Toward hardware support for Reproducible BLAS http://bebop.cs.berkeley.edu/reproblas/

James Demmel, Hong Diep Nguyen

SCAN 2014 - Wurzburg, Germany

Sep 24, 2014

Reproducibility

Reproducibility: obtaining bit-wise identical results from different runs of the program on the same input data, regardless of different available resources.

Cause of nonreproducibility: not by roundoff error but by the non-determinism of accumulative roundoff error.

Due to the non-associativity of floating point addition, accumulative roundoff errors depend on the order of evaluation, and therefore depend on available computing resources.

Reproducible Summation

$$
s=\sum_{1}^{N} v[i]
$$

Error bound: $\left|s-\sum_{1}^{N} v[i]\right|<N \times \epsilon \times \sum_{1}^{N}|v[i]|$.
Running error depends on the order of evaluation.
Solutions:

- Increasing the accuracy (Kahan's algorithm, distillation algorithm, extra precision, ...) can increase the chance of reproducibility but does not guarantee reproducibility.
- Exact arithmetic or correctly-rounded algorithm can provide reproducibility: costly both in terms of memory and computation
- Our proposed solution: pre-rounding technique

Reproducible Summation: Pre-rounding technique

1
${ }^{1}$ S.M. Rump, Ultimately Fast Accurate Summation, SIAM Journal on Scientific Computing (SISC), 2009

Reproducible Summation: Pre-rounding technique

1

[^0]
Indexed Floating-Point Format

Idea: representing the partial sum by:

- the index of the left-most bin:

$$
\text { width }(\text { Index }) \geq \log _{2}\left(\frac{\text { EMAX }- \text { EMIN }}{\mathrm{W}}\right)
$$

- K numbers of BW bits to represent the K left-most bin. Maximum number of addends that can be added without overflow:

$$
N_{\max }=2^{\mathrm{BW}-\mathrm{W}-1-1}
$$

- Absolute error bound:

$$
\left|S-\sum_{1}^{N} v_{i}\right| \leq N \times u l p(\text { last bin })=N \times 2^{-(\mathrm{K}-1) \mathrm{w}} \times \max _{1}^{N}\left|v_{i}\right|
$$

ReproBLAS http://bebop.cs.berkeley.edu/reproblas

 ReproBLAS is a library for (Parallel and Sequential) Reproducible Basic Linear Algebra Subroutines, currently only supports level-1 routines for 4 basic data type (single/double precision, real/complex numbers)Configuration for double precision: $W=40, K=3$

- Can accumulate up to $2^{(P-1)-W-1}=2^{11}=2048$ numbers in mantissa part without any overflow.
- Can accumulate $2^{2 * P-W-2}=2^{64}$ numbers using carry part.
- The absolute error bound in the worst case is

$$
N \times 2^{(K-1) * W} \times \max \left|v_{i}\right|=2^{-80} \times N \times \max \left|v_{i}\right|
$$

- Require only one reduction operation.
- Run $8 \times$ slower than performance-optimized library on a single processor, but only $1.2 \times$ slower on massively parallel environment such as CRAY XC30 machine with 1024 processors.

Hardware support

Goals:

- Reduce the slowdown of reproducible operations on single processor to as close to $1 \times$ as possible,
- Require minimal changes to current hardware,

Approaches:

- Dedicated Accumulator
- New instructions to support the implementation of reproducible addition:
- Using existing 128-bit/256-bit register to represent indexed floating-point format,
- Using existing load-store instructions,
- Can be pipelined, multi-threaded.

Instructions

- Addition
- a native floating-point to an indexed floating-point number
- two indexed floating-point numbers
- Conversion
- From native floating-point number to indexed numbers: implicitly through the addition
- From indexed format to native format: not frequently used, can be implemented in software
- Carry-bit propagation: propagate the overflow bit to a higher order register to increase the maximum number of addends.

Data Format Layout

Requirements:

- width(Index) $+\mathrm{K} \times \mathrm{BW} \leq$ register width
- BW > W
- width(Index) $\geq \log _{2}\left(\frac{\text { EMAX-EMIN }}{\text { W }}\right)$
- Reasonable error bound:

$$
\left|S-\sum_{1}^{N} v_{i}\right| \leq N \times 2^{-(\mathrm{K}-1) \mathrm{W}}
$$

For double precision floating-point number, using 128-bit register:

- width(Index) $+\mathrm{K} \times \mathrm{BW} \leq 128$
- width(Index) $\geq 11-\left\lceil\log _{2}(W)\right\rceil$

Configuration: $K=3, W=32, \mathrm{BW}=40$, width(Index) $=8$

128-bit Indexed Floating-Point Format

Configuration: $K=3, W=2^{5}, \mathrm{BW}=40$, $\operatorname{width}(\mathrm{I})=8$

128-bit Indexed Floating-Point Format

Configuration: $K=3, W=2^{5}, \mathrm{BW}=40$, $\operatorname{width}(\mathrm{I})=8$

128-bit Indexed Floating-Point Format

Configuration: $K=3, W=2^{5}, \mathrm{BW}=40$, $\operatorname{width}(\mathrm{I})=8$

128-bit Indexed Floating-Point Format

Configuration: $K=3, W=2^{5}, \mathrm{BW}=40$, width $(\mathrm{I})=8$

Properties

Absolute error bound in the worst case:
$\left|s-\sum_{1}^{N} v[i]\right| \leq N \times 2^{(K-1) * W} \times \max \left|v[i]=2^{-64} \times N \times \max \right| v[i] \mid$
Number of additions that can be performed without overflow:

$$
N_{\max }=2^{40-32-1-1}=64
$$

Carry Propagation

index
(8 bits) bin 1 (40 bits)
bin 2 (40 bits)
bin 3 (40 bits)
п.

(sign bit, carry bit) $=(0,0): c=0$
$($ sign bit, carry bit) $=(0,1): c=1$
(sign bit, carry bit) $=(1,0): c=-2$
(sign bit, carry bit) $=(1,1): c=-1$

Objective: ensure that there will be no overflow over the next $2^{\mathrm{BW}-\mathrm{W}-1-1}$ additions. Using the same format for the carry register:

$$
\begin{aligned}
N_{\max } & =2^{\mathrm{BW}-\mathrm{W}-1-1} * 2^{\mathrm{BW}-2} \\
& =2^{45}
\end{aligned}
$$

Experimental results

Simulation in software:

- Implemented in Chisel, a scala-based programming language for hardware construction.
- Operations:
- RAdd: add 1 double precision FP to an 128-bit Indexed Floating-Point,
- RAddR: add 2 128-bit Indexed Floating-Point,
- RRenorm, RCarry: perform bit propagation to avoid overflow. each operation can be executed in 1 clock cycle
- No exception-handling
- ≈ 230 LOC for the hardware construction
- ≈ 400 LOC for testing and validation

Reproducible Summation: Algorithm

Sequential summation of N double precision floating-point numbers

```
int i, NB = 64;
Idouble s, c;
for (iN = 0; iN < n; iN += NB) {
    for (i = iN; i < min(n, i+NB); i++) {
        s = RAdd(s, v[i]);
    }
    c = RCarry(c, s);
    s = RRernorm(s);
}
Cost: \(N+\mathcal{O}\left(\frac{N}{N B}\right)\) FLOPs
```


Reproducible Sum: Accuracy

$v[i]=\sin (2.0 * P i * i / N), \quad N=10^{5}$		
Algorithm	$1 \rightarrow N$	$N \rightarrow 1$
quadruple	$\mathbf{9 . 9 2 3 4 1 3 8 3 7 1 5 7 2 7 4 \mathrm { E } - 1 5}$	$\mathbf{9 . 9 2 3 4 1 3 8 3 7 1 5 6 8 2 \mathrm { E } - 1 5}$
Reproducible	$9.923377224108076 \mathrm{E}-15$	$9.923377224108076 \mathrm{E}-15$
Normal Sum	$5.513115788968589 \mathrm{E}-13$	$3.0460904930145957 \mathrm{E}-12$

Conslusion

New instructions:

- Operates on existing 128-bit register file,
- Executes in 1 single cycle,
- Requires no change to the scheduling system,
- Helps to reduce the cost of reproducible summation to $\approx N$ FLOPs, and is almost as accurate as the normal summation algorithm.

TODO

- Implementation on real hardware to collect real data on required area as well as the energy consumption of proposed instructions.
- Fused Multiply-Add support
- Implementation for hardware without support of 128 -bit register.
- Implementation of BLAS level 2, 3 routines.
- Implementation of software library that provides exactly the same results as those computed using the newly proposed instructions.

[^0]: ${ }^{1}$ S.M. Rump, Ultimately Fast Accurate Summation, SIAM Journal on Scientific Computing (SISC), 2009

