Toward hardware support for Reproducible BLAS
http://bebop.cs.berkeley.edu/reproblas/
James Demmel, Hong Diep Nguyen
SCAN 2014 - Wurzburg, Germany

Sep 24, 2014

17

http://bebop.cs.berkeley.edu/reproblas/

Reproducibility

Reproducibility: obtaining bit-wise identical results from different
runs of the program on the same input data, regardless of different
available resources.

Cause of nonreproducibility: not by rou_ndoff error but by
the non-determinism of accumulative roundoff error.

Due to the non-associativity of floating point addition,
accumulative roundoff errors depend on the order of evaluation,
and therefore depend on available computing resources.

N

17

Reproducible Summation

N
s=Y_vli]
1

Error bound: ’s — SNV < Nxex SV
Running error depends on the order of evaluation.

Solutions:

» Increasing the accuracy (Kahan's algorithm, distillation
algorithm, extra precision, ...) can increase the chance of
reproducibility but does not guarantee reproducibility.

» Exact arithmetic or correctly-rounded algorithm can provide
reproducibility: costly both in terms of memory and
computation

» Qur proposed solution: pre-rounding technique

17

Reproducible Summation: Pre-rounding technique

EMAX - Wbt EMIN
o= T T | !
1 1 1

X4 1 ! 1
1 1 1 proc 1
1 1 1
2 1 1 1
X 1 1 1
3 1 1 T
" " " proc 2
X4 1 1 +
Xe 1 : i
5 : : : proc 3
X6 1 1 [
1 1 1
1 1 1
1 1 1

1S.M. Rump, Ultimately Fast Accurate Summation, SIAM Journal on
Scientific Computing (SISC), 2009

/17

Reproducible Summation: Pre-rounding technique

EMAX <W—bl'f> EMIN
- T T | —— |
1 1 1

X1 1 + 1
1 1 1 proc 1
1 1 1
X2 1 1 1
X 1 1 1
3 1 1 T
1 i : proc 2
X4 1 1 t
X 1 1 1
5 : : : proc 3
X6 1 1 [
1 1
1 |
1
1

1S.M. Rump, Ultimately Fast Accurate Summation, SIAM Journal on
Scientific Computing (SISC), 2009

/17

Indexed Floating-Point Format

Idea: representing the partial sum by:

» the index of the left-most bin:

, EMAX — EMIN
width(Index) > logy ————

» K numbers of BW bits to represent the K left-most bin.
Maximum number of addends that can be added without
overflow:

N _ 2BW—W—1—1
max —

» Absolute error bound:

N
1S = vil < N x ulp(last bin) = N x 2~ DV x mllel]x|v,'\
1

5/17

Re proB LAS http://bebop.cs.berkeley.edu/reproblas

ReproBLAS is a library for (Parallel and Sequential) Reproducible
Basic Linear Algebra Subroutines, currently only supports level-1
routines for 4 basic data type (single/double precision,

real /complex numbers)

Configuration for double precision: W =40, K =3

>

Can accumulate up to 2(P~D=W-1 — 211 — 2048 numbers in
mantissa part without any overflow.

22*P7W72 — 264

Can accumulate numbers using carry part.

The absolute error bound in the worst case is

N x 2K=1W s max|v;| = 2789 x N x max|vj|

Require only one reduction operation.

Run 8x slower than performance-optimized library on a single
processor, but only 1.2x slower on massively parallel

environment such as CRAY XC30 machine with 1024
Processors.

6

17

Hardware support

Goals:

> Reduce the slowdown of reproducible operations on single
processor to as close to 1x as possible,

> Require minimal changes to current hardware,

Approaches:

» Dedicated Accumulator

» New instructions to support the implementation of
reproducible addition:
» Using existing 128-bit/256-bit register to represent indexed
floating-point format,
» Using existing load-store instructions,
» Can be pipelined, multi-threaded.

17

Instructions

» Addition
» a native floating-point to an indexed floating-point number
» two indexed floating-point numbers

» Conversion

» From native floating-point number to indexed numbers:
implicitly through the addition

» From indexed format to native format: not frequently used,
can be implemented in software

» Carry-bit propagation: propagate the overflow bit to a higher
order register to increase the maximum number of addends.

17

Data Format Layout

Requirements:

» width(Index) + K X BW < register width
> BW > W
» width(Index) > log, (EMAX_EMIN)

» Reasonable error bound:
N

S = vl < N2 W
1

For double precision floating-point number, using 128-bit register:

> width(Index) + K x BW < 128
» width(Index) > 11 — [log,(W)]

Configuration: K =3, W = 32, BW = 40, width(Index) = 8

17

128-bit Indexed Floating-Point Format

Configuration: K =3, W = 2% BW = 40, width(I) = 8

index
(8 bits) bin 1 (40 bits) bin 2 (40 bits) bin 3 (40 bits)
i 1

sign
exponent mantissa (52 bits)

10/17

128-bit Indexed Floating-Point Format

Configuration: K =3, W = 2% BW = 40, width(I) = 8

index
(8 bits) bin 1 (40 bits) bin 2 (40 bits) bin 3 (40 bits)

sign exponent h|d‘den it 1 mantissa (52 bits)
| —— I 1
0 [T (T T T T T OIS

6 bits | 5 bits
index ' first bin width

10/17

128-bit Indexed Floating-Point Format

Configuration: K =3, W = 2% BW = 40, width(I) = 8

index
(8 bits) bin 1 (40 bits) bin 2 (40 bits) bin 3 (40 bits)
) i T T 1
e T T Ty
I ’
] 7
) S ’
sign. exponent h|d‘den bl 1} mantissa (52 bits) ///
| —— I 1
0 (I (T T T T AT
[E— |
6 bits | 5 bits

index ' first bin width

10/17

128-bit Indexed Floating-Point Format

Configuration: K =3, W = 2% BW = 40, width(I) = 8

index
(8 bits) bin 1 (40 bits) bin 2 (40 bits) bin 3 (40 bits)

sign. exponent

0 [(O (OO (O

[E——

6 bits | 5 bits
index ' first bin width

10/17

Properties

Absolute error bound in the worst case:

N
s = > V[l < N x 2D s max|v[i] = 279 x N x max|v]i]|
1

Number of additions that can be performed without overflow:

Ny = 2%0-32-1-1 _ g4

11/17

Carry Propagation

index

‘(s bits)H/\ bin 1 (40 bits) . bin 2 (40 bits) . bin 3 (40 bits) ‘

T T T TN

sign bit
carry bit
\ (sign bit, carry bit) = (0,0) :c =0

(sign bit, carry bit) = (0,1) :c =1
(sign bit, carry bit) = (1,0) : c =-2
(sign bit, carry bit) = (1,1) : c = -1

Objective: ensure that there will be no overflow over the next

2B—W—1-1 additions. Using the same format for the carry register:
N _ 2BW—W—1—1 * 2BW—2
max -
_ o

12 /17

Experimental results

Simulation in software:

» Implemented in Chisel, a scala-based programming language
for hardware construction.
» Operations:

» RAdd: add 1 double precision FP to an 128-bit Indexed
Floating-Point,
» RAddR: add 2 128-bit Indexed Floating-Point,

» RRenorm, RCarry: perform bit propagation to avoid overflow.

each operation can be executed in 1 clock cycle
> No exception-handling
» ~ 230 LOC for the hardware construction
» = 400 LOC for testing and validation

13 /17

Reproducible Summation: Algorithm

Sequential summation of N double precision floating-point numbers

int i, NB = 64;
Idouble s, c;
for (iN = 0; iN < n; iN += NB) {
for (i = iN; i < min(n, i+NB); i++) {
s = RAdd(s, v[il);
}

RCarry(c, s);
RRernorm(s);

Cost: N+ O(45) FLOPs

14 /17

Reproducible Sum: Accuracy

v[i] =sin(2.0% Pixi/N), N =10°

Algorithm \ 1—-N \ N—1

quadruple 9.923413837157274E-15 | 9.92341383715682E-15
Reproducible | 9.923377224108076E-15 | 9.923377224108076E-15
Normal Sum | 5.513115788968589E-13 3.0460904930145957E-12

15 /17

Conslusion

New instructions:
» Operates on existing 128-bit register file,
» Executes in 1 single cycle,
> Requires no change to the scheduling system,

» Helps to reduce the cost of reproducible summation to ~ N
FLOPs, and is almost as accurate as the normal summation

algorithm.

16

17

TODO

Implementation on real hardware to collect real data on
required area as well as the energy consumption of proposed
instructions.

Fused Multiply-Add support

Implementation for hardware without support of 128-bit
register.

Implementation of BLAS level 2, 3 routines.
Implementation of software library that provides exactly the

same results as those computed using the newly proposed
instructions.

17 /17

	Introduction
	Experiments

