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e HW/SW co-tuning as a new approach to HW design

@ Applied the new approach to 3 scientific computing kernels
and the Stanford Smart Memories multiprocessor

@ Results show efficiency improves significantly when HW
designed using co-tuning
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@ Background

© Experimental Setup

© Results

@ Conclusions and Future Work
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@ Background
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Will exascale happen?

... with the current approach
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At what cost?

e Power-efficiency not improving at historic rates

@ Petaflop systems already draw Megawatts of power

@ DARPA exascale study predicts > 100 Megawatts of power for
exaflop systems

1000

5 —
= 100 "
5
3
o
§
% 10 —
>
%) //
1
2005 2010 2015 202(

From Peter Kogge, DARPA exascale study
6/29



What is wrong with current HW design approaches?

@ General-purpose commodity processors in many large machines
are power-inefficient
@ HW customization improves energy efficiency

o Simpler cores more power-efficient
o Intel Core2 sc: 15WQ@1000 MHz
Tensilica XTensa DP: .09W®@600 MHz
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What is wrong with current HW design approaches?

@ General-purpose commodity processors in many large machines
are power-inefficient
@ HW customization improves energy efficiency

o Simpler cores more power-efficient
o Intel Core2 sc: 15WQ@1000 MHz
Tensilica XTensa DP: .09W®@600 MHz

Typical HW design space exploration

Conventional HW design methodology

v 1
Reference Generate new; Run benchmarks Acceptable Optimized
HW config HW config. efficiency? HW config

| Estimate power]|
[ re—
stimate are

@ HW config parameters: # cores, cache/local store organization,
interconnect, DRAM latency/bandwidth, etc

@ Find the right balance of parameters: cores vs. cache, bandwidth
vs. peak flop rate

@ Benchmarks not optimized for each HW config considered
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What is right with current SW tuning?
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What is right with current SW tuning?

Answer: auto-tuning
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What is right with current SW tuning?

Answer: auto-tuning

@ Automate the process of optimizing SW for a variety of
architectures

e Assumption: architectures evolve = optimizations still valid

@ Key to portable high-performance libraries: ATLAS, OSKI,
FFTW, SPIRAL
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What is right with current SW tuning?

Answer: auto-tuning

@ Automate the process of optimizing SW for a variety of
architectures

e Assumption: architectures evolve = optimizations still valid

@ Key to portable high-performance libraries: ATLAS, OSKI,
FFTW, SPIRAL

Conventional SW autotuning

Reference Generate new Benchmark Acceptable SW Optimized
SW config code variant code variant performance? SW config
|

@ SW config parameters: register/cache block sizes, loop unroll
factor, data structures, algorithms, etc

@ Source code generators + parameterized routines + search heuristic

@ Offline (install time), runtime tuning
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HW/SW Co-tuning: The solution

Conventional HW design methodology

¥

[ SEstmate areal
>{Estimate area]

Optimized
HW config

[Generate new|
code variant

Reference Benchmark Optimized
SW config code variant| SW config
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HW/SW Co-tuning: The solution

Conventional HW design methodology
b

Reference (Generate new]
HW config HW config H Run benchmarks

[ SlEstimate area}
>Estimate area}

[Generate new]
code variant

[Acceptable sw|
performance?

Optimized
SW config

Benchmark
code variant]

Novel HW/SW co-tuning methodology

Reference
HW/SW configs

Optimized
HW/SW configs

imate power]
—_—
imate ar

9/29



HW/SW Co-tuning

Novel HW/SW co-tuning methodology

Reference
HW/SW configs

Optimized
HW/SW configs

Generate new Generate new Benchmark [Acceptable SW Acceptable
HW config. code variant code variant performance? efficiency?

Estimate power

[ rrrmewemas—
timate ar

o Key idea: include SW autotuning in the loop for HW design
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HW/SW Co-tuning

Novel HW/SW co-tuning methodology

Reference
HW/SW configs

Optimized
HW/SW configs

Generate new Generate new Benchmark [Acceptable SW Acceptable
HW config. code variant code variant performance? efficiency?

Estimate power

[ rrrmewemas—
timate ar

o Key idea: include SW autotuning in the loop for HW design

@ A rigorous systematic approach to HW design
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HW/SW Co-tuning

Novel HW/SW co-tuning methodology

Optimized
HW/SW configs

Reference
HW/SW configs

Generate new Generate new Benchmark [Acceptable SW Acceptable
HW config. code variant code variant performance? efficiency?

Estimate power

[ rrrmewemas—
timate ar

o Key idea: include SW autotuning in the loop for HW design

@ A rigorous systematic approach to HW design

@ This is also the approach taken in Green Flash where the
target application is climate modeling
o Our results affirm the effectiveness of co-tuning
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A simple example

Sparse matrix vector multiply performance (121K rows, nnz/row=27.3) on Stanford
Smart Memories multiprocessor

(DRAM bandwidth = 1.6 GB/s, cache/core = 64 KB)

1.0| HM Untuned SpMV

075

051

0.25

Floating point operations/cycle

1 2 4
Number of cores
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A simple example

Sparse matrix vector multiply performance (121K rows, nnz/row=27.3) on Stanford
Smart Memories multiprocessor

(DRAM bandwidth = 1.6 GB/s, cache/core = 64 KB)
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A simple example

Sparse matrix vector multiply performance (121K rows, nnz/row=27.3) on Stanford
Smart Memories multiprocessor

(DRAM bandwidth = 1.6 GB/s, cache/core = 64 KB)

1.0 | HE Untuned SpMV \

Bl Tuned SpMV
Best config

075

051

0.25

Floating point operations/cycle

1 2 4
Number of cores

@ For tuned SpMV, best #cores = 2 (same performance as 4 cores with
half the area)

@ For untuned SpMV, best #cores = 4 = overdesign y
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© Experimental Setup

12/29



Application of HW/SW co-tuning

@ Software: 3 kernels from scientific computing:

Dense matrix matrix multiplication (dense linear algebra)

7pt stencil operator (heat equation PDE)

Sparse matrix vector multiplication (sparse linear algebra)
Varying computational characteristics

= pull HW parameters in diff. directions

Success of co-tuning demonstrated by application on multiple
kernels

@ Hardware: Stanford Smart Memories multiprocessor

e Multiprocessor using Tensilica cores
e Analogous to the Green Flash design which uses the same cores
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The Kernels

Dense matrix matrix
multiplication (GEMM)

colidx1 0 3 1 2 :
~yal 100-1 34162 273

@ Dense linear algebra

@ High computational
intensity

@ Tuned code gets close
to machine peak

@ More cores = better
performance

@ 2N3 flops for
multiplying 2 N x N
matrices

@ 12N? bytes compulsory
memory traffic

A in compressed sparse row format
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The Kernels

7-pt stencil operator on
3D grid

colidx1 0 3 1 2 :
~yal 10-1 34162 273

@ Explicit finite-difference
method for the heat
equation

@ Low computational
intensity, regular
memory accesses

@ More bandwidth =
better performance

@ 8N3 flops on an
Nx NxN grid

@ 8N3 bytes compulsory
memory traffic

A in compressed sparse row format
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The Kernels

Sparse matrix vector
multiplication (SpMV)

A in compressed sparse row format

@ Used in PDEs, sparse
solvers

@ Low computational
intensity, irregular
memory accesses

@ More bandwidth =
better performance

@ 2.nnz flops (nnz = #
nonzeros)

@ 4.nnz bytes compulsory
memory traffic
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The Kernels

Dense matrix matrix 7-pt stencil operator on Sparse matrix vector

multiplication (GEMM) 3D grid multiplication (SpMV)
; . 41 ! 6 X
i X 2 73

Dense linear algebra

@ High computational
intensity

@ Tuned code gets close
to machine peak

@ More cores = better
performance

@ 2N3 flops for
multiplying 2 N x N
matrices

@ 12N? bytes compulsory

memory traffic

@ Explicit finite-difference
method for the heat
equation

Low computational
intensity, regular
memory accesses
More bandwidth =
better performance
8N3 flops on an

Nx NxN grid

8N3 bytes compulsory
memory traffic

A in compressed sparse row format

@ Used in PDEs, sparse
solvers
@ Low computational
intensity, irregular
memory accesses
More bandwidth =
better performance
2-nnz flops (nnz = #
nonzeros)
4. nnz bytes compulsory
memory traffic

v
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The Hardware: Stanford Smart Memories Multiprocessor

ble Multico
: P | o \ f
il XTensa i 1| XTensa || il XTensa |i i| XTensa
Core || i Core | i| Core | Core

: D$E§ DS$ |
i i[eK]| or | i[1eK]| or |
L Ls| i LS|

crossbar / coherency I

14

| memory controller |

Low Power, External DDR DRAM

@ Each core has a single-precision FPU

e Constant ‘area’ of 35mm? added to include the impact of
DRAM cost
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The Hardware: Stanford Smart Memories Multiprocessor
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@ Each core has a single-precision FPU

e Constant ‘area’ of 35mm? added to include the impact of
DRAM cost
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The Hardware: Stanford Smart Memories Multiprocessor
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| memory controller I

Low Power, External DDR DRAM

@ Each core has a single-precision FPU
e Constant ‘area’ of 35mm? added to include the impact of
DRAM cost
15/29



The Hardware: Stanford Smart Memories Multiprocessor
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@ Each core has a single-precision FPU

e Constant ‘area’ of 35mm? added to include the impact of
DRAM cost
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Hardware Parameters

o Fixed:
o Core: single-issue, 500 MHz
o Cache/local store: 16 KB I-cache, cache associativity = 4,
linesize = 64 bytes
o DRAM: latency = 100 core cycles
e Variable:
# cores: 1/4/16
On-chip data memory type: cache/local store
Cache/local store per core: 16, 32, 64, 128 KB
DRAM bandwidth: 0.8, 1.6, 3.2 GB/s
72 HW configs
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Hardware Parameters

o Fixed:
o Core: single-issue, 500 MHz
o Cache/local store: 16 KB I-cache, cache associativity = 4,
linesize = 64 bytes
o DRAM: latency = 100 core cycles
e Variable:
# cores: 1/4/16
On-chip data memory type: cache/local store
Cache/local store per core: 16, 32, 64, 128 KB
DRAM bandwidth: 0.8, 1.6, 3.2 GB/s
72 HW configs

e Baseline config: Fastest HW

e On-chip memory type: cache
o Cache per core: 128 KB
o DRAM bandwidth: 3.2 GB/s
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© Results
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Optimized Metrics

@ Focus on scientific computing apps running on large-scale
systems

o Emphasize node efficiency instead of node performance
e Power efficiency (MFlops/Watt)

e Running costs
e Maximize performance given a power budget

o Area efficiency (MFlops/mm?)
e System cost, reliability dependent on area
o Maximize performance given an area budget

o Power efficiency, area efficiency can result in different optimal
HW config

@ In general, would want to optimize a combination of power-,
area-efficiencies
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Effect of SW tuning on performance

DRAM bw = 1.6 GB/s, D-cache/local store = 64 KB
(CC=cache, LS=local store)

GEMM Stencil
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Flop rate (MFlop/s)
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Effect of SW tuning on performance

DRAM bw = 1.6 GB/s, D-cache/local store = 64 KB

(CC=cache, LS=local store)
GEMM Stencil
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@ GEMM gains a lot from
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Effect of memory bandwidth on tuned performance

D-cache/local store = 64 KB (CC=cache, LS=local store)
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Effect of memory bandwidth on tuned performance

D-cache/local store = 64 KB (CC=cache, LS=local store)
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Effect of memory bandwidth on tuned performance

D-cache/local store = 64 KB (CC=cache, LS=local store)
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Effect of memory bandwidth on tuned performance
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Efficiency Improvements: GEMM
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@ Each point represent a HW config (AE = most area efficient,
PE = most power efficient)
e Best SW performance chosen by autotuner used for computing
efficiencies

e Efficiency improvements from SW tuning dramatic )
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Efficiency Improvements: GEMM
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Efficiency Improvements: Stencil
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Efficiency Improvements: Stencil
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Efficiency Improvements: Stencil
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Efficiency Improvements: Stencil
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Efficiency Improvements: SpMV
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Efficiency Improvements: SpMV
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Efficiency Improvements: SpMV
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Efficiency Improvements: SpMV
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Co-tuning for multiple kernels

@ Results so far find best HW config given kernel
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Co-tuning for multiple kernels

@ Results so far find best HW config given kernel

@ How about an application composed of multiple kernels?
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Co-tuning for multiple kernels

@ Results so far find best HW config given kernel
@ How about an application composed of multiple kernels?
@ Simple case: kernels dont interact, all flops contributed by the

given kernels
= sufficient to tune kernels instead of full application
o Performance/power for application on a HW config =
weighted performance/power of kernels on the config
e Weights = relative contribution of different kernels
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Tuning Multi-Kernel Application
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Each box represents the most power-efficient HW config for the given
relative weights of kernels
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Summary of results

@ Baseline: SW tuning done on the fastest HW config
o GEMM: 1.2x and 1.5x improvements in power and area
efficiencies

@ Stencil: 2.4x and 3x improvements in power and area
efficiencies

@ SpMV: 1.7x and 1.6x improvements in power and area
efficiencies

o Weighted combination of GEMM, stencil, SpMV:
improvements vary from 1.2x to 2.4x depending on relative
contribution
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@ Conclusions and Future Work
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Conclusions and Future Work

o Novel approach to designing power-efficient supercomputers
o Leverage software auto-tuning to improve efficiency
o Power efficiency improved 1.2-2.4x,
area efficiency improved 1.5-3x
o Improvements also in multi-kernel applications
o Co-tuning can cut down procurement and running costs
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Conclusions and Future Work

o Novel approach to designing power-efficient supercomputers
o Leverage software auto-tuning to improve efficiency
o Power efficiency improved 1.2-2.4x,
area efficiency improved 1.5-3x
o Improvements also in multi-kernel applications
o Co-tuning can cut down procurement and running costs
@ Future work
o Explore a larger HW design space
= need intelligent exploration
o Use FPGA-based emulation of hardware for speeding up
exploration
o Efficiently co-tuning for applications with interacting kernels
o Green Flash design
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Kernel 3: Matrices

Circuit 171K x 171K

(6)

Nonzeros
spyplot Name Dimensions (nnz/row) Description
Dense 2K x 2K 4.0M Dense matrix in
(2K) sparse format
AN FEM / 83K xg3k  OOM FEM concentric
Spheres (72) spheres
FEM/ 4.0M "
Cantilever 02K X 62K (65) FEM cantilever
Wind 218K x 218K 11-6M Pressurized
) Tunnel (53) wind tunnel
N
1.90M  Quark propagators
‘ Qcp 49K xagk o0 i
A
) 3.98M FEM Ship
FEM/Ship 141K x 141K (28) section/detail
Epidemiology 526K x 526K 2&12" 2D Markow model
of epidemic
959K Motorola circuit

simulation

SpMV performance
dependent on matrix
nonzero pattern

Matrices chosen to represent
different applications

Dense matrix in sparse
format used for tuning

For each HW config, SpMV

performance = performance
of median matrix
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