
Scientific Computing on the Itanium TM Processor ∗

Bruce Greer John Harrison Greg Henry Wei Li Peter Tang

Computational Software Lab

Intel Corporation

ABSTRACT
The 64-bit Intel ItaniumTM architecture is designed for
high-performance scientific and enterprise computing, and
the Itanium processor is its first silicon implementation.
Features such as extensive arithmetic support, predication,
speculation, and explicit parallelism can be used to pro-
vide a sound infrastructure for supercomputing. A large
number of high-performance computer companies are offer-
ing ItaniumTM-based systems, some capable of peak per-
formance exceeding 50 GFLOPS. In this paper we give an
overview of the most relevant architectural features and pro-
vide illustrations of how these features are used in both low-
level and high-level support for scientific and engineering
computing, including transcendental functions and linear al-
gebra kernels.

Keywords
EPIC, Itanium(TM) processor, fused multiply-add, linear
algebra, transcendental functions

1. INTRODUCTION
The 64-bit Intel ItaniumTM architecture is designed for
high-performance scientific and enterprise computing. Fea-
tures such as extensive arithmetic support, predication, spec-
ulation, and explicit parallelism can be used to provide a
sound infrastructure for supercomputing. The architecture
has been carefully designed to allow efficient implementa-
tions and an effective combination of hardware and software,
not only with current techniques but with a view to future

∗Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage, and that copies bear this
notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SC2001 November 2001, Denver
c© 2001 ACM 1-58113-293-X/01/0011 $5.00

trends in, for example, process technology and compiler op-
timization.

The Intel ItaniumTM processor is the first in a line of high-
performance implementations of this architecture. Later
members of the Itanium Processor Family (IPF) are ex-
pected to be still more powerful, with higher clock speed,
lower instruction latencies and greater memory bandwidth.
Economies of scale and improvements in process technology
are also expected to make them cheaper. Some preliminary
facts about the second implementation of the Itanium ar-
chitecture, currently codenamed McKinley, can be found in
Section 6.

We maintain that the IPF will have a profound impact on
supercomputing in the years to come. There are several
reasons to believe this. Most importantly, all the major Su-
percomputing key players (IBM, HP, Compaq, NEC, SGI,
Unisys, Hitachi, Fujitsu-Siemens, etc.), with the possible
exception of Sun Microsystems, have plans to use Itanium
processors in some of their high-end future products. This
paper will go over some of the features that make this pro-
cessor so attractive to them. It is our hope that by estab-
lishing a new high-end standard, the Itanium architecture
will allow computer designers to consolidate research efforts
that are currently fragmented over a number of competing
proprietary RISC architectures. This may lead to the same
efficiencies and economies of scale reaped as a result of the
wide acceptance of Intel’s 32-bit architecture (IA-32) cur-
rently represented by the Intel Pentium 4 processor.

Some features of the Itanium architecture are completely
new, whereas others are known from previous architectures
— for example predicated execution from the Advanced Risc
Machines Ltd. ARM† family [6] and the fused multiply-add
from the IBM RS/6000† family [7]. Nevertheless the Ita-
nium architecture is the first to bring together a unique com-
bination of these features into a synergetic whole, intended
to provide new scope for the implementation of still more
powerful processors over the coming decades. In later sec-
tions, some of the key architectural features will be discussed
in the context of their typical applications, moving from the
simplest kernels to more complicated serial and parallel li-
braries. One should recognize that these features are not
all hardware-related, and that certain architectural features
imply software methodology changes. The ability to use the

†All other brands are the property of their respective own-
ers.

rotating registers to get potentially extremely complicated
code into short and simple loops is described in Section 5,
for example.

This paper elaborates on the thesis that the Itanium proces-
sor is important to supercomputing. Section 2 surveys the
key architectural features most relevant to scientific com-
puting, and Section 3 explains how optimizing compilers can
make use of these features to produce high quality numeric
code. Section 4 discusses the construction of an accurate
and fast run-time math library and Section 5 shows how the
crucial kernels for linear algebra are optimized on the Ita-
nium processor. These libraries are important in themselves
as part of the software support for scientific computing, and
also provide an excellent illustration on how architectural
features can be exploited. Section 6 gives a brief overview
of some significant improvements in the second implementa-
tion of the Itanium architecture, and finally Section 7 gives
some concluding remarks.

2. KEY ARCHITECTURAL FEATURES
The Itanium architecture is based on the ‘Explicitly Parallel
Instruction Computer’ (EPIC) philosophy. The basic EPIC
principle is that the programmer or compiler should be able
to indicate the inherent parallelism of programs explicitly in
the instruction sequence, rather than obliging the processor
to reconstruct it from a particular sequence of serial oper-
ations. In order to allow the programmer to expose more
instruction-level parallelism (ILP), the architecture offers a
unique combination of features including full predication,
speculative and advance loads, and automatic register ro-
tation for software-pipelined loops. In what follows we will
focus mainly on the special features of the floating-point
architecture; Dulong [2] discusses the rationale for other ar-
chitectural features.

The Itanium architecture’s floating-point instruction set has
been carefully designed to combine high performance and
good accuracy. A large floating-point register set (128 reg-
isters) is provided, and almost all operations can read their
arguments from and write their results to arbitrary regis-
ters. Together with register rotation for software pipelined
loops, this allows the encoding of common algorithms with-
out running short of registers or needing to move data be-
tween them in elaborate ways. Registers can store floating-
point numbers in a variety of formats, and the rounding of
results is determined by flexible combinations of several se-
lectable defaults and additional instruction completers. The
basic arithmetic operation, the fused multiply add, allows
higher accuracy and performance in many common algo-
rithms. Several additional features are also present to sup-
port common programming idioms.

Floating-point multiply-add
The centerpiece of the Itanium architecture’s floating-point
instruction set is the fma (floating-point multiply add or
fused multiply-accumulate) instruction, which computes x×
y+z in a single floating-point operation with no intermediate
rounding of the product. Related instructions perform the
same operation with a sign change: fms computes x× y− z
while fnma computes z−x× y. Addition and multiplication
are implemented as degenerate cases of the fma: x × 1 + y
and x × y + 0, which can be used without storing special

Format Precision Exponent range
Single 24 −126 ≤ e ≤ 127
Double 53 −1022 ≤ e ≤ 1023
Double-extended 64 −16382 ≤ e ≤ 16383
Register 64 −65534 ≤ e ≤ 65535

Table 1: Some floating-point formats on the Itanium
architecture

constants, since registers f0 and f1 are hardwired to 0 and
1 respectively.1

In implementations, there is almost no latency penalty for
a fma operation over a direct implementation of a pure mul-
tiply. Thus, a single fma is significantly faster than a sepa-
rate multiply and add. On code where adds and multiplies
are heavily interleaved, this can lead to a significant per-
formance increase. Obvious examples are the evaluation of
polynomials and of vector dot products of the form x × y.
The latter computation

p = ΣN−1
i=0 xiyi

can be performed by a succession of fma operations of the
form:

p = p+ xi × yi

Aside from its speed advantage, the fact that no intermedi-
ate rounding is performed on the product also tends to re-
duce rounding errors. In common cases this difference may
be relatively unimportant, but can be crucial in special situ-
ations such as the implementation of division discussed later
in this section or the run-time library discussed in Section 4.

Extended precision
The Itanium architecture supports a variety of floating-point
formats, including those shown in Table 1 and various in-
termediate types such as a ‘stack single’ type with precision
24 but exponent range −16382 ≤ e ≤ 16383. Operations
can be performed on arguments of different formats, mak-
ing it easy to mix say, double-precision inputs with register-
format intermediate results for better accuracy, or to store
short constants in single precision to economize on memory.
Results can also be rounded back into any of the supported
formats, allowing narrowing casts without incurring double-
rounding.

Thanks to extended precision, rounding errors are often less
significant than they would be on an architecture where
double is the highest available precision, yet the speed of
operations is similar, far better than for a software imple-
mentation of quad arithmetic. Even when designing rou-
tines with a double-precision external interface, extended

1When the third argument is f0, the fma uses different rules
for the determination of zero signs, in accordance with the
IEEE Standard 754 [5].

precision can often be exploited for internal calculations.
An important application can be found in double-precision
polynomial evaluation (c.f. Section 4).

Multiple status fields
Given the number of floating-point formats available in the
Itanium architecture, it is important to have a flexible means
of specifying the desired floating-point format for a partic-
ular result to be rounded into, as well as the direction of
rounding (e.g. rounding to nearest or truncation). Having
only a single status register would be inconvenient where
there are several parallel threads of control, or where ex-
ceptions in some intermediate instructions need to be ig-
nored. Therefore, the Itanium architecture features four dif-
ferent ‘status fields’ which can be specified by completers in
the main floating-point instructions. An instruction with a
given status field completer is then controlled by that status
field.

Software conventions determine many of the appropriate ap-
plications for particular status fields. Typically sf0 is the
main ‘user’ status field used for most floating-point calcula-
tions, and sf1, with all exceptions disabled, is used for inter-
mediate calculations in many standard numerical software
kernels, e.g. those for division, square root and transcen-
dental functions. However, the multiple status fields can be
put to other uses. In particular, when implementing interval
arithmetic one often wants to be able to switch repeatedly
between rounding up and rounding down in a short sequence
of calculations. On many existing architectures, changing
the rounding mode is so costly that performance degrades
dramatically. However, on the Itanium architecture, one can
simply set up two status fields to have different rounding di-
rections and use whichever is desired on each instruction.

Division and square root
There are no instructions specified in the Itanium architec-
ture (except in IA-32 compatibility mode) for performing
floating-point division or square root operations. Instead,
the only instruction specifically intended to support divi-
sion is the floating-point reciprocal approximation instruc-
tion, frcpa, which given a floating-point number a, returns
an approximation to 1/a good to about 8 bits.2 Similarly,
the only instruction to support square root is the frsqrta

(floating-point reciprocal square root approximation) instruc-
tion, which given a floating-point number a, returns an ap-
proximation to 1/

√
a good to about 8 bits. These initial ap-

proximations are intended to be refined to perfectly rounded
quotients or square roots by software. The refinement cal-
culations can be efficiently performed because of the fma in-
struction, as r = b−aq can be calculated accurately (without
intermediate rounding) for q ≈ b/a.

The decomposition of division and square root into a number
of simple, fast operations tends to increase throughput, since
these operations inherit the high degree of pipelining in the
basic fma operations. For example, in an implementation
such as the Itanium processor with two fully pipelined fma

units, double-extended precision division has an throughput
of one operation every 7 cycles, far better than on most

2In special cases such as a = 0 the behavior is different,
indicated by a predicate register setting.

other architectures. In addition, more flexibility is afforded
to the programmer or compiler to schedule the division in
conjunction with other instructions. Finally, if an IEEE-
correct result is not required (e.g. in graphics applications),
much faster algorithms can be substituted. Two other novel
uses of frcpa are given in Section 4.

Other features
There are a number of other floating-point instructions de-
signed to support common programming idioms. For exam-
ple famax and famin return whichever of the two argument
values has the larger absolute value, which is often useful
in a variety of computations. One interesting example is
obtaining an exact sum by performing a floating-point addi-
tion and then subtracting off the summands, the larger one
first, to recover the rounding error:

Hi = x+ y

max = famax(x, y)

min = famin(x, y)

tmp = max−Hi
Lo = tmp+min

3. ITANIUM ARCHITECTURE OPTIMIZ-
ING COMPILERS

The features of the Itanium architecture provide new oppor-
tunities for the compiler to optimize applications. In May of
2001, the Itanium processor set the record-breaking floating-
point performance of 711 Spec2000FP (base) using the Intel
compiler.3

The Intel compiler for the Itanium architecture targets two
major goals: minimizing the impact of memory accesses,
and maximizing parallelism. The compilation techniques
take advantage of the Itanium architectural features. For
instance, memory operations are eliminated by effectively
using the large register file. Optimizations use rotating reg-
isters to reduce the overhead of software register renaming
in loops. Predication is used in many situations, such as
removing hard-to-predict branches and implementing an ef-
ficient prefetching policy. The compiler uses control and
data speculation to eliminate redundant loads, stores, and
computations. An overview of the Intel compiler can be
found in [3].

The compiler has a comprehensive set of optimizations tar-
geting scientific applications, including loop transformations,
array dependence analysis, scalar replacement, data prefetch-
ing, data layout optimizations, software pipelining, locality
analysis, and many more. Below is a sample list of these
optimizations.

Software Pipelining
Software pipelining improves the performance of a loop by
overlapping the execution of several iterations to increase

3Described as “phenomenal” by Stephen Shankland, Ita-
nium scores high in performance tests, CNET News.com,
May 30, 2001, 12:50 p.m. PT,
http://news.cnet.com/news/0-1003-200-6112206.html.

instruction-level parallelism. The Intel compiler pipelines
both counted loops and while loops. Control speculation is
required to maximize the parallelism of while loops. Data
speculation helps bypass the unlikely data dependencies of-
ten seen in sparse matrix applications. Loops with control
flow are transformed, using predication, into single block
loops suitable for pipelining.

In the Itanium architecture, rotating register support ob-
viates the need for extensive unrolling, the traditional ap-
proach for RISC architectures. Rotating predicates are used
to control the execution of the stages during the prologue
and epilogue phases, so that only the kernel loop is required.
In RISC architectures, these three execution phases are im-
plemented using three distinct blocks of code.

Data Prefetching
The data prefetching implementation utilizes data-locality
analysis to selectively prefetch only those data references
that are likely to suffer cache misses. The predication sup-
port in the Itanium architecture provides an efficient way
of adding prefetch instructions. The conditionals within the
loop are converted to predicates through if-conversion, thus
alleviating the need for unrolling, which would result in code
expansion.

The rotating registers are used to reduce the number of
prefetching instructions required. Multiple arrays accessed
uniformly within a loop can be prefetched with a single
lfetch instruction using a rotating register that rotates the
addresses of the different arrays that have to be prefetched.
This completely obviates the need for predicate calculations
within the loop and saves memory slots that would otherwise
be occupied by multiple lfetch instructions [1].

Loop Transformations
A large set of loop transformations have been implemented.
Linear loop transformations are compound transformations
representing sequences of loop reversal, loop interchange,
loop skew, and loop scaling. These transformations can dra-
matically improve memory access locality, and improve the
effectiveness of other optimizations, such as scalar replace-
ment, invariant code motion, and software pipelining. Loop
fusion improves cache performance, and reduces the cost of
branches. Loop fusion in the Intel compiler for the Itanium
architecture is more aggressive than that in compilers for
RISC processors, since it takes advantage of the large num-
ber of available registers in the Itanium architecture. Loop
unroll-and-jam unrolls the outer loops and fuses the unrolled
copies together to enable more scalar replacement, which is
very effective due to the large number of registers and rotat-
ing register support. Loop blocking is key to improving the
cache performance of libraries and applications that manip-
ulate large matrices of data items. Loop distribution splits
a single nested loop into multiple adjacent nested loops that
have a similar loop structure. Besides enabling other trans-
formations, loop distribution spreads the potentially large
cache context of the original loop into different new loops,
so that the new loops have manageable cache contexts and
higher cache hit rates.

Memory reference elimination

Scalar replacement replaces array memory references with
registers. The Itanium architecture provides rotating reg-
isters, which are rotated one register position each time a
special loop branch instruction is executed. This hardware
feature enables the compiler to map the compiler-inserted
scalars directly onto the rotating registers to eliminate the
necessary moves introduced by scalar replacement. On tra-
ditional architectures, if one chooses to eliminate these moves,
unrolling normally has to be used, with code expansion. Par-
tial redundancy elimination is another technique to elimi-
nate memory loads and stores for scalar references.

Parallelization
The Intel compiler supports OpenMP, an industry standard
to specify shared memory parallelism. It consists of a set of
compiler directives, library routines, and environment vari-
ables that provide a model for parallel programming aimed
at portability across shared memory systems from different
vendors. It also supports auto-parallelization, i.e. the com-
piler automatically detects parallelism and generates parallel
code.

4. ACCURATE AND FAST RUN-TIME MATH
LIBRARY

We must not lose sight of the fact that large-scale computing
also depends on low-level support for fundamental scientific
computing. A run-time library of mathematical functions is
not only a well-accepted common set whose reliability and
efficiency are crucial. It also reflects characteristics of low-
level computational kernels that a specific large-scale com-
puting problem may depend on critically. Thus, an accurate
and fast run-time mathematical library gives two major ben-
efits. First, the library itself is obviously valuable. Second,
the ways in which architectural features are exploited to
construct this run-time library are also likely to be appli-
cable elsewhere. For this reason, we give an overview of
the techniques employed in the construction of our IEEE
double-precision run-time mathematical library of transcen-
dental functions [4].

Parallelism and extra precision
One important consequence of a combination of extra pre-
cision (64 significant bits) and parallelism is that degree-
n polynomials, for fairly large degree, can be evaluated in
about O(log2(n)) latency, in contrast with O(n) that a tra-
dition Horner’s recurrence offers. The method is simple re-
cursive subdivision. The presence of 11 extra bits of accu-
racy allows for basically any algebraic decomposition of a
polynomial and evaluation order. We have, by exhaustive
enumeration, determined the optimal evaluation method (in
terms of latency) of general and some special polynomials
up to moderate degrees. Table 2 tabulates the results, for
example, of general polynomials up to degree 15 on the Ita-
nium processor. That we can evaluate long polynomials very
quickly leads to interesting algorithms. For example, we no
longer steadfastly shoot for very short polynomials by using
large tables [8] but instead use smaller tables. In examples
such as inverse tangents, or sine, we employ polynomials
with as many as 22 terms.

Multiply accumulate

Polynomial Latency (cycles)
c0 + c1x 5
c0 + c1x+ c2x

2 10
c0 + c1x+ . . .+ c3x

3 11
c0 + c1x+ . . .+ c4x

4 15
c0 + c1x+ . . .+ c5x

5 16
c0 + c1x+ . . .+ c6x

6 16
c0 + c1x+ . . .+ c7x

7 17
c0 + c1x+ . . .+ c8x

8 20
c0 + c1x+ . . .+ c9x

9 21
c0 + c1x+ . . .+ c10x

10 21
c0 + c1x+ . . .+ c11x

11 22
c0 + c1x+ . . .+ c12x

12 22
c0 + c1x+ . . .+ c13x

13 23
c0 + c1x+ . . .+ c14x

14 23
c0 + c1x+ . . .+ c15x

15 24

Table 2: Optimal latency of polynomial evaluation
on the Itanium processor

The utility of being able to compute a× b+ c with just one
rounding is tremendous. In transcendental function calcula-
tions, we often need to compute the form X−N ×P . Here,
X is typically the input argument, and P an approximation
to a “period” such as π/2, or log 2. Let us elaborate on this
somewhat subtle point. In a typical situation, one needs
to compute X − Nρ, N being an integer value, to moder-
ately more accuracy than the working precision in question.
If we set P to be the machine representation of ρ, because
by nature of this kind of calculation cancellation occurs in
the subtraction, a simple fma allows us to obtain the result
X − N × P exactly. We do incur a small error N(ρ − P).
But since ρ is fixed a priori, we can compensate easily for
the lack of precision in P . Without fma, a rounding error
will be incurred in the calculation of N ×P . This error can-
not be compensated easily as it depends on the exact value
of N × P and how it is rounded off. The workaround in
the absence of fma is to reduce the precision of P so that
a number of trailing bits are always zero. As long as this
amount exceeds the number of bits in N , N×P is computed
exactly. This workaround in essence reduces the accuracy
we can have in P to such an extent that many extra steps
are usually needed to compensate for it.

In one interesting instance of the calculation of the logarithm
function log, frcpa is used together with fma. Here P =
frcpa(X) and log(X) is computed via

log(X) = − log(P) + log(1 + (XP − 1)).

The value log(P) is obtained from a table of values calcu-
lated beforehand, and log(1 + (XP − 1)) is computed by a
short power series in the variable t = XP − 1 computed by
a single fma instruction.

Parallelism
Parallelism is exploited not only in the evaluation of long
expressions such as polynomials. In general, parallelism is
exploited whenever a long critical path can be shortened

Function Latency (cycles) Max. Error Observed (ulps)
exp 49 0.502
log 34 0.505
sin 62 0.502
atan 68 0.511
xy 79 0.502

Table 3: Accuracy and speed of some run-time func-
tions

significantly by an approximation whose correction can be
computed in parallel. A notable, but by no means unique,
situation involves division. Consider for example the calcu-
lation of the atan2 function. This function takes two argu-
ment X and Y and essentially calculates the phase angle of
the complex number X + iY . The basic computation is of
the form atan(Y/X). On the surface, the division Y/X lies
in the critical path. We exploited parallelism here by start-
ing on the calculation of arctan(Z) where Z = Y ×frcpa(X)
immediately. The correction based on the formula

arctan(Y/X) = arctan(Z) + arctan(ζ), ζ =
Y/X − Z

1 + (Y/X)Z

involves only a few terms of the Taylor series expansion in
ζ and has a latency shorter than that of the main calcula-
tion. The latency of the division is thus essentially elimi-
nated by use of parallelism. We note again that the correc-
tion term calculation is not nearly as convenient without the
ever-useful multiply accumulate instruction. In another in-
stance, we need to calculate (1/X)25. Instead of calculating
1/X followed by exponentiation, we start the computation
of W 25 immediately where W = frcpa(X). The correction
needed is (1− β)−25 where β = 1−XW . A polynomial ap-
proximation to the function (1− t)−25 is derived beforehand
on the range |t| ≤ 2−8, and an evaluation of this polynomial
at β (obtained via one multiply accumulate instruction) is
carried out in parallel with the calculation of W 25.

Timing Results
We summarize in Table 3 the timing in cycles and accuracy
in term of largest error observed in terms of units-of-last-
place (ulps) of some key double-precision functions of the
resulting run-time library.

5. LINEAR ALGEBRA
The same features used extensively in the scalar example
earlier can be extended to scientific and engineering appli-
cations. We will discuss other features of the architecture
that support pipelined loops.

While many efforts have been underway at Intel and other
hardware and software vendors to port and optimize code for
the Itanium processor, we will discuss our experiences with
the creation of the Intel Math Kernel Library4 (MKL).
The Itanium architecture variant has gone through several
versions, with MKL 5.1 the current release. Many of the
salient features of the architecture are exploited in DGEMM

4
http://developer.intel.com/products/software/mkl/index.htm

from the level 3 BLAS.5 We will use that as an example
of how some of the architectural features are used. A set
of vectorized transcendental functions, collectively known
as the Vector Math Library (VML), is also part of MKL.
We will briefly discuss how the Itanium architecture has
been used for these functions and compare their performance
on this processor with the same functions on 32-bit Intel
processors.

Because of the demand for optimal performance, both the
level 3 BLAS and the VML functions include extensive as-
sembly code in them now. As the compiler becomes increas-
ingly capable, we will place greater reliance on its optimiza-
tion capabilities.

Level 3 BLAS
For obvious reasons a lot of effort has been expended on the
level 3 BLAS, and DGEMM especially. For DGEMM, the
theoretical peak performance approaches 3.2 GFLOPS on
an 800 MHz processor. Getting that performance requires
management of the multiple levels of cache, including ef-
fective use of the data prefetch instructions [10]. DGEMM
performs the operation C = αAB + βC where A, B and C
are matrices and α and β are scalars. A 4x4 block of A is
multiplied by a 4x3 block of B. During each clock, two mul-
tiply/accumulate operations are possible. The total number
of cycles for this inner loop, fully unrolled, is 4x4x3/2, or 24
instruction groups and clocks.

Predication is often presented in the context of a means to
eliminate branches within code. A pair of predicate regis-
ters are set by some condition that resolves to logically true
or false. Afterwards these registers can be used to nullify
or effect an operation by preceding the operation with the
predicate. Predication can be used for a number of control
operations within a loop, as in the case of this kernel, for
such operations as:

• Reset registers to control loop execution

• Store the C block

• Load the next C block

• Load the next A and B blocks.

What looks like a single loop is in fact a triply nested loop.
The innermost loop is fully unrolled. Predication controls
the loop variables, moving the kernel multiply operation over
a larger block structure. In addition, predication, along with
other features of the architecture, allows the loop to do its
own prologue and epilogue, thus holding down the size of
the object file and making loops profitable even for small
loop counts. A typical operation to set a predicate register
is:

cmp.eq p1, p0 = 1, count

Here, if count = 1, p1 would get a 1 and p0 a 0.

5
http://www.netlib.org/blas/index.html

Matrix Size MFLOPS
32 155.7
64 2191.1

100 1927.6
128 2555.0
200 2295.1
256 2568.8
300 2483.1
400 2475.2
500 2490.8
600 2437.9
700 2489.3
800 2515.4
900 2578.5

1000 2596.6

Table 4: DGEMM performance on a 800 MHz
ItaniumTM processor

The architecture of the processor is deeply pipelined. To
support software pipelining [9] the registers (general, floating-
point and predicate) can be rotated, i.e., a set of registers
can be identified to the processor as belonging to a ring.
Upon issuing certain branch or exit instructions the regis-
ters are incremented, modulo the number of registers in the
set. This mechanism, along with the predicate registers,
provides support for folding prologue and epilogue into the
loop structure.

Data prefetch is used throughout the code to move data to
registers from cache. Since the architecture of the processor
is fully exposed, the programmer, or compiler, must make a
decision about where the data is to determine what depth of
memory pipelining should be used. In the case of DGEMM,
the assumption is the data is in the level 3 cache with a 24
clock latency.

The use of these features permits the code to use both fused
multiply-add units in every instruction for a total of 96
floating-point operations per iteration of the loop. On an
800 MHz system, the performance on DGEMM is shown in
Table 4.

On the current implementation, efficiencies in excess of 80%
of peak are achieved. We expect that level of efficiency to in-
crease with the next member of the Itanium processor family
for reasons discussed in Section 6.

VML
The second example is that of the vectorized transcendental
functions. These functions represent vectorizations of most
of the libm functions. MKL contains versions of these func-
tions for all Intel processors. We will see how the arithmetic
architecture of the Itanium processor affects performance
vis-à-vis the other processors from Intel.

Vectorization of these functions (trigonometric, exponential,
hyperbolic, etc) allows the machine to work on evaluating
the function on several input values simultaneously, thus giv-
ing the opportunity to keep the arithmetic units productive
in every clock cycle.

VML Function Itanium Processor Pentium III Processor
vdInv 4.3 11.5
vdSqrt 7.3 33.5
vdInvSqrt 6.2 31.8
vdExp 6.2 37.8
vdSin 9.3 49.9
vdTan 12.3 75.9

Table 5: Comparing VML performance
(clocks/element) between the Itanium and Pentium
III processors

Multiple arithmetic units already help ensure good perfor-
mance on these functions. However, the extended preci-
sion and reduced rounding errors of the fused multiply-add
units further enhance performance because full accuracy is
much easier to maintain, reducing or eliminating costly steps
needed on the other processors to maintain high accuracy
over more rounding steps.

On the 32-bit processors the VML functions have 1 ulp
(units in the last place) error limits. However, on the Ita-
nium processor, those same functions have errors rivaling
those of the scalar libm, or about 1

2
ulp, because of the

arithmetic behavior of the fused multiply-add units.

The VML functions assume data is in cache. The dominant
task, as with the scalar functions, becomes scheduling the
arithmetic units. Table 5 compares maximum performance
between the Itanium and Pentium III processors. (Pentium
4 processor optimizations, using SSE-2 instructions, are not
complete so are not included here.)

6. FUTURE ITANIUM PROCESSOR GEN-
ERATIONS

The second member of the Itanium processor family, code-
name McKinley, was demonstrated at the Intel Developer
Forum in February 2001. We will briefly cover its enhance-
ments relative to the Itanium processor, most of which will
impact all of the functions discussed in this paper. In gen-
eral, the architectural tunings improve performance by in-
creasing clock speed, decreasing most latencies, improving
memory bandwidth and adding more integer units which
support additional memory accesses during each clock.

Frequency
The frequency of the processor increases from 800 MHz to
the GHz range. Most of the software discussed in this paper
should see an almost linear boost in performance from this
frequency increase.

Bus
The system bus increases from 64 bits to 128 bits, and bus
bandwidth increases from 2.1 GBytes/s to 6.4 GBytes/s.
This added bandwidth will improve performance on vector
operations (level 1 and level 2 BLAS, for instance) and im-
prove scaling on multithreaded code.

Caches

The L1 cache does not change in size, but the latencies of
L1, L2 and L3 caches are all reduced compared with the
Itanium processor. The L3 cache moves on-die, is 12-way
set-associative (versus 4-way now), and is non-blocking, so
it supports out-of-order reads/writes. Bandwidth increases
from 11.7 GBytes/s to 32 GBytes/s.

Execution units
The number of integer execution units increases from 4 to 6.
These additional units support the increased memory access
capability, supporting two reads and two writes per clock.

Other
There are numerous other enhancements to the architecture
including: revamped branch prediction, reduced branch pre-
diction penalties, enhanced prefetching, including streaming
prefetch, improved TLB (translation look-aside buffer) and
hardware page walker which will also improve performance
on scientific and engineering applications.

7. CONCLUSIONS
We have presented some features of the Itanium architecture
that impact on technical computation. The arithmetic be-
havior of the fused multiply-add units improves performance
by permitting substantial freedom in order of operations for
both libm and VML. Features such as predication and ro-
tating registers contribute to improved performance by re-
ducing code size and making loops profitable even for small
trip counts. Loop overhead is minimized by predication,
as multiply nested loops are incorporated into a single loop
with predication affecting when registers are reset. Compiler
development has been underway in concert with the devel-
opment of the processor to provide highly effective compila-
tion. The features of the architecture provide the resources
needed to build powerful, highly optimizing compilers. We
expect to rely increasingly on the compiler to provide per-
formance approaching that which we have accomplished in
the examples presented in the paper. The McKinley proces-
sor has many improvements in memory performance, cache
size, structure and bandwidth, memory accesses per instruc-
tion, clock frequency, and latencies that will, in both obvious
more subtle ways, improve performance.

8. REFERENCES
[1] G. Doshi, R. Krishnaiyer, and K. Muthukumar.

Optimizing software data prefetches with rotating
registers. In Proceedings of PACT 2001, 2001.

[2] C. Dulong. The IA-64 architecture at work. IEEE
Computer, 64(7):24–32, July 1998.

[3] C. Dulong, R. Krishnaiyer, D. Kulkarni, D. Lavery,
W. Li, J. Ng, and D. Sehr. An overview of the Intel
IA-64 compiler. Intel Technology Journal,
1999-Q4:1–15, 1999. Available on the Web as
http://developer.intel.com/technology/itj/

q41999/articles/art 1.htm.

[4] J. Harrison, T. Kubaska, S. Story, and P. Tang. The
computation of transcendental functions on the IA-64
architecture. Intel Technology Journal, 1999-Q4:1–7,
1999. Available on the Web as
http://developer.intel.com/technology/itj/

q41999/articles/art 5.htm.

[5] IEEE. Standard for binary floating point arithmetic.
ANSI/IEEE Standard 754-1985, The Institute of
Electrical and Electronic Engineers, Inc., 345 East
47th Street, New York, NY 10017, USA, 1985.

[6] D. Jagger and D. Seal, editors. ARM Architecture
Reference Manual. Addison-Wesley, 2nd edition, 2000.

[7] R. Montoye, E. Hokenek, and S. Runyon. Design of
the IBM RISC System/6000 floating-point execution
unit. IBM Journal of research and development,
34:59–70, 1990.

[8] P. T. P. Tang. Table-lookup algorithms for elementary
functions and their error analysis. In P. Kornerup and
D. W. Matula, editors, Proceedings of the 10th

Symposium on Computer Arithemtic, pages 232–236,
1991.

[9] W. Triebel. IA-64 Architecture for Software
Developers. Intel Press, 2000.

[10] S. VanderWiel and D. Lilja. When caches aren’t
enough: Data prefetching techniques. Computer,
30(7):23–30, 1997.

