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Reproducibility

Reproducibility: obtaining bit-wise identical results from different
runs of the program on the same input data, regardless of different
available resources.

Cause of nonreproducibility: not by rou_ndoff error but by
the non-determinism of accumulative roundoff error.

Due to the non-associativity of floating point addition,
accumulative roundoff errors depend on the order of evaluation,
and therefore depend on available computing resources.
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Reproducible Summation

N
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Error bound: ’s — SNV < Nxex SV
Running error depends on the order of evaluation.

Solutions:

» Increasing the accuracy (Kahan's algorithm, distillation
algorithm, extra precision, ...) can increase the chance of
reproducibility but does not guarantee reproducibility.

» Exact arithmetic or correctly-rounded algorithm can provide
reproducibility: costly both in terms of memory and
computation

» Qur proposed solution: pre-rounding technique
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Reproducible Summation: Pre-rounding technique
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1S.M. Rump, Ultimately Fast Accurate Summation, SIAM Journal on
Scientific Computing (SISC), 2009
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Reproducible Summation: Pre-rounding technique
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Indexed Floating-Point Format

Idea: representing the partial sum by:

» the index of the left-most bin:

, EMAX — EMIN
width(Index) > logy  ————

» K numbers of BW bits to represent the K left-most bin.
Maximum number of addends that can be added without
overflow:

N _ 2BW—W—1—1
max —

» Absolute error bound:

N
1S = vil < N x ulp(last bin) = N x 2~ DV x mllel]x|v,'\
1
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Re proB LAS http://bebop.cs.berkeley.edu/reproblas

ReproBLAS is a library for (Parallel and Sequential) Reproducible
Basic Linear Algebra Subroutines, currently only supports level-1
routines for 4 basic data type (single/double precision,

real /complex numbers)

Configuration for double precision: W =40, K =3

>

Can accumulate up to 2(P~D=W-1 — 211 — 2048 numbers in
mantissa part without any overflow.

22*P7W72 — 264

Can accumulate numbers using carry part.

The absolute error bound in the worst case is

N x 2K=1W s max|v;| = 2789 x N x max|vj|

Require only one reduction operation.

Run 8x slower than performance-optimized library on a single
processor, but only 1.2x slower on massively parallel

environment such as CRAY XC30 machine with 1024
Processors.
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Hardware support

Goals:

> Reduce the slowdown of reproducible operations on single
processor to as close to 1x as possible,

> Require minimal changes to current hardware,

Approaches:

» Dedicated Accumulator

» New instructions to support the implementation of
reproducible addition:
» Using existing 128-bit/256-bit register to represent indexed
floating-point format,
» Using existing load-store instructions,
» Can be pipelined, multi-threaded.
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Instructions

» Addition
» a native floating-point to an indexed floating-point number
» two indexed floating-point numbers

» Conversion

» From native floating-point number to indexed numbers:
implicitly through the addition

» From indexed format to native format: not frequently used,
can be implemented in software

» Carry-bit propagation: propagate the overflow bit to a higher
order register to increase the maximum number of addends.
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Data Format Layout

Requirements:

» width(Index) + K X BW < register width
> BW > W
» width(Index) > log, (EMAX_EMIN)

» Reasonable error bound:
N

S = vl < N2 W
1

For double precision floating-point number, using 128-bit register:

> width(Index) + K x BW < 128
» width(Index) > 11 — [log,(W)]

Configuration: K =3, W = 32, BW = 40, width(Index) = 8

17



128-bit Indexed Floating-Point Format

Configuration: K =3, W = 2% BW = 40, width(I) = 8

index
(8 bits) bin 1 (40 bits) bin 2 (40 bits) bin 3 (40 bits)
i 1

sign
exponent mantissa (52 bits)
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128-bit Indexed Floating-Point Format

Configuration: K =3, W = 2% BW = 40, width(I) = 8

index
(8 bits) bin 1 (40 bits) bin 2 (40 bits) bin 3 (40 bits)
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index ' first bin width
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128-bit Indexed Floating-Point Format

Configuration: K =3, W = 2% BW = 40, width(I) = 8

index
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128-bit Indexed Floating-Point Format

Configuration: K =3, W = 2% BW = 40, width(I) = 8

index
(8 bits) bin 1 (40 bits) bin 2 (40 bits) bin 3 (40 bits)

sign. exponent

0 [ (O (OO (O

[ E——

6 bits | 5 bits
index ' first bin width
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Properties

Absolute error bound in the worst case:

N
s = > V[l < N x 2D s max|v[i] = 279 x N x max|v]i]|
1

Number of additions that can be performed without overflow:

Ny = 2%0-32-1-1 _ g4
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Carry Propagation

index

‘(s bits)H/\ bin 1 (40 bits) . bin 2 (40 bits) . bin 3 (40 bits) ‘

T T T TN

sign bit
carry bit
\ (sign bit, carry bit) = (0,0) :c =0

(sign bit, carry bit) = (0,1) :c =1
(sign bit, carry bit) = (1,0) : c =-2
(sign bit, carry bit) = (1,1) : c = -1

Objective: ensure that there will be no overflow over the next

2B—W—1-1 additions. Using the same format for the carry register:
N _ 2BW—W—1—1 * 2BW—2
max -
_ o
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Experimental results

Simulation in software:

» Implemented in Chisel, a scala-based programming language
for hardware construction.
» Operations:

» RAdd: add 1 double precision FP to an 128-bit Indexed
Floating-Point,
» RAddR: add 2 128-bit Indexed Floating-Point,

» RRenorm, RCarry: perform bit propagation to avoid overflow.

each operation can be executed in 1 clock cycle
> No exception-handling
» ~ 230 LOC for the hardware construction
» = 400 LOC for testing and validation
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Reproducible Summation: Algorithm

Sequential summation of N double precision floating-point numbers

int i, NB = 64;
Idouble s, c;
for (iN = 0; iN < n; iN += NB) {
for (i = iN; i < min(n, i+NB); i++) {
s = RAdd(s, v[il);
}

RCarry(c, s);
RRernorm(s);

Cost: N+ O(45) FLOPs
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Reproducible Sum: Accuracy

v[i] =sin(2.0% Pixi/N), N =10°

Algorithm \ 1—-N \ N—1

quadruple 9.923413837157274E-15 | 9.92341383715682E-15
Reproducible | 9.923377224108076E-15 | 9.923377224108076E-15
Normal Sum | 5.513115788968589E-13 3.0460904930145957E-12
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Conslusion

New instructions:
» Operates on existing 128-bit register file,
» Executes in 1 single cycle,
> Requires no change to the scheduling system,

» Helps to reduce the cost of reproducible summation to ~ N
FLOPs, and is almost as accurate as the normal summation

algorithm.
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TODO

Implementation on real hardware to collect real data on
required area as well as the energy consumption of proposed
instructions.

Fused Multiply-Add support

Implementation for hardware without support of 128-bit
register.

Implementation of BLAS level 2, 3 routines.
Implementation of software library that provides exactly the

same results as those computed using the newly proposed
instructions.
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