Numerical Accuracy and Reproducibility at ExaScale

James Demmel, Hong Diep Nguyen

ParLab - EECS - UC Berkeley

ARITH 21 April 7-10, 2013

Floating-point arithmetic: defines a discrete subset of real values and suffers from *rounding errors*.

 \rightarrow Floating-point operations $(+, \times)$ are commutative but not associative:

$$(-1+1)+2^{-53}\neq -1+(1+2^{-53}).$$

Consequence: results of floating-point computations depend on the order of computation.

Reproducibility: ability to obtain bit-wise identical results from run-to-run on the same input data, with different resources.

Motivations

Demands for reproducible floating-point computations:

- ▶ Debugging: look inside the code step-by-step, and might need to rerun multiple times on the same input data.
- ▶ Understanding the reliability of output. Ex: ¹, Power State Estimation problem (spmv + dot product), after the 5th step the Euclidean norm of the residual vector differs up to 20% from one run to another.
- Contractual reasons (road type approval, drug design),
- **•** . . .

¹Villa et al, Effects of Floating-point non-Associativity on Numerical Computations on Massively Multithreaded Systems, CUG 2009 Proceedings

Sources of non-reproducibility

A performance-optimized floating-point library is prone to inconsistency for various reasons:

- Changing Data Layouts:
 - Data alignment,
 - Data partitioning,
 - Data ordering,
- Changing Hardware Resources:
 - Fused Multiply-Adder support,
 - ▶ Intermediate precision (64 bits, 80 bits, 128 bits, etc),
 - Data path (SSE, AVX, GPU warp, etc),
 - Cache line size,
 - Number of processors,
 - Network topology,
 - ▶ ???

Sources of non-reproducibility

A performance-optimized floating-point library is prone to inconsistency for various reasons:

- Changing Data Layouts:
 - Data alignment,
 - Data partitioning,
 - Data ordering,
- Changing Hardware Resources:
 - Fused Multiply-Adder support,
 - ▶ Intermediate precision (64 bits, 80 bits, 128 bits, etc),
 - ▶ Data path (SSE, AVX, GPU warp, etc),
 - Cache line size,
 - Number of processors,
 - Network topology,
 - ▶ ???

ExaScale: ability to execute exaflops (10^{18} floating-point operations) per second, using $\mathcal{O}(10^9)$ processors.

ExaScale: ability to execute exaflops (10^{18} floating-point operations) per second, using $\mathcal{O}(10^9)$ processors.

Highly dynamic scheduling,

ExaScale: ability to execute exaflops (10^{18} floating-point operations) per second, using $\mathcal{O}(10^9)$ processors.

- Highly dynamic scheduling,
- Network heterogeneity: reduction tree shape can vary,

ExaScale: ability to execute exaflops (10^{18} floating-point operations) per second, using $\mathcal{O}(10^9)$ processors.

- Highly dynamic scheduling,
- Network heterogeneity: reduction tree shape can vary,
- Drastically increased communication time

```
\mathsf{Cost} = \mathsf{Arithmetic} + \mathsf{Communication} \ FLOPs + \#\mathsf{words} \ \mathsf{moved} + \#\mathsf{messages}
```

ExaScale: ability to execute exaflops (10^{18} floating-point operations) per second, using $\mathcal{O}(10^9)$ processors.

- Highly dynamic scheduling,
- Network heterogeneity: reduction tree shape can vary,
- Drastically increased communication time

► Communication-Avoiding algorithms change the order of computation on purpose, for ex. 2.5D Matmult, 2.5D LU, etc,

ExaScale: ability to execute exaflops (10^{18} floating-point operations) per second, using $\mathcal{O}(10^9)$ processors.

- Highly dynamic scheduling,
- Network heterogeneity: reduction tree shape can vary,
- Drastically increased communication time

```
Cost = Arithmetic + Communication

FLOPs #words moved + #messages
```

- ► Communication-Avoiding algorithms change the order of computation on purpose, for ex. 2.5D Matmult, 2.5D LU, etc,
- A little extra arithmetic cost is allowed so long as the communication cost is controlled.

Source of floating-point non-reproducibility: rounding errors lead to dependence of computed result on order of computations.

To obtain reproducibility ?

Source of floating-point non-reproducibility: rounding errors lead to dependence of computed result on order of computations.

To obtain reproducibility?

- ► Fix the order of computations:
 - sequential mode: intolerably costly at ExaScale
 - ▶ fixed reduction tree: substantial communication overhead

Source of floating-point non-reproducibility: rounding errors lead to dependence of computed result on order of computations.

To obtain reproducibility?

- Fix the order of computations:
 - sequential mode: intolerably costly at ExaScale
 - fixed reduction tree: substantial communication overhead
- Eliminate/Reduce the rounding errors:
 - exact arithmetic (rounded at the end): much more expensive in communication and very wide multi-word arithmetic
 - fixed-point arithmetic: limited range of values
 - higher precision: reproducible with high probability (not certain).

Source of floating-point non-reproducibility: rounding errors lead to dependence of computed result on order of computations.

To obtain reproducibility?

- Fix the order of computations:
 - sequential mode: intolerably costly at ExaScale
 - ▶ fixed reduction tree: *substantial communication overhead*
- Eliminate/Reduce the rounding errors:
 - exact arithmetic (rounded at the end): much more expensive in communication and very wide multi-word arithmetic
 - fixed-point arithmetic: limited range of values
 - higher precision: reproducible with high probability (not certain).
- Our proposed solution: deterministic errors.

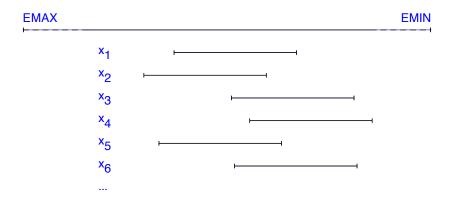
A proposed solution for global sum

Objectives:

- bit-wise identical results from run-to-run regardless of hardware heterogeneity, # processors, reduction tree shape,
- independent of data ordering,
- only 1 reduction per sum,
- no severe loss of accuracy.

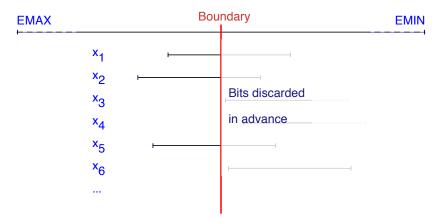
Idea: pre-rounding input values.

Pre-rounding technique



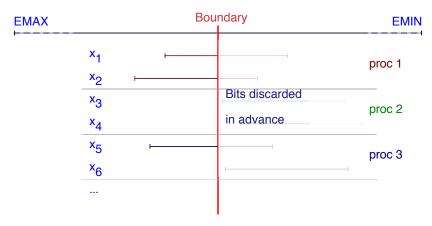
Rounding occurs at each addition. Computation's error depends on the intermediate results, which depend on the order of computation.

Pre-rounding technique



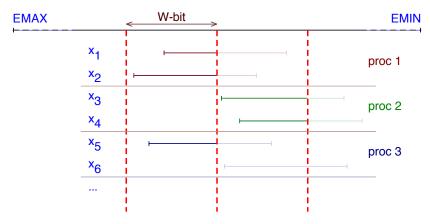
No rounding error at each addition. Computation's error depends on the Boundary, which depends on $\max |x_i|$, not on the ordering

Pre-rounding technique



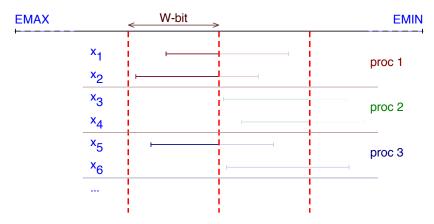
No rounding error at each addition. Computation's error depends on the Boundary, which depends on $\max |x_i|$, not on the ordering \Rightarrow extra communication among processors.

1-Reduction technique



Boundaries are precomputed. Special Reduction Operator: (MAX of boundaries combined SUM of corresponding partial sums)

1-Reduction technique



Boundaries are precomputed. Special Reduction Operator: (MAX of boundaries combined SUM of corresponding partial sums)

Reproducibility vs. Accuracy

Reproducibility does not necessarily mean Accuracy:

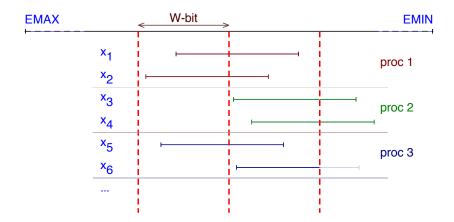
- ▶ A very accurate result (for ex. computed using very high precision) might not be reproducible,
- ► A reproducible result might be of much less accuracy.

The accuracy of the pre-rounding technique with 1 bin:

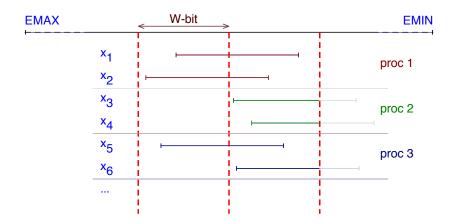
absolute error
$$\leq N \cdot Boundary < N \cdot \max |x_i|$$
.

Solution: increase the number of bins to improve the accuracy.

k-fold Algorithm



k-fold Algorithm



k-fold Algorithm: Accuracy

k-fold algorithm has an error bound:

absolute error
$$\leq N \cdot Boundary_k < N \cdot 2^{-(k-1) \cdot W} \cdot \max |x_i|$$
.

In practice:
$$k = 3$$
, $W = 40$.

absolute error
$$< N \cdot 2^{-80} \cdot \max |x_i| = 2^{-27} \cdot N \cdot \epsilon \cdot \max |x_i|$$

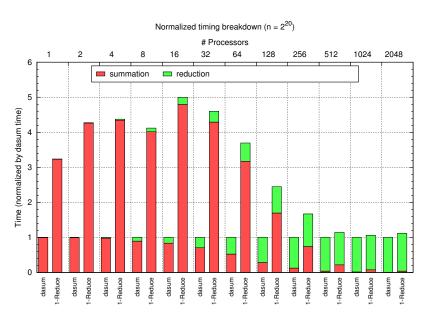
Standard sum's error bound $\leq (N-1) \cdot \epsilon \cdot \sum |x_i|$

Experimental results: Accuracy

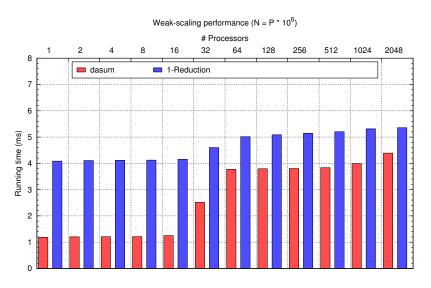
Summation of $n=10^6$ floating-point numbers. Computed results of both reproducible summation and standard summation (with different ordering: ascending value, descending value, ascending magnitude, descending magnitude) are compared with result computed using quad-double precision.

Generator x _i	reproducible	standard
drand48()	0	$-8.5 \times 10^{-15} \div 1.0 \times 10^{-14}$
drand48() - 0.5	1.5×10^{-16}	$-1.7 \times 10^{-13} \div 1.8 \times 10^{-13}$
$\sin(2.0*\pi*i/n)$	1.5×10^{-15}	$-1.0 \div 1.0$
$\sin(2.0*\pi*i/n)*2^{-5}$	1.0	$-1.0 \div 1.0$

Experimental results: strong-scaling



Experimental results: weak-scaling



Conclusions

The proposed 1-Reduction pre-rounding technique

- provides bit-wise identical reproducibility, regardless of
 - data permutation, data assignment,
 - processor count, reduction tree shape,
 - ► hardware heterogeneity, etc.
- obtains better error bound than the standard sum's,
- can be done in on-the-fly mode,
- requires only ONE reduction for the global parallel summation,
- is suitable for very large scale systems (ExaScale),
- can be applied to Cloud computing environment,
- can be applied to other operations which use summation as the reduction operator.

Future works

In Progress

- Parallel Prefix Sum,
- Matrix-vector / Matrix-matrix multiplication,

TODO

- ▶ Higher level driver routine: trsm, factorizations like LU, ...
- ▶ n.5D algorithms (2.5D Matmult, 2.5D LU),
- ▶ spMV,
- Other associative operations.

1-Reduction's reduction operator

