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Abstract

We present an auto-tuning approach to optimize ap-
plication performance on emerging multicore architec-
tures. The methodology extends the idea of search-
based performance optimizations, popular in linear al-
gebra and FFT libraries, to application-specific com-
putational kernels. Our work applies this strategy to
a lattice Boltzmann application (LBMHD) that histor-
ically has made poor use of scalar microprocessors due
to its complex data structures and memory access pat-
terns. We explore one of the broadest sets of multicore
architectures in the HPC literature, including the In-
tel Clovertown, AMD Opteron X2, Sun Niagara2, STI
Cell, as well as the single core Intel Itanium2. Rather
than hand-tuning LBMHD for each system, we develop
a code generator that allows us identify a highly opti-
mized version for each platform, while amortizing the
human programming effort. Results show that our auto-
tuned LBMHD application achieves up to a 14× im-
provement compared with the original code. Addition-
ally, we present detailed analysis of each optimization,
which reveal surprising hardware bottlenecks and soft-
ware challenges for future multicore systems and appli-
cations.

1 Introduction

The computing revolution towards massive on-chip
parallelism is moving forward with relatively little con-
crete evidence on how to best to use these technologies
for real applications [1]. Future high-performance com-
puting (HPC) machines will almost certainly contain
multicore chips, likely tied together into (multi-socket)
shared memory nodes as the machine building block.
As a result, applications scientists must fully harness
intra-node performance in order to effectively lever-
age the enormous computational potential of emerging

multicore-based supercomputers. Thus, understanding
the most efficient design and utilization of these systems,
in the context of demanding numerical simulations, is of
utmost priority to the HPC community.

In this paper, we present an application-centric ap-
proach for producing highly optimized multicore imple-
mentations through a study of LBMHD — a mesoscale
algorithm for simulating homogeneous isotropic tur-
bulence in dissipative magnetohydrodynamics. Al-
though LBMHD is numerically-intensive, sustained per-
formance is generally poor on superscalar-based mi-
croprocessors due to the complexity of the data struc-
tures and memory access patterns [11, 12]. Our
work uses a novel approach to implementing LBMHD
across one of the broadest sets of multicore plat-
forms in existing HPC literature, including the homo-
geneous multicore designs of the dual-socket×dual-
core AMD Opteron X2 and the dual-socket×quad-core
Intel Clovertown, the heterogeneous local-store based
architecture of the dual-socket×eight-core STI Cell
QS20 Blade, as well as one of the first scientific stud-
ies of the hardware-multithreaded single-socket×eight-
core×eight-thread Sun Niagara2. Additionally, we
examine performance on the monolithic VLIW dual-
socket×single-core Intel Itanium2 platform.

Our work explores a number of LBMHD optimiza-
tion strategies, which we analyze to identify the microar-
chitecture bottlenecks in each system; this leads to sev-
eral insights in how to build effective multicore appli-
cations, compilers, tools and hardware. In particular,
we discover that, although the original LBMHD version
runs poorly on all of our superscalar platforms, memory
bus bandwidth is not the limiting factor on most exam-
ined systems. Instead, performance is limited by lack
of resources for mapping virtual memory pages (TLB
limits), insufficient cache bandwidth, high memory la-
tency, and/or poor functional unit scheduling. Although
of some these bottlenecks can be ameliorated through
code optimizations, the optimizations interact in subtle



ways both with each other and with the underlying hard-
ware. We therefore create an auto-tuning environment
for LBMHD that searches over a set of optimizations
and their parameters to maximize performance. We be-
lieve such application-specific auto-tuners are the most
practical near-term approach for obtaining high perfor-
mance on multicore systems.

Results show that our auto-tuned optimizations
achieve impressive performance gains — attaining up
to 14× speedup compared with the original version.
Moreover, our fully optimized LBMHD implementation
sustains the highest fraction of theoretical peak perfor-
mance on any superscalar platform to date. We also
demonstrate that, despite the relatively weak double pre-
cision capabilities, the STI Cell provides considerable
advantages in terms of raw performance and power effi-
ciency — at the cost of increased programming com-
plexity. Finally we present several key insights into
the architectural tradeoffs of emerging multicore designs
and their implications on scientific algorithm design.

2 Overview, Related Work, and Code
Generation

During the past fifteen years Lattice Boltzmann
methods (LBM) have emerged from the field of statis-
tical mechanics as an alternative [15] to other numeri-
cal simulation techniques in numerous scientific disci-
plines. The basic idea is to develop a simplified kinetic
model that incorporates the essential physics and repro-
duces correct macroscopic averaged properties. In the
field of computational fluid dynamics LBM have grown
in popularity due to their flexibility in handling irregu-
lar boundary conditions and straightforward inclusion of
mesoscale effects such as porous media, or multiphase
and reactive flows. More recently LBM have been ap-
plied to the field of magnetohydrodynamics [5, 10] with
some success.

The LBM equations break down into two separate
pieces operating on a set of distribution functions, a lin-
ear free-streaming operator and a local non-linear colli-
sion operator. The most common current form of LBM
makes use of a Bhatnagar-Gross-Krook [2] (BGK) in-
spired collision operator — a simplified form of the ex-
act operator that casts the effects of collisions as a relax-
ation to the equilibrium distribution function on a single
timescale. Further implicit in the method is a discretiza-
tion of velocities and space onto a lattice, where a set of
mesoscopic quantities (density, momenta, etc.) and dis-
tribution functions are associated with each lattice site.
In discretized form:

fa(x + ca∆t, t+ ∆t) = fa(x, t)−
1/τ (fa(x, t)− feq

a (x, t)) (1)

where fa(x, t) denotes the fraction of particles at time
step t moving with velocity ca, feq is the local equilib-
rium distribution function constructed from the macro-
scopic variables to satisfy basic conservation laws and
τ the relaxation time. The velocities ca arise from the
basic structure of the lattice and the requirement that a
single time step should propagate a particle from one
lattice point to another. A typical discretization in 3D is
the D3Q27 model [21] which uses 27 distinct velocities
(including zero velocity) is shown in Figure 1(a).

Conceptually, a LBM simulation proceeds by a se-
quence of collision() and stream() steps, reflecting the
structure of the master equation. The collision() step in-
volves data local only to that spatial point, allowing con-
current, dependence-free point updates; the mesoscopic
variables at each point are calculated from the distri-
bution functions and from them the equilibrium distri-
bution formed through a complex algebraic expression
originally derived from appropriate conservation laws.
Finally the distribution functions are updated according
to Equation 1. This is followed by the stream() step that
evolves the distribution functions along the appropriate
lattice velocities. For example, the distribution function
with phase-space component in the +x direction is sent
to the lattice cell one step away in x. The stream() step
also manages the boundary-data exchanges with neigh-
boring processors for the parallelized implementation.
This is often referred to as the “halo update” or “ghost
zone exchange” in the context of general PDE solvers
on block-structured grids.

However, a key optimization described by Wellein
and co-workers [18] is often implemented, which in-
corporates the data movement of the stream() step di-
rectly into the collision() step. They noticed that the two
phases of the simulation could be combined, so that ei-
ther the newly calculated particle distribution function
could be scattered to the correct neighbor as soon as it
was calculated, or equivalently, data could be gathered
from adjacent cells to calculate the updated value for the
current cell. In this formulation, the collision step looks
much more like a stencil kernel, in that data are accessed
from multiple nearby cells. However, these data are
from different phase-space as well as spatial locations.
The stream() step is reduced to refreshing the ghost cells
or enforcing boundary conditions on the faces of the lat-
tice.

Rüde and Wellein have extensively studied optimal
data structures and cache blocking strategies for BGK
LBM for various problems in fluid dynamics, in the con-
text of both single threaded and distributed memory par-
allel execution [14, 18], focusing on data layout issues
and loop fusing and reordering. In addition, inspired by
Frigo and Strumpen’s [6] work on cache oblivious algo-
rithms for a 1- and 2-dimensional stencils, Wellein and
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(a) (b)

Figure 1. (a) the 27 streaming directions of the D3Q27 Lattice and (b) Vorticity tubes deforming
near the onset of turbulence in LBMHD simulation.

co-workers [22] have applied cache oblivious techniques
to LBM. While this has proved a successful strategy for
single threaded serial performance, it is not obvious how
it is amenable to distributed-memory parallelism since it
would require a complex set of exchanges for the bound-
ary values of the distribution functions and the time-
skewing may be difficult to integrate into a multi-physics
simulation.

2.1 LBMHD

LBMHD [9] was developed to study homogeneous
isotropic turbulence in dissipative magnetohydrodynam-
ics (MHD). MHD is the theory of the macroscopic in-
teraction of electrically conducting fluids with a mag-
netic field. MHD turbulence plays an important role in
many branches of physics [3]: from astrophysical phe-
nomena in stars, accretion discs, interstellar and inter-
galactic media to plasma instabilities in magnetic fusion
devices. The kernel of LBMHD is similar to that of
the fluid flow LBM except that the regular distribution
functions are augmented by magnetic field distribution
functions, and the macroscopic quantities augmented by
the magnetic field. Moreover, because closure for the
magnetic field distribution function equations is attained
at the first moment (while that for particle distribution
function equations is attained at the second moment), the
number of phase space velocities to recover information
on the magnetic field is reduced from 27 to 15. Although
a D3Q27 lattice is used throughout the simulations, only
a subset of the phase-space is needed to describe the
evolution of the magnetic field. While LBM meth-
ods lend themselves to easy implementation of difficult
boundary geometries (e.g., by the use of bounce-back to
simulate no slip wall conditions) LBMHD performs 3-
dimensional simulations under periodic boundary con-

ditions — with the spatial grid and phase space veloc-
ity grid overlaying each other on a regular three dimen-
sional Cartesian D3Q27 lattice. Figure 1(b) is repro-
duced from one of the largest 3-dimensional LBMHD
simulations conducted to date [4], aiming to understand
better the turbulent decay mechanisms starting from a
Taylor-Green vortex — a problem of relevance to astro-
physical dynamos. Here we show the development of
turbulent structures in the z-direction as the initially lin-
ear vorticity tubes deform.

The original Fortran implementation of the code
was parallelized using MPI, partitioning the whole
lattice onto a 3-dimensional processor grid, and using
ghost cells to facilitate efficient communication. This
achieved high sustained performance on the Earth
Simulator, but a relatively low percentage of peak
performance on superscalar platforms [12]. The appli-
cation was rewritten, for this study, around two lattice
data structures, representing the state of the system,
the various distribution functions and macroscopic
quantities, at time t and at time t + 1. At each time
step one lattice is updated from the values contained in
the other. The algorithm alternates between these each
data structures as time is advanced. The lattice data
structure is a collection of arrays of pointers to double
precision arrays that contain a grid of values. This is
close to the ‘structure of arrays’ data layout [18], except
that we have the flexibility to align the components of
distribution functions or macroscopic quantities without
the restrictions implicit in a Fortran multi-dimensional
array. To simplify indexing, the unused lattice elements
of the magnetic component are simply NULL pointers
(see Figure 2).
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struct{
// macroscopic quantities
double * Density;
double * Momentum[3];
double * Magnetic[3];
// distributions
double * MomentumDistribution[27];
double * MagneticDistribution[3][27];

}

Figure 2. LBMHD data structure for each
time step, where each pointer refers to a
N3 grid.

2.2 Code Generation and Auto-Tuning

To optimize the LBMHD across a variety of multi-
core architectures, we employ the auto-tuning method-
ology exemplified by libraries like ATLAS [19] and
OSKI [17]. We created a code generator that be con-
figured to utilize many of the optimizations described
in Section 4 including: blocking for the TLB, unrolling
depth, instruction reordering, bypassing the cache, and
software prefetching. The PERL code generator pro-
duces multithreaded C for the two primary subcompo-
nents of the LBMHD code base: the collision() op-
eration which implements the core LBM solver, and
the stream() operation which implements the periodic
boundary conditions as well as ghost-zone exchanges
for the parallel implementation of the algorithm. We
use POSIX Threads API to implement parallelism on the
conventional microprocessor-based platforms and libspe
1.0 to launch the parallel computations on the Cell SPEs.
In all variants, we use the data structure shown in Fig-
ure 2. Future work will incorporate data structure explo-
ration into the auto-tuning process.

For the collision() operation this process can generate
hundreds of variations that are then placed into a func-
tion table that is indexed by the optimizations. To de-
termine the best configuration for a given problem size
and thread concurrency, a 20 minute tuning benchmark
is run offline to exhaustively search the space of possi-
ble code optimizations; to reduce tuning overhead the
search space is pruned to eliminate optimization param-
eters unlikely to improve performance. Our experience
suggests the time required for tuning can be substan-
tially reduced and future work will explore this. For
each optimization, we measured performance on five tri-
als and report the best overall time. Future work will in-
corporate our node-centric LBMHD optimizations with
explicit message-passing between nodes, allowing ex-
periments on large-scale distributed-memory, multicore-
based HPC platforms.

3 Experimental Testbed

Our work examines several leading multicore sys-
tem designs in the context of the full LBMHD ap-
plication. Our architecture suite consists of the
dual-socket×quad-core Intel Clovertown, the dual-
socket×dual-core AMD Opteron X2, the single-
socket×eight-core hardware-multithreaded Sun Nia-
gara2, and the dual-socket×eight-core STI Cell blade.
Additionally, we examine the dual-socket×single-core
Intel Itanium2 to explore the tradeoffs between its
monolithic design and the simpler multiprocessor cores
in our study. An architectural overview and character-
istics appear in Table 1 and Figure 3. Note that, aside
from the Itanium2, we obtained sustained system power
data using an in-line digital power meter while the node
was under a full computational load. We now present an
overview of the examined systems.

3.1 Intel Itanium2

The Intel Itanium2 is an in-order 64-bit VLIW pro-
cessor. It can issue two bundles (six instructions) per cy-
cle, and can execute two FP fused-multiply adds (FMAs)
per cycle. FP loads are directed to the 256KB L2 data
cache rather than the L1; thus for FP code, the L2
is in effect the first level cache. Our evaluted system
is a dual-socket×single core 1.3 GHz Madison3M in-
carnation with a 3MB L3 cache. Although it has 8.5
GB/s of DRAM to chipset bandwidth, the front side
bus (FSB) only runs at 200MHz, thus limiting mem-
ory bandwidth to 6.4 GB/s. We include this single-core
machine to explore the tradeoffs between the complex
serial-performance-oriented Itanium2 core design and
the simpler parallel-throughput-oriented multiprocessor
cores in our study, with the forethought that multicore
Itaniums will soon be available.

3.2 Intel Quad-core Clovertown

Clovertown is Intel’s foray into the quad-core arena.
Reminiscent of their original dual-core designs, two
dual-core Xeon chips are paired onto a multi-chip mod-
ule (MCM). Each core is based on Intel’s Core2 mi-
croarchitecture, runs at 2.33 GHz, can fetch and decode
four instructions per cycle, and can execute 6 micro-ops
per cycle. There is both a 128b SSE adder (two 64b
floating point adders) and a 128b SSE multiplier (two
64b multipliers), allowing each core to support 128b
SSE instructions in a fully-pumped fashion. The peak
double-precision performance per core is therefore 9.33
GFlop/s.

Each Clovertown core includes a 32KB L1 cache,
and each chip (two cores) has a shared 4MB L2 cache.
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Core Intel Intel AMD Sun STI
Architecture Itanium2 Core2 Opteron X2 Niagara2 Cell SPE

super scalar super scalar MT SIMDType VLIW
out of order out of order dual issue† dual issue

Clock (GHz) 1.30 2.33 2.20 1.40 3.20
DP GFlop/s 5.2 9.3 4.4 1.4 1.8
Local Store — — — — 256KB

first level Data Cache 256KB 32KB 64KB 8KB —
first level TLB entries 128 16 32 128 256

Page Size 16KB 4KB 4KB 4MB 4KB

System Itanium2 Clovertown Opteron X2 Niagara2 Cell Blade
# Sockets 2 2 2 1 2

Cores/Socket 1 4 2 8 8(+1)
L2 cache 2×3MB 4×4MB(shared by 2) 4×1MB 4MB(shared by 8) —

DP GFlop/s 10.4 74.7 17.6 11.2 29
DRAM 21.33(read) 42.66(read)

Bandwidth (GB/s)
8.5

10.66(write)
21.33

21.33(write)
51.2

Flop:Byte Ratio 1.22 2.33 0.83 0.18 0.57
Max problem size

without rolling the TLB
123 33 43 763 N/A

DRAM Capacity 4GB 16GB 16GB 64GB 1GB
Measured System

Power (Watts)
500‡ 330 300 450 285

Threading Pthreads Pthreads Pthreads Pthreads libspe1.0
Compiler icc 9.1 icc 10.0 gcc 4.1.2 gcc 4.0.4 xlc 8.2

Table 1. Architectural summary of Intel Itanium2, Intel Clovertown, AMD Opteron X2, Sun Ni-
agara2, and STI Cell multicore chips. Except for the HP/Itanium2, The system power for all
platforms (‡except the Itanium2) was measured using a digital power meter while under a full
computational load. †Each of the two thread groups may issue up to one instruction.

Each socket has access to a 333MHz quad pumped FSB,
delivering a raw bandwidth of 10.66 GB/s. In our study,
we evaluate the Dell PowerEdge 1950 dual-socket plat-
form, which contains two MCMs with dual independent
busses. The chipset provides the interface to four fully
buffered DDR2-667 DRAM channels that can deliver an
aggregate read memory bandwidth of 21.33 GB/s. Un-
like the AMD X2, each core may activate all four chan-
nels, but will likely never attain the peak bandwidth due
to the limited FSB bandwidth and coherency protocol.
The full system has 16MB of L2 cache and an impres-
sive 74.7 GFlop/s peak performance.

3.3 AMD X2 Dual-core Opteron

The Opteron 2214 is AMD’s current dual-core pro-
cessor offering. Each core operates at 2.2 GHz, can
fetch and decode three x86 instructions per cycle, and
execute 6 micro-ops per cycle. The cores support 128b

SSE instructions in a half-pumped fashion, with a sin-
gle 64b multiplier datapath and a 64b adder datap-
ath, thus requiring two cycles to execute a SSE packed
double-precision floating point multiply. The peak
double-precision floating point performance is therefore
4.4 GFlop/s per core or 8.8 GFlop/s per socket.

The Opteron contains a 64KB L1 cache, and a 1MB
victim cache; victim caches are not shared among cores,
but are cache coherent. All hardware prefetched data
is placed in the victim cache of the requesting core,
whereas all software prefetched data is placed directly
into the L1. Each socket includes its own dual-channel
DDR2-667 memory controller and a single cache-
coherent HyperTransport (HT) link to access the other
socket’s cache and memory. Each socket can thus de-
liver 10.66 GB/s, for an aggregate NUMA (non-uniform
memory access) memory bandwidth of 21.33 GB/s for
the dual-core, dual-socket SunFire X2200 M2 examined
in our study.
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Figure 3. Architectural overview of (a) dual-socket Itanium2 (b) dual-socket×quad-core Intel
Clovertown,(c) dual-socket×dual-core AMD Opteron X2 (d) single-socket×eight-core Sun Nia-
gara2 (e) dual-socket×eight-core STI Cell.

3.4 Sun Niagara2

The Sun UltraSparc T2 “Niagara2” eight-core pro-
cessor presents an interesting departure from main-
stream multicore chip design. Rather than depending on
four-way superscalar execution, each of the 8 strictly in-
order cores supports two groups of four hardware thread
contexts (referred to as Chip MultiThreading or CMT)
— providing a total of 64 simultaneous hardware threads
per socket. Each core may issue up to one instruction per
thread group assuming there is no resource conflict. The
CMT approach is designed to tolerate instruction, cache,
and DRAM latency through fine-grained multithreading.

Niagara2 instantiates one FPU per core (shared
among 8 threads). Our study examines the Sun Ul-
traSparc T5120 with a one T2 processor operating at
1.4 GHz. It has a peak performance of 1.4 GFlop/s (no
FMA) performance per core (11.2 GFlop/s per socket).
Each core has access to its own private 8KB write-
through L1 cache, but is connected to a shared 4MB
L2 cache via a 179 GB/s(read) on-chip crossbar switch.
The socket is fed by four dual channel 667 MHz FB-
DIMM memory controllers that deliver an impressive

aggregate bandwidth of 64 GB/s (42.6 GB/s for reads,
and 21.3 GB/s for writes) to the L2. Niagara has no hard-
ware prefetching and software prefetching only places
data in the L2. Although multithreading may hide in-
struction and cache latency, it may not be able to fully
hide DRAM latency.

3.5 STI Cell

The Sony Toshiba IBM (STI) Cell processor is the
heart of the Sony PlayStation 3 (PS3) video game con-
sole, whose aggressive design is intended to meet the
demanding computational requirements of video games.
Cell adopts a heterogeneous approach to multicore, with
one conventional processor core (Power Processing El-
ement / PPE) to handle OS and control functions, com-
bined with up to eight simpler SIMD cores (Synergis-
tic Processing Elements / SPEs) for the computation-
ally intensive work [7]. The SPEs differ considerably
from conventional core architectures due to their use
of a disjoint software controlled local memory instead
of the conventional hardware-managed cache hierarchy
employed by the PPE. Rather than using prefetch to
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hide latency, the SPEs have efficient software-controlled
DMA engines which asynchronously fetch data from
DRAM into the 256KB local store. This approach al-
lows more efficient use of available memory bandwidth
than is possible with standard prefetch schemes on con-
ventional cache hierarchies, but also makes the program-
ming model more complex.

Each SPE is a dual issue SIMD architecture which in-
cludes a half-pumped partially pipelined FPU. In effect,
each SPE can execute one double-precision FMA SIMD
instruction every 7 cycles, for a peak of 1.8 GFlop/s per
SPE — clearly far less than the Opteron’s 4.4 GFlop/s
or the Xeon’s 9.33 GFlop/s. In this study we utilize the
QS20 Cell blade comprised of two sockets with eight
SPEs each (29.2 GFlop/s peak). Each socket has its
own dual channel XDR memory controller delivering
25.6 GB/s. The Cell blade connects the chips with a sep-
arate coherent interface delivering up to 20 GB/s; thus,
like the Opteron system, the Cell blade is expected show
strong variations in sustained bandwidth if NUMA is not
properly exploited.

4 Multicore LBMHD Optimization

The two phases of each LBMHD time step are quite
different in character. The collision() function has an
O(n3) floating-point computational cost in addtion to
proportional data movement, while the lighter-weight
stream() function performs O(n2) data movement with
no floating point requirements, (where n is the number
of points per side side of the cubic lattice). Thus, the
stream step accounts for a smaller portion of the over-
head with increasing domain size. Note that when al-
locating the structure each 3D grid is padded to avoid
cache-line aliasing.

4.1 Collision() Optimization

For each point in space, the collision() routine must
read 73 double precision floating point values from
neighboring points, perform about 1300 floating point
operations, and write 79 doubles back to memory (see
Figure 4). Superficially, the code requires a flop:byte ra-
tio of approximately 2/3 on conventional cache-based
machines to attain peak performance (assuming a fill-
on-write allocate cache policy). Consequently, we ex-
pect Itanium2 and Clovertown to be memory bandwidth
limited, while the Niagara2 and Cell are expected to be
computationally bound (given the respective flop:byte
ratios of the system configurations in Table 1). There-
fore, our auto-tuning optimizations target both areas
given that the likely bottlenecks are system dependent.

4.1.1 Thread-Based Parallelization

The first, and most obvious step in the optimization pro-
cess is to exploit thread-level parallelism. If we assume
the lattice is composed of nx, ny , and nz points in the x,
y, and z directions, in FORTRAN’s column-major lay-
out one can view the problem as a set of nynz pencils
of length nx. Our implementation allows for a regu-
lar, user-specified 2D decomposition in the (y, z) plane.
Load balancing is thus implicit. We explore alternate
decompositions to find peak performance.

To manage the NUMA issues associated with the
Opteron and Cell systems in our study, we also thread
the lattice initialization routines (controlled by colli-
sion()’s parallelization guide) and exploit a first-touch
allocation policy, to maximize the likelihood that the
pencils associated with each thread are allocated on the
closest DRAM interface. To correctly place threads, we
use the Linux scheduler’s routines for process affinity.

4.1.2 Phase-Space TLB Blocking

Given the structure-of-arrays memory layout of
LBMHD’s data structures, each phase-space component
of the particle and magnetic-field distribution functions
(that must be gathered from neighboring points in
lattice space) will be widely spaced in DRAM. Thus
for the page sizes used by our studied architectures
and typical lattice sizes, a TLB entry is required for
each of the 150 components read and written. (Note
that this is significantly more demanding than typical
computational fluid dynamics codes, as the MHD
formulation uses an additional 15 phase-space cartesian
vector components in the magnetic field distribution
function.) Since the systems have relatively small L1
TLBs (16-128 entries), the original code version suffers
greatly due to a lack of page locality and the resultant
TLB misses.

Our next optimization (inspired by vector compilers)
focuses on maximizing TLB-page locality. This is ac-
complished by fusing the real-space loops, strip min-
ing into vectors, and interchanging the phase-space and
strip-mined loops. For our implementation, the cache hi-
erarchy is used to emulate a vector register file using sev-
eral temporary structures. We modified our PERL code
generator to create what is essentially a series of vector
operations, which are called for each of the phase-space
components.

On one hand, these vector-style inner loops can be
extremely complex, placing high pressure on the cache
bandwidth, thus favoring shorter vector lengths (VL)
that enable all operands to fit within the first level cache.
However, shorter VL make poor use of TLB locality (as
only a few elements in a page are used before the next
phase-space component is required) and access DRAM
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for all Z{
for all Y{

for all X{
// update one point in space
recover macroscopic quantities using neighboring values: loop over phase space
update distribution functions: loop over phase space

}}}

for all Z{
for all vectors of points (of size VL) in XY plane{

// simultaneously update VL points in space
recover macroscopic quantities using neighboring values: loop over phase space

strip-mined loop
update distribution functions: loop over phase space

strip-mined loop
}}}

Figure 4. Top: original Collision() pseudo code. Bottom: vectorized Collision() pseudo code

inefficiently for streaming loads and stores. We there-
fore use our auto-tuning framework to determine the op-
timal VL, since it is extremely difficult to predict the
ideal size given these opposing constraints. To reduce
the search space we observe that the maximum VL is
limited by the size of the on-chip shared cache. Addi-
tionally we search only in full cache lines up to 128 ele-
ments then switch to powers of two, up to the calculated
maximum VL.

4.1.3 Loop Unrolling and Reordering

Given these vector-style loops, we then modify the code
generator to explicitly unroll each loop by a specified
power of two. Although manual unrolling is unlikely to
show any benefit for compilers that are already capable
of this optimization, we have observed a broad varia-
tion in the quality of code generation on the evaluated
systems. When future work adds explicit SIMDization,
we expect this optimization to become essential. The
most naive approach to unrolling simply replicates the
body of the inner loop to amortize loop overhead. How-
ever, to get the maximum benefit of software pipelining,
the inner loops must be reordered to group statements
with similar addresses, or variables, together to com-
pensate for limitations in some compiler’s instruction-
schedulers. The optimal reorderings are not unique to
each ISA, but rather to each microarchitecture as they
depend on the number of rename registers, memory
queue sizes, and the functional unit latency. As such,
our auto-tuning environment is well-suited for discover-
ing the best combination of unrolling and reordering for
a specific microarchitecture.

4.1.4 Software Prefetching

Our previous work [8, 20] has shown that software
prefetching can significantly improve performance on
certain superscalar platforms. We explore a prefetching
strategy that modifies the unrolled code to prefetch the
entire array needed one iteration (our logical VL) ahead.
This creates a double buffering optimization within the
cache, whereby the cache needs space for two copies
of the data: the one currently in use and one the be-
ing simultaneously prefetched. This resulting prefetch
distance easily covers the DRAM latency, and is consid-
erably more effective than prefetching operands for the
current loop (the typical software prefetch strategy). The
Cell LBMHD implementation utilizes a similar dou-
ble buffering approach within the local store, utilizing
DMAs instead of prefetching. To facilitate the vector
prefetching, we skew the first and last point in the paral-
lelization guide to align all vectors to cache line bound-
aries.

4.1.5 SIMDization

SIMD units have become an increasingly popular choice
for improving peak performance, but for many codes
they are difficult to exploit — lattice methods are no ex-
ception. The SIMD instructions are small data-parallel
data parallel operations that perform multiple arithmetic
operations on data loaded from contiguous memory lo-
cations. While loop unrolling and code-reordering de-
scribed previously reveals potential opportunities for ex-
ploiting SIMD execution, SIMD implementations typ-
ically do not allow unaligned (not 128b aligned) ac-
cesses. Structured grids and lattice methods often must
access the previous point in the unit stride direction re-
sulting in an unaligned load. One solution to remedy
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the misalignment is to always load the next quadword
and permute it to extract the relevant double. Although
this is an expensive solution on most architectures, it is
highly effective on Cell because each double precision
instruction is eight times the cost of a permute. Future
work will will explore similar techniques to fully exploit
SSE on the x86 architectures.

4.1.6 Streaming Stores

SSE2 introduced a streaming store (movntpd) designed
to reduce cache-pollution from contiguous writes that
fill an entire cache line. Normally, a write operation re-
quires the entire cache line be read into cache then up-
dated and written back out to memory. Therefore a write
requires two times more memory traffic than a read, and
consumes a cache line in the process. However, if the
writes are guaranteed to update the entire cache line,
the streaming-store can completely bypass the cache and
output directly to the write combining buffers. This has
a several advantages: useful data is not evicted from the
cache, the write miss latency does not have to be hid-
den, and most importantly the traffic associated with a
cache line fill on a write-allocate is eliminated. Theoret-
ically, given an equal mix of loads and stores, streaming
stores can decrease an application’s memory bandwidth
requirements by 50%. Note that Cell’s DMA engines
can explicitly avoid the write allocate issue and elimi-
nate memory traffic.

4.2 Stream() Optimization:

In the original MPI version of the LBMHD code, the
stream() function updates the ghost-zones surrounding
the lattice domain held by each task. Rather than ex-
plicitly exchanging ghost-zone data with the 26 near-
est neighboring subdomains, we use the shift algo-
rithm [13], which performs the exchange in three steps
involving only six neighbors. The shift method makes
use of the fact that after the first exchange is completed
in one direction, the ghost cells have been partially pop-
ulated in other directions. The next exchange includes
this data, further populating the ghost cells, and so on.

To optimize behavior, we consider that the ghost-
zone data must be exchanged on the faces of a logi-
cally 3D subdomain, but are not contiguous in memory
for the X and Y faces. Therefore, the ghost-zone data
for each direction are packed into and unpacked out of
a single buffer, resulting in three pairs of message ex-
changes per time step. Even on our SMP systems, we
chose to perform the ghost zone exchanges by copying
into intermediate buffers rather than copying directly to
neighboring faces. This approach is structurally compat-
ible with an MPI implementation, which will be benefi-

cial when we expand our implementation to massively-
parallel distributed-memory machines in future work.

4.2.1 Thread-Based Parallelization

Although the stream() routine typically contributes lit-
tle to the overall execution time, non-parallelized code
fragments can become painfully apparent on architec-
tures such as Niagara2 that have low serial performance
(Amdahl’s law). Therefore it is essential to parallelize
the work among threads even for code sections with triv-
ial overheads. Given that each point on a face requires
192 bytes of communication from 24 (9 particle scalars,
5 magnetic field vectors) different arrays, we maximize
sequential and page locality by parallelizing across the
lattice components followed by points within each array.

5 Performance Results and Analysis

Performance on each platform is shown in Fig-
ures 5(a–e), using the 643 and 1283 problem sizes for
varying levels of thread concurrency. Because compu-
tations on block structure grids favor larger subdomain
sizes in order to maximize the surface-to-volume ratio,
the problem sizes are selected to fill local memory on the
tested platforms. The 643 problem size fills the limited
DRAM available on the Cell blade, while 1283 problem
size fills a large fraction of the available memory on the
remaining platforms. Given that the surface:volume ra-
tio decreases with problem dimension, a larger fraction
of runtime is spent in stream() for smaller problem sizes.

The stacked bar graphs in Figures 5(a–d), show
LBMHD performance contributions in GFlop/s of
varying optimizations (where applicable), including:
the original version (blue), auto-tuned TLB blocking
(red), auto-tuned unrolling/reordering (yellow), stream-
ing stores (green), and explicit prefetching (gray). Ob-
serve that the top (gray) bar is rarely seen, as auto-
tuned TLB blocking and unrolling/reordering combined
with streaming stores generally attain close to maximum
performance. Additionally, Figure 5(e) shows perfor-
mance of the Cell-specific implementation, which in-
cludes TLB blocking, DMA transfers, and SIMDization.
An overview of the full-system per-core performance,
highlighting the variation in scaling behavior can be
found in Figure 5(f). Finally, Table 2 presents a several
salient performance characteristics of LBMHD’s execu-
tion across the architectures. We now explore these data
in more detail.

5.1 Itanium2

Figure 5(a) presents Itanium2 performance results.
TLB blocking shows a clear advantage on this platform,

9



643 1283

Intel Intel AMD Sun Cell Intel Intel AMD SunSystem
IA64 Cl-town X2 Niagara2 Blade IA64 Cl-town X2 Niagara2

GFlop/s 2.4 5.1 5.7 6.2 16.7 2.7 5.5 6.3 6.3
% Peak Flops 23% 7% 32% 55% 57% 26% 7% 36% 56%

Memory Bandwidth (GB/s) 3.6 5.1 5.7 9.3 16.7 4.0 5.5 6.3 9.5
% Peak Memory Bandwidth 42% 16% 27% 14% 33% 47% 17% 29% 15%
Auto-Tuned Vector Length 512 16 256 16 64† 512 16 24 16

Auto-Tuned Unrolling/Reordering 1/1 8/8 4/4 8/1 2/2† 1/1 8/2 8/2 4/2
% Time in stream() 16% 13% 13% 9% N/A 9% 8% 8% 5%

Table 2. Full-system LBMHD optimized performance characteristics, including the auto-tuned
vector length and unrolling/reordering values. †The Cell code is hand optimized, not auto-
tuned.

attaining an impressive 3.7x to 13.8x runtime improve-
ment. The results also show no benefit from explicitly
inserting prefetch directives as the icc compiler appro-
priately issues software prefetching instructions. Ad-
ditionally, the optimal unrolling/reordering factor was
found to be 1/1 (see Table 2), indicating that iccwas ef-
fectively software pipelining the collision() loops with-
out manual intervention. Attempts to explicitly unroll
loops resulted in substantial performance degradation.
Auto-tuning discovered the optimal vector length to be
512 grid points, the largest on any evaluated platform.
This optimal VL generates a footprint (600KB) larger
than the L2 cache size, but uses only 512 doubles at a
time per array — or 25% of a 16KB page. This provides
some insight into the relative importance of L2 and TLB
misses.

The Itanium2 is able to sustain over 4GB/s of DRAM
bandwidth (63% of FSB peak) for LBMHD. However,
the tested system shows sublinear speedup (only 25%)
when moving from one to two sockets for the larger
problem size, as can clearly by the steep drop off of Ita-
nium2 per-core performance in Figure 5(f). This is not
surprising considering that both processors share a com-
mon 6.4 GB/s front side bus for both memory traffic and
coherency (see Table 1).

5.2 Clovertown

The data in Figure 5(b) clearly indicates that TLB
blocking benefits Clovertown less as as the number of
cores increase. The auto-tuned VL (seen in Table 2)
is 16 points (19KB), which represents only 3% of the
page size. Thus it is evident that the L1 cache effect is
dominant on this processor. The auto-tuned unrolling
matches well with the cache line size (8 doubles), al-
though icc appeared to deliver nearly the same perfor-
mance without explicit unrolling. Additionally, Clover-
town benefits from streaming stores — 33% and 21%

for the single- and dual-socket configurations respec-
tively. This indicates that Clovertown is running into
a bandwidth limit that can be forestalled by decreasing
the memory traffic.

In the multithreaded experiments, the optimally auto-
tuned TLB-blocking results in approximately 4.0 GB/s
and 4.4 GB/s of memory bandwidth utilization for two
and four cores (respectively), which is close to the prac-
tical limits of a single FSB [20]. The quad pumping a
dual FSB architecture has reduced data transfer cycles to
the point where they are on parity with coherency cycles.
Surprisingly, performance only improves by 43% in the
eight-core experiment when both FSBs are engaged, de-
spite the fact that the aggregate FSB bandwidth dou-
bled. Note, however, that although each socket cannot
consume 100% of the DRAM bandwidth, each socket
can activate all of the DIMMs in the memory subsys-
tem. The declining per-core performance, clearly seen
in Figure 5(f), suggests the chipset’s capabilities limit
multi-socket scaling on memory intensive applications.

5.3 Opteron

The performance data in Figure 5(c) shows that the
TLB blocking and streaming stores optimizations in-
crease Opteron performance by approximately 1.7x.
Similar to the Clovertown, the auto-tuner chose a vector
length for the 1283 problem that fits within the 64KB
L1 cache, while the optimal unrolling also matches the
cache line size — indicating the limitations of the gcc
compiler. A vector length of 256 provided a very slight
performance boost over 24 on the 643 problem. Vir-
tually no benefit was provided from explicit software
prefetching.

Results also show that the Opteron only consumes
1.6 GB/s per core (Table 2) for the optimized LBMHD
algorithm. Thus memory bandwidth is not an impedi-
ment to performance, allowing the Opteron to achieve
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Figure 5. Contributions of explored optimizations of LBMHD on (a) Itanium2 (b) Clovertown
(c) Opteron (d) Niagara2, as well as (e) performance of the Cell-specific implementation. Full-
system per-core performance across all platforms is shown in (f).

nearly linear scaling for both the multicore and multi-
socket experiments, as seen in Figure 5(f). Given the
limited bandwidth requirements, we expect the recently-
released quad-core Barcelona processor to continue lin-
ear performance scaling with the doubling of the cores.
Future experiments will extend our study to the latest
generation of multicore platforms.

5.4 Niagara2

The Niagara2 experiments in Figure 5(d) show sev-
eral interesting trends. For the small (643) problem size,
almost no benefit is seen from our optimization strate-
gies because, the entire problem can be mapped by Ni-
agara’s 128-entry TLB, given Solaris’ 4MB pages. For
the larger problem case (1283), the working set can no
longer be mapped by the TLB, causing our auto-tuned
TLB blocking approach to improve performance by
25%. Since the Niagara2’s shared L1 cache is only 8KB,

each computational thread is only provided a working
set of about 1 point. Given each L1 cache line is 16
bytes, each core will have to rely on its L2 working set
(54 points). As a result, the auto-tuned vector length
is only 16 (see Table 2), because the cache has a more
substantial influence on performance than the compara-
tively large TLB.

Performance (as expected) is extremely low for a sin-
gle thread, and increases by 4x when using all eight
threads within a single core (multithreaded scaling),
while improving more than 24x when engaging all 64
threads across the eight cores (multicore scaling) —
the near linear multicore scaling can be seen in Fig-
ure 5(f). As a result, performance on the large problem
size achieve an impressive 56% of peak while utilizing
only 15% of the available memory bandwidth. This sug-
gests further multicore scaling can easily be exploited on
future Niagara systems.
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Figure 6. Comparison of (a) runtime performance and (b) power efficiency across all studied
architectures for the 643 problem.

5.5 Cell Blade

Figure 5(e) shows that Cell has a number of unique
features compared with the other platforms in our study.
First observe that there is no original performance
baseline. This is because the generic microprocessor-
targeted source code cannot be naively compiled and ex-
ecuted on the Cell SPEs, due to its software controlled
cache that requires explicit DMAs to manage memory
movement. Therefore a Cell-specific implementation
must be created in order to perform any meaningful
experiments. The explicit DMAs obviate the need for
streaming stores and our preliminary Cell version does
not utilize auto-tuned blocking.

Looking at the performance behavior, the Cell
achieves near perfect linear scaling across the 16
threads, as evident from Figure 5(f). Thus, even though
each individual SPE is slower than any other core in
our study (due to extremely weak double precision), the
linear scaling coupled with the large number of cores
results in the fastest aggregate LBMHD execution. Each
Cell core delivers just over 1 GFlop/s, which translates
to an impressive 56% of peak — despite the inability
to fully exploit FMA (due to the lack of potential
FMAs in the LBMHD algorithm). In terms of memory
bandwidth utilization, it can be seen in Table 2 that Cell
achieves approximately 17 GB/s or 33% of theoretical
peak. This indicates that Cell can readily exploit more
cores or enhanced double precision for the LBMHD
algorithm. Note that the Cell stream() function has
not yet been implemented and will presented in future
work; however, we do not expect a dramatic change in
overall performance as stream() typically constitutes a
small fraction of the application’s running time.

5.6 Architectural Comparison

Figure 6(a) compares LBMHD performance across
our suite of architectures for the 643 problem, using a
single thread, single core, fully-packed single socket,
and full system configuration. Results clearly indicate
that the Cell blade significantly outperforms all other
platforms in our study, achieving a 7×, 3.3×, 2.9×,
and 2.7× speedups compared with the Itanium2, Clover-
town, Opteron, and Niagara2. Although the Cell plat-
form is often considered poor at double-precision arith-
metic, results show the Cell’s LBMHD execution times
are dramatically faster than all other multicore nodes
in our study. However, the high performance is comes
with the significant overhead of additional programming
complexity.

Of the microprocessors that use a conventional
cache hierarchy and programming model, the Niagara2
demonstrates the highest aggregate single-socket per-
formance for both problem sizes. Niagara2’s single
thread performance is extremely poor, but per-core per-
formance improves quickly with increasing thread par-
allelism. The overall performance, although lower than
a single Cell socket, is significantly faster than the Ita-
nium2 and x86 systems, albeit the tested system has dra-
matically higher memory bandwidth.

Comparing the x86 architectures, results shows that
the dual-core Opteron attains comparable performance
with the quad-core Clovertown. This is somewhat sur-
prising as the Clovertown’s per-socket computational
peak is 4.2× higher than the Opteron and has no NUMA
constraints. Finally, the monolithic VLIW Itanium2 sys-
tem achieves the highest single-core performance across
our architecture suite. However, little improvement is
gained when running across both (single core) sockets
due to its limited memory bandwidth. Thus aggregate
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Itanium2 system performance is substantially lower than
the fully-packed single socket rate of all the multicore
platforms in our study. These results portend a trend to-
ward simpler high-throughput cores that offer higher ag-
gregate performance at the expense of the per-core serial
performance.

Figure 6(b) compares LBMHD power efficiency
(MFlop/s/Watt) on our evaluated testbed (see Table 1)
— one of today’s most important considerations in HPC
acquisition. Results show that the Cell blade leads
in power efficiency, attaining an impressive advantage
of 12.2×, 3.8×, 3.1×, and 4.3×, compared with the
Itanium2, Clovertown, Opteron, and Niagara2 (respec-
tively) for the full-system experiments. Although the
Niagara2 system attains high LBMHD performance, the
eight channels of FBDIMM (with 16 DIMMs) drove
sustained power to 450W, causing the power efficiency
to fall below the x86 platforms. For the problem sizes
in question, one could easily remove eight DIMMs and
thus cut the power by more than 100W (and improve
efficiency by 30%) without significantly reducing per-
formance. Finally, the power hungry Itanium2 looses
ground against the rest of the architectures, achieving
less than a 1/12 of the Cell’s power efficiency.

6 Summary and Conclusions

The computing industry is moving rapidly away from
exponential scaling of clock frequency toward chip mul-
tiprocessors in order to better manage trade-offs among
performance, energy efficiency, and reliability. Under-
standing the most effective hardware design choices and
code optimizations strategies to enable efficient utiliza-
tion of these systems is one of the key open questions
facing the computational community today.

In this paper we developed a set of multicore opti-
mizations for LBMHD, a lattice Boltzmann method for
modeling turbulence in magnetohydrodynamics simula-
tions. We presented an auto-tuning approach, which em-
ploys a code generator that produces multiple versions
of the computational kernels using a set of optimiza-
tions with varying parameter settings. The optimizations
include: an innovative approach of phase-space TLB
blocking for lattice Boltzmann computations, loop un-
rolling, code reordering, software prefetching, stream-
ing stores, and use of SIMD instructions. The impact
of each optimization varies significantly across architec-
tures, making a machine-independent approach to tun-
ing infeasible. In addition, our detailed analysis reveals
the performance bottlenecks for LBMHD in each sys-
tem.

Results show that the Cell processor offered (by far)
the highest raw performance and power efficiency for
LBMHD, despite having peak double-precision perfor-

mance, memory bandwidth, and sustained system power
that is comparable to other platforms in our study. The
key architectural feature of Cell is explicit software con-
trol of data movement between the local store (cache)
and main memory. However, this impressive compu-
tational efficiency comes with a high price — a diffi-
cult programming environment that is a major departure
from conventional programming. Nonetheless, these
performance disparities point to the deficiencies of exist-
ing automatically-managed coherent cache hierarchies,
even for architectures with sophisticated hardware and
software prefetch capabilities. The programming effort
required to compensate for these deficiencies demol-
ishes their initial productivity advantage.

Our study has demonstrated that — for the evaluated
class of algorithms — processor designs that empha-
size high throughput via sustainable memory bandwidth
and large numbers of simpler cores are more effective
than complex, monolithic cores that emphasize sequen-
tial performance. While prior reseach has shown that
these design philosophies offer substantial benefits for
peak computational rates [16], our work quantifies that
this approach can offer significant performance benefits
on real scientific applications.

Overall the auto-tuned LBMHD code achieved sus-
tained superscalar performance that is substantially
higher than any published results to date — over 50%
of peak flops on two of our studied architectures, with
speedups of up to 14× relative to the original code.
Auto-tuning amortizes tuning effort across machines
by building software to generate tuned code and using
computer time rather than human time to search over
versions. It can alleviate some of compilation prob-
lems with rapidly-changing microarchitectures, since
the code generator can produce compiler-friendly ver-
sions and can incorporate small amounts of compiler-
or machine-specific code. We therefore believe that
auto-tuning will be an important tool in making use of
multicore-based HPC systems of the future. Future work
will continue exploring auto-tuning optimization strate-
gies for important numerical kernels on the latest gen-
eration of multicore systems, while making these tuning
packages publicly available.
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