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Outline

• Performance tuning challenges
– Demonstrate complexity of tuning

• Automatic performance tuning
– Overview of techniques and results
– New results for Itanium 2

• Structure of the Google matrix
– What optimizations are likely to pay-off?
– Preliminary experiments: 2x speedups possible on Itanium 2



Tuning Sparse Matrix Kernels

• Sparse tuning issues
– Typical uniprocessor performance < 10% machine peak

• Indirect, irregular memory references—poor locality
• High bandwidth requirements, poor instruction mix

– Performance depends on architecture, kernel, and matrix
– How to select data structures, implementations? at run-time?

• Our approach: for each kernel,
– Identify and generate a space of implementations
– Search to find the fastest (models, experiments)

• Early success: SPARSITY
– sparse matrix-vector multiply (SpMV) [Im & Yelick ’99]



Sparse Matrix Example

• n = 16146
• nnz = 1.0M
• kernel: SpMV

• Source: NASA 
structural analysis 
problem



Sparse Matrix Example (enlarged submatrix)

• n = 16146
• nnz = 1.0M
• kernel: SpMV

• Natural 6x6 dense 
block structure



Speedups on Itanium: The Need for Search

Reference

6x6
Best: 3x1

Worst:
3x6



Filling-In Zeros to Improve Efficiency

• More complicated non-zero 
structure in general
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Filling-In Zeros to Improve Efficiency

• More complicated non-zero 
structure in general

• One SPARSITY technique: 
uniform register-level blocking

• Example: 3x3 blocking
– Logical 3x3 grid
– Fill-in explicit zeros
– “Fill ratio” = 1.5

• On Pentium III: 1.5x speedup!



Approach to Automatic Tuning

• Recall: for each kernel,
– Identify and generate implementation space
– Search space to find fastest

• Selecting the r x c register block size
– Off-line: Precompute performance Mflops of SpMV using dense 

A for various block sizes r x c
• Only once per architecture

– Run-time: Given A, sample to estimate Fill for each r x c
– Choose r, c to maximize ratio Mflops/Fill





Summary of Results: Pentium III



Summary of Results: Pentium III (3/3)



Preliminary Results (Matrix Set 1): Itanium 2

LPFEM FEM (var) AssortedDense



Preliminary Results (Matrix Set 2): Itanium 2

Web/IR

Dense FEM FEM (var) Bio LPEcon Stat



Exploiting Other Kinds of Structure

• Optimizations for SpMV
– Symmetry (up to 2x speedup)
– Diagonals, bands (up to 2.2x)
– Splitting for variable block structure (1.3x—1.7x)
– Reordering to create dense structure + splitting (up to 2x)
– Cache blocking (1.5—4x)
– Multiple vectors (2—7x)
– And combinations…

• Sparse triangular solve
– Hybrid sparse/dense data structure (1.2—1.8x)

• Higher-level kernels
– AATx, ATAx (1.2—4.2x)
– RART, Akx, …



Multiple Vector Performance



What about the Google Matrix?

• Google approach
– Approx. once a month: rank all pages using connectivity structure

• Find dominant eigenvector of a matrix
– At query-time: return list of pages ordered by rank

• Matrix: A = αG + (1-α)(1/n)uuT

– Markov model: Surfer follows link with probability α, jumps to a 
random page with probability 1-α

– G is n x n connectivity matrix [n ≈ 3 billion]
• gij is non-zero if page i links to page j
• Normalized so each column sums to 1
• Very sparse: about 7—8 non-zeros per row (power law dist.)

– u is a vector of all 1 values
– Steady-state probability xi of landing on page i is solution to x = Ax

• Approximate x by power method: x = Akx0
– In practice, k ≈ 25



Portion of the Google Matrix: A Snapshot



Possible Optimization Techniques

• Within an iteration, i.e., computing (G+uuT)*x once
– Cache block G*x

• On linear programming matrices and matrices with random 
structure (e.g., LSI), 1.5—4x speedups

• Best block size is matrix and machine dependent

– Reordering and/or splitting of G to separate dense structure 
(rows, columns, blocks)

• Between iterations, e.g., (G+uuT)2x
– (G+uuT)2x = G2x + (Gu)uTx + u(uTG)x + u(uTu)uTx

• Compute Gu, uTG, uTu once for all iterations
• G2x: Inter-iteration tiling to read G only once





Cache Blocked SpMV on LSI Matrix: Ultra 2i

A
10k x 255k
3.7M non-zeros

Baseline:
16 Mflop/s

Best block size
& performance:
16k x 64k
28 Mflop/s



Cache Blocking on LSI Matrix: Pentium 4

A
10k x 255k
3.7M non-zeros

Baseline:
44 Mflop/s

Best block size
& performance:
16k x 16k
210 Mflop/s



Cache Blocked SpMV on LSI Matrix: Itanium

A
10k x 255k
3.7M non-zeros

Baseline:
25 Mflop/s

Best block size
& performance:
16k x 32k
72 Mflop/s



Cache Blocked SpMV on LSI Matrix: Itanium 2

A
10k x 255k
3.7M non-zeros

Baseline:
170 Mflop/s

Best block size
& performance:
16k x 65k
275 Mflop/s



Inter-Iteration Sparse Tiling (1/3)
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• Let A be 6x6 tridiagonal
• Consider y=A2x

– t=Ax, y=At

• Nodes: vector elements
• Edges: matrix elements aij



Inter-Iteration Sparse Tiling (2/3)
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• Let A be 6x6 tridiagonal
• Consider y=A2x

– t=Ax, y=At

• Nodes: vector elements
• Edges: matrix elements aij

• Orange = everything needed 
to compute y1

– Reuse a11, a12



Inter-Iteration Sparse Tiling (3/3)
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• Let A be 6x6 tridiagonal
• Consider y=A2x

– t=Ax, y=At

• Nodes: vector elements
• Edges: matrix elements aij

• Orange = everything needed 
to compute y1

– Reuse a11, a12

• Grey = y2, y3

– Reuse a23, a33, a43



Inter-Iteration Sparse Tiling: Issues
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• Tile sizes (colored regions) 
grow with no. of iterations 
and increasing out-degree
– G likely to have a few nodes 

with high out-degree (e.g., 
Yahoo)

• Mathematical tricks to limit 
tile size?
– Judicious dropping of edges 

[Ng’01]



Summary and Questions

• Need to understand matrix structure and machine
– BeBOP: suite of techniques to deal with different sparse structures 

and architectures
• Google matrix problem

– Established techniques within an iteration
– Ideas for inter-iteration optimizations
– Mathematical structure of problem may help

• Questions
– Structure of G?
– What are the computational bottlenecks?
– Enabling future computations?

• E.g., topic-sensitive PageRank multiple vector version [Haveliwala
’02]

– See www.cs.berkeley.edu/~richie/bebop/intel/google for more info, 
including more complete Itanium 2 results.



Extra slides



Sparse Kernels and Optimizations

• Kernels
– Sparse matrix-vector multiply (SpMV): y=A*x
– Sparse triangular solve (SpTS): x=T-1*b
– y=AAT*x, y=ATA*x
– Powers (y=Ak*x), sparse triple-product (R*A*RT), …

• Optimization techniques (implementation space)
– Register blocking
– Cache blocking
– Multiple dense vectors (x)
– A has special structure (e.g., symmetric, banded, …)
– Hybrid data structures (e.g., splitting, switch-to-dense, …)
– Matrix reordering

• How and when do we search?
– Off-line: Benchmark implementations
– Run-time: Estimate matrix properties, evaluate performance 

models based on benchmark data



Exploiting Matrix Structure

• Symmetry (numerical or structural)
– Reuse matrix entries
– Can combine with register blocking, multiple vectors, …

• Matrix splitting
– Split the matrix, e.g., into r x c and 1 x 1
– No fill overhead

• Large matrices with random structure
– E.g., Latent Semantic Indexing (LSI) matrices
– Technique: cache blocking

• Store matrix as 2i x 2j sparse submatrices
• Effective when x vector is large
• Currently, search to find fastest size



Symmetric SpMV Performance: Pentium 4



SpMV with Split Matrices: Ultra 2i



Cache Blocking on Random Matrices: Itanium

Speedup on four banded
random matrices.



Sparse Kernels and Optimizations

• Kernels
– Sparse matrix-vector multiply (SpMV): y=A*x
– Sparse triangular solve (SpTS): x=T-1*b
– y=AAT*x, y=ATA*x
– Powers (y=Ak*x), sparse triple-product (R*A*RT), …

• Optimization techniques (implementation space)
– Register blocking
– Cache blocking
– Multiple dense vectors (x)
– A has special structure (e.g., symmetric, banded, …)
– Hybrid data structures (e.g., splitting, switch-to-dense, …)
– Matrix reordering

• How and when do we search?
– Off-line: Benchmark implementations
– Run-time: Estimate matrix properties, evaluate performance 

models based on benchmark data



Example: Register Blocking for SpMV

• Store dense r x c blocks
– Reduces storage overhead 

and bandwidth 
requirements

• Fully unroll block multiplies
– Improves register reuse

• Fill-in explicit zeros: trade-
off extra computation for 
improved efficiency
– 1.3-2.5x speedups on FEM 
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4x3 Register Blocking Example



Tuning Sparse Matrix-Vector Multiply (SpMV)

• Sparsity [Im & Yelick ’99]
– Optimizes y=A*x for sparse A, dense x, y

• Selecting the register block size
– Precompute performance Mflops of of dense A*x for 

various block sizes r x c
– Given A, sample to estimate Fill for each r x c
– Choose r, c to maximize ratio Mflops/Fill

• Multiplication by multiple dense vectors
– Block across vectors (by vector block size, v)



Off-line Benchmarking: Register Profiles
Register blocking performance for a dense matrix in sparse format.

35 Mflop/s

73 Mflop/s
333 MHz
Sun
Ultra 2i



Off-line Benchmarking: Register Profiles
Register blocking performance for a dense matrix in sparse format.

333 MHz
Sun
Ultra 2i
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Register Blocked SpMV: Pentium III



Register Blocked SpMV: Ultra 2i



Register Blocked SpMV: Power3



Register Blocked SpMV: Itanium



Multiple Vector Performance: Itanium



Sparse Kernels and Optimizations

• Kernels
– Sparse matrix-vector multiply (SpMV): y=A*x
– Sparse triangular solve (SpTS): x=T-1*b
– y=AAT*x, y=ATA*x
– Powers (y=Ak*x), sparse triple-product (R*A*RT), …

• Optimization techniques (implementation space)
– Register blocking
– Cache blocking
– Multiple dense vectors (x)
– A has special structure (e.g., symmetric, banded, …)
– Hybrid data structures (e.g., splitting, switch-to-dense, …)
– Matrix reordering

• How and when do we search?
– Off-line: Benchmark implementations
– Run-time: Estimate matrix properties, evaluate performance 

models based on benchmark data



Example: Sparse Triangular Factor

• Raefsky4 (structural 
problem) + SuperLU + 
colmmd

• N=19779, nnz=12.6 M

Dense trailing triangle: 
dim=2268, 20% of 
total nz



Tuning Sparse Triangular Solve (SpTS)

• Compute x=L-1*b where L sparse lower triangular, x
& b dense

• L from sparse LU has rich dense substructure
– Dense trailing triangle can account for 20—90% of matrix 

non-zeros

• SpTS optimizations
– Split into sparse trapezoid and dense trailing triangle
– Use tuned dense BLAS (DTRSV) on dense triangle
– Use Sparsity register blocking on sparse part

• Tuning parameters
– Size of dense trailing triangle
– Register block size



Sparse/Dense Partitioning for SpTS

• Partition L into sparse (L1,L2) and dense LD:
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SpTS Performance: Itanium

(See POHLL ’02 workshop paper, at ICS ’02.)



SpTS Performance: Power3



Sparse Kernels and Optimizations

• Kernels
– Sparse matrix-vector multiply (SpMV): y=A*x
– Sparse triangular solve (SpTS): x=T-1*b
– y=AAT*x, y=ATA*x
– Powers (y=Ak*x), sparse triple-product (R*A*RT), …

• Optimization techniques (implementation space)
– Register blocking
– Cache blocking
– Multiple dense vectors (x)
– A has special structure (e.g., symmetric, banded, …)
– Hybrid data structures (e.g., splitting, switch-to-dense, …)
– Matrix reordering

• How and when do we search?
– Off-line: Benchmark implementations
– Run-time: Estimate matrix properties, evaluate performance 

models based on benchmark data



Optimizing AAT*x

• Kernel: y=AAT*x, where A is sparse, x & y dense
– Arises in linear programming, computation of SVD
– Conventional implementation: compute z=AT*x, y=A*z

• Elements of A can be reused:
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• When ak represent blocks of columns, can apply register 
blocking.



Optimized AAT*x Performance: Pentium III



Current Directions

• Applying new optimizations
– Other split data structures (variable block, diagonal, …)
– Matrix reordering to create block structure
– Structural symmetry

• New kernels (triple product RART, powers Ak, …)
• Tuning parameter selection
• Building an automatically tuned sparse matrix library

– Extending the Sparse BLAS
– Leverage existing sparse compilers as code generation 

infrastructure
– More thoughts on this topic tomorrow



Related Work

• Automatic performance tuning systems
– PHiPAC [Bilmes, et al., ’97], ATLAS [Whaley & Dongarra ’98]
– FFTW [Frigo & Johnson ’98], SPIRAL [Pueschel, et al., ’00], 

UHFFT [Mirkovic and Johnsson ’00]
– MPI collective operations [Vadhiyar & Dongarra ’01]

• Code generation
– FLAME [Gunnels & van de Geijn, ’01]
– Sparse compilers: [Bik ’99], Bernoulli [Pingali, et al., ’97]
– Generic programming: Blitz++ [Veldhuizen ’98], MTL [Siek & 

Lumsdaine ’98], GMCL [Czarnecki, et al. ’98], …
• Sparse performance modeling

– [Temam & Jalby ’92], [White & Saddayappan ’97], [Navarro, 
et al., ’96], [Heras, et al., ’99], [Fraguela, et al., ’99], …



More Related Work

• Compiler analysis, models
– CROPS [Carter, Ferrante, et al.]; Serial sparse tiling [Strout

’01]
– TUNE [Chatterjee, et al.]
– Iterative compilation [O’Boyle, et al., ’98]
– Broadway compiler [Guyer & Lin, ’99]
– [Brewer ’95], ADAPT [Voss ’00]

• Sparse BLAS interfaces
– BLAST Forum (Chapter 3)
– NIST Sparse BLAS [Remington & Pozo ’94]; SparseLib++
– SPARSKIT [Saad ’94]
– Parallel Sparse BLAS [Fillipone, et al. ’96]



Context: Creating High-Performance Libraries

• Application performance dominated by a few 
computational kernels

• Today: Kernels hand-tuned by vendor or user
• Performance tuning challenges

– Performance is a complicated function of kernel, 
architecture, compiler, and workload

– Tedious and time-consuming

• Successful automated approaches
– Dense linear algebra: ATLAS/PHiPAC
– Signal processing: FFTW/SPIRAL/UHFFT



Cache Blocked SpMV on LSI Matrix: Itanium



Sustainable Memory Bandwidth



Multiple Vector Performance: Pentium 4



Multiple Vector Performance: Itanium



Multiple Vector Performance: Pentium 4



Optimized AAT*x Performance: Ultra 2i



Optimized AAT*x Performance: Pentium 4



Tuning Pays Off—PHiPAC



Tuning pays off – ATLAS

Extends applicability of PHIPAC; Incorporated in Matlab (with rest of LAPACK)



Register Tile Sizes (Dense Matrix Multiply)

333 MHz Sun Ultra 2i

2-D slice of 3-D space; 
implementations color-
coded by performance 
in Mflop/s

16 registers, but 2-by-3 
tile size fastest



Search for Optimal L0 block size in dense 
matmul
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Variations in Performance across Platforms (matmul)

Sun Ultra−IIi/333
Pentium II−300
Pentium 4−1.5 GHz
Itanium−800
IBM Power 2
PowerPC 604e
MIPS R10k/175
Cray T3E Node



High Precision GEMV (XBLAS)



High Precision Algorithms (XBLAS)
• Double-double (High precision word represented as pair of doubles)

– Many variations on these algorithms; we currently use Bailey’s
• Exploiting Extra-wide Registers

– Suppose s(1) , … , s(n) have f-bit fractions, SUM has F>f bit fraction
– Consider following algorithm for  S = Σi=1,n s(i)

• Sort so that |s(1)| ≥ |s(2)|  ≥ … ≥ |s(n)|
• SUM = 0, for i = 1 to n SUM = SUM + s(i), end for, sum = SUM

– Theorem (D., Hida) Suppose F<2f (less than double precision)
• If n ≤ 2F-f + 1, then error ≤ 1.5 ulps
• If n =  2F-f + 2, then error ≤ 22f-F ulps (can be >> 1)
• If n  ≥ 2F-f + 3, then error can be arbitrary (S ≠ 0 but sum = 0 )

– Examples
• s(i) double (f=53), SUM double extended (F=64) 

– accurate if n ≤ 211 + 1 = 2049
• Dot product of single precision x(i) and y(i) 

– s(i) = x(i)*y(i)  (f=2*24=48), SUM double extended (F=64) ⇒
– accurate if n ≤ 216 + 1 = 65537
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