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Abstract. We improve the performance of sparse matrix-vector mul-
tiplication (SpMV) on modern cache-based superscalar machines when
the matrix structure consists of multiple, irregularly aligned rectangular
blocks. Matrices from finite element modeling applications often have this
structure. We split the matrix, A, into a sum, A1 + A2 + . . . + As, where
each term is stored in a new data structure we refer to as unaligned
block compressed sparse row (UBCSR) format . A classical approach
which stores A in a block compressed sparse row (BCSR) format can
also reduce execution time, but the improvements may be limited be-
cause BCSR imposes an alignment of the matrix non-zeros that leads to
extra work from filled-in zeros. Combining splitting with UBCSR reduces
this extra work while retaining the generally lower memory bandwidth
requirements and register-level tiling opportunities of BCSR. We show
speedups can be as high as 2.1× over no blocking, and as high as 1.8×
over BCSR as used in prior work on a set of application matrices. Even
when performance does not improve significantly, split UBCSR usually
reduces matrix storage.

1 Introduction

The performance of diverse applications in scientific computing, economic mod-
eling, and information retrieval, among others, is dominated by sparse matrix-
vector multiplication (SpMV), y ← y+A ·x, where A is a sparse matrix and x, y
are dense vectors. Conventional implementations using compressed sparse row
(CSR) format storage usually run at 10% of machine peak or less on uniproces-
sors [16]. Higher performance requires a compact data structure and appropriate
code transformations that best exploit properties of both the sparse matrix—
which may be known only at run-time—and the underlying machine architec-
ture. Compared to dense kernels, sparse kernels incur more overhead per non-zero
matrix entry due to extra instructions and indirect, irregular memory accesses.
We and others have studied techniques for selecting good data structures and for
automatically tuning the resulting implementations (Section 6). Tuned SpMV
can in the best cases achieve 31% of peak and 4× speedups over CSR [6, 16, 18].

The best performance occurs for the class of applications based on finite ele-
ment method (FEM) modeling, but within this class there is a performance gap
between matrices consisting primarily of dense blocks of a single size, uniformly



aligned, and matrices whose structure consists of multiple block sizes with irregu-
lar alignment. For the former class, users often rely on so-called block compressed
sparse row (BCSR) format, BCSR, which stores A as a sequence of fixed-size r×c
dense blocks. BCSR uses one integer index of storage per block instead of one
per non-zero as in CSR, reducing the index storage by 1

rc . Moreover, fixed-sized
blocks enable unrolling and register-level tiling of each block-multiply.

However, two difficulties arise in practice. First, the best r×c varies both by
matrix and by machine [16], motivating automatic tuning. Secondly, speedup is
mitigated by fill-in of explicit zeros. We observed cases in which BCSR reduces
the execution time of SpMV to 2

3 that of CSR (1.5× speedup) while also requir-
ing storage of 50% additional explicit zero entries [16]. To reduce this work and
achieve still better speedups, this paper considers simultaneously (a) splitting A
into the sum A = A1 + · · · + As, where each Ai may be stored with a different
block size, and (b) storing each Ai in a unaligned block compressed sparse row
(UBCSR) format that relaxes both row and column alignments of BCSR, at
the cost of indirection to x and y instead of just x as in BCSR and CSR.

We recently compared BCSR-based SpMV to CSR on 8 platforms and 44
matrices, and identified 3 classes of matrices [16, Chap. 4]: FEM matrices 2–9,
whose structure consists essentially of a single block size uniformly aligned, FEM
matrices 10–17, whose structure contains mixed block structure, and matrices
from other applications (e.g., economic modeling, linear programming).3 The
median speedups for FEM 2–9 were between 1.1× and 1.54× higher than the
median speedups for FEM 10–17. Split UBCSR reduces this gap, running in as
little as half the time of CSR (2.1× speedup) and 5

9 the time of BCSR (1.8×
speedup). Moreover, splitting can significantly reduce matrix storage. We are
making our techniques available in OSKI [17], a library of automatically tuned
sparse matrix kernels that builds on the Sparsity framework [6, 5].

This paper summarizes our recent technical report [19]. We will refer the
reader there for more detail when appropriate.

2 Characterizing Variable Block Structure in Practice

We use variable block row (VBR) format [12, 11], which logically partitions rows
and columns into block rows and columns, to distinguish the dense block sub-
structure of FEM Matrices 10–17 from 2–9 in two ways:4

– Unaligned blocks: Consider any r×c dense block starting at position (i, j)
in an m×n matrix, where 0 ≤ i < m and 0 ≤ j < n. BCSR typically
assumes a uniform alignment constraint, i mod r = j mod c = 0. Relaxing
the column constraint so that j mod c is any value less than c has yielded
some improvements in practice [2]. However, most non-zeros of Matrices 12
and 13 lie in blocks of the same size, with i mod r and j mod c distributed

3 We omit test matrix 1, a dense synthetic matrix stored in sparse format.
4 We treat Matrix 11, which contains a mix of blocks and diagonals, using other

techniques [16, Chap. 5]; Matrices 14 and 16 are eliminated due to their small size.



No. of Dominant block sizes
# Matrix Dimension Non-zeros (% of non-zeros)

10 ct20stif 52329 2698463 6×6 (39%)
Engine block 3×3 (15%)

12 raefsky4 19779 1328611 3×3 (96%)
Buckling problem

13 ex11 16614 1096948 1×1 (38%)
3D flow 3×3 (23%)

15 vavasis3 41092 1683902 2×1 (81%)
2D partial differential equation 2×2 (19%)

17 rim 22560 1014951 1×1 (75%)
Fluid mechanics problem 3×1 (12%)

A bmw7st 1 141347 7339667 6×6 (82%)
Car body analysis

B cop20k m 121192 4826864 2×1 (26%), 1×2 (26%)
Accelerator cavity design 1×1 (26%), 2×2 (22%)

C pwtk 217918 11634424 6×6 (94%)
Pressurized wind tunnel

D rma10 46835 2374001 2×2 (17%)
Charleston Harbor model 3×2 (15%), 2×3 (15%)

4×2 (9%), 2×4 (9%)

E s3dkq4m2 90449 4820891 6×6 (99%)
Cylindrical shell

Table 1. Variable block test matrices. Problem sources are summarized else-
where [16, Appendix B].

uniformly over values up to r − 1 and c − 1, respectively. One goal of our
UBCSR is to relax the row alignment as well.

– Mixtures of “natural” block sizes: Matrices 10, 15, and 17 possess a
mix of block sizes when viewed in VBR format. This motivates the decom-
position, A = A1 + A2 + · · ·+ As, where each term Ai consists of the subset
of blocks of a particular size. Each term can then be tuned separately.

These observations apply to the matrices listed in Table 1, which include a
subset of the matrices referred to previously as Matrices 10–17, and 5 additional
matrices (labeled Matrices A–E) from other FEM applications.

VBR can reveal dense block substructure. Consider storage of Matrix 12 in
VBR format, using a CSR-to-VBR conversion routine available in the SPARSKIT
library [12]. This routine partitions the rows by looping over rows in order, start-
ing at the first row, and placing rows with identical non-zero structure in the
same block. The same procedure is used to partition the columns, with the result
shown in Figure 1 (top). The maximum block size in VBR turns out to be 3×3,
with 96% of non-zeros stored in such blocks (Figure 1 (bottom-left), where a la-
bel of ‘0’ indicates that the fraction is zero when rounded to two digits but there
is at least 1 block at the given size). Moreover, these blocks are not uniformly
aligned on row boundaries as assumed by BCSR. Figure 1 (bottom-right) shows
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Fig. 1. Logical grid (block partitioning) after greedy conversion to variable
block row (VBR) format: Matrix 12-raefsky4. (Top) Partitioning after con-
version to VBR format. (Bottom-left) 96% of the non-zero blocks are in 3×3 blocks.
(Bottom-right) The 3×3 blocks have varying alignments.

the distributions of i mod r and j mod c, where (i, j) is the starting position in A
of each 3×3 block, and the top-leftmost entry of A is A(0, 0). The first row index
of a given block row can start on any alignment, with 26% of block rows having
i mod r = 1, and the remainder split equally between 0 and 2. This observation
motivates UBCSR which allows flexible alignments.

We summarize the variable block structure of the matrix test set used in this
paper in the rightmost column of Table 1. This table includes a short list of
dominant block sizes after conversion to VBR format, along with the fraction of
non-zeros for which those block sizes account. The reader may assume that the
dominant block size is also irregularly aligned except in the case of Matrix 15.
More information on the distribution of non-zeros and block size alignments
appears elsewhere [16, Appendix F].

3 A Split Unaligned Block Matrix Representation

We consider an SpMV implementation which



1. Converts (or stores) the matrix A first in VBR format, allowing for padding
of explicit zeros to affect the block size distribution.

2. Splits A into a sum of s terms, A = A1+· · ·+As, according to the distribution
of block sizes observed when A is in VBR.

3. Stores each term Ai in UBCSR format, a modification of BCSR which relaxes
row and column alignment.

The use of VBR is a heuristic for identifying block structure. Finding the max-
imum number of non-overlapping dense blocks in a matrix is NP-Complete [15],
so there is considerable additional scope for analyzing dense block structure.

Though useful for characterizing the structure (Section 2), VBR yields poor
SpMV performance. The innermost loops, which carry out multiplication by an
r×c block, cannot be unrolled in the same way as BCSR because c may change
from block to block within a block row. VBR performance falls well below that
of alternative formats on uniprocessors [16, Chap. 2].

This section very briefly summarizes a recent technical report [19, Sec. 3].

3.1 Converting to variable block row format with fill

The default SPARSKIT CSR-to-VBR conversion routine only groups rows (or
columns) when the non-zero patterns between rows (columns) match exactly.
However, this convention can be too strict on some matrices in which it would
be profitable to fill in zeros, just as with BCSR. We instead use the following
measure of similarity between columns (or equivalently, rows). Let uT and vT be
two row (or u, v for column) vector patterns, i.e., whose non-zero elements are
equal to 1. Let ku and kv be the number of non-zeros in u and v, respectively.
Then we use S(uT , vT ) to measure the similarity between uT and vT :

S(uT , vT ) =
uT· v

max(ku, kv)
(1)

This function is symmetric, equals 0 when uT , vT have no non-zeros in common,
and equals 1 when uT and vT have identical patterns. Our partitioning procedure
greedily examines rows sequentially, starting at row 0, computing S between the
first row of the current block row and the candidate row. If the similarity exceeds
a specified threshold, θ, the row is added to the current block row. Otherwise, the
procedure starts a new block row. We partition columns similarly if the matrix
pattern is non-symmetric, and otherwise use the same partition for rows and
columns. We fill in explicit zeros to make the blocks conform to the partitions.

At θ = 0.7, Matrix 13 has 81% of non-zeros in 3×3 blocks, instead of just
23% when θ = 1 (Table 1). Moreover, the fill ratio is just 1.01: a large blocks
become available at the cost of only a 1% increase in flops.

3.2 Splitting the non-zero pattern

Given the distribution of work (i.e., non-zero elements) over block sizes for a
matrix in VBR at a given threshold θ, given the desired number of splittings s,



and given a list of block sizes {r1×c1, . . . , rs−1×cs−1}, we greedily extract blocks
from the VBR representation of A to form a splitting A = A1 + · · ·+ As where
the terms are structurally disjoint and each Ai is stored in ri×ci UBCSR format
(see Section 3.3) and As is stored in CSR format. We use a greedy splitting
procedure (see the full report [19] in which the order of the block sizes specified
matters.

3.3 An unaligned block compressed sparse row format

We handle unaligned block rows in UBCSR by simply augmenting the usual
BCSR data structure with an additional array of row indices Arowind such that
Arowind[I] contains the starting index of block row I. Each block-multiply is
fully unrolled as it would be for BCSR.

4 Experimental Methods

The split UBCSR implementation of SpMV has the following parameters: the
similarity threshold θ which controls fill, the number of splitting terms s, and
the block sizes for all terms, r1×c1, . . . , rs×cs. Given a matrix and machine, we
select these parameters by a constrained empirical search procedure, described
precisely in the technical report [19]. This procedure is not completely exhaus-
tive, but could examine up to roughly 250,000 implementations for a given ma-
trix depending on the block size distribution. However, fewer than 10,000 were
examined in all the cases in Table 1.

Nevertheless, any such an exhaustive search is generally not practical at
run-time, owing to the cost of conversion (between 5–40 SpMVs [16]). While
automated methods exist for selecting a block size in the BCSR case [2, 6, 16,
18], none exist for the split UBCSR case. Thus, our results (Section 5) are an
empirical upper-bound on how well we expect to be able to do.

5 Results and Discussion

The split UBCSR implementation of Section 3 often improves performance rel-
ative to a traditional register-tiled BCSR implementation, as we show for the
matrices in Table 1 and on four hardware platforms. When performance does
not improve significantly, we may still reduce the overall storage.

We are mainly interested in comparing the best split UBCSR implementation
(see Section 4) against the best BCSR implementation chsen by by exhaustively
searching all block sizes up to 12×12, as done in prior work [6, 16, 18]. We also
sometimes refer to the BCSR implementation as the register blocking implemen-
tation following the convention of earlier work. We summarize the 3 main con-
clusions of our technical report as follows. “Speedups” compare actual execution
time, and summary statistics (minimum, maximum, and median speedups) are
taken with respect to the matrices and shown in figures by end- and mid-points
of an arrow. The full report shows data for each matrix and platform [19].
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Finding 1: By relaxing block row alignment using UBCSR storage, it is pos-
sible to approach the performance seen on Matrices 2–9. Figure 2 shows split
UBCSR performance as a fraction of median BCSR performance taken over
Matrices 2–9. We also show statistics for BCSR only and reference implemen-
tations. The median fraction achieved by splitting exceeds the median fraction
achieved by BCSR on all but the Itanium 2. On the Pentium III-M and Power4,
the median fraction of splitting exceeds the maximum of BCSR only, demon-
strating the potential utility of splitting and the UBCSR format. The maximum
fraction due to splitting slightly exceeds 1 on all platforms.

Finding 2: Median speedups relative to the reference performance range from
1.26× (Ultra 2i) up to 2.1× (Itanium 2). Figure 3 (left) compares the speedups
of (a) splitting over BCSR (blue solid diamonds), (b) BCSR over the reference
(green solid circles), and (c) splitting over the reference (red solid squares).
Splitting is at least as fast as BCSR on all but the the Itanium 2 platform.
Median speedups, taken over the matrices in Table 1 and measured relative to
the reference performance, range from 1.26× (Ultra 2i) up to 2.1× (Itanium 2).
Relative to BCSR, median speedups are relatively modest, ranging from 1.1–
1.3×. However, these speedups can be as much as 1.8× faster.

Finding 3: Splitting can lead to a significant reduction in total matrix stor-
age. The compression ratio of splitting over the reference is the size of the
reference (CSR) data structure divided by the size of the split+UBCSR data
structure. We summarize the compression ratios in Figure 3 (right). The median
compression ratios compared to the reference are between 1.26–1.3×. Compared
to BCSR, the compression ratios of splitting can be as high as 1.56×.

The asymptotic storage for CSR is roughly 1.5 doubles per non-zero when
the number of integers per double is 2 [16, Chap. 3]. When abundant dense
blocks exist, the storage decreases toward a lower limit of 1 double per non-zero.
Relative to the reference, the median compression ratio for splitting ranges from
1.24 to 1.3, but can be as high as 1.45, which is close to this limit.

6 Related Work

The inspiration for this study is recent work on splitting by Geus and Röllin [4],
Pinar and Heath [10], and Toledo [14], and the performance gap observed in
prior work [6, 18, 5]. Geus and Röllin explore up to 3-way splittings based on
row-aligned BCSR format. (The last splitting term in their implementations is
also fixed to be CSR, as in our work.) Pinar and Heath examine 2-way splittings
where the first term is 1×c format and the second in 1×1. Toledo also considers
2-way splittings and block sizes up to 2×2, as well as low-level tuning techniques
(e.g., prefetching) to improve memory bandwidth. The main distinction of this
paper is the relaxed row-alignment of UBCSR.

Split UBCSR can be combined with other techniques that improve register-
level reuse and reuse of the matrix entries, including multiplication by multi-
ple vectors where 7× speedups over CSR are possible [5, 1]. Exploiting numer-



ical symmetry with BCSR storage yields speedups as high as 2.8× over non-
symmetric CSR, 2.1× over non-symmetric BCSR, and reduces storage [7].

Matrices 18–44 of the Sparsity benchmark suite largely remain difficult,
though they should be amenable to cache-level blocking in which the matrix is
stored as a collection of smaller, disjoint rectangular [9, 5] (or even diagonal [13])
blocks to improve temporal access to elements of x.

Better low-level tuning of the CSR SpMV implementation may also be pos-
sible. Recent work on low-level tuning of SpMV by unroll-and-jam (Mellor-
Crummey, et al. [8]), software pipelining (Geus and Röllin [4]), and prefetching
(Toledo [14]) are promising starting points. On the vector Cray X1, just one ad-
ditional permutation of rows in CSR, with no other data reorganization, yields
order of magnitude improvements [3].

For additional related references, see our full report [19].

7 Conclusions and Future Work

This paper shows that it is possible to extend the classical BCSR format to
handle matrices with irregularly aligned and mixed dense block substructure,
thereby reducing the gap between various classes of FEM matrices. We are
making this new split UBCSR data structure available in the Optimized Sparse
Kernel Interface (OSKI), a library of automatically tuned sparse matrix kernels
that builds on Sparsity, an earlier prototype [17, 6].

However, our results are really only empirical bounds on what may be possible
since they are based on exhaustive search over split UBCSR’s tuning parameters
(Section 4). We are pursuing effective and cheap heuristics for selecting these
parameters. Our data already suggest the form this heuristic might take. One
key component is a cheap estimator of the non-zero distributions over block sizes,
which we measured in this paper exactly using VBR. This estimator would be
similar to those proposed in prior work for estimating fill in the BCSR case [6,
16], and would suggest the number of splittings and candidate block sizes. Earlier
heuristic models for the BCSR case, which use benchmarking data to characterize
the machine-specific performance at each block size, could be extended to the
UBCSR case and combined with the estimation data [2, 6, 16].

We are also pursuing combining split UBCSR with other SpMV optimizations
surveyed in Section 6, including symmetry, multiple vectors, and cache blocking.
In the case of cache blocking, CSR is often used as an auxiliary data structure;
replacing the use of CSR with the 1×1 UBCSR data structure itself could reduce
some of the row pointer overhead when the matrix is very sparse.
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