
When Cache Blocking of Sparse Matrix Vector
Multiply Works and Why

Rajesh Nishtala1, Richard W. Vuduc1, James W. Demmel1, and Katherine A.
Yelick1

University of California at Berkeley, Computer Science Division
Berkeley, California, USA 94720

{rajeshn, richie, demmel, yelick}@cs.berkeley.edu

Abstract. We present new performance models and more compact data
structures for cache blocking when applied to sparse matrix-vector mul-
tiply (SpM×V). We extend our prior models by relaxing the assumption
that the vectors fit in cache and find that the new models are accurate
enough to predict optimum block sizes. In addition, we determine crite-
ria that predict when cache blocking improves performance. We conclude
with architectural suggestions that would make memory systems execute
SpM×V faster.

1 Introduction and Overview

We consider the problem of building high-performance implementations of sparse
matrix-vector multiply (SpM×V), or y ← y + A · x. We call x the source vec-
tor and y the destination vector. Making SpM×V fast is complicated both by
modern hardware architectures and by the overhead of manipulating sparse data
structures. It is not unusual to see SpM×V run at under 10% of the peak floating
point performance of a single processor [15, Figure 1.1]. Moreover, in contrast
to optimizing dense matrix kernels (dense BLAS) [16, 1], performance depends
on the nonzero structure of the matrix which may not be known until run-time.

In prior work on the Sparsity system (version 1.0) [7], Im developed an
algorithm generator and search strategy for SpM×V that was quite effective in
practice. The Sparsity generators employed a variety of performance optimiza-
tion techniques, including register blocking, cache blocking, and multiplication
by multiple vectors. Cache blocking differs from register blocking in that cache
blocking reorders memory accesses to increase temporal locality, whereas regis-
ter blocking compresses the data structure to reduce memory traffic. This paper
focuses on performance models for cache blocking (Section 2) and asks the fun-
damental questions of what limits exist on such performance tuning, extending
our prior models [15] by accounting for the TLB(translation look aside buffer, i.e.
a buffer of most recently used virtual-to-physical address translations), enabling
accurate selection of optimal cache block sizes. Cache blocking increases the com-
plexity of the data structures used to represent the matrix by adding an extra
set of row pointers for each block. The trade off we need to make is whether the

2 R. Nishtala, R.W. Vuduc, J.W. Demmel, K.A. Yelick

benefit of the added temporal locality outweighs the added overhead. We only
explore a subset of the matrices presented by Vuduc in [15], namely those are
so sparse that register blocking has no benefit. For all the other matrices it was
found that cache blocking did not have a significant impact on performance and
thus to simplify the analysis we only consider these especially sparse matrices
where cache blocking had noticeable advantages or disadvantages.

We classify the set of matrices on which we see benefits from cache blocking,
concluding that cache blocking is most effective when simultaneously 1) x does
not fit in cache 2) y fits in cache, 3) the nonzeros are distributed throughout the
matrix (as opposed to a band matrix) and 4) the non-zero density is sufficiently
high. If a matrix does not exhibit one of these properties then cache blocking
has no significant on performance and thus the default can be to cache block
the matrix with a block size that can be determined from the models described
later in this paper. However, if these properties exist then the choice of block
size is important since a bad block size can negatively affect performance.

Traditional static models of cache behavior used to select tile sizes for dense
kernels cannot be applied to sparse kernels due to the presence of indirect and
irregular memory accesses known only at run-time. Nevertheless, there have been
a number of notable attempts to model performance. Temam and Jalby [12],
Heras, et al. [6], and Fraguela, et al. [3] have developed sophisticated probabilistic
cache miss models, but assume uniform distribution of non-zero entries. These
models differ from one another in their ability from to account for self- and
cross-interference misses. Our model in Section 3 differs from the prior work in
that 1) we consider multi-level memory hierarchies including the TLB, and 2)
we explicitly model the execution time in addition to cache misses.

Gropp, et al., use bounds similar to the ones we develop to analyze and
tune a computational fluid dynamics code [4]; Heber, et al., present a detailed
performance study of a fracture mechanics code on Itanium [5]. This paper
considers tuning for matrices that come a variety of other domains, and explores
performance modeling for cache block size selection.

Due to space limitations we only present the high level intuition and summary
data. We refer the reader to the full report [8] for details. The software and
algorithms described in this paper are available in OSKI (the Optimized Sparse
Kernel Interface) by Vuduc [13]. OSKI is a collection of low-level C primitives
that provide automatically tuned computational kernels on sparse matrices, for
use in solver libraries and applications.

2 Summary of the Cache Blocking Optimization

We assume a reference implementation which stores the matrix in a com-
pressed sparse row (CSR) format [9]. In particular all the test matrices in Table
1 (except Matrix 1) are sparse enough so that register blocking [7, 15] has no sig-
nificant effect. Cache blocking breaks the CSR matrix into a number of smaller
rcache x ccache CSR matrices and then stores these sequentially in CSR format
in memory. Below, we discuss how 1)we compress the size of each block using

Cache Blocking of SpM×V 3

the row start/end (RSE) optimization, and 2) further exploit the fact that each
cache block is just another sparse matrix. The latter technique also allows easy
recursion with multiple levels of cache blocking.

Row Start / End (RSE) When matrices (especially band matrices) are blocked
it is possible that within a cache block non-zeros do not exist on all the rows.
The first cache block, for example, might have only nonzero elements in the
first tenth of the rows and have the rest of the cache block be empty. However
the basic cache blocked data structure would loop over all zero rows without
doing any useful work. In order to avoid the unnecessary accesses, a new vector
that contains row start (RS) and row end (RE) information for each cache block
is also created to point to the first and last nonzero rows in the cache block.
This new indexing information makes the performance less sensitive to the size
of the cache block. Performance results have shown that this optimization can
only help improve performance [8]. In our matrix suite, we found that the use
of pointers to the first and last nonzero row were sufficient since the nonzero
rows were clustered together and thus a list of nonzero rows would have added
unnecessary overhead.

Exploiting Cache Block Structure As described above, the cache blocked
matrix can be thought of as many smaller sparse matrices stored sequentially
in memory. We exploit this fact by calling our prior sparse matrix vector mul-
tiplication routines on each smaller matrix, passing the appropriate part of the
source and destination vectors as arguments. The advantage of handling the
multiplication in this fashion is that the inner loops can be generated indepen-
dently of the code for cache blocking and code previously written for non-cache
blocked implementations can be reused. This optimization also allows easy re-
cursion with multiple levels of cache blocking. Tests indicate that the function
call overhead is negligible since the number of cache blocks for a matrix is usually
small compared to the total memory operations.

3 Analytic Models

In this section we create analytic upper and lower bounds on performance by
modeling various levels of the memory hierarchy. We first describe the overall
performance model. We then model the different parts of the memory system
that contribute to this overall model. We first create a load model and then
discuss analytic upper and lower bounds for the number of cache misses at every
level. We then examine the upper and lower bounds for TLB misses and a more
complex relation between these upper and lower bounds to yield a more accurate
estimate of the actual number of TLB misses.

3.1 Overall Performance Model

The overall performance model is similar to the one in [14] except that we have
added one more latency term to account for the TLB misses.

4 R. Nishtala, R.W. Vuduc, J.W. Demmel, K.A. Yelick

We model execution time as follows. First, since we want an upper bound on
performance (lower bound on time), we assume we can overlap the latencies of
computation and memory accesses. Let hi be the number of hits at cache level
i, and mi be the number of misses. Then the execution time T is

T =
κ−1∑
i=1

hiαi + mκαmem + mTLBαTLB, (1)

where αi is the access time (in cycles or seconds) at cache level i, κ is the
lowest level of cache, and αmem is the memory access time. The L1 hits h1 are
given by h1 = Loads(r, c) − m1 where Loads(r, c) is the number of loads with
an rcache × ccache cache block size (see Section 3.2 below). Assuming a perfect
nesting of the caches, so that a miss at level i is an access at level i + 1, then
hi+1 = mi −mi+1 for i ≥ 1. The TLB and the L3 might not be nested, so we
account for this by assuming that the TLB misses are not overlapped with the
misses at the other levels and that they must be serviced before the cache misses
can be serviced. The performance is expressed as Mflop/s is 2k

T · 10−6 because
each of the k nonzero matrix entries leads to one floating point multiply and one
floating point add.

To get an estimate of the upper bound on performance, let mi = M
(i)
lower in

Equation (1) (where M
(i)
lower is a lower bound on misses at the ith cache level as

discussed below), and convert to Mflop/s. Similarly, we can get a lower bound on
performance by letting mi = M

(i)
upper(where M

(i)
upper is a upper bound on misses

at the ith cache level as discussed below).
In order to take the TLB effects into account we estimate the number of cycles

that are needed to process a TLB miss in order to make Equation (1) match
the measured performance. We incorporate it into the upper bound model by
setting mTLB equal to M

(TLB)
model . This is further described in Section 3.4. Our

estimated values for the latencies are shown in [8].

3.2 Load Model

We assume the cache block data structure as described in Section 2. We can
count the number of loads required for SpM×V as follows. Let A be an m×n
matrix with k non-zeros. Henceforth we assume no register blocking is done
which is optimal for all our sparse test matrices. We define a new variable,
Krc, to equal the number of cache blocks that a given cache block size (r × c)
produced. In the case that the nonzeros are distributed throughout the matrix,
then Krc = dm

r ed
n
c e however this is not always true and depends on the nonzero

structure of the matrix. Every matrix entry must be loaded once. The number
of accesses to the source vector is exactly k. The number of accesses to the
destination depends on the cache block size. For each cache block i, we must
load δi = (REi−RSi)+ 1 elements of the destination vector. The variables RSi

and REi indicate the first and last row respectively on which non-zero elements
can be found for the (i)th cache block as defined in Section 2. In all the cases

Cache Blocking of SpM×V 5

except for the band matrices these were found to be the first and last rows of
the cache block respectively. We must load each of the block ptr elements twice:
once when the value is being used as a pointer to the end of a row and then
when it is used as the start of a row. The loads can be counted in the following
manner:

Loads(r, c) = 2k + 2
Krc∑
i=1

δi + 2(Krc) + 2
⌈m

r

⌉
︸ ︷︷ ︸

matrix

+
Krc∑
i=1

δi︸ ︷︷ ︸
dest vector

+ k︸︷︷︸
src vector

(2)

The fewest number of loads would occur if the matrix were not cache blocked;
in this case

∑Krc

i=1 δi equals m and Krc equals 1. Therefore cache blocking doesn’t
decrease the number of loads. If anything, too many cache blocks would greatly
increase the overhead.

3.3 Cache Miss Model

Here we develop upper and lower bounds on the number of cache misses, which
lead to lower and upper bounds on performance in MFlops, respectively.

We start with the L1 cache. Let l1 be the L1-cache line size, in integers. We
also assume that a double precision number is represented with twice the number
of bytes of an integer. In order to estimate the minimum number of cache misses
that can occur we take the total amount of data that we access and divide by
the line size. This will give us the total number of lines the matrix, source, and
destination vectors would take assuming all the data was perfectly aligned.

Thus, a lower bound M
(1)
lower on L1 misses is

M
(1)
lower(r, c) =

1
l1

 2m︸︷︷︸
dest vector

+ 2n︸︷︷︸
src vector

+2k + k +
Krc∑
i=1

δi +
⌈m

r

⌉
+ 2(Krc)︸ ︷︷ ︸

matrix

(3)

In order to find the lower bounds for another level of the cache simply replace
l1 with the appropriate line size. In order to find the upper bound we still
assume that every entry in the matrix is loaded once as in the lower bound, but
we assume that every access to the source and every access to the destination
vectors miss because of conflict and capacity misses.

Thus, an upper bound M
(1)
upper on L1 misses is

M (1)
upper(r, c) = k︸︷︷︸

src vector

+
Krc∑
i=1

δi︸ ︷︷ ︸
dest vector

+
1
l1

[
2k + k +

Krc∑
i=1

δi +
⌈m

r

⌉
+ 2(Krc)

]
︸ ︷︷ ︸

matrix

(4)

6 R. Nishtala, R.W. Vuduc, J.W. Demmel, K.A. Yelick

The first k indicates that we miss for every access to the source vector. The
second term

∑Krc

i=1 δi is the number of times that we access the destination vector.
Since we stream through the matrix entries and access each element once the
number of misses does not depend on conflict or capacity. Notice that neither
the load model of Section 3.2 nor the cache miss model of this section predict the
advantages of cache blocking since they only show an increase in data structure
overhead.

3.4 TLB Miss Model

According to our simple load and cache miss models, cache blocking has no ben-
efit. It turns out that the main benefit of cache blocking is increased temporal
locality in the source vector which can be seen in the number of TLB misses,
which we model here. Experimental data in Section 4 do in fact show improve-
ments in cache misses too, though this is not captured by our model. Still, the
model will turn out to be adequate for predicting good cache block sizes. In order
to estimate the lower bounds on the TLB misses we simply take the total size
of the data that we access and divide that by the page size. This will give the
minimum number of pages that the data resides in and the minimum number of
compulsory misses for the TLB. For an estimate of the upper bound we assume
that we load every matrix page once. We then assume that we take a TLB miss
on every access to the source vector and destination vector. The equations are
identical to the cache miss models in Equation (3) and Equation (4) except we
replace the line size with the page size. It was found that across our test matrices
M

(TLB)
lower was at least 1000 on the Itanium 2, the only platform on which we have

hardware counters for the number of TLB misses.
Modeling performance based merely on the lower and upper bound models

does not take the increased locality of cache blocking into account because the
lower bound on cache misses (which is used to calculate the upper bound on per-
formance) only counts the compulsory misses. Since blocking adds overhead to
the data storage, the least amount of overhead occurs when there is no blocking.
To factor this in, we need a more accurate model. From [8], we notice many of
the matrices have a noticeable increase in the number of TLB misses when the
source vector occupies a large fraction of the TLB. Because the number of TLB
misses is orders of magnitude higher when the incorrect block size is chosen1,
we chose to try to more accurately estimate the number of TLB misses through
a combination of the lower and upper bound models.

From Figure 1 we see that there are two distinct categories of block sizes
that worked on our matrix suite for the Itanium 2. The first category of matrices
(Matrices 2–11) showed the best performance when the column block size equaled
1
4 th of the TLB. In the second category of matrices(Matrices 12–14) the added
overhead of blocking hurt performance so the performance was best when the
column block size exceeded the number of columns in the matrix (i.e. there was

1 This is probably due to early eviction of the source vector with the LRU page
replacement policies

Cache Blocking of SpM×V 7

Fig. 1. Histogram of Block sizes for Itanium 2. For each row and column block size
shown above, the value in the cell contains the number of matrices whose performance
was within 90% of peak if that block size was chosen. We define TLB Size to be the
number of entries in the TLB multiplied by the page size. On the Itanium 2 this was
2MB or 256 doubles. [15]

no blocking in the column direction). We also notice that the performance does
not depend heavily on the row block size once it is large enough and thus we
conclude that no blocking should be done in the row dimension.

In order to capture this behavior in our performance model we present a
modified version of the TLB miss model that combines both the upper bound
and lower bound to create a reasonable estimate of the number of misses. One of
the main aims for the performance model is to expose the penalty when there is
not enough temporal locality in accessing the source vector. To account for this
our TLB miss model switches to using the upper bound model as an estimate for
the number of misses when the column block size is too large2. Since the optimal
block size as a percentage of the TLB size changes from machine to machine,
there will be a different TLB model for each platform. TLB counter data was
only available for the Itanium 2, thus we present the model for that platform
only. The models for the other platforms will be similar.

M
(TLB)
model (r, c) =

 M (TLB)
upper (r, c)×min(

c×2
p

ET
, 1) if (c×2

p
≥ ET

2
)&(k

nzcols
> 4)(5a)

M
(TLB)
lower (r, c) otherwise (5b)

Equation (5) shows the model used to calculate the approximate number of
TLB misses for the Itanium 2. The variables are as follows: p is the page size in
integers, ET is the number of TLB entries in the TLB, and nzcols is the number
2 the actual definition of too large varies across different platforms, for the Itanium 2

we set it at 1
2

of the TLB

8 R. Nishtala, R.W. Vuduc, J.W. Demmel, K.A. Yelick

of non-zero columns. According to our empirical data for the Itanium 2, for
Matrices 2–11 the optimal column block size is 1

4 th of the TLB, thus when the
column block size is 1

2 of the TLB we switch to using the upper bound model.
The upper bound is scaled by the fraction of the source vector that overflows
the TLB. This switch is only performed when the matrix is dense enough (the
average number of nonzeros per nonzero column is greater than 4) ensuring us
that blocking provides enough reuse. If either of these conditions fail we use the
lower bound model on TLB misses. Our data in [8] shows that when this model is
applied to the Itanium 2, it does a good job of predicting the noticeable jump in
the number of TLB misses for Matrices 5–8 and Matrices 10–11, the matrices for
which cache blocking has the most significant benefits. Therefore this is at least
good enough to predict good cache block sizes. Future work hopes to refine this
model further and verify it for the other platforms. The peaks of the upper bound
performance model correlate better to the peaks of the actual performance in
most of the matrices. Without this model the peaks of the upper bound model
would show guess that blocking is not a good idea, which is obviously not the
case. We will evaluate the models further in Section 4.

4 Verification of the Analytic Model

We evaluate SpM×V on a set of matrices that are large enough and sparse
enough for cache blocking to have a significant effect. The properties of the 14
matrices that were chosen are referenced in Table 1. We evaluate the performance
model in which we use true hardware counters through PAPI [2] to predict
the performance (henceforth called the PAPI model) and compare it to the
model in which we use estimates of lower and upper bound of cache and TLB
misses (henceforth termed the analytic lower and upper bound models). The
cache and memory latencies were derived [15] from published processor manuals,
curve fitting, and experimental work using the Saavedra-Barrera memory system
microbenchmark [10] and MAPS benchmarks [11]. Due to space limitations we
present a summary of the data.

Figure 2 shows an evaluation of the models in Section 3. The Base Perfor-
mance line is the performance without cache blocking while Best Performance
shows the performance with the optimum cache block size. The Best RC with
Analytic Model line shows the performance if the cache block size was chosen
by the analytic model. The Analytic Upper and Lower Bounds show the per-
formance predicted by the models. The PAPI Model line is the performance if
the actual cache miss values found through hardware counters were plugged into
the execution time model. As shown by Figure 2, the analytic model of Section
3 overpredicts performance by up to a factor of 2 on the Itanium 2, implying
time still unaccounted for. However, the relative performance as a function of
block size is well predicted [8], meaning we can use the model as a heuristic
for choosing a good block size. Indeed, performance at the optimal block sizes
chosen to maximize performance from the PAPI model are all within 90% of the
best on Itanium 2, implying the model is a good heuristic if the miss models

Cache Blocking of SpM×V 9

Table 1. Matrix Benchmark Suite. Note that matrices 6, 7, and 8 are just modified
versions of matrix 5.

Application Area Dimension Nonzeros Density

1 Dense Matrix 2000 x 2000 4000000 1.00

2 Statistical Experimental Design 231 x 319770 8953560 1.21e-1

3 Linear programming (LP) 52260 x 379350 1567800 7.91e-5

4 LP 10280 x 243246 1408073 5.63e-4

5 Latent Semantic Indexing 10000 x 255943 3712489 1.45e-3

6 column wise expansion of LSI 10000 x 2559430 3712489 1.45e-4

7 row wise expansion of LSI 100000 x 255943 3712489 1.45e-4

8 row wise stamping of LSI 100000 x 255943 37124890 1.45e-3

9 Queuing model of mutual exclusion 65535 x 65535 1114079 2.59e-4

10 Italian Railways scheduling (LP) 4284 x 1092610 11279748 2.41e-3

11 Italian Railways scheduling (LP) 4284 x 546305 5661231 2.42e-3

12 Web connectivity graph (WG) 1000005 x 1000005 3105536 3.11e-6

13 WG after MMD reordering 1000005 x 1000005 3105536 3.11e-6

14 WG after RCM reordering 1000005 x 1000005 3105536 3.11e-6

Fig. 2. Performance Model for the Intel Itanium 2.

10 R. Nishtala, R.W. Vuduc, J.W. Demmel, K.A. Yelick

Fig. 3. Performance Model for the IBM Power 4 and Intel Pentium 3. Note
that Matrix 8 was not run on these platforms due to memory limitations.

Cache Blocking of SpM×V 11

are accurate. Furthermore, except in the case of Matrix 3, the analytic model
makes similarly good predictions on the Itanium 2, yielding 90% of the best
performance. Figure 3 however shows that the heuristic is not as good on the
Pentium 3 and the Power 4 compared to the Itanium2.

5 Evaluation Across Matrices and Platforms

Table 2. Speedups across Matrices and Across Platforms. This table shows
the performance of the optimum cache block divided by the performance of the non-
blocked implementation on that platform for that matrix.The highlighted values are
the top four speedups on each platform.

Matrix No.
Platform 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Itanium 2 1.00 1.27 1.28 1.14 2.00 2.84 1.72 1.94 1.00 1.40 1.34 1.00 1.00 1.00

Pentium 3 1.01 1.61 1.02 1.15 1.40 1.33 1.10 N/A 1.00 1.21 1.21 1.00 1.00 1.00

Power 4 1.01 1.77 1.24 1.37 1.97 2.93 1.68 N/A 1.00 1.75 1.73 1.01 1.09 1.01

Matrix Structure The speedups for each matrix varied across machines, but
the best speedups (Table 2) were observed for the same matrices. The best
speedups occurred with Matrices 2, 5–8, and 10–11. Except for Matrices 7 and
8, these matrices have small row dimensions and very large column dimensions,
with nonzeros scattered throughout the matrix. Furthermore, the largest in-
creases in cache misses as ccache increased occurred on the matrices with the
largest speedups, implying that cache blocking increased locality.

Figure 4 shows the effect of cache blocking. As the plots show, the matrices
with the largest speedups have the largest drop in the number of cache misses
and TLB misses. In addition, Matrices 12–14 also show very little change in
their optimum cache misses, implying that cache blocking has very little effect
on these matrices. Matrices 12–14 are so sparse that there is effectively no reuse
when accessing the source vector and thus blocking does not help, even though
their source vector is large. Matrices with densities higher than 10−5 (all matrices
except Matrix 3 and Matrices 12–14) were helped with cache blocking, provided
that their column block size is large enough (greater than 200,000 elements, e.g.
Matrix 2, Matrices 4–8, Matrices 10–11). There was enough reuse in x for the
blocking to pay off.

We also find that in general matrices in which the row dimension is much less
than the column dimension benefit the most from cache blocking. The smaller
row dimension implies the overhead added by cache blocking is small since the
number of rows themselves are limited. The larger column dimension implies that
the unblocked implementations may lack locality. Even though Matrix 3 has a
large column dimension, blocking did not yield much performance improvement.

12 R. Nishtala, R.W. Vuduc, J.W. Demmel, K.A. Yelick

Fig. 4. Effect of Cache Blocking on L3 Data Cache and TLB on the Itanium
2. This plot shows the effect of cache blocking on the L3 Cache misses and TLB
Misses, as measured by PAPI. The Best L3 Data Cache line is the number of cache
misses with the optimum block size divided by number of cache misses that occur with
the unblocked implementation. The Best TLB Misses line is an analogous line for the
TLB. The matrices that showed the largest performance gains (Matrices 2, 5-8, and
10; see Table 2) also showed the greatest drop in L3 Cache misses implying that cache
blocking is having the desired effect.

Cache Blocking of SpM×V 13

We performed additional experiments on random but banded matrices confirm-
ing theoretical work by Temam and Jalby [12]. As expected, cache blocking does
not help when the band is relatively narrow because the natural access pattern
to x is optimal, but pays off as the band grows. In this latter case, the RSE
optimization smooths out differences in performance across block sizes [8].

Platform Evaluation Certain matrices such as Matrix 5 experienced significant
performance gains through cache blocking on the Itanium 2 and the Power 4,
but the speedup was less drastic on the Pentium 3. We expect that as the
average number of cycles to access the memory grows, cache blocking will provide
a good improvement in performance since cache blocking allows us to reduce
expensive accesses to the main memory. The behavior of cache blocked SpM×V
has a number of implications for architecture and systems. First, the TLB misses
reduced by cache blocking can also be avoided by setting large page sizes. Second,
hardware support for cacheable and non-cacheable accesses to memory would be
useful since only access to x is helped by caches, and not accesses to the matrix
itself. Separate paths would prevent cache conflicts between matrix data and
source vector data. In contrast, increased associativity only partially addresses
this issue since it still allows premature eviction of “old” source vector elements
by matrix elements. Future work might verify the impact of separate memory
paths on the hybrid scalar-vector architecture of the Cray X1.

6 Conclusions and Future Work

Cache blocking significantly reduces cache misses in SpM×V particularly when
x is large, y is small, the distribution of nonzeros is nearly random, and the
nonzero density is sufficiently high. When these conditions appear in the ma-
trix, we find that TLB misses are an important factor of the execution time.
Our new performance bounds models incorporate the effect of TLB by implic-
itly modeling capacity and conflict misses ignored by our prior models [14, 15].
Moreover, these new models predict optimal (or near-optimal) cache block size
leading to speedups up to 3x.

Future work includes improving the accuracy of the miss models at all the
levels in the memory hierarchy and obtain more accurate memory latencies.
More accurate models should lead to even more accurate heuristics that decide
when and how to cache block a sparse matrix, given the platform and matrix
structure. Future work would also analyze the problem on novel architectures.

References

1. J. Bilmes and K. Asanović and J. Demmel and D. Lam and C.W. Chin PHiPAC:
A Portable, High-Performance, ANSI C Coding Methodology and its application
to Matrix Multiply University of Tennessee, 1996, LAPACK Working Note 111

2. S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. A scalable cross-
platform infrastructure for application performance tuning using hardware coun-
ters. In Proceedings of Supercomputing, November 2000.

14 R. Nishtala, R.W. Vuduc, J.W. Demmel, K.A. Yelick

3. B. B. Fraguela, R. Doallo, and E. L. Zapata. Memory hierarchy performance
prediction for sparse blocked algorithms. Parallel Processing Letters, 9(3), 1999.

4. W. D. Gropp, D. K. Kasushik, D. E. Keyes, and B. F. Smith. Towards realistic
bounds for implicit CFD codes. In Proceedings of Parallel Computational Fluid
Dynamics, pages 241–248, 1999.

5. G. Heber, A. J. Dolgert, M. Alt, K. A. Mazurkiewicz, and L. Stringer. Fracture
mechanics on the Intel Itanium architecture: A case study. In Workshop on EPIC
Architectures and Compiler Technology (ACM MICRO 34), Austin, TX, 2001.

6. D. B. Heras, V. B. Perez, J. C. C. Dominguez, and F. F. Rivera. Modeling and
improving locality for irregular problems: sparse matrix-vector product on cache
memories as a case study. In HPCN Europe, pages 201–210, 1999.

7. E.-J. Im. Optimizing the performance of sparse matrix-vector multiplication. PhD
thesis, University of California, Berkeley, May 2000.

8. R. Nishtala, R. W. Vuduc, J. W. Demmel, and K. A. Yelick. Performance modeling
and analysis of cache blocking in sparse matrix vector multiply. Technical report
(UCB/CSD-04-1335), University of California, Berkeley, EECS Dept., 2004.

9. Y. Saad. SPARSKIT: A basic toolkit for sparse matrix computations, 1994.
www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html.

10. R. H. Saavedra-Barrera. CPU Performance Evaluation and Execution Time Predic-
tion Using Narrow Spectrum Benchmarking. PhD thesis, University of California,
Berkeley, February 1992.

11. A. Snavely, L. Carrington, and N. Wolter. Modeling application performance by
convolving machine signatures with application profiles. 2001.

12. O. Temam and W. Jalby. Characterizing the behavior of sparse algorithms on
caches. In Proceedings of Supercomputing ’92, 1992.

13. R. W. Vuduc. OSKI: Optimized Sparse Kernel Interface, 2005.
http://bebop.cs.berkeley.edu/oski/.

14. R. Vuduc, J. W. Demmel, K. A. Yelick, S. Kamil, R. Nishtala, and B. Lee. Perfor-
mance optimizations and bounds for sparse matrix-vector multiply. In Proceedings
of Supercomputing, Baltimore, MD, USA, November 2002.

15. R. W. Vuduc. Automatic performance tuning of sparse matrix kernels. PhD thesis,
University of California, Berkeley, 2003.

16. C. Whaley and J. Dongarra. Automatically tuned linear algebra software. In Proc.
of Supercomp., 1998.

