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Abstract

The performance of sparse iterative solvers is typically
limited by sparse matrix-vector multiplication, which is it-
self limited by memory system and network performance.
As the gap between computation and communication speed
continues to widen, these traditional sparse methods will
suffer. In this paper we focus on an alternative building
block for sparse iterative solvers, the “matrix powers ker-
nel” [x, Ax, A2x, . . . , Akx], and show that by organiz-
ing computations around this kernel, we can achieve near-
minimal communication costs. We consider communication
very broadly as both network communication in parallel
code and memory hierarchy access in sequential code. In
particular, we introduce a parallel algorithm for which the
number of messages (total latency cost) is independent of
the power k, and a sequential algorithm, that reduces both
the number and volume of accesses, so that it is independent
of k in both latency and bandwidth costs. This is part of a
larger project to develop “communication-avoiding Krylov
subspace methods,” which also addresses the numerical is-
sues associated with these methods. Our algorithms work
for general sparse matrices that “partition well”.

We introduce parallel performance models of matrices
arising from 2D and 3D problems and show predicted
speedups over a conventional algorithm of up to 7x on
a Petaflop-scale machine and up to 22x on computation
across the Grid. Analogous sequential performance mod-
els of the same problems predict speedups over a conven-
tional algorithm of up to 10x on an out-of-core implemen-
tation, and up to 2.5x when we use our ideas to reduce off-
chip latency and bandwidth to DRAM. Finally, we validate
the model on an out-of-core sequential implementation and
measured a speedup of over 3x, which is close to the pre-
dicted speedup.

1 Introduction

Current technology trends show exponentially increas-
ing gaps between peak arithmetic rate and both inverse
bandwidth and latency of communication. A recent
study of high performance computing shows floating point
speeds increasing historically at 59%/year, but interproces-
sor bandwidth improving only 26%/year, and interprocessor
latency improving only 15%/year [20]. While clock speed
increases have recently slowed, the number of cores per
chip is now growing with transistor density, so the aggre-
gate arithmetic rate of chips continues its growth at close
to historical rates. On certain large distributed-computing
platforms, like the Grid, latencies are already speed-of-light
limited and on the order of milliseconds, as opposed to frac-
tions of nanoseconds for floating point operations. Simi-
larly, DRAM bandwidth is improving only at 23%/year, and
DRAM latency at 5.5%/year. For out-of-core algorithms,
with disk bandwidth and latency limited by the rotational
speed of disks, the gaps are even larger. In general, latency
improves much more slowly than bandwidth across many
technologies [15].

These trends suggest that algorithms should be designed
not to minimize arithmetic operations, as is traditional, but
to minimize communication both within a local memory
hierarchy and between processors. In this paper, we con-
sider the computations that arise in the communication-
intensive Krylov subspace methods (KSMs) used to solve
large sparse linear systems or large sparse eigenvalue prob-
lems. On current machines, KSMs are limited by mem-
ory and network performance, because they execute only
a small constant number of arithmetic operations per com-
municated data value. Our goal is to replace KSMs with
“communication avoiding” versions that send fewer mes-
sages and read data less frequently from slow memory at
the cost of slightly more arithmetic.

Conventional implementations of KSMs alternate multi-
plication of the sparse matrix A times a vector with other
vector-vector operations. The matrix A is read (usually
from slow memory) once for each matrix-vector multiply,
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and messages are sent for each of these multiply operations
in the parallel case. Our algorithms use instead a matrix
powers kernel that computes {x, Ax, . . . , Akx} as a sin-
gle building block for iterative solvers. In related work [4],
we describe numerically stable reorganizations of typical
KSMs, such as GMRES and CG, that leverage a matrix
powers kernel (or small variations) to advance k steps in
one iteration. That work also describes support for precon-
ditioning, which is essential to KSMs in practice.

We focus here on computing the kernel [x, Ax, A2x,
. . . , Akx] with nearly minimal communication time, if the
sparse matrix has a suitable (and common) sparsity struc-
ture described in Section 2. In the parallel case, “minimal”
means that the required number of messages per proces-
sor is O(1) instead of Θ(k). In the sequential case, “mini-
mal” means that both the matrix A and vectors [x, Ax, . . . ,
Akx] only need to be moved between fast and slow mem-
ory 1 + o(1) times, instead of k times. Our communication
avoiding approach complements and is more powerful than
communication overlap techniques, which can at best halve
the running time. Avoiding communication can achieve up
to k-fold speedups when communication is dominant, and
can be combined with overlap for an additional performance
boost.

1.1 Outline

The rest of this paper is organized as follows. Section 2
briefly discusses stencils. Section 3 describes our parallel
algorithms, the simplest one (PA1) and then a more compli-
cated one that reduces the surface-to-volume overhead by
a factor of 2 (PA2). Section 4 briefly describes sequential
algorithms SA1 and SA2, which are based on PA1. Section
5 uses performance models for 2D and 3D meshes to de-
scribe how to choose k optimally for asymptotically large
problems. Section 6 presents detailed performance models
for two parallel and two sequential machines. Section 7 de-
scribes the performance of our out-of-core implementation.
After we discuss related work in Section 8, we summarize
and draw conclusions in Section 9.

2 Model Problems

Our techniques work for general sparse matrices, but the
case of regular d-dimensional meshes with (2b+ 1)d-point
stencils illustrates potential performance gains for a repre-
sentative class of matrices. We call b the bandwidth of the
graph, and hope that the context distinguishes this from the
communication bandwidth.

We call the surface of a mesh the number of points on
the partition boundary. For an n× n (2D) mesh partitioned
in to p equal sized squares with a 5-point stencil, the surface
is 4 n

p1/2 . For an n × n × n (3D) mesh partitioned in to p

equal sized cubes with a 7-point stencil, the surface is 6 n2

p2/3 .
The volume of a mesh is the total number of points in each
processor’s partition, namely n2

p and n3

p in the 2D and 3D
cases. The surface-to-volume ratio of a mesh is therefore
4p1/2

n in the 2D case and 6p1/3

n in the 3D case. (We assume
all the above roots (like p1/3) and fractions (like n

p1/2 ) are
integers, for simplicity.)

The surface-to-volume ratio of a partition of a general
sparse matrix is defined analogously. All our algorithms
work best when the surface-to-volume ratio is small, as is
the case for meshes with large n and sufficiently smaller p.

3 Parallel Algorithms

The conventional parallel algorithm for computing ω ≡
[Ax, A2x, . . . , Akx], which we call “PA0,” consists of k
applications of the usual parallel sparse matrix-vector mul-
tiplication algorithm. Step j computes yj = Ajx from
yj−1 = Aj−1x by each processor receiving messages with
the necessary remotely stored entries of yj−1, and then
computing its local components of yj .

In our first parallel algorithm, PA1, each processor first
computes all elements of [Ax, . . . , Akx] that can be com-
puted without communication. Simultaneously, it begins
sending all the components of x needed by the neighbor-
ing processors to compute their remaining components of
[Ax, . . . , Akx]. When all local computations have finished,
each processor blocks until the remote components of x ar-
rive, and then finishes computing its portion of [Ax, . . . ,
Akx]. This algorithm maximizes the potential overlap of
computation and communication, but performs more redun-
dant work than necessary because some entries of ω near
processor boundaries are computed by both processors. As
a result, we developed PA2, which uses a similar communi-
cation pattern but minimizes redundant work.

In the second parallel approach, PA2, each proces-
sor computes the “least redundant” set of local values of
[Ax, ..., Akx] needed by the neighboring processors. This
saves the neighbors some redundant computation. Then the
processor sends these values to its neighbors, and simulta-
neously computes the remaining locally computable values.
When all the locally computable values are complete, each
processor blocks until the remote entries of [Ax,. . . ,Akx]
arrive, and completes the work. This minimizes redundant
work, but permits slightly less overlap of computation and
communication.

We estimate the cost of our parallel algorithms by mea-
suring five quantities:

1. Number of arithmetic operations per processor;

2. Number of floating-point numbers communicated per
processor (the “bandwidth cost”);
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3. Number of messages sent per processor (the “latency
cost”);

4. Total memory required per processor for the matrix;
and

5. Total memory required per processor for the vectors.

Informally, it’s clear that both PA1 and P2 minimize
communication to within a constant factor. We ignore can-
cellation in any of the Aj or Ajx, so that the complexity
only depends on the sparsity pattern of A. For simplicity
of notation we assume all the nonzero entries of A and x
are positive. Then, the set D of processors owning entries
of x on which block row i of [Ax,A2x,. . . ,Akx] depends is
just the set of processors owning those xj for which block
row i of A + A2 + · · · + Ak has a nonzero j-th column.
In both algorithms PA1 and PA2, the processor owning row
block i receives exactly one message from each processor in
D, which minimizes latency. Furthermore, PA1 only sends
those entries of x in each message on which the answer de-
pends, which minimizes the bandwidth cost. PA2 sends the
same amount of data although different values so as to min-
imize redundant computation.

3.1 1D meshes

We now illustrate the difference between PA0, PA1, and
PA2, using the example of a 1D mesh with bandwidth b =
1, or a tridiagonal matrix.

In PA0, the computational cost is 2k messages, 2k words
sent, and 5k n

p flops (3 multiplies and 2 additions per vector
component computed). The memory required per processor
is 3n

p matrix entries and (k+ 1)n
p +2 vector entries (for the

local components of [x,Ax, .., Akx] and for the values on
neighboring processors).

Figure 1(a) shows the operation of PA1 with k = 8. Each
row of circles represents the entries of Ajx, for j = 0 to
j = 8. A subset of 30 components of each vector is shown,
owned by 2 processors, one to the left of the vertical green
line, and one to the right. (There are further components
and processors not shown.) The diagonal and vertical lines
show the dependencies: the three lines below each circle
(component i of Ajx) connect to the circles on which its
value depends (components i− 1, i and i+ 1 of Aj−1x). In
the figure, the local dependencies of the left processor are
all the circles that can be computed without communicat-
ing with the right processor. The remaining circles without
attached lines to the left of the vertical green line require
information from the right processor before they can to be
computed.

Figure 1(b) shows how to compute these remaining cir-
cles using PA1. The dependencies are again shown by di-
agonal and vertical lines below each circle, but now de-
pendencies on data formally owned by the right processor

are shown in red. All these values in turn depend on the
k = 8 leftmost value of x(0) owned by the right processor,
shown as black circles containing red asterisks in the bot-
tom row. By sending these values from the right processor
to the left processor, the left processor can compute all the
circles whose dependencies are shown in Figure 1(b). The
black circles indicate computations ideally done only by the
left processor, and the red circles show redundant computa-
tions, i.e., those also performed by the right processor.

We assume that k < n
p , so that only data from neigh-

boring processors is needed, rather than more distant pro-
cessors. Indeed, we expect that k � n

p in practice, which
will mean that the number of extra flops (not to mention ex-
tra memory) will be negligible. We continue to make this
assumption later without repeating it, and use it to simplify
some expressions in Table 1.

Figure 1(c) illustrates PA2. We note that the blue circles
owned by the right processor and attached to blue lines can
be computed locally by the right processor. The 8 circles
containing red asterisks can then be sent to the left processor
to compute the remaining circles connected to black and/or
red lines. This saves the redundant work represented by
the blue circles, but leaves the redundant work to compute
the red circles, about half the redundant work of PA1. PA2
takes roughly 5

2k
2 more flops than PA0, which is half as

many extra flops as PA1.

3.2 Summary of Parallel Complexity of
Computing [Ax, ..., Akx] on Meshes

PA1 and PA2 can be extended to higher dimensions and
different mesh bandwidths (and sparse matrices in general).
There, the pictures of which regions are communicated
and which are computed redundantly become more compli-
cated, higher-dimensional polyhedra, but the essential algo-
rithms remain the same. Table 1 in Section 3.2 summarizes
all of the resulting costs for 1D, 2D, and 3D meshes.

In Table 1 which shows the summary for Parallel Algo-
rithms, “Mess” is the number of messages sent per proces-
sor, “Words” is the total size of these messages, “Flops”
is the number of floating point operations, “MMem” is the
amount of memory needed per processor for the matrix en-
tries, and “VMem” is the amount of memory needed per
processor for the vector entries. Lower order terms are
sometimes omitted for clarity.

3.3 General Graphs

We now extend the approaches PA1 and PA2 to gen-
eral sparse matrices. To do so we need some graph the-
oretic notation. It is natural to associate a directed graph
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(a) Locally computable components.
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(b) Remote dependencies in PA1.
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(c) Remote dependencies in PA2.

Figure 1. Dependencies for PA1 and PA2 for computing [Ax, ..., A8x] for tridiagonal matrix.

with a square sparse matrix A, with one vertex for ev-
ery row/column, and an edge from vertex i to vertex j if
Aij 6= 0, meaning that component i of y = Ax depends
on component j of x. We build an analogous graph, essen-
tially consisting of k copies of this basic graph: Let x(i)

j

be the j-th component of x(i) = Ai · x(0). We associate
a vertex with each x

(i)
j for i = 0, ..., k and j = 1, ..., n

(and use the same notation to name the vertex), and an edge
from x

(i+1)
j to x(i)

m when Ajm 6= 0, and call this graph of
n(k + 1) vertices G. (We will not need to construct all of
G in practice, but using G makes it easy to describe our al-
gorithms, in a fashion analogous to Figure 1.) We say that
i is the level of vertex x(i)

j . Each vertex will also have an
affinity q, corresponding to the processor number where it
is stored; we assume all vertices x(0)

j , x
(1)
j , ..., x

(k)
j have the

same affinity, depending only on j.

We letGq denote the subset of vertices ofG with affinity
q, G(i) to mean the subest of vertices of G with level i, and

G
(i)
q to mean the subset with affinity q and level i.

Let S be any subset of vertices of G. We let R(S) de-
note the set of vertices reachable by directed paths starting
at vertices in S (so S ⊂ R(S)). We need R(S) to iden-
tify dependencies of sets of vertices on other vertices. We
let R(S,m) denote vertices reachable by paths of length at
most m starting at vertices in S. We write Rq(S), R(i)(S)
and R

(i)
q (S) as before to mean the subsets of R(S) with

affinity q, level i, and both affinity q and level i, respec-
tively.

Next we need to identify the locally com-
putable components, that processor q can com-
pute given only the values in G

(0)
q . We de-

note the set of locally computable components by
Lq ≡ {x ∈ Gq : R(x) ⊂ Gq}. As before L(i)

q will denote
the vertices in Lq at level i.

Finally, for PA2 we need to identify the minimal subset
Bq,r of vertices (i.e. their values) that processor r needs to
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Problem Costs Conventional Approach Parallel Approach 1 Parallel Approach 2
Mess 2k 2 2

1D mesh Words 2bk 2bk 2bk

b ≥ 1 Flops (4b + 1)k n
p

(4b + 1)(k n
p

+ bk2) (4b + 1)(k n
p

+ bk2

2
)

MMem (2b + 1)n
p

(2b + 1)n
p

+ bk(4b + 2) (2b + 1)n
p

+ bk(2b + 1)

VMem (k + 1)n
p

+ 2b (k + 1)n
p

+ 2bk (k + 1)n
p

+ 2bk

Mess 8k 8 8
2D mesh Words 4bk( n

p1/2 + b) 4bk( n

p1/2 + bk) 4bk( n

p1/2 + 1.5bk)

(2b + 1)2 Flops (8b2 + 8b + 1)k n2

p
(8b2 + 8b + 1)· (8b2 + 8b + 1)·

pt (k n2

p
+ 2bk2 n

p1/2 + 4
3
b2k3) (k n2

p
+ bk2 n

p1/2 + b2k3)

stencil MMem (2b + 1)2 n2

p
(2b + 1)2(n2

p
+ 4bk n

p1/2 + 4b2k2) (2b + 1)2(n2

p
+ 2bk n

p1/2 + b2k2)

VMem (k + 1)n2

p
+ 4b n

p1/2 (k + 1)n2

p
+ 4bk n

p1/2 (k + 1)n2

p
+ 4bk n

p1/2

+4b2 +4b2k2 +6b2k2

Mess 26k 26 26

3D mesh Words 6bk n2

p2/3 + 12b2k n

p1/3 6bk n2

p2/3 + 12b2k2 n

p1/3 6bk n2

p2/3 + 12b2k2 n

p1/3

(2b + 1)3 +O(b3k) +O(b3k3) +O(b3k3)

pt Flops (2(2b + 1)3 − 1)k n3

p
(2(2b + 1)3 − 1)· (2(2b + 1)3 − 1)·

stencil (k n3

p
+ 3bk2 n2

p2/3 + O(b2k3 n

p1/3 )) (k n3

p
+ 3

2
bk2 n2

p2/3 + O(b2k3 n

p1/3 ))

MMem (2b + 1)3 n3

p
(2b + 1)3· (2b + 1)3·

(n3

p
+ 6bk n2

p2/3 + O(b2k2 n

p1/3 )) (n3

p
+ 3bk n2

p2/3 + O(b2k2 n

p1/3 ))

VMem (k + 1)n3

p
+ 6b n2

p2/3 (k + 1)n3

p
+ 6bk n2

p2/3 (k + 1)n3

p
+ 6bk n2

p2/3

+O(b2 n

p1/3 ) +O(b2k2 n

p1/3 ) +O(b2k2 n

p1/3 )

Table 1. Summary Table for Parallel Algorithms (some lower order terms omitted)

send processor q so that processor q can finish computing
all its vertices Gq (eg the 8 circles containing red asterisks
in Figure 3): We say that x ∈ Bq,r if and only if x ∈ Lr,
and there is a path from some y ∈ Gq to x such that x is the
first vertex of the path in Lr.

Given all this notation, we can finally state versions of
PA0, PA1 and PA2 for general graphs and partitions among
processors:

PA0 (Code for proc. q) PA1 (Code for proc. q)

for i = 1 to k do
for all procs r 6= q do

send all x
(i−1)
j in

R
(i−1)
q (G

(i)
r ) to proc. r

for all procs r 6= q do
receive all x

(i−1)
j in

R
(i−1)
r (G

(i)
q ) from

proc. r

compute all x
(i)
j in L

(i)
q

wait for receives to finish
compute remaining x

(i)
j in

G
(i)
q − L

(i)
q

for all procs r 6= q do
send all x

(0)
j in R

(0)
q (Gr)

to proc. r
for all procs r 6= q do

recv. all x
(0)
j in R

(0)
r (Gq)

from proc. r
for i = 1 to k do

compute all x
(i)
j in Lq

// ex: circled vertices in Fig-
ure 1(a)

wait for receives to finish
for i = 1 to k do

compute remaining x
(i)
j in

R(Gq)− Lq

// ex: circled vertices in Fig-
ure 1(b)

We illustrate the algorithm PA1 on the matrix A whose
graph is in Figure 2(a). The vertices represent rows and
columns of A and the edges represent nonzeros; for sim-

plicity we use a symmetric matrix so the edges can be undi-
rected. The dotted orange lines separate vertices owned by
different processors. We let q denote the processor own-
ing the 9 gray vertices in the center of the figure. In other
words, the gray vertices are G(0)

q . For all the neighboring
processors r 6= q, the red vertices are R(0)

r (Gq) for k = 1,
the red and green vertices together are R(0)

r (Gq) for k = 2,
and the red, green and blue vertices together are R(0)

r (Gq)
for k = 3.

PA2 (Code for proc. q)
for i = 1 to k do // Phase I

compute x
(i)
j in ∪r 6=q(R(Gr) ∩ Lq) // ex: blue circled ver-

tices in Figure 1(c)
for all procs r 6= q do

send x
(i)
j in Br,q to proc. r // blue circled vertices containing

red asterisks in Figure 1(c)
for all procs r 6= q do

recv. x
(i)
j in Br,q from proc. r // blue circled vertices con-

taining red asterisks in Figure 1(c)
for i = 1 to k do // Phase II

compute x
(i)
j in Lq − ∪r 6=q(R(Gr) ∩ Lq)

// ex: locally computable vertices of right proc. minus blue
circled vertices in Figure 1(c)

wait for receives to finish
for i = 1 to k do // Phase III

compute remaining x
(i)
j in R(Gq)− Lq −∪r 6=q(R(Gq) ∩

Lr)
// ex: black circled vertices in Figure 1(c) that are connected
by lines
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The Phases in PA2 are referred to in Section 6. Fig-
ures 2(b) and 2(c) illustrate algorithm PA2 on the same ma-
trix (as the one used for PA1), just for the case k = 3. In
Figure 2(b), the red vertices are B(0)

q,r (the members of Bq,r

at level 0), and in Figure 2(c) the green vertices are B(1)
q,r .

4 Sequential Algorithms

We briefly describe two sequential algorithms, both of
which emulate the parallel algorithm PA1 (Section 3.3):

• Conventional Sequential Approach (SA0): We as-
sume that the matrix does not fit in fast memory but
the vectors do. This algorithm will keep all the com-
ponents of [x,Ax, . . . , Akx] in fast memory, and read
all the entries of A from slow to fast memory to com-
pute each vector Ajx, thereby reading A k times in
all.

• Sequential Approach 1 (SA1): We assume that the
matrix does not fit in fast memory but the vectors do.
SA1 emulates PA1 by partitioning the matrix into p
block rows, and looping from i = 1 to i = p, reading
from slow memory those parts of the matrix needed to
perform the same computations performed by proces-
sor i in PA1, and updating the appropriate components
of [Ax, . . . , Akx] in fast memory. Since all compo-
nents of [Ax, . . . , Akx] are in fast memory, no redun-
dant computation is necessary. We choose p as small
as possible, to minimize the number of slow memory
accesses.

• Sequential Approach 2 (SA2): Now we assume that
neither the matrix nor the vectors fit in memory. SA2
will still emulate PA1 by looping from i = 1 to i = p,
but read from slow memory not just parts of the matrix
but also those parts of the vectors needed to perform
the same computations performed by processor i in
PA1, and finally writing back to slow memory the cor-
responding components of [Ax, . . . , Akx]. Depending
on the structure of A, redundant computation may or
may not be necessary. We again choose p as small as
possible.

An interesting problem that occurs in SA2 is when parts
of x are needed from slow memory, they might not be con-
tiguously placed. Thus, entries of the vector x and the ma-
trixAmay be reordered to minimize slow memory commu-
nication cost. One formulation of this reordering Problem
can be posed as a Travelling Salesman problem (Section
3.5, [5]).

5 Asymptotic Performance

An asymptotic performance model for the parallel algo-
rithms suggests that when the latency α is large, the speedup
is close to k as expected (Section 4, [5]). When α is not so
large, the best we could hope for is that k can be chosen
so that the new running time is fast independent of α. The
model shows that this is the case under two reasonable con-
ditions:

1. The time it takes to send the entire local contents of a
processor is dominated by bandwidth, not latency, and

2. The time to do O(N1/d) flops on each of the N ele-
ments stored on a processor exceeds α.

For the sequential algorithm SA2, if latency is small
enough, then the asymptotic performance model suggests
the following:

1. The best speedup is bounded by 2 + (words/row),
where words/row is the number of 8-byte words per
row of the matrixA–this includes the index entries too.

2. The optimal speedup is strongly dependent on the β/tf
ratio. For the specific case of stencils, the optimal
speedup is expected to be close to the upper bound in
the previous item when β/tf is large.

6 Detailed Performance Modeling

In this section we present detailed performance models
of matrices with 2D ((2b + 1)2-point) and 3D ((2b + 1)3-
point) stencil graphs for PA2 and SA2 using realistic ma-
chine parameters, in order to identify situations where sig-
nificant speedups are likely. We assume that we can over-
lap communication and computation for the parallel algo-
rithms. Although these are stencil graphs, we assume gen-
eral sparse matrix storage, because our algorithms apply to
general sparse matrices. As before, we assume that quanti-
ties like p1/2 and n

p1/3 are integers.
We model PA2 for two parallel machines called Peta

(which is a model of a nominal 8100 processor petascale
machine) and Grid (which is a model of 125 terascale ma-
chines connected over the internet). The two sequential
machines for which we model SA2 are OOC (which mod-
els an out-of-core implementation, where fast memory is
DRAM and slow memory is disk) and Clovertown (we call
the model “CacheBlocked”), the Intel multicore processor
(where fast memory is cache and slow memory is DRAM).
This variety of models of course suggests that our tech-
niques can be applied more than once, if there are several
levels of memory hierarchy and possibly also parallelism.

6



(a) PA1 example: Red entries of x(0) are the
ones needed when k = 1, green are the addi-
tional ones needed when k = 2 and blue are
the additional ones needed when k = 3.

(b) PA2 example (k = 3): Entries of x(0)

which need to be fetched are colored red.
(c) PA2 example (k = 3): Entries of x(1)

which need to be fetched are colored green.

Figure 2. Example for PA1 and PA2. The dotted lines define the different blocks. Each block resides
on a different processor. The example shows from the perspective of the processor holding the
central block.

6.1 Performance Modeling of PA2

We consider parallel machines with the following param-
eters:

pmax: The maximum number of processors available. The
actual number of processors used is p ≤ pmax. We
may choose p < pmax if that is faster.

tf : The time per floating-point operation (in units of sec-
onds), modeled as 10% of machine peak value, a typi-
cal value attainable for SpMV.

mem: The memory available per processor (in units of 8-byte
words).

α: The network processor latency (in units of seconds).

β: The inverse network bandwidth (in units of seconds/8-
byte word).

Thus the time to send m words between any pair of pro-
cessors is modeled as α+ βm.

We modeled machines with the following parameter val-
ues:

Peta: pmax = 8100, tf = 2 · 10−11 secs (1/tf = 50
GFlops/s), mem = 62.5 · 109 words, α = 10−5 secs,
β = 2 ·10−9 secs (1/β = 500 MWords/s = 4 GByte/s)

Grid: pmax = 125, tf = 10−12 secs (1/tf = 1TF lop/s),
mem = 1.2·1012 words, α = 10−1 secs, β = 25·10−9

secs (1/β = 40 MWords/s = .32 GBytes/s) (estimated
by dividing the Teragrid backbone bandwidth of 40
GBytes/s by pmax.)

Note that each processor in Peta and Grid is a signifi-
cant parallel computer itself, but we only model the paral-
lelism between these processors, not within them. Again,
one could potentially apply our techniques for each level of
parallelism, but we have not modeled this here.

In Section 3.3 we described the three computational
phases of PA2: Phase I must be done before any commu-
nication can be initiated, Phase II can be fully overlapped
with communication, and Phase III can only begin after
communication is complete. This justifies the performance
model below, given the assumption of overlapping commu-
nication.

Let NI , NII , and NIII respectively denote the flop
counts for Phases I, II, and III of PA2–the formulas for these
are shown in Table 6.1. Let Nw denote the total number
of words sent by a processor. Let M denote the memory
required per processor when p processors are used. For-
mulas for Nw and M are only slightly more detailed than
the entries in Table I, so we do not show them here. Let
Tk,p denote the time taken for PA2. Since we assume all
messages can be in-flight simultaneously while computa-
tion is occurring. So, we use Tk,p = (NI +NIII) · tf +
max (NII · tf , α+ β ·Nw).

For performance modeling, we find the optimal value of
the parameter p within the range allowed for specific n, k, b
values. This range is limited by two parameters–pmax and
mem. If p is made small, then the memory required per
processor M might exceed the memory available per pro-
cessor mem. Also, p can be at most pmax. Another limit
imposed on p is that the number of entries per dimension
of the stencil should be be at least 2bk since our formu-
las assume this condition. We also round p down to the
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Problem Term Formula

NI (8b2 + 8b + 1) ·
“

n
p1/2 − bk

”
· (bk2 − 2bk)

2D NII (8b2 + 8b + 1) ·
“

3n2

p
− 9bkn

p1/2 + 7b2k2 + 2b2
”
· k/3

NIII (8b2 + 8b + 1) · bk ·
“

9nk
p1/2 + 6n

p1/2 − bk2 − 6bk − 8b
”

/3

NI (2(2b + 1)3 − 1) · (bk2 − 2bk) ·
“

6n2

p2/3 −
12bkn
p1/3 + 7b2k2 − 2b2k

”
/4

3D NII (2(2b + 1)3 − 1) · k ·
“

4n3

p
− 18bkn2

p2/3 +
(28b2k2+8b2)n

p1/3 + O(b3k3)
”

/4

NIII (2(2b + 1)3 − 1) · bk ·
“

n2

p2/3 (18k + 12)− nb
p1/3 (4k2 + 24k + 32) + O(b2k3)

”
/4

Table 2. Formulas for NI , NII and NIII for PA2.

nearest perfect square or cube (depending on the problem).
The optimal p is strongly problem dependent, e.g., for small
problem sizes, p = 1 might be sufficient and better since it
avoids the overhead of communication. Therefore, a good
measure of how well PA2 performs with respect to the con-
ventional algorithm is the speedup with respect to the con-
ventional algorithm assuming optimal p values were used
for each algorithm: speedup = min1≤p≤pmax T1,p·k

min1≤p≤pmax Tk,p
. We

used T1,p · k for the time taken for the conventional algo-
rithm as the conventional algorithm turns out to be k invo-
cations of PA2 with k = 1.

We now discuss the performance modeling results for
each combination of machine (Peta or Grid) and stencil (2D
or 3D with bandwidth b = 1):

1. 2D Stencil on Peta (Figure 3(a)): We see that for
smaller n and k, the speedup is close to linear in k.
The best speedup is 6.9x, attained when n = 211,
k = 12. However, the algorithm has no benefit for
large values of n, because computation totally domi-
nates communication; in this case no optimization is
necessary either. We also note that the speedup de-
creases as k is increased beyond a certain point, be-
cause the overhead of extra floating point operations
exceeds the gains from reducing latency.

2. 2D Stencil on Grid (Figure 3(b)): The white region
for n = 221 and n = 222 indicates that the problem
needed too much memory to be solved by the machine.

We see that the algorithm is expected to obtain an im-
pressive speedup of up to 22.22x for large matrices
(n = 217). Indeed, speedup is still increasing for the
maximum value of k shown (k = 30), and larger k
might show further improvements. No speedups are
expected for small values of n because the problem
can be solved using only 1 processor and latency is too
high to benefit from using more processors. As before,
for very large problem sizes (n ≥ 220), we see no gains
because computation dominates communication.

3. 3D Stencil on Peta (Figure 3(c)): In contrast to the 2D
case, in the 3D case no speedup is possible using our

new algorithm (with the exception of a 2% speedup for
n = 29 and k = 2). This is because the conventional
k = 1 algorithm is already completely dominated by
computation.

4. 3D Stencil on Grid (Figure 3(d)): In this case we can
get a speedup of 4.41x for n = 210 and k = 30.

6.2 Performance Modeling of SA2

Here, we present a brief summary of the detailed per-
formance modeling of the sequential algorithm SA2. We
modeled two machines with the following parameters:

1. OOC: This out-of-core implementation models a 500
MFlop/s uniprocessor with 4 GB DRAM as fast mem-
ory and a 15000 RPM Seagate ST373307 disk as slow
memory. The disk access latency is 5.7 ms and band-
width is 62.5 MB/s.

2. CacheBlocked: This implementation models a single
core of the quad-core Intel Clovertown chip, with 2
GFlops/s (based on measurements in [27]) with on-
chip 8 MB cache as fast memory and DRAM as slow
memory. The DRAM access latency is 200 ns and
bandwidth is 5 GB/s.

The performance of SA2 was modeled for the specific
case of 2D 9-point stencil and 3D 27-point stencil as the
matrix A. Our model assumes no overlap of communica-
tion with computation, in order to compare with our imple-
mentation. Table 3 shows the predicted speedups:

In contrast to the parallel case, we see that significant
speedups were attained for all problem sizes n, since band-
width is always the bottleneck. In the table, “% Peak” is the
ratio of the (modeled) running time of the algorithm on a
zero latency / infinite bandwidth machine to the (modeled)
true time. The closer this is to 100%, the more completely
the algorithm masks the cost of slow memory access. On
OOC, we see that we get high speedups, though we are not
near peak performance. On CacheBlocked, our speedups
are more modest, but still good, and we are closer to peak
performance.

8



(a) Peta: Speedup for 2D stencil (b) Grid: Speedup for 2D stencil

(c) Peta: Speedup for 3D stencil (d) Grid: Speedup for 3D stencil

Figure 3. Performance modeling plots for Peta and Grid.

Model Matrix Range of n (Range of) Modeled Speedup (Range of) % Peak
OOC 2D 214 to 225 10.2 17%

3D 28 to 217 [7.39,9.51] [14%, 18%]
CacheBlocked 2D 28 to 219 [2.45,2.58] [62%, 65%]

3D 28 to 212 [1.34,1.36] 38%

Table 3. Performance modeling summary for SA2.

7 Measured Performance

We implemented PA1 and PA2 for general sparse matri-
ces in UPC [8]. We tested our implementation on the UC
Berkeley CITRIS cluster1 (Intel Itanium 2-based) and the

1The authors wish to acknowledge the contribution from Intel Corpo-
ration, Hewlett-Packard Corporation, IBM Corporation, and the National
Science Foundation grant EIA-0303575 in making hardware and software
available for the CITRIS Cluster which was used in producing these re-
search results.

NERSC Jacquard cluster2 (AMD Opteron-based). How-
ever, since the network for these machines has low latency,
there were no speedups from our parallel algorithms. Our
sequential implementation, however, shows good speedups.
So, we report the performance results for our implementa-
tion of SA2.

For the implementation of SA2, we needed to solve

2This research used resources of the National Energy Research Scien-
tific Computing Center, which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
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an ordering problem for the rows of x and A in order to
minimize the communication cost (Section 4). This min-
imization problem corresponds to minimizing the number
of words fetched from disk during the course of the al-
gorithm. We used a simple random sampling strategy to
choose the best ordering from a sequence of random order-
ings. This worked out well as the actual number of words
transferred between disk and main memory was close to the
lower bound for SA2 (within 2%). Another level of reorder-
ing was done on a per-block basis in our implementation.
This allowed the computations in SA2 to be done as a se-
quence of k calls to separate, tuned sparse matrix multipli-
cation (SpMV) routines. In our implementation we used the
OSKI library [26].

We tested our implementation on the UC Berkeley CIT-
RIS cluster–a cluster of Itanium 2 nodes each with a theo-
retical peak performance of 5.2 GFlops/s. Each node has 2
Itanium processors with 4 gigabytes of memory per proces-
sor.

Our test problem was a matrix with a 27-point sten-
cil on a 3D mesh (stored as a general sparse matrix) with
n = 368 and p = 64 (the choice of n was limited by
the available disk space). Thus the matrix had dimension
3683 = 49, 836, 032 with 27 nonzeros in most rows, bro-
ken into 43 = 64 blocks of ( 368

4 )3 = 923 = 778, 688 rows
each. The value of p was chosen to optimize performance.

For accurate performance modeling, we used measured
values for all important machine parameters: time per float-
ing point operation and disk bandwidth. The disk band-
width differs significantly for reads and writes, so we aug-
mented our model to distinguish reads and writes. Disk la-
tency turned out to play a negligible role.

• tf = 3.12 ns (1/tf = 321 Mflops/s): This is the mea-
sured inverse flop rate for SA2. This was taken as the
median of the flop rates observed for the computational
phases in SA2.

• βr = 56 ns (1/βr = 143 MBytes/s): This is the mea-
sured inverse read bandwidth.

• βw = 240 ns (1/βw = 33 MBytes/s): This is the mea-
sured inverse write bandwidth.

Figures 4(a) and 4(b) show the results, both modeled
and measured, which closely match. Figure 4(a) breaks the
total runtime down into computation and communication,
and Figure 4(b) shows the speedup, which reaches 3.2x at
k = 15, and is at least 3x for k ≥ 8.

We also compare the results to those on a hypothetical
machine with infinite DRAM, so that the the entire com-
putation can proceed in main memory. Such an algorithm
obviously provides an upper bound on our speed. We go
from running 20x slower than this algorithm at k = 1 to
just 6x slower at k = 15 (these are measured values).

8 Related Work

The optimizations described in this paper belong to a col-
lection of techniques for improving the performance of ap-
plying a stencil repeatedly to a regular discrete domain, or
multiplying a vector repeatedly by a sparse matrix. They,
in turn, are a subset of various methods known as tiling
or blocking. They all involve decompositions of the d-
dimensional domain into d-dimensional subdomains, and
rearranging the order of arithmetic operations in order to
exploit the parallelism and/or temporal locality implicit in
those subdomains.

Tiling research falls into three general categories. The
first encompasses performance-oriented implementations
and practical performance models. See, for example,
[17, 16, 10, 28, 18, 14, 21, 29, 7, 22, 6, 30, 25, 12, 11].
The second category consists of theoretical algorithms and
asymptotic performance analyses. These are based on se-
quential or parallel processing models which account for
the memory hierarchy and/or inter-processor communica-
tion costs. Works that specifically discuss stencils or more
general sparse matrices include [9], [13], and [23]. The
third category contains suggested applications that call for
repeated application of a stencil (resp. sparse matrix) to a
domain (resp. vector). See, for example, [24, 19, 2, 3, 1, 22].

The idea of using redundant computation to avoid com-
munication or slow memory accesses in stencil codes may
be as old as OOC stencil codes themselves. Leiserson et
al. cite a reference from 1963 [13, 17]. Nevertheless, many
tilings do not involve redundant computation. For example,
Douglas et al. describe a parallel tiling algorithm that works
on the interiors of the tiles in parallel, and then finishes the
boundaries sequentially [7]. Many sequential tilings do not
require redundant computations [11]; our SA1 algorithm
does not.

However, at least in the parallel case, tilings with redun-
dant computation have the advantage of requiring only a
single round of messages, if the stencil is applied several
times. The latency penalty is thus independent of the num-
ber of applications, though the bandwidth requirements in-
crease. Furthermore, Strout et al. point out that the sequen-
tial fill-in of boundary regions suggested by Douglas et al.
suffers from poor locality [22]. Most importantly, redun-
dant computation to save messages is becoming more and
more acceptable, given the exponential divergence in per-
formance between latency, bandwidth, and floating-point
rate.

Extensions of stencil tiling to more general sparse matri-
ces require runtime analysis of the sparse matrix structure,
often using a graph partitioner. Finding an optimal partition
is an NP-complete problem which must be approximated in
practice, at nontrivial cost. Theoretical algorithms for the
out-of-core sequential case already existed (see e.g., [13]),
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(a) Measured vs. Modeled SA2 Performance. (b) Measured vs. Modeled SA2 speedup.

Figure 4. Measured performance plots for SA2 on Itanium2 CITRIS cluster.

but Douglas et al. were apparently the first to attempt an im-
plementation of parallel tiling of a general sparse matrix, in
the context of repeated applications of a multigrid smoother
[7]. This was extended by Strout et al. into a sequential
cache optimization which resembles our SA1 algorithm.

Our work differs from existing approaches in many
ways. First, we developed our methods in tandem with
an algorithmic justification: communication-avoiding or “s-
step” Krylov subspace methods [4]. Toledo had suggested
an s-step variant of conjugate gradient iteration, based on a
generalization of PA1, but he did not supply an implemen-
tation for matrices more general than tridiagonal matrices
[23]. We have a full implementation of PA1 for general
sparse matrices, and have detailed theoretical models show-
ing performance increases on a wide variety of platforms.

Douglas et al. and Strout developed their matrix pow-
ers kernel for classical iterations like Gauss-Seidel [7, 22].
However, these iterations’ most common use in modern lin-
ear solvers are as multigrid smoothers. The payoff of ap-
plying a smoother k times in a row decreases rapidly with
k; this is, in fact, why multigrid is used, rather than clas-
sical iterations such as Jacobi or Gauss-Seidel. Douglas et
al. acknowledge that usually 1 ≤ k ≤ 5 [7]. In contrast,
communication-avoiding Krylov subspace methods are po-
tentially much more scalable in k. Saad also suggested ap-
plying something like a matrix powers kernel to polynomial
preconditioning, but here again, increasing the degree of the
polynomial preconditioner has a decreasing payoff, in terms
of the number of CG iterations required for convergence
[19].

We have also expanded the space of possible algorithms
by including PA2 and SA2. PA2 avoids some redundant
computation, but offers less opportunity for overlapping
communication and computation. SA2 extends SA1 for the
case in which the vectors (as well as the matrix) do not fit

entirely in fast memory. As far as we can tell, PA2 and SA2
are novel.

9 Conclusions

To address both current and future gaps between com-
putational speed and communication speed, we are devel-
oping a set of communication avoiding algorithms to min-
imize data movement within local memory hierarchies and
between processors. In this paper we presented both serial
and parallel algorithms for the matrix powers kernel, which
can be used in place of individual sparse matrix vector mul-
tiplication in Krylov Subspace Methods and elsewhere. The
powers kernel amortizes the bandwidth cost of reading the
matrix A by breaking A into blocks that fit in a single pro-
cessor or a fast memory system and taking multiple steps on
those blocks. We present algorithms with minimal commu-
nication costs, which send a single message (or slow ma-
trix read) for k matrix-vector products computed in the ma-
trix powers kernel, compared to k such operations in the
conventional approach. We also show variations of the al-
gorithms that trade off communication cost for redundant
work.

Our algorithms are of practical as well as theoretical
interest. We developed detailed performance models for
both serial and parallel algorithms, instantiating the paral-
lel model with parameters that are expected to be typical
for a Petascale machine and for computing across the Grid.
The serial model is instantiated with numbers from a cur-
rent processor memory hierarchy and for an out-of-core set-
ting. Our detailed performance model predicts more than 4x
speedups for high latency parallel machines (Grid) for mod-
erate sized stencils. In the sequential case, our proposed al-
gorithm avoids both latency and bandwidth (in contrast to
the parallel machine, where only latency is avoided), which
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gives speedups for all problem sizes. The performance of
our sequential implementation is promising indeed, with
speedups of 3x over the conventional algorithm. In addition
to the specific results in this paper, we believe this work re-
flects a shift in algorithm design that will be necessary for
future systems; this approach carefully counts communica-
tion costs and may favor algorithms with higher computa-
tional cost if they avoid communication.
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C. Weiss. Cache optimization for structured and unstruc-
tured grid multigrid. Electronic Transaction on Numerical
Analysis, 10:21–40, Feb. 2000.

[8] T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick.
UPC: Distributed Shared-Memory Programming. Wiley-
Interscience, May 2005.

[9] J.-W. Hong and H. T. Kung. I/O complexity: The red-blue
pebble game. In Proc. 13th Ann. ACM Symp. on Theory of
Computing (May 11-13, 1981), pages 326–333, 1981.

[10] F. Irigoin and R. Triolet. Supernode partitioning. In Proc.
of the 15th ACM SIGPLAN-SIGACT Symp. on Principles
of Programming Languages, pages 319–329. ACM Press,
1988.

[11] S. Kamil, K. Datta, S. Williams, L. Oliker, J. Shalf, and
K. Yelick. Implicit and explicit optimizations for stencil
computations. In Memory Systems Performance and Cor-
rectness, San Jose, CA, Oct. 2006.

[12] S. Kamil, P. Husbands, L. Oliker, J. Shalf, and K. Yelick.
Impact of modern memory subsystems on cache optimiza-
tions for stencil computations. In 3rd Ann. ACM SIGPLAN
Workshop on Memory Systems Performance, Chicago, IL,
2005.

[13] C. E. Leiserson, S. Rao, and S. Toledo. Efficient out-of-
core algorithms for linear relaxation using blocking covers

(extended abstract). In IEEE Symp. on Foundations of Com-
puter Science, pages 704–713, 1993.

[14] J. McCalpin and D. Wonnacott. Time skewing: A value-
based approach to optimizing for memory locality. Techni-
cal Report DCS-TR-379, Department of Computer Science,
Rutgers University, 1999.

[15] D. Patterson. Latency lags bandwidth. CACM, 47(10):71–
75, Oct 2004.

[16] J.-K. Peir. Program partitioning and synchronization on
multiprocessor systems. PhD thesis, Department of Com-
puter Science, University of Illinois at Urbana-Champaign,
Mar. 1986.

[17] C. J. Pfeifer. Data flow and storage allocation for the PDQ-5
program on the Philco-2000. Communications of the ACM,
6(7):365–366, 1963.

[18] E. J. Rosser. Fine-grained analysis of array computations.
PhD thesis, Dept. of Computer Science, University of Mary-
land, Sept. 1998.

[19] Y. Saad. Practical use of polynomial preconditionings for
the conjugate gradient method. SIAM J. Sci. Stat. Comput.,
6(4), Oct. 1985.

[20] M. Snir and S. Graham, editors. Getting up to speed:
The Future of Supercomputing. National Research Council,
2004. 227 pages.

[21] Y. Song and Z. Li. New tiling techniques to improve cache
temporal locality. In Proc. ACM SIGPLAN Conference on
Programming Language Design and Implementation, At-
lanta, GA, 1999.

[22] M. M. Strout, L. Carter, and J. Ferrante. Rescheduling for
locality in sparse matrix computations. In V. N. Alexandrov
and J. J. Dongarra, editors, Lecture Notes in Computer Sci-
ence. Springer, 2001.

[23] S. Toledo. Quantitative performance modeling of scien-
tific computations and creating locality in numerical algo-
rithms. PhD thesis, Massachusetts Institute of Technology,
June 1995.

[24] J. van Rosendale. Minimizing inner product data depen-
dence in conjugate gradient iteration. In Proc. IEEE Inter-
nat. Confer. Parallel Processing, 1983.

[25] R. Vuduc. Automatic Performance Tuning of Sparse Matrix
Kernels. PhD thesis, University of California Berkeley, Dec.
2003.

[26] R. Vuduc, J. Demmel, and K. Yelick. OSKI: A library of au-
tomatically tuned sparse matrix kernels. In Proc. of SciDAC
2005, J. of Physics: Conference Series. Institute of Physics
Publishing, June 2005.

[27] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and
J. Demmel. Optimization of sparse matrix-vector multipli-
cation on emerging multicore platforms. In SC07. IEEE,
2007. to appear.

[28] M. E. Wolf. Improving locality and parallelism in nested
loops. PhD thesis, Stanford University, 1992.

[29] D. Wonnacott. Using time skewing to eliminate idle time
due to memory bandwidth and network limitations. In Proc.
of the 14th Int. Parallel and Distributed Processing Symp.
(IPDPS), pages 171–180, 2000.

[30] P. R. Woodward and S. E. Anderson. Scaling the Teragrid
by latency tolerant application design. In Proc. of NSF / De-
partment of Energy Scaling Workshop, Pittsburg, CA, May
2002.

12


