Automatic Performance Tuning of Sparse Matrix Kernels

Berkeley Benchmarking and OPtimization (BeBOP) Project http://www.cs.berkeley.edu/~richie/bebop

James Demmel, Katherine Yelick Richard Vuduc, Shoaib Kamil, Rajesh Nishtala, Benjamin Lee Atilla Gyulassy, Chris Hsu University of California, Berkeley

January 24, 2003

Outline

- Performance tuning challenges
 - Demonstrate complexity of tuning
- Automatic performance tuning
 - Overview of techniques and results
 - New results for Itanium 2
- Structure of the Google matrix
 - What optimizations are likely to pay-off?
 - Preliminary experiments: 2x speedups possible on Itanium 2

Tuning Sparse Matrix Kernels

- Sparse tuning issues
 - Typical uniprocessor performance < 10% machine peak
 - · Indirect, irregular memory references—poor locality
 - High bandwidth requirements, poor instruction mix
 - Performance depends on architecture, kernel, and matrix
 - How to select data structures, implementations? at run-time?
- Our approach: for each kernel,
 - Identify and generate a space of implementations
 - Search to find the fastest (models, experiments)
- Early success: SPARSITY
 - sparse matrix-vector multiply (SpMV) [Im & Yelick '99]

Sparse Matrix Example

- n = 16146
- nnz = 1.0M
- kernel: SpMV
- Source: NASA structural analysis problem

Sparse Matrix Example (enlarged submatrix)

- n = 16146
- nnz = 1.0M
- kernel: SpMV
- Natural 6x6 dense block structure

Speedups on Itanium: The Need for Search

Filling-In Zeros to Improve Efficiency

 More complicated non-zero structure in general

Filling-In Zeros to Improve Efficiency

- More complicated non-zero structure in general
- One SPARSITY technique: uniform register-level blocking
- Example: 3x3 blocking
 - Logical 3x3 grid

Filling-In Zeros to Improve Efficiency

- More complicated non-zero structure in general
- One SPARSITY technique: uniform register-level blocking
- Example: 3x3 blocking
 - Logical 3x3 grid
 - Fill-in explicit zeros
 - "Fill ratio" = 1.5
- On Pentium III: 1.5x speedup!

Approach to Automatic Tuning

- Recall: for each kernel,
 - Identify and generate implementation space
 - Search space to find fastest
- Selecting the r x c register block size
 - Off-line: Precompute performance Mflops of SpMV using dense
 A for various block sizes r x c
 - Only once per architecture
 - Run-time: Given A, sample to estimate Fill for each r x c
 - Choose r, c to maximize ratio Mflops/Fill

Sparsity Register Blocking Performance [Itanium 2-900, Intel C v7.0]

Sparsity Register Blocking Performance [Itanium 2-900, Intel C v7.0] Sparsity (heur) Reference Performance (Mflop/s) Web/IR 300*** FEM (yar) FEM Dense Stat; Bio Ecqni matrix no.

Exploiting Other Kinds of Structure

- Optimizations for SpMV
 - Symmetry (up to 2x speedup)
 - Diagonals, bands (up to 2.2x)
 - Splitting for variable block structure (1.3x—1.7x)
 - Reordering to create dense structure + splitting (up to 2x)
 - Cache blocking (1.5—4x)
 - Multiple vectors (2—7x)
 - And combinations...
- Sparse triangular solve
 - Hybrid sparse/dense data structure (1.2—1.8x)
- Higher-level kernels
 - $-AA^{T}x, A^{T}Ax (1.2-4.2x)$
 - $RAR^T, A^kx, ...$

What about the Google Matrix?

- Google approach
 - Approx. once a month: rank all pages using connectivity structure
 - Find dominant eigenvector of a matrix
 - At query-time: return list of pages ordered by rank
- Matrix: $A = \alpha G + (1-\alpha)(1/n)uu^T$
 - Markov model: Surfer follows link with probability α , jumps to a random page with probability 1- α
 - G is n x n connectivity matrix [n ≈ 3 billion]
 - g_{ij} is non-zero if page i links to page j
 - Normalized so each column sums to 1
 - Very sparse: about 7—8 non-zeros per row (power law dist.)
 - u is a vector of all 1 values
 - Steady-state probability x_i of landing on page i is solution to x = Ax
- Approximate x by power method: x = A^kx₀
 - In practice, k ≈ 25

Possible Optimization Techniques

- Within an iteration, *i.e.*, computing $(G+uu^T)^*x$ once
 - Cache block G*x
 - On linear programming matrices and matrices with random structure (e.g., LSI), 1.5—4x speedups
 - Best block size is matrix and machine dependent
 - Reordering and/or splitting of G to separate dense structure (rows, columns, blocks)
- Between iterations, e.g., (G+uu^T)²x
 - $(G+uu^{T})^{2}x = G^{2}x + (Gu)u^{T}x + u(u^{T}G)x + u(u^{T}u)u^{T}x$
 - Compute Gu, u^TG, u^Tu once for all iterations
 - G²x: Inter-iteration tiling to read G only once

Cache Blocked SpMV on LSI Matrix: Ultra 2i

Cache Blocking on LSI Matrix: Pentium 4

Cache Blocked SpMV on LSI Matrix: Itanium

Cache Blocked SpMV on LSI Matrix: Itanium 2

Inter-Iteration Sparse Tiling (1/3)

- Let A be 6x6 tridiagonal
- Consider y=A²x
 - t=Ax, y=At
- Nodes: vector elements
- Edges: matrix elements a_{ii}

Inter-Iteration Sparse Tiling (2/3)

- Let A be 6x6 tridiagonal
- Consider y=A²x
 - t=Ax, y=At
- Nodes: vector elements
- Edges: matrix elements a_{ii}
- Orange = everything needed to compute y₁
 - Reuse a₁₁, a₁₂

Inter-Iteration Sparse Tiling (3/3)

- Let A be 6x6 tridiagonal
- Consider y=A²x
 - t=Ax, y=At
- Nodes: vector elements
- Edges: matrix elements a_{ij}
- Orange = everything needed to compute y₁
 - Reuse a₁₁, a₁₂
- Grey = y_2 , y_3
 - Reuse a₂₃, a₃₃, a₄₃

Inter-Iteration Sparse Tiling: Issues

- Tile sizes (colored regions) grow with no. of iterations and increasing out-degree
 - G likely to have a few nodes with high out-degree (e.g., Yahoo)
- Mathematical tricks to limit tile size?
 - Judicious dropping of edges [Ng'01]

Summary and Questions

- Need to understand matrix structure and machine
 - BeBOP: suite of techniques to deal with different sparse structures and architectures
- Google matrix problem
 - Established techniques within an iteration
 - Ideas for inter-iteration optimizations
 - Mathematical structure of problem may help
- Questions
 - Structure of G?
 - What are the computational bottlenecks?
 - Enabling future computations?
 - E.g., topic-sensitive PageRank → multiple vector version [Haveliwala '02]
 - See www.cs.berkeley.edu/~richie/bebop/intel/google for more info, including more complete Itanium 2 results.

Extra slides

Sparse Kernels and Optimizations

- Kernels
 - Sparse matrix-vector multiply (SpMV): y=A*x
 - Sparse triangular solve (SpTS): $x=T^{-1}*b$
 - $y = AA^T * x, y = A^T A * x$
 - Powers $(y=A^k*x)$, sparse triple-product $(R*A*R^7)$, ...
- Optimization techniques (implementation space)
 - Register blocking
 - Cache blocking
 - Multiple dense vectors (x)
 - A has special structure (e.g., symmetric, banded, ...)
 - Hybrid data structures (e.g., splitting, switch-to-dense, ...)
 - Matrix reordering
- How and when do we search?
 - Off-line: Benchmark implementations
 - Run-time: Estimate matrix properties, evaluate performance models based on benchmark data

Exploiting Matrix Structure

- Symmetry (numerical or structural)
 - Reuse matrix entries
 - Can combine with register blocking, multiple vectors, ...
- Matrix splitting
 - Split the matrix, e.g., into r x c and 1 x 1
 - No fill overhead
- Large matrices with random structure
 - E.g., Latent Semantic Indexing (LSI) matrices
 - Technique: cache blocking
 - Store matrix as 2ⁱ x 2^j sparse submatrices
 - Effective when x vector is large
 - Currently, search to find fastest size

Symmetric SpMV Performance: Pentium 4

SpMV with Split Matrices: Ultra 2i

Cache Blocking on Random Matrices: Itanium

Speedup on four banded random matrices.

Sparse Kernels and Optimizations

- Kernels
 - Sparse matrix-vector multiply (SpMV): y=A*x
 - Sparse triangular solve (SpTS): $x=T^{-1}*b$
 - $y = AA^T * x, y = A^T A * x$
 - Powers $(y=A^k*x)$, sparse triple-product $(R*A*R^7)$, ...
- Optimization techniques (implementation space)
 - Register blocking
 - Cache blocking
 - Multiple dense vectors (x)
 - A has special structure (e.g., symmetric, banded, ...)
 - Hybrid data structures (e.g., splitting, switch-to-dense, ...)
 - Matrix reordering
- How and when do we search?
 - Off-line: Benchmark implementations
 - Run-time: Estimate matrix properties, evaluate performance models based on benchmark data

Example: Register Blocking for SpMV

- Store dense r x c blocks
 - Reduces storage overhead and bandwidth requirements
- Fully unroll block multiplies
 - Improves register reuse
- Fill-in explicit zeros: tradeoff extra computation for improved efficiency
 - 1.3-2.5x speedups on FEM matrices

Tuning Sparse Matrix-Vector Multiply (SpMV)

- Sparsity [Im & Yelick '99]
 - Optimizes y=A*x for sparse A, dense x, y
- Selecting the register block size
 - Precompute performance Mflops of of dense A*x for various block sizes r x c
 - Given A, sample to estimate Fill for each r x c
 - Choose r, c to maximize ratio Mflops/Fill
- Multiplication by multiple dense vectors
 - Block across vectors (by vector block size, v)

Off-line Benchmarking: Register Profiles

Register blocking performance for a dense matrix in sparse format.

333 MHz Sun Ultra 2i

Off-line Benchmarking: Register Profiles

Register blocking performance for a dense matrix in sparse format.

column block size (c)

333 MHz Sun Ultra 2i

column block size (c)

375 MHz IBM Power3

Performance Summary [itanium-linux-ecc] Analytic upper bound Upper bound (PAPI) Sparsity (exhaustive) Sparsity (heuristic) Reference Performance (Mflop/s) FEM (var. blk.) FEM. Mixed ĽΡ

matrix

Multiple Vector Performance: Itanium

Sparse Kernels and Optimizations

- Kernels
 - Sparse matrix-vector multiply (SpMV): y=A*x
 - Sparse triangular solve (SpTS): x=T-1*b
 - $y = AA^T *x, y = A^TA *x$
 - Powers $(y=A^k*x)$, sparse triple-product $(R*A*R^7)$, ...
- Optimization techniques (implementation space)
 - Register blocking
 - Cache blocking
 - Multiple dense vectors (x)
 - A has special structure (e.g., symmetric, banded, ...)
 - Hybrid data structures (e.g., splitting, switch-to-dense, ...)
 - Matrix reordering
- How and when do we search?
 - Off-line: Benchmark implementations
 - Run-time: Estimate matrix properties, evaluate performance models based on benchmark data

Example: Sparse Triangular Factor

- Raefsky4 (structural problem) + SuperLU + colmmd
- N=19779, nnz=12.6 M

Dense trailing triangle: dim=2268, 20% of total nz

Tuning Sparse Triangular Solve (SpTS)

- Compute x=L⁻¹*b where L sparse lower triangular, x
 & b dense
- L from sparse LU has rich dense substructure
 - Dense trailing triangle can account for 20—90% of matrix non-zeros
- SpTS optimizations
 - Split into sparse trapezoid and dense trailing triangle
 - Use tuned dense BLAS (DTRSV) on dense triangle
 - Use Sparsity register blocking on sparse part
- Tuning parameters
 - Size of dense trailing triangle
 - Register block size

Sparse/Dense Partitioning for SpTS

• Partition L into sparse (L_1, L_2) and dense L_D :

$$\begin{pmatrix} L_1 \\ L_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$

Perform SpTS in three steps:

(1)
$$L_1 x_1 = b_1$$

$$(2) \qquad \hat{b}_2 = b_2 - L_2 x_1$$

(3)
$$L_D x_2 = \hat{b}_2$$

Sparsity optimizations for (1)—(2); DTRSV for (3)

SpTS Performance: Itanium

(See POHLL '02 workshop paper, at ICS '02.)

SpTS Performance: Power3

Sparse Kernels and Optimizations

- Kernels
 - Sparse matrix-vector multiply (SpMV): y=A*x
 - Sparse triangular solve (SpTS): $x=T^{-1}*b$
 - $y = AA^T * x, y = A^T A * x$
 - Powers $(y=A^k*x)$, sparse triple-product $(R*A*R^7)$, ...
- Optimization techniques (implementation space)
 - Register blocking
 - Cache blocking
 - Multiple dense vectors (x)
 - A has special structure (e.g., symmetric, banded, ...)
 - Hybrid data structures (e.g., splitting, switch-to-dense, ...)
 - Matrix reordering
- How and when do we search?
 - Off-line: Benchmark implementations
 - Run-time: Estimate matrix properties, evaluate performance models based on benchmark data

Optimizing AAT*x

- Kernel: $y=AA^T*x$, where A is sparse, x & y dense
 - Arises in linear programming, computation of SVD
 - Conventional implementation: compute $z=A^T*x$, y=A*z
- Elements of A can be reused:

$$y = \left(a_1 \cdots a_n\right) \begin{pmatrix} a_1^T \\ \vdots \\ a_n^T \end{pmatrix} x = \sum_{k=1}^n a_k (a_k^T x)$$

 When a_k represent blocks of columns, can apply register blocking.

Optimized AAT*x Performance: Pentium III

Current Directions

- Applying new optimizations
 - Other split data structures (variable block, diagonal, ...)
 - Matrix reordering to create block structure
 - Structural symmetry
- New kernels (triple product RAR^{T} , powers A^{k} , ...)
- Tuning parameter selection
- Building an automatically tuned sparse matrix library
 - Extending the Sparse BLAS
 - Leverage existing sparse compilers as code generation infrastructure
 - More thoughts on this topic tomorrow

Related Work

- Automatic performance tuning systems
 - PHiPAC [Bilmes, et al., '97], ATLAS [Whaley & Dongarra '98]
 - FFTW [Frigo & Johnson '98], SPIRAL [Pueschel, et al., '00], UHFFT [Mirkovic and Johnsson '00]
 - MPI collective operations [Vadhiyar & Dongarra '01]
- Code generation
 - FLAME [Gunnels & van de Geijn, '01]
 - Sparse compilers: [Bik '99], Bernoulli [Pingali, et al., '97]
 - Generic programming: Blitz++ [Veldhuizen '98], MTL [Siek & Lumsdaine '98], GMCL [Czarnecki, et al. '98], ...
- Sparse performance modeling
 - [Temam & Jalby '92], [White & Saddayappan '97], [Navarro, et al., '96], [Heras, et al., '99], [Fraguela, et al., '99], ...

More Related Work

- Compiler analysis, models
 - CROPS [Carter, Ferrante, et al.]; Serial sparse tiling [Strout '01]
 - TUNE [Chatterjee, et al.]
 - Iterative compilation [O'Boyle, et al., '98]
 - Broadway compiler [Guyer & Lin, '99]
 - [Brewer '95], ADAPT [Voss '00]
- Sparse BLAS interfaces
 - BLAST Forum (Chapter 3)
 - NIST Sparse BLAS [Remington & Pozo '94]; SparseLib++
 - SPARSKIT [Saad '94]
 - Parallel Sparse BLAS [Fillipone, et al. '96]

Context: Creating High-Performance Libraries

- Application performance dominated by a few computational kernels
- Today: Kernels hand-tuned by vendor or user
- Performance tuning challenges
 - Performance is a complicated function of kernel, architecture, compiler, and workload
 - Tedious and time-consuming
- Successful automated approaches
 - Dense linear algebra: ATLAS/PHiPAC
 - Signal processing: FFTW/SPIRAL/UHFFT

Cache Blocked SpMV on LSI Matrix: Itanium

Sustainable Memory Bandwidth

Multiple Vector Performance: Pentium 4

Multiple Vector Performance: Itanium

Multiple Vector Performance: Pentium 4

Optimized AAT*x Performance: Ultra 2i

Optimized AAT*x Performance: Pentium 4

Tuning Pays Off—PHiPAC

Tuning pays off – ATLAS

500x500 Double Precision Matrix-Matrix Multiply Across Multiple Architectures

Extends applicability of PHIPAC; Incorporated in Matlab (with rest of LAPACK)

Register Tile Sizes (Dense Matrix Multiply)

High Precision GEMV (XBLAS)

High Precision Algorithms (XBLAS)

- Double-double (High precision word represented as pair of doubles)
 - Many variations on these algorithms; we currently use Bailey's
- Exploiting Extra-wide Registers
 - Suppose s(1) , ... , s(n) have f-bit fractions, SUM has F>f bit fraction
 - Consider following algorithm for $S = \sum_{i=1,n} s(i)$
 - Sort so that $|s(1)| \ge |s(2)| \ge |s(n)|$
 - SUM = 0, for i = 1 to n SUM = SUM + s(i), end for, sum = SUM
 - Theorem (D., Hida) Suppose F<2f (less than double precision)
 - If $n \le 2^{F-f} + 1$, then error ≤ 1.5 ulps
 - If $n = 2^{F-f} + 2$, then error $\leq 2^{2f-F}$ ulps (can be >> 1)
 - If $n \ge 2^{F-f} + 3$, then error can be arbitrary (S $\ne 0$ but sum = 0)
 - Examples
 - s(i) double (f=53), SUM double extended (F=64)
 - accurate if $n \le 2^{11} + 1 = 2049$
 - Dot product of single precision x(i) and y(i)
 - -s(i) = x(i)*y(i) (f=2*24=48), SUM double extended (F=64) \Rightarrow
 - accurate if $n \le 2^{16} + 1 = 65537$