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Reproducibility

Reproducibility: obtaining bit-wise identical results from different
runs of the program on the same input data, regardless of different
available resources.

Cause of nonreproducibility: not by roundoff error but by
the non-determinism of accumulative roundoff error.

Due to the non-associativity of floating point addition,
accumulative roundoff errors depend on the order of evaluation,
and therefore depend on available computing resources.
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Reproducible Summation

s =
N∑
1

v [i ]

Error bound:
∣∣∣s −∑N

1 v [i ]
∣∣∣ < N × ε×

∑N
1 |v [i ]|.

Running error depends on the order of evaluation.

Solutions:

I Increasing the accuracy (Kahan’s algorithm, distillation
algorithm, extra precision, . . . ) can increase the chance of
reproducibility but does not guarantee reproducibility.

I Exact arithmetic or correctly-rounded algorithm can provide
reproducibility: costly both in terms of memory and
computation

I Our proposed solution: pre-rounding technique
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Reproducible Summation: Pre-rounding technique
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Indexed Floating-Point Format

Idea: representing the partial sum by:

I the index of the left-most bin:

width(Index) ≥ log2

(
EMAX− EMIN

W

)
I K numbers of BW bits to represent the K left-most bin.

Maximum number of addends that can be added without
overflow:

Nmax = 2BW−W−1−1

I Absolute error bound:

|S −
N∑
1

vi | ≤ N × ulp(last bin) = N × 2−(K−1)W × N
max
1
|vi |
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ReproBLAS http://bebop.cs.berkeley.edu/reproblas

ReproBLAS is a library for (Parallel and Sequential) Reproducible
Basic Linear Algebra Subroutines, currently only supports level-1
routines for 4 basic data type (single/double precision,
real/complex numbers)

Configuration for double precision: W = 40, K = 3

I Can accumulate up to 2(P−1)−W−1 = 211 = 2048 numbers in
mantissa part without any overflow.

I Can accumulate 22∗P−W−2 = 264 numbers using carry part.

I The absolute error bound in the worst case is
N × 2(K−1)∗W ×max |vi | = 2−80 × N ×max |vi |

I Require only one reduction operation.

I Run 8× slower than performance-optimized library on a single
processor, but only 1.2× slower on massively parallel
environment such as CRAY XC30 machine with 1024
processors.
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Hardware support

Goals:

I Reduce the slowdown of reproducible operations on single
processor to as close to 1× as possible,

I Require minimal changes to current hardware,

Approaches:

I Dedicated Accumulator
I New instructions to support the implementation of

reproducible addition:
I Using existing 128-bit/256-bit register to represent indexed

floating-point format,
I Using existing load-store instructions,
I Can be pipelined, multi-threaded.
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Instructions

I Addition
I a native floating-point to an indexed floating-point number
I two indexed floating-point numbers

I Conversion
I From native floating-point number to indexed numbers:

implicitly through the addition
I From indexed format to native format: not frequently used,

can be implemented in software

I Carry-bit propagation: propagate the overflow bit to a higher
order register to increase the maximum number of addends.
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Data Format Layout

Requirements:

I width(Index) + K× BW ≤ register width

I BW > W

I width(Index) ≥ log2
(
EMAX−EMIN

W

)
I Reasonable error bound:

|S −
N∑
1

vi | ≤ N × 2−(K−1)W

For double precision floating-point number, using 128-bit register:

I width(Index) + K× BW ≤ 128

I width(Index) ≥ 11− dlog2(W )e

Configuration: K = 3, W = 32, BW = 40, width(Index) = 8
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128-bit Indexed Floating-Point Format

Configuration: K = 3, W = 25, BW = 40, width(I) = 8

index 
(8 bits) bin 1 (40 bits) bin 2 (40 bits) bin 3 (40 bits)

sign
exponent mantissa (52 bits)
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128-bit Indexed Floating-Point Format

Configuration: K = 3, W = 25, BW = 40, width(I) = 8

index 
(8 bits) bin 1 (40 bits) bin 2 (40 bits) bin 3 (40 bits)

sign exponent

6 bits
index

5 bits
first bin width
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Properties

Absolute error bound in the worst case:

|s −
N∑
1

v [i ]| ≤ N × 2(K−1)∗W ×max |v [i ] = 2−64 × N ×max |v [i ]|

Number of additions that can be performed without overflow:

Nmax = 240−32−1−1 = 64

11 / 17



Carry Propagation

index 

(8 bits) bin 1 (40 bits) bin 2 (40 bits) bin 3 (40 bits)

sign bit

carry bit

(sign bit, carry bit) = (0,0) : c = 0

(sign bit, carry bit) = (0,1) : c = 1

(sign bit, carry bit) = (1,0) : c = -2

(sign bit, carry bit) = (1,1) : c = -1

Objective: ensure that there will be no overflow over the next
2BW−W−1−1 additions. Using the same format for the carry register:

Nmax = 2BW−W−1−1 ∗ 2BW−2

= 245
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Experimental results

Simulation in software:

I Implemented in Chisel, a scala-based programming language
for hardware construction.

I Operations:
I RAdd: add 1 double precision FP to an 128-bit Indexed

Floating-Point,
I RAddR: add 2 128-bit Indexed Floating-Point,
I RRenorm, RCarry: perform bit propagation to avoid overflow.

each operation can be executed in 1 clock cycle

I No exception-handling

I ≈ 230 LOC for the hardware construction

I ≈ 400 LOC for testing and validation
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Reproducible Summation: Algorithm

Sequential summation of N double precision floating-point numbers

int i, NB = 64;

Idouble s, c;

for (iN = 0; iN < n; iN += NB) {

for (i = iN; i < min(n, i+NB); i++) {

s = RAdd(s, v[i]);

}

c = RCarry(c, s);

s = RRernorm(s);

}

Cost: N +O( N
NB ) FLOPs
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Reproducible Sum: Accuracy

v [i ] = sin(2.0 ∗ Pi ∗ i/N), N = 105

Algorithm 1→ N N → 1

quadruple 9.923413837157274E-15 9.92341383715682E-15
Reproducible 9.923377224108076E-15 9.923377224108076E-15
Normal Sum 5.513115788968589E-13 3.0460904930145957E-12
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Conslusion

New instructions:

I Operates on existing 128-bit register file,

I Executes in 1 single cycle,

I Requires no change to the scheduling system,

I Helps to reduce the cost of reproducible summation to ≈ N
FLOPs, and is almost as accurate as the normal summation
algorithm.
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TODO

I Implementation on real hardware to collect real data on
required area as well as the energy consumption of proposed
instructions.

I Fused Multiply-Add support

I Implementation for hardware without support of 128-bit
register.

I Implementation of BLAS level 2, 3 routines.

I Implementation of software library that provides exactly the
same results as those computed using the newly proposed
instructions.
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