
Parallel
Applications

Parallel
Hardware

Parallel
Software IT industry

(Silicon Valley)
Users

Automatically Tuning Collective
Communication for One-Sided

Programming Models
Rajesh Nishtala

Ph.D. Dissertation Talk
Committee: Katherine Yelick (chair), James Demmel,

Panos Papadopoulos

Observations
  Scientists and engineers are able to leverage large-scale

systems to solve many problems important for society
 e.g. climate simulations, genomics, cloud services, etc.

  Many interesting problems will still require orders of magnitude
more computational power

  With current technological limitations (i.e. power) the only way
to deliver the performance is by using lots of processors and
relying on parallelism
 Responsibility of efficiently using the system shifts away

from the hardware and higher into the software stack

2

Current Processor Counts
  Large Scale Systems

 Very common to have more than 1024 processor cores
 Largest machines have over 128,000 processor cores
 Millions of cores in the not-so distant future

  Desktop/Laptop/Cell Phones
 Multicore processors are ubiquitous
 Tens to hundreds of processors per system within the not-so

distant future
  Intel just announced 48-core processor

 GPUs already support programming models with high
levels of parallelism

  Communication is the key!
 Must design programming models to allow processors to

efficiently communicate with each other
3

Personal
Health

Image
Retrieval

Hearing,
Music Speech Parallel

Browser
Design Patterns/Motifs

Sketching

Legacy
Code Schedulers Communication &

Synch. Primitives
Efficiency Language Compilers

Par Lab Research Overview

Legacy OS

Multicore/GPGPU

OS Libraries & Services

RAMP Manycore

Hypervisor

C
or

re
ct

ne
ss

Composition & Coordination Language (C&CL)

Parallel
Libraries

Parallel
Frameworks

Static
Verification

Dynamic
Checking

Debugging
with Replay

Directed
Testing

Autotuners

C&CL Compiler/Interpreter

Efficiency
Languages

Type
Systems

D
ia

gn
os

in
g

P
ow

er
/P

er
fo

rm
an

ce

4

Personal
Health

Image
Retrieval

Hearing,
Music Speech Parallel

Browser
Design Patterns/Motifs

Sketching

Legacy
Code

Communication &
Synch. Primitives

Efficiency Language Compilers

Par Lab Research Overview

Legacy OS

Multicore/GPGPU

OS Libraries & Services

RAMP Manycore

Hypervisor

C
or

re
ct

ne
ss

Composition & Coordination Language (C&CL)

Parallel
Libraries

Parallel
Frameworks

Static
Verification

Dynamic
Checking

Debugging
with Replay

Directed
Testing

Autotuners

C&CL Compiler/Interpreter

Efficiency
Languages

Type
Systems

D
ia

gn
os

in
g

P
ow

er
/P

er
fo

rm
an

ce

Schedulers

5

Contributions
  Automatically tuned collective communication library for PGAS

languages
  Collectives are common communication building blocks used

by many applications
  Understand how the one-sided communication model affects

the collective tuning
  Tuning for both shared and distributed memory systems

  Allow collectives to be overlapped with computation
  Developed performance models to better understand the

performance tradeoffs
  Incorporate collectives into application benchmarks

  Some of the largest scale runs of PGAS languages
  Software is integrated into latest release of Berkeley UPC

6

EXAMPLES OF MODERN
SYSTEMS

7

Chapter 1. Hardware overview 5

Figure 1-1 Blue Gene/P system overview from the microprocessor to the full system

1.1.1 System buildup

The number of cores in a system can be computed using the following equation:

Number of cores = (number of racks) x (number of node cards per rack) x (number of
compute cards per node card) x (number of cores per compute card)

This equation corresponds to cores and memory. However, I/O is carried out through the I/O
Node that is connected externally via a 10 gigabit Ethernet network. This network
corresponds to the functional network. I/O Nodes are not considered in the previous equation.

Finally, the compute and I/O Nodes are connected externally (to the outside world) through
the following peripherals:

! One Service Node
! One or more Front End Nodes
! Global file system

1.1.2 Compute and I/O nodes

Nodes are made of one quad-core CPU with 2 GB or 4 GB of memory. These nodes do not
have a local file system. Therefore, they must route I/O operations to an external device. To
reach this external device (outside the environment), a Compute Node sends data to an I/O
Node, which in turn, carries out the I/O requests.

The hardware for both types of nodes is virtually identical. The nodes differ only in the way
they are used, for example, extra RAM might be on the I/O Nodes, and the physical
connectors thus are different. A Compute Node runs a light, UNIX®-like proprietary kernel,
referred to as the !"#$%&'()"*'(+',-'.(/!)+0. The CNK ships all network-bound requests
to the I/O Node.

!"#$%&
'('()*

!"#$%&
+,-."/01

'()*
2,-34&%-/".&1

+,-%./(0-
52,-/6781-9(9(,:

2,-/4;8<=%>-?@,-AB-/".&1

/,&12$%./(0-
)-/678>-9?
CDEF1

/341
9-8.4/%114.1

)2G*-HIJ1
'-FK-LCDEF

)2G*-HIJ1
,-4.-9-HK-CCD

92M-HIJ1
N8-=4-),'-HK

)9-OIJ1
N8-=4-9-OK

)-PIJ1
N8-=4-,''-OK

Levels of Parallelism
 Many levels of parallelism

  Each has its own implications for the communication
  How do we manage communication at the different levels
  Example: IBM BlueGene/P

8 figure from IBM Redbook SG24-7287

3-level Fat Tree
  Connect nodes such that there is a constant bandwidth between all nodes

  First described by Charles Clos in 1952 for the telephone network
  Connectivity is very similar to the butterfly found in the Fast Fourier

Transform (FFT)
  Also called a “Fat Tree”

  Switches placed into groups at every level
  Bandwidth between child and parent groups doubles every step
  P-port switch with T levels requires (2T-1)(P/2)(T-1) switches

9

node 0

node 1

node 2

node 3

node 4

node 5

node 6

node 7
Tier 0 Tier 2Tier 1

node 8

node 9

node 10

node 11

node 12

node 13

node 14

node 15

Mesh/Torus Networks
  Fat Tree networks can be quite expensive

  A high number of switches might be overkill
  Tradeoff number of switches for bandwidth across network

  A lot of applications don’t need full bandwidth to every other node
  Depends on target network performance and application

  In a mesh network nodes are directly connected to their neighbors
  Unlike switched network, the network cards at the nodes need to be able to

route messages
  Messages routed through the grid
  Bandwidth on the links is shared
  Torus is mesh with ends wrapped
  Example is 8x8 Torus

  What is the target network performance?
  What are the target applications?

10

n0 n7

n56 n63

Summary Of Experimental Platforms

11

Cray XT5 IBM
BlueGene/P

Sun
Constellation

Cray XT4

Name/Location Jaguar/ORNL Intrepid/ALCF Ranger/TACC Franklin/NERSC

Top500 Rank
(Nov. 2009)

1 8 9 15

Processor Type
(Revision)

AMD Opteron
(Istanbul)

IBM PowerPC
450

AMD Opteron
(Barcelona)

AMD Opteron
(Budapest)

Processor Speed 2.6 GHz 0.85 GHz 2.3 GHz 2.3 GHz

Cores/Node 12 4 16 4

Total Cores 224,256 163,840 62,976 38,288

Interconnect 3D Torus 3D Torus 4-level Fat Tree 3D Torus

Sun Niagara2 (256 threads)

AMD Opteron (32 threads)

[Diagrams Courtesy of Sam W. Williams] 12

Shared Memory Systems

ONE-SIDED PROGRAMMING
MODELS

13

Partitioned Global Address Space
(PGAS) Languages

  Programming model suitable for both
shared and distributed memory
systems

  Language presents a logically shared
memory

  Any thread may directly read/write
data located on a remote processor
  Can build complex distributed

data structures
  Address space is partitioned so each

processor has affinity to a memory
region
  Accesses to “local” memory are

potentially much faster

shared address space

private address space

P0 P1 P2 P3

Many PGAS Languages:
UPC, Titanium, Co-Array Fortran,
X10, Chapel, etc

14

UPC Overview
  A PGAS dialect of ISO C99

  Both private and shared data

  int x[10]; and shared int y[10];

  Support for distributed data structures

  Distributed arrays; private and shared pointers

  One-sided shared-memory communication

  Simple assignment statements: x[i] = y[i]; or t = *p;

  Bulk transfer operations: memcpy

  Synchronization

  Global barriers, locks, memory fences

  Collective Communication Library

  Broadcast, Gather, Gather-all, Scatter, Exchange, Reduce, Scan

  I/O libraries

  Implemented by multiple vendors and free-software efforts

  Language is under active development
15

One-Sided vs. Two-Sided
Messaging

  Two-sided messaging
 Message does not contain information about final destination
 Have to perform look up at the target or do a rendezvous
  Point-to-point synchronization is implied with all transfers

  One-sided messaging
 Message contains information about final destination
 Decouple synchronization from data movement

  What does the network hardware support?
  What about when we need point-to-point sync?

  Active Message based semaphore library to handle this
efficiently (still one-sided!)

dest. addr.

message id

data payload

data payload

one-sided put (e.g., UPC)

two-sided message (e.g., MPI)

network
 interface

memory

host
CPU

16

The Berkeley UPC Compiler

Translator UPC Code

Translator Generated C Code

Berkeley UPC Runtime System

GASNet Communication System

Network Hardware

Platform-
independent

Network-
independent

Compiler-
independent

Language-
independent

Two Goals: Portability and High-Performance

Portable Communication Layer
runs on many backends:

UDP, SMP, Infiniband, Cray XT, IBM
BlueGene/P and many more

Need auto-tuning
system for portability

and high performance

Slide source: [W. Chen et al. ICS’03]

17

512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M 2M
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Transfer Size (Bytes)

F
lo

o
d

 B
a

n
d

w
id

th
 (

M
B

/s
 1

M
B

 =
 2

2
0
 B

y
te

s
)

Six Link Peak

GASNet (6 link)

MPI (6 link)

GASNet (4 link)

MPI (4 link)

GASNet (2 link)

MPI (2 link)

One Link Peak

GASNet (1 link)

MPI (1 link)

GASNet Multilink Bandwidth
  Each node has six 850MB/s*

bidirectional link
  Vary number of links from 1 to 6
  Initiate a series of nonblocking

puts on the links (round-robin)
  Communication/communication

overlap
  Both MPI and GASNet asymptote

to the same bandwidth
  GASNet outperforms MPI at

midrange message sizes
  Lower software overhead

implies more efficient message
injection

 GASNet avoids rendezvous to
leverage RDMA

* Kumar et. al showed the
maximum achievable bandwidth
for DCMF transfers is 748 MB/s
per link so we use this as our peak
bandwidth
See “The deep computing
messaging framework: generalized
scalable message passing on the
blue gene/P supercomputer”,
Kumar et al. ICS08

18

G
O
O
D

GASNet Active Messages

19

  GASNet also offers rich Active Message library

  Ability to invoke function on Remote Node

  Important piece for collective implementation

  A request consists of an index into a function table to be invoked
on the target side, arguments, and possibly payload

  Short Request: no payload (just arguments)

  Medium Request: small payload and arguments, source does
not specify destination buffer

  Long Request: payload and arguments, source provides both
source and destination address of payload

  Replies run inside the request handler invocation

  Can only send to the peer that sent the request

  Have Short, Medium, and Long replies which have the same
properties as their corresponding requests

  Sending replies is optional

Request

Reply

A B

tim
e

run request
handler

run reply
handler

COLLECTIVE
COMMUNICATION

20

What are Collectives?

One-to-Many
  All processors communicate

with a single root
  Flat algorithm: O(T) messages

  Broadcast
  Scatter
  Gather
  Reduce-to-One

Many-to-Many
  All processors communicate

with all others
  Flat algorithm: O(T2) messages

  Barrier
  Gather-to-All
  Exchange (i.e. Transpose)
  Reduce-to-All

 Operations that perform globally coordinated communication
 Most modern parallel programming libraries and languages

have versions of these operations
 Encapsulate operations behind a library interface so that they

can be tuned by runtime layer to achieve best performance
and scalability

21

300

200 300 400

100 100 100

22

Rooted Collectives

Broadcast:
 send a copy of the data
from root processor to
all others

P0 P1 P2 P3

Reduce-to-One:
 aggregate results from
all processors

100

P0 P1 P2 P3

Gather:
 All processors send a
contribution to the root

Scatter:
 inverse of Gather

100

P0 P1 P2 P3

200 400

100

1000

A0 B0 C0 D0 D0

A0

A0 B0 C0 D0

A0 B0 C0 D0

23

Non-Rooted Collectives

P0 A0

P1

P2

P3

P0

P1

P2

P3 D0 D1 D2 D3

C0 C1 C2 C3

B0 B1 B2 B3

A0 A2 A3 A1

A0 P0

P1

P2

P3

B0

C0

Exchange (Transpose):
 All processors simultaneously

scatter input array
(personalized messages)

Gather-To-All:
All processors

simultaneously
broadcast input

(non-personalized
messages)

Design Goals for GASNet Collectives
  Interface

  General collective interface that supports multiple PGAS languages
  E.g. UPC and Chapel have different threading and execution models that

we need to support
  Have to support the many synchronization modes of UPC

  Allow the collectives to be nonblocking
  Support subset collectives (i.e. Teams)

  Implementation
  Leverage shared memory whenever it’s available
  Effectively deliver the performance advantages of one-sided

communication in the collectives
  Automatically tune the collectives

  Infrastructure should be able to include hardware collectives on platforms
where applicable

24

TUNING COLLECTIVE
COMMUNICATION FOR
DISTRIBUTED MEMORY

25

Leverage Shared Memory
  All cores within a node are part of the same shared memory domain

  One-to-one mapping between threads and hardware cores
  All threads within same OS process are part of same shared memory domain

  Have only one representative thread per node manages the communication
  Responsible for packing/unpacking the data

  Experiment varies number of processes/thread grouping
  Measures Broadcast latency of increasing sizes
  1024 cores of Sun Constellation (4 sockets / 4 threads per socket)

26

  Best performance is 4 threads
per process

  Communication outside socket
is expensive
  Can incur the penalties for

Non-Uniform Memory
Access (NUMA)

G
O
O
D

node 0

node 1

node 2

node 3

node 4

node 5

node 6

node 7
Tier 0 Tier 2Tier 1

node 8

node 9

node 10

node 11

node 12

node 13

node 14

node 15

Trees
  Observation: All nodes are not directly connected together

  Send the data through intermediaries to improve scalability
  Nodes can communicate with O(log N) peers instead of O(n) peers
  Tradeoff depth for the width

27

  Example: 2-nomial (Binomial) tree
  Recursive Tree

  Root sends to sub-trees of decreasing sizes
  The higher the radix the shallower the tree

Example Tree Topologies

Radix 4 k-nomial tree
(quadnomial)

Radix 2 k-nomial tree
(binomial)

Binary Tree Fork Tree

Chain

Tree

28

  Broadcast on Sun Constellation
(1024 cores)
  4-nomial is consistently a

“good” performer
  8-nomial is best at < 2k bytes

  Broadcast on Cray XT4 (2048
cores)
  4-nomial is best < 2k
  choosing 4-nomial at 32k

leads to 2x degradation in
performance

Choosing the Best Tree
  Optimal tree depends on many factors such as network

latency and bandwidth and network connectivity
  Best tree changes based on platform and collective

29

G
O
O
D

Address Modes

30

  In Global Address Space every thread
knows directly where to put the data
  How do we specify the arguments

to the collective?
  Two Options:

  Single: All nodes provide address
for all the other nodes

  Local: Nodes only provide one
address

  Single Address Mode
  Pros: can directly leverage puts/gets without additional overhead
  Cons: overhead of generating and storing all the addresses

  In PGAS languages however this is not that high
  Local Address Mode

  Pros: easy to generate addresses and no meta-data overhead
  Cons: have to spend time to discover addresses before data can be sent

  Broadcast on 1024 cores of Sun Constellation shows that the cost of address
discovery is high at large messages
  Time spent communicating addresses wastes bandwidth

Broadcast on Sun Constellation (1024 cores)

G
O
O
D

Data Transfer Mechanisms
  Eager Put

  Send data to anonymous buffer on
target node

  Uses Medium AM
  Signaling Put

  Send data and signal target once it has
arrived

  Still one-sided!
  Needs to know where the data goes
  Uses Long AM
  Single-Mode Only

  Rendez-Vous
  Send child a short message indicating

data is read
  Child does get and sends a short

message indicating data is complete
  AMs for synchronization only

31 Broadcast on Sun Constellation (1024 cores)

Broadcast on Cray XT4 (2048 cores)

G
O
O
D

Potential Synchronization
 Problem
1. Broadcast variable x from root
2. Have proc 1 set a new value

for x on proc 4

broadcast x=1 from proc 0
if(myid==1) {

 put x=5 to proc 4
} else {

 /* do nothing*/
}

pid: 0
x: 1

pid: 1
x: Ø

pid: 2
x: Ø

pid: 3
x: Ø

pid: 4
x: Ø

pid: 1
x: 1

pid: 2
x: Ø

pid: 3
x: Ø

pid: 4
x: 1

pid: 4
x: 5

pid: 0
x: Ø

pid: 1
x: Ø

pid: 4
x: Ø

pid: 0
x: 1

pid: 1
x: Ø

pid: 2
x: Ø

pid: 3
x: Ø

pid: 4
x: Ø

pid: 1
x: 1

pid: 2
x: Ø

pid: 3
x: Ø

pid: 4
x: 1

pid: 4
x: 5

pid: 0
x: 1

pid: 1
x: Ø

pid: 4
x: Ø

pid: 0
x: 1

pid: 1
x: Ø

pid: 2
x: Ø

pid: 3
x: Ø

pid: 4
x: Ø

pid: 1
x: 1

pid: 2
x: Ø

pid: 3
x: Ø

pid: 4
x: 1

pid: 4
x: 5

pid: 0
x: 1

pid: 1
x: 1

pid: 4
x: Ø

pid: 0
x: 1

pid: 1
x: Ø

pid: 2
x: Ø

pid: 3
x: Ø

pid: 4
x: Ø

pid: 1
x: 1

pid: 2
x: 1

pid: 3
x: Ø

pid: 4
x: 1

pid: 4
x: 5

pid: 0
x: 1

pid: 1
x: 1

pid: 4
x: 5

pid: 0
x: 1

pid: 1
x: Ø

pid: 2
x: Ø

pid: 3
x: Ø

pid: 4
x: Ø

pid: 1
x: 1

pid: 2
x: 1

pid: 3
x: 1

pid: 4
x: 1

pid: 4
x: 5

pid: 0
x: 1

pid: 1
x: 1

pid: 4
x: 5

pid: 0
x: 1

pid: 1
x: Ø

pid: 2
x: Ø

pid: 3
x: Ø

pid: 4
x: Ø

pid: 1
x: 1

pid: 2
x: 1

pid: 3
x: 1

pid: 4
x: 1

pid: 4
x: 5

pid: 0
x: 1

pid: 1
x: 1

pid: 4
x: 1

Put of x=5 by proc 1 has been lost
Proc 1 observes locally complete but globally incomplete collective

Proc 1 thinks
collective is
done

32

Strict v. Loose Synchronization

  A fix to the problem
  Use synchronization

before/after the
collective

  Enforce global ordering
of the operations

  Is there a problem?
 We want to decouple

synchronization from
data movement

  Let user specify the
synchronization
requirements
  Potential to aggregate

synchronization
  Done by the user or a

smart compiler

33

Cray XT4 Broadcast Performance (1024 Cores)

> 12x faster at small message sizes
and > 5x faster at large message
sizes!

34

Nonblocking Collectives
  Relaxing Synchronization still

requires at least one processor
inside collective

  Overlapping communication w/
computation is a good idea for
1-sided programming models
[Nishtala et al. IPDPS‘09, Nishtala
UCBMS’06]

  How to overlap collectives w/
computation?
  Two Questions:

  Can the applications support
overlap?

  Can the hardware support
overlap?

  Related work being pursued by
MPI community [Hoeffler et al. and
Brightwell et al]

… initialize X …

start broadcast of X

… computation unrelated to X…

… unsafe to modify X …

wait for broadcast to complete

…. X can be safely modified …

Code for Root Processor

Performance of Nonblocking
Collectives

  Benchmark overlaps collectives with each other
  Collectives pipelined so that the network resources are more effectively used
  100-200 microsecond difference
  We show later how this can be incorporated into a real application
  All collectives built as state machines

  State machines make progress on network interrupts or polling depending on platform

35

Cray XT4 Nonblocking Broadcast Performance (1024 Cores)

G
O
O
D

Reduce
  8-byte Reduce on Sun Constellation

  8-nomial tree delivers best or close
to optimal performance

  GASNet outperforms vendor-MPI by
18% at 1k cores and 25% at 2k
cores

36

  Reduce on Cray XT4
  4-nomial consistently gives a good

algorithm
  Average of 25% better

performance over 8-nomial
  GASNet out performs MPI by >

factor of 2x in most cases

G
O
O
D

Scatter/Gather Performance
  Scatter on 1536 cores of Cray XT5

  Loose synch. offers 4x performance
improvement at low sizes

  Difference decreases at higher
message sizes

  GASNet is able to deliver better
performance for both modes
compared to vendor MPI library

37

  Gather on 1536 cores of Cray XT5
  Similar results as Scatter

  Looser synchronization
continues to deliver good
performance upto 4k bytes

  GASNet is able to consistently
outperform vendor MPI library

Dissemination for Non-rooted
Collectives

  Flat algorithm: every processor sends to
every other processor
  O(n2) messages
  Can we do better by sending through

intermediaries?
  Idea: send the data multiple times in the

network but communicate with a fewer
number of peers

  Collect data from double the number of
peers each stage

  Dissemination required all threads to be
active all the time
  O(T log T) “messages”
  Time: L*(log T) (L = latency)
View from Thread 0 T0 T1 T2 T3 T4 T5 T6 T7

Who knows about T0 ✔

Who T0 knows about ✔

✔

✔

✔ ✔

✔ ✔

✔ ✔ ✔ ✔

✔ ✔ ✔ ✔

38

Exchange
  Dissemination algorithm by Bruck et al. (1997)

  Send the data multiple times through the network before it reaches the final
destination

  Uses less messages at the cost of more bandwidth
  Highlights a tradeoff between algorithmic choice

  Intuition suggests there is a crossover point between the algorithms
  Finding the best algorithm is a tuning question that we will address in the automatic

tuner section

39

  Penalty for picking bad algorithm
is high
  Radix-2 is best at 8 bytes

but worst at 16k bytes
  Flat algorithm becomes the

best between 512 and 1k
byte exchange
  order of magnitude

worse at 8 bytes
  28% (~73 ms) faster at

16 Kbytes

Exchange on Sun Constellation (256 cores)

APPLICATION EXAMPLE

40

Case Study: NAS FT Benchmark

  Perform a large 3D FFT
  Molecular dynamics, CFD, image processing, signal processing, astrophysics,

etc.
  Representative of a class of communication intensive algorithms

  Requires parallel many-to-many communication
  Stresses communication subsystem
  Limited by bandwidth (namely bisection bandwidth) of the network

  Building on our previous work, we perform a 2D partition of the domain
  Requires two rounds of communication rather than one
  Each processor communicates in two rounds with O(√T) threads in each

  Leverage nonblocking communication to maximize communication/computation
overlap

41

FFT Performance on BlueGene/P
HPC Challenge Peak as of July 09 is ~4.5 TFlops
on 128k Cores

  PGAS implementations
consistently outperform MPI

  Leveraging communication/
computation overlap yields
best performance
  More collectives in flight

and more communication
leads to better
performance

  At 32k cores, overlap
algorithms yield 17%
improvement in overall
application time

  Numbers are getting close to
HPC record
  Future work to try to beat

the record

0

500

1000

1500

2000

2500

3000

3500

256 512 1024 2048 4096 8192 16384 32768

G
Fl

op
s

Num. of Cores

Slabs
Slabs (Collective)
Packed Slabs (Collective)
MPI Packed Slabs

42

G
O
O
D

FFT Performance on Cray XT4
  1024 Cores of the Cray XT4

  Uses FFTW for local FFTs
  Larger the problem size the more effective the overlap

43

G
O
O
D

TUNING COLLECTIVE
COMMUNICATION FOR
SHARED MEMORY

44

Barrier (tree algorithm)

  Requires two passes of a tree
  First (UP) pass tells parent subtree

has arrived.
  Second (DOWN) pass indicates that

all threads have arrived
  O(T) “messages”
  Time: 2L*(log T)

  Two ways to signal others:
  Push: write a remote variable and

spin wait on a local variable
  Pull: write a local variable and spin

on a remote variable

•  Leads to 4 unique tree
algorithms

•  Performance of each is
dependent on how
systems handle
coherency and atomic
ops 45

Barrier Performance Results

  “Traditional pthread barriers” yield poor performance
  Performance penalty for picking bad algorithm can be quite substantial
  Same code base across all platforms

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

IBM BlueGene/P
(4)

Intel Clovertown
(8)

Intel Nehalem
(16)

AMD Barcelona
(32)

Sun Niagara2
(128)

B
ar

ri
er

 E
xe

cu
ti

on
 T

im
e

(n
s)

Processor Architecture (Thread Count)

Pthreads Library
Dissemination
Tree Pull/Pull
Tree Pull/Push
Tree Push/Pull
Tree Push/Push

G
O
O
D

46

Autotuning and Synchronization
  Strict synchronization enforces

barriers between collectives to
protect shared memory
  Loose allows user to handle

own synchronization
  Tradeoff between Flat and Tree

based topology exposes cost of
synchronization vs. benefit of
extra parallelism
  Flat trees have little

parallelism in the
computation but require less
synchronization

  Optimal algorithm is affected by
the synchronization flags

  Looser Synch. enables trees to
realize better performance at
lower message sizes

AMD Opteron (32 threads)
Reduction Performance

47

G
O
O
D

Autotuning and Synchronization (cont.)

Sun Niagara 2 (256 threads)
Reduction Performance

Intel Clovertown (8 threads)
Reduction Performance

  Different platforms have different
crossover points between the
algorithms

  On Intel Clovertown, flat
algorithms always beat out the
trees

  However on Sun Niagara2 the
trees always win
  High thread count implies

that scalable collectives must
be implemented for all sizes

48

G
O
O
D

SOFTWARE ARCHITECTURE
OF THE AUTOMATIC TUNER

49

Automatic Tuning Overview
  Each collective have many implementations in GASNet

  Variants such as eager, rendezvous, direct put, direct get
  Orthogonally, there are many possible trees that we can use

  GASNet collective infrastructure indexes all the algorithms
  Hardware collectives for certain conduits go into this index

  Allows for easy extensibility for new algorithms and platforms

  Each collective algorithm advertises capabilities and requirements
  Not all algorithms have to work for in call cases

  Tuning can be done either online or offline depending on how much time
the user is willing to devote for search

  Like FFTW and other automatic tuning projects, the automatic tuning
data is saved across runs

  Performance models will be used to prune search space
  Need the constants for the models!
  More accurate the models the less time devoted to search
  Models can’t capture important features like network load so some

search will still be needed 50

Automatic Tuning Overview (cont.)
  Portable Performance

  Many factors that influence the optimal algorithm
  Importance of different factors depend on the target platform

  Some factors are very difficult to capture through analytic models
and necessitate search

INSTALL-TIME RUN-TIME

•  Processor type/speed
•  Memory system
•  Number of cores per socket
•  Number of network cards
•  Interconnect Latency
•  Interconnect Bandwidth
•  Interconnect Topology

•  Number of processors
•  Sizes of the messages
•  Synchronization mode
•  Processor connectivity
•  Network load
•  Mix of collectives and
computation

51

Layout Matters

  256 cores Sun Constellation
  16 nodes with 16 cores per node

  16 x 16 processor grid
  make row teams

  All cores in one node are part of the same team
  make column teams

  Core i from each node is part of team i
  Team members and layout known only at runtime

52

using optimal algorithm for
one core layout yields
poor performance for

another

Previous Successful Efforts
  ATLAS: Dense Linear Algebra

  Tuning can be done offline so tuning is done at install time
  Spiral and FFTW: Spectral Methods

  Tuning can be done offline or via code generator
  Introduce idea of tradeoff between the quality of the solution and time to

solution
  Sparsity and OSKI: Sparse Linear Algebra

  Input matrix matters so tuning has to be done online
  Use offline heuristics and models to make educated guesses
  Also introduces idea of specifying quality of algorithm to search time

  Parallel SpMV, Parallel LBMHD and Parallel Stencil Computations
  Outlined issues that arise with automatic tuning for parallel programming models
  Roofline models outlined the important aspects of performance tuning for parallel

systems
  MPI Collective automatic tuning

  Closely related work but the MPI collectives have some different tuning goals
than UPC/GASNet

53

Parameterized
Algorithms/

Code Generator

Create Performance
Models

and Heuristics

Library Creation
(offline, manual)

Time:
O(months)

Compiled
Object Code

Benchmark
library on target

architecture

Benchmark
Data

Library Install
 (offline,

automated)
Time: O(hours)

Performance
Model w/

Parameters

input
data

Evaluate Models
and/or search

Select Code,
Parameters, &
Data Structures

History

Application Runtime
Time: O(min) with search
O(microseconds) without

Execute
Function

Automatic Tuner Flowchart

54

Performance Models
  The optimal collective algorithm depends on many factors

  Network Performance, processor performance, message size,
synchronization mode, etc

  Searching over all possible candidate algorithms at large scale is too expensive
  Takes too long for exhaustive search
  Time is money (literally at most cloud/computing centers)

  Minimizing time for search allows search to happen online
  Model constructed using LogGP [Alexandrov et al., ’97]

  Extension of LogP [Culler et al. ‘93]
  L (Latency): time taken for message to travel across the network
  o (overhead): CPU time needed to inject or receive a message from the

network
  g (gap): time between successive message injections or receives
  G (inverse bandwidth): cost to put a byte into the network for large

messages
  P (number of processors)

  Use performance models to guide the search

55

Performance Model: Scatter

  Scatter Performance Model Verification on 1024 Cores of Sun Constellation
  Goal of Model: Accurately sort the search space and pick the best tree

  Accurate performance prediction is a nice-to-have but not a need-to-
have

  Smaller radices maximize parallelism but also increases bandwidth
  Data is duplicated in the network many more times
  As messages increase bandwidth becomes more important

  Models accurately capture trends
56

8 byte Scatter 128 byte Scatter 8k byte Scatter

Guided Search

57

  Sort the algorithm/parameter space
based on the performance model
  Slow algorithms placed at the end
  Searching just a handful yields an

a good algorithm
  Have to search 17 algorithms

to find best
  40% of the total space

  Takes 25% of the search time
8 byte Broadcast on Sun Constellation (1024

cores)

128 byte Scatter on Cray XT5 (1536 cores)

  Fewer algorithms in the search space
  Search takes 8 algorithms to find the

best
  However can get to within 90% of

the best after just searching 3
  Tradeoff time to search for the

accuracy of the result
  Similar to what FFTW and OSKI

currently offer

SUMMARY AND FUTURE
WORK

58

Future Work
  Add in more collective algorithms as they are discovered

  Automatic tuning system was designed to be extensible
  More accurate performance models

  The more accurate the model the less time to do the search
  Statistical Learning

  Use statistical learning methods to further guide the search and be able to
explore even more algorithms

  More Apps in PGAS languages
  Microbenchmarks can only shed so much light on the story

  More novel collective interfaces
  MPI-like SPMD collectives are very rigid

  PGAS languages break this model in some novel ways that introduces more interesting
tuning

  How would collectives look like in new languages
  How easily can these techniques be applied in MapReduce and Hadoop?

59

Summary
  Future performance gains are primarily going to be from parallelism

  Optimally communicating data between the cores is key
  Need to abstract common communication patterns so that they can be hidden

behind a library and be well tuned and reused
  Allow collectives to be overlapped with computation to ensure best usage of

available resources
  Optimal collective performance varies based on many things

  Need to choose the best algorithm at runtime
  Many ways to implement the same collective

  System architectures for both distributed and shared memory platforms are getting
more diverse
  New interconnect topologies and increased sharing of parallel systems
  Need a system that can automatically tune the operations

  Don’t want to retune the collective for every new platform or topology
  Implement a family of algorithms that perform the same collective

  Each is well suited for certain cases
  Use performance model to decrease the time needed for search

60

Don’t take my word for it!

  Automatically tuned collectives have been incorporated into latest
release of Berkeley UPC and GASNet

  Download all the source code from http://upc.lbl.gov
  Current usage:

  upcc program.upc
  env GASNET_COLL_ENABLE_SEARCH=1 upcrun –n 4 ./a.out

  Full documentation available online

61

Acknowledgements

  Kathy and Jim for all their support and invaluable advice over the years
  Quals Committee: Dave Patterson and Panos Papadopoulos
  BeBOP Group Past and Current Members

  Kaushik Datta, Shoaib Kamil, Sam Williams, Mark Hoemmen, Rich Vuduc, Ankit
Jain, etc

  Berkeley UPC Group Past and Current Members
  Paul Hargrove, Dan Bonachea, Yili Zheng, Christian Bell, Costin Iancu, Filip

Blagojevic, Wei Tu, Seung-Jai Min, Jason Duell, etc
  Rest of the Parlab

  Krste Asanović, John Kubiatowicz, Jimmy Su, Amir Kamil, Heidi Pan, Chris
Batten , etc …

  Keep in Touch! Write on my Wall ;-)

62

THANKS! ANY QUESTIONS?

63

BACKUP SLIDES

64

Gather-To-All

  Unlike Exchange Gather-to-All sends same message to everyone
  W/ Dissemination algorithm, message sizes double at every round

  Dissemination algorithm does not use extra bandwidth
  Same operation can be done in fewer O(n log n) messages rather than O(n2) and

thus Dissemination always wins
  GASNet consistently outperforms MPI

65

Gather-to-All on Cray XT5 (1536 Cores)

Sun Niagara2 Broadcast
  Broadcast latency on 128 threads

  Loosening the synchronization
doesn’t help

  Memory system resources are
shared

  Harder to get collectives
pipelined behind each other

  Trees yield important improvements

66

  Broadcast bandwidth on 128 threads
  Flat trees yield the best bandwidth
  Most efficient to use flat trees

  Data becomes too large to fit
in caches

  Using one thread yields the
best person

G
O
O
D

G
O
O
D

3D FFT: Packed Slabs
 Perform communication and computation in two distinct

phases
 First perform the computation for all the rows in X-

dimension
  Communication system is idle during this time

 Perform a Transpose to relocalize the Y-dimension
  Requires Packing and Unpacking
  Performed across all the processors with the same color

 Perform the FFT for all the columns
 Perform a transpose to relocalize the Z-dimension
 Perform the final set of FFTs

 As per conventional wisdom, data is packed to increase
message size
 Only exploits communication/communication overlap

during the transpose
 MPI implements transpose as in memory data movement

plus one call to MPI_Alltoall() for each round
  Minimum number of calls to MPI

Message Size
Round 1	

(NZ/TZ) × (NY/TY) × (NX/TY)	

elements	

Messages in
Round 1	

TY	

Message Size
Round 2	

(NZ/TZ) × (NX/TY) × (NY/TZ)	

elements	

Messages in
Round 2	

TZ	

67

3D FFT: Slabs
  Algorithm sketch:

1.  for each of the NZ/TZ planes
1. perform all NY/TY row FFTs (len NX)
2. pack data for this plane
3. initiate nonblocking all-to-all

2.  wait for all all-to-alls to finish
3.  unpack data
4.  for each of the NZ/TZ planes

1. perform all NX/TY row FFTs (len NY)
2. pack data for this plane
3. Initiate nonblocking all-to-all

5.  wait for all all-to-alls to finish
6.  unpack data
7.  perform last round of (NY/TZ) (NX/TY) FFTs (len NZ)

Message Size
Round 1	

(NY/TY) × (NX/TY)	

elements	

Messages in
Round 1	

(NZ/TZ) × TY	

Message Size
Round 2	

(NX/TY) × (NY/TZ)	

elements	

Messages in
Round 2	

(NZ/TZ) × TZ	

•  Observation:
•  After one of the NZ/TZ
planes of row FFTs is done
we can start transferring
the data
•  Allows communication/
communication overlap
and communication/
computation overlap

68

Switched Networks

  Nodes can be connected through intermediary switches
  A switch is a device that can route a message between any

input port to any output port
  Use multiple levels of switches to connect many pieces of

the network together

69

node0

node1 node2

node3

node7 node4

node6 node5

node0

node1

node2
node3

node4

node5
node6

node7

node8
node9

node10

node11

Performance Bottleneck!
Bandwidth to different parts of the network is 1/3 of local bandwidth

Node Architectures

70

4-core
2.3 GHz

AMD Opteron8G
B

M
em

10.6 GB/s

4-core
2.3 GHz

AMD Opteron8G
B

M
em

4-core
2.3 GHz

AMD Opteron 8G
B

M
em

4-core
2.3 GHz

AMD Opteron 8G
B

M
em

8 GB/s
 HyperTransport

8x PCIeIn!niband
Network

Card
1 GB/s Unidirectional

Point-to-Point

4-core
2.3 GHz

AMD Opteron8G
B

M
em

10.6 GB/s

6.4 GB/s
HyperTransport

DMA
Engine

6port
Router

Memory
PowerPC

440
Processor

Control
Network

SeaStar2 Router

7.6 GB/s each

To Torus Network

To
 To

ru
s N

et
w

or
k

Hyper-
Transport
Interface

6-core
2.6 GHz

AMD Opteron

6-core
2.6 GHz

AMD Opteron8G
B

M
em

8G
B

M
em

25.6 GB/s

6.4 GB/s
HyperTransport

Hyper-
Transport
Interface

DMA
Engine

6port
Router

Memory
PowerPC

440
Processor

Control
Network

SeaStar2+ Router

9.6 GB/s each

To Torus Network

To
 To

ru
s N

et
w

or
k

HyperTransport

4 PowerPC
450 Cores
(850 MHz)

54.4 GB/s
(read)

54.4 GB/s
(write)

13.6 GB/s

L3 Cache

Memory Controller

2GB Memory

D
M

A Torus
Network

Collective
Network
Barrier

Network
4 ports

bidirectional

3 ports
850MB/s each
bidirectional

6 ports
850MB/s each
bidirectional

control
network

IBM BlueGene/P

Sun Constellation

Cray XT5
Cray XT4

Modern Shared Memory Systems

71

Intel Clovertown (8 threads)

IBM BlueGene/P (4 threads)

6 x 1066MHz
DDR3 DIMMs

25.6 GB/s

3x64b controllers
Q

u
ic

k
P

a
th

M
T

 C
o
re

M
T

 C
o
re

M
T

 C
o
re

M
T

 C
o
re

2
5
6
K

2
5
6
K

2
5
6
K

2
5
6
K

8MB shared
L3

6 x 1066MHz
DDR3 DIMMs

25.6 GB/s

3x64b controllers

Q
u
ic

k
P

a
th

M
T

 C
o
re

M
T

 C
o
re

M
T

 C
o
re

M
T

 C
o
re

2
5
6
K

2
5
6
K

2
5
6
K

2
5
6
K

8MB shared
L3

1
6
G

B
/s

(e

a
c
h

 d
ir
e

c
ti
o

n
)

Intel Nehalem (16 threads)

[Diagrams Courtesy of Sam W. Williams]

Node Architectures

72

4-core
2.3 GHz

AMD Opteron8G
B

M
em

10.6 GB/s

4-core
2.3 GHz

AMD Opteron8G
B

M
em

4-core
2.3 GHz

AMD Opteron 8G
B

M
em

4-core
2.3 GHz

AMD Opteron 8G
B

M
em

8 GB/s
 HyperTransport

8x PCIeIn!niband
Network

Card
1 GB/s Unidirectional

Point-to-Point

4-core
2.3 GHz

AMD Opteron8G
B

M
em

10.6 GB/s

6.4 GB/s
HyperTransport

DMA
Engine

6port
Router

Memory
PowerPC

440
Processor

Control
Network

SeaStar2 Router

7.6 GB/s each

To Torus Network

To
 To

ru
s N

et
w

or
k

Hyper-
Transport
Interface

6-core
2.6 GHz

AMD Opteron

6-core
2.6 GHz

AMD Opteron8G
B

M
em

8G
B

M
em

25.6 GB/s

6.4 GB/s
HyperTransport

Hyper-
Transport
Interface

DMA
Engine

6port
Router

Memory
PowerPC

440
Processor

Control
Network

SeaStar2+ Router

9.6 GB/s each

To Torus Network

To
 To

ru
s N

et
w

or
k

HyperTransport

4 PowerPC
450 Cores
(850 MHz)

54.4 GB/s
(read)

54.4 GB/s
(write)

13.6 GB/s

L3 Cache

Memory Controller

2GB Memory

D
M

A Torus
Network

Collective
Network
Barrier

Network
4 ports

bidirectional

3 ports
850MB/s each
bidirectional

6 ports
850MB/s each
bidirectional

control
network

IBM BlueGene/P

Sun Constellation

Cray XT5
Cray XT4

S
in

gl
e

S
oc

ke
t

M
ul

ti
S

oc
ke

t

UPC Pointers

int *p1; /* private pointer to local memory */
shared int *p2; /* private pointer to shared space */
int *shared p3; /* shared pointer to local memory */
shared int *shared p4; /* shared pointer to
 shared space */

Shared

G
lo

ba
l a

dd
re

ss

sp
ac

e

Private
p1:

Thread0 Thread1 Threadn

p2:

p1:

p2:

p1:

p2:

p3:

p4:

p3:

p4:

p3:

p4:

Pointers to shared often require more storage and are more costly to dereference;
they may refer to local or remote memory.

73

Barrier Tuning Parameters

  Algorithm
  Signaling Mechanisms
  Tree Geometry

  Tree Root
  Tree Shape

0

500

1000

1500

2000

2500

3000

packed spread rand

B
ar

ri
er

 E
xe

cu
ti

on
 T

im
e

(n
s)

Thread Layout

Thread 0
max
min

AMD Opteron (32 threads)
Barrier Performance (varying root)

best root: 24

best root: 4

best root: 18

74

GASNet Latency Performance
  GASNet implemented on top of Deep

Computing Messaging Framework
(DCMF)
  Lower level than MPI
  Provides Puts, Gets, AMSend, and

Collectives
  Point-to-point ping-ack latency

performance
  N-byte transfer w/ 0 byte

acknowledgement
  GASNet takes advantage of DCMF

remote completion notification
  Minimum semantics needed to

implement the UPC memory model
  Almost a factor of two difference until

32 bytes
  Indication of better semantic match

to underlying communication system

G
ood

75

1 2 4 8 16 32 64 128 256 512
0

1

2

3

4

5

6

7

8

9

Transfer Size (Bytes)

R
o

u
n

d
tr

ip
 L

a
te

n
c
y
 (

m
ic

ro
s
e

c
o

n
d

s
)

MPI Send/Recv

GASNet (Get + sync)

GASNet (Put + sync)

FFT Transpose
  Two transposes that exchange the

entire domain
  Stresses the bisection

bandwidth of the network
 On many machines

communication costs are on par
w/ computation costs

  Conventional wisdom is to pack
messages to maximize message
sizes and achieve peak bandwidth
  Is that really the best though?

Each processor owns a row of 4
squares (16 processors in

example)

76

A Motivation for Teams: 3DFFT

  Many applications require
collectives to be performed
across teams (i.e. subsets)
of the threads

  Example 3D FFT:
  Cube is distributed
  Each processor owns a rectangle (slab)
  Bandwidth limited problem

  FFTs performed in each
dimension

  1st FFT is local
  2nd FFT requires exchange

amongst threads that share a
plane

  3rd FFT requires exchange
amongst row of slabs (same
color)

Thread 0

Thread 1

Thread 2

Thread 3

NY

NZ

NX

77

Interface To Collectives

  How do we construct these
teams?
  Thread-Centric: Programmer

explicitly specifies the threads
that take part in the collective
through a language level team
construction API

  Data-Centric: Programmer
only specifies the data for the
collective. Runtime system
then figures out where the
data resides and performs the
collective

  How do we incorporate these
interfaces with the autotuners?

  Wrote 3D FFT w/ Data-centric
primitives
  Ran on BG/L to analyze

limits of scalability of
interface

  Interface doesn’t limit scalability
  2 Teraflops across 16k threads

G
O
O
D

78

Auto-tuned Conjugate Gradient
  Incorporate tuned collectives into an

important kernel
  Sparse Conjugate Gradient

  Part of Sparse Motif
  Iteratively solve Ax=b for x given

A and b
  Relies heavily on optimized SPMV

and tuned BLAS1 operations
 Matrix Partitioned Row-wise for

our application
  Automatic tuning for a parallel

system
  Kernels tuned for parallel and

serial performance
  Previous related work have

focused on serial tuning only

A x b

=

  Collectives Used:
  Scalar Reduce-To-All for

Dot Products
  Barriers

79

Conjugate Gradient Performance

  Auto-tuned SPMV from Sam
Williams [Williams et. al, SC’07]

  Sun Performance Library for
local BLAS1 operations

  Incorporate aforementioned
tuned barrier and tuned Reduce-
to-All for inter-thread
communication

  Matrix parallelized row-wise
  reductions are performed

across all 128 threads
  Best Speedup: 21%
  Median Speedup: 3%
  Auto-tuning took a few seconds

to search for best barrier and
best

G
O
O
D

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

G
Fl

op
s

Matrix Name (sorted by nonzero count)

W/ Tuned Collectives

W/o Tuned Collectives

80

Performance Model: Exchange

81

  Optimal algorithm also depends on the number of threads per node
  For 4 threads per node model predicts radix 8 is the best
  With 16 threads per node this however takes 1.4 times as long as the flat

algorithm
  Using flat algorithm for 4 threads per node also leads to severe penalties

  Model accurately predicts best performer in both cases

8 byte Exchange on Sun Constellation (1024 cores)

