effective mem-
ory bandwidth will plummet to the point where it is the
bottleneck. This however presents the opportunity to per-
form perhaps two steps of time skewing and fully utilize the
blade. This is an area for future research.

7. CONCLUSION
We explored a combination of software optimizations and

hardware features to improve the performance of stencil
computations that form the core of many scientific applica-
tions. The optimizations include cache oblivious algorithms
and (cache-aware) time skewed optimizations, both of which
improve cache reuse by merging together multiple sweeps
over a grid, thereby enabling multiple iterations of the sten-
cil to be performed on each cache-resident portion of the
grid. These optimizations may be used on blocked itera-
tive algorithms and other settings where there is no other
computation between stencil sweeps.

Itanium 2 Opteron Power 5 2.4 GHz Cell 3.2 GHz Cell
0.00

0.50

1.00

1.50

2.00

5.25

5.75

6.25

6.75

7.25

7.75

1.3

0.8

1.4

1.7

0.5

1.0
0.8

1.1

2.0

1.01.11.1

5.5

7.3
G

Fl
op

 R
at

e

Naive Unaliased (4 Iterations Average)
Cache Oblivious (4 Iterations Average)
Time Skewing (1 Iteration)
Time Skewing (4 Iterations Average)

Figure 10: GFlop rates for a 2563 problem with con-
stant boundaries. The “Time Skewing (1 Iteration)”
data is essentially space-only cache blocking.

Read Memory Traffic
Stencil Version Per Stencil (bytes)

Näıve 20.0
Cache Oblivious (4 Iter) 8.21
Time Skewed (1 Iter) 17.28
Time Skewed (4 Iter) 5.14
Cell 9.14

Table 7: Total main memory traffic per point for
näıve, cache oblivous, and time skewing on the Ita-
nium 2 as well as for Cell for a 2563 problem.

A summary of our results is presented in Figure 10. The
results confirm that the cache oblivious approach using non-
periodic boundaries is only effective at improving perfor-
mance on the Opteron. The poor results are partly due
to the compiler’s inability to generate optimized code for
the complex loop structures required by the cache oblivious
implementation. The performance problems remain despite
several layers of optimization, which include techniques to

Itanium 2 Opteron Power 5 2.4 GHz Cell 3.2 GHz Cell
0

10

20

30

40

50

60

70

80

90

100
%

 o
f A

lg
or

ith
m

ic
Pe

ak

41

24

44

54

17

34
28

37

45

23 2424

87 88
Naive Unaliased (4 Iterations Average)
Cache Oblivious (4 Iterations Average)
Time Skewing (1 Iteration)
Time Skewing (4 Iterations Average)

Figure 11: Percentage of algorithmic peak for a
2563 problem with constant boundaries. The “Time
Skewing (1 Iteration)” data is essentially space-only
cache blocking.

reduce function call overhead, eliminate modulo operations
for periodic boundaries, take advantage of prefetching, and
terminate recursion early. Cache-aware algorithms that are
explicitly blocked to match the hardware are more effec-
tive. Within a single iteration (time skewed with 1 itera-
tion), blocking is effective if three planes of the problem do
not fit in the cache. Time skewing with multiple iterations,
which can be directly compared to cache oblivious, produces
better performance overall, although on the Power5 neither
algorithm improves performance over the unaliased näıve
algorithm. Much of this is due to the xlc compiler’s inabil-
ity to infer array aliasing. With multiple iterations, time
skewing is usually effective whenever the total problem size
exceeds that of the cache. However, no speedup is seen on
the Power5, again due to conservative code generation by
the compiler.

Overall, our results indicate a surprising lack of correla-
tion between main memory traffic and wallclock run time.
Although the cache oblivious stencil algorithm reduces misses
(as seen in Table 7), it does not generally improve the run
time for non-periodic problems. Furthermore, some of the
lower-level optimizations we implemented, such as never cut-
ting the unit-stride dimension, increase memory traffic but
actually improve the time to solution. These optimization
can prove effective because they make better use of auto-
matic hardware and software prefetch, which has proven just
as important to optimizing memory performance as cache
locality on cache-based systems.

The most striking results in Figure 10 are for the Cell pro-
cessor. Cell has a higher off-chip bandwidth than the cache-
based microprocessors (nearly 2x compared to Power5), al-
though Cell cannot take full advantage of that bandwidth
due to the handicapped double precision performance of the
chip. Still, the explicit management of memory through
DMA operations on Cell proves to be a very efficient mech-
anism for optimizing memory performance. For example,
code that is written to explicitly manage all of its data move-
ment can eliminate redundant memory traffic due to cache
misses for stores. The performance of Cell relative to the
other systems is up to 7x faster and is limited by floating
point speed rather than bandwidth. In terms of percent-

age of algorithmic peak, Cell approaches an incredible 90%
of peak, as shown in Figure 11, while the best set of opti-
mizations on the cache-based architectures are only able to
achieve 54% of algorithmic peak. Thus Cell’s improved per-
formance is not just a result of higher peak memory band-
width, but is also due to the explicit control the programmer
has over memory access as well as explicit SIMDIzation via
intrinsics.

Future work will focus on developing predictive perfor-
mance models for the optimization strategies examined in
our study. These models will help us gain a deeper under-
standing of the observed performance behavior and allow us
to analytically derive optimal blocking strategies for a given
problem size and architectural specification.

8. ACKNOWLEDGMENTS
We would like to thank Nehal Desai from Los Alamos

National Labs for running our Cell code on their proto-
type 2.4 GHz machine. We would also like to thank Otto
Wohlmouth from IBM Germany for running our code on the
new 3.2 GHz Cell machines.

9. REFERENCES
[1] Applied Numerical Algorithms Group (ANAG), Lawrence

Berkeley National Laboratory, Berkeley, CA. Chombo
website. http://seesar.lbl.gov/ANAG/software.html.

[2] M. Berger and J. Oliger. Adaptive mesh refinement for
hyperbolic partial differential equations. Journal of
Computational Physics, 53:484–512, 1984.

[3] M. Frigo, C. E. Leiserson, H. Prokop, and
S. Ramachandran. Cache-oblivious algorithms (extended
abstract).

[4] M. Frigo and V. Strumpen. Evaluation of cache-based
superscalar and cacheless vector architectures for scientific
computations. In Proc. of the 19th ACM International
Conference on Supercomputing (ICS05), Boston, MA, 2005.

[5] S. Kamil, P. Husbands, L. Oliker, J. Shalf, and K. Yelick.
Impact of modern memory subsystems on cache
optimizations for stencil computations. In 3rd Annual
ACM SIGPLAN Workshop on Memory Systems
Performance, Chicago,IL, 2005.

[6] J. McCalpin and D. Wonnacott. Time skewing: A
value-based approach to optimizing for memory locality.
Technical Report DCS-TR-379, Department of Computer
Science, Rugers University, 1999.

[7] Performance Application Programming Interface.
http://icl.cs.utk.edu/papi/.

[8] H. Prokop. Cache-oblivious algorithms, June 1999. Master’s
thesis, MIT Department of Electrical Engineering and
Computer Science.

[9] S. Sellappa and S. Chatterjee. Cache-efficient multigrid
algorithms. International Journal of High Performance
Computing Applications, 18(1):115–133, 2004.

[10] Y. Song and Z. Li. New tiling techniques to improve cache
temporal locality. In Proc. ACM SIGPLAN Conference on
Programming Language Design and Implementation,
Atlanta, GA, 1999.

[11] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and
K. Yelick. The potential of the cell processor for scientific
computing. In CF ’06: Proceedings of the 3rd conference
on Computing Frontiers, pages 9–20, New York, NY, USA,
2006. ACM Press.

[12] M. E. Wolf. Improving locality and parallelism in nested
loops. PhD thesis, Stanford University, Stanford, CA, USA,
1992.

[13] D. Wonnacott. Using time skewing to eliminate idle time
due to memory bandwidth and network limitations. In
IPDPS:Interational Conference on Parallel and Distributed
Computing Systems, Cancun, Mexico, 2000.

