
Statistical Models for Empirical Search-Based

Performance Tuning

Richard Vuduc∗ James W. Demmel† Jeff Bilmes‡

Abstract

Achieving peak performance from the computational kernels that domi-
nate application performance often requires extensive machine-dependent
tuning by hand. Automatic tuning systems have emerged in response,
and they typically operate by (1) generating a large number of possible,
reasonable implementations of a kernel, and (2) selecting the fastest im-
plementation by a combination of heuristic modeling, heuristic pruning,
and empirical search (i.e., actually running the code). This paper presents
quantitative data that motivates the development of such a search-based
system, using dense matrix multiply as a case study. The statistical distri-
butions of performance within spaces of reasonable implementations, when
observed on a variety of hardware platforms, lead us to pose and address
two general problems which arise during the search process. First, we
develop a heuristic for stopping an exhaustive compile-time search early
if a near-optimal implementation is found. Second, we show how to con-
struct run-time decision rules, based on run-time inputs, for selecting from
among a subset of the best implementations when the space of inputs can
be described by continuously varying features. We address both problems
by using statistical modeling techniques that exploit the large amount
of performance data collected during the search. We demonstrate these
methods on actual performance data collected by the PHiPAC tuning
system for dense matrix multiply.

We close with a survey of recent projects that use or otherwise advo-
cate an empirical search-based approach to code generation and algorithm
selection, whether at the level of computational kernels, compiler and
run-time systems, or problem-solving environments. Collectively, these
efforts suggest a number of possible software architectures for construct-
ing platform-adapted libraries and applications.

∗Computer Science Division, Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, Berkeley, CA 94720 USA, richie@cs.berkeley.edu
†Computer Science Division, Department of Electrical Engineering and Computer Sciences,

and Department of Mathematics, University of California at Berkeley, Berkeley, CA 94720
USA, demmel@cs.berkeley.edu
‡Department of Electrical Engineering, University of Washington, Seattle, WA USA,

bilmes@ee.washington.edu

1

1 Introduction

This paper presents quantitative data that motivates the use of the platform-
specific, empirical search-based approach to code generation being adopted by a
number of current automatic performance tuning systems. Such systems address
the problem of how to generate highly efficient code for a number of basic
computational kernels that dominate the performance of applications in science,
engineering, and information retrieval, among others. The driving idea behind
these systems is the use of empirical search techniques, i.e., actually running and
timing candidate implementations. Familiar examples of kernels include dense
and sparse linear algebra routines, the fast Fourier transform and related signal
processing kernels, and sorting, to name a few. Using dense matrix multiply as
a case study, we show that performance can be surprisingly difficult to model on
modern cache-based superscalar architectures, suggesting the use of an empirical
approach to code generation. Moreover, we use this data to show how statistical
techniques can be applied to help solve common, general problems arising in
search-based tuning systems.

The construction and machine-specific hand-tuning of computational ker-
nels can be tedious and time-consuming tasks because performance is a complex
function of many factors, including the platform (i.e., machine and compiler),
kernel, and input data which may be known only at run-time. First, note that
modern machines employ deep memory hierarchies and microprocessors having
long pipelines and intricate out-of-order execution schemes—understanding and
accurately modeling performance on these machines can be extremely difficult.
Second, modern compilers vary widely in the range and scope of analyses, trans-
formations, and optimizations that they can perform, further complicating the
task of developers who might wish to rely on the compiler either to perform
particular optimizations or even to know which transformations will be most
profitable on a particular kernel. Third, any given kernel could have many pos-
sible “reasonable” implementations which (a) are difficult to model because of
the complexities of machine architecture and compiler, and (b) correspond to
algorithmic variations that are beyond the scope of transformations compilers
can presently apply. Fourth, performance may depend strongly on the program
inputs. If such inputs are known only at run-time, purely static techniques to
code generation may be limited. To make matters worse, the process of per-
formance tuning—and hence, of understanding the complex interactions among
these various factors—must be repeated for every new platform.

Fast implementations of some kernels are available via hand-tuned libraries
provided by hardware vendors. A number of standard and widely used library
interfaces exist, including the Basic Linear Algebra Subroutines (BLAS) [27],
and the Message Passing Interface (MPI) for distributed parallel communica-
tions [35]. However, the number of such interfaces is growing to cover additional
application areas, such as the Sparse BLAS standard for operations on sparse
matrices [13], and the Vector and Signal Image Processing Library API [76].
The cost of providing hand-tuned implementations of all these kernels for all
hardware platforms, given the potential complexity of tuning each kernel, is

2

likely only to increase with time.
In reponse, several recent research efforts have sought to automate the tun-

ing process using the following two-step methodology. First, rather than code a
given kernel by hand for each computing platform of interest, these systems con-
tain parameterized code generators that (a) encapsulate possible tuning strate-
gies for the kernel, and (b) output an implementation, usually in a high-level
language (like C or Fortran) in order to leverage existing compiler instruction-
scheduling technology. By “tuning strategies” we mean that the generators can
output implementations which vary by low-level machine-specific characteristics
(e.g., different instruction mixes and schedules), optimization techniques (e.g.,
loop unrolling, cache blocking, the use of alternative data structures), run-time
data (e.g., problem size), and kernel-specific transformations and algorithmic
variants. Second, the systems tune for a particular platform by searching the
space of implementations defined by the generator. Typical tuning systems
search using a combination of heuristic performance modeling and empirical
evaluation (i.e., actually running code for particular implementations). In many
cases it is possible to perform the potentially lengthy search process only once
per platform. However, even the cost of more frequent compile-time, run-time,
or hybrid compile-time/run-time searches can often be amortized over many
uses of the kernel.

This paper focuses on the search task itself and argues that searching is an
effective means by which to achieve near-peak performance, and is therefore an
important area for research. Indeed, search-based methods have proliferated
in a variety of computing contexts, including applications, compilers, and run-
time systems, as we discuss in Section 5. We begin by showing empirically
the difficulty of identifying the best implementation, even within a space of
reasonable implementations for the well-studied kernel, dense matrix multiply
(Section 2). While a variety of sophisticated transformations and static models
have been developed for matrix multiply, the data we present motivate searching,
and furthermore suggest the necessity of exhaustive search to guarantee the best
possible implementation.

However, exhaustive searches are frequently infeasible, and moreover, perfor-
mance can depend critically on input data that may only be known at run-time.
We address these two search-related problems in this paper using statistical
modeling techniques. Specifically, we propose solutions to the early stopping
problem and the problem of run-time implementation selection. Our techniques
are designed to complement existing methods developed for these problems.

The early stopping problem arises when it is not possible to perform an
exhaustive search (Section 3). Existing tuning systems use a combination of
kernel-specific, heuristic performance modeling and empirical search techniques
to avoid exhaustive search. We present a complementary technique, based on
a simple statistical analysis of the data gathered while a search is on-going.
Our method allows us to perform only a partial search while still providing an
estimate on the performance of the best implementation found.

The run-time selection problem for computational kernels was first posed
by Rice [73], and again more recently by Brewer [14] (Section 4). Informally,

3

suppose we are given a small number of implementations, each of which is
fastest on some class of inputs. We assume we do not know the classes precisely
ahead of time, but that we are allowed to collect a sample of performance of the
implementations on a subset of all possible inputs. We then address the problem
of automatically constructing a set of decision rules which can be applied at run-
time to select the best implementation on any given input. We formulate the
problem as a statistical classification task and illustrate the variety of models
and techniques that can be applied within our framework.

Our analyses are based on data collected from an existing tuning system,
PHiPAC [10, 11]. PHiPAC generates highly-tuned, BLAS compatible dense
matrix multiply implementations, and a more detailed overview of PHiPAC
appears in Section 2. Our use of PHiPAC is primarily to supply sample perfor-
mance data on which we can demonstrate the statistical methods of this paper.
(For complete implementations of the BLAS, we recommend the use of either
the ATLAS tuning system or any number of existing hand-tuned libraries when
available. In particular, ATLAS improves on PHiPAC ideas, extending their
applicability to the entire BLAS standard [93].)

The ideas and timing of this paper are indicative of a general trend in the
use of search-based methods at various stages of application development. We
review the diverse body of related research projects in Section 5. While the
present study adopts the perspective of tuning specific computational kernels,
for which it is possible to obtain a significant fraction of peak performance by
exploiting all kernel properties, the larger body of related work seeks to apply
the idea of searching more generally: within the compiler, within the run-time
system, and within specialized applications or problem-solving environments.
Collectively, these studies imply a variety of general software architectures for
empirical search-based tuning.

2 The Case for Searching

We motivate the need for empirical search methods using matrix multiply per-
formance data as a case study. We show that, within a particular space of
performance optimization (tuning) parameters, (1) performance can be a sur-
prisingly complex function of the parameters, (2) performance behavior in these
spaces varies markedly from architecture to architecture, and (3) the very best
implementation in this space can be hard to find. Taken together, these obser-
vations suggest that a purely static modeling approach will be insufficient to
find the best choice of parameters.

2.1 Factors influencing matrix multiply performance

We briefly review the classical optimization strategies for matrix multiply, and
make a number of observations that justify some of the assumptions of this
paper (Section 2.2 in particular). Roughly speaking, the optimization techniques
fall into two broad categories: (1) cache- and TLB-level optimizations, such

4

as cache tiling (blocking) and copy optimization (e.g., as described by Lam
[53] or by Goto with respect to TLB considerations [37]), and (2) register-level
and instruction-level optimizations, such as register-level tiling, loop unrolling,
software pipelining, and prefetching. Our argument motivating search is based
on the surprisingly complex performance behavior observed within the space of
register- and instruction-level optimizations, so it is important to understand
what role such optimizations play in overall performance.

For cache optimizations, a variety of sophisticated static models have been
developed for kernels like matrix multiply to help understand cache behavior, to
predict optimal tile sizes, and to transform loops to improve temporal locality
[29, 36, 53, 95, 18, 59, 16]. Some of these models are expensive to evaluate due
to the complexity of accurately modeling interactions between the processor
and various levels of the memory hierarchy [62].1 Moreover, the pay-off due to
tiling, though significant, may ultimately account for only a fraction of perfor-
mance improvement in a well-tuned code. Recently, Parello, et al., showed that
cache-level optimizations accounted for 12–20% of the possible performance im-
provement in a well-tuned dense matrix multiply implementation on an Alpha
21264 processor based machine, and the remainder of the performance improve-
ment came from register- and instruction-level optimizations [66].

To give some additional intuition for how these two classes of optimizations
contribute to overall performance, consider the following experiment comparing
matrix multiply performance for a sequence of n× n matrices. Figure 1 shows
examples of the cumulative contribution to performance (Mflop/s) for matrix
multiply implementations in which (1) only cache tiling and copy optimization
have been applied, shown by solid squares, and (2) applying the register-level
tiling, software pipelining, and prefetching have been applied in conjunction
with these cache optimizations, shown by triangles. These implementations
were generated with PHiPAC, discussed below in more detail (Section 2.2). In
addition, we show the performance of a reference implementation consisting of
3 nested loops coded in C and compiled with full optimizations using a vendor
compiler (solid line), and a hand-tuned implementation provided by the hard-
ware vendor (solid circles). The platform used in Figure 1 (top) is a workstation
based on a 333 MHz Sun Ultra 2i processor with a 2 MB L2 cache and the Sun
v6 C compiler, and in Figure 1 (bottom) is an 800 MHz Intel Mobile Pentium
III processor with a 256 KB L2 cache and the Intel C compiler. On the Pentium
III, we also show the performance of the hand-tuned, assembly-coded library by
Goto [37], shown by asterisks.

On the Ultra 2i, the cache-only implementation is 17× faster than the ref-
erence implementation for large n, but only 42% as fast as the automatically
generated implementation with both cache- and register-level optimizations. On
the Pentium III, the cache-only implementation is 3.9× faster than the reference,
and about 55–60% of of the register and cache optimized code. Furthermore,

1Indeed, in general it is even hard to approximate the optimal placement of data in memory
so as to minimize cache misses. Recently, Petrank and Rawitz have shown the problem of
optimal cache-conscious data placement to be in the same hardness class as the minimum
coloring and maximum clique problems [67].

5

the PHiPAC-generated code matches or closely approaches that of the hand-
tuned codes. On the Pentium III, the PHiPAC routine is within 5–10% of the
performance of the assembly-coded routine by Goto at large n [37]. Thus, while
cache-level optimizations significantly increase performance over the reference
implementation, applying them together with register- and instruction-level op-
timizations is critical to approaching the performance of hand-tuned code.

These observations are an important part of our argument below (Section
2.2) motivating empirical search-based methods. First, we focus exclusively on
performance in the space of register- and instruction-level optimizations on in-
cache matrix workloads. The justification is that this class of optimizations
is essential to achieving high-performance. Even if we extend the estimate by
Parello, et al.—specifically, from the observation that 12–20% of overall per-
formance is due to cache-level optimizations, to 12–60% based on Figure 1—
there is still a considerable margin for further performance improvements from
register- and instruction-level optimizations. Second, we explore this space us-
ing the PHiPAC generator. Since PHiPAC-generated code can achieve good
performance in practice, we claim this generator is a reasonable one to use.

2.2 A needle in a haystack: the need for search

To demonstrate the necessity of search-based methods, we next examine per-
formance within the space of register-tiled implementations. The automati-
cally generated implementations of Figure 1 were created using the parameter-
ized code generator provided by the PHiPAC matrix multiply tuning system
[10, 11]. (Although PHiPAC is no longer actively maintained, for this paper
the PHiPAC generator has been modified to include some software pipelining
styles and prefetching options developed for the ATLAS system [93].) This
generator implements register- and instruction-level optimizations including (1)
register tiling where non-square tile sizes are allowed, (2) loop unrolling, and (3)
a choice of software pipelining strategies and insertion of prefetch instructions.
The output of the generator is an implementation in either C or Fortran in
which the register-tiled code fragment is fully unrolled; thus, the system relies
on an existing compiler to perform the instruction scheduling.

PHiPAC searches the combinatorially large space defined by possible opti-
mizations in building its implementation. To limit search time, machine pa-
rameters (such as the number of registers available and cache sizes) are used
to restrict tile sizes. In spite of this and other search-space pruning heuristics,
searches can generally take many hours or even a day depending on the user-
selectable thoroughness of the search. Nevertheless, as we suggest in Figure 1,
performance can be comparable to hand-tuned implementations.

Consider the following experiment in which we fixed a particular software
pipelining strategy and explored the space of possible register tile sizes on 11
different platforms. As it happens, this space is three-dimensional and we index
it by integer triplets (m0, k0, n0).2 Using heuristics based on the maximum

2By dimensional constraints on the operation C ← AB, we choose an m0 × k0 tile for the

6

number of registers available, this space was pruned to contain between 500 and
10000 reasonable implementations per platform.

Figure 2 (top) shows what fraction of implementations (y-axis) achieved at
least a given fraction of machine peak (x-axis), on a workload in which all matrix
operands fit within the largest available cache. On two machines, a relatively
large fraction of implementations achieve close to machine peak: 10% of imple-
mentations on the Power2/133 and 3% on the Itanium 2/900 are within 90% of
machine peak. By contrast, only 1.7% on a uniprocessor Cray T3E node, 0.2%
on the Pentium III-M/800, and fewer than 4% on a Sun Ultra 2i/333 achieved
more than 80% of machine peak. And on a majority of the platforms, fewer than
1% of implemenations were within 5% of the best. Worse still, nearly 30% of
implementations on the Cray T3E ran at less than 15% of machine peak. Two
important ideas emerge from these observations: (1) different machines can dis-
play widely different characteristics, making generalization of search properties
across them difficult, and (2) finding the very best implementations is akin to
finding a “needle in a haystack.”

The latter difficulty is illustrated more clearly in Figure 2 (bottom), which
shows a 2-D slice (k0 = 1) of the 3-D tile space on the Ultra 2i/333. The plot
is color coded from dark blue=66 Mflop/s to red=615 Mflop/s, and the lone
red square at (m0 = 2, n0 = 3) was the fastest. The black region in the upper-
right of Figure 2 (bottom) was pruned (i.e., not searched) based on the number
of registers. We see that performance is not a smooth function of algorithmic
details as we might have expected. Thus, accurate sampling, interpolation, or
other modeling of this space is difficult. Like Figure 2 (top), this motivates
empirical search.

3 A Statistical Early Stopping Criterion

While an exhaustive search can guarantee finding the best implementation
within the space of implementations considered, such searches can be demand-
ing, requiring dedicated machine time for long periods. If we assume that search
will be performed only once per platform, then an exhaustive search may be jus-
tified. However, users today are more frequently running tuning systems them-
selves, or may wish to build kernels that are customized for their particular
application or non-standard hardware configuration. Furthermore, the notion
of run-time searching, as pursued in dynamic optimization systems (Section 5)
demand extensive search-space pruning.

Thus far, tuning systems have sought to prune the search spaces using heuris-
tics and performance models specific to their code generators. Here, we consider
a complementary method for stopping a search early based only on performance
data gathered during the search. In particular, Figure 2 (top), described in the
previous section, suggests that even when we cannot otherwise model the space,
we do have access to the statistical distribution of performance. On-line esti-
mation of this distribution is the key idea behind the following early stopping

A operand, a k0 × n0 tile for the B operand, and a m0 × n0 tile for the C operand.

7

criterion. This criterion allows a user to specify that the search should stop
when the probability that the performance of the best implementation observed
is approximately within some fraction of the best possible within the space.

3.1 A formal model and stopping criterion

The following is a formal model of the search process. Suppose there are N
possible implementations. When we generate implementation i, we measure its
performance xi. Assume that each xi is normalized so that maxi xi = 1. (We
discuss the issue of normalization further in Section 3.1.2.) Define the space of
implementations as S = {x1, . . . , xN}. Let X be a random variable correspond-
ing to the value of an element drawn uniformly at random from S, and let n(x)
be the number of elements of S less than or equal to x. Then X has a cumulative
distribution function (cdf) F (x) = Pr[X ≤ x] = n(x)/N . At time t, where t is
an integer between 1 and N inclusive, suppose we generate an implementation
at random without replacement. Let Xt be a random variable corresponding
to the observed performance, and furthermore let Mt = max1≤i≤tXi be the
random variable corresponding to the maximum observed performance up to t.

We can now ask the following question at each time t: what is the proba-
bility that Mt is at least 1 − ε, where ε is chosen by the user or library devel-
oper based on performance requirements? When this probability exceeds some
desired threshold 1 − α, also specified by the user, then we stop the search.
Formally, this stopping criterion can be expressed as follows:

Pr[Mt > 1− ε] > 1− α

or, equivalently,

Pr[Mt ≤ 1− ε] < α . (1)

Let Gt(x) = Pr[Mt ≤ x] be the cdf for Mt. We refer to Gt(x) as the max-
distribution. Given F (x), the max-distribution—and thus the left-hand side
of Equation (1)—can be computed exactly as we show below in Section 3.1.1.
However, since F (x) cannot be known until an entire search has been completed,
we must approximate the max-distribution. We use the standard approximation
for F (x) based on the current sampled performance data up to time t—the so-
called empirical cdf (ecdf) for X. Section 3.1.2 presents our early stopping
procedure based on these ideas, and discusses the issues that arise in practice.

3.1.1 Computing the max-distribution exactly and approximately

We can explicitly compute the max-distribution as follows. First, observe that

Gt(x) = Pr[Mt ≤ x] = Pr[X1 ≤ x,X2 ≤ x, . . . ,Xt ≤ x].

Recall that the search proceeds by choosing implementations uniformly at ran-
dom without replacement. We can look at the calculation of the max-distribution

8

as a counting problem. At time t, there are
(
N
t

)
ways to have selected t imple-

mentations. Of these, the number of ways to choose t implementations, all with
performance at most x, is

(
n(x)
t

)
, provided n(x) ≥ t. To cover the case when

n(x) < t, let
(
a
b

)
= 0 when a < b for notational ease. Thus,

Gt(x) =

(
n(x)
t

)(
N
t

) =

(
N ·F (x)

t

)(
N
t

) (2)

where the latter equality follows from the definition of F (x).
We cannot evaluate the max-distribution after t < N samples because of

its dependence on F (x). However, we can use the t observed samples to ap-
proximate F (x) using the empirical cdf (ecdf) F̂t(x) based on the t samples:

F̂t(x) =
n̂t(x)
t

(3)

where n̂t(x) is the number of observed samples that are at most x at time t.
We can now approximate Gt(x) by the following Ĝt(x):

Ĝt(x) =

(dN ·F̂t(x)e
t

)(
N
t

) (4)

The ceiling ensures that we evaluate the binomial coefficient in the numerator
using an integer. Thus, our empirical stopping criterion, which approximates
the “true” stopping criterion shown in Equation (1), is

Ĝt(x) ≤ α . (5)

3.1.2 Implementing an early stopping procedure

A search with our early stopping criterion proceeds as follows. First, a user or
library designer specifies the search tolerance parameters ε and α. Then at each
time t, the automated search system carries out the following steps:

1. Compute F̂t(1 − ε), Equation (3), using rescaled samples as described
below.

2. Compute Ĝt(1− ε), Equation (4).

3. If the empirical stopping criterion, Equation (5), is satisified, then termi-
nate the search.

Note that the ecdf F̂t(x) models F (x), making no assumptions about how per-
formance varies with respect to the implementation tuning parameters. Thus,
unlike gradient descent methods, this model can be used in situations where
performance is an irregular function of tuning parameters, such as the example
shown in Figure 2 (bottom).

9

There are two additional practical issues to address. First, due to inherent
variance in the estimate F̂t(x), it may be problematic to evaluate empirical stop-
ping criterion, Equation (5), at every time t. Instead, we wait until t exceeds
some minimum number of samples, tmin, and then evaluate the stopping crite-
rion at periodic intervals. For the experiments in this study, we use tmin = .02N ,
and re-evaluate the stopping criterion at every .01N samples, following a rule-
of-thumb regarding ecdf approximation [8].

Second, we need a reasonable way to scale performance so that it lies between
0 and 1. Scaling by theoretical machine peak speed is not appropriate for all
kernels, and a true upper bound on performance may be difficult to estimate.
We choose to rescale the samples at each time t by the current maximum.
That is, if {s1, . . . , st} are the observed values of performance up to time t, and
mt = max1≤k≤t sk, then we construct the ecdf F̂t(x) using the values {sk/mt}.
This rescaling procedure tends to overestimate the fraction of samples near
the maximum, meaning the stopping condition will be satisfied earlier than
when it would have been satisfied had we known the true distribution F (x).
Furthermore, we would expect that by stopping earlier than the true condition
indicates, we will tend to find implementations whose performance is less than
1−ε. Nevertheless, as we show in Section 3.2, in practice this rescaling procedure
appears to be sufficient to characterize the shape of the distributions, meaning
that for an appropriate range of α values, we still tend to find implementations
with performance greater than 1− ε.3

There are distributions for which we would not expect good results. For
instance, consider a distribution in which 1 implementation has performance
equal to 1, and the remaining N − 1 implementations have performance equal
to 1

2 , where N � 1. After the first tmin samples, under our rescaling policy, all
samples will be renormalized to 1 and the ecdf F̂t(1 − ε) will evaluate to zero
for any ε > 0. Thus, the stopping condition will be immediately satisfied, but
the realized performance will be 1

2 . While this artificial example might seem
unrepresentative of distributions arising in practice (as we verify in Section 3.2),
it is important to note the potential pitfalls.

3.2 Results and discussion using PHiPAC data

We applied the above model to the register tile space data for the platforms
shown in Figure 2 (top). Specifically, on each platform, we simulated 300
searches using a random permutation of the exhaustive search data collected
for Figure 2 (top). For various values of ε and α, we measured (1) the average
stopping time over all searches, and (2) the average proximity in performance
of the implementation found to the best found by exhaustive search.

Figures 3–6 show the results for the Intel Itanium 2, Alpha 21164 (Cray T3E
node), Sun Ultra 2i, and Intel Mobile Pentium III platforms, respectively. The

3We conjecture, based on some preliminary experimental evidence, that it may be possible
to extend the known theoretical bounds on the quality of ecdf approximation due to Kol-
mogorov and Smirnov [12, 64] to the case where samples are rescaled in this way. Such an
extension would provide theoretical grounds that this rescaling procedure is reasonable.

10

top half of Figures 3–6 show the average stopping time as a fraction of the search
space size for various values of ε and α. That is, each plot shows at what value
of t/N the empirical stopping criterion, Equation (5), was satisfied. Since our
rescaling procedure will tend to overestimate the fraction of implementations
near the maximum (as discussed in Section 3.1.2), we need to check that the
performance of the implementation chosen is indeed close to (if not well within)
the specified tolerance ε when α is “small,” and moreover what constitutes a
small α. Therefore, the bottom half of Figures 3–6 shows the average proximity
to the best performance when the search stopped. More specifically, for each
(ε, α) we show 1− M̄t, where M̄t is the average observed maximum at the time
t when Equation (5) was satisfied. (Note that M̄t is the “true” performance
where the maximum performance is taken to be 1.)

Suppose the user selects ε = .05 and α = .1, and then begins the search.
These particular parameter values can be interpreted as the request, “stop the
search when we find an implementation within 5% of the best with less than
10% uncertainty.” Were this search conducted on the Itanium 2, for which
many samples exhibit performance near the best within the space, we would
observe that the search ends after sampling just under 10.2% of the full space
on average (Figure 3 (top)), having found an implementation whose performance
was within 2.55% of the best (Figure 3 (bottom)). Note that we requested an
implementation within 5% (ε = .05), and indeed the distribution of performance
on the Itanium 2 is such that we could do even slightly better (2.55%) on average.

From the perspective of stopping a search as soon as possible, the Alpha
21164 T3E node presents a particularly challenging distribution. According to
Figure 2 (top), the Alpha 21164 distribution has a relatively long tail, meaning
very few implementations are fast. At ε = .05 and α = .1, Figure 4 (top) shows
that indeed we must sample about 70% of the full space. Still, we do find an
implementation within about 3% of the best on average. Indeed, for ε = .05,
we will find implementations within 5% of the best for all α . .15.

On the Ultra 2i (Figure 5), the search ends after sampling about 14% of the
space, having found an implementation between 3–3.5% of the best, again at
ε = .05, α = .1. On the Pentium III (Figure 6), the search ends after just under
20%, having found an implementation within 5.25% of the best.

The differing stopping times across all four platforms show that the model
does indeed adapt to the characteristics of the implementations and the un-
derlying machine. Furthermore, the size of the space searched can be reduced
considerably, without requiring any assumptions about how performance varies
within the space. Moreover, these examples suggest that the approximation
F̂t(x) to the true distribution F (x) is a reasonable one in practice, judging by
the proximity of the performance of the implementation selected compared to
1− ε when α . .15.

There are many other possible combinatorial search algorithms, including
simulated annealing and the use of genetic algorithms, among others. We review
the application of these techniques to related search-based systems in Section
5. In prior work, we have experimented with search methods including random,
ordered, best-first, and simulated annealing [10]. The OCEANS project [49]

11

has also reported on a quantitative comparison of these methods and others
applied to a search-based compilation system. In these two instances, random
search was comparable to and easier to implement than competing techniques.
Our stopping condition adds user-interpretable bounds (ε and α) to the random
method, while preserving the simplicity of the random method’s implementa-
tion.

In addition, the idea of user-interpretable bounds allows a search system to
provide feedback to the user in other search contexts. For example, if the user
wishes to specify a maximum search time (e.g., “stop searching after 1 hour”),
the estimate of the probability Pr[Mt > 1 − ε] could be computed for various
values of ε at the end of the search and reported to the user. A user could
stop and resume searches, using these estimates to gauge the likely difficulty of
tuning on her particular architecture.

Finally, the stopping condition as we have presented complements existing
pruning techniques: a random search with our stopping criterion can always be
applied to any space after pruning by other heuristics or methods.

4 Statistical Classifiers for Run-time Selection

The previous sections assume that a single optimal implementation exists. For
some applications, however, several implementations may be “optimal” depend-
ing on the run-time inputs. In this section, we consider the run-time implemen-
tation selection problem [73, 14]: how can we automatically build decision rules
to select the best implementation for a given input? Below, we treat this prob-
lem as a statistical classification task. We show how the problem might be
tackled from this perspective by applying three types of statistical models to a
matrix multiply example. In this example, given the dimensions of the input
matrices, we must choose at run-time one implementation from among three,
where each of the three implementations has been tuned for matrices that fit in
different levels of cache.

4.1 A formal framework

We can pose the selection problem as the following classification task. Suppose
we are given

1. a set of m “good” implementations of an algorithm, A = {a1, . . . , am}
which all give the same output when presented with the same input,

2. a set of n samples S0 = {s1, s2, . . . , sn} from the space S of all possible
inputs (i.e., S0 ⊆ S), where each si is a d-dimensional real vector, and

3. the execution time T (a, s) of algorithm a on input s, where a ∈ A and
s ∈ S.

Our goal is to find a decision function f(s) that maps an input s to the best
implementation in A, i.e., f : S → A. The idea is to construct f(s) using the

12

performance of the implementations in A on a sample of the inputs S0. We
refer to S0 as the training set, and we refer to the execution time data T (a, s)
for a ∈ A, s ∈ S0 as the training data. In geometric terms, we would like to
partition the input space by implementation, as shown in Figure 7 (left). This
partitioning would occur at compile (or “build”) time. At run-time, the user
calls a single routine which, when given an input s, evaluates f(s) to select an
implementation.

The decision function f models the relative performance of the implemen-
tations in A. Here, we consider three types of statistical models that trade-off
classification accuracy against the cost of building f and the cost of executing
f at run-time. Roughly speaking, we can summarize these models as follows:

1. Parametric data modeling : We can build a parametric statistical model
of the execution time data directly. For each implementation, we posit
a parameterized model of execution time and use the training data to
estimate the parameters of this model (e.g., by linear regression for a
linear model). At run-time, we simply evaluate the models to predict the
execution time of each implementation. This method has been explored
in prior work on run-time selection by Brewer [14]. Because we choose the
model of execution time, we can control the cost of evaluating f by varying
the complexity of the model (i.e., the number of model parameters).

2. Parametric geometric modeling : Rather than model the execution time
directly, we can also model the shape of the partitions in the input space
parametrically, by, say, assuming that the boundaries between partitions
can be described concisely by parameterized functions. For example, if
the input space is two-dimensional, we might posit that each boundary is
a straight line which can of course be described concisely by specifying its
slope and intercept. Our task is to estimate the parameters (e.g., slope
and intercept) of all boundaries using the training data. Such a model
might be appropriate if a sufficiently accurate model of execution time
is not known but the boundaries can be modeled. Like parametric data
modeling methods, we can control the cost of evaluating f by our choice
of functions that represent the boundaries.

3. Nonparametric geometric modeling : Rather than assume that the parti-
tion boundaries have a particular shape, we can also construct implicit
models of the boundaries in terms of the actual data points. In statistical
terms, this type of representation of the boundaries is called nonparamet-
ric. In the example of this paper, we use the support vector method to
construct just such a nonparametric model [88]. The advantage of the
nonparametric approach is that we do not have to make any explicit as-
sumptions about the input distributions, running times, or geometry of the
partitions. However, we will need to store at least some subset of the data
points which make up the implicit boundary representation. Thus, the
reduction in assumptions comes at the price of more expensive evaluation
and storage of f compared to a parametric method.

13

(Note that this categorization of models implies a fourth method: nonparametric
data modeling. Such models are certainly possible, for example, by the use of
support vector regression to construct a nonparametric model of the data [79].
We do not consider these models in this paper.)

To illustrate the classification framework, we apply the above three models
to a matrix multiply example. Specifically, consider the operation C ← C+AB,
where A, B, and C are dense matrices of size M × K, K × N , and M × N ,
respectively, as shown in Figure 7 (right). Note that these three parameters
make the input space S three-dimensional. In PHiPAC, it is possible to generate
different implementations tuned on different matrix workloads [11]. Essentially,
this involves conducting a search where the size of the matrices on which the
implementations are benchmarked is specified so that the matrices fit within a
particular cache level. For instance, we could have three implementations, one
tuned for the matrix sizes that fit approximately within L1 cache, those that fit
within L2, and all larger sizes.

We compare the accuracy of the above modeling methods using two metrics.
First, we use the average misclassification rate, i.e., the fraction of test samples
mispredicted. Note that we always choose the test set S′ to exclude the training
data S0, that is, S′ ⊆ (S−S0). However, if the performance difference between
two implementations is small, a misprediction may still be acceptable. Thus,
our second comparison metric is the slow-down of the predicted implementation
relative to the true best. That is, for each point in the test set, we compute the
relative slow-down tselected

tbest
− 1, where tselected and tbest are the execution times

of the predicted and best algorithms for a given input, respectively. For a given
modeling technique, we consider the distribution of slow-downs for points in the
test set.

4.2 Parametric data model: linear regression modeling

In our first approach, we postulate a parametric model for the running time of
each implementation. Then at run-time, we can choose the fastest implementa-
tion based on the execution time predicted by the models. This approach was
adopted by Brewer [14]. For matrix multiply on matrices of size N × N , we
might guess that the running time of implementation a will have the form

Ta(N) = β3N
3 + β2N

2 + β1N + β0.

where we can use standard regression techniques to determine the coefficients
βk, given the running times on some sample inputs S0. The decision function
is just f(s) = argmina∈ATa(s).

One strength of this approach is that the models, and thus the accuracy
of prediction as well as the cost of making a prediction, can be as simple or
as complicated as desired. For example, for matrices of more general sizes,
(M,K,N), we might hypothesize a model Ta(M,K,N) with linear coefficients
and the terms MKN , MK, KN , MN , M , K, N , and 1:

Ta(N) = β7MKN + β6MK + β5KN + β4MN + β3M + β2K + β1N + β0. (6)

14

We can even eliminate terms whose coefficients are “small” to reduce the run-
time cost of generating a prediction. For matrix multiply, a simple model of
this form could even be automatically derived by an analysis of the 3-nested
loops structure. However, in general it might be difficult to determine a suf-
ficiently precise parametric form that captures the interaction effects between
the processor and all levels of the memory hierarchy. Moreover, for other more
complicated kernels or algorithms—having, say, more complicated control flow
like recursion or conditional branches—such a model may be more difficult to
derive.

4.3 Parametric geometric model: separating hyperplanes

One geometric approach is to first assume that there are some number of bound-
aries, each described parametrically, that divide the implementations, and then
find best-fit boundaries with respect to an appropriate cost function.

Formally, associate with each implementation a a weight function wθa(s),
parameterized by θa, which returns a value between 0 and 1 for some input
value s. Furthermore, let the weights satisfy the property,

∑
a∈A wθa(s) = 1.

Our decision function selects the algorithm with the highest weight on input s,
f(s) = argmaxa∈A {wθa(s)}. We can compute the parameters θa1 , . . . , θam (and
thus, the weights) so as to minimize the the following weighted execution time
over the training set:

C(θa1 , . . . , θam) =
1
|S0|

∑
s∈S0

∑
a∈A

wθa(s) · T (a, s). (7)

Intuitively, if we view wθa(s) as a probability of selecting algorithm a on input
s, then C is a measure of the expected execution time if we first choose an
input uniformly at random from S0, and then choose an implementation with
the probabilities given by the weights on input s.

In this formulation, inputs s with large execution times T (a, s) will tend
to dominate the optimization. Thus, if all inputs are considered to be equally
important, it may be desirable to use some form of normalized execution time.
We defer a more detailed discussion of this issue to Section 4.5.

Of the many possible choices for wθa(·), we choose the logistic function,

wθa(s) =
exp

(
θTa s+ θa,0

)∑
b∈A exp

(
θTb s+ θb,0

) (8)

where θa has the same dimensions as s, θa,0 is an additional parameter to
estimate. Note that the denominator ensures that

∑
a∈A wθa(s) = 1. While

there is some statistical motivation for choosing the logistic function [45], in
this case it also turns out that the derivatives of the weights are particularly
easy to compute. Thus, we can estimate θa and θa,0 by minimizing Equation
(7) numerically using Newton’s method.

A nice property of the weight function is that f is cheap to evaluate at run-
time: the linear form θTa s+θa,0 costs O(d) operations to evaluate, where d is the

15

dimension of the space. However, the primary disadvantage of this approach
is that the same linear form makes this formulation equivalent to asking for
hyperplane boundaries to partition the space. Hyperplanes may not be a good
way to separate the input space as we shall see below. Of course, other forms are
certainly possible, but positing their precise form a priori might not be obvious,
and more complicated forms could also complicate the numerical optimization.

4.4 Nonparametric geometric model: support vectors

Techniques exist to model the partition boundaries nonparametrically. The
support vector (SV) method is one way to construct just such a nonparametric
model, given a labeled sample of points in the space [88].

Specifically, each training sample si ∈ S0 is given a label li ∈ A to indicate
which implementation was fastest on input si. That is, the training points are
assigned to classes by implementation. The SV method then computes a parti-
tioning by selecting a subset of training points that best represents the location
of the boundaries, where by “best” we mean that the minimum geometric dis-
tance between classes is maximized.4 The resulting decision function f(s) is
essentially a linear combination of terms with the factor K(si, s), where only
si in the selected subset are used, and K is some symmetric positive definite
function. Ideally, K is chosen to suit the data, but there are also a variety of
“standard” choices for K as well. We refer the reader to the description by
Vapnik for more details on the theory and implementation of the method [88].

The SV method is regarded as a state-of-the-art method for the task of sta-
tistical classification on many kinds of data, and we include it in our discussion
as a kind of practical upper-bound on prediction accuracy. However, the time
to compute f(s) is up to a factor of |S0| greater than that of the other methods
since some fraction of the training points must be retained to evaluate f . Thus,
evaluation of f(s) is possibly much more expensive to calculate at run-time than
either of the other two methods.

4.5 Results and discussion with PHiPAC data

We offer a brief comparison of the three methods on the matrix multiply example
described in Section 4.1, using PHiPAC to generate the implementations on a
Sun Ultra 1/170 workstation with a 16 KB L1 cache and a 512 KB L2 cache.

4.5.1 Experimental setup

To evaluate the prediction accuracy of the three run-time selection algorithms,
we conducted the following experiment. First, we built three matrix multiply
implementations using PHiPAC: (a) one with only register-level tiling, (b) one
with register + L1 tiling, and (c) one with register, L1, and L2 tiling. We
considered the performance of these implementations within a 2-D cross-section
of the full 3-D input space in whichM = N and 1 ≤M,K,N ≤ 800. We selected

4Formally, this is known as the optimal margin criterion [88].

16

disjoint subsets of points in this space, where each subset contained 1936 points
chosen at random.5 Then we further divided each subset into 500 testing points
and 1436 training points. We trained and tested the three statistical models
(details below), measuring the prediction accuracy on each test set.

In Figure 8, we show an example of a 500-point testing set from this space
where each point is color-coded by the implementation which ran fastest. The
implementation which was fastest on the majority of inputs is the default im-
plementation generated by PHiPAC containing full filing optimizations, and is
shown by a blue “x”. Thus, a useful reference is a baseline predictor which
always chooses this implementation: the misclassification rate of this predictor
was 24%. The implementation using only register-tiling makes up the central
“banana-shaped” region in the center of Figure 8, shown by a red “o”. The
register and L1 tiled implementation, shown by a green asterisk (*), was fastest
on a minority of points in the lower left-hand corner of the space. Observe that
the space has complicated boundaries, and is not strictly cleanly separable.

The three statistical models were implemented as follows.

• We implemented the linear least squares regression method as described in
Section 4.2, Equation (6). Since the least squares fit is based on choosing
the fit parameters to minimize the total square error between the execution
time data and the model predictions, errors in the larger problem sizes
will contribute more significantly to the total squared error than smaller
sizes, and therefore tend to dominate the fit. This could be adjusted by
using weighted least squares methods, or by normalizing execution time
differently. We do not pursue these variations here.

• For the separating hyperplane method outlined in Section 4.3, we built a
model using 6 hyperplanes in order to try to better capture the central re-
gion in which the register-only implementation was fastest. Furthermore,
we replaced the execution time T (a, s) in Equation (7) by a “binary” ex-
ecution time T̂ (a, s) such that T̂ (a, s) = 0 if a was the fastest on input
s, and otherwise T̂ (a, s) = 1. (We also compared this binary scheme to
a variety of other notions of execution time, including normalizing each
T (a, s) by MKN to put all execution time data on a similar scale. How-
ever, we found the binary notion of time gave the best results in terms of
the average misclassification rate on this particular data set.)

• For the support vector method of Section 4.4, we used Platt’s sequential
minimal optimization algorithm with a Gaussian kernel for the function
K(·, ·) [69]. In Platt’s algorithm, we set the tuning parameter C = 100
[69]. We built multiclass classifiers from ensembles of binary classifiers, as
described by Vapnik [88].

Below, we report on the overall misclassification rate for each model as the
average over all of the 10 test sets.

5The points were chosen from a distribution with a bias toward small sizes.

17

4.5.2 Results and discussion

Qualitative examples of the predictions made by the three models on a sam-
ple test set are shown in Figures 9–11. The regression method captures the
boundaries roughly but does not correctly model one of the implementations
(upper-left of Figure 9). The separating hyperplane method is a poor qualita-
tive fit to the data. The SV method appears to produce the best predictions.
Quantatively, the misclassification rates, averaged over the 10 test sets, were
34% for the regression predictor, 31% for the separating hyperplanes predic-
tor, 12% for the support vector predictor. Only the support vector predictor
significantly outperformed the baseline predictor.

However, misclassification rate seems too strict a measure of prediction per-
formance, since we may be willing to tolerate some penalties to obtain a fast
prediction. Therefore, we also show the distribution of slow-downs due to mis-
predictions in Figure 12. Each curve depicts this distribution for one of the four
predictors. The distribution shown is for one of the 10 trials which yielded the
lowest misclassification rate. Slow-down appears on the x-axis, and the fraction
of predictions on all 1936 points (including both testing and training points)
exceeding a given slow-down is shown on the y-axis.

Consider the baseline predictor (solid blue line with ’+’ markers). Note that
only 5–6% of predictions led to slow-downs of more than 5%, and that only
about 0.4% of predictions led to slow-downs of more than 10%. Noting the
discretization, evidently only 1 out of the 1936 cases led to a slow-down of more
than 47%, with no implementations being between 18–47% slower. These data
indicate that the baseline predictor performs fairly well, and that furthermore
the performance of the three tuned implementations is fairly similar. There-
fore, we do not expect to improve upon the baseline predictor by much. This
hypothesis is borne out by observing the slow-down distributions of the sepa-
rating hyperplane and regression predictors (green circles and red ’x’ markers,
respectively), neither of which improves significantly (if at all) over the baseline.

However, we also see that for slow-downs of up to 5% (and, to a lesser extent,
up to 10%), the support vector predictor (cyan ’*’ markers) shows a significant
improvement over the baseline predictor. It is possible that this difference would
be significant in some applications with very strict performance requirements,
thereby justifying the use of the more complex statistical model. Furthermore,
had the differences in execution time between implementations been larger, the
support vector predictor would have appeared even more attractive.

Note that there are a number of cross-over points in Figure 12. For instance,
comparing the regression and separating hyperplanes methods, we see that even
though the overall misclassification rate for the separating hyperplanes predic-
tor is lower than the regression predictor, the tail of the distribution for the
regression predictor becomes much smaller. A similar cross-over exists between
the baseline and support vector predictors. These cross-overs suggest the pos-
sibility of hybrid schemes that combine predictors or take different actions on
inputs in the “tails” of these distributions, provided these inputs could somehow
be identified or otherwise isolated.

18

In terms of prediction times (i.e., the time to evaluate f(s)), both the re-
gression and separating hyperplane methods lead to reasonably fast predictors.
Prediction times were roughly equivalent to the execution time of a 3×3 matrix
multiply. By contrast, the prediction cost of the SVM is about a 64×64 matrix
multiply, which would prohibit its use when small sizes occur often. Again, it
may be possible to reduce this run-time overhead by a simple conditional test
of the input dimensions, or perhaps a hybrid predictor.

However, this analysis is not intended to be definitive. For instance, we
cannot fairly report on specific training costs due to differences in the imple-
mentations in our experimental setting.6 Also, matrix multiply is only one
possible application, and we see that it does not stress all of the strengths and
weaknesses of the three methods. Furthermore, a user or application might care
about only a particular region of the full input-space which is different from
the one used in our example. Instead, our primary aim is simply to present the
general framework and illustrate the issues on actual data. Moreover, there are
many possible models; the examples presented here offer a flavor of the role that
statistical modeling of performance data can play.

5 Related Work: A Survey of Empirical Search-
Based Tuning

There has been a flurry of research activity in the use of empirical search-
based approaches to platform-specific code generation and tuning. The primary
motivation, as this paper demonstrates for matrix multiply, is the difficulty
of instantiating purely static models that predict performance with sufficient
accuracy to decide among possible code and data structure transformations.
Augmenting such models with observed performance appears to yield viable
and promising ways to make these decisions.

In our review of the diverse body of related work, we note how each study
or project addresses the following high-level questions:

1. What is the unit of optimization? In a recent position paper on
feedback-directed optimization, Smith argues that a useful way to classify
dynamic optimization methods is by the size and semantics of the piece of
the program being optimized [78]. Traditional static compilation applies
optimizations in “units” which following programming language conven-
tions, e.g., within a basic block, within a loop nest, within a procedure,
or within a module. By contrast, dynamic (run-time) techniques opti-
mize across units relevant to run-time behavior, e.g., along a sequence of
consecutively executed basic blocks (a trace or path).

Following this classification, we divide the related work on empirical search-
based tuning primarily into two high-level categories: kernel-centric tun-
ing and compiler-centric tuning. This paper adopts the kernel-centric

6In particular, the hyperplane and regression methods were written in Matlab, while the
SMO support vector training code was written in C.

19

perspective in which the unit of optimization is the kernel itself. The code
generator—and hence, the implementation space—is specific to the ker-
nel. One would expect that a generator specialized to a particular kernel
might best exploit mathematical structure or other structure in the data
(possibly known only at run-time) relevant to performance. As we discuss
below, this approach has been very successful in the domains of linear alge-
bra and signal processing, where understanding problem-specific structure
leads to new, tunable algorithms and data structures.

In the compiler-centric view, the implementation space is defined by the
space of possible compiler transformations that can be applied to any pro-
gram expressed in a general-purpose programming language. In fact, the
usual suite of optimizations for matrix multiply can all be expressed as
compiler transformations on the standard 3-nested loop implementation,
and thus it is possible in principle for a compiler to generate the same
high-performance implementation that can be generated by hand. How-
ever, what makes a specialized generator useful in this instance is that
the expert who writes the generator identifies the precise transformations
which are hypothesized to be most relevant to improving performance.
Moreover, we could not reasonably expect a general purpose compiler to
know about all of the possible mathematical transformations or alterna-
tive algorithms and data structures for a given kernel—it is precisely these
kinds of transformations that have yielded the highest performance for
other important computational kernels like the discrete Fourier transform
(DFT) or operations on sparse matrices.

We view these approaches as complementary, since hybrid approaches
are also possible. For instance, in this paper we consider the use of a
matrix multiply-specific generator that ouputs C or Fortran code, thus
leaving aspects of the code generation task (namely, scheduling) to the
compiler. What these approaches share is that their respective implemen-
tation spaces can be very large and difficult to model. It is the challenge of
choosing an implementation that motivates empirical search-based tuning.

2. How should the implementation space be searched? Empirical
search-based approaches typically choose implementations by some com-
bination of modeling and experimentation (i.e., actually running the code)
to predict performance and thereby choose implementations. Section 2
argues that performance can be a complex function of algorithmic param-
eters, and therefore may be difficult to model accurately using only static
models in practice. This paper explores the use of statistical models, con-
structed from empirical data, to model performance within the space of
implementations. The related work demonstrates that a variety of addi-
tional kinds of models are possible. For instance, one idea that has been
explored in several projects is the use of evolutionary (genetic) algorithms
to model and search the space of implementations.

3. When to search? The process of searching an implementation space

20

could happen at any time, whether it be strictly off-line (e.g., once per
architecture or once per application), strictly at run-time, or in some com-
bination. The cost of an off-line search can presumably be amortized over
many uses, while a run-time search can maximally use the information only
available at run-time. Again, hybrid approaches are common in practice.

The question of when to search has implications for software system sup-
port. For instance, a strictly off-line approach requires only that a user
make calls to a special library or a special search-based compiler. Search-
ing at run-time could also be hidden in a library call, but might also
require changes to the run-time system to support dynamic code genera-
tion or dynamic instrumentation or trap-handling to support certain types
of profiling. This survey mentions a number of examples.

Our survey summarizes how various projects and studies have approached these
questions, with a primary emphasis on the kernel-centric vs. compiler-centric
approaches, though again these we see these two viewpoints as complementary.
Collectively, these questions imply a variety of possible software architectures
for generating code adapted to a particular hardware platform and run-time
workload.

5.1 Kernel-centric empirical search-based tuning

Typical kernel-centric tuning systems contain specialized code generators that
exploit specific mathematical properties of the kernel or properties of the data.
The target performance goal of these systems is to achieve the performance of
hand-tuned code. Most research has focused on tuning in the domains of dense
and sparse linear algebra, and signal processing. In these areas, there is a rich
mathematical structure relevant to performance to exploit. We review recent
developments in these and other areas below. (For alternative views of some of
this work, we refer the reader to recent position papers on the notion of active
libraries [90] and self-adapting numerical software [28].)

5.1.1 Dense and sparse linear algebra

Dense matrix multiply is among the most important of the computational ker-
nels in dense linear algebra both because a large fraction (say, 75% or more)
of peak speed can be achieved on most machines with proper tuning, and also
because many other dense kernels can be expressed as calls to matrix multiply
[47]. The prototype PHiPAC system was an early system for generating auto-
matically tuned implementations of this kernel with cache tiling, register tiling,
and a variety of unrolling and software pipelining options [10]. The notion of
automatically generating tiled matrix multiply implementations from a concise
specification with the possibility of searching the space of tile sizes for matrix
multiply also appeared in early work by McCalpin and Smotherman [58]. The
ATLAS project has since extended the applicability of the PHiPAC prototype
to all of the other dense matrix kernels that constitute the BLAS [93]. These

21

systems contain specalized, kernel-specific code generators, as discussed in Sec-
tion 2. Furthermore, most of the search process can be performed completely
off-line, once per machine architecture. The final output of these systems is a
library implementing the BLAS against which a user can link her application.

A recent and promising avenue of research relates to the construction of so-
phisticated new generators. Veldhuizen [89] and Siek and Lumsdaine [77] have
developed C++ language-based techniques for cleanly expressing dense linear
algebra kernels. More recent work by Gunnels, et al., in the FLAME project
demonstrates the feasibility of systematic derivation of algorithmic variations
for a variety of dense matrix kernels [40]. These variants would be suitable
implementations ai in our run-time selection framework (Section 4). In addi-
tion, FLAME provides a new methodology by which one can cleanly generate
implementations of kernels that exploit caches. However, these implementa-
tions still rely on highly-tuned “inner” matrix multiply code, which in turn re-
quires register- and instruction-level tuning. Therefore, we view all of these ap-
proaches to code generation as complementing empirical search-based register-
and instruction-level tuning.

Another complementary research area is the study of so-called cache-oblivious
algorithms, which to claim eliminate the need for cache-level tuning to some
extent for a number of computational kernels. Like traditional tiling tech-
niques [41, 75], cache oblivious algorithms for matrix multiply and LU fac-
torization have been shown to asymptotically minimize data movement among
various levels of the memory hierarchy, under certain cache modeling assump-
tions [83, 33, 1, 30]. Unlike tiling, cache-oblivious algorithms do not make
explicit reference to a “tile size” tuning parameter, and thus appear to elim-
inate the need to search for optimal cache tile sizes either by modeling or by
empirical search. Furthermore, language-level support now exists both to con-
vert loop-nests to recursion automatically [96] and also to convert linear array
data structures and indexing to recursive formats [94]. However, we note in
Section 2 that at least for matrix multiply, cache-level optimizations account
for only a part (perhaps 12–60%, depending on the platform) of the total per-
formance improvement possible, and therefore complements additional register-
and instruction-level tuning. The nature of performance in these spaces, as
shown in Figure 2, together with recent results showing that even carefully con-
structed models of the register- and instruction-level implementation space can
mispredict [97], imply that empirical search is still necessary for tuning.7

For matrix multiply, algorithmic variations that require fewer than O(n3)
flops for n × n matrices, such as Strassen’s algorithm, are certainly beyond
the kind of transformations we expect general purpose compilers to be able
to derive. Furthermore, like cache-oblivious algorithms, practical and highly
efficient implementations of Strassen’s algorithm still depend on highly-tuned
base-case implementations in which register- and instruction-level tuning is crit-
ical [43, 82].

7Indeed, recent work has qualitatively confirmed the need and importance of fast “base
case” implementations in recursive implementations [32, 34, 65].

22

The BLAS-tuning ideas have been applied to higher-level, parallel dense lin-
ear algebra libraries. In the context of cluster computing in the Grid, Chen,
et al., have designed a self-tuning version of the LAPACK library for Clusters
(LFC) [19]. LFC preserves LAPACK’s serial library interface, and decides at
run-time whether and how to parallelize a call to a dense linear solve routine,
based on the current cluster load. In a similar spirit, Liniker, et al., have applied
the idea of run-time selection to the selection of data layout in their distributed
parallel version of the BLAS library [55, 7]. Their library, called DESOBLAS,
is based on the idea of delayed evaluation: all calls to DESOBLAS library rou-
tines return immediately, and are not executed until either a result is explicitly
accessed by the user or the user forces an evaluation of all unexecuted calls.
At evaluation time, DESOBLAS uses information about the entire sequence of
operations that need to be performed to make decisions about how to distribute
data. Both LFC and DESOBLAS adopt the library interface approach, but
defer optimization until run-time.

Kernels arising in sparse linear algebra, such as sparse matrix-vector mul-
tiply, complicate tuning compared to their dense counterparts because perfor-
mance depends on the non-zero structure of the sparse matrix. For sparse
kernels, the user must choose a data structure that minimizes storage of the
matrix while still allowing efficient mapping of the kernel to the target archi-
tecture. Worse still, the matrix structure may not be known until run-time.
Prototype systems exist which allow a user to specify separately both the kernel
and the data structure, while a specialized generator (or restructuring compiler)
combines the two specifications to generate an actual implementation [9, 70, 81].
At present, such systems do not explicitly address the register- and instruction-
level tuning issues, nor do they adequately address the run-time problem of
choosing a data structure given a sparse matrix. Automatic tuning with respect
to these low-level tuning and data structure selection issues have been taken up
by recent work on the Sparsity system [44, 92].

5.1.2 Digital signal processing

Recent interest in automatic tuning of digital signal processing (DSP) appli-
cations is driven both by the rich mathematical structure of DSP kernels and
by the variety of target hardware platforms. One of the best-studied kernels,
the discrete Fourier transform (DFT), admits derivation of many fast Fourier
transform (FFT) algorithms. The fast algorithms require significantly fewer
flops than a näıve DFT implementation, but since different algorithms have
different memory access patterns, strictly minimizing flops does not necessarily
minimize execution time. The problem of tuning is further complicated by the
fact that the target architectures for DSP kernels range widely from general
purpose microprocessors and vector architectures to special-purpose DSP chips.

FFTW was the first tuning system for various flavors of the discrete Fourier
transform (DFT) [32]. FFTW is notable for its use of a high-level, symbolic rep-
resentation of the FFT algorithm, as well as its run-time search which saves and
uses performance history information. Search boils down to selecting the best

23

fully-unrolled base case implementations, or equivalently, the base cases with the
best instruction scheduling. The search process occurs only at run-time because
that is when the problem size is assumed to be known. There have since been
additional efforts in signal processing which build on the FFTW ideas. The SPI-
RAL system is built on top of a symbolic algebra system, allows users to enter
customized transforms in an interpreted environment using a high-level tensor
notation, and uses a novel search method based on genetic algorithms [71]. The
performance of the implementations generated by these systems is largely com-
parable both to one another and to vendor-supplied routines. One distinction
between the two systems is that SPIRAL’s search is off-line, and carried out for
a specific kernel of a given size, whereas FFTW chooses the algorithm at run-
time. The most recent FFT tuning system has been the UHFFT system, which
is essentially an alternative implementation of FFTW that includes a different
implementation of the code generator [60]. In all three systems, the output of
the code generator is either C or Fortran code, and the user interface to a tuned
routine is via a library or subroutine call.

5.1.3 Other kernel domains

In the area of parallel distributed communications, Vadhiyar, et al., propose
techniques to tune automatically the Message Passing Interface (MPI) collec-
tive operations [86]. The most efficient implementations of these kernels, which
include “broadcast,” “scatter/gather,” and “reduce,” depend on characteris-
tics of the network hardware. Like its tuning system predecessors in dense
linear algebra, this prototype for MPI kernels targets the implementation of
a standard library interface. Achieved performance meets or exceeds that of
vendor-supplied implementations on several platforms. The search for an opti-
mal implementation is conducted entirely off-line, using heuristics to prune the
space and a benchmarking workload that stresses message size and number of
participating processors, among other features.

Empirical search-based tuning systems for sorting have shown some promise.
Recent work by Arge, et al., demonstrate that algorithms which minimize cache
misses under simple but reasonable cache models lead to sorting implementa-
tions which are suboptimal in practice [2]. They furthermore stress the im-
portance of register- and instruction-level tuning, and use all of these ideas
to propose a new sorting algorithm space with machine-dependent tuning pa-
rameters. A preliminary study by Darcy shows that even for the well-studied
quicksort algorithm, an extensive implementation space exists and exhibits dis-
tributions of performance like those shown in Figure 2 (top) [24]. Lagoudakis
and Littman have shown how the selection problem for sorting can be tackled
using statistical methods not considered in this paper, namely, by reinforce-
ment learning techniques [52]. Together, these studies suggest the applicability
of search-based methods to non-numerical computational kernels.

Recently, Baumgartner, et al., have proposed a system to generate entire
parallel applications for a class of quantum chemistry computations [6]. Like
SPIRAL, this system provides a way for chemists to specify their computation in

24

a high-level notation, and carries out a symbolic search to determine a memory
and flop efficient implementation. The authors note that the best implementa-
tion depends ultimately on machine-specific parameters. Some heuristics tied
to machine parameters (e.g., available memory) guide search.

Dolan and Moré have identified empirical distributions of performance as
a mechanism for comparing various mathematical optimization solvers [26].
Specifically, the distributions estimate the probability that the performance
of a given solver will be within a given factor of the best performance of all
solvers considered. Their data was collected using the online optimization server,
NEOS, in which users submit optimization jobs to be executed on NEOS-hosted
computational servers. The primary aim of their study was to propose a new
“metric” (namely, the distributions themselves) as a way of comparing different
optimization solvers. However, what these distributions also show is that Grid-
like computing environments can be used to generate a considerable amount
of performance data, possibly to be exploited in run-time selection contexts as
described in Section 4.

A key problem in the run-time selection framework we present in Section
4 is the classical statistical learning problem of feature selection. In our case,
features are the attributes that define the input space. The matrix multiply
example assumes the input matrix dimensions constitute the best features. Can
features be identified automatically in a general setting? A number of recent
projects have proposed methods, in the context of performance analysis and
algorithm selection, which we view as possible solutions. Santiago, et al., ap-
ply the statistical experimental design methods to program tuning [74]. These
methods essentially provide a systematic way to analyze how much hypothesized
factors contribute to performance. The most significant contributors identified
could constitute suitable features for classification. A different approach has
been to codify expert knowledge in the form of a database, recommender, or ex-
pert system in particular domains, such as a partial differential equation (PDE)
solver [56, 72, 42], or a molecular dynamics simulation [51]. In both cases, each
algorithmic variation is categorized by manually identified features which would
be suitable for statistical modeling.

Note that what is common to most of the preceeding projects is a library-
based approach, whether tuning occurs off-line or at run-time. The Active
Harmony project seeks to provide a general API and run-time system that
supports run-time selection and run-time parameter tuning in the setting of the
Grid [85]. This work, though in its early stages, highlights the need for search
in new computational environments.

5.2 Compiler-centric empirical search-based tuning

The idea of using data gathered during program execution to aid compilation has
previously appeared in the compiler literature under the broad term feedback-
directed optimization (FDO). A recent survey and position paper by Smith
reviewed developments in subareas of FDO including profile-guided compilation
(Section 5.2.2) and dynamic optimization (Section 5.2.4) [78]. FDO methods

25

are applied to a variety of program representations: source code in a general-
purpose high-level language (e.g., C or Java), compiler intermediate form, or
even a binary executable. These representations enable transformations to im-
prove performance on general applications, either off-line or at run-time. Binary
representations enable optimizations on applications that have shipped or on ap-
plications that are delivered as mobile code. The underlying philosophy of FDO
is the notion that optimization without reference to actual program behavior is
insufficient to generate optimal or near-optimal code.

In our view, the developments in FDO join renewed efforts in superoptimizers
(Section 5.2.1) and the new notion of self-tuning compilers (Section 5.2.3) in an
important trend in compilation systems toward the use of empirically-derived
models of the underlying machines and programs.

5.2.1 Superoptimizers

Massalin coined the term superoptimizer for his exhaustive search-based instruc-
tion generator [57]. Given a short program, represented as a sequence of (six
or so) machine language instructions, the superoptimizer exhaustively searched
all possible equivalent instruction sequences for a shorter (and equivalently at
the time, faster) program. Though extremely expensive compared to the usual
cost of compilation, the intent of the system was to “superoptimize” particular
bottlenecks off-line. The overall approach represents a noble effort to generate
truly “optimal” code.8

Joshi, et al., substitute exhaustive search in Massalin’s superoptimizer with
an automated theorem prover in their Denali superoptimizer [46]. One can
think of the prover as acting as a modeler of program performance. Given a se-
quence of expressions in a C-like notation, Denali uses the automated prover to
generate a machine instruction sequence that is provably the fastest implemen-
tation possible. However, to make such a proof-based code generation system
practical, Denali’s authors necessarily had to assume (a) a certain model of the
machine (e.g., multiple issue with pipeline dependencies specified but fixed in-
struction latencies), and (b) a particular class of acceptable constructive proofs
(i.e., matching proofs). Nevertheless, Denali is able to generate extremely good
code for short instruction sequences (roughly 16 instructions in a day’s worth
of time) representing ALU-bound operations on the Alpha EV6. As the Denali
authors note, it might be possible to apply their approach more broadly by
refining the instruction latency estimates, particularly for memory operations,
with measured data from actual runs—again suggesting a combined modeling
and empirical search approach.

5.2.2 Profile-guided compilation and iterative compilation

The idea behind profile-guided compilation (PGC) is to carry out compiler trans-
formations using information gathered during actual execution runs [50, 38].
Compilers can instrument code to gather execution frequency statistics at the

8A refinement of the original superoptimizer, based on gcc, is also available [39].

26

level of subroutines, basic blocks, or paths. On subsequent compiles, these
statistics can be used to enable more aggressive use of “classical” compiler op-
timizations (e.g., constant propagation, copy propagation, common subexpres-
sion elimination, dead code removal, loop invariant code removal, loop induction
variable elimination, global variable migration) along frequent execution paths
[17, 4]. The PGC approach has been extended to help guide prefetch instruction
placement on x86 architectures [5]. PGC can be viewed as a form of empirical
search in which the implementation space is implicitly defined to be the space of
all possible compiler transformations over all inputs, and the user (programmer)
directs the search by repeatedly compiling and executing the program.

The search process of PGC can be automated by replacing the user-driven
compile/execute sequence with a compiler-driven one. The term iterative com-
pilation has been coined to refer to such a compiler process [49, 87]. Users
annotate their program source with a list of which transformations—e.g., loop
unrolling, tiling, software pipelining—should be tried on a particular segment of
code, along with any relevant parametric ranges (e.g., a range of loop unrolling
depths). The compiler then benchmarks the code fragment under the specified
transformations. In a similar vein, Pike and Hilfinger built tile-size search using
simulated annealing into the Titanium compiler, with application to a multigrid
solver [68]. The Genetic Algorithm Parallelisation System (GAPS) by Nisbet
addressed the problem of compile-time selection of an optimal sequence of se-
rial and parallel loop transformations for scientific applications [63]. GAPS
uses a genetic algorithms approach to direct search over the space of possible
transformations, with the initial population seeded by a transformation chosen
by “conventional” compiler techniques. The costs in all of these examples are
significantly longer compile cycles (i.e., including the costs of running the ex-
ecutable and re-optimizing), but the approach is “off-line” since the costs are
incurred before the application ships. Furthermore, the compile-time costs can
be reduced by restricting the iterative compilation process to only known ap-
plication bottlenecks. In short, what all of these iterative compilation examples
demonstrate is the utility of a search-based approach for tuning general codes
that requires minimal user intervention.

5.2.3 Self-tuning compilers

We use the term self-tuning compiler to refer to recent work in which the com-
piler itself—e.g., the compiler’s internal models for selecting transformations, or
the optimization phase ordering—is adapted to the machine architecture. The
goal of this class of methods is to avoid significantly increasing compile-times
(as occurs in iterative compilation) while still adapting the generated code to
the underlying architecture.

Mitchell, et al., proposed a scheme in which models of various types of
memory access patterns are measured for a given machine when the compiler
is installed [61]. At analysis time, memory references within loop nests are
decomposed and modeled by functions of these canonical patterns. An execution
time model is then automatically derived. Instantiating and comparing these

27

models allows the compiler to compare different transformations of the loop nest.
Though the predicted execution times are not always accurate in an absolute
sense, the early experimental evidence suggests that they may be sufficiently
accurate to predict the relative ranking of candidate loop transformations.

The Meta Optimization project proposes automatic tuning of the compiler’s
internal priority (or cost) functions [80]. The compiler uses these functions
to choose a code generation action based on known characteristics of the pro-
gram. For example, in deciding whether or not to prefetch a particular memory
reference within a loop, the compiler evaluates a binary priority function that
considers the current loop trip count estimates, cache parameters, and esti-
mated prefetch latency,9 among other factors. The precise function is usually
tuned by the compiler writer. In the Meta Optimization scheme, the compiler
implementer specifies these factors, their ranges, and a hypothesized form of
the function, and Meta Optimization uses a genetic programming approach to
determine (i.e., to evolve) a better form for the function. The candidate func-
tions are evaluated on a benchmark or suite of benchmark programs to choose
one. Thus, priority functions can be tuned once for all applications, or for a
particular application or class of applications.

In addition to internal models, another aspect of the compiler subject to
heuristics and tuning is the optimization phase ordering, i.e., the order in which
optimizations are applied. While this ordering is usually fixed through exper-
imentation by a compiler writer, Cooper, et al., have proposed the notion of
an adaptive compiler which experimentally determines the ordering for a given
machine [23, 22]. Their compiler uses genetic algorithms to search the space of
possible transformation orders. Each transformation order is evaluated against
some metric (e.g., execution time or code size) on a pre-defined set of benchmark
programs.

The Liberty compiler research group has proposed an automated scheme to
organize the space of optimization configurations into a small decision tree that
can be quickly traversed at compile-time [84]. Roughly speaking, their study
starts with the Intel IA-64 compiler and identifies the equivalent of k internal
binary flags that control optimization. This defines a space of possible configu-
rations of size 2k. This space is systematically pruned, and a final, significantly
smaller set of configurations are selected.10 (In a traditional compiler imple-
mentation, a compiler writer would manually choose just 1 such configuration
based on intuition and experimentation.) The final configurations are organized
into a decision tree. At compile-time, this tree is traversed and each configura-
tion visited is applied to the code. The effect of the configuration is predicted
by a static model, and used to decide which paths to traverse and what final
configuration to select. This work combines the model-tuning of the other self-

9The minimum time between the prefetch and its corresponding load.
10In the original work’s experiment, not all flags considered are binary. Nevertheless, the size

of the original space is equivalent to the case when k = 19. The final number of configurations
selected is 12. Also note that the paper proposes a technique for pruning the space which
may be a variant of a common statistical method known as fractional factorial design (FFD).
FFD has been applied to the automatic selection of compiler flags [20].

28

tuning compiler projects and the idea of iterative compilation (except that in
this instance, performance is predicted by a static model instead of by running
the code.)

5.2.4 Dynamic (run-time) optimization

Dynamic optimization refers to the idea of applying compiler optimizations and
code generation at run-time. Just-in-time (JIT) compilation, particularly for
Java-based programs, is one well-known example. Among the central problems
in dynamic optimization are automatically deciding what part of an application
to optimize, and how to reduce the run-time cost of optimization. Here, we
concentrate on summarizing the work in which empirical search-based modeling
is particularly relevant. We refer the reader to Smith’s survey [78] and related
work on dynamic compilation software architectures [54, 15] for additional ref-
erences on specific run-time code generation techniques.

Given a target fragment of code at run-time, the Jalapeño JIT compiler
for Java decides what level of optimization to apply based on an empirically
derived cost-benefit model [3]. This model weighs the expected pay-off from a
given optimization level, given an estimate of the frequency of future execution,
against the expected cost of optimizing. Profiling helps to identify the program
hotspots and cost estimates, and evaluation of the cost-benefit model is a form
of empirical-model based search.

Two recent projects have proposed allowing the compiler to generate multi-
ple versions of a code fragment (e.g., loop body, procedure), enabling run-time
search and selection for general programs [25, 91]. Diniz and Rinard coined the
term dynamic feedback for the technique used in their parallelizing compiler for
C++ [25]. For a particular synchronization optimization, they generate multiple
versions of the relevant portion of code, each of which has been optimized with
a different level of aggressiveness. The generated program alternates between
sampling and production phases. During sampling, the program executes and
times each of the versions. Thus, the sampling phase is essentially an instance
of empirical search. During the (typically much longer) production phase, the
best version detected during sampling executes. The length of each phase must
be carefully selected to minimize the overall overhead of the approach. The pro-
gram continues the sampling and production cycle, thus dynamically adjusting
the optimization policies to suit the current application context. The dynamic
feedback approach has been revisited and generalized in the ADAPT project,
an extension of the Polaris parallelizing compiler [91]. The ADAPT framework
provides more generalized mechanisms for “optimization writers” to specify how
variants are generated, and how they may be heuristically pruned at run-time.
In contast to the assumed model of run-time selection in Section 4, where the
statistical models are generated off-line, in this dynamic feedback approach the
models themselves must be generated at run-time during the sampling phase.

Kistler and Franz propose a sophisticated system architecture, built on top of
the Oberon System 3 environment, for performing continuous program optimiza-
tion [48]. They take a “whole systems” view in which the compiler, the dynamic

29

loader, and the operating system all participate in the code generation process.
The compiler generates an executable in an intermediate binary representation.
When the application is launched, this binary is translated into machine lan-
guage, with minimal or no optimizations. The program is periodically sampled
to collect profile data (such as frequency, time, or hardware counter statistics).
A separate thread periodically examines the profile data to identify either bot-
tlenecks or changes in application behavior that might warrant re-optimization,
and generates a list of candidate procedures to optimize. An empirical cost-
benefit analysis is used to decide which, if any, of these candidates should be
re-optimized. The code image for re-optimized procedures is replaced on the fly
with the new image, provided it is not currently executing. For the particular
dynamic optimizations they consider in their prototype—trace-based instruc-
tion rescheduling and data reorganization—off-line search-based optimization
still outperforms continuous re-optimization for BLAS routines. Nevertheless,
their idea applies more generally and with some success on other irregular, non-
numerical routines with dynamic (linked) data structures. However, the cost of
continuous profiling and re-optimization are such that much of the benefit can
be realized only for very long running programs, if at all.

6 Conclusions and Future Directions

For existing automatic tuning systems which follow the two-step “generate-and-
search” methodology, one aim of this study is to draw attention to the process of
searching itself as an interesting and challenging area for research. This article
uses statistical methods to address some of the challenges which arise. Our
survey of related work indicates that the use of empirical search-based tuning is
widespread, and furthermore suggests that the methods proposed in this article
will be relevant in a number of contexts besides kernel-centric tuning systems.

Among the current automatic tuning challenges is pruning the enormous
implementation spaces. Existing tuning systems use problem-specific heuristics
and performance models; our statistical model for stopping a search early is a
complementary technique. It has the nice properties of (1) making very few
assumptions about the performance of the implementations, (2) incorporating
performance feedback data, and (3) providing users with a meaningful way to
control the search procedure (namely, via probabilistic thresholds).

Another challenge is finding efficient ways to select implementations at run-
time when several known implementations are available. Our aim has been to
discuss a possible framework, using sampling and statistical classification, for
attacking this problem in the context of automatic tuning systems.

Many other modeling techniques remain to be explored. For instance, the
early stopping problem can be posed as a similar problem which has been treated
extensively in the statistical literature under the theory of optimal stopping [21].
Problems treated in this theory can incorporate the cost of the search itself,
which would be especially useful if we wished to perform searches not just at
build-time, as we consider here, but at run-time—for instance, in the case of a

30

just-in-time or other dynamic compilation system.
In the case of run-time selection, we make implicit geometric assumptions

about inputs to the kernels being points in some continuous space. However,
inputs could also be binary flags or other arbitrary discrete labels. This can
be handled in the same way as in the traditional classification settings, namely,
either by finding mappings from the discrete spaces into continuous (feature)
spaces, or by using statistical models with discrete probability distributions
(e.g., using graphical models [31]).

One possible criticism of the present study is that matrix multiply repre-
sents only one in many possible families of applications. However, our survey
of Section 5 reveals that search-based methods have demonstrated their utility
for other kernels in scientific application domains like discrete Fourier transform
(DFT) and sparse matrix-vector multiply (SpMV). These other computational
kernels differ from matrix multiply in that they have less computation per da-
tum (O(logn) flops per signal element in the case of the DFT, and 2 flops per
matrix element in the case of SpMV), as well as additional memory indirection
(in the case of SpMV). Moreover, search-based tuning has shown promise for
non-numerical kernels such as sorting or parallel distributed collective communi-
cations (Section 5). The effectiveness of search in all of these examples suggests
that a search-based methodology applies more generally.

In short, this work connects high performance software engineering with
statistical modeling ideas. The idea of searching is being incorporated into a
variety of software systems at the level of applications, compilers, and run-time
systems, as our survey in Section 5 shows. This further emphasizes the relevance
of search beyond specialized tuning systems.

Acknowledgements

We wish to thank Andrew Ng for his feedback on our statistical methodology.
This research was supported in part by the National Science Foundation under
NSF Cooperative Agreement No. ACI-9813362, NSF Cooperative Agreement
No. ACI-9619020, the Department of Energy under DOE Grant No. DE-FC02-
01ER25478, and a gift from Intel. The information presented here does not
necessarily reflect the position or the policy of the Government and no official
endorsement should be inferred.

References

[1] B. S. Andersen, F. Gustavson, A. Karaivanov, J. Wasniewski, and P. Y. Yalamov.
LAWRA–Linear Algebra With Recursive Algorithms. In Proceedings of the
Conference on Parallel Processing and Applied Mathematics, Kazimierz Dolny,
Poland, September 1999.

[2] L. Arge, J. Chase, J. S. Vitter, and R. Wickremesinghe. Efficient sorting using
registers and caches. ACM Journal on Experimental Algorithmics, 6:1–18, 2001.

[3] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. Adaptive optimiza-
tion in the Jalapeño JVM: The controller’s analytical model. In MICRO-33:

31

Third ACM Workshop on Feedback-Directed Dynamic Optimization, Monterey,
CA, USA, December 2000.

[4] T. Ball and J. R. Larus. Efficient path profiling. In Proceedings of MICRO 96,
pages 46–57, Paris, France, December 1996.

[5] R. Barnes. Feedback-directed data cache optimizations for the x86. In Proceed-
ings of the 32nd Annual International Symposium on Microarchitecture, Second
Workshop on Feedback-Directed Optimization, Haifa, Israel, November 1999.

[6] G. Baumgartner, D. E. Bernholdt, D. Cociorva, R. Harrison, S. Hirata, C.-C.
Lam, M. Nooijen, R. Pitzer, J. Ramanujam, and P. Saddayappan. A high-level
approach to synthesis of high-performance codes for quantum chemistry. In Pro-
ceedings of the IEEE/ACM Conference on Supercomputing, Baltimore, MD, USA,
November 2002.

[7] O. Beckmann and P. H. J. Kelley. Runtime interprocedural data placement opti-
mization for lazy parallel libraries. In EuroPar, LNCS. Springer, August 1997.

[8] P. J. Bickel and K. A. Doksum. Mathematical Statistics: Basic Ideas and Selected
Topics. Holden-Day, Inc., San Francisco, CA, 1977.

[9] A. J. C. Bik and H. A. G. Wijshoff. Advanced compiler optimizations for sparse
computations. Journal of Parallel and Distributed Computing, 31(1):14–24, 1995.

[10] J. Bilmes, K. Asanović, C. Chin, and J. Demmel. Optimizing matrix multiply
using PHiPAC: a Portable, High-Performance, ANSI C coding methodology. In
Proc. of the Int’l Conf. on Supercomputing, Vienna, Austria, July 1997.

[11] J. Bilmes, K. Asanović, J. Demmel, D. Lam, and C. Chin. The PHiPAC v1.0
matrix-multiply distribution. Technical Report UCB/CSD-98-1020, University of
California, Berkeley, October 1998.

[12] Z. W. Birnbaum. Numerical tabulation of the distribution of Kolmogorov’s statis-
tic for finite sample size. J. Am. Stat. Assoc., 47:425–441, September 1952.

[13] S. Blackford, G. Corliss, J. Demmel, J. Dongarra, I. Duff, S. Hammar-
ling, G. Henry, M. Heroux, C. Hu, W. Kahan, L. Kaufman, B. Kearfott,
F. Krogh, X. Li, Z. Maany, A. Petitet, R. Pozo, K. Remington, W. Wal-
ster, C. Whaley, and J. W. von Gudenberg. Document for the Basic Lin-
ear Algebra Subprograms (BLAS) standard: BLAS Technical Forum, 2001.
www.netlib.org/blas/blast-forum.

[14] E. Brewer. High-level optimization via automated statistical modeling. In Sym-
posium on Parallel Architectures and Algorithms, Santa Barbara, CA, USA, July
1995.

[15] D. Bruening, T. Garnett, and S. Amarsinghe. An infrastructure for adaptive
dynamic optimization. In Proceedings of the 1st International Symposium on
Code Generation and Optimization, San Francisco, CA, USA, March 2003.

[16] S. Carr and K. Kennedy. Compiler blockability of numerical algorithms. In
Proceedings of Supercomputing, pages 114–124, 1992.

[17] P. P. Chang, S. A. Mahlke, and W. W. Hwu. Using profile information to assist
classic code optimizations. Software–Practice & Experience, 21(12):1301–1321,
December 1991.

32

[18] S. Chatterjee, E. Parker, P. J. Hanlon, and A. R. Lebeck. Exact analysis of
the cache behavior of nested loops. In Proceedings of the ACM SIGPLAN 2001
Conference on Programming Language Design and Implementation, pages 286–
297, Snowbird, UT, USA, June 2001.

[19] Z. Chen, J. Dongarra, P. Luszczek, and K. Roche. Self adapting software for
numerical linear algebra and LAPACK for clusters. Technical Report UT-CS-03-
499, University of Tennessee, January 2003.

[20] K. Chow and Y. Wu. Feedback-directed selection and characterization of compiler
optimizations. In Second Workshop on Feedback-Directed Optimization, Haifa,
Israel, November 1999.

[21] Y. S. Chow, H. Robbins, and D. Siegmund. Great Expectations: The Theory of
Optimal Stopping. Houghton-Mifflin, Boston, MA, USA, 1971.

[22] K. D. Cooper, T. J. Harvey, D. Subramanian, and L. Torczon. Compilation order
matters. Technical Report –, Rice University, Houston, TX, USA, January 2002.

[23] K. D. Cooper, D. Subramanian, and L. Torczon. Adaptive optimizing compilers
for the 21st century. Journal of Supercomputing, 23(1):7–22, 2002.

[24] J. D. Darcy. Finding a fast quicksort implementation for Java, Winter 2002.
www.sonic.net/∼jddarcy/Research/cs339-quicksort.pdf.

[25] P. Diniz and M. Rinard. Dynamic feedback: An effective technique for adaptive
computing. In Proceedings of Programming Language Design and Implementation,
Las Vegas, Nevada, June 1997.

[26] E. D. Dolan and J. J. Moré. Benchmarking optimization software with perfor-
mance profiles. Mathematical Programming, 91:201–213, 2002.

[27] J. Dongarra, J. D. Croz, I. Duff, and S. Hammarling. A set of level 3 basic linear
algebra subprograms. ACM Trans. Math. Soft., 16(1):1–17, March 1990.

[28] J. Dongarra and V. Eijkhout. Self-adapting numerical software and automatic
tuning of heuristics. In Proceedings of the International Conference on Computa-
tional Science, Melbourne, Australia, June 2003.

[29] B. B. Fraguela, R. Doallo, and E. L. Zapta. Automatic analytic modeling for
the estimation of cache misses. In Proceedings of the International Conference
on Parallel Architectures and Compilation Techniques, pages 221–231, Newport
Beach, CA, USA, October 1999.

[30] J. D. Frens and D. S. Wise. Auto-blocking matrix-multiplication or tracking
BLAS3 performance from source code. In Proceedings of the 6th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 206–216,
July 1997.

[31] B. Frey. Graphical Models for Machine Learning and Digital Communications.
MIT Press, Boston, MA, USA, 1998.

[32] M. Frigo and S. Johnson. FFTW: An adaptive software architecture for the FFT.
In Proc. of the Int’l Conf. on Acoustics, Speech, and Signal Processing, Seattle,
WA, USA, May 1998.

[33] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache–oblivious
algorithms. In Proceedings of the 40th Annual Symposium on Foundations of
Computer Science, New York, NY, October 1999.

33

[34] K. S. Gatlin and L. Carter. Architecture-cognizant divide and conquer algorithms.
In Proceedings of Supercomputing, Portland, OR, USA, November 1999.

[35] A. Geist, W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, W. Saphir,
T. Skjellum, and M. Snir. MPI-2: Extending the Message-Passing Interface.
In Proceedings of the 2nd European Conference on Parallel Processing (Euro-
Par’96), Lyon, France, volume 1123,1124 of Lecture Notes in Computer Science,
pages 128–135. Springer-Verlag, Berlin, Germany, 1996. www.mpi-forum.org.

[36] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations: a compiler frame-
work for analyzing and tuning memory behavior. ACM Transactions on Program-
ming Languages and Systems, 21(4):703–746, 1999.

[37] K. Goto and R. van de Geijn. On reducing TLB misses in matrix multiplication.
Technical Report TR-2002-55, University of Texas at Austin, November 2002.

[38] S. L. Graham, P. B. Kessler, and M. K. McKusick. gprof: A call graph execution
profiler. SIGPLAN Notices, 17(6):120–126, June 1982.

[39] T. Granlund and R. Kenner. Eliminating branches using a superoptimizer and
the GNU C compiler. SIGPLAN Notices, 27(7):341–352, July 1992.

[40] J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A. van de Geijn. FLAME:
Formal Linear Algebra Methods Environment. ACM Transactions on Mathemat-
ical Software, 27(4), December 2001.

[41] J. W. Hong and H. T. Kung. I/O complexity: the red-blue pebble game. In
Proceedings of the 13th Annual ACM Symposium on Theory of Computing, pages
326–333, May 1981.

[42] E. N. Houstis, A. C. Catlin, J. R. Rice, V. S. Verykios, N. Ramakrishnan, and
C. E. Houstis. PYTHIA-II: A knowledge/database system for managing perfor-
mance data and recommending scientific software. ACM Transactions on Math-
ematical Software, 26(2):277–253, June 2000.

[43] S. Huss-Lederman, E. M. Jacobson, J. R. Johnson, A. Tsao, and T. Turnbull.
Implementation of Strassen’s algorithm for matrix multiplication. In Proceedings
of Supercomputing, August 1996.

[44] E.-J. Im and K. Yelick. Optimizing sparse matrix vector multiplication on SMPs.
In Proc. of the 9th SIAM Conf. on Parallel Processing for Sci. Comp., San An-
tonio, TX, USA, March 1999.

[45] M. I. Jordan. Why the logistic function? Technical Report 9503, MIT, 1995.

[46] R. Joshi, G. Nelson, and K. Randall. Denali: A goal-directed superoptimizer.
Technical Report 171, Compaq SRC, August 2001.

[47] B. Kagstrom, P. Ling, and C. V. Loan. GEMM-based level 3 BLAS: High-
performance model implementations and performance evaluation benchmark.
ACM Transactions on Mathematical Software, 24(3):268–302, 1998.

[48] T. Kistler and M. Franz. Continuous program optimization: a case study. ACM
Transactions on Programming Languages and Systems, 25(4):500–548, July 2003.

[49] T. Kisuki, P. M. Knijnenburg, M. F. O’Boyle, and H. Wijshoff. Iterative compi-
lation in program optimization. In Proceedings of the 8th International Workshop
on Compilers for Parallel Computers, pages 35–44, Aussois, France, 2000.

[50] D. Knuth. An empirical study of FORTRAN programs. Software—Practice and
Experience, 1(2):105–133, April–June 1971.

34

[51] A. N. Ko and J. A. Izaguirre. MDSimAid: Automatic optimization of fast elec-
trostatics algorithms for molecular simulations. In Proceedings of the Interna-
tional Conference on Computational Science, LNCS, Melbourne, Australia, 2003.
Springer.

[52] M. G. Lagoudakis and M. L. Littman. Algorithm selection using reinforcement
learning. In Proceedings of the 17th International Conference on Machine Learn-
ing, pages 511–518, Stanford, CA, June 2000.

[53] M. S. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance and op-
timizations of blocked algorithms. In Proceedings of the Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems, April 1991.

[54] M. Leone and R. K. Dybvig. Dynamo: A staged compiler architecture for dynamic
program optimization. Technical Report TR-490, Dept. of Computer Science,
Indiana University, September 1997.

[55] P. Liniker, O. Beckmann, and P. H. J. Kelly. Delayed evaluation, self-optimising
software components as a programming model. In Euro-Par, Paderborn, Ger-
many, August 2002.

[56] M. Lucks and I. Gladwell. Automated selection of mathematical software. ACM
Transactions on Mathematical Software, 18(1):11–34, March 1992.

[57] H. Massalin. Superoptimizer–a look at the smallest program. In Proceedings
of the 2nd International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 122–126, Palo Alto, CA, USA, 1987.

[58] J. D. McCalpin and M. Smotherman. Automatic benchmark generation for cache
optimization of matrix algorithms. In R. Geist and S. Junkins, editors, Proceedings
of the 33rd Annual Southeast Conference, pages 195–204. ACM, March 1995.

[59] K. S. McKinley, S. Carr, and C.-W. Tseng. Improving data locality with loop
transformations. ACM Transactions on Programming Languages and Systems,
18(4):424–453, July 1996.

[60] D. Mirkovic, R. Mahasoom, and L. Johnsson. An adaptive software library for
fast Fourier transforms. In Proceedings of the International Conference on Super-
computing, pages 215–224, Sante Fe, NM, USA, May 2000.

[61] N. Mitchell, L. Carter, and J. Ferrante. A modal model of memory. In Proceedings
of the International Conference on Computational Science, volume 2073 of LNCS,
pages 81–96, San Francisco, CA, May 2001. Springer.

[62] N. Mitchell, K. Hogstedt, L. Carter, and J. Ferrante. Quantifying the multi-
level nature of tiling interactions. International Journal of Parallel Programming,
26(6):641–670, 1998.

[63] A. Nisbet. GAPS: Iterative feedback directed parallelization using genetic algo-
rithms. In Proceedings of the Workshop on Profile and Feedback Directed Compi-
lation, Paris, France, June 1998.

[64] G. E. Noether. Note on the Kolmogorov statistic in the discrete case. Metrika,
7:115–116, 1963.

[65] J. H. Olsen and S. C. Skov. Cache-oblivious algorithms in practice. Master’s
thesis, University of Copenhagen, Copehagen, Denmark, 2002.

35

[66] D. Parello, O. Temam, and J.-M. Verdun. On increasing architecture awareness
in program optimizations to bridge the gap between peak and sustained proces-
sor performance—matrix multiply revisited. In Proceedings of the IEEE/ACM
Conference on Supercomputing, Baltimore, MD, USA, November 2002.

[67] E. Petrank and D. Rawitz. The hardness of cache conscious data placement. In
Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on the Principles
of Programming Languages, pages 101–112, Portland, OR, USA, January 2002.
ACM Press.

[68] G. Pike and P. Hilfinger. Better tiling and array contraction for compiling scien-
tific programs. In Proceedings of the IEEE/ACM Conference on Supercomputing,
Baltimore, MD, USA, November 2002.

[69] J. Platt. Fast training of support vector machines using sequential minimal opti-
mization. In Advances in Kernel Methods — Support Vector Learning, Jan 1999.

[70] W. Pugh and T. Shpeisman. Generation of efficient code for sparse matrix com-
putations. In Proceedings of the 11th Workshop on Languages and Compilers for
Parallel Computing, LNCS, August 1998.

[71] M. Püschel, B. Singer, M. Veloso, and J. M. F. Moura. Fast automatic generation
of DSP algorithms. In Proceedings of the International Conference on Compu-
tational Science, volume 2073 of LNCS, pages 97–106, San Francisco, CA, May
2001. Springer.

[72] N. Ramakrishnan and R. E. Valdés-Pérez. Note on generalization in experimen-
tal algorithmics. ACM Transactions on Mathematical Software, 26(4):568–580,
December 2000.

[73] J. R. Rice. The algorithm selection problem. Advances in Computers, 15:65–118,
1976.

[74] N. G. Santiago, D. T. Rover, and D. Rodriguez. A statistical approach for the
analysis of the relation between low-level performance information, the code, and
the environment. In Proceedings of the ICPP 4th Workshop on High Performance
Scientfic and Engineering Computing with Applications, pages 282–289, Vancou-
ver, British Columbia, Canada, August 2002.

[75] J. E. Savage. Extending the Hong-Kung model to memory hierarchies. In D.-Z.
Du and M. Li, editors, Computing and Combinatorics, volume LNCS 959, pages
270–281, 1995.

[76] D. A. Schwartz, R. R. Judd, W. J. Harrod, and D. P. Manley. VSIPL 1.0 API,
March 2000. www.vsipl.org.

[77] J. G. Siek and A. Lumsdaine. A rational approach to portable high performance:
the Basic Linear Algebra Instruction Set (BLAIS) and the Fixed Algorithm Size
Template (fast) library. In Proceedings of ECOOP, 1998.

[78] M. D. Smith. Overcoming the challenges to feedback-directed optimization. In
Proceedings of the ACM SIGPLAN Workshop on Dynamic and Adaptive Compi-
lation and Optimization (Dynamo), Boston, MA, USA, January 2000.

[79] A. J. Smola and B. Schölkopf. A tutorial on support vector regression. Techni-
cal Report NC2-TR-1998-030, European Community ESPRIT Working Group in
Neural and Computational Learning Theory, 1998. www.neurocolt.com.

36

[80] M. Stephenson, S. Amarasinghe, M. Martin, and U.-M. O’Reilly. Meta optimiza-
tion: improving compiler heuristics with machine learning. In Proceedings of the
ACM Conference on Programming Language Design and Implementation, San
Diego, CA, USA, June 2003.

[81] P. Stodghill. A Relational Approach to the Automatic Generation of Sequential
Sparse Matrix Codes. PhD thesis, Cornell University, August 1997.

[82] M. Thottethodi, S. Chatterjee, and A. R. Lebeck. Tuning Strassen’s matrix mul-
tiplication for memory efficiency. In Proceedings of Supercomputing ’98, Orlando,
FL, November 1998.

[83] S. Toledo. Locality of reference in LU decomposition with partial pivoting. SIAM
Journal on Matrix Analysis and Applications, 18(4):1065–1081, 1997.

[84] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. I. August. Compiler
optimization-space exploration. In Proceedings of the International Symposium
on Code Generation and Optimization, pages 204–215, San Francisco, CA, USA,
March 2003.

[85] C. Tăpus, I.-H. Chung, and J. K. Hollingsworth. Active Harmony: Towards
automated performance tuning. In Proceedings of the IEEE/ACM Conference on
Supercomputing, Baltimore, MD, USA, November 2002.

[86] S. S. Vadhiyar, G. E. Fagg, and J. Dongarra. Automatically tuned collective
operations. In Proceedings of Supercomputing 2000, Dallas, TX, USA, November
2000.

[87] P. van der Mark, E. Rohou, F. Bodin, Z. Chamski, and C. Eisenbeis. Using
iterative compilation for managing software pipeline-unrolling trade-offs. In Pro-
ceedings of the 4th International Workshop on Compilers for Embedded Systems,
St. Goar, Germany, September 1999.

[88] V. N. Vapnik. Statistical Learning Theory. John Wiley and Sons, Inc., 1998.

[89] T. Veldhuizen. Arrays in Blitz++. In Proceedings of ISCOPE, volume 1505 of
LNCS. Springer-Verlag, 1998.

[90] T. L. Veldhuizen and D. Gannon. Active Libraries: Rethinking the roles of
compilers and libraries. In Proceedings of the SIAM Workshop on Object Oriented
Methods for Interoperable Scientific and Engineering Computing, Philadelphia,
PA, USA, 1998. SIAM.

[91] M. J. Voss and R. Eigenmann. ADAPT: Automated De-coupled Adaptive Pro-
gram Transformation. In Proceedings of the International Conference on Parallel
Processing, Toronto, Canada, August 2000.

[92] R. Vuduc, J. W. Demmel, K. A. Yelick, S. Kamil, R. Nishtala, and B. Lee. Perfor-
mance optimizations and bounds for sparse matrix-vector multiply. In Proceedings
of Supercomputing, Baltimore, MD, USA, November 2002.

[93] R. C. Whaley, A. Petitet, and J. Dongarra. Automated empirical optimizations
of software and the ATLAS project. Parallel Computing, 27(1):3–25, 2001.

[94] D. S. Wise, J. D. Frens, Y. Gu, and G. A. Alexander. Language support for
Morton-order matrices. In Proceedings of the 8th ACM SIGPLAN Symposium on
Principles and Practices of Parallel Programming, pages 24–33, Snowbird, UT,
USA, 2001. ACM Press.

37

[95] M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In Proceedings
of the ACM SIGPLAN ’91 Conference on Programming Language Design and
Implementation, June 1991.

[96] Q. Yi, V. Adve, and K. Kennedy. Transforming loops to recursion for multi-level
memory hierarchies. In Proceedings of the ACM SIGPLAN 2000 Conference on
Programming Language Design and Implementation, pages 169–181, Vancouver,
BC Canada, June 2000.

[97] K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzaran, D. Padua,
K. Pingali, P. Stodghill, and P. Wu. A comparison of empirical and model-driven
optimization. In Proceedings of the ACM Conference on Programming Language
Design and Implementation, San Diego, CA, USA, June 2003.

38

0

0.0751

0.1502

0.2252

0.3003

0.3754

0.4505

0.5255

0.6006

0.6757

0.7508

0.8258

0.9009

Fraction of P
eak

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
0

50

100

150

200

250

300

350

400

450

500

550

600

matrix dimension (n)

P
er

fo
rm

an
ce

 (M
flo

p/
s)

Dense Matrix Multiply Performance (Square n×n Operands) [333 MHz Sun Ultra 2i]

Vendor
Reg/insn−level + cache tiling + copy opt.
Cache tiling + copy opt.
Reference

0

0.0625

0.125

0.1875

0.25

0.3125

0.375

0.4375

0.5

0.5625

0.625

0.6875

0.75

0.8125

0.875

Fraction of P
eak

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

matrix dimension (n)

P
er

fo
rm

an
ce

 (M
flo

p/
s)

Dense Matrix Multiply Performance (Square n×n Operands) [800 MHz Intel Pentium III−mobile]

Vendor
Goto−BLAS
Reg/insn−level + cache tiling + copy
Cache tiling + copy opt.
Reference

Figure 1: Performance (Mflop/s) of n × n matrix multiply for a workstation
based on the Sun Ultra 2i processor (top) and an 800 MHz Mobile Pentium III
processor (bottom). The theoretical peaks are 667 Mflop/s and 800 Mflop/s,
respectively. We include values of n that are powers of 2. While copy optimiza-
tion (shown by cyan squares) improves performance significantly compared to
the reference (purple solid line), register and instruction level optimizations (red
triangles) are critical to approaching the performance of hand-tuned code.

39

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−4

10−3

10−2

10−1

100

fraction of peak machine speed

fra
ct

io
n

of
 im

pl
em

en
ta

tio
ns

Variations in Performance across Platforms (Dense Matrix Multiply)

Sun Ultra 1/167
Sun Ultra 2i/333
Intel Pentium III−M/800
Intel Pentium 4/1500
Intel Itanium/800
Intel Itanium 2/900
IBM Power 2/133
IBM PowerPC 604e/175
IBM Power4/1.3GHz
MIPS R10k/175
DEC Alpha 21164/450 (T3E)

65

115

165

215

265

315

365

415

465

515

565

615

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

m
0

n 0

Needle in a Haystack [k
0
 = 1; Sun Ultra 2i/333]

Figure 2: (Top) The fraction of implementations (y-axis) attaining at least a
given level of peak machine speed (x-axis) on six platforms. The distributions
of performance vary dramatically across platforms. (Bottom) A 2-D slice of
the 3-D register tile space on the Sun Ultra 2i/333 platform. Each square
represents an implementation (m0×1×n0 tile) shaded by performance (color-
scale in Mflop/s). The fastest occurs at (m0 = 2, n0 = 3), having achieved 615
Mflop/s out of a 667 Mflop/s peak. The dark region extending to the upper-
right has been pruned from the search. Finding the optimal point in these highly
irregular spaces can be like looking for a “needle in a haystack.”

40

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

ε, Proximity to best

α,
 U

nc
er

ta
in

ty

Fraction of space searched [Intel Itanium 2 900 MHz]

0.101

0.101

0.101

0.102

0.102

0.105

0.105

0.11

0.11

0.125

0.125

0.15

0.15

0.2
0.30.4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

ε

α

Proximity to best [Intel Itanium 2 900 MHz]

0.02

0.025

0.025

0.0255

0.0255

Figure 3: Average stopping time (top), as a fraction of the total search space,
and proximity to the best performance (bottom), as the difference between nor-
malized performance scores, on the Intel Itanium 2/900 platform as functions
of the tolerance parameters ε (x-axis) and α (y-axis).

41

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

ε, Proximity to best

α,
 U

nc
er

ta
in

ty

Fraction of space searched [DEC Alpha 21164/450 MHz]
0.10.1050.11

0.125

0.15

0.15

0.2

0.2

0.25

0.25

0.25

0.3

0.3

0.3

0.4

0.4

0.4

0.5

0.5

0.5

0.6

0.6

0.6

0.7

0.7

0.8

0.8
0.9

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

ε

α

Proximity to best [DEC Alpha 21164/450 MHz]
0.01 0.03

0.05

0.05

0.07

0.07

0.07

0.09

0.09

0.09

0.15

0.15

Figure 4: Average stopping time (top), as a fraction of the total search space,
and proximity to the best performance (bottom), as the difference between nor-
malized performance scores, on the DEC Alpha 21164/450 (Cray T3E node)
platform as functions of the tolerance parameters ε (x-axis) and α (y-axis).

42

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

ε, Proximity to best

α,
 U

nc
er

ta
in

ty

Fraction of space searched [Sun Ultra 2i/333]

0.105

0.105

0.11

0.11

0.125

0.125

0.125

0.15

0.15

0.2

0.2

0.25

0.25

0.30.4
0.5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

ε

α

Proximity to best [Sun Ultra 2i/333]

0.02
0.025

0.03

0.03

0.035

0.035

Figure 5: Average stopping time (top), as a fraction of the total search space,
and proximity to the best performance (bottom), as the difference between nor-
malized performance scores, on the Sun Ultra 2i/333 platform as functions of
the tolerance parameters ε (x-axis) and α (y-axis).

43

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

ε, Proximity to best

α,
 U

nc
er

ta
in

ty

Fraction of space searched [Intel Pentium III−M 800 MHz]

0.105

0.105

0.105

0.11

0.11

0.11

0.125
0.125

0.125

0.15

0.15

0.15

0.2

0.2

0.25

0.25

0.3

0.3

0.4

0.4

0.5
0.6

0.7

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

ε

α

Proximity to best [Intel Pentium III−M 800 MHz]

0.03
0.04

0.05

0.05

0.0525

0.0525

0.055

0.055

Figure 6: Average stopping time (top), as a fraction of the total search space,
and proximity to the best performance (bottom), as the difference between nor-
malized performance scores, on the Intel Mobile Pentium III/800 platform as
functions of the tolerance parameters ε (x-axis) and α (y-axis).

44

x

x(2)

(1)

a1 fastest

a2 fastest

a3 fastest

K

N

A

B

CM

K

Figure 7: (Left) Geometric interpetation of the run-time selection problem: A
hypothetical 2-D input space in which one of three algorithms runs fastest in
some region of the space. Our goal is to partition the input space by algo-
rithm. (Right) The matrix multiply operation C ← C + AB is specified by
three dimensions, M , K, and N .

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

800

matrix dimensions M,N (equal)

m
at

rix
 d

im
en

si
on

 K

Which Algorithm is Fastest? (500 points)

Figure 8: A “truth map” showing the regions in which particular implementa-
tions are fastest. The points shown represent a 500-point sample of a 2-D slice
(specifically, M = N) of the input space. An implementation with only register
tiling is shown with a red o; one with L1 and register tiling is shown with a
green *; one with register, L1, and L2 tiling is shown with a blue x. The baseline
predictor always chooses the blue algorithm. The average misclassification rate
for this baseline predictor is 24.5%.

45

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

800

matrix dimensions M,N (equal)

m
at

rix
 d

im
en

si
on

 K

Regression Predictor

Figure 9: Sample classification results for the regression predictor on the same
500-point sample shown in Figure 8. The average misclassification rate for this
predictor was 34%.

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

800

matrix dimensions M,N (equal)

m
at

rix
 d

im
en

si
on

 K

Separating Hyperplanes Predictor

Figure 10: Sample classification results for the separating hyperplanes predictor
on the same 500-point sample shown in Figure 8. The average misclassification
rate for this predictor was 31%.

46

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

800

matrix dimensions M,N (equal)

m
at

rix
 d

im
en

si
on

 K

Support−Vector Predictor

Figure 11: Sample classification results for the support vector predictor on the
same 500-point sample shown in Figure 8. The average misclassification rate
for this predictor was 12%.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

10−3

10−2

10−1

100

execution time slowdown

fra
ct

io
n

of
 p

re
di

ct
io

ns

How Severe are the Mispredictions?

Baseline [misclass=24.5%]
Sep. Hyperplanes [31.6%]
Regression [34.5%]
SVM [12.0%]

Figure 12: Each line corresponds to the distribution of slow-downs due to mis-
predictions on a 1936 point sample for a particular predictor. A point on a
given line indicates what fraction of predictions (y-axis) resulted in more than
a particular slow-down (x-axis). Note the logarthmic scale on the y-axis.

47

	1 Introduction
	2 The Case for Searching
	2.1 Factors influencing matrix multiply performance
	2.2 A needle in a haystack: the need for search

	3 A Statistical Early Stopping Criterion
	3.1 A formal model and stopping criterion
	3.1.1 Computing the max-distribution exactly and approximately
	3.1.2 Implementing an early stopping procedure

	3.2 Results and discussion using PHiPAC data

	4 Statistical Classifiers for Run-time Selection
	4.1 A formal framework
	4.2 Parametric data model: linear regression modeling
	4.3 Parametric geometric model: separating hyperplanes
	4.4 Nonparametric geometric model: support vectors
	4.5 Results and discussion with PHiPAC data
	4.5.1 Experimental setup
	4.5.2 Results and discussion

	5 Related Work: A Survey of Empirical Search-Based Tuning
	5.1 Kernel-centric empirical search-based tuning
	5.1.1 Dense and sparse linear algebra
	5.1.2 Digital signal processing
	5.1.3 Other kernel domains

	5.2 Compiler-centric empirical search-based tuning
	5.2.1 Superoptimizers
	5.2.2 Profile-guided compilation and iterative compilation
	5.2.3 Self-tuning compilers
	5.2.4 Dynamic (run-time) optimization

	6 Conclusions and Future Directions

