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Takeaway

HW/SW co-tuning as a new approach to HW design

Applied the new approach to 3 scienti�c computing kernels
and the Stanford Smart Memories multiprocessor

Results show e�ciency improves signi�cantly when HW
designed using co-tuning
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Will exascale happen?

. . . with the current approach

From Peter Kogge, DARPA exascale study
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At what cost?

Power-e�ciency not improving at historic rates

Peta�op systems already draw Megawatts of power

DARPA exascale study predicts > 100 Megawatts of power for
exa�op systems

From Peter Kogge, DARPA exascale study
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What is wrong with current HW design approaches?

General-purpose commodity processors in many large machines
are power-ine�cient
HW customization improves energy e�ciency

Simpler cores more power-e�cient
Intel Core2 sc: 15W@1000 MHz
Tensilica XTensa DP: .09W@600 MHz
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What is wrong with current HW design approaches?

General-purpose commodity processors in many large machines
are power-ine�cient
HW customization improves energy e�ciency

Simpler cores more power-e�cient
Intel Core2 sc: 15W@1000 MHz
Tensilica XTensa DP: .09W@600 MHz

Typical HW design space exploration

HW con�g parameters: # cores, cache/local store organization,
interconnect, DRAM latency/bandwidth, etc

Find the right balance of parameters: cores vs. cache, bandwidth
vs. peak �op rate

Benchmarks not optimized for each HW con�g considered
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What is right with current SW tuning?

Answer: auto-tuning

Automate the process of optimizing SW for a variety of
architectures

Assumption: architectures evolve ⇒ optimizations still valid

Key to portable high-performance libraries: ATLAS, OSKI,
FFTW, SPIRAL



8/29

What is right with current SW tuning?

Answer: auto-tuning

Automate the process of optimizing SW for a variety of
architectures

Assumption: architectures evolve ⇒ optimizations still valid

Key to portable high-performance libraries: ATLAS, OSKI,
FFTW, SPIRAL



8/29

What is right with current SW tuning?

Answer: auto-tuning

Automate the process of optimizing SW for a variety of
architectures

Assumption: architectures evolve ⇒ optimizations still valid

Key to portable high-performance libraries: ATLAS, OSKI,
FFTW, SPIRAL



8/29

What is right with current SW tuning?

Answer: auto-tuning

Automate the process of optimizing SW for a variety of
architectures

Assumption: architectures evolve ⇒ optimizations still valid

Key to portable high-performance libraries: ATLAS, OSKI,
FFTW, SPIRAL

Conventional SW autotuning

SW con�g parameters: register/cache block sizes, loop unroll
factor, data structures, algorithms, etc

Source code generators + parameterized routines + search heuristic

O�ine (install time), runtime tuning
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HW/SW Co-tuning: The solution
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HW/SW Co-tuning

Key idea: include SW autotuning in the loop for HW design

A rigorous systematic approach to HW design

This is also the approach taken in Green Flash where the
target application is climate modeling

Our results a�rm the e�ectiveness of co-tuning
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A simple example

Sparse matrix vector multiply performance (121K rows, nnz/row=27.3) on Stanford
Smart Memories multiprocessor

(DRAM bandwidth = 1.6 GB/s, cache/core = 64 KB)

For tuned SpMV, best #cores = 2 (same performance as 4 cores with
half the area)

For untuned SpMV, best #cores = 4 ⇒ overdesign
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Application of HW/SW co-tuning

Software: 3 kernels from scienti�c computing:

Dense matrix matrix multiplication (dense linear algebra)
7pt stencil operator (heat equation PDE)
Sparse matrix vector multiplication (sparse linear algebra)
Varying computational characteristics
⇒ pull HW parameters in di�. directions
Success of co-tuning demonstrated by application on multiple
kernels

Hardware: Stanford Smart Memories multiprocessor

Multiprocessor using Tensilica cores
Analogous to the Green Flash design which uses the same cores



14/29

The Kernels
Dense matrix matrix
multiplication (GEMM)

BC A

Dense linear algebra

High computational
intensity

Tuned code gets close
to machine peak

More cores ⇒ better
performance

2N3 �ops for
multiplying 2 N×N
matrices

12N2 bytes compulsory
memory tra�c

7-pt stencil operator on
3D grid

x 
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z 

x 

y 

z 

x 

y 

z 

do k=2,nz-1,1 

do j=2,ny-1,1 
do i=2,nx-1,1 

 uNext(i,j,k)= 

  alpha*u(i,j,k)+ 

  beta*(u(i+1,j,k)+u(i-1,j,k)+ 
        u(i,j+1,k)+u(i,j-1,k)+ 

        u(i,j,k+1)+u(i,j,k-1) 
       ) 

enddo 

enddo 
enddo 

do k=2,nz-1,1 

do j=2,ny-1,1 
do i=2,nx-1,1 

 u(i,j,k)= 

  alpha*( x(i+1,j,k)-x(i-1,j,k) )+ 

   beta*( y(i,j+1,k)-y(i,j-1,k) )+ 
  gamma*( z(i,j,k+1)-z(i,j,k-1) ) 

enddo 

enddo 

enddo 

do k=2,nz-1,1 

do j=2,ny-1,1 
do i=2,nx-1,1 

 x(i,j,k)=alpha*( u(i+1,j,k)-u(i-1,j,k) ) 

 y(i,j,k)= beta*( u(i,j+1,k)-u(i,j-1,k) ) 

 z(i,j,k)=gamma*( u(i,j,k+1)-u(i,j,k-1) ) 

enddo 
enddo 

enddo 

xy product 

read_array[ ][ ] x dimension 

write_array[ ] 

xy product write_array[ ][ ] 
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Figure 1. (a) Laplacian, (b) Divergence, and (c) Gradient stencils. Top: 3D visualization of the nearest neighbor stencil
operator. Middle: code as passed to the parser. Bottom: memory access pattern as the stencil sweeps from left to right.
Note: the color represents cartesian component of the vector fields (scalar fields are gray).

2.1 Benchmark Kernels

To show the broad utility of our framework, we select three conceptually easy-to-understand, yet deceptively difficult

to optimize stencil kernels arising from the application of the finite difference method to the Laplacian (unext ← ∇2u),

Divergence (u← ∇ ·F), and Gradient (F← ∇u) differential operators. Details of these kernels are shown in Figure 1 and

Table 1. All three operators are implemented using the nearest-neighbor central-difference method on a 3D rectahedral

block-structured grid using Jacobi’s method (out-of-place), and benchmarked on a 256×256×256 grid. Note that although

the code generator has no restrictions on data structure, for brevity, we only explore the use of the structure of arrays form

for vector fields. As described below, these kernels have such low arithmetic intensity that they are expected to be memory-

bandwidth bound, and thus deliver performance approximately equal to the product of their arithmetic intensity (AI) with

the system stream bandwidth. Note that arithmetic intensity is defined as the ratio of arithmetic operations to memory

traffic.

Table 1 presents the performance-critical information for the three stencil operators, and sets our performance expec-

4

Explicit �nite-di�erence
method for the heat
equation

Low computational
intensity, regular
memory accesses

More bandwidth ⇒
better performance

8N3 �ops on an
N×N×N grid

8N3 bytes compulsory
memory tra�c

Sparse matrix vector
multiplication (SpMV)

0 1 3 6 7 9

col idx

row start

val 10 -1 3 4 1 6 2 2 73

A in compressed sparse row format

y xA

10

-1 3

4 1 6

732

2

1 0 3 1 2 4 4 0 3

Used in PDEs, sparse
solvers

Low computational
intensity, irregular
memory accesses

More bandwidth ⇒
better performance

2 ·nnz �ops (nnz = #
nonzeros)

4 ·nnz bytes compulsory
memory tra�c
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2.1 Benchmark Kernels

To show the broad utility of our framework, we select three conceptually easy-to-understand, yet deceptively difficult

to optimize stencil kernels arising from the application of the finite difference method to the Laplacian (unext ← ∇2u),

Divergence (u← ∇ ·F), and Gradient (F← ∇u) differential operators. Details of these kernels are shown in Figure 1 and

Table 1. All three operators are implemented using the nearest-neighbor central-difference method on a 3D rectahedral

block-structured grid using Jacobi’s method (out-of-place), and benchmarked on a 256×256×256 grid. Note that although

the code generator has no restrictions on data structure, for brevity, we only explore the use of the structure of arrays form

for vector fields. As described below, these kernels have such low arithmetic intensity that they are expected to be memory-

bandwidth bound, and thus deliver performance approximately equal to the product of their arithmetic intensity (AI) with

the system stream bandwidth. Note that arithmetic intensity is defined as the ratio of arithmetic operations to memory

traffic.

Table 1 presents the performance-critical information for the three stencil operators, and sets our performance expec-
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2.1 Benchmark Kernels

To show the broad utility of our framework, we select three conceptually easy-to-understand, yet deceptively difficult

to optimize stencil kernels arising from the application of the finite difference method to the Laplacian (unext ← ∇2u),

Divergence (u← ∇ ·F), and Gradient (F← ∇u) differential operators. Details of these kernels are shown in Figure 1 and

Table 1. All three operators are implemented using the nearest-neighbor central-difference method on a 3D rectahedral

block-structured grid using Jacobi’s method (out-of-place), and benchmarked on a 256×256×256 grid. Note that although

the code generator has no restrictions on data structure, for brevity, we only explore the use of the structure of arrays form

for vector fields. As described below, these kernels have such low arithmetic intensity that they are expected to be memory-

bandwidth bound, and thus deliver performance approximately equal to the product of their arithmetic intensity (AI) with

the system stream bandwidth. Note that arithmetic intensity is defined as the ratio of arithmetic operations to memory

traffic.
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The Hardware: Stanford Smart Memories Multiprocessor

Low Power, External DDR DRAM 

crossbar / coherency 

D$ 
or 
LS 

XTensa 
Core 

D$ 
or 
LS 

XTensa 
Core 

D$ 
or 
LS 

XTensa 
Core 

D$ 
or 
LS 

XTensa 
Core 

memory controller 

Configurable Multicore Processor 

16K 
I$ 

16K 
I$ 

16K 
I$ 

16K 
I$ 

Each core has a single-precision FPU

Constant `area' of 35mm2 added to include the impact of
DRAM cost



15/29

The Hardware: Stanford Smart Memories Multiprocessor

Low Power, External DDR DRAM 

crossbar / coherency 

D$ 
or 
LS 

XTensa 
Core 

D$ 
or 
LS 

XTensa 
Core 

D$ 
or 
LS 

XTensa 
Core 

D$ 
or 
LS 

XTensa 
Core 

memory controller 

Configurable Multicore Processor 

16K 
I$ 

16K 
I$ 

16K 
I$ 

16K 
I$ 

Core power/
perf. model
from Tensilica
tools

Core
power/perf/area
model from 
Tensilica tools

Each core has a single-precision FPU

Constant `area' of 35mm2 added to include the impact of
DRAM cost



15/29

The Hardware: Stanford Smart Memories Multiprocessor

Low Power, External DDR DRAM 

crossbar / coherency 

D$ 
or 
LS 

XTensa 
Core 

D$ 
or 
LS 

XTensa 
Core 

D$ 
or 
LS 

XTensa 
Core 

D$ 
or 
LS 

XTensa 
Core 

memory controller 

Configurable Multicore Processor 

16K 
I$ 

16K 
I$ 

16K 
I$ 

16K 
I$ 

On-chip mem.
power/perf.
model from
the CACTI tool

On-chip
power/perf/area
model using
CACTI tool

Each core has a single-precision FPU

Constant `area' of 35mm2 added to include the impact of
DRAM cost



15/29

The Hardware: Stanford Smart Memories Multiprocessor

Low Power, External DDR DRAM 

crossbar / coherency 

D$ 
or 
LS 

XTensa 
Core 

D$ 
or 
LS 

XTensa 
Core 

D$ 
or 
LS 

XTensa 
Core 

D$ 
or 
LS 

XTensa 
Core 

memory controller 

Configurable Multicore Processor 

16K 
I$ 

16K 
I$ 

16K 
I$ 

16K 
I$ 

Network 
energy model
from Bill Dally's
paper

Each core has a single-precision FPU

Constant `area' of 35mm2 added to include the impact of
DRAM cost



15/29

The Hardware: Stanford Smart Memories Multiprocessor

Low Power, External DDR DRAM 

crossbar / coherency 

D$ 
or 
LS 

XTensa 
Core 

D$ 
or 
LS 

XTensa 
Core 

D$ 
or 
LS 

XTensa 
Core 

D$ 
or 
LS 

XTensa 
Core 

memory controller 

Configurable Multicore Processor 

16K 
I$ 

16K 
I$ 

16K 
I$ 

16K 
I$ 

Power model
from Micron
datasheets

Each core has a single-precision FPU

Constant `area' of 35mm2 added to include the impact of
DRAM cost



16/29

Hardware Parameters

Fixed:

Core: single-issue, 500 MHz
Cache/local store: 16 KB I-cache, cache associativity = 4,
linesize = 64 bytes
DRAM: latency = 100 core cycles

Variable:

# cores: 1/4/16
On-chip data memory type: cache/local store
Cache/local store per core: 16, 32, 64, 128 KB
DRAM bandwidth: 0.8, 1.6, 3.2 GB/s
72 HW con�gs

Baseline con�g: Fastest HW

On-chip memory type: cache
Cache per core: 128 KB
DRAM bandwidth: 3.2 GB/s
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Cache/local store per core: 16, 32, 64, 128 KB
DRAM bandwidth: 0.8, 1.6, 3.2 GB/s
72 HW con�gs

Baseline con�g: Fastest HW

On-chip memory type: cache
Cache per core: 128 KB
DRAM bandwidth: 3.2 GB/s
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Optimized Metrics

Focus on scienti�c computing apps running on large-scale
systems

Emphasize node e�ciency instead of node performance

Power e�ciency (MFlops/Watt)

Running costs
Maximize performance given a power budget

Area e�ciency (MFlops/mm2)

System cost, reliability dependent on area
Maximize performance given an area budget

Power e�ciency, area e�ciency can result in di�erent optimal
HW con�g

In general, would want to optimize a combination of power-,
area-e�ciencies
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E�ect of SW tuning on performance

DRAM bw = 1.6 GB/s, D-cache/local store = 64 KB

(CC=cache, LS=local store)

GEMM Stencil

SpMV

GEMM gains a lot from
tuning

Software-managed caches
get better performance

Bandwidth-saturation for
stencil and SpMV
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E�ect of memory bandwidth on tuned performance
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to memory bandwidth

SpMV performance
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E�ciency Improvements: GEMM
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E�ciency Improvements: GEMM

Fastest
HW

1.5x

1.2x

Each point represent a HW con�g (AE = most area e�cient,
PE = most power e�cient)

Best SW performance chosen by autotuner used for computing
e�ciencies

E�ciency improvements from SW tuning dramatic



22/29

E�ciency Improvements: Stencil
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E�ciency Improvements: Stencil
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E�ciency Improvements: Stencil
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E�ciency Improvements: Stencil
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E�ciency Improvements: SpMV
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E�ciency Improvements: SpMV
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E�ciency Improvements: SpMV
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E�ciency Improvements: SpMV
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Co-tuning for multiple kernels

Results so far �nd best HW con�g given kernel

How about an application composed of multiple kernels?

Simple case: kernels dont interact, all �ops contributed by the
given kernels
⇒ su�cient to tune kernels instead of full application

Performance/power for application on a HW con�g =
weighted performance/power of kernels on the con�g
Weights = relative contribution of di�erent kernels
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Tuning Multi-Kernel Application
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Summary of results

Baseline: SW tuning done on the fastest HW con�g

GEMM: 1.2× and 1.5× improvements in power and area
e�ciencies

Stencil: 2.4× and 3× improvements in power and area
e�ciencies

SpMV: 1.7× and 1.6× improvements in power and area
e�ciencies

Weighted combination of GEMM, stencil, SpMV:
improvements vary from 1.2× to 2.4× depending on relative
contribution
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Conclusions and Future Work

Novel approach to designing power-e�cient supercomputers

Leverage software auto-tuning to improve e�ciency
Power e�ciency improved 1.2�2.4×,
area e�ciency improved 1.5�3×
Improvements also in multi-kernel applications
Co-tuning can cut down procurement and running costs

Future work

Explore a larger HW design space
⇒ need intelligent exploration
Use FPGA-based emulation of hardware for speeding up
exploration
E�ciently co-tuning for applications with interacting kernels
Green Flash design



28/29

Conclusions and Future Work

Novel approach to designing power-e�cient supercomputers

Leverage software auto-tuning to improve e�ciency
Power e�ciency improved 1.2�2.4×,
area e�ciency improved 1.5�3×
Improvements also in multi-kernel applications
Co-tuning can cut down procurement and running costs

Future work

Explore a larger HW design space
⇒ need intelligent exploration
Use FPGA-based emulation of hardware for speeding up
exploration
E�ciently co-tuning for applications with interacting kernels
Green Flash design



29/29

Questions?



30/29

Kernel 3: Matrices

Dense 2K x 2K

Name Dimensions Descriptionspyplot

FEM /
Spheres

FEM /
Cantilever

Wind
Tunnel

QCD

FEM/Ship

Epidemiology

Circuit

Nonzeros
(nnz/row)

4.0M
(2K)

83K x 83K 6.0M
(72)

62K x 62K 4.0M
(65)

218K x 218K 11.6M
(53)

49K x 49K 1.90M
(39)

141K x 141K 3.98M
(28)

526K x 526K 2.1M
(4)

171K x 171K 959K
(6)

Dense matrix in
sparse format

FEM concentric
spheres

FEM cantilever

Pressurized
wind tunnel

Quark propagators
(QCD/LGT)

FEM Ship
section/detail

2D Markov model
of epidemic

Motorola circuit
simulation

SpMV performance
dependent on matrix
nonzero pattern

Matrices chosen to represent
di�erent applications

Dense matrix in sparse
format used for tuning

For each HW con�g, SpMV
performance = performance
of median matrix
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