A Design Methodology for Domain-Optimized

Power-Efficient Supercomputing

Marghoob Mohiyuddin, Mark Murphy, Leonid Oliker,
John Shalf, John Wawrzynek, Samuel Williams

marghoob@eecs.berkeley.edu

SC09, Nov 19, 2009

1/29

e HW/SW co-tuning as a new approach to HW design

@ Applied the new approach to 3 scientific computing kernels
and the Stanford Smart Memories multiprocessor

@ Results show efficiency improves significantly when HW
designed using co-tuning

2/29

@ Background

© Experimental Setup

© Results

@ Conclusions and Future Work

3/29

@ Background

4/29

Will exascale happen?

... with the current approach

GFlops

1E+10 4
Exa flpps e
e
1E+09 —
P s
Simplistjc
1.E+08 e
-/ Full
1 /
1E+07 - s
- J
1408 Peta ﬂo?;
/,_o‘o' ..
1E+05 e L2 ¥
el b ; H L
P R i
e +ss s
1E+04 1= ...*' ¥
. i i
1.E+03 i i
1100 11104 11108 nnz 1116 11720
e ToplORmax maeemal Rmax Leading Edge — —Rpeak Leading Edge
Ewlutionary Heawy Fully Scaled — 4 — Evolutionary Heawy Simplistically Scaled

From Peter Kogge, DARPA exascale study

5/29

At what cost?

e Power-efficiency not improving at historic rates

@ Petaflop systems already draw Megawatts of power

@ DARPA exascale study predicts > 100 Megawatts of power for
exaflop systems

1000

5 —
= 100 "
5
3
o
§
% 10 —
>
%) //
1
2005 2010 2015 202(

From Peter Kogge, DARPA exascale study
6/29

What is wrong with current HW design approaches?

@ General-purpose commodity processors in many large machines
are power-inefficient
@ HW customization improves energy efficiency

o Simpler cores more power-efficient
o Intel Core2 sc: 15WQ@1000 MHz
Tensilica XTensa DP: .09W®@600 MHz

7/29

What is wrong with current HW design approaches?

@ General-purpose commodity processors in many large machines
are power-inefficient
@ HW customization improves energy efficiency

o Simpler cores more power-efficient
o Intel Core2 sc: 15WQ@1000 MHz
Tensilica XTensa DP: .09W®@600 MHz

Typical HW design space exploration

Conventional HW design methodology

v 1
Reference Generate new; Run benchmarks Acceptable Optimized
HW config HW config. efficiency? HW config

| Estimate power]|
[re—
stimate are

@ HW config parameters: # cores, cache/local store organization,
interconnect, DRAM latency/bandwidth, etc

@ Find the right balance of parameters: cores vs. cache, bandwidth
vs. peak flop rate

@ Benchmarks not optimized for each HW config considered

4 7/29

What is right with current SW tuning?

8/29

What is right with current SW tuning?

Answer: auto-tuning

8/29

What is right with current SW tuning?

Answer: auto-tuning

@ Automate the process of optimizing SW for a variety of
architectures

e Assumption: architectures evolve = optimizations still valid

@ Key to portable high-performance libraries: ATLAS, OSKI,
FFTW, SPIRAL

8/29

What is right with current SW tuning?

Answer: auto-tuning

@ Automate the process of optimizing SW for a variety of
architectures

e Assumption: architectures evolve = optimizations still valid

@ Key to portable high-performance libraries: ATLAS, OSKI,
FFTW, SPIRAL

Conventional SW autotuning

Reference Generate new Benchmark Acceptable SW Optimized
SW config code variant code variant performance? SW config
|

@ SW config parameters: register/cache block sizes, loop unroll
factor, data structures, algorithms, etc

@ Source code generators + parameterized routines + search heuristic

@ Offline (install time), runtime tuning

8/29

HW/SW Co-tuning: The solution

Conventional HW design methodology

¥

[SEstmate areal
>{Estimate area]

Optimized
HW config

[Generate new|
code variant

Reference Benchmark Optimized
SW config code variant| SW config

9/29

HW/SW Co-tuning: The solution

Conventional HW design methodology
b

Reference (Generate new]
HW config HW config H Run benchmarks

[SlEstimate area}
>Estimate area}

[Generate new]
code variant

[Acceptable sw|
performance?

Optimized
SW config

Benchmark
code variant]

Novel HW/SW co-tuning methodology

Reference
HW/SW configs

Optimized
HW/SW configs

imate power]
—_—
imate ar

9/29

HW/SW Co-tuning

Novel HW/SW co-tuning methodology

Reference
HW/SW configs

Optimized
HW/SW configs

Generate new Generate new Benchmark [Acceptable SW Acceptable
HW config. code variant code variant performance? efficiency?

Estimate power

[rrrmewemas—
timate ar

o Key idea: include SW autotuning in the loop for HW design

10/29

HW/SW Co-tuning

Novel HW/SW co-tuning methodology

Reference
HW/SW configs

Optimized
HW/SW configs

Generate new Generate new Benchmark [Acceptable SW Acceptable
HW config. code variant code variant performance? efficiency?

Estimate power

[rrrmewemas—
timate ar

o Key idea: include SW autotuning in the loop for HW design

@ A rigorous systematic approach to HW design

10/29

HW/SW Co-tuning

Novel HW/SW co-tuning methodology

Optimized
HW/SW configs

Reference
HW/SW configs

Generate new Generate new Benchmark [Acceptable SW Acceptable
HW config. code variant code variant performance? efficiency?

Estimate power

[rrrmewemas—
timate ar

o Key idea: include SW autotuning in the loop for HW design

@ A rigorous systematic approach to HW design

@ This is also the approach taken in Green Flash where the
target application is climate modeling
o Our results affirm the effectiveness of co-tuning

10/29

A simple example

Sparse matrix vector multiply performance (121K rows, nnz/row=27.3) on Stanford
Smart Memories multiprocessor

(DRAM bandwidth = 1.6 GB/s, cache/core = 64 KB)

1.0| HM Untuned SpMV

075

051

0.25

Floating point operations/cycle

1 2 4
Number of cores

11/29

A simple example

Sparse matrix vector multiply performance (121K rows, nnz/row=27.3) on Stanford
Smart Memories multiprocessor

(DRAM bandwidth = 1.6 GB/s, cache/core = 64 KB)

1.0| HM Untuned SpMV

Best Qﬁi
075

051

0.25

Floating point operations/cycle

1 2 4
Number of cores

11/29

A simple example

Sparse matrix vector multiply performance (121K rows, nnz/row=27.3) on Stanford
Smart Memories multiprocessor

(DRAM bandwidth = 1.6 GB/s, cache/core = 64 KB)

r| E Untuned SpMV
Bl Tuned SpMV

Floating point operations/cycle

1 2 4
Number of cores

11/29

A simple example

Sparse matrix vector multiply performance (121K rows, nnz/row=27.3) on Stanford
Smart Memories multiprocessor

(DRAM bandwidth = 1.6 GB/s, cache/core = 64 KB)

1.0 | HE Untuned SpMV \

Bl Tuned SpMV
Best config

075

051

0.25

Floating point operations/cycle

1 2 4
Number of cores

@ For tuned SpMV, best #cores = 2 (same performance as 4 cores with
half the area)

@ For untuned SpMV, best #cores = 4 = overdesign y
11/29

© Experimental Setup

12/29

Application of HW/SW co-tuning

@ Software: 3 kernels from scientific computing:

Dense matrix matrix multiplication (dense linear algebra)

7pt stencil operator (heat equation PDE)

Sparse matrix vector multiplication (sparse linear algebra)
Varying computational characteristics

= pull HW parameters in diff. directions

Success of co-tuning demonstrated by application on multiple
kernels

@ Hardware: Stanford Smart Memories multiprocessor

e Multiprocessor using Tensilica cores
e Analogous to the Green Flash design which uses the same cores

13/29

The Kernels

Dense matrix matrix
multiplication (GEMM)

colidx1 0 3 1 2 :
~yal 100-1 34162 273

@ Dense linear algebra

@ High computational
intensity

@ Tuned code gets close
to machine peak

@ More cores = better
performance

@ 2N3 flops for
multiplying 2 N x N
matrices

@ 12N? bytes compulsory
memory traffic

A in compressed sparse row format

14/29

The Kernels

7-pt stencil operator on
3D grid

colidx1 0 3 1 2 :
~yal 10-1 34162 273

@ Explicit finite-difference
method for the heat
equation

@ Low computational
intensity, regular
memory accesses

@ More bandwidth =
better performance

@ 8N3 flops on an
Nx NxN grid

@ 8N3 bytes compulsory
memory traffic

A in compressed sparse row format

14/29

The Kernels

Sparse matrix vector
multiplication (SpMV)

A in compressed sparse row format

@ Used in PDEs, sparse
solvers

@ Low computational
intensity, irregular
memory accesses

@ More bandwidth =
better performance

@ 2.nnz flops (nnz = #
nonzeros)

@ 4.nnz bytes compulsory
memory traffic

14/29

The Kernels

Dense matrix matrix 7-pt stencil operator on Sparse matrix vector

multiplication (GEMM) 3D grid multiplication (SpMV)
; . 41 ! 6 X
i X 2 73

Dense linear algebra

@ High computational
intensity

@ Tuned code gets close
to machine peak

@ More cores = better
performance

@ 2N3 flops for
multiplying 2 N x N
matrices

@ 12N? bytes compulsory

memory traffic

@ Explicit finite-difference
method for the heat
equation

Low computational
intensity, regular
memory accesses
More bandwidth =
better performance
8N3 flops on an

Nx NxN grid

8N3 bytes compulsory
memory traffic

A in compressed sparse row format

@ Used in PDEs, sparse
solvers
@ Low computational
intensity, irregular
memory accesses
More bandwidth =
better performance
2-nnz flops (nnz = #
nonzeros)
4. nnz bytes compulsory
memory traffic

v

14/29

The Hardware: Stanford Smart Memories Multiprocessor

ble Multico
: P | o \ f
il XTensa i 1| XTensa || il XTensa |i i| XTensa
Core || i Core | i| Core | Core

: D$E§ DS$ |
i i[eK]| or | i[1eK]| or |
L Ls| i LS|

crossbar / coherency I

14

| memory controller |

Low Power, External DDR DRAM

@ Each core has a single-precision FPU

e Constant ‘area’ of 35mm? added to include the impact of
DRAM cost

15/29

The Hardware: Stanford Smart Memories Multiprocessor

ble Multico
| XTensa é | XTensa é il XTensa é E XTensa i
Core | il Core [i Core | il Core N
: } ; e o .' ' \

- DS | DS | | | Core

. i[16K|| or | i|16K|| or | :

= LS| i LS| : power/perf/area
T " model from
crossbar / coherency | Tensilica tools

14

| memory controller I

Low Power, External DDR DRAM

@ Each core has a single-precision FPU

e Constant ‘area’ of 35mm? added to include the impact of
DRAM cost

15/29

The Hardware: Stanford Smart Memories Multiprocessor

ble Multico
! ! !) !)
il XTensa i 1| XTensa || il XTensa |i || XTensa |
Core || i Core | i| Core | Core

i i[eK]| or | i[1eK]| or |

osf | | [os]

Lsf LS}

crossbar / coherency

14

memory controller

%/;'On—chip

power/perf/area
model using
CACTI tool

Low Power, External DDR DRAM

@ Each core has a single-precision FPU

e Constant ‘area’ of 35mm? added to include the impact of
DRAM cost

15/29

The Hardware: Stanford Smart Memories Multiprocessor

ble Multico
| XTensa é | XTensa é | XTensa é il XTensa i
Core | il Core E il Core E il Core
0 D$ i§ D$
i i[eK]| or | i[1eK]| or |
Ls| Ls|
T -)'Network
crossbar / coherency energy_ m0d6|‘
11 from Bill Dally's
paper

| memory controller I

Low Power, External DDR DRAM

@ Each core has a single-precision FPU
e Constant ‘area’ of 35mm? added to include the impact of
DRAM cost
15/29

The Hardware: Stanford Smart Memories Multiprocessor

ble Multico
i) |) | \ g
il XTensa i 1| XTensa || il XTensa |i i| XTensa
Core || i Core | i| Core | Core

i i[eK]| or | i[1eK]| or |

osf | | [os]

Lsf LS}

crossbar / coherency

14

memory controller

Low Power, External DDR DRAM

R

@ Each core has a single-precision FPU

e Constant ‘area’ of 35mm? added to include the impact of
DRAM cost

Power model
rom Micron
datasheets

15/29

Hardware Parameters

o Fixed:
o Core: single-issue, 500 MHz
o Cache/local store: 16 KB I-cache, cache associativity = 4,
linesize = 64 bytes
o DRAM: latency = 100 core cycles
e Variable:
cores: 1/4/16
On-chip data memory type: cache/local store
Cache/local store per core: 16, 32, 64, 128 KB
DRAM bandwidth: 0.8, 1.6, 3.2 GB/s
72 HW configs

16/29

Hardware Parameters

o Fixed:
o Core: single-issue, 500 MHz
o Cache/local store: 16 KB I-cache, cache associativity = 4,
linesize = 64 bytes
o DRAM: latency = 100 core cycles
e Variable:
cores: 1/4/16
On-chip data memory type: cache/local store
Cache/local store per core: 16, 32, 64, 128 KB
DRAM bandwidth: 0.8, 1.6, 3.2 GB/s
72 HW configs

e Baseline config: Fastest HW

e On-chip memory type: cache
o Cache per core: 128 KB
o DRAM bandwidth: 3.2 GB/s

16/29

© Results

17/29

Optimized Metrics

@ Focus on scientific computing apps running on large-scale
systems

o Emphasize node efficiency instead of node performance
e Power efficiency (MFlops/Watt)

e Running costs
e Maximize performance given a power budget

o Area efficiency (MFlops/mm?)
e System cost, reliability dependent on area
o Maximize performance given an area budget

o Power efficiency, area efficiency can result in different optimal
HW config

@ In general, would want to optimize a combination of power-,
area-efficiencies

18/29

Effect of SW tuning on performance

DRAM bw = 1.6 GB/s, D-cache/local store = 64 KB
(CC=cache, LS=local store)

GEMM Stencil
9000 gemm: bw=1.6 GB/s, dc/ls=64K stencil: bw=1.6 GB/s, dc/ls=64K
8000| mm Untuned Untuned
g7 z 1000
86000 §
w
S 5000 S 800
o 0]
) 4000 g 600
g 3000 2 40
i 2000 [
1000 200
e 1s cC_Ls oC_ Ls cc_Ls CC_Ls cC LS
1 cores 4 cores 16 cores 1 cores 4 cores 16 cores

SpMV

spmv: bw=1.6 GB/s, dc/ls=64K

Flop rate (MFlop/s)

19/29

Effect of SW tuning on performance

DRAM bw = 1.6 GB/s, D-cache/local store = 64 KB

(CC=cache, LS=local store)
GEMM Stencil

gemm: bw=1.6 GB/s, dc/ls=64K tencil: bw=1.6 GB/s, dc/ls=64K

9000 1400
8000 1200
% 7000 @
Q 3 1000
56000 2
w
= 5000 S 80
£ 4000 2 600
& 3000 a
53 & 400
w

I 2000
1000

N
=1
3

CC Ls CC Ls
1 cores 4 cores

SpMV

spmv: bw=1.6 GB/s, dc/ls=64K

Ls °%cc s cC Ls
cores 1 cores 4 cores

=0

o0
ol
(o]

LS
cores

o

Flop rate (MFlop/s)

19/29

Effect of SW tuning on performance

DRAM bw = 1.6 GB/s, D-cache/local store = 64 KB

(CC=cache, LS=local store)
GEMM Stencil

gemm: bw=1.6 GB/s, dc/ls=64K

stencil: bw=1.6 GB/s, dc/ls=64K

1400
Tuned
Untuned 1200
@
G 1000
k)
< s00
Q
g 600
& 400
w
200

CC Ls CC Ls LS 0 CC Ls CC LS
1 cores 4 cores cores 1 cores 4 cores

3
ol
(o]

LS
cores

o

SpMV

spmv: bw=1.6 GB/s, dc/ls=64K

Untuned

@ GEMM gains a lot from
tuning

@ Software-managed caches
get better performance

@ Bandwidth-saturation for
stencil and SpMV

Flop rate (MFlop/s)

19/29

Effect of memory bandwidth on tuned performance

D-cache/local store = 64 KB (CC=cache, LS=local store)

GEMM Stencil
9000 gemm: dc/ls=64K 3000 stencil: dc/ls=64K
8000 2500
3 70001| 1 0.8 GB/s @ 1 0.8 GB/s
8 6000 & 2000
L s
% 5000 5 1500
£ 4000 £
& 3000 & 1000
<} K]
[w
iC 2000 500
1000
°Cc s CC_ LS cC LS e s CC LS cc LS
1 cores 4 cores 16 cores 1 cores 4 cores 16 cores
SpMV
spmv: dc/ls=64K
1000
@ %0 @ 0.8 GB/s
g
o
L 600
=
2
T 400
Q
")
L 200 |_| m
0

cC_Ls CC_ LS cC LS
1 cores 4 cores 16 cores

20/29

Effect of memory bandwidth on tuned performance

D-cache/local store = 64 KB (CC=cache, LS=local store)

gemm: dc/ls=64K
9000
8000F 1= 1.6 GB/s
% 7000(| 3 0.8 GB/s
86000
w
S 5000
£ 4000
I
& 3000
o
iC 2000
1000
°Cc s CC_ LS cC LS
1 cores 4 cores 16 cores
SpMV
spmv: dc/ls=64K
1000
1.6 GB/s
@ %0 = 0.8 GB/s
g
o
L 600
=
o — —
© 400 —
Q
")
L 200
CC LS CC LS cC LS
1 cores 4 cores 16 cores

3000
. 2500

2000

MFlop/s;

51500

1000

Flop rai

500

Stencil
stencil: dc/ls=64K

1.6 GB/s
1 0.8 GB/s

CC LS CC LS
1 cores 4 cores

cC LS
16 cores

20/29

Effect of memory bandwidth on tuned performance

D-cache/local store = 64 KB (CC=cache, LS=local store)

GEMM Stencil
9000 gemm: dc/ls=64K 3000 stencil: dc/ls=64K
8000 I 3.2 GB/s B 3.2 GB/s
1.6 GB/s 2500 =3 1.6 GB/s
@ 7000 3 0.8 GB/s @ &1 0.8 GB/s
8 6000 & 2000
L s
% 5000 5 1500
£ 4000 £
& 3000 & 1000
o 9
[[
i 2000 00
1000
% s cC_ s cc s cC_ s cC_ s cCc_ s
1 cores 4 cores 16 cores 1 cores 4 cores 16 cores
SpMV

spmv: dc/ls=64K
= 3.2 GB/s
= 1.6 GB/s
8001 = 0.8 GB/s
N -.

CC LS CC Ls cC LS
1 cores 4 cores 16 cores

Flop rate (MFlop/s)

20/29

Effect of memory bandwidth on tuned performance

9000

D-cache/local store = 64 KB (CC=cache, LS=local store)

GEMM

gemm: dc/ls=64K

I 3.2 GB/s
80001 9 1.6 GB/s
3 70007| 3 0.8 GB/s
8 6000
w
= 5000
£ 4000
[
& 3000
o
i 2000
1000
°"5c s cC_ s oG Ls
1 cores 4 cores 16 cores
SpMV
spmv: dc/ls=64K
1000
B 3.2 GB/s
3 1.6 GB/s
@ %1 D 0.8 GBIs
a
k)
L 600
=3
o
T 400
Q
k)
W 200
CC_ LS cC_Ls cC LS
1 cores 4 cores 16 cores

3000
. 2500

2000

MFlop/s;

© 1500

1000

Flop ra

500

Stencil
stencil: dc/ls=64K
B 3.2 GB/s
1.6 GB/s
1 0.8 GB/s
CC LS CC LS cC LS
1 cores 4 cores 16 cores
GEMM least sensitive

to memory bandwidth

SpMV performance
scales with memory
bandwidth for enough
cores

20/29

Efficiency Improvements: GEMM

(=2}
o

c?E‘
140}
S
£
L 1201
S
o
L 100r
=3
= 80
2
T 6o
Q
& 40t
©
8 20}
—
< 0 L L L L
0 1000 2000 3000 4000 500!

Power efficiency (MFlop/s/Watt)

@ Each point represent a HW config (AE = most area efficient,
PE = most power efficient)
e Best SW performance chosen by autotuner used for computing
efficiencies

e Efficiency improvements from SW tuning dramatic)
21/29

Efficiency Improvements: GEMM

(=2}
o

& v ® AE a4a Untuned cache
S 140+ v V Tuned cache
E vvy Local store
g_mo— v M vV
[e) v
o 1001
= v, v
= 80 v Y ye®
3 v PE
S eof v
S vV Ww v
= 401
()
w ovw

8 20}
<

0

7000 2000 3000 2000 5001
Power efficiency (MFlop/s/Watt)

o

@ Each point represent a HW config (AE = most area efficient,
PE = most power efficient)
e Best SW performance chosen by autotuner used for computing
efficiencies

e Efficiency improvements from SW tuning dramatic)
21/29

Efficiency Improvements: GEMM

(=2}
o

v ® AE A4aa Untuned cache
140} v Vv Tuned cache
vvy Local store
120} v v v v

v

B (o2} © o
o o o o

Area efficiency (MFlop/s/mm?)

o
o

7000 2000 3000 2000 5001
Power efficiency (MFlop/s/Watt)

@ Each point represent a HW config (AE = most area efficient,
PE = most power efficient)
e Best SW performance chosen by autotuner used for computing
efficiencies

e Efficiency improvements from SW tuning dramatic)
21/29

Efficiency Improvements: GEMM

o
o

& v AE a4a Untuned cache
S 140+ v V Tuned cache
g vvy Local store
D q20t \ v v
Q.
9o
E 100 Fastest O\ 1.2x
pg: LR 220,
8 v PE
S sor v
S vy v
= 401
()
w vw
8 20}
= vV
< 0 L L L L
0 1000 2000 3000 4000 500

Power efficiency (MFlop/s/Watt)

@ Each point represent a HW config (AE = most area efficient,
PE = most power efficient)
e Best SW performance chosen by autotuner used for computing
efficiencies

e Efficiency improvements from SW tuning dramatic)
21/29

Efficiency Improvements: Stencil

[o2]
o

&g 4A4a Untuned cache
€ 50t
=~
2
g
Qo
O 40f
L
2
>‘30'
(8]
3
§ 201 N
= A
() A
© 10} t
@ 'y A ‘
=
<< A AA
00 100 200 300 400 500 600 700 80C

Power efficiency (MFlop/s/Watt)

@ Each point represent a HW config

e Best SW performance chosen by autotuner used for computing
efficiencies

22/29

Efficiency Improvements: Stencil

A4a Untuned cache
Tuned cache
wvy Local store

[o2]
o

2
p

IS
=)

Area efficiency (MFlop/s/mm?)

v vwey w
v
20} v
: " ®
10 # S 4 PE
9 Y 3 ’ w w
0 A A ‘ ‘ ‘ ‘ ‘
(] 100 200 300 400 500 600 700 80C

Power efficiency (MFlop/s/Watt)

@ Each point represent a HW config

e Best SW performance chosen by autotuner used for computing
efficiencies

22/29

Efficiency Improvements: Stencil

A4a Untuned cache
Tuned cache

[o2]
o

&
£

50 Al vvy Local st
S @V vvy Local store
S
O 40} M
L
= 27 v
530’
c 4 v %
() v v
8 20} Y
= H ”s ®
D .
% 1 ; PE
o L w Cw
o
< 0 A A ‘ ‘ ‘ ‘ ‘

0 100 200 300 400 500 600 700 80C

Power efficiency (MFlop/s/Watt)

@ Each point represent a HW config

e Best SW performance chosen by autotuner used for computing
efficiencies

22/29

Efficiency Improvements: Stencil

aas Untuned cache
Tuned cache
vvy Local store

o2}
o

o
o

IS
=)

R
£
IS
=~
£
o3
Ke)
i
S 3x
5‘30—
c vwe ¥
2 20 Fastegt HW v
o aste;t v =
> © 2 T
A .
o 10} 2 ¥4 PE
[35] v
] D w v
(3
< | edulee®e 0000
0 100 200 300 400 500 600 700 80C

Power efficiency (MFlop/s/Watt)

@ Each point represent a HW config

e Best SW performance chosen by autotuner used for computing
efficiencies

22/29

Efficiency Improvements: SpMV

n
o

& 4A4a Untuned cache
£
620*
g
Qo
Ke)
L 450
2
>
(8]
c 10t
RS
o
: 4

5,
© + #

' 'y

=
- S Y W

0 50 100 150 200 250 30C

Power efficiency (MFlop/s/Watt)

@ Each point represent a HW config

e Best SW performance chosen by autotuner used for computing
efficiencies

23/29

Efficiency Improvements: SpMV

25 T -
& a4s Untuned cache
1S Tuned cache
g 20 @ AEvvv Local store
2
3
[e] »
L5 v
=3 ML
>
(8]
< 107 i“
2 L}
2 v
= 2 v % @
O 5
o t 4 v 3V
o U Y
<, atst ‘ ‘ ‘

0 50 100 150 200 250 30C

Power efficiency (MFlop/s/Watt)

@ Each point represent a HW config

e Best SW performance chosen by autotuner used for computing
efficiencies

23/29

Efficiency Improvements: SpMV

n
o

& a4s Untuned cache
1S Tuned cache
g 20 @ AEvvv Local store
2
3
o »
L 450 v
E 2.6 v
>
(8]
< 107 i“
Q@ ¥ ¥y
Qo A v R/
= v
© 5 ;‘ 9 v 1 o
8 PE
2 A A
<, atst ‘ ‘ ‘
0 50 100 150 200 250 30C

Power efficiency (MFlop/s/Watt)

@ Each point represent a HW config

e Best SW performance chosen by autotuner used for computing
efficiencies

23/29

Efficiency Improvements: SpMV

A4as Untuned cache
Tuned cache

n
o

&
€
£ 20 AE vvy Local store
XY
S
K]
L 15
g/ ’
v
Py Fastest
c 10
ks HY
Q 4 v
o ‘)
O 5 A
3 VM A =
o A A
< o afas s ‘ ‘ ‘
0 50 100 150 200 250 30¢

Power efficiency (MFlop/s/Watt)

@ Each point represent a HW config

e Best SW performance chosen by autotuner used for computing
efficiencies

23/29

Co-tuning for multiple kernels

@ Results so far find best HW config given kernel

24/29

Co-tuning for multiple kernels

@ Results so far find best HW config given kernel

@ How about an application composed of multiple kernels?

24/29

Co-tuning for multiple kernels

@ Results so far find best HW config given kernel
@ How about an application composed of multiple kernels?
@ Simple case: kernels dont interact, all flops contributed by the

given kernels
= sufficient to tune kernels instead of full application
o Performance/power for application on a HW config =
weighted performance/power of kernels on the config
e Weights = relative contribution of different kernels

24/29

Tuning Multi-Kernel Application

= LS, 4 CC/LS, #Cores 4000
2 'l64,08

Q9

D os CC/LS, BW

= Size (KB) (GB/5) 2000 .
o Legend ©
= 06 =
@\ %
s 1000 &
= 0.4 K}
5 =
C

002 500

-—

3]

©

I O

0.4 0.6 0.8
Fraction of flops from SpMV

Each box represents the most power-efficient HW config for the given
relative weights of kernels

25/29

Summary of results

@ Baseline: SW tuning done on the fastest HW config
o GEMM: 1.2x and 1.5x improvements in power and area
efficiencies

@ Stencil: 2.4x and 3x improvements in power and area
efficiencies

@ SpMV: 1.7x and 1.6x improvements in power and area
efficiencies

o Weighted combination of GEMM, stencil, SpMV:
improvements vary from 1.2x to 2.4x depending on relative
contribution

26/29

@ Conclusions and Future Work

27/29

Conclusions and Future Work

o Novel approach to designing power-efficient supercomputers
o Leverage software auto-tuning to improve efficiency
o Power efficiency improved 1.2-2.4x,
area efficiency improved 1.5-3x
o Improvements also in multi-kernel applications
o Co-tuning can cut down procurement and running costs

28/29

Conclusions and Future Work

o Novel approach to designing power-efficient supercomputers
o Leverage software auto-tuning to improve efficiency
o Power efficiency improved 1.2-2.4x,
area efficiency improved 1.5-3x
o Improvements also in multi-kernel applications
o Co-tuning can cut down procurement and running costs
@ Future work
o Explore a larger HW design space
= need intelligent exploration
o Use FPGA-based emulation of hardware for speeding up
exploration
o Efficiently co-tuning for applications with interacting kernels
o Green Flash design

28/29

29/29

Kernel 3: Matrices

Circuit 171K x 171K

(6)

Nonzeros
spyplot Name Dimensions (nnz/row) Description
Dense 2K x 2K 4.0M Dense matrix in
(2K) sparse format
AN FEM / 83K xg3k OOM FEM concentric
Spheres (72) spheres
FEM/ 4.0M "
Cantilever 02K X 62K (65) FEM cantilever
Wind 218K x 218K 11-6M Pressurized
) Tunnel (53) wind tunnel
N
1.90M Quark propagators
‘ Qcp 49K xagk o0 i
A
) 3.98M FEM Ship
FEM/Ship 141K x 141K (28) section/detail
Epidemiology 526K x 526K 2&12" 2D Markow model
of epidemic
959K Motorola circuit

simulation

SpMV performance
dependent on matrix
nonzero pattern

Matrices chosen to represent
different applications

Dense matrix in sparse
format used for tuning

For each HW config, SpMV

performance = performance
of median matrix

30/29

	Background
	Experimental Setup
	

	Results
	Conclusions and Future Work
	Appendix

