
Efficient Reproducible Floating-Point Reduction
Operations on Large Scale Systems

James Demmel, Hong Diep Nguyen

ParLab - EECS - UC Berkeley

SIAM AN13 Jul 8-12, 2013

Plan

Introduction

Algorithms

Experimental results

Conclusions and Future work

Plan

Introduction

Algorithms

Experimental results

Conclusions and Future work

Floating-point arithmetic: defines a discrete subset of real values
and suffers from rounding errors.

→ Floating-point operations (+,×) are commutative but not
associative:

(−1 + 1) + 2−53 ≠ −1 + (1 + 2−53).

Consequence: results of floating-point computations depend on the
order of computation.

Reproducibility: ability to obtain bit-wise identical results from
run-to-run on the same input data, with different resources.

Motivations

Demands for reproducible floating-point computations:

▸ Debugging: look inside the code step-by-step, and might need
to rerun multiple times on the same input data.

▸ Understanding the reliability of output. Ex: 1, Power State
Estimation problem (spmv + dot product), after the 5th step
the Euclidean norm of the residual vector differs up to 20%
from one run to another.

▸ Contractual reasons (road type approval, drug design),

▸ . . .

1Villa et al, Effects of Floating-point non-Associativity on Numerical
Computations on Massively Multithreaded Systems, CUG 2009 Proceedings

Sources of non-reproducibility

A performance-optimized floating-point library is prone to
non-reproducibility for various reasons:

▸ Changing Data Layouts:
▸ Data alignment,
▸ Data partitioning,
▸ Data ordering,

▸ Changing Hardware Resources:
▸ Fused Multiply-Adder support,
▸ Intermediate precision (64 bits, 80 bits, 128 bits, etc),
▸ Data path (SSE, AVX, GPU warp, etc),
▸ Cache line size,
▸ Number of processors,
▸ Network topology,
▸ ???

Sources of non-reproducibility

A performance-optimized floating-point library is prone to
non-reproducibility for various reasons:

▸ Changing Data Layouts:
▸ Data alignment,
▸ Data partitioning,
▸ Data ordering,

▸ Changing Hardware Resources:
▸ Fused Multiply-Adder support,
▸ Intermediate precision (64 bits, 80 bits, 128 bits, etc),
▸ Data path (SSE, AVX, GPU warp, etc),
▸ Cache line size,
▸ Number of processors,
▸ Network topology,
▸ ???

Reproducibility at Large Scale

Large Scale: improve performance by increasing the number of
processors.

▸ Highly dynamic scheduling,

▸ Network heterogeneity: reduction tree shape can vary,

▸ Drastically increased communication time

Cost = Arithmetic + Communication
FLOPs #words moved + #messages

▸ Communication-Avoiding algorithms change the order of
computation on purpose, for ex. 2.5D Matmult, 2.5D LU, etc,

▸ A little extra arithmetic cost is allowed so long as the
communication cost is controlled.

Communication cost

 0

 0.2

 0.4

 0.6

 0.8

 1

d
d
o
t

d
d
o
t

d
d
o
t

d
d
o
t

d
d
o
t

d
d
o
t

d
d
o
t

d
d
o
t

d
d
o
t

d
d
o
t

d
d
o
t

1 2 4 8 16 32 64 128 256 512 1024

T
im

e
 (

n
o

rm
a

liz
e

d
 b

y
 d

d
o

t
ti
m

e
)

DDOT normalized timing breakdown (n = 10
6
)

Processors

computation communication

State of the art

Source of floating-point non-reproducibility: rounding errors lead
to dependence of computed result on order of computations.

To obtain reproducibility:

▸ Fix the order of computations:
▸ sequential mode: intolerably costly at large-scale systems
▸ fixed reduction tree: substantial communication overhead

▸ Eliminate/Reduce the rounding errors:
▸ exact arithmetic (rounded at the end): much more expensive
in communication and very wide multi-word arithmetic

▸ fixed-point arithmetic: limited range of values
▸ higher precision: reproducible with high probability (not
certain).

▸ Our proposed solution: deterministic errors.

Plan

Introduction

Algorithms

Experimental results

Conclusions and Future work

A proposed solution for global sum

Objectives:

▸ bit-wise identical results from run-to-run regardless of
hardware heterogeneity, # processors, reduction tree shape,
. . .

▸ independent of data ordering,

▸ only 1 reduction per sum,

▸ no severe loss of accuracy.

Idea: pre-rounding input values.

Pre-rounding technique

EMAX EMIN

x1
x2
x3
x4
x5
x6
...

Rounding occurs at each addition. Computation’s error depends on
the intermediate results, which depend on the order of
computation.

Pre-rounding technique

EMAX EMIN

x1
x2
x3
x4
x5
x6
...

Boundary

Bits discarded

in advance

No rounding error at each addition. Computation’s error depends
on the Boundary, which depends on max ∣xi ∣, not on the ordering

Pre-rounding technique

EMAX EMIN

x1
x2
x3
x4
x5
x6
...

Boundary

proc 1

proc 2

proc 3

Bits discarded

in advance

No rounding error at each addition. Computation’s error depends
on the Boundary, which depends on max ∣xi ∣, not on the ordering
⇒ extra communication among processors.

1-Reduction technique

EMAX EMIN

x1
x2
x3
x4
x5
x6
...

W-bit

proc 1

proc 2

proc 3

Boundaries are precomputed. Special Reduction Operator:
(MAX of boundaries combined SUM of corresponding partial sums)

1-Reduction technique

EMAX EMIN

x1
x2
x3
x4
x5
x6
...

W-bit

proc 1

proc 2

proc 3

Boundaries are precomputed. Special Reduction Operator:
(MAX of boundaries combined SUM of corresponding partial sums)

k-fold Algorithm

EMAX EMIN

x1
x2
x3
x4
x5
x6
...

W-bit

proc 1

proc 2

proc 3

Increase the number of bins to increase the accuracy.

k-fold Algorithm

EMAX EMIN

x1
x2
x3
x4
x5
x6
...

W-bit

proc 1

proc 2

proc 3

Increase the number of bins to increase the accuracy.

k-fold Algorithm: Accuracy

k-fold algorithm has an error bound:

absolute error ≤ N ⋅Boundaryk < N ⋅ 2−(k−1)⋅W ⋅max ∣xi ∣.

In practice: k = 3, W = 40.

absolute error < N ⋅ 2−80 ⋅max ∣xi ∣ = 2−27 ⋅N ⋅ ε ⋅max ∣xi ∣
Standard sum’s error bound ≤ (N − 1) ⋅ ε ⋅∑ ∣xi ∣

Plan

Introduction

Algorithms

Experimental results

Conclusions and Future work

Experimental results: Accuracy

Summation of n = 106 floating-point numbers. Computed results
of both reproducible summation and standard summation (with
different ordering: ascending value, descending value, ascending
magnitude, descending magnitude) are compared with result
computed using quad-double precision.

Generator xi reproducible standard

drand48() 0 -8.5e-15 ÷ 1.0e-14

drand48() − 0.5 1.5e-16 −1.7e − 13 ÷ 1.8e − 13

sin(2.0 ∗ π ∗ i/n) 1.5e-15 −1.0 ÷ 1.0

sin(2.0 ∗ π ∗ i/n) ∗ 2−5 1.0 −1.0 ÷ 1.0

Experimental results: Performance

 0

 1

 2

 3

 4

 5

 6

d
d
o
t

p
rd

d
o
t

d
d
o
t

p
rd

d
o
t

d
d
o
t

p
rd

d
o
t

d
d
o
t

p
rd

d
o
t

d
d
o
t

p
rd

d
o
t

d
d
o
t

p
rd

d
o
t

d
d
o
t

p
rd

d
o
t

d
d
o
t

p
rd

d
o
t

d
d
o
t

p
rd

d
o
t

d
d
o
t

p
rd

d
o
t

d
d
o
t

p
rd

d
o
t

1 2 4 8 16 32 64 128 256 512 1024

T
im

e
 (

n
o

rm
a

liz
e

d
 b

y
 d

d
o

t
ti
m

e
)

DDOT normalized timing breakdown (n = 10
6
)

Processors

computation
communication

4.5

5.5 5.4
5.2

4.6

3.8

3.4

2.5

2.1

1.7

1.2

Experimental results: Performance

 0

 1

 2

 3

 4

 5

 6

d
a
s
u
m

p
rd

a
s
u
m

d
a
s
u
m

p
rd

a
s
u
m

d
a
s
u
m

p
rd

a
s
u
m

d
a
s
u
m

p
rd

a
s
u
m

d
a
s
u
m

p
rd

a
s
u
m

d
a
s
u
m

p
rd

a
s
u
m

d
a
s
u
m

p
rd

a
s
u
m

d
a
s
u
m

p
rd

a
s
u
m

d
a
s
u
m

p
rd

a
s
u
m

d
a
s
u
m

p
rd

a
s
u
m

d
a
s
u
m

p
rd

a
s
u
m

1 2 4 8 16 32 64 128 256 512 1024

T
im

e
 (

n
o

rm
a

liz
e

d
 b

y
 d

a
s
u

m
 t

im
e

)

DASUM normalized timing breakdown (n = 10
6
)

Processors

computation
communication6.0 5.9

5.7

5.3

4.2

3.3

2.9

2.4

1.6 1.5
1.3

Experimental results: Performance

 0

 0.2

 0.4

 0.6

 0.8

 1

d
n
rm

2

p
rd

n
rm

2

d
n
rm

2

p
rd

n
rm

2

d
n
rm

2

p
rd

n
rm

2

d
n
rm

2

p
rd

n
rm

2

d
n
rm

2

p
rd

n
rm

2

d
n
rm

2

p
rd

n
rm

2

d
n
rm

2

p
rd

n
rm

2

d
n
rm

2

p
rd

n
rm

2

d
n
rm

2

p
rd

n
rm

2

d
n
rm

2

p
rd

n
rm

2

d
n
rm

2

p
rd

n
rm

2

1 2 4 8 16 32 64 128 256 512 1024

T
im

e
 (

n
o

rm
a

liz
e

d
 b

y
 d

n
rm

2
 t

im
e

)

DNRM2 normalized timing breakdown (n = 10
6
)

Processors

computation communication

0.3 0.3 0.3 0.3 0.3
0.3

0.4

0.4

0.5

0.7

0.9

Conclusions

The proposed 1-Reduction pre-rounding technique
▸ provides bit-wise identical reproducibility, regardless of

▸ data permutation, data assignment,
▸ processor count, reduction tree shape,
▸ hardware heterogeneity, etc.

▸ obtains better error bound than the standard sum’s,

▸ can be done in on-the-fly mode,

▸ requires only ONE reduction for the global parallel summation,

▸ is suitable for very large scale systems (ExaScale),

▸ can be applied to Cloud computing environment,

▸ can be applied to other operations which use summation as
the reduction operator.

Future works

In Progress

▸ Reproducible Blas level 1,

▸ Parallel Prefix Sum,

▸ Matrix-vector / Matrix-matrix multiplication,

TODO

▸ Higher level driver routine: trsm, factorizations like LU, . . .

▸ n.5D algorithms (2.5D Matmult, 2.5D LU),

▸ spMV,

▸ Other associative operations

▸ Real-world applications ?

Experimental results: Performance (single precision)

 0

 1

 2

 3

 4

 5

s
d
o
t

p
rs

d
o
t

s
d
o
t

p
rs

d
o
t

s
d
o
t

p
rs

d
o
t

s
d
o
t

p
rs

d
o
t

s
d
o
t

p
rs

d
o
t

s
d
o
t

p
rs

d
o
t

s
d
o
t

p
rs

d
o
t

s
d
o
t

p
rs

d
o
t

s
d
o
t

p
rs

d
o
t

s
d
o
t

p
rs

d
o
t

s
d
o
t

p
rs

d
o
t

1 2 4 8 16 32 64 128 256 512 1024

T
im

e
 (

n
o

rm
a

liz
e

d
 b

y
 s

d
o

t
ti
m

e
)

SDOT normalized timing breakdown (n = 10
6
)

Processors

computation
communication

4.5 4.5
4.4

4.1
3.9

3.3

2.9

2.1

1.5

1.3 1.3

Experimental results: Performance (single precision)

 0

 1

 2

 3

 4

 5

 6

 7

s
a
s
u
m

p
rs

a
s
u
m

s
a
s
u
m

p
rs

a
s
u
m

s
a
s
u
m

p
rs

a
s
u
m

s
a
s
u
m

p
rs

a
s
u
m

s
a
s
u
m

p
rs

a
s
u
m

s
a
s
u
m

p
rs

a
s
u
m

s
a
s
u
m

p
rs

a
s
u
m

s
a
s
u
m

p
rs

a
s
u
m

s
a
s
u
m

p
rs

a
s
u
m

s
a
s
u
m

p
rs

a
s
u
m

s
a
s
u
m

p
rs

a
s
u
m

1 2 4 8 16 32 64 128 256 512 1024

T
im

e
 (

n
o

rm
a

liz
e

d
 b

y
 s

a
s
u

m
 t

im
e

)

SASUM normalized timing breakdown (n = 10
6
)

Processors

computation
communication

6.8 6.8
6.4

5.9

5.2

4.3

3.3

2.0

1.6

1.2 1.3

Experimental results: Performance (single precision)

 0

 0.5

 1

 1.5

 2

 2.5

 3

s
n
rm

2

p
rs

n
rm

2

s
n
rm

2

p
rs

n
rm

2

s
n
rm

2

p
rs

n
rm

2

s
n
rm

2

p
rs

n
rm

2

s
n
rm

2

p
rs

n
rm

2

s
n
rm

2

p
rs

n
rm

2

s
n
rm

2

p
rs

n
rm

2

s
n
rm

2

p
rs

n
rm

2

s
n
rm

2

p
rs

n
rm

2

s
n
rm

2

p
rs

n
rm

2

s
n
rm

2

p
rs

n
rm

2

1 2 4 8 16 32 64 128 256 512 1024

T
im

e
 (

n
o

rm
a

liz
e

d
 b

y
 s

n
rm

2
 t

im
e

)

SNRM2 normalized timing breakdown (n = 10
6
)

Processors

computation communication

2.5
2.4 2.4 2.3

2.2

2.0

1.8

1.6

1.4 1.4

1.2

	Introduction
	Algorithms
	Experimental results
	Conclusions and Future work

