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Abstract—Reproducibility is the ability to obtain bitwise
identical results from different runs of the same program on
the same input data, regardless of the available computing
resources, or how they are scheduled. Recently, techniques have
been proposed to attain reproducibility for BLAS operations
[1], [2], [5], all of which rely on reproducibly computing
the floating-point sum and dot product. Nonetheless, a repro-
ducible BLAS library does not automatically translate into
a reproducible higher-level linear algebra library, especially
when communication is optimized. For instance, for the QR
factorization, conventional algorithms such as Householder
transformation or Gram-Schmidt process can be used to re-
producibly factorize a floating-point matrix by fixing the high-
level order of computation, for example column-by-column
from left to right, and by using reproducible versions of level-
1 BLAS operations such as dot product and 2-norm. In a
massively parallel environment, those algorithms have high
communication cost due to the need for synchronization after
each step. The Tall-Skinny QR algorithm obtains much better
performance in massively parallel environments by reducing
the number of messages by a factor of n to O(log(P )) where
P is the processor count, by reducing the number of reduction
operations to O(1). Those reduction operations however are
highly dependent on the network topology, in particular the
number of computing nodes, and therefore are difficult to
implement reproducibly and with reasonable performance. In
this paper we present a new technique to reproducibly compute
a QR factorization for a tall skinny matrix, which is based on
the Cholesky QR algorithm to attain reproducibility as well as
to improve communication cost, and the iterative refinement
technique to guarantee the accuracy of the computed results.
Our technique exhibits strong scalability in massively parallel
environments, and at the same time can provide results of
almost the same accuracy as the conventional Householder QR
algorithm unless the matrix is extremely badly conditioned,
in which case a warning can be given. Initial experimental
results in Matlab show that for not too ill-conditioned matrices
whose condition number is smaller than sqrt(1/e) where e is
the machine epsilon, our technique runs less than 4 times
slower than the built-in Matlab qr() function, and always
computes numerically stable results in terms of column-wise
relative error.

I. INTRODUCTION

A QR factorization based on the conventional House-
holder transformation (Householder QR for short) can be
made reproducible by fixing the order of computation and by
using the reproducible versions of BLAS routines [10] such
as the reproducible dot product and 2-norm [11]. However
in a highly parallel environment, the column-by-column
computation requires many synchronizations and therefore
can be bad for strong scaling. An alternative is to use the
Cholesky QR algorithm which is much more efficient in

terms of communication. However, Cholesky QR is known
to be less stable and cannot guarantee the orthogonality of
the computed Q matrix.

Communication-avoiding algorithms such as Tall-Skinny
QR and Communication-avoiding QR [6] reduce the amount
of communication at a cost of a small number of extra
FLOPs. Also by making use of level-3 BLAS Routines,
those communication-avoiding algorithms obtain much bet-
ter performance than the conventional Householder QR in
highly parallel environments. The TSQR factorization for
a matrix of size n × b requires 2bx fewer messages, and
exhibits a speedup of 6.7x on 16 processors of a Pentium
III cluster, up to 4x on 32 processors of an IBM BG/L
[6], and up to 13x on GPU [14]. Communication-avoiding
algorithms change the order of communication intentionally
and usually depending on the available computing resources
such as number of processors, available memory size, etc.
Therefore it is more difficult to attain reproducibility using
the TSQR algorithm without any prior information about
the platform. Another issue with the TSQR algorithm is
that it stores the Q matrix implicitly using a hierarchical
tree of intermediate matrices of Householder vectors (which
we call Y matrices), so it also needs to record and reuse
the reduction tree used by TSQR in order to apply Q. A
recent paper [3] introduced a new technique to reconstruct
Householder vectors from either the computed Q matrix or
R matrix. In both cases, in order to obtain a reproducible
QR factorization, a reproducible R matrix must be computed
first.

In this paper we introduce a new algorithm to repro-
ducibly compute a QR factorization of a tall skinny matrix,
which usually requires much less communication than the
conventional Householder QR and is almost as stable as
the Householder QR provided that the input matrix is not
too ill-conditioned (which the algorithm will confirm). The
new algorithm is based on the Cholesky QR algorithm,
which is fast in computation for both sequential and parallel
environments but is unstable when the input matrix is ill-
conditioned. It uses the new technique presented in [3] to
reconstruct Householder vectors. In addition, a refinement
technique is used to improve the numerical quality.

The paper is organized as follows: Section II briefly
summarizes the currently available algorithms for QR fac-
torization of a tall skinny matrix. Section III describes our
new technique to reproducibly compute the QR factorization.
Section IV shows some experimental results in Matlab.
Finally, Section V contains some conclusions as well as



some discussion of possible future work.

A. Notation

Throughout this paper, we use Matlab-like notations to
describe algorithms, for example chol and lu stand for the
Cholesky and LU factorization without pivoting operations
respectively. The division x = A\b stands for the solution
of a system of linear equations Ax = b, or x = A−1b, in
contrast to A/B = AB−1.
A(r1 : r2, c1 : c2) denotes a submatrix of A which

spans from row r1 to row r2 and from column c1 to
column c2. A(i, :) and A(:, j) denote the ith row and the jth
column of A respectively. Im,n ∈ Rm×n denotes an identity
matrix with ones on the diagonal and zeros elsewhere.
0m,n ∈ Rm×n denotes a zero matrix. [A;B] denotes a
vertical concatenation operation which forms a new matrix
by stacking A on top of B where A and B have the same
number of columns.

II. PREVIOUS WORK

Let Q ∈ Rn×b, R ∈ Rb×b be a QR factorization of A ∈
Rn×b, i.e. A = QR where R is upper triangular and Q is
orthogonal. Therefore ATA = RTQTQR = RTR. It means
that R is a Cholesky factor of ATA. Note that, unlike R
from Cholesky, R from QR factorization can have negative
diagonals. That leads to Algorithm 1 to compute the QR
factorization of A based on Cholesky factorization.

Algorithm 1 Cholesky QR [Q,R] = cholQR(A)

Require: A is n× b matrix, cond(A) < ε−1/2

1: Z = ATA
2: R = chol(Z)
3: Q = A/R

cholQR only uses three kernels:
• the matrix multiplication ATA which costs 2nb2 if

BLAS gemm routine is used but only costs nb2 FLOPs
if the symmetry of Z is taken into account and BLAS
syrk is used,

• the Cholesky factorization of a b×b matrix which costs
b3/3 FLOPs using LAPACK’s potrf routine,

• the solution Q of a triangular linear system QR = A
which costs nb2 FLOPs using BLAS trsm routine.

In total cholQR costs 2nb2 +O(b3) FLOPs. In cases where
only the R matrix is needed, the last line of Algorithm 1
can be omitted, which leads to a modified algorithm named
cholR that costs nb2 + O(b3) FLOPs instead of 2nb2 +
O(b3) FLOPs.

With Q being computed from the triangular solve,
cholQR will likely obtain backward stability in the sense
that ‖ A−QR ‖= O(ε) ‖ A ‖ where ε is machine epsilon.
However, the orthogonality of Q cannot be guaranteed. In
a recent paper [3], a new technique building on a method
introduced by Yamamoto [4] was proposed to reconstruct
the Householder vectors from A and R matrices, which
guarantees the orthogonality of Q. In brief, that algorithm

can be explained as following: Let Y be a lower triangular
unit diagonal matrix containing the Householder vectors
corresponding to Q in Y TY T compact format [13], where T
is a b×b upper triangular matrix so that Q = In,b−Y TY T

1 ,
where Y1 is the top b × b block of Y . Therefore A =
QR = [R; 0n−b,b] − Y TY T

1 R, which can be rewritten as
: A− [R; 0n−b,b] = −Y TY T

1 R.

Let V = −TY T
1 R. Since T , Y T

1 , and R are upper
triangular, V is also an upper triangular matrix. This means
that (Y, V ) is an LU factorization of A−R without pivoting.
Note that (Y, V ) is unique since Y is a unit lower triangular
matrix. Similarly to the Householder transformation, in order
to avoid cancellation of the diagonal elements of A− R, a
sign flipping diagonal matrix S whose diagonal elements are
either 1 or −1 is used [3]: (L,U) = lu(A − SR). Algo-
rithm 2 (modLU) is a simplified version of [3, Algorithm
11].

Algorithm 2 Modified LU factorization [L,U, S] =
modLU(A,R)

Require: A is n × b matrix, R is b × b upper triangular
matrix

1: S = Ib,b
2: for i = 1 to b do
3: if sgn(A(i, i)) = sgn(R(i, i)) then
4: S(i, i) = −1
5: end if
6: A(i + 1 : n, i) = A(i + 1 : n, i)/(A(i, i) +
S(i, i)R(i, i))

7: z = A(i, i+ 1 : b)− S(i, i)R(i, i+ 1 : b)
8: A(i + 1 : n, i + 1 : b) = A(i + 1 : n, i + 1 :
b)−A(i+ 1 : n, i)z

9: end for
10: U = triu(A)
11: L = tril(A)

modLU returns a tuple (L,U, S) corresponding to the
lower triangular, upper triangular and sign flipping matrices.
modLU has the same cost as a normal LU factorization
without pivoting.

Algorithm 3 reconstructs the Householder vectors of the
QR factorization of A from a computed R matrix. It returns
the result in LAPACK format [12] where the strictly lower
triangular part of Y contains the Householder vectors, and
the upper triangular part of Y contains the R matrix. It
costs nb2 +O(b3) FLOPs, in which the most expensive part
is the triangular matrix solve in line 6. Algorithm 3 also
computes a T in the Y TY T representation of Householder
transformation, based on the fact that V = TY T

1 R, which
means T = V/(Y T

1 R).



Algorithm 3 Reconstruct Householder vectors from R
matrix [Y, T ] = r2y(A,R)

Require: A is n × b matrix, R is b × b upper triangular
matrix

1: A1 = A(1 : b, 1 : b) . Upper part of A
2: A2 = A(b+ 1 : end, 1 : b) . Lower part of A
3: [Y 1, U, S] = modLU(A1, R)
4: R = SR
5: Y 1(1 : b+ 1 : b2) = 0 . Set diagonal of Y 1 to 0
6: Y 2 = A2/U
7: Y = [Y 1 +R;Y 2]
8: T = −U/(Y 1TR)

Using Algorithms 1 and 3, we can compute a QR fac-
torization of A using level-3 BLAS routines as described in
Algorithm 4.

Algorithm 4 Reproducible QR factorziation [Y, T ] =
repQR(A)

Require: A is n× b matrix, cond(A) < ε−1/2

1: Z = ATA
2: R = chol(Z)
3: [Y, T ] = r2y(A,R)

Recall that since the Q matrix computed by Algorithm 4 is
stored in Householder vector format, it is always orthogonal.
Note that Q can be reconstructed by applying the House-
holder transformations to an identity matrix or by using
formula I − Y TY T where T is a b × b upper triangular
matrix satisfying T−1+T−T = Y TY [3]. If the input matrix
is very well conditioned, i.e. cond(A) ≈ 1, one can use T
also computed from Algorithm 4 to save computational cost.
However, Algorithm 4 is unstable since both cholQR and
r2y are sensitive to the condition number of A, especially
cholQR since cond(Z) ≈ cond(A)2. It means that if
cond(A) > ε−1/2 then cond(Z) > ε−1, so we might even
fail to compute a Cholesky decomposition of Z.

The following section introduces techniques to improve
the numerical quality of both the r2y and cholQR func-
tions.

III. ALGORITHM

In this section we will discuss new techniques to improve
the numerical quality of Algorithm 4. Since Q is stored
in Householder vector format, Q is always guaranteed to
be orthogonal. Therefore we pay attention to the backward
stability, i.e. obtaining a small residual A − QR. More
specifically, we aim to obtain almost the same accuracy as
the Householder QR, which means that we need to guarantee
a relatively small column-wise relative error:

errorcol =
b

max
i=1

‖ A(:, i)−QR(:, i) ‖
‖ A(:, i) ‖

, (1)

where A(:, i) denotes the i-th column of A.

A. Recursive Cholesky QR

It is shown that when the input matrix A is ill-conditioned,
i.e. cond(A) > ε−1/2, cholQR can fail to compute the
Cholesky factorization of Z = ATA. It means that repQR
algorithm cannot proceed. In practice, in case of failure,
i.e. the algorithm would need to divide by the square root
of a nonpositive pivot, both Matlab’s chol() function
and LAPACK’s dpotrf routine, return an upper triangular
matrix R and a positive integer p < b where R is of
size p × p and RTR = Z(1 : p, 1 : p). p = 0 means
Cholesky factorization runs to completion. In our case, R
is actually an R factor of the first p columns of A since
Z(1 : p, 1 : p) = AT (:, 1 : p)A(:, 1 : p). Therefore, we
can use Algorithm 3 to compute the QR factorization of the
first p columns of A, which can then be used to update the
trailing matrix much like the Householder QR. Algorithm 5
depicts the process in detail.

Algorithm 5 Recursive Cholesky QR for ill-conditioned
matrix Y = repQR2(A)

Require: A is n× b non-singular matrix matrix
1: Z = ATA
2: [R, p] = chol(Z)
3: if p = 0 then . Cholesky factorization runs to

completion
4: [Y, T ] = r2y(A,R) return
5: end if
6: A1 = A(1 : n, 1 : p)
7: A2 = A(1 : n, p+ 1 : b)
8: [Y 1, T ] = r2y(A1, R) . QR factorization of first half
9: A2 = apply_yty(A2, Y 1, T ) . Update second half

10: Y 2 = repQR2(A2(p+ 1 : n, 1 : b− p)) . Recursively
factorize second half

11: A2(p+ 1 : n, 1 : b− p) = Y 2
12: Y = [Y 1, A2] . Horizontally concatenate 2 matrices

The updating of trailing matrix apply_yty can be
done by applying the Householder reflectors in Y 1 one-
by-one to A2, which is costly in terms of communication.
Alternatively, the update can be done using the T matrix
of Y TY T representation [13]: A2 = (I − Y1T

TY T
1 )A2 =

A2− Y1T
T (Y T

1 A2), T is also computed by function r2y.
This requires one reduction to compute Y T

1 A2 and one
broadcast of the p× p matrix TT (Y1A2) to all processors.

At the cost of an additional reduction and broadcast to
compute the max-norms of the columns of A and scaling
each column by the nearest power of 2 to have (close to) unit
norm, we can maintain reproducibility, avoid over/underflow
problems, and identify and skip columns that are exactly
zero. Alternatively, the reproducible dot product used to
compute ATA could use enough extra exponent range for
the same purpose.

Using this recursive scheme, we can always factorize a
non-singular matrix even with high condition number. In
the worst case, where every 2 consecutive columns during
the computation are almost linearly dependent then each



time we can only compute the Cholesky QR factorization of
the first column, the computation process will look exactly
like the Householder QR factorization. In that case, the
algorithm will cost O(nb3) FLOPs instead of O(nb2) since
we might need to perform Cholesky QR factorization of each
submatrix A(i : n, i : b), 1 ≤ i ≤ b.

B. Recursive Reconstruction of Householder vectors from R
matrix

In this section we suppose that a matrix R has been
successfully computed by applying cholQR algorithm to an
input matrix A. It implies that A is not too ill-conditioned.
Roughly speaking, A needs to satisfy cond(A) < ε−1/2.

It is known that Cholesky factorization has perturbation
bounds that are strongly dependent on the condition number
[7, Section 10.2].

Theorem III.1. Let A ∈ Rn×n be symmetric positive
definite with the Cholesky factorization A = RTR and let
∆A be a symmetric matrix satisfying ‖ A−1∆A ‖2< 1.
Then A + ∆A has the Cholesky factorization A + ∆A =
(R+ ∆R)T (R+ ∆R), where

‖ ∆R ‖F
‖ R ‖p

≤ 2−1/2 κ2(A)ε

1− κ2(A)ε
(2)

with ε = ‖∆A‖F
‖A‖p , p = 2, F, κ2(A) =‖ A−1 ‖2‖ A ‖2

In our case of computing the Cholesky factorization of
Z = ATA, in finite precision arithmetic according to [7,
Section 3.5] we have ‖ Z(i, i)−(ATA)(i, i) ‖≤ γn ‖ AT ‖‖
A ‖ . Let ATA = Z + ∆Z, and ignoring the lower order
error term, we have ‖ ∆Z ‖. nε ‖ Z ‖, then ATA has the
Cholesky factorization ATA = R̂T R̂, R̂ = R+ ∆R, where

‖ ∆R ‖F
‖ R ‖p

≤ 2−1/2 nκ2(Z)ε

1− κ2(Z)nε
≈ 2−1/2 nκ2

2(A)ε

1− nκ2
2(A)ε

.

(3)
Since r2y computes the LU factorization of A − SR

where S is the diagonal sign flipping matrix, it has the same
perturbation behavior as the LU factorization [7, Section
9.11]. In addition, since the diagonal elements of R are non-
zero, using the sign flipping technique, diagonal elements
during Gaussian elimination of A − SR are also non-zero.
However, diagonal elements of A − SR can still be very
small which might lead to a large growth factor since we do
not use pivoting.

In order to improve the numerical quality of Algorithm 5,
we propose to use iterative refinement steps to improve
the numerical quality of both cholQR and r2y. Iterative
refinement is based on the fact that in exact arithmetic
A/R = Q is an orthogonal matrix. In this case R is the
computed Cholesky factor of the computed Z, if R is a
good enough approximation of the R matrix in the QR
factorization of A than B = A/R should be close to an
orthogonal matrix, or cond(B) should be close to 1. In
that case, we can apply Algorithm 1 to compute a good
approximation of the R factor of B. Algorithm 6 depicts the
iterative refinement steps.

Algorithm 6 Recursively Reconstruct Householder vector
from R [Y, T,R] = rec_r2y(A,R)

Require: A is n × b matrix, R is b × b upper triangular
matrix. cond(A),cond(R) < ε−1/2

1: repeat
2: B = A/R . Precondition A by inverse of R
3: R1 = cholR(B)
4: R = R1 ∗R
5: cnd = cond(R1)
6: until cnd is small
7: [Y, T ] = r2y(B,R1)
8: Y = tril(Y,−1) + triu(Y )R

Stopping Criteria: The question remains of when to stop
the refinement process. The main goal of the refinement
process is to reduce the condition number of input matrix for
the Cholesky QR algorithm cholR. Ideally, the refinement
stops when we obtain B = A/R with cond(B) ≈ 1.
However, in practice, due to rounding error we might never
obtain cond(B) = 1 even if R is exactly computed. Also,
computing a too accurate B would require an excessive
running time, since each iterative step to refine B is twice
as costly as Cholesky QR factorization.

First, to prevent the refinement from running forever,
we stop the refinement process at a maximum number of
iterations regardless of the quality of computed R matrix.
In practice, in most cases we only need 1 or 2 iterations to
obtain a good accuracy. Therefore, in our implementation
we set the maximum number of iterations to 4.

Second, in order to determine a good enough condition
number for R1, we need to look at the numerical behavior
of the algorithm. As mentioned in the previous section, the
Cholesky factorization of ATA has the perturbation bounds:

‖ ∆R ‖F
‖ R ‖p

≤ 2−1/2 nκ2
2(A)ε

1− nκ2
2(A)ε

Therefore, in order to obtain a good Cholesky factorization
of ATA, input matrix A must at least satisfy: nκ2

2(A)ε < 1,
or κ2(R) ≈ κ2(A) < (nε)−1/2.

Since cond(R) ≈ cond(A) < ε−1/2, the solution of
the triangular system B = A/R has a small forward error
bound. Let B̂ be the exact solution of A/R, we have [7,
Section 8.2]:

‖ B(:, i)− B̂(:, i) ‖
‖ B̂(:, i) ‖

≤ cond(R)γb
1− cond(R)γb

, γb =
cbε

1− cbε
(4)

⇒ ‖ B − B̂ ‖ ≤‖ B̂ ‖ cbε1/2

(1− cond(R)γb)(1− cbε)
(5)

for a small constant c.
Moreover, let Q̂ be the orthogonal matrix so that A =

Q̂(R+ ∆R), we have:

B̂ = AR−1 = Q̂(R+ ∆R)R−1. (6)



Therefore

‖ B̂ − Q̂ ‖p =‖ Q̂∆RR−1 ‖p=‖ ∆RR−1 ‖p, p = 2, F

≤‖ ∆R ‖p‖ R−1 ‖p

≤‖ R−1 ‖p‖ R ‖p 2−1/2 nκ2
2(A)ε

1− nκ2
2(A)ε

≤ 2−1/2nκp(R)κ2
2(A)ε

1− nκ2
2(A)ε

≈ 2−1/2 nκ3
2(R)ε

1− nκ2
2(R)ε

.

(7)

In order to compute a good approximation of Q, we
would want ‖ B − Q ‖< 1. Therefore we need to
have cond(R) < (nε)−1/3. This condition is used as the
stopping criteria for the iterative refinement process in our
Matlab implementation.

With this recursive algorithm for reconstructing House-
holder vectors, we obtain the final version of our algo-
rithm, which is described in Algorithm 7. Like Householder
transformation, Algorithm 7 makes no assumption about the
condition number of input matrix beside its non-singularity.

Algorithm 7 Recursive Cholesky QR for ill-conditioned
matrix Y = rec_repQR(A)

Require: A is n× b non-singular matrix
1: Z = ATA
2: [R, p] = chol(Z)
3: if p = 0 then . Cholesky factorization runs to

completion
4: [Y, T,R] = rec_r2y(A,R)
5: return
6: end if
7: A1 = A(1 : n, 1 : p)
8: A2 = A(1 : n, p+ 1 : b)
9: [Y 1, T ] = rec_r2y(A1, R) . QR factorization of

first half
10: A2 = apply_yty(A2, Y 1, T ) . Update second half
11: Y 2 = rec_repQR(A2(p+ 1 : n, 1 : b− p)) .

Recursively factorize second half
12: A2(p+ 1 : n, 1 : b− p) = Y 2
13: Y = [Y 1, A2] . Horizontally concat 2 matrices

C. Reproducibility

In parallel environments, in all the algorithms presented
in this paper, the only operation that requires reduction
operations is the matrix multiplication ATA for Cholesky
QR factorization. The other operations either require only
broadcast operations or can be performed independently
locally. All the conditional branches are also performed
locally on a single node.

In the context of this paper, we make an assumption that
all local computation can be made reproducible by fixing
the order of computation or by using some library which
supports reproducibility on a single node, such as the latest
version of Intel MKL [8] library with the Conditional Nu-
merical Reproducibility (CNR) feature. Therefore in order to
attain reproducibility, we only need to reproducibly compute

the matrix multiplication. That can be done using using
new techniques proposed in [1], [2], or less efficiently, by
enforcing a deterministic order of summation, or using exact
arithmetic.

According to [1], [2], a reproducible summation algorithm
in double precision uses 8 times more FLOPs than a con-
ventional summation algorithm. It means that a reproducible
matrix multiplication of size n×n will require 8n3 floating-
point additions, and n3 floating-point multiplications. In our
case of tall-skinny matrix multiplication, we can improve
the performance by using a blocking technique. Suppose
that the input matrix is partitioned into submatrices of fixed
block size NB × NB which will be distributed among
computing nodes. With the assumption that the data layout of
each block is fixed, a performance-optimized library can be
used to reproducibly compute the products of corresponding
blocks, which costs 2NB3 FLOPs. The reduction opera-
tions can then be performed using reproducible summation
algorithm which costs O(8NB2) FLOPs per reduction to
produce the final reproducible result at a modest extra cost.
It means that the computation overhead in this case is only
a factor of 1 + 4/NB higher in terms of FLOP count. In
practice, the overhead can be larger by a constant factor only
since BLAS level-3 routines are better optimized than BLAS
level-1 routines.

D. Communication Cost

For the cost analysis of presented algorithms, we use the
(γ, α, β) model [3]:

• γ is the computational cost of 1 FLOP,
• α is the latency cost of sending each message,
• β is the bandwidth cost of sending each word.

With this model, the cost of sending a block of w elements
is α+ βw. The cost of a broadcasting of w-word blocks to
all p processors is α log p + β(w log p). And the cost of a
reduction operation (MPI_Reduce or MPI_AllReduce
[9]) is γ(w log p) + α log p + β(w log p). When w ≤ p,
pipelined algorithm can be used to reduce the bandwidth cost
of broadcast and reduction operation to βw by subdividing
the message into many small pieces. For simplicity, our cost
analyses do not make any assumption about the relation
between w and p, therefore we use β(w log p) as the
bandwidth cost for broadcast and reduction.

Since we are interested in tall skinny matrices, in the
context of this paper we assume a 1-D network layout
where n rows of the input matrix are distributed equally
among p processors with p � n, i.e. each processor holds
n/p consecutive rows of A, Y and B. For simplicity,
we assume load balancing for parallel computation of the
algorithms, including the matrix multiplication, triangular
matrix solution, and LU factorization.

The costs of Householder QR are given in [3]: γ(2nb2/p−
2b3/3) + α(2b log p) + β((b2/2) log p).

cholQR requires 2 reduction operations: one for the
computation of ATA (line 1 of Algorithm 1), and one
for broadcasting R to all processors (line 3). If symme-



try is taken into account, the total cost of cholQR is
γ(nb2/p+ b3/3 + (b2/2) log p) + α(2 log p) + β(b2 log p).
r2y uses only 1 reduction operation to broadcast U to

all processor (line 6 of Algorithm 3) which costs α log p+
β((b2/2) log p). Since modLU has the similar computational
cost as a normal LU factorization, the total cost of r2y is
γ(nb2/p) + α(log p) + β((b2/2) log p).

Each iteration of Algorithm 6 involves 2 reduction opera-
tions in line 2 for broadcasting R and line 3 for computing
BTB. Thus, the cost of each iteration is γ(2nb2/p +
5b3/6 + (b2/2) log p) + α(2 log p) + β(b2 log p). Let k be
the number of iterations, then the total cost of rec_r2y
is γ((2k + 1)nb2/p + 5kb3/6 + k(b2/2) log p) + α((2k +
1) log p) + β((2k + 1)(b2/2) log p).

The communication cost of Algorithm 7 is more compli-
cated and depends on input matrices. In the case of well
conditioned input matrices, i.e. cond(A) < ε−1/2, the
algorithm exits at line 5, the total cost of rec_repQR is
γ((2k+2)nb2/p+5kb3/6+b3/3+(k+1)(b2/2))+α((2k+
2) log p) + β((2k + 2)b2 log p) where k is the number of
iterations of rec_r2y. Therefore the computational cost
and the bandwidth cost of rec_repQR are (k + 1) times
larger than those of Householder QR. However, the latency
cost of rec_repQR is b/(k + 1) times smaller than that
of Householder QR. In practice, the iterative refinement in
Algorithm 6 usually stops at 1 or 2 iterations. Thus, for well
conditioned matrices, the latency cost of rec_repQR is b/2
or b/3 times smaller than the latency cost of Householder
QR, which gives rec_repQR an advantage over House-
holder QR on massively parallel environments.

IV. EXPERIMENTAL RESULTS

In this section we present some experimental results in
Matlab version R2012a on an Intel R© CoreTM i7-2720QM
processor with 4 cores of 2.2 GHz speed and 8GB of
main memory. Note that since there is no reproducible
library for level-3 BLAS routines available yet, we could not
carry out real tests of the reproducible algorithms presented
in this paper. As discussed in the previous section, our
algorithms can attain reproducibility once a reproducible
matrix multiplication implementation is available. According
[2], the reproducible sum has almost the same accuracy as
the normal sum. This can also be applied to the case of
matrix multiplication. Since the only operation that needs
to be performed in a reproducible manner is the matrix
multiplication, the accuracy observation in the following
Matlab tests can also be applied to future tests using repro-
ducible matrix multiplication operation. Also, since most of
the running time is spent in large dense matrix operations,
the additional overhead of Matlab is limited.

We performed our tests on multiple sets of test matrices
of size 10000×32, with condition number varying from 210

to 253:

1) matrices generated using the gallery function from
Matlab with matrix type randsvd: A = UΣV T ,
where U ∈ Rn×n and V ∈ Rb×b are random

orthogonal matrices and Σ = diag(σi) is a given
matrix of singular values.

2) matrices generated by A = QR where Q,R are
formed by taking the QR factorization of a random
matrix and by setting the center element R(b/2, b/2)
to a small value.

3) matrices generated by A = QR where Q is a random
orthogonal matrix, and R is a random upper triangular
matrix so that cond(R(2i + 1 : 2i + 2, 2i + 1 : 2i +
2)) = κ, 0 ≤ i < b/2, for a given condition number
κ, and R(i, j) ≈ ε elsewhere.

For each test set, we collect the following data:
• Running time of the 4 algorithms r2y, repQR,
repQR2, and rec_repQR. Note that for r2y, we
use Matlab’s built-in qr() function to compute the R
matrix. The running time of Matlab’s qr() is included
in the running time of r2y in the figures. For repQR,
a very small running time which is close to 0 means
that the algorithm fails to compute a QR factorization
of the input matrix.

• Column-wise relative error of all those 4 algorithms
which is computed by (1).

Figure 1 summarizes experimental results of the first
set of test matrices. As explained in Section II, due to
the strong dependence of Cholesky algorithm’s numerical
quality on the condition number of A, the naive repQR stops
working when the condition number of A reaches about
ε−1/2. Using a recursive technique, repQR2 still succeeds
when the input matrix has an even higher condition number.
However the column-wise relative error of repQR2 when
cond(A) > ε−1/2 is limited by ε−1/2. Meanwhile both r2y
and rec_repQR obtain very good column-wise relative
errors, since rec_repQR employs the refinement steps for
the QR factorization of sub-panel. In terms of running time,
rec_repQR is usually around 4 times slower than Matlab’s
qr function. Meanwhile r2y is less than 3 times slower than
the Matlab qr function.

In the second test set (Figure 2), repQR and repQR2
exhibit even a stronger dependence on the condition number
of input matrices. Differently from the first test, in this
test r2y is also sensitive to the condition number of input
number. This phenomenon might be explained by the fact
that the very small value in the middle of the diagonal of R
makes the trailing matrix more sensitive to the perturbation
by rounding errors. In this test, rec_repQR still provides
good accuracy regardless of the input matrices’ condition
number.

Test matrices in the third test are generated in such a
way that Cholesky QR factorization will fail more often.
When the condition number of input matrices is smaller
than ε−1/2, the Cholesky QR factorization can proceed
successfully on the whole input matrix. Therefore all the
4 algorithms behave exactly the same as in the second test
set. However, when the condition number of the input matrix
gets bigger than ε−1/2, rec_repQR and repQR2 see a
surge in running time since both those two algorithms might
need to restart the Cholesky QR factorization as often as



Figure 1: Test 1
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Figure 2: Test 2
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Figure 3: Test 3
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every two columns of the input matrix. This type of input
matrix is however not so common in practice.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced a technique to reproducibly
compute a QR factorization of a non-singular matrix and
return the result in Householder vector format, which guar-
antees the orthogonality of the computed Q factor. In most
cases, our proposed technique obtains very good accuracy
as measured by the norms of the columns of the residual
A − QR, compared to the norms of the corresponding
columns of A. When the matrix is well-conditioned, i.e.
whose condition number is smaller than ε−1/2, our technique
runs 4 times slower than the Matlab’s built-in qr() function
for test matrices of size 10000 × 32, but is much more
efficient in terms of communication. When the condition
number of the input matrix gets higher, our technique still
provides a good accuracy at the cost of increased running
time since refinement steps need to be performed.

This work still needs to be completed by some formal
proof of numerical quality in finite precision arithmetic. We
will also need to collect more experimental data once a
library for reproducible level-3 BLAS routines is available,
such as the ReproBLAS [11] which is still work in progress.
We also want to investigate alternative approaches to reduce
the number of iterative refinement steps when the condition
number of input matrix is high, for example Cholesky
factorization with pivoting, or extra-precise Cholesky QR
factorization which requires both the multiplication ATA



and the Cholesky factorization to be computed in higher
precision.
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