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Context: High Performance Libraries

Libraries can isolate performance issues
– BLAS/LAPACK/ScaLAPACK (linear algebra)
– VSIPL (signal and image processing)
– MPI (distributed parallel communications)

Can we implement libraries …
– automatically and portably?
– incorporating machine-dependent features?
– that match our performance requirements?
– leveraging compiler technology?
– using domain-specific knowledge?
– with relevant run-time information?



Generate and Search:
An Automatic Tuning Methodology

Given a library routine
Write parameterized code generators
– input: parameters

• machine (e.g., registers, cache, pipeline, special instructions)
• optimization strategies (e.g., unrolling, data structures)
• run-time data (e.g., problem size)
• problem-specific transformations

– output: implementation in “high-level” source (e.g., C)
Search parameter spaces
– generate an implementation
– compile using native compiler
– measure performance (time, accuracy, power, storage, …)



Recent Tuning System Examples

Linear algebra
– PHiPAC (Bilmes, Demmel, et al., 1997)
– ATLAS (Whaley and Dongarra, 1998)
– Sparsity (Im and Yelick, 1999)
– FLAME (Gunnels, et al., 2000)

Signal Processing
– FFTW (Frigo and Johnson, 1998)
– SPIRAL (Moura, et al., 2000)
– UHFFT (Mirković, et al., 2000)

Parallel Communication
– Automatically tuned MPI collective operations

(Vadhiyar, et al. 2000)



Tuning System Examples (cont’d)

Image Manipulation (Elliot, 2000)
Data Mining and Analysis (Fischer, 2000)
Compilers and Tools
– Hierarchical Tiling/CROPS (Carter, Ferrante, et al.)
– TUNE (Chatterjee, et al., 1998)
– Iterative compilation (Bodin, et al., 1998)
– ADAPT (Voss, 2000)
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The Search Problem in PHiPAC

PHiPAC (Bilmes, et al., 1997)
– produces dense matrix multiply (matmul) implementations
– generator parameters include

• size and depth of fully unrolled “core” matmul
• rectangular, multi-level cache tile sizes
• 6 flavors of software pipelining
• scaling constants, transpose options, precisions, etc.

An experiment
– fix scheduling options
– vary register tile sizes
– 500 to 2500 “reasonable” implementations on 6 platforms



A Needle in a Haystack, Part I



Needle in a Haystack, Part II

A Needle in a Haystack
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Stopping Searches Early

Assume
– dedicated resources limited

• end-users perform searches
• run-time searches

– near-optimal implementation okay

Can we stop the search early?
– how early is “early?”
– guarantees on quality?

PHiPAC search procedure
– generate implementations uniformly at random without

replacement
– measure performance



An Early Stopping Criterion

Performance scaled from 0 (worst) to 1 (best)
Goal: Stop after t implementations when

Prob[ Mt ≤ 1-ε ] < α
– Mt max observed performance at t
– ε  proximity to best
– α degree of uncertainty
– example: “find within top 5% with 10% uncertainty”

• ε = .05, α = .1

Can show probability depends only on
F(x) = Prob[ performance <= x ]

Idea: Estimate F(x) using observed samples



Stopping Algorithm

User or library-builder chooses ε, α
For each implementation t
– Generate and benchmark
– Estimate F(x) using all observed samples
– Calculate p := Prob[ Mt <= 1-ε ]

– Stop if  p < α

Or, if you must stop at t=T, can output ε, α



Optimistic Stopping time (300 MHz 
Pentium-II)



Optimistic Stopping Time (Cray T3E 
Node)
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Run-Time Selection

Assume
– one implementation is not

best for all inputs
– a few, good 

implementations known
– can benchmark

How do we choose the 
“best” implementation
at run-time?

Example: matrix multiply, 
tuned for small (L1), medium 
(L2), and large workloads
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Truth Map (Sun Ultra-I/170)



A Formal Framework

Given
– m implementations
– n sample inputs

(training set)
– execution time

Find
– decision function f(s)
– returns “best”

implementation
on input s

– f(s) cheap to evaluate
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Solution Techniques (Overview)

Method 1: Cost Minimization
– select geometric boundaries that minimize overall execution 

time on samples
• pro: intuitive, f(s) cheap
• con: ad hoc, geometric assumptions

Method 2: Regression (Brewer, 1995)
– model run-time of each implementation

e.g., Ta(N) = b3N 3 + b2N 2 + b1N + b0

• pro: simple, standard
• con: user must define model

Method 3: Support Vector Machines
– statistical classification

• pro: solid theory, many successful applications
• con: heavy training and prediction machinery



Truth Map (Sun Ultra-I/170)

Baseline misclass. rate: 24%



Results 1: Cost Minimization

Misclass. rate: 31%



Results 2: Regression

Misclass. rate: 34%



Results 3: Classification

Misclass. rate: 12%



Quantitative Comparison

Notes:
“Baseline” predictor always chooses the implementation that was best 
on the majority of sample inputs.
Cost of cost-min and regression predictions: ~O(3x3) matmul.
Cost of SVM prediction: ~O(64x64) matmul.



Road Map

Context
Why search?
Stopping searches early
High-level run-time selection
Summary



Summary

Finding the best implementation can be like 
searching for a needle in a haystack
Early stopping
– simple and automated
– informative criteria

High-level run-time selection
– formal framework
– error metrics

More ideas
– search directed by statistical correlation
– other stopping models (cost-based) for run-time search

• E.g., run-time sparse matrix reorganization

– large design space for run-time selection



Extra Slides

More detail (time and/or questions permitting)



PHiPAC Performance (Pentium-II)



PHiPAC Performance (Ultra-I/170)



PHiPAC Performance (IBM RS/6000)



PHiPAC Performance (MIPS R10K)



Needle in a Haystack, Part II



Performance Distribution (IBM RS/6000)



Performance Distribution (Pentium II)



Performance Distribution (Cray T3E Node)



Performance Distribution (Sun Ultra-I)



Stopping time (300 MHz Pentium-II)



Proximity to Best (300 MHz Pentium-II)



Optimistic Proximity to Best (300 MHz 
Pentium-II)



Stopping Time (Cray T3E Node)



Proximity to Best (Cray T3E Node)



Optimistic Proximity to Best (Cray T3E 
Node)



Cost Minimization

Decision function
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Regression

Decision function
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Model implementation running time (e.g., square 
matmul of dimension N)
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For general matmul with operand sizes (M, K, N), we 
generalize the above to include all product terms
– MKN, MK, KN, MN, M, K, N



Support Vector Machines

Decision function
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Where are the mispredictions? [Cost-min]



Where are the mispredictions? 
[Regression]



Where are the mispredictions? [SVM]



Where are the mispredictions? [Baseline]



Quantitative Comparison

Method Misclass.
Average

error
Best
5%

Worst
20%

Worst
50%

Regression 34.5% 2.6% 90.7% 1.2% 0.4%

Cost-Min 31.6% 2.2% 94.5% 2.8% 1.2%

SVM 12.0% 1.5% 99.0% 0.4% ~0.0%

Note:
Cost of regression and cost-min prediction ~O(3x3 matmul)
Cost of SVM prediction ~O(64x64 matmul)
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