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Floating-point arithmetic: defines a discrete subset of real values
and suffers from rounding errors.

→ Floating-point operations (+,×) are commutative but not
associative:

(−1 + 1) + 2−53 ≠ −1 + (1 + 2−53).

Consequence: results of floating-point computations depend on the
order of computation.

Reproducibility: ability to obtain bit-wise identical results from
run-to-run on the same input data, with different resources.



Motivations

Demands for reproducible floating-point computations:

▸ Debugging: look inside the code step-by-step, and might need
to rerun multiple times on the same input data.

▸ Understanding the reliability of output. Ex: 1, Power State
Estimation problem (spmv + dot product), after the 5th step
the Euclidean norm of the residual vector differs up to 20%
from one run to another.

▸ Contractual reasons (road type approval, drug design),

▸ . . .

1Villa et al, Effects of Floating-point non-Associativity on Numerical
Computations on Massively Multithreaded Systems, CUG 2009 Proceedings



Sources of non-reproducibility

A performance-optimized floating-point library is prone to
non-reproducibility for various reasons:

▸ Changing Data Layouts:
▸ Data alignment,
▸ Data partitioning,
▸ Data ordering,

▸ Changing Hardware Resources:
▸ Fused Multiply-Adder support,
▸ Intermediate precision (64 bits, 80 bits, 128 bits, etc),
▸ Data path (SSE, AVX, GPU warp, etc),
▸ Cache line size,
▸ Number of processors,
▸ Network topology,
▸ ???
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Reproducibility at Large Scale

Large Scale: improve performance by increasing the number of
processors.

▸ Highly dynamic scheduling,

▸ Network heterogeneity: reduction tree shape can vary,

▸ Drastically increased communication time

Cost = Arithmetic + Communication
FLOPs #words moved + #messages

▸ Communication-Avoiding algorithms change the order of
computation on purpose, for ex. 2.5D Matmult, 2.5D LU, etc,

▸ A little extra arithmetic cost is allowed so long as the
communication cost is controlled.



Communication cost
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State of the art

Source of floating-point non-reproducibility: rounding errors lead
to dependence of computed result on order of computations.

To obtain reproducibility:

▸ Fix the order of computations:
▸ sequential mode: intolerably costly at large-scale systems
▸ fixed reduction tree: substantial communication overhead

▸ Eliminate/Reduce the rounding errors:
▸ exact arithmetic (rounded at the end): much more expensive
in communication and very wide multi-word arithmetic

▸ fixed-point arithmetic: limited range of values
▸ higher precision: reproducible with high probability (not
certain).

▸ Our proposed solution: deterministic errors.
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A proposed solution for global sum

Objectives:

▸ bit-wise identical results from run-to-run regardless of
hardware heterogeneity, # processors, reduction tree shape,
. . .

▸ independent of data ordering,

▸ only 1 reduction per sum,

▸ no severe loss of accuracy.

Idea: pre-rounding input values.



Pre-rounding technique

EMAX EMIN

x1
x2
x3
x4
x5
x6
...

Rounding occurs at each addition. Computation’s error depends on
the intermediate results, which depend on the order of
computation.
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(MAX of boundaries combined SUM of corresponding partial sums)



1-Reduction technique

EMAX EMIN

x1
x2
x3
x4
x5
x6
...

W-bit

proc 1

proc 2

proc 3

Boundaries are precomputed. Special Reduction Operator:
(MAX of boundaries combined SUM of corresponding partial sums)



k-fold Algorithm
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k-fold Algorithm: Accuracy

k-fold algorithm has an error bound:

absolute error ≤ N ⋅Boundaryk < N ⋅ 2−(k−1)⋅W ⋅max ∣xi ∣.

In practice: k = 3, W = 40.

absolute error < N ⋅ 2−80 ⋅max ∣xi ∣ = 2−27 ⋅N ⋅ ε ⋅max ∣xi ∣
Standard sum’s error bound ≤ (N − 1) ⋅ ε ⋅∑ ∣xi ∣
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Experimental results: Accuracy

Summation of n = 106 floating-point numbers. Computed results
of both reproducible summation and standard summation (with
different ordering: ascending value, descending value, ascending
magnitude, descending magnitude ) are compared with result
computed using quad-double precision.

Generator xi reproducible standard

drand48() 0 -8.5e-15 ÷ 1.0e-14

drand48() − 0.5 1.5e-16 −1.7e − 13 ÷ 1.8e − 13

sin(2.0 ∗ π ∗ i/n) 1.5e-15 −1.0 ÷ 1.0

sin(2.0 ∗ π ∗ i/n) ∗ 2−5 1.0 −1.0 ÷ 1.0



Experimental results: Performance
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Experimental results: Performance
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Conclusions

The proposed 1-Reduction pre-rounding technique
▸ provides bit-wise identical reproducibility, regardless of

▸ data permutation, data assignment,
▸ processor count, reduction tree shape,
▸ hardware heterogeneity, etc.

▸ obtains better error bound than the standard sum’s,

▸ can be done in on-the-fly mode,

▸ requires only ONE reduction for the global parallel summation,

▸ is suitable for very large scale systems (ExaScale),

▸ can be applied to Cloud computing environment,

▸ can be applied to other operations which use summation as
the reduction operator.



Future works

In Progress

▸ Reproducible Blas level 1,

▸ Parallel Prefix Sum,

▸ Matrix-vector / Matrix-matrix multiplication,

TODO

▸ Higher level driver routine: trsm, factorizations like LU, . . .

▸ n.5D algorithms (2.5D Matmult, 2.5D LU),

▸ spMV,

▸ Other associative operations

▸ Real-world applications ?



Experimental results: Performance (single precision)
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Experimental results: Performance (single precision)
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Experimental results: Performance (single precision)
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