Performance Models for Evaluation and Automatic Tuning of Symmetric Sparse Matrix-Vector Multiply

University of California, Berkeley
Berkeley Benchmarking and Optimization Group (BeBOP)
http://bebop.cs.berkeley.edu

Benjamin C. Lee, Richard W. Vuduc, James W. Demmel, Katherine A. Yelick
University of California, Berkeley

16 August 2004
Performance Tuning Challenges

- Computational Kernels
 - Sparse Matrix-Vector Multiply (SpMV): $y = y + Ax$
 - A: Sparse matrix, symmetric (i.e., $A = A^T$)
 - x, y: Dense vectors
 - Sparse Matrix-Multiple Vector Multiply (SpMM): $Y = Y + AX$
 - X, Y: Dense matrices

- Performance Tuning Challenges
 - Sparse code characteristics
 - High bandwidth requirements (matrix storage overhead)
 - Poor locality (indirect, irregular memory access)
 - Poor instruction mix (low ratio of flops to memory operations)
 - SpMV performance less than 10% of machine peak
 - Performance depends on kernel, matrix, and architecture
Optimizations: Register Blocking (1/3)
- BCSR with uniform, aligned grid
Optimizations: Register Blocking (3/3)

- Fill-in zeros: Trade extra flops for better blocked efficiency
Optimizations: Matrix Symmetry

- Symmetric Storage
 - Assume compressed sparse row (CSR) storage
 - Store half the matrix entries (e.g., upper triangle)

- Performance Implications
 - Same flops
 - Halves memory accesses to the matrix
 - Same irregular, indirect memory accesses
 - For each stored non-zero \(A(i, j) \)
 - \(y(i) += A(i, j) * x(j) \)
 - \(y(j) += A(i, j) * x(i) \)
 - Special consideration of diagonal elements
Optimizations: Multiple Vectors

Performance Implications

- Reduces loop overhead
- Amortizes the cost of reading A for v vectors

![Diagram showing the relationship between matrices A, X, and Y.]
Optimizations: Register Usage (1/3)

- Register Blocking
 - Assume column-wise unrolled block multiply
 - Destination vector elements in registers (r)
Optimizations: Register Usage (2/3)

- Symmetric Storage
 - Doubles register usage (2r)
 - Destination vector elements for stored block
 - Source vector elements for transpose block
Optimizations: Register Usage (3/3)

- Vector Blocking
 - Scales register usage by vector width (2rv)
Evaluation: Methodology

- **Three Platforms**
 - Sun Ultra 2i, Intel Itanium 2, IBM Power 4

- **Matrix Test Suite**
 - Twelve matrices
 - Dense, Finite Element, Linear Programming, Assorted

- **Reference Implementation**
 - No symmetry, no register blocking, single vector multiplication

- **Tuning Parameters**
 - SpMM code characterized by parameters (r, c, v)
 - Register block size : $r \times c$
 - Vector width : v
Evaluation: Exhaustive Search

- **Performance**
 - 2.1x max speedup (1.4x median) from symmetry (SpMV)
 - {Symm BCSR Single Vector} vs {Non-Symm BCSR Single Vector}
 - 2.6x max speedup (1.1x median) from symmetry (SpMM)
 - {Symm BCSR Multiple Vector} vs {Non-Symm BCSR Multiple Vector}
 - 7.3x max speedup (4.2x median) from combined optimizations
 - {Symm BCSR Multiple Vector} vs {Non-Symm CSR Single Vector}

- **Storage**
 - 64.7% max savings (56.5% median) in storage
 - Savings > 50% possible when combined with register blocking
 - 9.9% increase in storage for a few cases
 - Increases possible when register block size results in significant fill
Performance Results: Sun Ultra 2i

Performance Summary – [ultra-solaris]

- Non-Symm Ref
- Symm Ref

Berkeley Benchmarking and Optimization Group
Performance Results: Sun Ultra 2i

Performance Summary – [ultra-solaris]

- Non-Symn Ref
- Symm Ref
- Non-Symn Reg
- Symm Reg

Berkeley Benchmarking and Optimization Group
Performance Results: Sun Ultra 2i

Berkeley Benchmarking and Optimization Group
Performance Results: Intel Itanium 2
Performance Results: IBM Power 4
Automated Empirical Tuning

- Exhaustive search infeasible
 - Cost of matrix conversion to blocked format

Parameter Selection Procedure

- Off-line benchmark
 - Symmetric SpMM performance for dense matrix D in sparse format
 $$\{ P_{rcv}(D) | 1 \leq r,c \leq b_{\text{max}} \text{ and } 1 \leq v \leq v_{\text{max}} \}, \text{Mflop/s}$$

- Run-time estimate of fill
 - Fill is number of stored values divided by number of original non-zeros
 $$\{ f_{rc}(A) | 1 \leq r,c \leq b_{\text{max}} \}, \text{always at least 1.0}$$

- Heuristic performance model
 - Choose (r, c, v) to maximize estimate of optimized performance
 $$\max_{rcv} \{ P_{rcv}(A) = P_{rcv}(D) / f_{rc}(A) | 1 \leq r,c \leq b_{\text{max}} \text{ and } 1 \leq v \leq \min(v_{\text{max}}, k) \}$$
Evaluation: Heuristic Search

- Heuristic Performance
 - Always achieves at least 93% of best performance from exhaustive search
 - Ultra 2i, Itanium 2
 - Always achieves at least 85% of best performance from exhaustive search
 - Power 4
Performance Results: Sun Ultra 2i

Performance Summary – [ultra-solaris]

- Non-Symmetric Ref
- Symmetric Ref
- Non-Symmetric Reg
- Symmetric Reg
- Non-Symmetric Reg mVec
- Symmetric Reg mVec
- Heuristic

Berkeley Benchmarking and Optimization Group
Performance Results: Intel Itanium 2
Performance Results: IBM Power 4

Performance Summary -- [power4-aix]
Performance Models

- Model Characteristics and Assumptions
 - Considers only the cost of memory operations
 - Accounts for minimum effective cache and memory latencies
 - Considers only compulsory misses (i.e., ignore conflict misses)
 - Ignores TLB misses

- Execution Time Model
 - Loads and cache misses
 - Analytic model (based on data access patterns)
 - Hardware counters (via PAPI)
 - Charge a_i for hits at each cache level
 - $T = (L1\ hits)\ a_1 + (L2\ hits)\ a_2 + (Mem\ hits)\ a_{mem}$
 - $T = (Loads)\ a_1 + (L1\ misses)\ (a_2 - a_1) + (L2\ misses)\ (a_{mem} - a_2)$
Evaluation: Performance Bounds

- Measured Performance vs. PAPI Bound
 - Measured performance is 68% of PAPI bound, on average
 - FEM applications are closer to bound than non-FEM matrices
Performance Results: Sun Ultra 2i
Performance Results: Intel Itanium 2
Performance Results: IBM Power 4
Conclusions

- **Matrix Symmetry Optimizations**
 - Symmetric Performance: 2.6x speedup (1.1x median)
 - Overall Performance: 7.3x speedup (4.15x median)
 - Symmetric Storage: 64.7% savings (56.5% median)
 - Cumulative performance effects

- **Automated Empirical Tuning**
 - Always achieves at least 85-93% of best performance from exhaustive search

- **Performance Modeling**
 - Models account for symmetry, register blocking, multiple vectors
 - Measured performance is 68% of predicted performance (PAPI)
Current & Future Directions

- Parallel SMP Kernels
 - Multi-threaded versions of optimizations
 - Extend performance models to SMP architectures

- Self-Adapting Sparse Kernel Interface
 - Provides low-level BLAS-like primitives
 - Hides complexity of kernel-, matrix-, and machine-specific tuning
 - Provides new locality-aware kernels
Appendices

- **Berkeley Benchmarking and Optimization Group**
 - http://bebop.cs.berkeley.edu

Appendices
Performance Results: Intel Itanium 1

![Graph showing performance results for Intel Itanium 1](image-url)