
Background
Algorithms

Performance Models
Implementation

Summary

Avoiding Communication in Sparse Matrix
Computations

Marghoob Mohiyuddin Mark Hoemmen James Demmel
Katherine Yelick

marghoob@eecs.berkeley.edu

Department of Electrical Engineering and Computer Science

University of California at Berkeley

IEEE International Parallel and Distributed Processing
Symposium, 2008

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 1/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Outline

1 Background

2 Algorithms

3 Performance Models

4 Implementation

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 2/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Motivation
Problem Statement

Communication is Costly, Computation is Cheap

Gap between computational capability and communication
cost increasing exponentially:

Floating-point time � 1/network BW � network latency
Floating-point time � 1/memory BW � memory latency

Applications need to be designed with this gap in mind
Communication hiding not enough (speedup ≤ 2x)

Latency can be dealt with by overlap, but limited by the
amount of computation

Communication avoiding:

Trade o� communication with computation.
Arbitrary speedups possible

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 3/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Motivation
Problem Statement

The Akx Kernel

Given n×n sparse matrix A, vector x , integer k > 0,

Compute the k vectors Ax ,A2x , . . . ,Akx e�ciently.

Parallel and sequential algorithms.

Arises in Krylov Subspace Methods.

Need to look at the linear subspace spanned by
[x ,Ax ,A2

x , . . . ,Ak
x ].

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 4/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Setup

Matrix A and vector x divided in to p row blocks.

Parallel machine:

Each proc. operates on a separate block.
Interproc. communication for remote dependencies.

Sequential machine:

Each block stored contiguously in slow memory.
Algorithm operates on a block-by-block basis.

Output vectors computed on a per block basis.

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 5/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 Iterations

1 Elements of x arranged in a

2D mesh.

Matrix A de�nes the
nearest neighbor
connections

2 9-point operator computes a
function of an entry of x and
its 8 neighbors

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 6/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 iterations

1 Entries available marked red.

2 Computing Ax : Send entries
needed by other procs (green).

3 Computing Ax : Compute
locally dependent entries.

4 Computing Ax : Receive entries
from other procs (blue).

5 Computing Ax : Compute
remaining entries of Ax .

6 Compute A2x as A(Ax).

7 Compute A3x as A(A2x).

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 7/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 iterations

1 Entries available marked red.

2 Computing Ax : Send entries
needed by other procs (green).

3 Computing Ax : Compute
locally dependent entries.

4 Computing Ax : Receive entries
from other procs (blue).

5 Computing Ax : Compute
remaining entries of Ax .

6 Compute A2x as A(Ax).

7 Compute A3x as A(A2x).

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 7/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 iterations

1 Entries available marked red.

2 Computing Ax : Send entries
needed by other procs (green).

3 Computing Ax : Compute
locally dependent entries.

4 Computing Ax : Receive entries
from other procs (blue).

5 Computing Ax : Compute
remaining entries of Ax .

6 Compute A2x as A(Ax).

7 Compute A3x as A(A2x).

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 7/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 iterations

1 Entries available marked red.

2 Computing Ax : Send entries
needed by other procs (green).

3 Computing Ax : Compute
locally dependent entries.

4 Computing Ax : Receive entries
from other procs (blue).

5 Computing Ax : Compute
remaining entries of Ax .

6 Compute A2x as A(Ax).

7 Compute A3x as A(A2x).

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 7/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 iterations

1 Entries available marked red.

2 Computing Ax : Send entries
needed by other procs (green).

3 Computing Ax : Compute
locally dependent entries.

4 Computing Ax : Receive entries
from other procs (blue).

5 Computing Ax : Compute
remaining entries of Ax .

6 Compute A2x as A(Ax).

7 Compute A3x as A(A2x).

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 7/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 iterations

1 Entries available marked red.

2 Computing Ax : Send entries
needed by other procs (green).

3 Computing Ax : Compute
locally dependent entries.

4 Computing Ax : Receive entries
from other procs (blue).

5 Computing Ax : Compute
remaining entries of Ax .

6 Compute A2x as A(Ax).

7 Compute A3x as A(A2x).

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 7/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 iterations

1 Entries available marked red.

2 Computing Ax : Send entries
needed by other procs (green).

3 Computing Ax : Compute
locally dependent entries.

4 Computing Ax : Receive entries
from other procs (blue).

5 Computing Ax : Compute
remaining entries of Ax .

6 Compute A2x as A(Ax).

7 Compute A3x as A(A2x).

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 7/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 iterations

1 Entries available marked red.

2 Computing Ax : Send entries
needed by other procs (green).

3 Computing Ax : Compute
locally dependent entries.

4 Computing Ax : Receive entries
from other procs (blue).

5 Computing Ax : Compute
remaining entries of Ax .

6 Compute A2x as A(Ax).

7 Compute A3x as A(A2x).

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 7/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 iterations

1 Entries available marked red.

2 Computing Ax : Send entries
needed by other procs (green).

3 Computing Ax : Compute
locally dependent entries.

4 Computing Ax : Receive entries
from other procs (blue).

5 Computing Ax : Compute
remaining entries of Ax .

6 Compute A2x as A(Ax).

7 Compute A3x as A(A2x).

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 7/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 iterations

1 Entries available marked red.

2 Computing Ax : Send entries
needed by other procs (green).

3 Computing Ax : Compute
locally dependent entries.

4 Computing Ax : Receive entries
from other procs (blue).

5 Computing Ax : Compute
remaining entries of Ax .

6 Compute A2x as A(Ax).

7 Compute A3x as A(A2x).

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 7/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 iterations

1 Entries available marked red.

2 Computing Ax : Send entries
needed by other procs (green).

3 Computing Ax : Compute
locally dependent entries.

4 Computing Ax : Receive entries
from other procs (blue).

5 Computing Ax : Compute
remaining entries of Ax .

6 Compute A2x as A(Ax).

7 Compute A3x as A(A2x).

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 7/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 iterations

1 Entries available marked red.

2 Computing Ax : Send entries
needed by other procs (green).

3 Computing Ax : Compute
locally dependent entries.

4 Computing Ax : Receive entries
from other procs (blue).

5 Computing Ax : Compute
remaining entries of Ax .

6 Compute A2x as A(Ax).

7 Compute A3x as A(A2x).

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 7/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 iterations

1 Entries available marked red.

2 Computing Ax : Send entries
needed by other procs (green).

3 Computing Ax : Compute
locally dependent entries.

4 Computing Ax : Receive entries
from other procs (blue).

5 Computing Ax : Compute
remaining entries of Ax .

6 Compute A2x as A(Ax).

7 Compute A3x as A(A2x).

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 7/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 iterations

1 Entries available marked red.

2 Computing Ax : Send entries
needed by other procs (green).

3 Computing Ax : Compute
locally dependent entries.

4 Computing Ax : Receive entries
from other procs (blue).

5 Computing Ax : Compute
remaining entries of Ax .

6 Compute A2x as A(Ax).

7 Compute A3x as A(A2x).

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 7/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 iterations

1 Entries available marked red.

2 Computing Ax : Send entries
needed by other procs (green).

3 Computing Ax : Compute
locally dependent entries.

4 Computing Ax : Receive entries
from other procs (blue).

5 Computing Ax : Compute
remaining entries of Ax .

6 Compute A2x as A(Ax).

7 Compute A3x as A(A2x).

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 7/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 iterations

1 Entries available marked red.

2 Computing Ax : Send entries
needed by other procs (green).

3 Computing Ax : Compute
locally dependent entries.

4 Computing Ax : Receive entries
from other procs (blue).

5 Computing Ax : Compute
remaining entries of Ax .

6 Compute A2x as A(Ax).

7 Compute A3x as A(A2x).

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 7/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm

For i = 1, . . . ,k ,
Compute Aix using the product of A and Ai−1x

Fetch required entries of Ai−1x from other procs/blocks.

O(k) messages between any two procs/blocks.

Latency cost is k times the minimum, namely O(1).
Objective: O(1) messages between any 2 blocks/procs.

Sequential machine: A and x read k times from slow to fast
memory.

Bandwidth cost is k times the minimum.
Objective: Read A and x at most once.

Minimum number of �oating-point operations performed.

Objective: Minimize number of extra �ops.

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 8/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving Naïve Algorithm: 9-point operator for 3 iterations

1 Entries available marked red.

2 Send entries needed by other
procs.

3 Compute locally computable
entries.

4 Receive entries from other
procs (blue).

5 Compute remotely dependent

entries.

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 9/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving Naïve Algorithm: 9-point operator for 3 iterations

1 Entries available marked red.

2 Send entries needed by other
procs.

3 Compute locally computable
entries.

4 Receive entries from other
procs (blue).

5 Compute remotely dependent

entries.

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 9/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving Naïve Algorithm: 9-point operator for 3 iterations

1 Entries available marked red.

2 Send entries needed by other
procs.

3 Compute locally computable
entries.

4 Receive entries from other
procs (blue).

5 Compute remotely dependent

entries.

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 9/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving Naïve Algorithm: 9-point operator for 3 iterations

1 Entries available marked red.

2 Send entries needed by other
procs.

3 Compute locally computable
entries.

4 Receive entries from other
procs (blue).

5 Compute remotely dependent

entries.

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 9/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving Naïve Algorithm: 9-point operator for 3 iterations

1 Entries available marked red.

2 Send entries needed by other
procs.

3 Compute locally computable
entries.

4 Receive entries from other
procs (blue).

5 Compute remotely dependent

entries.

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 9/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving Naïve Algorithm: 9-point operator for 3 iterations

1 Entries available marked red.

2 Send entries needed by other
procs.

3 Compute locally computable
entries.

4 Receive entries from other
procs (blue).

5 Compute remotely dependent

entries.

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 9/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving Naïve Algorithm: 9-point operator for 3 iterations

1 Entries available marked red.

2 Send entries needed by other
procs.

3 Compute locally computable
entries.

4 Receive entries from other
procs (blue).

5 Compute remotely dependent

entries.

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 9/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving Naïve Algorithm: 9-point operator for 3 iterations

1 Entries available marked red.

2 Send entries needed by other
procs.

3 Compute locally computable
entries.

4 Receive entries from other
procs (blue).

5 Compute remotely dependent

entries.

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 9/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving Naïve Algorithm: 9-point operator for 3 iterations

1 Entries available marked red.

2 Send entries needed by other
procs.

3 Compute locally computable
entries.

4 Receive entries from other
procs (blue).

5 Compute remotely dependent

entries.

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 9/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving Naïve Algorithm: 9-point operator for 3 iterations

1 Entries available marked red.

2 Send entries needed by other
procs.

3 Compute locally computable
entries.

4 Receive entries from other
procs (blue).

5 Compute remotely dependent

entries.

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 9/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Parallel Algorithm 1 (PA1)

1 The required entries of x are computed as dependencies on x of entries of
Akx in block i .

2 Send the entries of x needed by other procs.

3 Compute the locally computable entries of Ajx for 1≤ j ≤ k.

4 Receive the entries of x needed from other procs.

5 Compute the remaining entries of Ajx for 1≤ j ≤ k.

O(1) messages between any 2 procs.

Redundant computations.

Applicable to arbitrary sparse matrices

Works well when the matrix is "well partitioned"
⇒ partitions have small "surface to volume ratio"

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 10/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving PA1: 9-pt operator for 3 iterations

1 Entries available marked red.

2 Compute entries needed by
other procs.

3 Send entries to other procs
(green).

4 Compute remaining locally
computable.

5 Receive entries from other
procs (blue).

6 Compute remotely dependent

entries.

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 11/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving PA1: 9-pt operator for 3 iterations

1 Entries available marked red.

2 Compute entries needed by
other procs.

3 Send entries to other procs
(green).

4 Compute remaining locally
computable.

5 Receive entries from other
procs (blue).

6 Compute remotely dependent

entries.

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 11/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving PA1: 9-pt operator for 3 iterations

1 Entries available marked red.

2 Compute entries needed by
other procs.

3 Send entries to other procs
(green).

4 Compute remaining locally
computable.

5 Receive entries from other
procs (blue).

6 Compute remotely dependent

entries.

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 11/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving PA1: 9-pt operator for 3 iterations

1 Entries available marked red.

2 Compute entries needed by
other procs.

3 Send entries to other procs
(green).

4 Compute remaining locally
computable.

5 Receive entries from other
procs (blue).

6 Compute remotely dependent

entries.

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 11/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving PA1: 9-pt operator for 3 iterations

1 Entries available marked red.

2 Compute entries needed by
other procs.

3 Send entries to other procs
(green).

4 Compute remaining locally
computable.

5 Receive entries from other
procs (blue).

6 Compute remotely dependent

entries.

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 11/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving PA1: 9-pt operator for 3 iterations

1 Entries available marked red.

2 Compute entries needed by
other procs.

3 Send entries to other procs
(green).

4 Compute remaining locally
computable.

5 Receive entries from other
procs (blue).

6 Compute remotely dependent

entries.

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 11/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving PA1: 9-pt operator for 3 iterations

1 Entries available marked red.

2 Compute entries needed by
other procs.

3 Send entries to other procs
(green).

4 Compute remaining locally
computable.

5 Receive entries from other
procs (blue).

6 Compute remotely dependent

entries.

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 11/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving PA1: 9-pt operator for 3 iterations

1 Entries available marked red.

2 Compute entries needed by
other procs.

3 Send entries to other procs
(green).

4 Compute remaining locally
computable.

5 Receive entries from other
procs (blue).

6 Compute remotely dependent

entries.

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 11/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving PA1: 9-pt operator for 3 iterations

1 Entries available marked red.

2 Compute entries needed by
other procs.

3 Send entries to other procs
(green).

4 Compute remaining locally
computable.

5 Receive entries from other
procs (blue).

6 Compute remotely dependent

entries.

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 11/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving PA1: 9-pt operator for 3 iterations

1 Entries available marked red.

2 Compute entries needed by
other procs.

3 Send entries to other procs
(green).

4 Compute remaining locally
computable.

5 Receive entries from other
procs (blue).

6 Compute remotely dependent

entries.

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 11/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Parallel Algorithm 2 (PA2)

1 Compute the locally computable entries of x ,Ax , . . . ,Akx needed by other
procs. These are the entries on the boundary of locally computable and
remotely dependent entries.

2 Send the entries of x ,Ax , . . . ,Akx needed by other procs.

3 Compute remaining locally computable entries of [Ax , . . . ,Akx ].

4 Receive the entries of x ,Ax , . . . ,Akx needed from other procs.

5 Compute the remaining entries of Ajx for 1≤ j ≤ k using the already
computed entries and the fetched entries.

O(1) messages between any 2 procs..

Fewer �ops than PA1.

Half as much redundant computation as PA1

Locally computable entries computed on only their host proc.

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 12/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Sequential Algorithm

1 For i = 1, . . . ,p, (p= number of blocks of A and x)

2 Load block i from slow memory to fast memory.

3 Load parts of x needed from other blocks in to fast memory.

4 Compute the local entries of Ax , . . . ,Akx .

5 Store the computed entries in to slow memory.

Entries of x and A may be reordered to minimize the cost of
accessing slow memory.

Minimizing number of slow memory accesses.

2 kinds of Travelling Salesman Problems: one for ordering
block entries, and other for the ordering of blocks

Minimizing number of entries fetched from slow memory:

Extra entries fetched to reduce the number of slow memory
accesses.

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 13/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Sequential Algorithm: Ordering Example for 9-pt Operator

Block level ordering

1 2 3

4

567

8 9

Left block needs 2 accesses to fetch
the entries in 1, 7, 8.

Other blocks need 1 access to fetch
their needed entries.

Global ordering

3 4

1 2

Computing block 2 after block 1 ⇒
colored regions of x do not need to be
fetched

Computing block 4 after block 1 ⇒
only the blue regions of x do not need
to fetched

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 14/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Modeling Speedup for Sequential Algorithm
Modeling Speedup for Parallel Algorithm

Modeled Speedup for Sequential Out-of-Core Algorithm on 9-pt Operator

500 MFlops/s, mem = 4
GBytes, lat = 5.7 ms,
bw = 62.5 MBytes/s.

No. of blocks p
(1≤ p ≤ pmax ) chosen for
best perf.

Speedups across whole

range of problem sizes (at

least 10x)

Reading A and x

always costs bw. ⇒
speedups always
possible.

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 15/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Modeling Speedup for Sequential Algorithm
Modeling Speedup for Parallel Algorithm

Modeled Speedup for Sequential Out-of-Core Algorithm on 27-point Operator

Speedups across whole
range of problem sizes (at
least 7x).

Speedups decrease after a
certain k.

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 16/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Modeling Speedup for Sequential Algorithm
Modeling Speedup for Parallel Algorithm

Modeled Speedup for Sequential Algorithm with On-Chip
Cache as Fast Memory

9-pt. operator on n×n mesh, 27-pt. operator on n×n×n mesh.

Core performance = 2 GFlops/s, memory=8 MBytes, lat=200 ns, bw=5

GBytes/s

Models single core, single socket of a quad-core Intel Clovertown
chip

Matrix Range of n (Range of) Modeled Speedup

9-pt operator 28 to 219 [2.45, 2.58]

27-pt operator 28 to 212 [1.34, 1.36]

Speedups always possible across all problem sizes

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 17/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Modeling Speedup for Sequential Algorithm
Modeling Speedup for Parallel Algorithm

Performance Model: Parallel Algorithm (PA2)

9-pt. operator on n×n mesh, 27-pt. operator on n×n×n mesh.

Peta: No. procs. = 8100, proc. performance = 50 GFlops/s,
memory=500 GBytes, lat=10 µs, bw=4 GBytes/s

Matrix Range of n Max Modeled Speedup

9-pt operator 210 to 222 6.9

27-pt operator 29 to 214 1.02

Speedups for small problem sizes (for 9-pt operator, 210 ≤ n ≤ 213).
Other problem sizes computation bound, so not limited by
communication (hidden by overlap with communication).

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 18/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Modeling Speedup for Sequential Algorithm
Modeling Speedup for Parallel Algorithm

Performance Model: Parallel Algorithm (PA2)

Grid: No. procs. = 125, proc. performance = 1 TFlops/s,
memory=10 TBytes, lat=100 ms, bw=320 MBytes/s

Matrix Range of n Max Modeled Speedup

9-pt operator 210 to 222 22.22

27-pt operator 29 to 214 4.41

Small problem sizes run on 1 proc.
Speedups for moderate problem sizes (for 9-pt operator,
215 ≤ n ≤ 219).
Large problem sizes computation bound.

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 19/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Implementation
Results

Implementation

Parallel algorithm implemented in UPC (Uni�ed Parallel C).

Works for general sparse matrices.
For PA1, entries of A and x reordered to make local
computations as k invocations of Sparse Matrix Vector
multiplication.

Sequential (out-of-core) algorithm implemented in C.

Slow memory assumed to be disk.
Reordering done to minimize bandwidth cost for disk access
using a randomized heuristic.

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 20/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Implementation
Results

Results: Sequential Out-of-Core Algorithm

Itanium II node with
5.2 GFlops peak �op
rate.

27-point operator with
3683 points partitioned
in to 43 = 64 blocks.

Performance 6x slower
than ideal machine (∞
DRAM).

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 21/ 25



Background
Algorithms

Performance Models
Implementation

Summary

Summary and Future Work

Sequential and parallel communication avoiding algorithms for
the Akx kernel.

Almost linear speedups possible.
Minimum latency cost.
Minimum bandwidth cost for the sequential algorithm.

Performance modeling of the algorithms.
Parallel implementation expected to achieve speedups for moderate
problem sizes.
Sequential implementation expected to achieve speedups across the
whole range of problem sizes.

Sequential implementation demonstrates speedup of 3x for a
27-point operator.
Akx kernel part of a larger e�ort for communication avoiding
iterative solvers

Extensions to polynomial bases
Incorporating preconditioning (matrix A multiplied by a
preconditioner matrix M)

Mohiyuddin et al. Avoiding Comm. in Sparse Matrix Comp. 22/ 25



Thank You!



Modeled Speedup for Sequential Algorithm with Cache as Fast Memory on 9-pt

Operator

2 GFlops/s, mem = 4

GBytes, lat = 200 ns, bw

= 5 GBytes/s.

Models single core,

single socket of a

quad-core Intel

Clovertown chip

No. of blocks p
(1≤ p ≤ pmax ) chosen for
best perf.

Speedups across whole

range of problem sizes (at

least 2.4x)



Modeled Speedup for Sequential Algorithm with Cache as Fast Memory on 27-pt

Operator

Speedups across whole
range of problem sizes (at
least 1.3x)

Surface e�ects limit

maximum range of k


	Background
	
	

	Algorithms
	
	
	
	

	Performance Models
	
	

	Implementation
	
	

	Summary

