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Observations 
  Scientists and engineers are able to leverage large-scale 

systems to solve many problems important for society 
 e.g. climate simulations, genomics, cloud services, etc.  

  Many interesting problems will still require orders of magnitude 
more computational power 

  With current technological limitations (i.e. power) the only way 
to deliver the performance is by using lots of processors and 
relying on parallelism 
 Responsibility of efficiently using the system shifts away 

from the hardware and higher into the software stack  
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Current Processor Counts 
  Large Scale Systems 

 Very common to have more than 1024 processor cores 
 Largest machines have over 128,000 processor cores 
 Millions of cores in the not-so distant future 

  Desktop/Laptop/Cell Phones 
 Multicore processors are ubiquitous 
 Tens to hundreds of processors per system within the not-so 

distant future 
  Intel just announced 48-core processor 

 GPUs already support programming models with high 
levels of parallelism 

  Communication is the key! 
 Must design programming models to allow processors to 

efficiently communicate with each other  
3 
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Contributions 
  Automatically tuned collective communication library for PGAS 

languages 
  Collectives are common communication building blocks used 

by many applications 
  Understand how the one-sided communication model affects 

the collective tuning 
  Tuning for both shared and distributed memory systems 

  Allow collectives to be overlapped with computation 
  Developed performance models to better understand the 

performance tradeoffs 
  Incorporate collectives into application benchmarks 

  Some of the largest scale runs of PGAS languages 
  Software is integrated into latest release of Berkeley UPC 
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EXAMPLES OF MODERN 
SYSTEMS 
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Chapter 1. Hardware overview 5

Figure 1-1   Blue Gene/P system overview from the microprocessor to the full system

1.1.1  System buildup

The number of cores in a system can be computed using the following equation:

Number of cores = (number of racks) x (number of node cards per rack) x (number of 
compute cards per node card) x (number of cores per compute card)

This equation corresponds to cores and memory. However, I/O is carried out through the I/O 
Node that is connected externally via a 10 gigabit Ethernet network. This network 
corresponds to the functional network. I/O Nodes are not considered in the previous equation.

Finally, the compute and I/O Nodes are connected externally (to the outside world) through 
the following peripherals:

! One Service Node
! One or more Front End Nodes
! Global file system

1.1.2  Compute and I/O nodes

Nodes are made of one quad-core CPU with 2 GB or 4 GB of memory. These nodes do not 
have a local file system. Therefore, they must route I/O operations to an external device. To 
reach this external device (outside the environment), a Compute Node sends data to an I/O 
Node, which in turn, carries out the I/O requests.

The hardware for both types of nodes is virtually identical. The nodes differ only in the way 
they are used, for example, extra RAM might be on the I/O Nodes, and the physical 
connectors thus are different. A Compute Node runs a light, UNIX®-like proprietary kernel, 
referred to as the !"#$%&'()"*'(+',-'.(/!)+0. The CNK ships all network-bound requests 
to the I/O Node.
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Levels of Parallelism 
 Many levels of parallelism 

  Each has its own implications for the communication 
  How do we manage communication at the different levels 
  Example: IBM BlueGene/P 

8 figure from IBM Redbook SG24-7287 



3-level Fat Tree 
  Connect nodes such that there is a constant bandwidth between all nodes 

  First described by Charles Clos in 1952 for the telephone network 
  Connectivity is very similar to the butterfly found in the Fast Fourier 

Transform (FFT) 
  Also called a “Fat Tree” 

  Switches placed into groups at every level 
  Bandwidth between child and parent groups doubles every step 
  P-port switch with T levels requires (2T-1)(P/2)(T-1) switches  
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Mesh/Torus Networks 
  Fat Tree networks can be quite expensive 

  A high number of switches might be overkill 
  Tradeoff number of switches for bandwidth across network 

  A lot of applications don’t need full bandwidth to every other node 
  Depends on target network performance and application 

  In a mesh network nodes are directly connected to their neighbors 
  Unlike switched network, the network cards at the nodes need to be able to 

route messages 
  Messages routed through the grid 
  Bandwidth on the links is shared  
  Torus is mesh with ends wrapped 
  Example is 8x8 Torus 

  What is the target network performance? 
  What are the target applications? 
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Summary Of Experimental Platforms 
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Cray XT5 IBM 
BlueGene/P 

Sun 
Constellation 

Cray XT4 

Name/Location Jaguar/ORNL Intrepid/ALCF Ranger/TACC Franklin/NERSC 

Top500 Rank 
(Nov. 2009) 

1 8 9 15 

Processor Type 
(Revision) 

AMD Opteron 
(Istanbul) 

IBM PowerPC 
450 

AMD Opteron 
(Barcelona) 

AMD Opteron 
(Budapest) 

Processor Speed 2.6 GHz 0.85 GHz 2.3 GHz 2.3 GHz 

Cores/Node 12 4 16 4 

Total Cores 224,256 163,840 62,976 38,288 

Interconnect 3D Torus 3D Torus 4-level Fat Tree 3D Torus 



Sun Niagara2 (256 threads) 

AMD Opteron (32 threads) 

[Diagrams Courtesy of Sam W. Williams] 12 

Shared Memory Systems  



ONE-SIDED PROGRAMMING 
MODELS 
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Partitioned Global Address Space 
(PGAS) Languages 

  Programming model suitable for both 
shared and distributed memory 
systems 

  Language presents a logically shared 
memory  

  Any thread may directly read/write 
data located on a remote processor 
  Can build complex distributed 

data structures 
  Address space is partitioned so each 

processor has affinity to a memory 
region 
  Accesses to “local” memory are 

potentially much faster 

shared address space 

private address space 

P0 P1 P2 P3 

Many PGAS Languages: 
UPC, Titanium, Co-Array Fortran, 
X10, Chapel, etc 
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UPC Overview 
  A PGAS dialect of ISO C99 

  Both private and shared data 

  int x[10];      and     shared int y[10];     

  Support for distributed data structures 

  Distributed arrays; private and shared pointers 

  One-sided shared-memory communication  

  Simple assignment statements: x[i] = y[i];      or      t = *p;        

  Bulk transfer operations: memcpy 

  Synchronization 

  Global barriers, locks, memory fences 

  Collective Communication Library 

  Broadcast, Gather, Gather-all, Scatter, Exchange, Reduce, Scan 

  I/O libraries 

  Implemented by multiple vendors and free-software efforts 

  Language is under active development 
15 



One-Sided vs. Two-Sided 
Messaging 

  Two-sided messaging 
 Message does not contain information about final destination 
 Have to perform look up at the target or do a rendezvous 
  Point-to-point synchronization is implied with all transfers 

  One-sided messaging 
 Message contains information about final destination 
 Decouple synchronization from data movement 

  What does the network hardware support? 
  What about when we need point-to-point sync? 

  Active Message based semaphore library to handle this 
efficiently (still one-sided!) 

dest. addr. 

message id 

data payload 

data payload 

one-sided put (e.g., UPC) 

two-sided message (e.g., MPI) 

network 
 interface 

memory 

host 
CPU 
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The Berkeley UPC Compiler 

Translator UPC Code 

Translator Generated C Code 

Berkeley UPC Runtime System 

GASNet Communication System 

Network Hardware 

Platform- 
independent 

Network- 
independent 

Compiler- 
independent 

Language- 
independent 

Two Goals: Portability and High-Performance 

Portable Communication Layer 
runs on many backends: 

UDP, SMP, Infiniband, Cray XT, IBM 
BlueGene/P and many more 

Need auto-tuning 
system for portability 

and high performance 

Slide source: [W. Chen et al. ICS’03]  

17 



512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M 2M
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Transfer Size (Bytes)

F
lo

o
d

 B
a

n
d

w
id

th
 (

M
B

/s
 1

M
B

 =
 2

2
0
 B

y
te

s
)

 

 

Six Link Peak

GASNet (6 link)

MPI (6 link)

GASNet (4 link)

MPI (4 link)

GASNet (2 link)

MPI (2 link)

One Link Peak

GASNet (1 link)

MPI (1 link)

GASNet Multilink Bandwidth 
  Each node has six 850MB/s* 

bidirectional link 
  Vary number of links from 1 to 6 
  Initiate a series of nonblocking 

puts on the links (round-robin) 
  Communication/communication 

overlap 
  Both MPI and GASNet asymptote 

to the same bandwidth 
  GASNet outperforms MPI at 

midrange message sizes 
  Lower software overhead 

implies more efficient message 
injection 

 GASNet avoids rendezvous to 
leverage RDMA 

* Kumar et. al showed the 
maximum achievable bandwidth 
for DCMF transfers is 748 MB/s 
per link so we use this as our peak 
bandwidth 
See “The deep computing 
messaging framework: generalized 
scalable message passing on the 
blue gene/P supercomputer”, 
Kumar et al. ICS08 
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GASNet Active Messages 
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  GASNet also offers rich Active Message library 

  Ability to invoke function on Remote Node 

  Important piece for collective implementation 

  A request consists of an index into a function table to be invoked 
on the target side, arguments, and possibly payload 

  Short Request:  no payload (just arguments) 

  Medium Request: small payload and arguments, source does 
not specify destination buffer 

  Long Request: payload and arguments, source provides both 
source and destination address of payload 

  Replies run inside the request handler invocation 

  Can only send to the peer that sent the request 

  Have Short, Medium,  and Long replies which have the same 
properties as their corresponding requests 

  Sending replies is optional 

Request 

Reply 

A B 

tim
e 

run request  
handler 

run reply  
handler 



COLLECTIVE 
COMMUNICATION 
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What are Collectives? 

One-to-Many 
  All processors communicate 

with a single root 
  Flat algorithm: O(T) messages 

  Broadcast 
  Scatter 
  Gather 
  Reduce-to-One 

Many-to-Many 
  All processors communicate 

with all others 
  Flat algorithm: O(T2) messages 

  Barrier 
  Gather-to-All 
  Exchange (i.e. Transpose) 
  Reduce-to-All 

 Operations that perform globally coordinated communication 
 Most modern parallel programming libraries and languages 

have versions of these operations 
 Encapsulate operations behind a library interface so that they 

can be tuned by runtime layer to achieve best performance 
and scalability  

21 
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Rooted Collectives  

Broadcast: 
 send a copy of the data 
from root processor to 
all others 

P0 P1 P2 P3 

Reduce-to-One: 
 aggregate results from 
all processors  

100 

P0 P1 P2 P3 

Gather: 
 All processors send a 
contribution to the root 

Scatter: 
 inverse of Gather 

100 

P0 P1 P2 P3 

200 400 

100 

1000 



A0 B0 C0 D0 D0 

A0 

A0 B0 C0 D0 

A0 B0 C0 D0 
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Non-Rooted Collectives 

P0 A0 

P1 

P2 

P3 

P0 

P1 

P2 

P3 D0 D1 D2 D3 

C0 C1 C2 C3 

B0 B1 B2 B3 

A0 A2 A3 A1 

A0 P0 

P1 

P2 

P3 

B0 

C0 

Exchange (Transpose): 
  All processors simultaneously 

scatter input array 
(personalized messages) 

Gather-To-All: 
All processors 

simultaneously 
broadcast input 

(non-personalized 
messages) 



Design Goals for GASNet Collectives 
  Interface 

  General collective interface that supports multiple PGAS languages 
  E.g. UPC and Chapel have different threading and execution models that 

we need to support 
  Have to support the many synchronization modes of UPC 

  Allow the collectives to be nonblocking 
  Support subset collectives (i.e. Teams) 

  Implementation 
  Leverage shared memory whenever it’s available 
  Effectively deliver the performance advantages of one-sided 

communication in the collectives 
  Automatically tune the collectives 

  Infrastructure should be able to include hardware collectives on platforms 
where applicable  
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TUNING COLLECTIVE 
COMMUNICATION FOR 
DISTRIBUTED MEMORY 
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Leverage Shared Memory 
  All cores within a node are part of the same shared memory domain 

  One-to-one mapping between threads and hardware cores 
  All threads within same OS process are part of same shared memory domain 

  Have only one representative thread per node manages the communication 
  Responsible for packing/unpacking the data 

  Experiment varies number of processes/thread grouping 
  Measures Broadcast latency of increasing sizes 
  1024 cores of Sun Constellation (4 sockets / 4 threads per socket) 
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  Best performance is 4 threads 
per process 

  Communication outside socket 
is expensive 
  Can incur the penalties for 

Non-Uniform Memory 
Access (NUMA) 
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node 0

node 1

node 2

node 3

node 4

node 5

node 6

node 7
Tier 0 Tier 2Tier 1

node 8

node 9

node 10

node 11

node 12

node 13

node 14

node 15

Trees 
  Observation: All nodes are not directly connected together 

  Send the data through intermediaries to improve scalability 
  Nodes can communicate with O(log N) peers instead of O(n) peers 
  Tradeoff depth for the width 

27 

  Example: 2-nomial (Binomial) tree 
  Recursive Tree 

  Root sends to sub-trees of decreasing sizes 
  The higher the radix the shallower the tree 



Example Tree Topologies 

Radix 4 k-nomial tree 
(quadnomial) 

Radix 2 k-nomial tree 
(binomial) 

Binary Tree Fork Tree 

Chain 

Tree 
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  Broadcast on Sun Constellation 
(1024 cores) 
  4-nomial is consistently a 

“good” performer 
  8-nomial is best at < 2k bytes 

  Broadcast on Cray XT4 (2048 
cores) 
  4-nomial is best < 2k 
  choosing 4-nomial at 32k 

leads to 2x degradation in 
performance 

Choosing the Best Tree 
  Optimal tree depends on many factors such as network 

latency and bandwidth and network connectivity 
  Best tree changes based on platform and collective 
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Address Modes 

30 

  In Global Address Space every thread 
knows directly where to put the data 
  How do we specify the arguments 

to the collective? 
  Two Options: 

  Single: All nodes provide address 
for all the other nodes  

  Local: Nodes only provide one 
address 

  Single Address Mode  
  Pros: can directly leverage puts/gets without additional overhead 
  Cons: overhead of generating and storing all the addresses 

  In PGAS languages however this is not that high  
  Local Address Mode 

  Pros: easy to generate addresses and no meta-data overhead 
  Cons: have to spend time to discover addresses before data can be sent 

  Broadcast on 1024 cores of Sun Constellation shows that the cost of address 
discovery is high at large messages 
  Time spent communicating addresses wastes bandwidth 

Broadcast on Sun Constellation (1024 cores) 
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Data Transfer Mechanisms 
  Eager Put  

  Send data to anonymous buffer on 
target node 

  Uses Medium AM 
  Signaling Put 

  Send data and signal target once it has 
arrived 

  Still one-sided! 
  Needs to know where the data goes 
  Uses Long AM 
  Single-Mode Only 

  Rendez-Vous 
  Send child a short message indicating 

data is read 
  Child does get and sends a short 

message indicating data is complete 
  AMs for synchronization only 

31 Broadcast on Sun Constellation (1024 cores) 

Broadcast on Cray XT4 (2048 cores) 
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Potential Synchronization 
 Problem 
1. Broadcast variable x from root 
2. Have proc 1 set a new value 

for x on proc 4 

broadcast x=1 from proc 0 
if(myid==1) { 

 put x=5 to proc 4 
} else { 

 /* do nothing*/ 
} 

pid: 0 
x: 1 

pid: 1 
x: Ø 

pid: 2 
x: Ø 

pid: 3 
x: Ø 

pid: 4 
x: Ø 

pid: 1 
x: 1 

pid: 2 
x: Ø 

pid: 3 
x: Ø 

pid: 4 
x: 1 

pid: 4 
x: 5 

pid: 0 
x: Ø 

pid: 1 
x: Ø 

pid: 4 
x: Ø 

pid: 0 
x: 1 

pid: 1 
x: Ø 

pid: 2 
x: Ø 

pid: 3 
x: Ø 

pid: 4 
x: Ø 

pid: 1 
x: 1 

pid: 2 
x: Ø 

pid: 3 
x: Ø 

pid: 4 
x: 1 

pid: 4 
x: 5 

pid: 0 
x: 1 

pid: 1 
x: Ø 

pid: 4 
x: Ø 

pid: 0 
x: 1 

pid: 1 
x: Ø 

pid: 2 
x: Ø 

pid: 3 
x: Ø 

pid: 4 
x: Ø 

pid: 1 
x: 1 

pid: 2 
x: Ø 

pid: 3 
x: Ø 

pid: 4 
x: 1 

pid: 4 
x: 5 

pid: 0 
x: 1 

pid: 1 
x: 1 

pid: 4 
x: Ø 

pid: 0 
x: 1 

pid: 1 
x: Ø 

pid: 2 
x: Ø 

pid: 3 
x: Ø 

pid: 4 
x: Ø 

pid: 1 
x: 1 

pid: 2 
x: 1 

pid: 3 
x: Ø 

pid: 4 
x: 1 

pid: 4 
x: 5 

pid: 0 
x: 1 

pid: 1 
x: 1 

pid: 4 
x: 5 

pid: 0 
x: 1 

pid: 1 
x: Ø 

pid: 2 
x: Ø 

pid: 3 
x: Ø 

pid: 4 
x: Ø 

pid: 1 
x: 1 

pid: 2 
x: 1 

pid: 3 
x: 1 

pid: 4 
x: 1 

pid: 4 
x: 5 

pid: 0 
x: 1 

pid: 1 
x: 1 

pid: 4 
x: 5 

pid: 0 
x: 1 

pid: 1 
x: Ø 

pid: 2 
x: Ø 

pid: 3 
x: Ø 

pid: 4 
x: Ø 

pid: 1 
x: 1 

pid: 2 
x: 1 

pid: 3 
x: 1 

pid: 4 
x: 1 

pid: 4 
x: 5 

pid: 0 
x: 1 

pid: 1 
x: 1 

pid: 4 
x: 1 

Put of x=5 by proc 1 has been lost 
Proc 1 observes locally complete but globally incomplete collective 

Proc 1 thinks 
collective is 
done 
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Strict v. Loose Synchronization 

  A fix to the problem 
  Use synchronization 

before/after the 
collective 

  Enforce global ordering 
of the operations 

  Is there a problem? 
 We want to decouple 

synchronization from 
data movement 

  Let user specify the 
synchronization 
requirements 
  Potential to aggregate 

synchronization 
  Done by the user or a 

smart compiler 
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Cray XT4 Broadcast Performance (1024 Cores) 

> 12x faster at small message sizes 
and > 5x faster at large message 
sizes! 



34 

Nonblocking Collectives 
  Relaxing Synchronization still 

requires at least one processor 
inside collective 

  Overlapping communication w/ 
computation is a good idea for 
1-sided programming models 
[Nishtala et al. IPDPS‘09, Nishtala 
UCBMS’06] 

  How to overlap collectives w/ 
computation? 
  Two Questions: 

  Can the applications support 
overlap? 

  Can the hardware support 
overlap? 

  Related work being pursued by 
MPI community [Hoeffler et al. and 
Brightwell et al] 

… initialize X … 

start broadcast of X 

… computation unrelated to X… 

… unsafe to modify X …  

wait for broadcast to complete 

…. X can be safely modified … 

Code for Root Processor 



Performance of Nonblocking 
Collectives 

  Benchmark overlaps collectives with each other 
  Collectives pipelined so that the network resources are more effectively used 
  100-200 microsecond difference 
  We show later how this can be incorporated into a real application 
  All collectives built as state machines 

  State machines make progress on network interrupts or polling depending on platform 
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Cray XT4 Nonblocking Broadcast Performance (1024 Cores) 
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Reduce 
  8-byte Reduce on Sun Constellation 

  8-nomial tree delivers best or close 
to optimal performance 

  GASNet outperforms vendor-MPI by 
18% at 1k cores and 25% at 2k 
cores 
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  Reduce on Cray XT4 
  4-nomial consistently gives a good 

algorithm 
  Average of 25% better 

performance over 8-nomial 
  GASNet out performs MPI by > 

factor of 2x in most cases  
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Scatter/Gather Performance 
  Scatter on 1536 cores of Cray XT5 

  Loose synch. offers 4x performance 
improvement at low sizes  

  Difference decreases at higher 
message sizes 

  GASNet is able to deliver better 
performance for both modes 
compared to vendor MPI library 
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  Gather on 1536 cores of Cray XT5 
  Similar results as Scatter 

  Looser synchronization 
continues to deliver good 
performance upto 4k bytes 

  GASNet is able to consistently 
outperform vendor MPI library 



Dissemination for Non-rooted 
Collectives 

  Flat algorithm: every processor sends to 
every other processor 
  O(n2) messages 
  Can we do better by sending through 

intermediaries?  
  Idea: send the data multiple times in the 

network but communicate with a fewer 
number of peers 

  Collect data from double the number of 
peers each stage 

  Dissemination required all threads to be 
active all the time 
  O(T log T) “messages”  
  Time: L*(log T) (L = latency) 
View from Thread 0 T0 T1 T2 T3 T4 T5 T6 T7 

Who knows about T0 ✔ 

Who T0 knows about ✔ 

✔ 

✔ 

✔ ✔ 

✔ ✔ 

✔ ✔ ✔ ✔ 

✔ ✔ ✔ ✔ 
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Exchange 
  Dissemination algorithm by Bruck et al. (1997) 

  Send the data multiple times through the network before it reaches the final 
destination 

  Uses less messages at the cost of more bandwidth 
  Highlights a tradeoff between algorithmic choice 

  Intuition suggests there is a crossover point between the algorithms 
  Finding the best algorithm is a tuning question that we will address in the automatic 

tuner section 
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  Penalty for picking bad algorithm 
is high 
  Radix-2 is best at 8 bytes 

but worst at 16k bytes 
  Flat algorithm becomes the 

best between 512 and 1k 
byte exchange 
  order of magnitude 

worse at 8 bytes 
  28% (~73 ms) faster at 

16 Kbytes 

Exchange on Sun Constellation (256 cores) 



APPLICATION EXAMPLE 
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Case Study: NAS FT Benchmark 

  Perform a large 3D FFT 
  Molecular dynamics, CFD, image processing, signal processing, astrophysics, 

etc. 
  Representative of a class of communication intensive algorithms 

  Requires parallel many-to-many communication 
  Stresses communication subsystem 
  Limited by bandwidth (namely bisection bandwidth) of the network 

  Building on our previous work, we perform a 2D partition of the domain 
  Requires two rounds of communication rather than one 
  Each processor communicates in two rounds with O(√T) threads in each  

  Leverage nonblocking communication to maximize communication/computation 
overlap 
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FFT Performance on BlueGene/P 
HPC Challenge Peak as of July 09 is ~4.5 TFlops 
on 128k Cores 

  PGAS implementations 
consistently outperform MPI 

  Leveraging communication/
computation overlap yields 
best performance 
  More collectives in flight 

and more communication 
leads to better 
performance 

  At 32k cores, overlap 
algorithms yield 17% 
improvement in overall 
application time 

  Numbers are getting close to 
HPC record  
  Future work to try to beat 

the record 

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

256 512 1024 2048 4096 8192 16384 32768 

G
Fl

op
s 

Num. of Cores 

Slabs 
Slabs (Collective) 
Packed Slabs (Collective) 
MPI Packed Slabs 
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FFT Performance on Cray XT4 
  1024 Cores of the Cray XT4 

  Uses FFTW for local FFTs 
  Larger the problem size the more effective the overlap 
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TUNING COLLECTIVE 
COMMUNICATION FOR 
SHARED MEMORY 
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Barrier (tree algorithm) 

  Requires two passes of a tree 
  First (UP) pass tells parent subtree 

has arrived. 
  Second (DOWN) pass indicates that 

all threads have arrived 
  O(T) “messages” 
  Time: 2L*(log T) 

  Two ways to signal others:  
  Push: write a remote variable and 

spin wait on a local variable 
  Pull: write a local variable and spin 

on a remote variable 

•  Leads to 4 unique tree 
algorithms  

•  Performance of each is 
dependent on how 
systems handle 
coherency and atomic 
ops 45 



Barrier Performance Results 

  “Traditional pthread barriers” yield poor performance 
  Performance penalty for picking bad algorithm can be quite substantial 
  Same code base across all platforms 
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Autotuning and Synchronization 
  Strict synchronization enforces 

barriers between collectives to 
protect shared memory 
  Loose allows user to handle 

own synchronization 
  Tradeoff between Flat and Tree 

based topology exposes cost of 
synchronization vs. benefit of 
extra parallelism 
  Flat trees have little 

parallelism in the 
computation but require less 
synchronization 

  Optimal algorithm is affected by 
the synchronization flags 

   Looser Synch. enables trees to 
realize better performance at 
lower message sizes 

AMD Opteron (32 threads)  
Reduction Performance 
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Autotuning and Synchronization (cont.) 

Sun Niagara 2 (256 threads)  
Reduction Performance 

Intel Clovertown (8 threads)  
Reduction Performance 

  Different platforms have different 
crossover points between the 
algorithms 

  On Intel Clovertown, flat 
algorithms always beat out the 
trees 

  However on Sun Niagara2 the 
trees always win 
  High thread count implies 

that scalable collectives must 
be implemented for all sizes 
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SOFTWARE ARCHITECTURE 
OF THE AUTOMATIC TUNER 
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Automatic Tuning Overview 
  Each collective have many implementations in GASNet 

  Variants such as eager, rendezvous, direct put, direct get 
  Orthogonally, there are many possible trees that we can use 

  GASNet collective infrastructure indexes all the algorithms  
  Hardware collectives for certain conduits go into this index 

  Allows for easy extensibility for new algorithms and platforms 

  Each collective algorithm advertises capabilities and requirements 
  Not all algorithms have to work for in call cases 

  Tuning can be done either online or offline depending on how much time 
the user is willing to devote for search 

  Like FFTW and other automatic tuning projects, the automatic tuning 
data is saved across runs 

  Performance models will be used to prune search space 
  Need the constants for the models! 
  More accurate the models the less time devoted to search 
  Models can’t capture important features like network load so some 

search will still be needed 50 



Automatic Tuning Overview (cont.) 
  Portable Performance 

  Many factors that influence the optimal algorithm 
  Importance of different factors depend on the target platform 

  Some factors are very difficult to capture through analytic models 
and necessitate search 

INSTALL-TIME RUN-TIME 

•  Processor type/speed 
•  Memory system 
•  Number of cores per socket  
•  Number of network cards 
•  Interconnect Latency 
•  Interconnect Bandwidth 
•  Interconnect Topology 

•  Number of processors 
•  Sizes of the messages 
•  Synchronization mode 
•  Processor connectivity 
•  Network load 
•  Mix of collectives and 
computation 
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Layout Matters 

  256 cores Sun Constellation 
  16 nodes with 16 cores per node 

  16 x 16 processor grid 
  make row teams 

  All cores in one node are part of the same team 
  make column teams  

  Core i from each node is part of team i  
  Team members and layout known only at runtime 
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using optimal algorithm for 
one core layout yields  
poor performance for 

another 



Previous Successful Efforts 
  ATLAS: Dense Linear Algebra 

  Tuning can be done offline so tuning is done at install time 
  Spiral and FFTW: Spectral Methods 

  Tuning can be done offline or via code generator 
  Introduce idea of tradeoff between the quality of the solution and time to 

solution 
  Sparsity and OSKI: Sparse Linear Algebra 

  Input matrix matters so tuning has to be done online 
  Use offline heuristics and models to make educated guesses 
  Also introduces idea of specifying quality of algorithm to search time 

  Parallel SpMV, Parallel LBMHD and Parallel Stencil Computations 
  Outlined issues that arise with automatic tuning for parallel programming models 
  Roofline models outlined the important aspects of performance tuning for parallel 

systems 
  MPI Collective automatic tuning 

  Closely related work but the MPI collectives have some different tuning goals 
than UPC/GASNet 
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Parameterized  
Algorithms/ 

Code Generator 

Create Performance 
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Data 
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Performance 
Model w/  

Parameters 

input 
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and/or search 

Select Code,  
Parameters, & 
Data Structures 

History 

Application Runtime 
Time: O(min) with search 
O(microseconds) without 

Execute  
Function 

Automatic Tuner Flowchart 
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Performance Models 
  The optimal collective algorithm depends on many factors 

  Network Performance, processor performance, message size, 
synchronization mode, etc 

  Searching over all possible candidate algorithms at large scale is too expensive 
  Takes too long for exhaustive search 
  Time is money (literally at most cloud/computing centers) 

  Minimizing time for search allows search to happen online 
  Model constructed using LogGP [Alexandrov et al., ’97] 

  Extension of LogP [Culler et al. ‘93] 
  L (Latency): time taken for message to travel across the network  
  o (overhead): CPU time needed to inject or receive a message from the 

network  
  g (gap): time between successive message injections or receives 
  G (inverse bandwidth): cost to put a byte into the network for large 

messages 
  P (number of processors) 

  Use performance models to guide the search 
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Performance Model: Scatter 

  Scatter Performance Model Verification on 1024 Cores of Sun Constellation 
  Goal of Model: Accurately sort the search space and pick the best tree 

  Accurate performance prediction is a nice-to-have but not a need-to-
have 

  Smaller radices maximize parallelism but also increases bandwidth 
  Data is duplicated in the network many more times 
  As messages increase bandwidth becomes more important  

  Models accurately capture trends 
56 

8 byte Scatter 128 byte Scatter 8k byte Scatter 



Guided Search 
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  Sort the algorithm/parameter space 
based on the performance model 
  Slow algorithms placed at the end 
  Searching just a handful yields an 

a good algorithm 
  Have to search 17 algorithms 

to find best 
  40% of the total space 

  Takes  25% of the search time 
8 byte Broadcast on Sun Constellation (1024 

cores) 

128 byte Scatter on Cray XT5 (1536 cores) 

  Fewer algorithms in the search space 
  Search takes 8 algorithms to find the 

best 
  However can get to within 90% of 

the best after just searching 3 
  Tradeoff time to search for the 

accuracy of the result 
  Similar to what FFTW and OSKI 

currently offer 



SUMMARY AND FUTURE 
WORK 

58 



Future Work 
  Add in more collective algorithms as they are discovered 

  Automatic tuning system was designed to be extensible 
  More accurate performance models 

  The more accurate the model the less time to do the search 
  Statistical Learning 

  Use statistical learning methods to further guide the search and be able to 
explore even more algorithms 

  More Apps in PGAS languages 
  Microbenchmarks can only shed so much light on the story 

  More novel collective interfaces 
  MPI-like SPMD collectives are very rigid  

  PGAS languages break this model in some novel ways that introduces more interesting 
tuning 

  How would collectives look like in new languages 
  How easily can these techniques be applied in MapReduce and Hadoop? 
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Summary 
  Future performance gains are primarily going to be from parallelism 

  Optimally communicating data between the cores is key 
  Need to abstract common communication patterns so that they can be hidden 

behind a library and be well tuned and reused 
  Allow collectives to be overlapped with computation to ensure best usage of 

available resources 
  Optimal collective performance varies based on many things  

  Need to choose the best algorithm at runtime 
  Many ways to implement the same collective 

  System architectures for both distributed and shared memory platforms are getting 
more diverse 
  New interconnect topologies and increased sharing of parallel systems 
  Need a system that can automatically tune the operations 

  Don’t want to retune the collective for every new platform or topology 
  Implement a family of algorithms that perform the same collective   

  Each is well suited for certain cases 
  Use performance model to decrease the time needed for search 
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Don’t take my word for it! 

  Automatically tuned collectives have been incorporated into latest 
release of Berkeley UPC and GASNet 

  Download all the source code from http://upc.lbl.gov 
  Current usage: 

  upcc program.upc 
  env GASNET_COLL_ENABLE_SEARCH=1 upcrun –n 4 ./a.out 

  Full documentation available online 
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THANKS! ANY QUESTIONS? 
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BACKUP SLIDES 
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Gather-To-All 

  Unlike Exchange Gather-to-All sends same message to everyone 
  W/ Dissemination algorithm, message sizes double at every round 

  Dissemination algorithm does not use extra bandwidth 
  Same operation can be done in fewer O(n log n) messages rather than O(n2) and 

thus Dissemination always wins 
  GASNet consistently outperforms MPI 
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Sun Niagara2 Broadcast 
  Broadcast latency on 128 threads 

  Loosening the synchronization 
doesn’t help 

  Memory system resources are 
shared 

  Harder to get collectives 
pipelined behind each other  

  Trees yield important improvements  

66 

  Broadcast bandwidth on 128 threads 
  Flat trees yield the best bandwidth 
  Most efficient to use flat trees 

  Data becomes too large to fit 
in caches 

  Using one thread yields the 
best person 
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3D FFT: Packed Slabs 
 Perform communication and computation in two distinct 

phases 
 First perform the computation for all the rows in X-

dimension 
  Communication system is idle during this time 

 Perform a Transpose to relocalize the Y-dimension 
  Requires Packing and Unpacking 
  Performed across all the processors with the same color 

 Perform the FFT for all the columns 
 Perform a transpose to relocalize the Z-dimension 
 Perform the final set of FFTs 

 As per conventional wisdom, data is packed to increase 
message size 
 Only exploits communication/communication overlap 

during the transpose 
 MPI implements transpose as in memory data movement 

plus one call to MPI_Alltoall() for each round 
  Minimum number of calls to MPI 

Message Size 
Round 1	



(NZ/TZ) × (NY/TY) × (NX/TY)	


elements	



# Messages in 
Round 1	



TY	



Message Size 
Round 2	



(NZ/TZ) × (NX/TY) × (NY/TZ)	


elements	



# Messages in 
Round 2	



TZ	
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3D FFT: Slabs 
  Algorithm sketch: 

1.  for each of the NZ/TZ planes 
1. perform all NY/TY row FFTs (len NX) 
2. pack data for this plane 
3. initiate nonblocking all-to-all 

2.  wait for all all-to-alls to finish 
3.  unpack data 
4.  for each of the NZ/TZ planes 

1. perform all NX/TY row FFTs (len NY) 
2. pack data for this plane 
3. Initiate nonblocking all-to-all 

5.  wait for all all-to-alls to finish 
6.  unpack data 
7.  perform last round of (NY/TZ) (NX/TY) FFTs (len NZ) 

Message Size 
Round 1	



(NY/TY) × (NX/TY)	


elements	



# Messages in 
Round 1	



(NZ/TZ) × TY	



Message Size 
Round 2	



(NX/TY) × (NY/TZ)	


elements	



# Messages in 
Round 2	



(NZ/TZ) × TZ	



•  Observation: 
•  After one of the NZ/TZ 
planes of row FFTs is done 
we can start transferring 
the data 
•  Allows communication/
communication overlap 
and communication/
computation overlap 
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Switched Networks 

  Nodes can be connected through intermediary switches 
  A switch is a device that can route a message between any 

input port to any output port 
  Use multiple levels of switches to connect many pieces of 

the network together 
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Performance Bottleneck!  
Bandwidth to different parts of the network is 1/3 of local bandwidth 



Node Architectures 
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Modern Shared Memory Systems 
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Node Architectures 
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UPC Pointers  

int *p1;        /* private pointer to local memory */ 
shared int *p2; /* private pointer to shared space */ 
int *shared p3; /* shared pointer to local memory */ 
shared int  *shared p4; /* shared pointer to   
                           shared space */ 

Shared 

G
lo

ba
l a

dd
re

ss
 

sp
ac

e 

Private 
p1:  

Thread0   Thread1                                       Threadn 

p2:  

p1:  

p2:  

p1:  

p2:  

p3:  

p4:  

p3:  

p4:  

p3:  

p4:  

Pointers to shared often require more storage and are more costly to dereference; 
they may refer to local or remote memory. 
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Barrier Tuning Parameters 

  Algorithm 
  Signaling Mechanisms 
  Tree Geometry 

  Tree Root 
  Tree Shape 
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Thread Layout 

Thread 0 
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min 

AMD Opteron (32 threads)  
Barrier Performance (varying root) 

best root: 24 

best root: 4 

best root: 18 
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GASNet Latency Performance 
  GASNet implemented on top of Deep 

Computing Messaging Framework 
(DCMF) 
  Lower level than MPI 
  Provides Puts, Gets, AMSend, and 

Collectives 
  Point-to-point ping-ack latency 

performance  
  N-byte transfer w/ 0 byte 

acknowledgement 
  GASNet takes advantage of DCMF 

remote completion notification 
  Minimum semantics needed to 

implement the UPC memory model 
  Almost a factor of two difference until 

32 bytes 
  Indication of better semantic match 

to underlying communication system 

G
ood 
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FFT Transpose 
  Two transposes that exchange the 

entire domain 
  Stresses the bisection 

bandwidth of the network 
 On many machines 

communication costs are on par 
w/ computation costs 

  Conventional wisdom is to pack 
messages to maximize message 
sizes and achieve peak bandwidth 
  Is that really the best though? 

Each processor owns a row of 4 
squares (16 processors in 

example) 
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A Motivation for Teams: 3DFFT 

  Many applications require 
collectives to be performed 
across teams (i.e. subsets) 
of the threads 

  Example 3D FFT:  
  Cube is distributed 
  Each processor owns a rectangle (slab)  
  Bandwidth limited problem 

  FFTs performed in each 
dimension 

  1st FFT is local 
  2nd FFT requires exchange 

amongst threads that share a 
plane 

  3rd FFT requires exchange 
amongst row of slabs (same 
color)  

Thread 0 

Thread 1 

Thread 2 

Thread 3 

NY 

NZ 

NX 

77 



Interface To Collectives 

  How do we construct these 
teams? 
  Thread-Centric: Programmer 

explicitly specifies the threads 
that take part in the collective 
through a language level team 
construction API  

  Data-Centric: Programmer 
only specifies the data for the 
collective. Runtime system 
then figures out where the 
data resides and performs the 
collective 

  How do we incorporate these 
interfaces with the autotuners? 

  Wrote 3D FFT w/ Data-centric 
primitives 
  Ran on BG/L to analyze 

limits of scalability of 
interface 

  Interface doesn’t limit scalability 
  2 Teraflops across 16k threads 

G 
O 
O 
D 
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Auto-tuned Conjugate Gradient 
  Incorporate tuned collectives into an 

important kernel 
  Sparse Conjugate Gradient 

  Part of Sparse Motif  
  Iteratively solve Ax=b for x given 

A and b 
  Relies heavily on optimized SPMV 

and tuned BLAS1 operations 
 Matrix Partitioned Row-wise for 

our application 
  Automatic tuning for a parallel 

system 
  Kernels tuned for parallel and 

serial performance 
  Previous related work have 

focused on serial tuning only  

A x b 

= 

  Collectives Used: 
  Scalar Reduce-To-All for 

Dot Products 
  Barriers 
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Conjugate Gradient Performance 

  Auto-tuned SPMV from Sam 
Williams [Williams et. al, SC’07] 

  Sun Performance Library for 
local BLAS1 operations 

  Incorporate aforementioned 
tuned barrier and tuned Reduce-
to-All for inter-thread 
communication  

  Matrix parallelized row-wise 
  reductions are performed 

across all 128 threads 
  Best Speedup: 21% 
  Median Speedup: 3% 
  Auto-tuning took a few seconds 

to search for best barrier and 
best  
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Performance Model: Exchange 

81 

  Optimal algorithm also depends on the number of threads per node 
  For 4 threads per node model predicts radix 8 is the best 
  With 16 threads per node this however takes 1.4 times as long as the flat 

algorithm 
  Using flat algorithm for 4 threads per node also leads to severe penalties 

  Model accurately predicts best performer in both cases 

8 byte Exchange on Sun Constellation (1024 cores) 


