Statistical Models for Automatic Performance Tuning

Richard Vuduc, James Demmel (U.C. Berkeley, EECS)

{richie,demmel}@cs.berkeley.edu

Jeff Bilmes (Univ. of Washington, EE)

bilmes@ee.washington.edu

May 29, 2001 International Conference on Computational Science Special Session on Performance Tuning

Context: High Performance Libraries

Libraries can isolate performance issues

- BLAS/LAPACK/ScaLAPACK (linear algebra)
- VSIPL (signal and image processing)
- MPI (distributed parallel communications)
- Can we implement libraries ...
 - automatically and portably?
 - incorporating machine-dependent features?
 - that match our performance requirements?
 - leveraging compiler technology?
 - using domain-specific knowledge?
 - with relevant run-time information?

Generate and Search: An Automatic Tuning Methodology

- Given a library routine
- Write parameterized code generators
 - input: parameters
 - machine (e.g., registers, cache, pipeline, special instructions)
 - optimization strategies (e.g., unrolling, data structures)
 - run-time data (e.g., problem size)
 - problem-specific transformations
 - output: implementation in "high-level" source (e.g., C)
- Search parameter spaces
 - generate an implementation
 - compile using native compiler
 - measure performance (time, accuracy, power, storage, ...)

Recent Tuning System Examples

Linear algebra

- PHiPAC (Bilmes, Demmel, et al., 1997)
- ATLAS (Whaley and Dongarra, 1998)
- Sparsity (Im and Yelick, 1999)
- FLAME (Gunnels, et al., 2000)
- Signal Processing
 - FFTW (Frigo and Johnson, 1998)
 - SPIRAL (Moura, et al., 2000)
 - UHFFT (Mirković, et al., 2000)
- Parallel Communication
 - Automatically tuned MPI collective operations (Vadhiyar, et al. 2000)

Tuning System Examples (cont'd)

- Image Manipulation (Elliot, 2000)
- Data Mining and Analysis (Fischer, 2000)
- Compilers and Tools
 - Hierarchical Tiling/CROPS (Carter, Ferrante, et al.)
 - TUNE (Chatterjee, et al., 1998)
 - Iterative compilation (Bodin, et al., 1998)
 - ADAPT (Voss, 2000)

Road Map

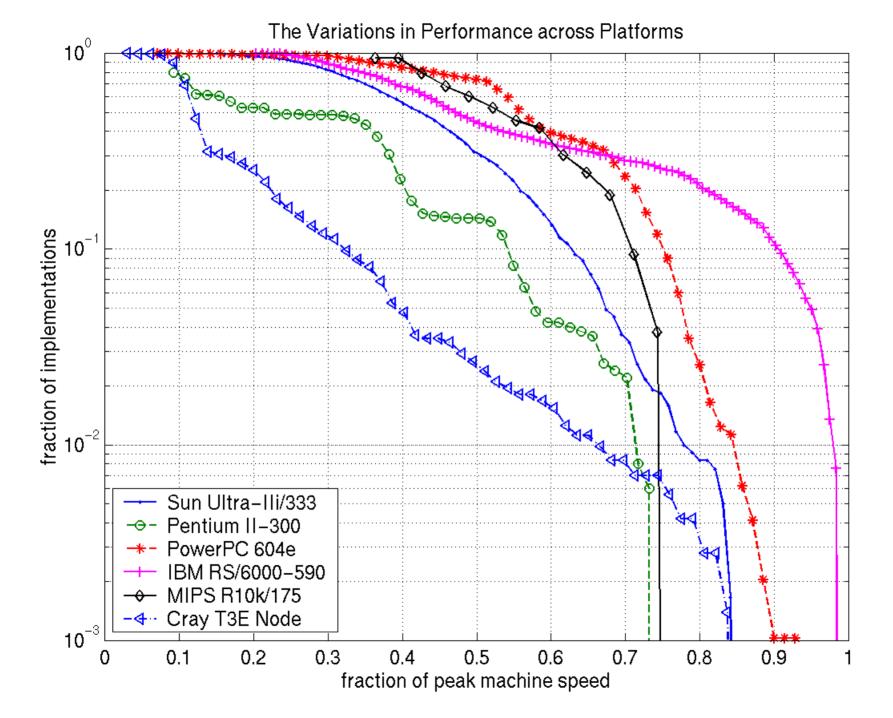
Context

- Why search?
- Stopping searches early
- High-level run-time selection
- Summary

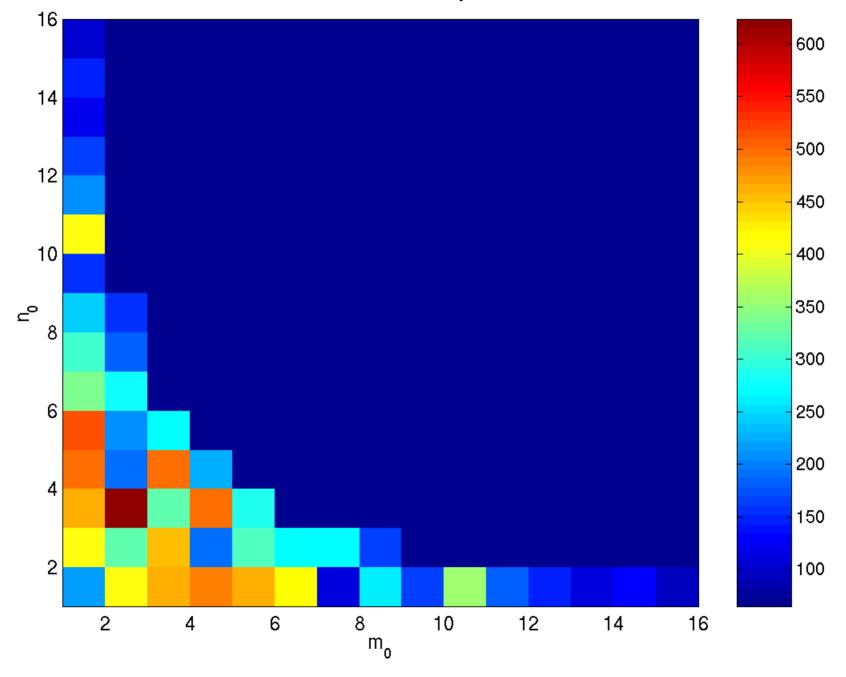
The Search Problem in PHiPAC

PHiPAC (Bilmes, et al., 1997)

- produces dense matrix multiply (matmul) implementations
- generator parameters include
 - size and depth of fully unrolled "core" matmul
 - rectangular, multi-level cache tile sizes
 - 6 flavors of software pipelining
 - scaling constants, transpose options, precisions, etc.
- An experiment
 - fix scheduling options
 - vary register tile sizes
 - 500 to 2500 "reasonable" implementations on 6 platforms



A Needle in a Haystack



Road Map

- Context
- Why search?
- Stopping searches early
- High-level run-time selection
- Summary

Stopping Searches Early

Assume

- dedicated resources limited
 - end-users perform searches
 - run-time searches
- near-optimal implementation okay
- Can we stop the search early?
 - how early is "early?"
 - guarantees on quality?
- PHiPAC search procedure
 - generate implementations uniformly at random *without* replacement
 - measure performance

An Early Stopping Criterion

- Performance scaled from 0 (worst) to 1 (best)
- Goal: Stop after *t* implementations when

 $\operatorname{Prob}[M_t \leq 1 - \mathcal{E}] < \alpha$

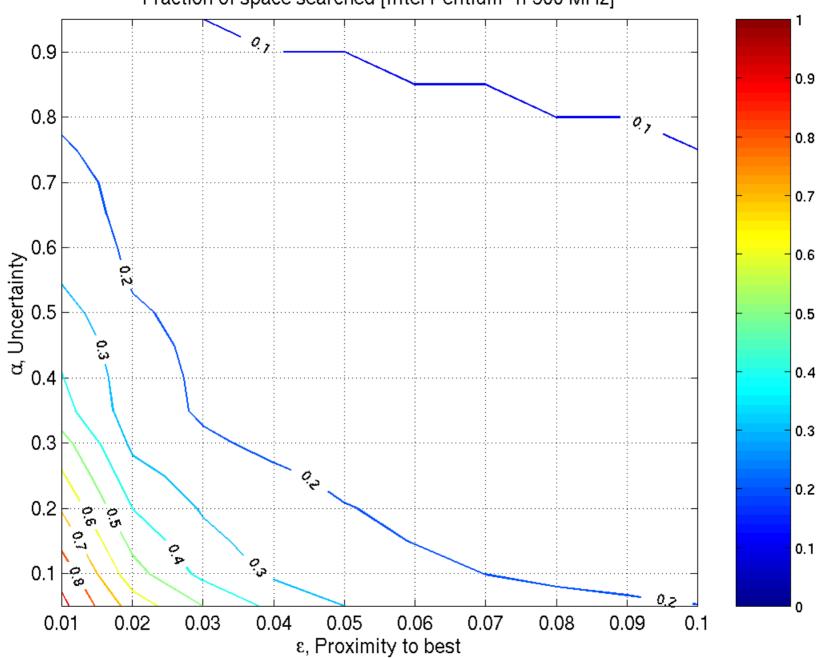
- M_t max observed performance at t
- ε proximity to best
- α degree of uncertainty
- example: "find within top 5% with 10% uncertainty"

•
$$\varepsilon = .05, \alpha = .1$$

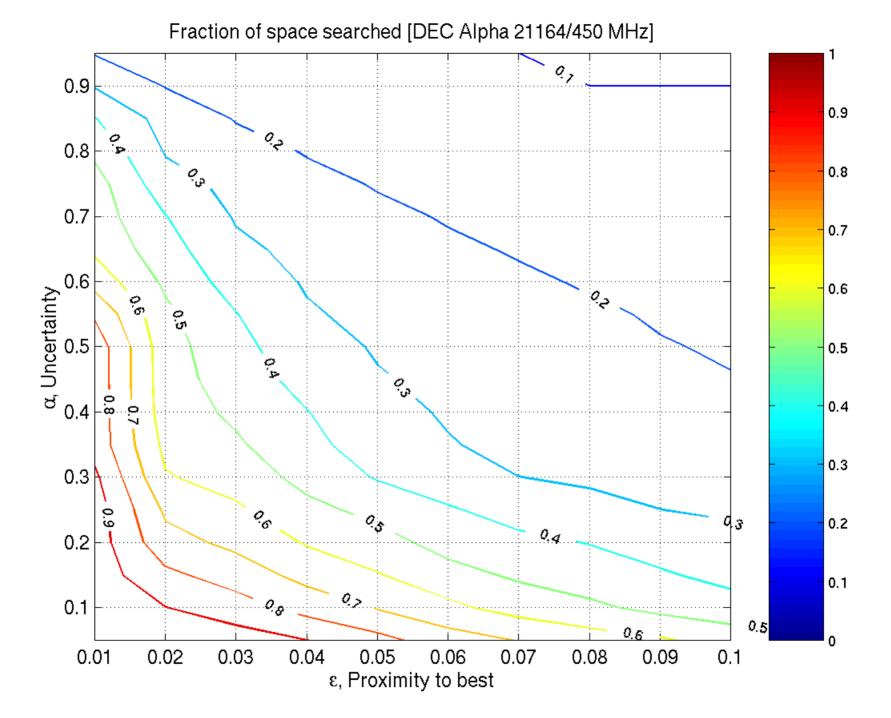
- Can show probability depends only on *F(x)* = Prob[*performance* <= x]</p>
- Idea: Estimate F(x) using observed samples

Stopping Algorithm

- User or library-builder chooses ϵ, α
- For each implementation t
 - Generate and benchmark
 - Estimate F(x) using all observed samples
 - Calculate $p := \operatorname{Prob}[M_t \le 1 \varepsilon]$
 - Stop if $p < \alpha$
- Or, if you must stop at t=T, can output ε , α



Fraction of space searched [Intel Pentium-II 300 MHz]



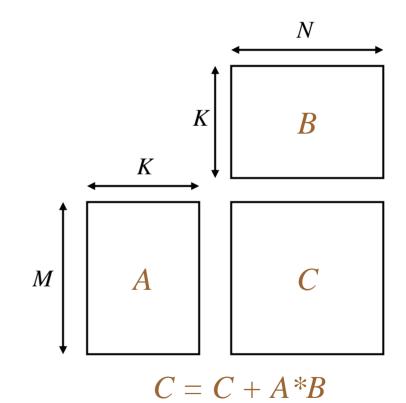
Road Map

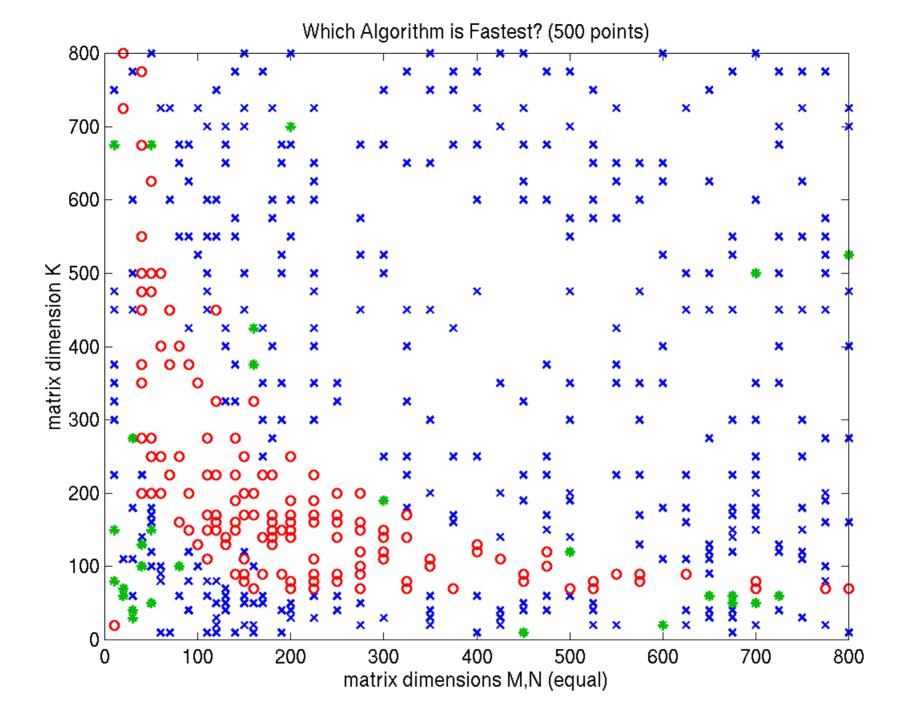
- Context
- Why search?
- Stopping searches early
- High-level run-time selection
- Summary

Run-Time Selection

Assume

- one implementation is *not* best for all inputs
- a few, good implementations known
- can benchmark
- How do we choose the "best" implementation at run-time?
- Example: matrix multiply, tuned for small (L1), medium (L2), and large workloads





A Formal Framework

Given

- m implementations
- n sample inputs (training set)
- execution time
- Find
 - decision function f(s)
 - returns "best" implementation on input s
 - *f*(*s*) cheap to evaluate

$$A = \{a_1, a_2, \dots, a_m\}$$
$$S_0 = \{s_1, s_2, \dots, s_n\} \subseteq S$$
$$T(a, s) : a \in A, s \in S$$

$$f: S \to A$$

Solution Techniques (Overview)

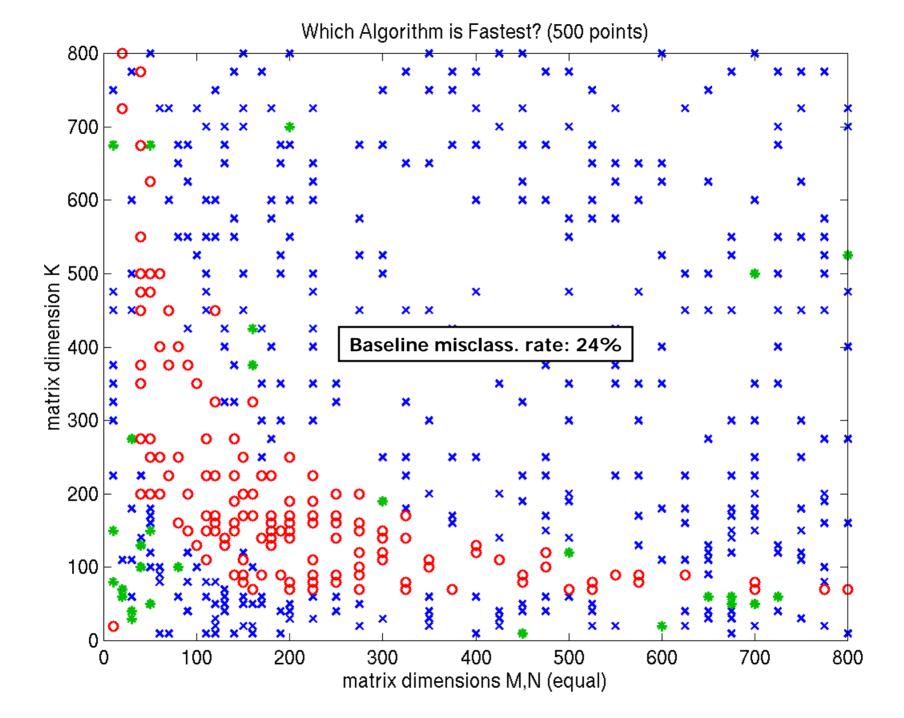
- Method 1: Cost Minimization
 - select geometric boundaries that minimize overall execution time on samples
 - pro: intuitive, *f*(*s*) cheap
 - con: ad hoc, geometric assumptions
- Method 2: Regression (Brewer, 1995)
 - model run-time of each implementation

e.g.,
$$T_a(N) = b_3 N^3 + b_2 N^2 + b_1 N + b_0$$

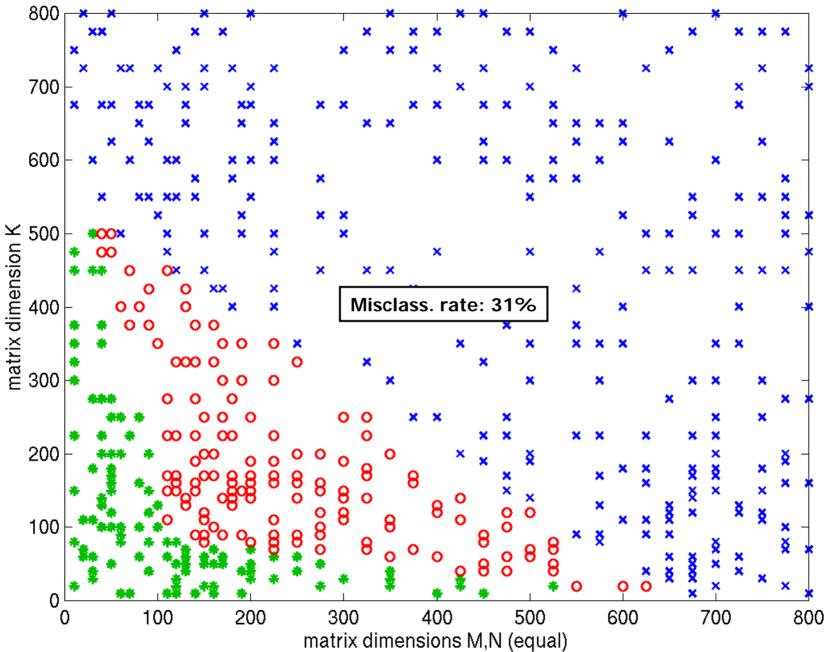
- pro: simple, standard
- con: user must define model

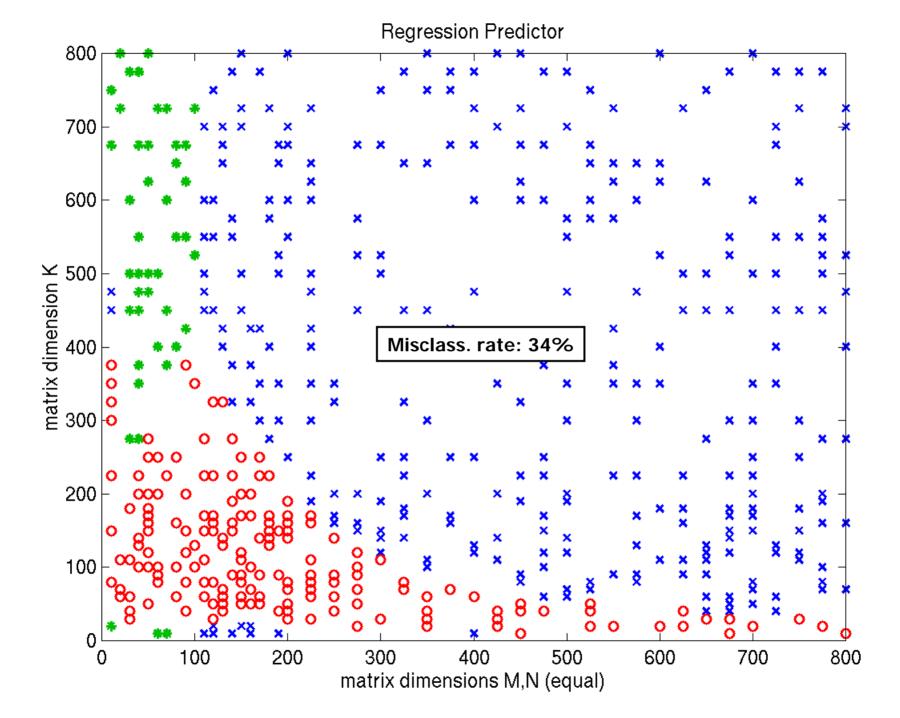
Method 3: Support Vector Machines

- statistical classification
 - pro: solid theory, many successful applications
 - con: heavy training and prediction machinery

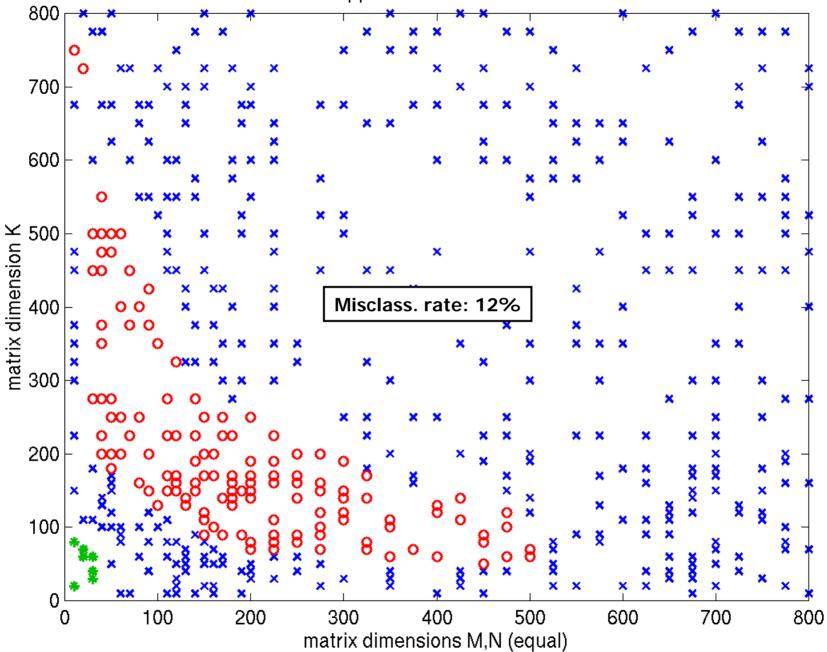


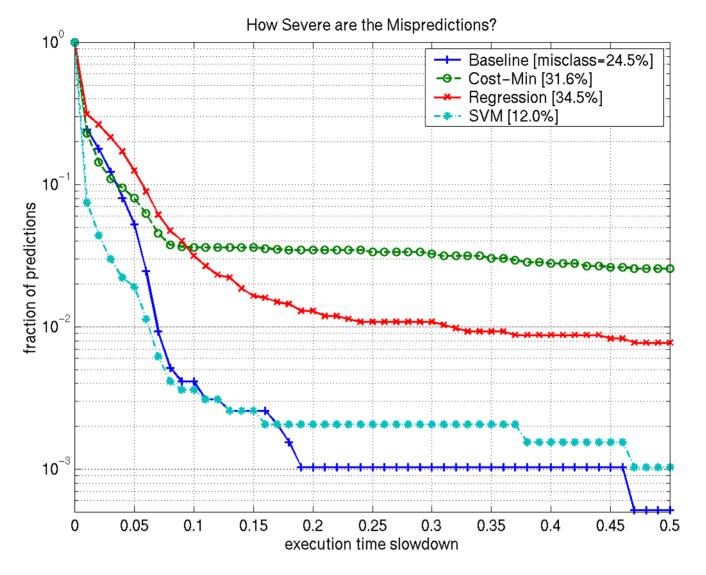
Cost-Minimization Predictor





Support-Vector Predictor





Notes:

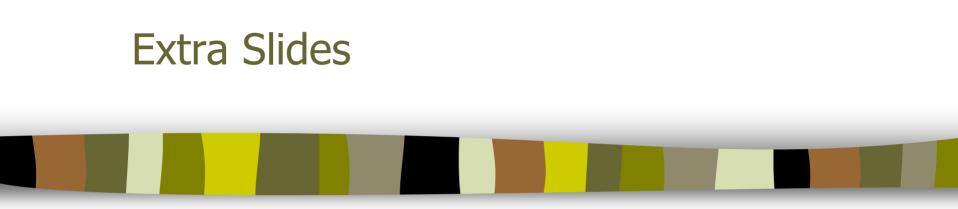
- "Baseline" predictor always chooses the implementation that was best on the majority of sample inputs.
- Cost of cost-min and regression predictions: ~O(3x3) matmul.
- Cost of SVM prediction: ~O(64x64) matmul.

Road Map

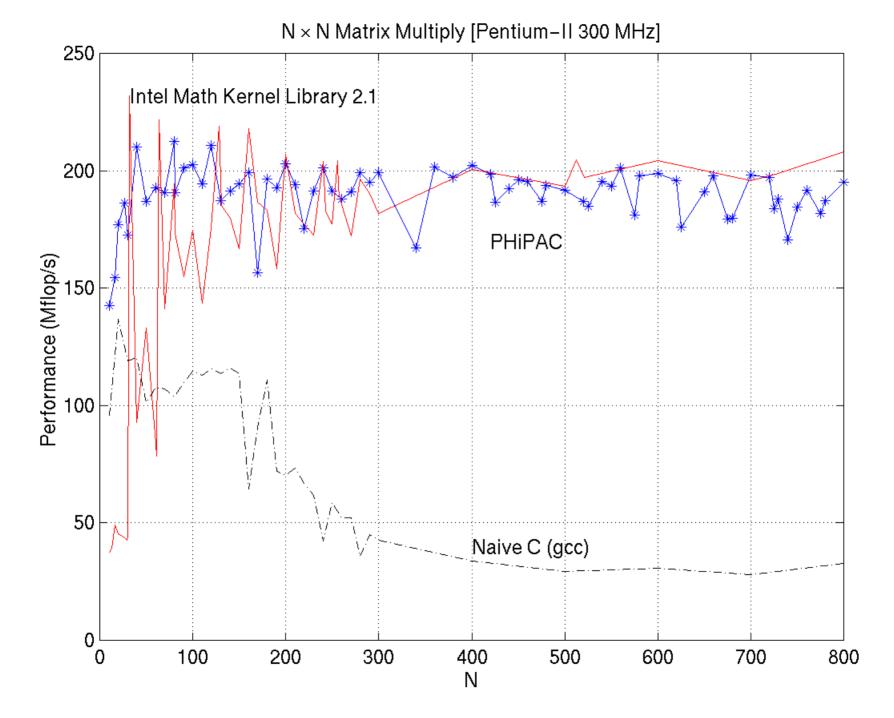
- Context
- Why search?
- Stopping searches early
- High-level run-time selection
- Summary

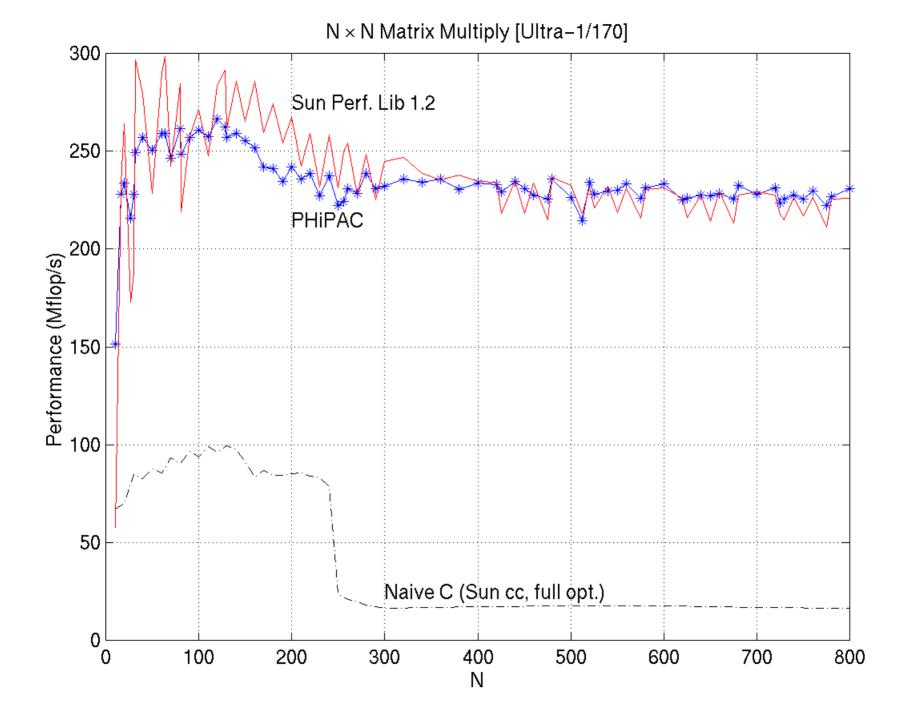
Summary

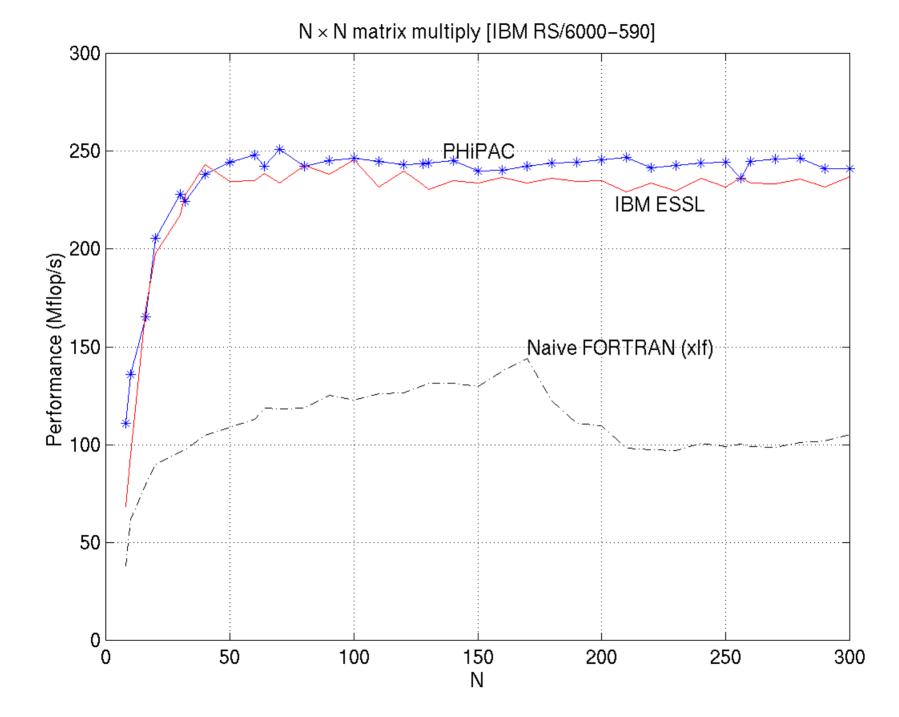
- Finding the best implementation can be like searching for a needle in a haystack
- Early stopping
 - simple and automated
 - informative criteria
- High-level run-time selection
 - formal framework
 - error metrics
- More ideas
 - search directed by statistical correlation
 - other stopping models (cost-based) for run-time search
 - E.g., run-time sparse matrix reorganization
 - large design space for run-time selection

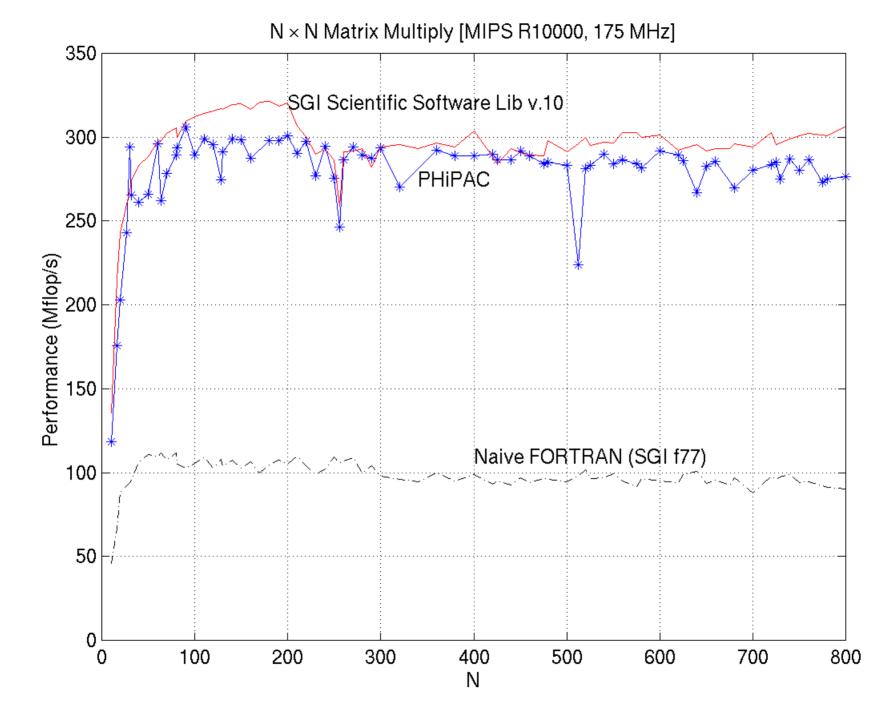


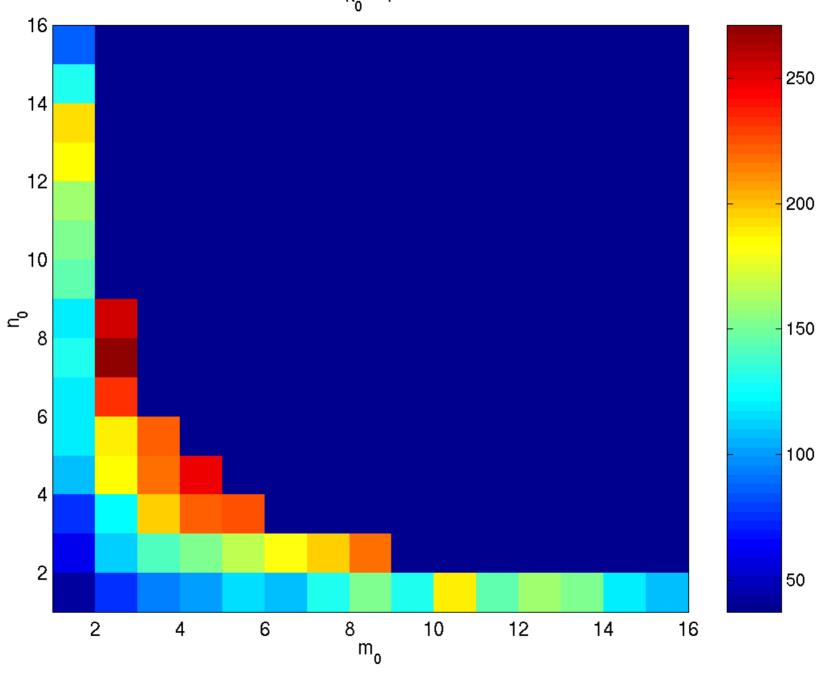
More detail (time and/or questions permitting)



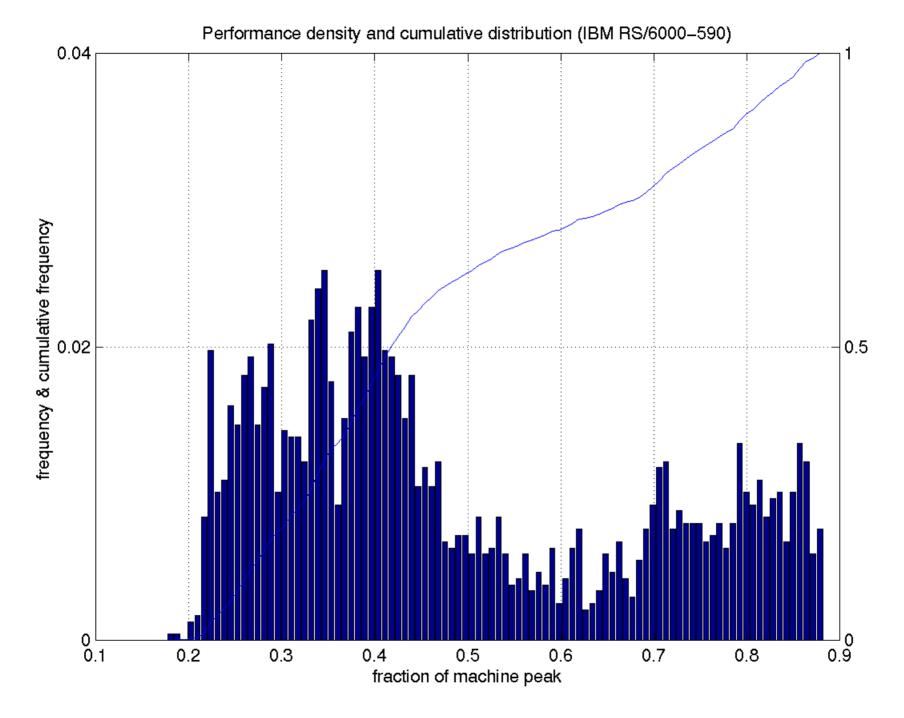


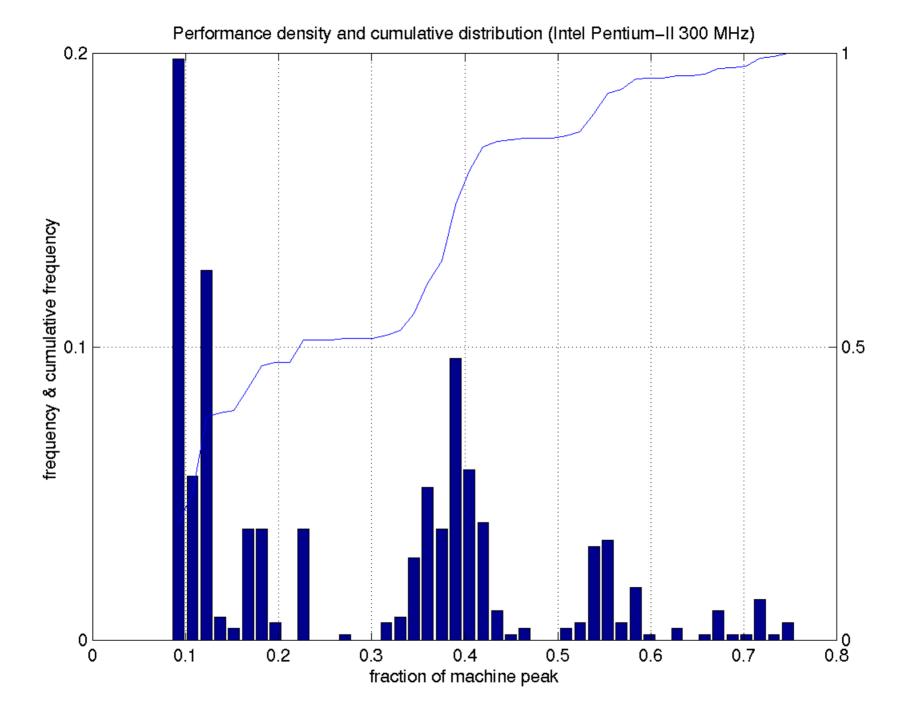


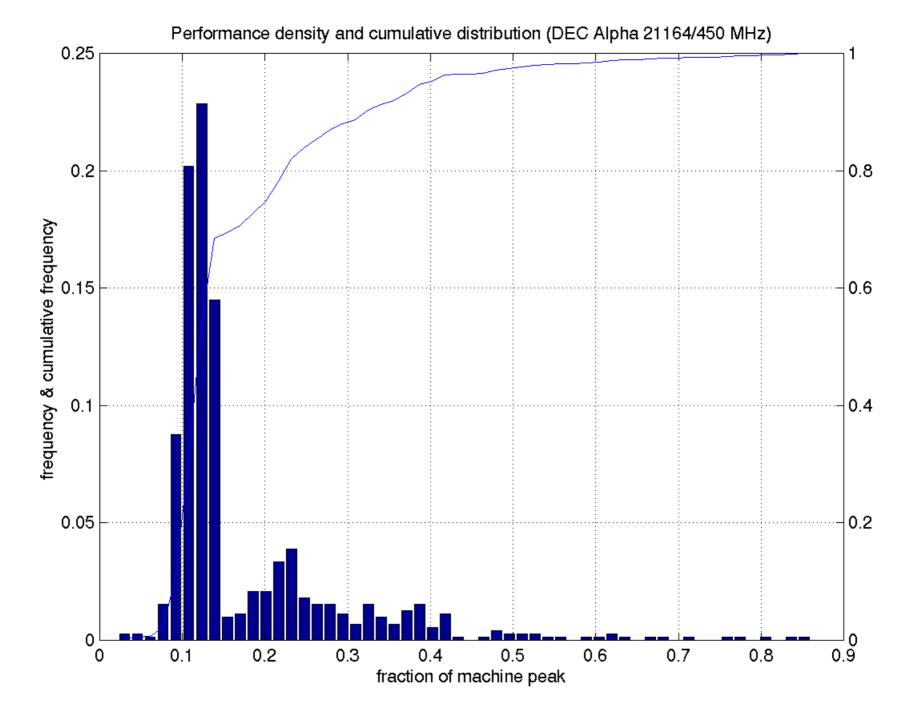


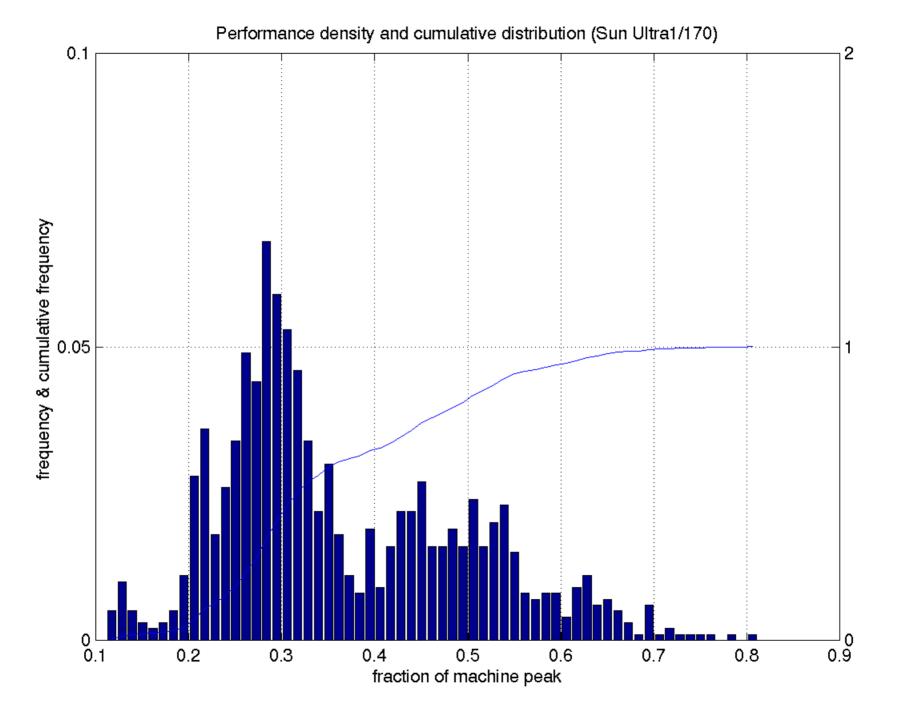


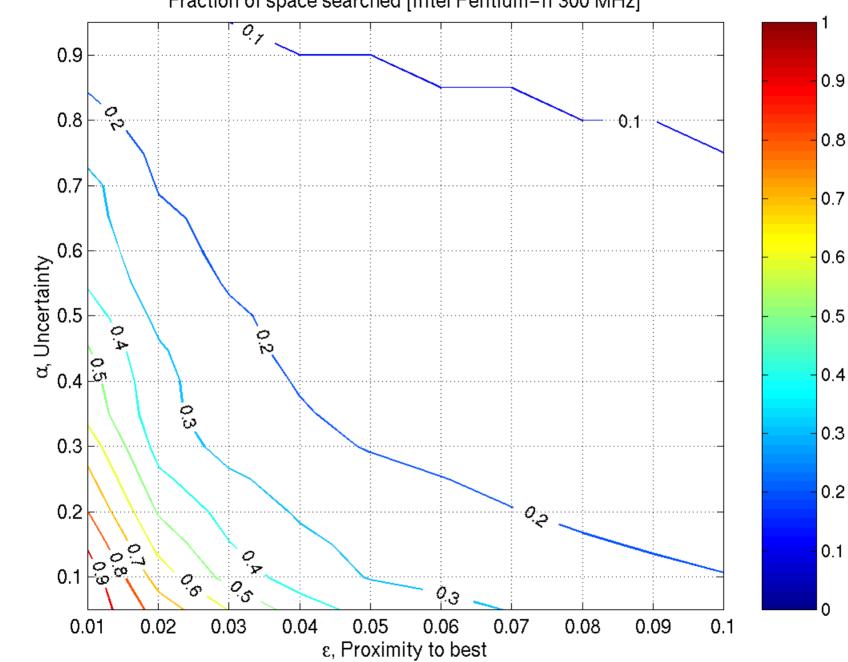
k₀ = 1



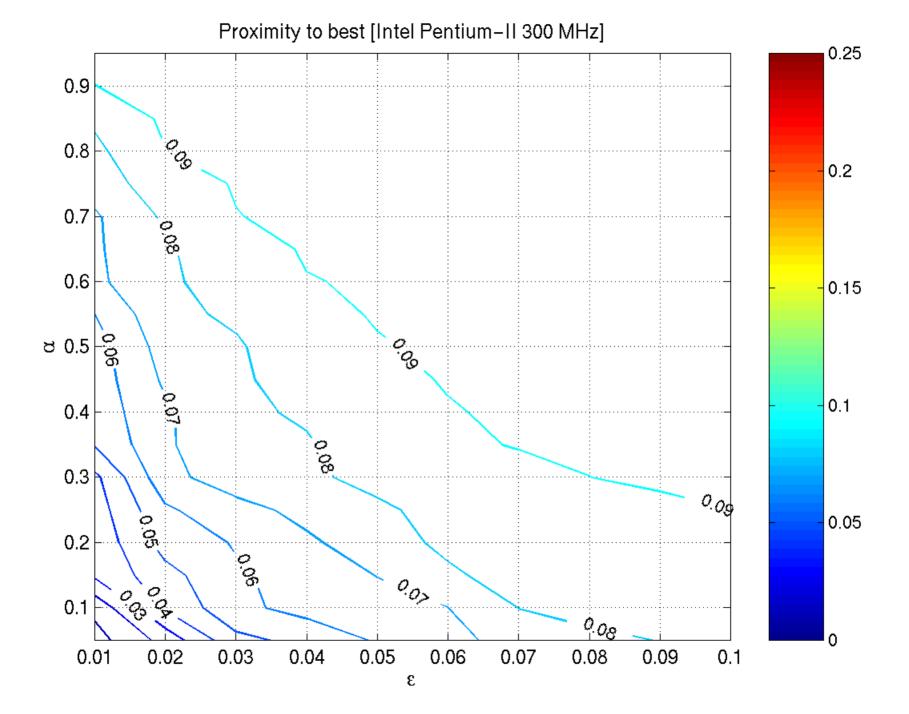


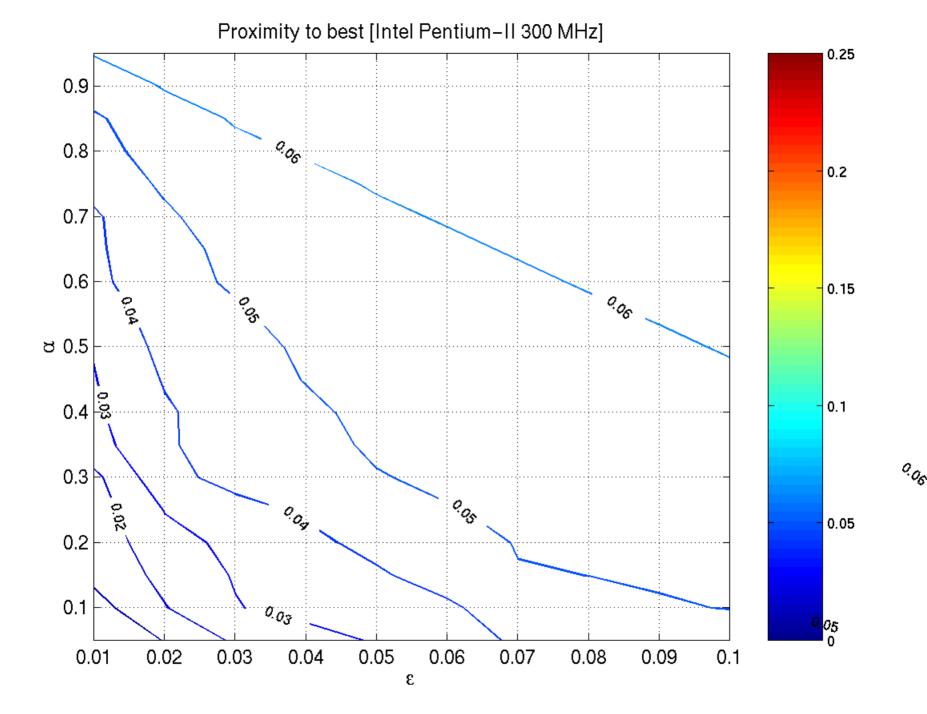


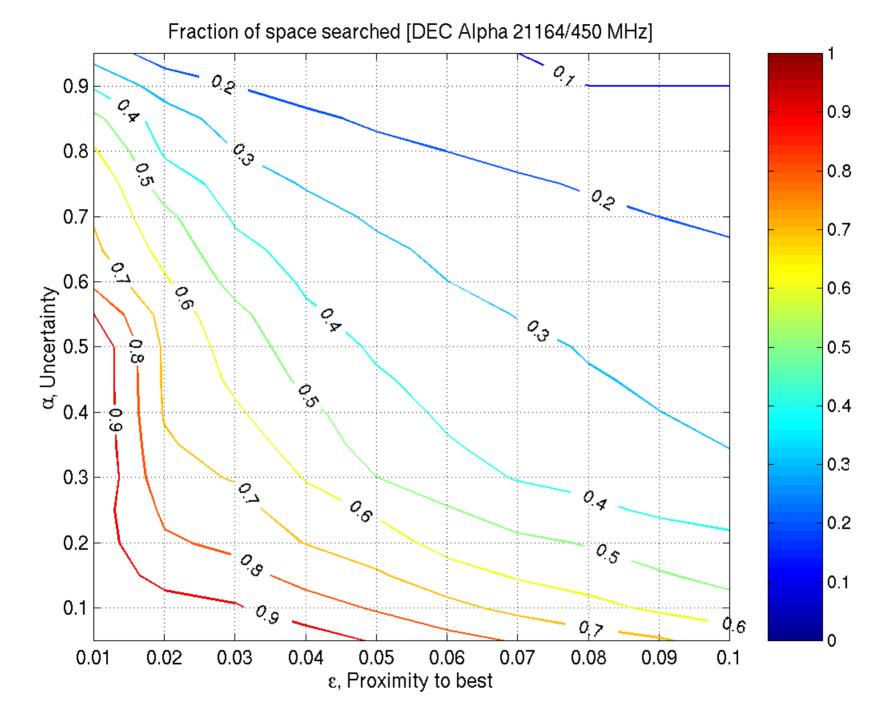


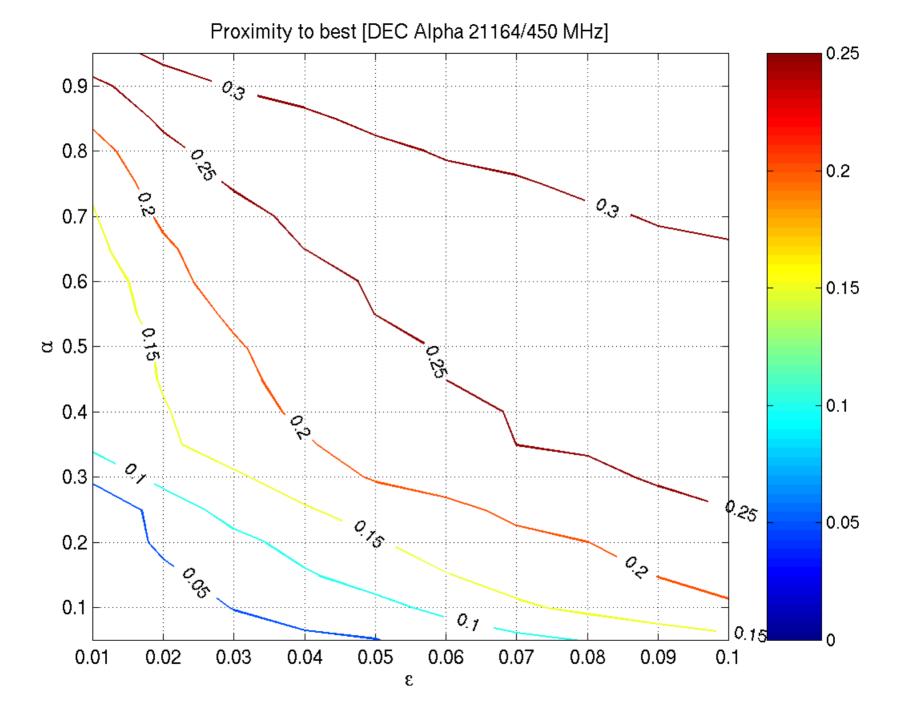


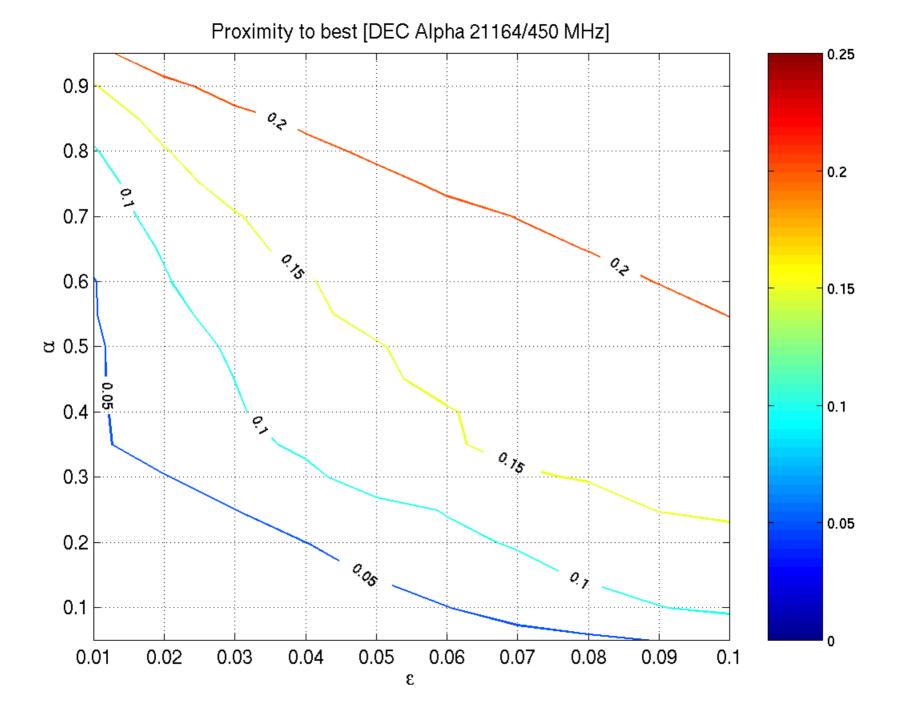
Fraction of space searched [Intel Pentium-II 300 MHz]













Cost Minimization

Decision function

$$f(s) = \operatorname*{argmax}_{a \in A} \left\{ w_{\theta_a}(s) \right\}$$

Minimize overall execution time on samples

$$C(\theta_{a_1},\ldots,\theta_{a_m}) = \sum_{a \in A} \sum_{s \in S_0} w_{\theta_a}(s) \cdot T(a,s)$$

Softmax weight (boundary) functions

$$w_{\theta_a}(s) = \frac{e^{\theta_a^T s + \theta_{a,0}}}{Z}$$

Regression

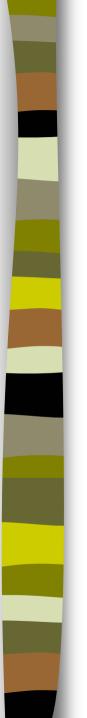
Decision function

$$f(s) = \operatorname*{argmin}_{a \in A} \left\{ T_a(s) \right\}$$

 Model implementation running time (e.g., square matmul of dimension N)

$$T_{a}(s) = \beta_{3}N^{3} + \beta_{2}N^{2} + \beta_{1}N + \beta_{0}$$

For general matmul with operand sizes (M, K, N), we generalize the above to include all product terms
MKN, MK, KN, MN, M, K, N



Support Vector Machines

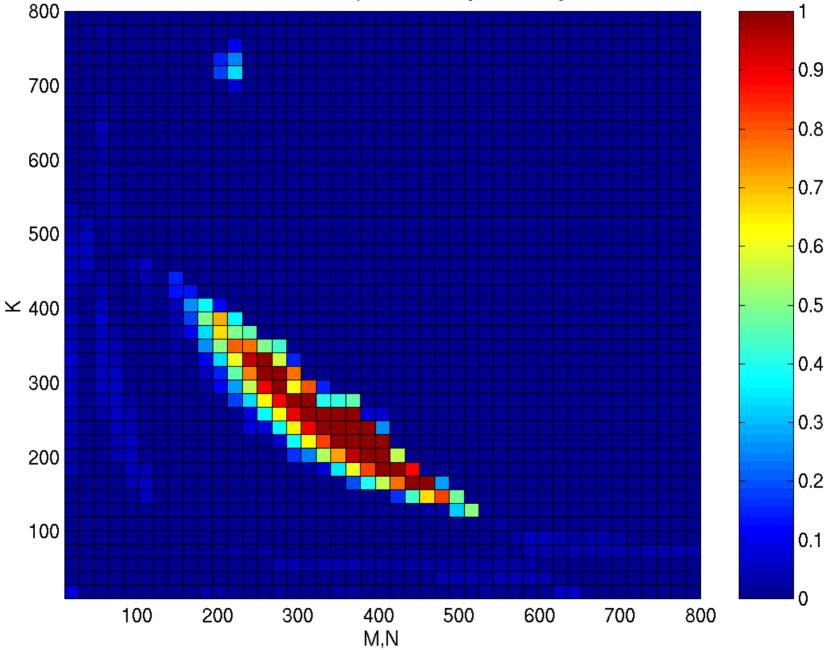
Decision function

$$f(s) = \operatorname*{argmax}_{a \in A} \left\{ L_a(s) \right\}$$

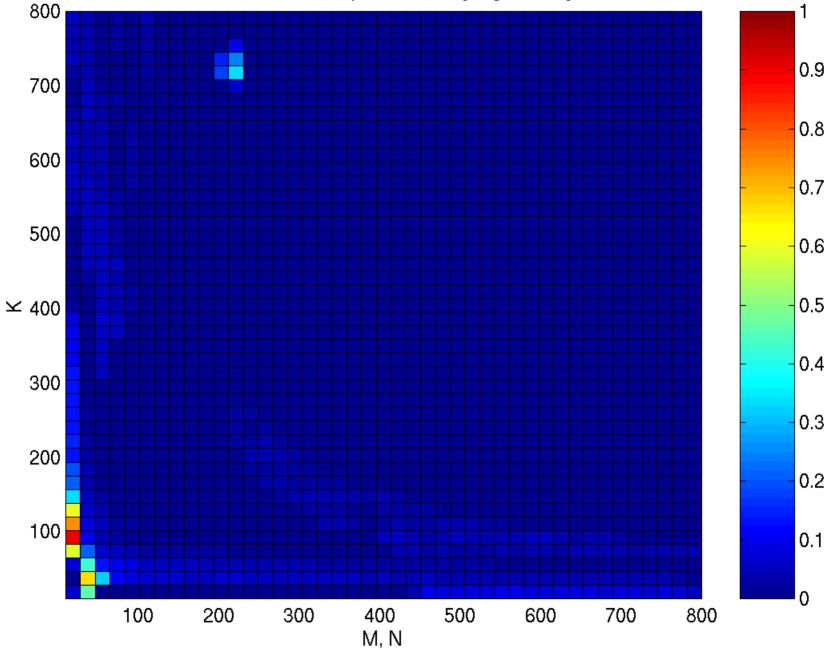
Binary classifier

$$L(s) = -b + \sum_{i} \beta_{i} y_{i} K(s_{i}, s)$$
$$y_{i} \in \{-1, 1\}$$
$$s_{i} \in S_{0}$$

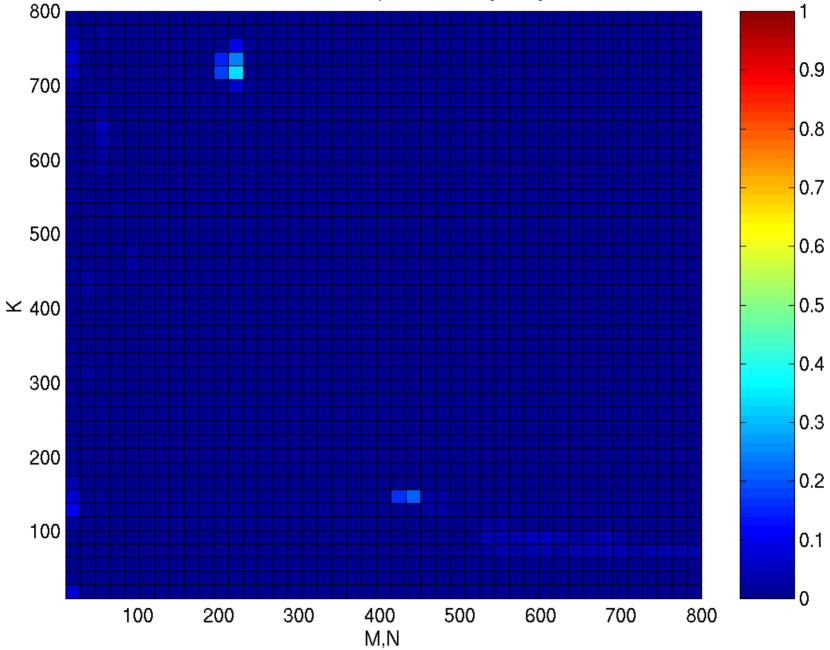
Where are the Mispredictions? [Cost-Min]



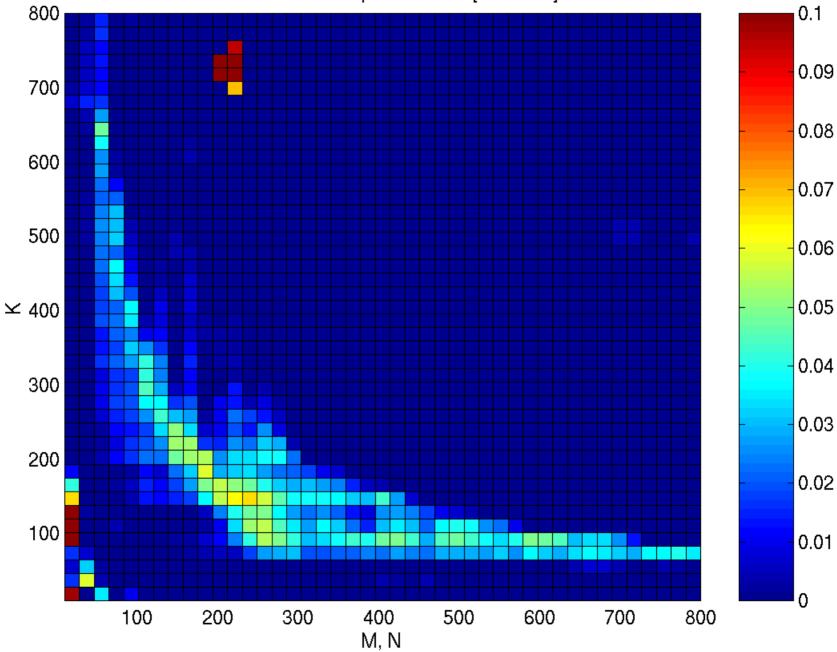
Where are the Mispredictions? [Regression]



Where are the Mispredictions? [SVM]



Where are the Mispredictions? [Baseline]



Quantitative Comparison

Method	Misclass.	Average error	Best 5%	Worst 20%	Worst 50%
Regression	34.5%	2.6%	90.7%	1.2%	0.4%
Cost-Min	31.6%	2.2%	94.5%	2.8%	1.2%
SVM	12.0%	1.5%	99.0%	0.4%	~0.0%

Note:

Cost of regression and cost-min prediction $\sim O(3x3 \text{ matmul})$ Cost of SVM prediction ~O(64x64 matmul)