Fourth Edition (July 2000)

This edition applies to Version 3 Release 2 of the IBM® Engineering and Scientific Subroutine Library (ESSL) for Advanced Interactive Executive (AIX)® licensed program, program number 5765-C42 and to all subsequent releases and modifications until otherwise indicated by new editions. Significant changes or additions to the text and illustrations are indicated by a vertical line (i) to the left of the change.

In this document, ESSL refers to the above version of ESSL for AIX. Changes are periodically made to the information herein.

Order IBM publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the address given below.

IBM welcomes your comments. A form for your comments appears at the back of this publication. If the form has been removed, address your comments to:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+ 914+ 432-9405
FAX (Other Countries): Your International Access Code + 1+ 914+ 432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
IBM Mail Exchange: USIB6TC9 at IBMMAIL
Internet e-mail: mhrvrcfs@us.ibm.com
World Wide Web: http://www.rs6000.ibm.com

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

Title and order number of this book
Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Performance of ESSL</td>
<td>6</td>
</tr>
<tr>
<td>The Fortran Language Interface to the Subroutines</td>
<td>7</td>
</tr>
<tr>
<td>Software and Hardware Products That Can Be Used with ESSL</td>
<td>7</td>
</tr>
<tr>
<td>For ESSL—Hardware</td>
<td>7</td>
</tr>
<tr>
<td>ESSL—Operating Systems</td>
<td>7</td>
</tr>
<tr>
<td>ESSL—Software Products</td>
<td>8</td>
</tr>
<tr>
<td>Installation and Customization Products</td>
<td>8</td>
</tr>
<tr>
<td>Software Products for Displaying ESSL Online Information</td>
<td>8</td>
</tr>
<tr>
<td>ESSL Internet Resources</td>
<td>8</td>
</tr>
<tr>
<td>Obtaining Documentation</td>
<td>9</td>
</tr>
<tr>
<td>Accessing ESSL’s Product Home Pages</td>
<td>9</td>
</tr>
<tr>
<td>Getting on the ESSL Mailing List</td>
<td>9</td>
</tr>
<tr>
<td>List of ESSL Subroutines</td>
<td>10</td>
</tr>
<tr>
<td>Linear Algebra Subprograms</td>
<td>10</td>
</tr>
<tr>
<td>Matrix Operations</td>
<td>13</td>
</tr>
<tr>
<td>Linear Algebraic Equations</td>
<td>14</td>
</tr>
<tr>
<td>Eigensystem Analysis</td>
<td>18</td>
</tr>
<tr>
<td>Fourier Transforms, Convolutions and Correlations, and Related Computations</td>
<td>18</td>
</tr>
<tr>
<td>Sorting and Searching</td>
<td>20</td>
</tr>
<tr>
<td>Interpolation</td>
<td>21</td>
</tr>
<tr>
<td>Numerical Quadrature</td>
<td>21</td>
</tr>
<tr>
<td>Random Number Generation</td>
<td>21</td>
</tr>
<tr>
<td>Utilities</td>
<td>22</td>
</tr>
<tr>
<td>Chapter 2. Planning Your Program</td>
<td>23</td>
</tr>
<tr>
<td>Selecting an ESSL Subroutine</td>
<td>23</td>
</tr>
<tr>
<td>Which ESSL Library Do You Want to Use?</td>
<td>23</td>
</tr>
<tr>
<td>What Type of Data Are You Processing in Your Program?</td>
<td>25</td>
</tr>
<tr>
<td>How Is Your Data Structured? And What Storage Technique Are You Using?</td>
<td>26</td>
</tr>
<tr>
<td>What about Performance and Accuracy?</td>
<td>26</td>
</tr>
<tr>
<td>Avoiding Conflicts with Internal ESSL Routine Names That are Exported</td>
<td>26</td>
</tr>
<tr>
<td>Setting Up Your Data</td>
<td>26</td>
</tr>
<tr>
<td>How Do You Set Up Your Scalar Data?</td>
<td>26</td>
</tr>
<tr>
<td>How Do You Set Up Your Arrays?</td>
<td>27</td>
</tr>
<tr>
<td>How Should Your Array Data Be Aligned?</td>
<td>27</td>
</tr>
<tr>
<td>What Storage Mode Should You Use for Your Data?</td>
<td>27</td>
</tr>
<tr>
<td>How Do You Convert from One Storage Mode to Another?</td>
<td>28</td>
</tr>
<tr>
<td>Setting Up Your ESSL Calling Sequences</td>
<td>28</td>
</tr>
<tr>
<td>What Is an Input-Output Argument?</td>
<td>28</td>
</tr>
<tr>
<td>What Are the General Rules to Follow when Specifying Data for the Arguments?</td>
<td>28</td>
</tr>
<tr>
<td>What Happens When a Value of 0 Is Specified for N?</td>
<td>29</td>
</tr>
<tr>
<td>How Do You Specify the Beginning of the Data Structure in the ESSL Calling Sequence?</td>
<td>29</td>
</tr>
<tr>
<td>Using Auxiliary Storage in ESSL</td>
<td>30</td>
</tr>
<tr>
<td>Dynamic Allocation of Auxiliary Storage</td>
<td>31</td>
</tr>
<tr>
<td>Setting Up Auxiliary Storage When Dynamic Allocation Is Not Used</td>
<td>31</td>
</tr>
<tr>
<td>Who Do You Want to Calculate the Size? You or ESSL?</td>
<td>31</td>
</tr>
<tr>
<td>How Do You Calculate the Size Using the Formulas?</td>
<td>31</td>
</tr>
<tr>
<td>How Do You Get ESSL to Calculate the Size Using ESSL Error Handling?</td>
<td>32</td>
</tr>
<tr>
<td>Providing a Correct Transform Length to ESSL</td>
<td>36</td>
</tr>
<tr>
<td>What ESSL Subroutines Require Transform Lengths?</td>
<td>36</td>
</tr>
</tbody>
</table>
Who Do You Want to Calculate the Length? You or ESSL? 37
How Do You Calculate the Length Using the Table or Formula? 37
How Do You Get ESSL to Calculate the Length Using ESSL Error Handling? 37

Getting the Best Accuracy ... 42
What Precisions Do ESSL Subroutines Operate On? 42
How does the Nature of the ESSL Computation Affect Accuracy? 42
What Data Type Standards Are Used by ESSL, and What Exceptions Should
You Know About? ... 43
How is Underflow Handled? .. 43
Where Can You Find More Information on Accuracy? 43

Getting the Best Performance ... 43
What General Coding Techniques Can You Use to Improve Performance? 43

Dealing with Errors when Using ESSL 45
What Can You Do about Program Exceptions? 45
What Can You Do about ESSL Input-Argument Errors? 45
What Can You Do about ESSL Computational Errors? 46
What Can You Do about ESSL Resource Errors? 48
What Can You Do about ESSL Attention Messages? 49
How Do You Control Error Handling by Setting Values in the ESSL Error
Option Table? .. 49
How does Error Handling Work in a Threaded Environment? 51

Chapter 3. Setting Up Your Data Structures 53
Concepts ... 53
Vectors .. 53
 Transpose of a Vector .. 54
 Conjugate Transpose of a Vector 54
 In Storage .. 55
 How Stride Is Used for Vectors 56
 Sparse Vector .. 58
Matrices .. 60
 Transpose of a Matrix .. 60
 Conjugate Transpose of a Matrix 60
 In Storage .. 61
 How Leading Dimension Is Used for Matrices 61
 Symmetric Matrix .. 63
 Positive Definite or Negative Definite Symmetric Matrix 67
 Symmetric Indefinite Matrix 68
 Complex Hermitian Matrix .. 68
 Positive Definite or Negative Definite Complex Hermitian Matrix 69
 Positive Definite or Negative Definite Symmetric Toeplitz Matrix 69
 Positive Definite or Negative Definite Complex Hermitian Toeplitz Matrix 70
 Triangular Matrix ... 72
 General Band Matrix ... 75
 Symmetric Band Matrix .. 80
 Positive Definite Symmetric Band Matrix 83
 Complex Hermitian Band Matrix 83
 Triangular Band Matrix ... 84
 General Tridiagonal Matrix 88
 Symmetric Tridiagonal Matrix 89
 Positive Definite Symmetric Tridiagonal Matrix 90
 Sparse Matrix .. 90
<table>
<thead>
<tr>
<th>Chapter 4. Coding Your Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran Programs</td>
</tr>
<tr>
<td>Calling ESSL Subroutines and Functions in Fortran</td>
</tr>
<tr>
<td>Setting Up a User-Supplied Subroutine for ESSL in Fortran</td>
</tr>
<tr>
<td>Setting Up Scalar Data in Fortran</td>
</tr>
<tr>
<td>Setting Up Arrays in Fortran</td>
</tr>
<tr>
<td>Creating Multiple Threads and Calling ESSL from Your Fortran Program</td>
</tr>
<tr>
<td>Handling Errors in Your Fortran Program</td>
</tr>
<tr>
<td>Example of Handling Errors in a Multithreaded Application Program</td>
</tr>
<tr>
<td>C Programs</td>
</tr>
<tr>
<td>Calling ESSL Subroutines and Functions in C</td>
</tr>
<tr>
<td>Passing Arguments in C</td>
</tr>
<tr>
<td>Setting Up a User-Supplied Subroutine for ESSL in C</td>
</tr>
<tr>
<td>Setting Up Scalar Data in C</td>
</tr>
<tr>
<td>Setting Up Arrays in C</td>
</tr>
<tr>
<td>Creating Multiple Threads and Calling ESSL from Your C Program</td>
</tr>
<tr>
<td>Handling Errors in Your C Program</td>
</tr>
<tr>
<td>C++ Programs</td>
</tr>
<tr>
<td>Calling ESSL Subroutines and Functions in C++</td>
</tr>
<tr>
<td>Passing Arguments in C++</td>
</tr>
<tr>
<td>Setting Up a User-Supplied Subroutine for ESSL in C++</td>
</tr>
<tr>
<td>Setting Up Scalar Data in C++</td>
</tr>
<tr>
<td>Setting Up Short-Precision Complex Data Types and Logical Data Types in C++</td>
</tr>
<tr>
<td>Setting Up Arrays in C++</td>
</tr>
<tr>
<td>Creating Multiple Threads and Calling ESSL from Your C++ Program</td>
</tr>
<tr>
<td>Handling Errors in Your C++ Program</td>
</tr>
<tr>
<td>PL/I Programs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 5. Processing Your Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compiling</td>
</tr>
<tr>
<td>General Procedures</td>
</tr>
<tr>
<td>Using Your Own Complex Data Definitions in C Programs</td>
</tr>
<tr>
<td>Using Your Own Short Complex Data Definitions in C++ Programs</td>
</tr>
<tr>
<td>Compiling and Linking</td>
</tr>
<tr>
<td>64-bit environment</td>
</tr>
<tr>
<td>Fortran Programs</td>
</tr>
<tr>
<td>C Programs</td>
</tr>
<tr>
<td>C++ Programs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 6. Migrating Your Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Migrating ESSL Version 3 Programs to Version 3 Release 2</td>
</tr>
<tr>
<td>ESSL Subroutines</td>
</tr>
<tr>
<td>Migrating ESSL Version 3 Programs to Version 3 Release 1.2</td>
</tr>
<tr>
<td>ESSL Subroutines</td>
</tr>
<tr>
<td>Migrating ESSL Version 3 Programs to Version 3 Release 1.1</td>
</tr>
</tbody>
</table>
SASUM, DASUM, SCASUM, and DZASUM—Sum of the Magnitudes of the Elements in a Vector 211
SAXPY, DAXPY, CAXPY, and ZAXPY—Multiply a Vector \(X \) by a Scalar, Add to a Vector \(Y \), and Store in the Vector \(Y \) .. 214
SCOPY, DCOPY, CCOPY, and ZCOPY—Copy a Vector 217
SDOT, DDOT, CDOTU, ZDOTU, CDOTC, and ZDOTC—Dot Product of Two Vectors .. 220
SNAXPY and DNAXPY—Compute SAXPY or DAXPY \(N \) Times 224
SNDOT and DNDOT—Compute Special Dot Products \(N \) Times 229
SNRM2, DNRM2, SCNRM2, and DZNRM2—Euclidean Length of a Vector with Scaling of Input to Avoid Destructive Underflow and Overflow 234
SNORM2, DNORM2, CNORM2, and ZNORM2—Euclidean Length of a Vector with No Scaling of Input 237
SROTG, DROTG, CROTG, and ZROTG—Construct a Givens Plane Rotation .. 240
SROT, DROT, CROT, ZROT, CSROT, and ZDROT—Apply a Plane Rotation .. 247
SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, and ZDSCAL—Multiply a Vector \(X \) by a Scalar and Store in the Vector \(X \) 251
SVEA, DVEA, CVEA, and ZVEA—Add a Vector \(X \) to a Vector \(Y \) and Store in a Vector \(Z \) .. 257
SVES, DVES, CVES, and ZVES—Subtract a Vector \(Y \) from a Vector \(X \) and Store in a Vector \(Z \) 261
SVEM, DVEM, CVEM, and ZVEM—Multiply a Vector \(X \) by a Vector \(Y \) and Store in a Vector \(Z \) 265
SYAX, DYAX, CYAX, ZYAX, CSYAX, and ZDYAX—Multiply a Vector \(X \) by a Scalar and Store in a Vector \(Y \) 269
SZAXPY, DZAXPY, CZAXPY, and ZZAXPY—Multiply a Vector \(X \) by a Scalar, Add to a Vector \(Y \), and Store in a Vector \(Z \) 272
SAXPYI, DAXPYI, CAXPYI, and ZAXPYI—Multiply a Sparse Vector \(X \) in Compressed-Vector Storage Mode by a Scalar, Add to a Sparse Vector \(Y \) in Full-Vector Storage Mode, and Store in the Vector \(Y \) .. 289
Matrix-Vector Subprograms .. 293
SAXPYI, DAXPYI, CAXPYI, and ZAXPYI—Multiply a Sparse Vector \(X \) in Compressed-Vector Storage Mode by a Scalar, Add to a Sparse Vector \(Y \) in Full-Vector Storage Mode, and Store in the Vector \(Y \) .. 286
SAXPYI, DAXPYI, CAXPYI, and ZAXPYI—Multiply a Sparse Vector \(X \) in Compressed-Vector Storage Mode by a Scalar, Add to a Sparse Vector \(Y \) in Full-Vector Storage Mode, and Store in the Vector \(Y \) .. 289
Matrix-Vector Subprograms .. 293
SAXPYI, DAXPYI, CAXPYI, and ZAXPYI—Multiply a Sparse Vector \(X \) in Compressed-Vector Storage Mode by a Scalar, Add to a Sparse Vector \(Y \) in Full-Vector Storage Mode, and Store in the Vector \(Y \) .. 286
SAXPYI, DAXPYI, CAXPYI, and ZAXPYI—Multiply a Sparse Vector \(X \) in Compressed-Vector Storage Mode by a Scalar, Add to a Sparse Vector \(Y \) in Full-Vector Storage Mode, and Store in the Vector \(Y \) .. 289
SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, ZHEMV, SSLMX, and DSLMX—Matrix-Vector Product for a Real Symmetric or Complex Hermitian Matrix .. 313
SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and DSLR1—Rank-One Update of a Real Symmetric or Complex Hermitian Matrix .. 321
SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2, and DSLR2—Rank-Two Update of a Real Symmetric or Complex Hermitian Matrix .. 329
SGBMV, DGBMV, CGBMV, and ZGBMV—Matrix-Vector Product for a General Band Matrix, Its Transpose, or Its Conjugate Transpose ... 338
SSBMV, DSBMV, CHBMV, and ZHBMV—Matrix-Vector Product for a Real Symmetric or Complex Hermitian Band Matrix ... 345
STRMV, DTRMV, CTRMV, ZTRMV, STPMV, DTPMV, CTPMV, and ZTPMV—Matrix-Vector Product for a Triangular Matrix, Its Transpose, or Its Conjugate Transpose .. 350
STBMV, DTBMV, CTBMV, and ZTBMV—Matrix-Vector Product for a Triangular Band Matrix, Its Transpose, or Its Conjugate Transpose .. 356
Sparse Matrix-Vector Subprograms ... 362
DSMMX—Matrix-Vector Product for a Sparse Matrix in Compressed-Matrix Storage Mode ... 363
DSMTM—Transpose a Sparse Matrix in Compressed-Matrix Storage Mode 366
DSDMX—Matrix-Vector Product for a Sparse Matrix or Its Transpose in Compressed-Diagonal Storage Mode ... 370

Chapter 9. Matrix Operations .. 375
Overview of the Matrix Operation Subroutines ... 375
Use Considerations ... 376
Specifying Normal, Transposed, or Conjugate Transposed Input Matrices 376
Transposing or Conjugate Transposing: ... 376
Performance and Accuracy Considerations .. 377
In General ... 377
For Large Matrices ... 377
For Combined Operations ... 377
Matrix Operation Subroutines .. 378
SGEADD, DGEADD, CGEADD, and ZGEADD—Matrix Addition for General Matrices or Their Transposes ... 379
SGESUB, DGESUB, CGESUB, and ZGESUB—Matrix Subtraction for General Matrices or Their Transposes ... 386
SGEMUL, DGEMUL, CGEMUL, and ZGEMUL—Matrix Multiplication for General Matrices, Their Transposes, or Conjugate Transposes ... 393
SGEMMS, DGEMMS, CGEMMS, and ZGEMMS—Matrix Multiplication for General Matrices, Their Transposes, or Conjugate Transposes Using Winograd’s Variation of Strassen’s Algorithm ... 403
SGEMM, DGEVM, CGEMM, and ZGEMM—Combined Matrix Multiplication and Addition for General Matrices, Their Transposes, or Conjugate Transposes .. 409
SSYMM, DSYMM, CSYMM, ZSYM, CHEMM, and ZHEMM—Matrix-Matrix Product Where One Matrix is Real or Complex Symmetric or Complex Hermitian ... 418
STRMV, DTRMM, CTRMM, and ZTRMM—Triangular Matrix-Matrix Product ... 426
SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and ZHERK—Rank-K Update of a Real or Complex Symmetric or a Complex Hermitian Matrix	433
SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K—Rank-2K Update of a Real or Complex Symmetric or a Complex Hermitian Matrix	440
SGETMI, DGETMI, CGETMI, and ZGETMI—General Matrix Transpose (In-Place)	448
SGETMO, DGETMO, CGETMO, and ZGETMO—General Matrix Transpose (Out-of-Place)	451

Chapter 10. Linear Algebraic Equations

Overview of the Linear Algebraic Equation Subroutines | 455
Dense Linear Algebraic Equation Subroutines | 455
Banded Linear Algebraic Equation Subroutines | 456
Sparse Linear Algebraic Equation Subroutines | 457
Linear Least Squares Subroutines | 458
Dense and Banded Linear Algebraic Equation Considerations
Use Considerations | 458
Performance and Accuracy Considerations | 459
Sparse Matrix Direct Solver Considerations
Use Considerations | 459
Performance and Accuracy Considerations | 459
Sparse Matrix Skyline Solver Considerations
Use Considerations | 460
Performance and Accuracy Considerations | 461
Sparse Matrix Iterative Solver Considerations
Use Considerations | 461
Performance and Accuracy Considerations | 461
Linear Least Squares Considerations
Use Considerations | 462
Performance and Accuracy Considerations | 462
Dense Linear Algebraic Equation Subroutines | 464
SGEF, DGEF, CGEF, and ZGEF—General Matrix Factorization | 465
SGES, DGES, CGES, and ZGES—General Matrix, Its Transpose, or Its Conjugate Transpose Solve | 468
SGESM, DGESM, CGESM, and ZGESM—General Matrix, Its Transpose, or Its Conjugate Transpose Multiple Right-Hand Side Solve | 472
SGETRF, DGETRF, CGETRF and ZGETRF—General Matrix Factorization | 478
SGETRS, DGETRS, CGETRS, and ZGETRS—General Matrix Multiple Right-Hand Side Solve | 482
SGEFCD and DGEFCD—General Matrix Factorization, Condition Number Reciprocal, and Determinant | 487
SPPF, DPPF, SPOF, DPOF, CPOF, and ZPOF—Positive Definite Real Symmetric or Complex Hermitian Matrix Factorization | 491
SPPS and DPPS—Positive Definite Real Symmetric Matrix Solve | 499
SPOSM, DPOSM, CPOSM, and ZPOSM—Positive Definite Real Symmetric or Complex Hermitian Matrix Multiple Right-Hand Side Solve | 502
SPPFCD, DPPFCD, SPOFC, and DPOFC—Positive Definite Real Symmetric Matrix Factorization, Condition Number Reciprocal, and Determinant | 507
| DBSSV—Symmetric Indefinite Matrix Factorization and Multiple Right-Hand Side Solve | 514
| | DBSTRF—Symmetric Indefinite Matrix Factorization | 520
Chapter 11. Eigensystem Analysis ... 715
Overview of the Eigensystem Analysis Subroutines 715
Eigensystem Analysis Subroutines .. 717
SGEEV, DGEEV, CGEEV, and ZGEEV—Eigenvalues and, Optionally, All or
Selected Eigenvectors of a General Matrix .. 718
SSPEV, DSPEV, CHPEV, and ZHPEV—Eigenvalues and, Optionally, the
Eigenvectors of a Real Symmetric Matrix or a Complex Hermitian Matrix ... 729
SSPSV, DSPSV, CHPSV, and ZHPSV—Extreme Eigenvalues and,
Optionally, the Eigenvectors of a Real Symmetric Matrix or a Complex
Hermitian Matrix .. 738
SGEGV and DGEGV—Eigenvalues and, Optionally, the Eigenvectors of a
Generalized Real Eigensystem, Az = wBz, where A and B Are Real
General Matrices ... 746
SSYGV and DSYGV—Eigenvalues and, Optionally, the Eigenvectors of a
Generalized Real Symmetric Eigensystem, Az = wBz, where A Is Real
Symmetric and B Is Real Symmetric Positive Definite 752

Chapter 12. Fourier Transforms, Convolutions and Correlations, and
Related Computations .. 759
Overview of the Signal Processing Subroutines ... 759
Fourier Transforms Subroutines ... 759
Convolution and Correlation Subroutines .. 760
Related-Computation Subroutines ... 760
Fourier Transforms, Convolutions, and Correlations Considerations 761
Use Considerations .. 761
Initializing Auxiliary Working Storage ... 763
Determining the Amount of Auxiliary Working Storage That You Need 763
Performance and Accuracy Considerations ... 764
When Running on the Workstation Processors ... 764
Defining Arrays ... 764
Fourier Transform Considerations .. 764
How the Fourier Transform Subroutines Achieve High Performance 765
Convolution and Correlation Considerations ... 765
Related Computation Considerations ... 767
Accuracy Considerations .. 767
Fourier Transform Subroutines ... 768
SCFT and DCFT—Complex Fourier Transform ... 769
SRCFT and DRCFT—Real-to-Complex Fourier Transform 777
SCRFT and DCRFT—Complex-to-Real Fourier Transform 785
SCOSF and DCOSF—Cosine Transform .. 793
SSINF and DSINF—Sine Transform .. 800
SCFT2 and DCFT2—Complex Fourier Transform in Two Dimensions 807
SRCFT2 and DRCFT2—Real-to-Complex Fourier Transform in Two
Dimensions .. 814
SCRFT2 and DCRFT2—Complex-to-Real Fourier Transform in Two
Dimensions .. 821
SCFT3 and DCFT3—Complex Fourier Transform in Three Dimensions 829
SRCFT3 and DRCFT3—Real-to-Complex Fourier Transform in Three Dimensions ... 835
SCRFT3 and DCRFT3—Complex-to-Real Fourier Transform in Three Dimensions .. 841
Convolution and Correlation Subroutines ... 847
SCON and SCOR—Convolution or Correlation of One Sequence with One or More Sequences ... 848
SCOND and SCORD—Convolution or Correlation of One Sequence with Another Sequence Using a Direct Method 854
SCONF and SCORF—Convolution or Correlation of One Sequence with One or More Sequences Using the Mixed-Radix Fourier Method .. 860
SDCON, DDCON, SDCOR, and DDCOR—Convolution or Correlation with Decimated Output Using a Direct Method 869
SACOR—Autocorrelation of One or More Sequences ... 873
SACORF—Autocorrelation of One or More Sequences Using the Mixed-Radix Fourier Method 877
Related-Computation Subroutines ... 882
SPOLY and DPOLY—Polynomial Evaluation ... 883
SIZC and DIZC—I-th Zero Crossing ... 886
STREC and DTREC—Time-Varying Recursive Filter ... 889
SQINT and DQINT—Quadratic Interpolation ... 892
SWLEV, DWLEV, CWLEV, and ZWLEV—Wiener-Levinson Filter Coefficients 896

Chapter 13. Sorting and Searching ... 901
Overview of the Sorting and Searching Subroutines ... 901
Use Considerations ... 901
Performance and Accuracy Considerations ... 901
Sorting and Searching Subroutines ... 903
ISORT, SSORT, and DSORT—Sort the Elements of a Sequence ... 904
ISORTX, SSORTX, and DSORTX—Sort the Elements of a Sequence and Note the Original Element Positions ... 906
ISORTS, SSORTS, and DSORTS—Sort the Elements of a Sequence Using a Stable Sort and Note the Original Element Positions ... 909
IBSRCH, SBSRCH, and DBSRCH—Binary Search for Elements of a Sequence X in a Sorted Sequence Y ... 912
ISSRCH, SSSRCH, and DSSRCH—Sequential Search for Elements of a Sequence X in the Sequence Y ... 916

Chapter 14. Interpolation ... 921
Overview of the Interpolation Subroutines ... 921
Use Considerations ... 921
Performance and Accuracy Considerations ... 921
Interpolation Subroutines ... 922
SPINT and DPINT—Polynomial Interpolation ... 923
STPINT and DTPINT—Local Polynomial Interpolation ... 928
SCSINT and DCSINT—Cubic Spline Interpolation ... 931
SCSIN2 and DCSIN2—Two-Dimensional Cubic Spline Interpolation ... 937

Chapter 15. Numerical Quadrature ... 941
Overview of the Numerical Quadrature Subroutines ... 941
Use Considerations ... 941
Choosing the Method ... 941
Performance and Accuracy Considerations ... 941
Programming Considerations for the SUBF Subroutine .. 942
Designing SUBF .. 942
Coding and Setting Up SUBF in Your Program .. 943
Numerical Quadrature Subroutines ... 944
SPTNQ and DPTNQ—Numerical Quadrature Performed on a Set of Points 945
SGLNQ and DGLNQ—Numerical Quadrature Performed on a Function Using Gauss-Legendre Quadrature .. 948
SGLNQ2 and DGLNQ2—Numerical Quadrature Performed on a Function Over a Rectangle Using Two-Dimensional Gauss-Legendre Quadrature 951
SGLQG and DGLQG—Numerical Quadrature Performed on a Function Using Gauss-Laguerre Quadrature .. 957
SGRAQ and DGRAQ—Numerical Quadrature Performed on a Function Using Gauss-Rational Quadrature ... 960
SGLHMQ and DGHMQ—Numerical Quadrature Performed on a Function Using Gauss-Hermite Quadrature .. 964

Chapter 16. Random Number Generation ... 967
Overview of the Random Number Generation Subroutines 967
Use Considerations ... 967
Random Number Generation Subroutines .. 967
SURAND and DURAND—Generate a Vector of Uniformly Distributed Random Numbers .. 968
SNRAND and DNRAND—Generate a Vector of Normally Distributed Random Numbers .. 971
SURXOR and DURXOR—Generate a Vector of Long Period Uniformly Distributed Random Numbers ... 975

Chapter 17. Utilities .. 979
Overview of the Utility Subroutines .. 979
Use Considerations ... 979
Determining the Level of ESSL Installed ... 979
Finding the Optimal Stride(s) for Your Fourier Transforms 979
Converting Sparse Matrix Storage .. 980
Utility Subroutines .. 981
EINFO—ESSL Error Information-Handler Subroutine .. 982
ERRSAV—ESSL ERRSAV Subroutine for ESSL .. 985
ERRSET—ESSL ERRSET Subroutine for ESSL ... 986
ERRSTR—ESSL ERRSTR Subroutine for ESSL ... 988
IESSL—Determine the Level of ESSL Installed ... 989
STRIDE—Determine the Stride Value for Optimal Performance in Specified Fourier Transform Subroutines ... 991
DSRSM—Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode ... 1001
DGKTRN—For a General Sparse Matrix, Convert Between Diagonal-Out and Profile-In Skyline Storage Mode ... 1005
DSKTRN—For a Symmetric Sparse Matrix, Convert Between Diagonal-Out and Profile-In Skyline Storage Mode ... 1011

Part 3. Appendixes .. 1017

Appendix A. Basic Linear Algebra Subprograms (BLAS) ... APA-1
Level 1 BLAS ... APA-1
Looking for a Subroutine?

CAXPY... 214	CSCTR... 277	DGEICD... 529	DPOICD... 534	DSYR... 321
CAXPYI... 286	CSRO... 247	DGELL... 708	DPOLY... 883	DSYRZ... 329
CCOPY... 217	CSSCAL... 251	DGMEM... 409	DPOSM... 502	DSYRZK... 440
CDOTC... 220	CSWAP... 254	DGMEMS... 403	DPPF... 491	DSYRKC... 433
CDOTCI... 289	CSYAX... 269	DGEATX... 294	DPPFC... 507	DTBMV... 356
CDOTU... 220	CSYM... 418	DGMUL... 393	DPPFCD... 534	DTBSV... 593
CDOTUI... 289	CSYRK... 440	DGMUS... 294	DPPS... 499	DTPS... 555
CGBMV... 338	CTSBMV... 356	DGMX... 294	DPTF... 589	DTPNF... 928
CGEADD... 379	CTBSV... 593	DGEORF... 703	DPTNQ... 945	DTPMV... 350
CGEEV... 718	CTPMV... 350	DGER... 305	DPTS... 591	DTPSV... 541
CGEF... 465	CTPSV... 451	DGER1... 305	DQINT... 892	DTRC... 889
CGEMM... 409	CRM... 426	DGES... 468	DRCTF... 777	DTRI... 555
CGEMMS... 403	CRMV... 350	DGESM... 472	DRCTF2... 814	DTRMM... 426
CGEMUL... 393	CRSM... 547	DGESUB... 386	DRCTF3... 835	DTRMV... 350
CGEMV... 294	CRTRS... 541	DGEVS... 690	DROTF... 247	DTRSM... 547
CGERC... 305	CVEA... 257	DGETM... 448	DROTTG... 240	DTRSV... 541
CGERU... 305	CVEM... 265	DGETM0... 451	DSBMV... 345	DURAND... 968
CGES... 468	CVEUS... 261	DGETRF... 478	DSCAL... 251	DURXOR... 975
CGESM... 472	CWLEV... 896	DGETRS... 482	DSCTR... 277	DVEA... 257
CGESUB... 386	CYAX... 269	DGHMQ... 964	DSCDG... 667	DVEM... 265
CGETMI... 448	DASUM... 211	DGFKS... 610	DSDCG... 682	DVES... 261
CGETMO... 451	DAXPY... 214	DGLTRN... 1005	DSDMX... 370	DWLEV... 896
CGETRF... 478	DAXPYI... 286	DGLQ... 957	DSINF... 800	DYA... 269
CGETRS... 482	DBAXY... 286	DGLNQ... 948	DSKFS... 629	DZASUM... 211
CGTHR... 280	DBAXYI... 286	DGLNQ2... 951	DSKTRN... 1011	DZAXPY... 272
CGTHRZ... 283	DBAXY... 286	DGRQA... 960	DSLEV... 729	DZNRM2... 234
CGTN... 580	DBSSV... 514	DGSF... 600	DSLMX... 313	EINFO... 982
CGTNDF... 583	DBTRF... 520	DGSS... 606	DSR1... 321	ERSAV... 985
CGTNPS... 586	DBSTRS... 525	DGTS... 578	DSR2... 329	ERSSET... 986
CHEMV... 345	DCFT... 769	DIZC... 866	DSCAL... 659	ERRSTR... 988
CHEMV... 418	DEOSF... 793	DNAXPY... 224	DSG... 606	ERRSTR... 988
CHEMV... 313	DCFT2... 807	DNDOT... 229	DGF... 575	IBSRCH... 912
CHER... 321	DCRFT... 829	DNORM2... 237	DGT... 578	ICAMAX... 199
CHERZ... 329	DCPY... 217	DHER... 280	DIZC... 866	IDMAZ... 199
CHER2K... 440	DCRFT... 785	DGTHRZ... 283	DGR... 578	IDMAZ... 199
CHERK... 433	DCRFT2... 821	DGTP... 580	DGH... 580	IDMIN... 208
CHLEV... 729	DCRFT3... 841	DGTPNF... 583	DGN... 583	IDOR... 904
CHPEV... 729	DCSIN2... 937	DGTPNS... 586	DGRi... 583	IDORT... 904
CHPMV... 313	DCSIN4... 931	DGTS... 578	DGN... 578	IDORTS... 909
CHPR... 321	DCCON... 869	DNDOT... 229	DIZC... 866	IDORTX... 906
CHPR2... 329	DDOR... 869	DNORM2... 237	DNORM2... 971	IDORTX... 906
CHPSV... 738	DDOT... 220	DNRAND... 971	DNRM2... 234	IDORTX... 906
CNORM2... 237	DDOTI... 289	DPBCHF... 568	DPBCHR... 568	ISSRCH... 916
CPOF... 491	DGBF... 561	DPBCH... 572	DPBCH... 568	IZAMAX... 199
CPOS... 502	DGBMV... 338	DPBB... 568	DGB... 572	SACOR... 873
CROT... 247	DGBS... 565	DPBF... 572	DPBF... 583	SOR... 873
CROGV... 240	DGADD... 379	DPINT... 923	DQINT... 923	SOR... 873
CSCAL... 251	DGEEV... 718	DPOF... 491	DPOFCD... 507	SOR... 873
DGEF... 465	DGECFCD... 487	DPOFCD... 507	DPOFCD... 507	SOR... 873
DGEV... 746	DGEV... 746	DPOFCD... 507	DPOFCD... 507	SOR... 873

© Copyright IBM Corp. 1997, 2000
<table>
<thead>
<tr>
<th>SACORF... 877</th>
<th>SGESUB... 386</th>
<th>SSBMV... 345</th>
<th>ZCOPY... 217</th>
<th>ZSCAL... 251</th>
</tr>
</thead>
<tbody>
<tr>
<td>SASUM... 211</td>
<td>SGESVF... 690</td>
<td>SSCAL... 251</td>
<td>ZDOTC... 220</td>
<td>ZSCTR... 277</td>
</tr>
<tr>
<td>SAXPY... 214</td>
<td>SGESVS... 698</td>
<td>SSCTR... 277</td>
<td>ZDOTCI... 289</td>
<td>ZSWAP... 254</td>
</tr>
<tr>
<td>SAXPYI... 286</td>
<td>SGETMI... 448</td>
<td>SSINF... 800</td>
<td>ZDOTU... 220</td>
<td>ZSYMM... 418</td>
</tr>
<tr>
<td>SBSRCH... 912</td>
<td>SGETMO... 451</td>
<td>SSLEV... 729</td>
<td>ZDOTUL... 289</td>
<td>ZSYR2K... 440</td>
</tr>
<tr>
<td>SCASUM... 211</td>
<td>SGETRF... 478</td>
<td>SSLMX... 313</td>
<td>ZDRO... 247</td>
<td>ZSYRK... 433</td>
</tr>
<tr>
<td>SCFT... 769</td>
<td>SGTRS... 482</td>
<td>SSLR1... 321</td>
<td>ZDSCAL... 251</td>
<td>ZTBMV... 356</td>
</tr>
<tr>
<td>SCFT2... 807</td>
<td>SGLMQ... 946</td>
<td>SLLR2... 329</td>
<td>ZDYSX... 269</td>
<td>ZTBVS... 593</td>
</tr>
<tr>
<td>SCFT3... 829</td>
<td>SGLGQ... 957</td>
<td>Ssort... 904</td>
<td>ZGBMV... 338</td>
<td>ZTPMV... 350</td>
</tr>
<tr>
<td>SCNRM2... 234</td>
<td>SGLNQ... 948</td>
<td>Ssorts... 909</td>
<td>ZGEMADD... 379</td>
<td>ZTPSV... 541</td>
</tr>
<tr>
<td>SCON... 848</td>
<td>SGLNQ2... 951</td>
<td>Ssortx... 906</td>
<td>ZGEEV... 718</td>
<td>ZTRMM... 426</td>
</tr>
<tr>
<td>SCOND... 860</td>
<td>SGRAW... 960</td>
<td>SSP... 729</td>
<td>ZGEF... 465</td>
<td>ZTRMV... 350</td>
</tr>
<tr>
<td>SCONF... 860</td>
<td>SGTF... 575</td>
<td>SSPMV... 313</td>
<td>ZGEMM... 409</td>
<td>ZTRSM... 547</td>
</tr>
<tr>
<td>SCOPY... 217</td>
<td>SGTHR... 280</td>
<td>SSPR... 321</td>
<td>ZGEMMS... 403</td>
<td>ZTRSV... 541</td>
</tr>
<tr>
<td>SCOR... 848</td>
<td>SGTHRZ... 283</td>
<td>SSPR2... 329</td>
<td>ZGEMUL... 393</td>
<td>ZVEA... 257</td>
</tr>
<tr>
<td>SCORD... 854</td>
<td>SGTNP... 580</td>
<td>SSSPV... 738</td>
<td>ZGEMV... 294</td>
<td>ZVEM... 265</td>
</tr>
<tr>
<td>SCORF... 860</td>
<td>SGTNPF... 583</td>
<td>SSSRCH... 916</td>
<td>ZGERC... 305</td>
<td>ZVES... 261</td>
</tr>
<tr>
<td>SCSF... 793</td>
<td>SGTNPS... 586</td>
<td>SSWAP... 254</td>
<td>ZGERU... 305</td>
<td>ZWLEV... 896</td>
</tr>
<tr>
<td>SCRFT... 785</td>
<td>SGTS... 578</td>
<td>SSYG... 752</td>
<td>ZGES... 468</td>
<td>ZYAX... 269</td>
</tr>
<tr>
<td>SRCFT2... 821</td>
<td>SIZC... 886</td>
<td>SSYM... 418</td>
<td>ZGESM... 472</td>
<td>ZZAXPY... 272</td>
</tr>
<tr>
<td>SRCFT3... 841</td>
<td>SNAXPY... 224</td>
<td>SSYMV... 313</td>
<td>ZGESUB... 386</td>
<td></td>
</tr>
<tr>
<td>SCSIN... 937</td>
<td>SNDOT... 229</td>
<td>SSYR... 321</td>
<td>ZGETMI... 448</td>
<td></td>
</tr>
<tr>
<td>SCSINT... 931</td>
<td>SNORM... 237</td>
<td>SSYR2... 329</td>
<td>ZGETMO... 451</td>
<td></td>
</tr>
<tr>
<td>SDCON... 869</td>
<td>SNRAND... 971</td>
<td>SSYRK... 433</td>
<td>ZGETRF... 478</td>
<td></td>
</tr>
<tr>
<td>SDCOR... 869</td>
<td>SNRM... 234</td>
<td>STBMV... 356</td>
<td>ZGETRS... 482</td>
<td></td>
</tr>
<tr>
<td>SDOT... 220</td>
<td>SPBCHF... 568</td>
<td>STBSV... 593</td>
<td>ZGTHR... 280</td>
<td></td>
</tr>
<tr>
<td>SDOT1... 289</td>
<td>SPBGHS... 572</td>
<td>STPI... 555</td>
<td>ZGTHRZ... 283</td>
<td></td>
</tr>
<tr>
<td>SGBF... 561</td>
<td>SBPF... 568</td>
<td>STPINT... 928</td>
<td>ZGTNP... 580</td>
<td></td>
</tr>
<tr>
<td>SGBMV... 338</td>
<td>SPBS... 572</td>
<td>STPMV... 350</td>
<td>ZGTNPF... 583</td>
<td></td>
</tr>
<tr>
<td>SGS... 665</td>
<td>SPI... 923</td>
<td>STPSV... 541</td>
<td>ZGTNPS... 586</td>
<td></td>
</tr>
<tr>
<td>SGEADD... 379</td>
<td>SPOF... 491</td>
<td>STREC... 889</td>
<td>ZHBMV... 345</td>
<td></td>
</tr>
<tr>
<td>SGEV... 718</td>
<td>SPOFCO... 507</td>
<td>STR... 555</td>
<td>ZHemm... 418</td>
<td></td>
</tr>
<tr>
<td>SGF... 465</td>
<td>SPOICD... 534</td>
<td>STRIDE... 991</td>
<td>ZHEMV... 313</td>
<td></td>
</tr>
<tr>
<td>SGECFD... 487</td>
<td>SPOLY... 883</td>
<td>STRMM... 426</td>
<td>ZHER... 321</td>
<td></td>
</tr>
<tr>
<td>SGEGV... 746</td>
<td>SPOSM... 502</td>
<td>STRMV... 350</td>
<td>ZHER2... 329</td>
<td></td>
</tr>
<tr>
<td>SGECID... 529</td>
<td>SPPF... 491</td>
<td>STRSM... 547</td>
<td>ZHER2K... 440</td>
<td></td>
</tr>
<tr>
<td>GELLS... 708</td>
<td>SPPFCO... 507</td>
<td>STRSV... 541</td>
<td>ZHERK... 433</td>
<td></td>
</tr>
<tr>
<td>SGMEMM... 409</td>
<td>SPPICD... 534</td>
<td>ZHLE... 729</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SGMEMS... 403</td>
<td>SPPS... 499</td>
<td>SQRADS... 968</td>
<td>ZHE... 729</td>
<td></td>
</tr>
<tr>
<td>SGEMTX... 294</td>
<td>SPTF... 589</td>
<td>SURXOR... 975</td>
<td>ZHPEV... 729</td>
<td></td>
</tr>
<tr>
<td>SGEMUL... 393</td>
<td>STNTNQ... 945</td>
<td>ZSBMV... 313</td>
<td>ZHPMV... 313</td>
<td></td>
</tr>
<tr>
<td>SGEMV... 294</td>
<td>STN... 591</td>
<td>ZVEA... 257</td>
<td>ZHPR... 321</td>
<td></td>
</tr>
<tr>
<td>SGEMX... 294</td>
<td>SQINT... 892</td>
<td>ZVES... 265</td>
<td>ZHPR2... 329</td>
<td></td>
</tr>
<tr>
<td>SGER... 305</td>
<td>SRCFT... 777</td>
<td>ZSWL... 261</td>
<td>ZHPSV... 738</td>
<td></td>
</tr>
<tr>
<td>SGER1... 305</td>
<td>SRCFT2... 814</td>
<td>ZNORM2... 237</td>
<td>ZNORM2... 237</td>
<td></td>
</tr>
<tr>
<td>SGES... 468</td>
<td>SRCFT3... 835</td>
<td>ZAX... 269</td>
<td>ZPOF... 491</td>
<td></td>
</tr>
<tr>
<td>SGEOM... 472</td>
<td>SROT... 247</td>
<td>ZAXPY... 272</td>
<td>ZPOSM... 502</td>
<td></td>
</tr>
<tr>
<td>SROG... 240</td>
<td>SROG... 240</td>
<td>ZAXPYI... 286</td>
<td>ZROG... 240</td>
<td></td>
</tr>
</tbody>
</table>
About This Book

The Engineering and Scientific Subroutine Library (ESSL) for AIX is a set of high-performance mathematical subroutines. ESSL is provided as two run-time libraries, running on RS/6000* POWER, PowerPC, POWER2, POWER3, and POWER3-II processors. ESSL can be used with Fortran, C, C++, and Programming Language/I (PL/I) programs operating under the AIX operating system.

This book is a guide and reference manual for using ESSL in doing application programming. It includes:

- An overview of ESSL and guidance information for designing, coding, and processing your program, as well as migrating existing programs, and diagnosing problems

- Reference information for coding each ESSL calling sequence

This book is written for a wide class of ESSL users: scientists, mathematicians, engineers, statisticians, computer scientists, and system programmers. It assumes a basic knowledge of mathematics in the areas of ESSL computation. It also assumes that users are familiar with Fortran, C, C++, and PL/I programming.

How to Use This Book

Front Matter consists of the Table of Contents and the Preface. Use these to find or interpret information in the book.

Part 1. “Guide Information” provides guidance information for using ESSL. It covers the user-oriented tasks of learning, designing, coding, migrating, processing, and diagnosing. Use the following chapters when performing any of these tasks:

- Chapter 1, “Learning about ESSL” gives an introduction to ESSL, providing highlights and general information. Read this chapter first to determine the aspects of ESSL you want to use.

- Chapter 2, “Designing Your Program” provides ESSL-specific information that helps you design your program. Read this chapter before designing your program.

- Chapter 3, “Setting Up Your Data Structures” describes all types of data structures, such as vectors, matrices, and sequences. Use this information when designing and coding your program.

- Chapter 4, “Coding Your Program” tells you how to code your scalar and array data, how to code calls to ESSL in Fortran, C, C++, and PL/I programs, and how to do the coding necessary to handle errors. Use this information when coding your program.

- Chapter 5, “Processing Your Program” describes how to process your program under your particular operating system on your hardware. Use this information after you have coded your program and are ready to run it.

- Chapter 6, “Migrating Your Programs” explains all aspects of migration to ESSL, to this version of ESSL, to different processors, and to future releases.
and future processors. Read this chapter before starting to design your program.

- **Chapter 7, “Handling Problems”** provides diagnostic procedures for analyzing all ESSL problems. When you encounter a problem, use the symptom indexes at the beginning of this chapter to guide you to the appropriate diagnostic procedure.

Part 2. “Reference Information” provides reference information you need to code the ESSL calling sequences. It covers each of the mathematical areas of ESSL, and the utility subroutines. Each chapter begins with an introduction, followed by the subroutine descriptions. Each introduction applies to all the subroutines in that chapter and is especially important in planning your use of the subroutines and avoiding problems. To understand the information in the subroutine descriptions, see “How to Interpret the Subroutine Descriptions” on page xxviii. Use the appropriate chapter when coding your program:

- **Chapter 8, “Linear Algebra Subprograms”**
- **Chapter 9, “Matrix Operations”**
- **Chapter 10, “Linear Algebraic Equations”**
- **Chapter 11, “Eigensystem Analysis”**
- **Chapter 12, “Fourier Transforms, Convolutions and Correlations, and Related Computations”**
- **Chapter 13, “Sorting and Searching”**
- **Chapter 14, “Interpolation”**
- **Chapter 15, “Numerical Quadrature”**
- **Chapter 16, “Random Number Generation”**
- **Chapter 17, “Utilities”**

Appendix A. Basic Linear Algebra Subprograms provides a list of the Level 1, 2, and 3 Basic Linear Algebra Subprograms (BLAS) included in ESSL.

Appendix B. LAPACK provides a list of the LAPACK subroutines included in ESSL.

Glossary contains definitions of terms used in this book.

Bibliography provides information about publications related to ESSL. Use it when you need more information than this book provides.

How to Find a Subroutine Description

If you want to locate a subroutine description and you know the subroutine name, you can use the “Looking for a Subroutine?” on page xvii, following the Table of Contents. You can also find them listed individually or under the entry “subroutines, ESSL” in the Index.
Where to Find Related Publications

If you have a question about the SP, PSSP, or a related product, the following online information resources make it easy to find the information you are looking for:

- If you have installed the RS/6000 SP Resource Center available with Parallel System Support Programs (PSSP) Version 3 Release 1 or later, you can access the SP Resource Center by issuing the command:

 `/usr/lpp/ssp/bin/resource_center`

 If you have the SP Resource Center on CD ROM, see the readme.txt file for information on how to run it.

- Access the RS/6000 Web site at:

 `http://www.rs6000.ibm.com`

A list of all ESSL publications, as well as related programming and hardware publications, are listed in the bibliography. Also included is a list of math background publications you may find helpful, along with the necessary information for ordering them from independent sources. See “Bibliography” on page BIB-1.

How to Look Up a Bibliography Reference

Special references are made throughout this book to mathematical background publications and software libraries, available through IBM, publishers, or other companies. All of these are described in detail in the bibliography. A reference to one of these is made by using a bracketed number. The number refers to the item listed under that number in the bibliography. For example, reference [1] cites the first item listed in the bibliography.

Special Terms

Standard data processing and mathematical terms are used in this book. Terminology is generally consistent with that used for Fortran. See the Glossary for definitions of terms used in this book.

Short and Long Precision

Because ESSL can be used with more than one programming language, the terms short precision and long precision are used in place of the Fortran terms single precision and double precision.

Subroutines and Subprograms

An ESSL subroutine is a named sequence of instructions within the ESSL product library whose execution is invoked by a call. A subroutine can be called in one or more user programs and at one or more times within each program. The ESSL subroutines are referred to as subprograms in the area of linear algebra subprograms. The term subprograms is used because it is consistent with the BLAS. Many of the linear algebra subprograms correspond to the BLAS; these are listed in Appendix A on page APA-1.
How to Interpret the Subroutine Names with a Prefix Underscore

A name specified in this book with an underscore (_) prefix, such as _GEMUL, refers to all the versions of the subroutine with that name. To get the entire list of subroutines that name refers to, substitute the first letter for each version of the subroutine. For example, _GEMUL, refers to all versions of the matrix multiplication subroutine: SGEMUL, DGEMUL, CGEMUL, and ZGEMUL. You do not use the underscore in coding the names of the ESSL subroutines in your program. You code a complete name, such as SGEMUL. For details about these names, see “The Variety of Mathematical Functions” on page 4.

Abbreviated Names

The abbreviated names used in this book are defined below.

<table>
<thead>
<tr>
<th>Short Name</th>
<th>Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIX</td>
<td>Advanced Interactive Executive</td>
</tr>
<tr>
<td>BLAS</td>
<td>Basic Linear Algebra Subprograms</td>
</tr>
<tr>
<td>ESSL</td>
<td>IBM Engineering and Scientific Subroutine Library</td>
</tr>
<tr>
<td>HTML</td>
<td>Hypertext Markup Language</td>
</tr>
<tr>
<td>LAPACK</td>
<td>Linear Algebra Package</td>
</tr>
<tr>
<td>PL/I</td>
<td>Programming Language/I</td>
</tr>
<tr>
<td>POWER, POWER2, POWER3, POWER3–II and PowerPC processors</td>
<td>RS/6000 processors</td>
</tr>
<tr>
<td>SL MATH</td>
<td>Subroutine Library—Mathematics</td>
</tr>
<tr>
<td>SMP</td>
<td>Symmetric Multi-Processing</td>
</tr>
<tr>
<td>SSP</td>
<td>Scientific Subroutine Package</td>
</tr>
</tbody>
</table>

Fonts

This book uses a variety of special fonts to distinguish between many mathematical and programming items. These are defined below.

<table>
<thead>
<tr>
<th>Special Font</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italic with no subscripts</td>
<td>m, inc1x, aux, iopt</td>
<td>Calling sequence argument or mathematical variable</td>
</tr>
<tr>
<td>Italic with subscripts</td>
<td>x₁, aᵣᵣ, x₁₁,₁₂</td>
<td>Element of a vector, matrix, or sequence</td>
</tr>
<tr>
<td>Bold italic lowercase</td>
<td>x, y, z</td>
<td>Vector or sequence</td>
</tr>
<tr>
<td>Bold italic uppercase</td>
<td>A, B, C</td>
<td>Matrix</td>
</tr>
<tr>
<td>Gothic uppercase</td>
<td>A, B, C, AGB IM=ISMAX(4, X, 2)</td>
<td>Array Fortran statement</td>
</tr>
</tbody>
</table>
Special Notations and Conventions

This section explains the special notations and conventions used in this book to describe various types of data.

Scalar Data

Following are the special notations used in the examples in this book for scalar data items. These notations are used to simplify the examples, and they do not imply usage of any precision. For a definition of scalar data in Fortran, C, C++, and PL/I, see Chapter 4 on page 109.

<table>
<thead>
<tr>
<th>Data Item</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Character item</td>
<td>‘T’</td>
<td>Character(s) in single quotation marks</td>
</tr>
<tr>
<td>Hexadecimal string</td>
<td>X‘97FA00C1’</td>
<td>String of 4-bit hexadecimal characters</td>
</tr>
<tr>
<td>Logical item</td>
<td>.TRUE. .FALSE.</td>
<td>True or false logical value, as indicated</td>
</tr>
<tr>
<td>Integer data</td>
<td>1</td>
<td>Number with no decimal point</td>
</tr>
<tr>
<td>Real data</td>
<td>1.6</td>
<td>Number with a decimal point</td>
</tr>
<tr>
<td>Complex data</td>
<td>(1.0,−2.9)</td>
<td>Real part followed by the imaginary part</td>
</tr>
<tr>
<td>Continuation</td>
<td>1.6666</td>
<td>Continue the last digit (1.6666666... and so forth)</td>
</tr>
</tbody>
</table>

Vectors

A vector is represented as a single row or column of subscripted elements enclosed in square brackets. The subscripts refer to the element positions within the vector:

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 \vdots \\
 x_n
\end{bmatrix}
\]

For a definition of vector, see “Vectors” on page 53.

Matrices

A matrix is represented as a block of elements enclosed in square brackets. Subscripts refer to the row and column positions, respectively:
Sequences

Sequences are used in the areas of sorting, searching, Fourier transforms, convolutions, and correlations. For a definition of sequences, see “Sequences” on page 103.

One-Dimensional Sequences
A one-dimensional sequence is represented as a series of elements enclosed in parentheses. Subscripts refer to the element position within the sequence:

\((x_1, x_2, x_3, \ldots, x_n)\)

Two-Dimensional Sequences
A two-dimensional sequence is represented as a series of columns of elements. (They are represented in the same way as a matrix without the square brackets.) Subscripts refer to the element positions within the first and second dimensions, respectively:

\[
\begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix}
\]

Three-Dimensional Sequences
A three-dimensional sequence is represented as a series of blocks of elements. Subscripts refer to the elements positions within the first, second, and third dimensions, respectively:
Arrays

Arrays contain vectors, matrices, or sequences. For a definition of array, see “How Do You Set Up Your Arrays?” on page 27.

One-Dimensional Arrays

A one-dimensional array is represented as a single row of numeric elements enclosed in parentheses:

\[(1.0, 2.0, 3.0, 4.0, 5.0)\]

Elements not significant to the computation are usually not shown in the array. One dot appears for each element not shown. In the following array, five elements are significant to the computation, and two elements not used in the computation exist between each of the elements shown:

\[(1.0, . , . ,2.0, . , . ,3.0, . , . ,4.0, . , . ,5.0)\]

This notation is used to show vector elements inside an array.

Two-Dimensional Arrays

A two-dimensional array is represented as a block of numeric elements enclosed in square brackets:

\[
\begin{bmatrix}
1.0 & 1.1 & 5.0 & 25.0 \\
2.0 & 12.0 & 6.0 & 26.0 \\
3.0 & 13.0 & 7.0 & 27.0 \\
4.0 & 14.0 & 8.0 & 28.0 \\
\end{bmatrix}
\]

Elements not significant to the computation are usually not shown in the array. One dot appears for each element not shown. The following array contains three rows and two columns not used in the computation:

\[
\begin{bmatrix}
. & . & . & . & . \\
. & . & . & . & . \\
. & 1.0 & 2.0 & 5.0 & 4.0 . \\
. & 2.0 & 3.0 & 6.0 & 3.0 . \\
. & 3.0 & 4.0 & 7.0 & 2.0 . \\
. & 4.0 & 5.0 & 8.0 & 1.0 . \\
. & . & . & . & . \\
\end{bmatrix}
\]

This notation is used to show matrix elements inside an array.
Three-Dimensional Arrays

A three-dimensional array is represented as a series of blocks of elements separated by ellipses. Each block appears like a two-dimensional array:

```
  1.0  11.0  5.0  25.0
  2.0  12.0  6.0  26.0
  3.0  13.0  7.0  27.0
  4.0  14.0  8.0  28.0
```
```
  10.0  111.0  15.0  125.0
  20.0  112.0  16.0  126.0
  30.0  113.0  17.0  127.0
  40.0  114.0  18.0  128.0
```
```
  100.0  11.0  15.0  25.0
  200.0  12.0  16.0  26.0
  300.0  13.0  17.0  27.0
  400.0  14.0  18.0  28.0
```

Elements not significant to the computation are usually not shown in the array. One dot appears for each element not shown, just as for two-dimensional arrays.

Special Characters, Symbols, Expressions, and Abbreviations

The mathematical and programming notations used in this book are consistent with traditional mathematical and programming usage. These conventions are explained below, along with special abbreviations that are associated with specific values.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greek letters: α, σ, ω, Ω</td>
<td>Symbolic scalar values</td>
</tr>
<tr>
<td></td>
<td>al</td>
</tr>
<tr>
<td>a*b</td>
<td>The dot product of a and b</td>
</tr>
<tr>
<td>xi</td>
<td>The i-th element of vector x</td>
</tr>
<tr>
<td>cij</td>
<td>The element in matrix C at row i and column j</td>
</tr>
<tr>
<td>x1 ... xn</td>
<td>Elements from x1 to xn</td>
</tr>
<tr>
<td>i = 1, n</td>
<td>i is assigned the values 1 to n</td>
</tr>
<tr>
<td>y ← x</td>
<td>Vector y is replaced by vector x</td>
</tr>
<tr>
<td>xy</td>
<td>Vector x times vector y</td>
</tr>
<tr>
<td>AX = B</td>
<td>AX is congruent to B</td>
</tr>
<tr>
<td>ak</td>
<td>a raised to the k power</td>
</tr>
<tr>
<td>ex</td>
<td>Exponential function of x</td>
</tr>
<tr>
<td>Aᵀ; xᵀ</td>
<td>The transpose of matrix A; the transpose of vector x</td>
</tr>
<tr>
<td>x; A</td>
<td>The complex conjugate of vector x; the complex conjugate of matrix A</td>
</tr>
<tr>
<td>xᵢ; cᵢ</td>
<td>The complex conjugate of the complex vector element xᵢ, where:</td>
</tr>
<tr>
<td></td>
<td>if xᵢ = (aᵢ, bᵢ), then xᵢ = (aᵢ, -bᵢ)</td>
</tr>
<tr>
<td>xᴴ; Aᴴ</td>
<td>The complex conjugate transpose of vector x; the complex conjugate transpose of matrix A</td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>$\sum_{i=1}^{n} x_i$</td>
<td>The sum of elements x_1 to x_n</td>
</tr>
<tr>
<td>$\sqrt{a + b}$</td>
<td>The square root of $a+b$</td>
</tr>
<tr>
<td>$\int_{a}^{b} f(x) , dx$</td>
<td>The integral from a to b of $f(x) , dx$</td>
</tr>
<tr>
<td>$|x|_2$</td>
<td>The Euclidean norm of vector x, defined as: $\sqrt{\sum_{j=1}^{n} x_j^2}$</td>
</tr>
<tr>
<td>$|A|_1$</td>
<td>The one norm of matrix A, defined as: $\max \left{ \sum_{i=1}^{m}</td>
</tr>
<tr>
<td>$|A|_2$</td>
<td>The spectral norm of matrix A, defined as: $\max(|Ax|_2 : |x|_2 = 1)$</td>
</tr>
<tr>
<td>$|A|_F$</td>
<td>The Frobenius norm of matrix A, defined as: $\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^2}$</td>
</tr>
<tr>
<td>A^{-1}</td>
<td>The inverse of matrix A</td>
</tr>
<tr>
<td>A^{-T}</td>
<td>The transpose of A inverse</td>
</tr>
<tr>
<td>$</td>
<td>A</td>
</tr>
<tr>
<td>$m \times n$ matrix A</td>
<td>Matrix A has m rows and n columns</td>
</tr>
<tr>
<td>$\sin a$</td>
<td>The sine of a</td>
</tr>
<tr>
<td>$\cos b$</td>
<td>The cosine of b</td>
</tr>
<tr>
<td>$\text{SIGN}(a)$</td>
<td>The sign of a; the result is either + or -</td>
</tr>
<tr>
<td>address (a)</td>
<td>The storage address of a</td>
</tr>
<tr>
<td>max(x)</td>
<td>The maximum element in vector x</td>
</tr>
<tr>
<td>min(x)</td>
<td>The minimum element in vector x</td>
</tr>
<tr>
<td>ceiling(x)</td>
<td>The smallest integer that is greater than or equal to x</td>
</tr>
<tr>
<td>floor(x)</td>
<td>The largest integer that is not greater than x</td>
</tr>
<tr>
<td>int(x)</td>
<td>The largest integer that is less than or equal to x</td>
</tr>
<tr>
<td>$x \mod(m)$</td>
<td>x modulo m, the remainder when x is divided by m</td>
</tr>
<tr>
<td>∞</td>
<td>Infinity</td>
</tr>
<tr>
<td>π</td>
<td>Pi, 3.14159265...</td>
</tr>
</tbody>
</table>
How to Interpret the Subroutine Descriptions

This section explains how to interpret the information in the subroutine descriptions in Part 2 of this book.

Description

Each subroutine description begins with a brief explanation of what the subroutine does. When we combine the description of multiple versions of a subroutine, we give enough information to enable you to easily tell the differences among the subroutines. Differences usually occur in either the function performed or the data types required for each subroutine.

Syntax

This shows the syntax for the Fortran, C, C++, and PL/I calling statements:

<table>
<thead>
<tr>
<th>Programming Language</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>CALL NAME-1</td>
</tr>
<tr>
<td>C and C++</td>
<td>name-1</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL NAME-1</td>
</tr>
</tbody>
</table>

The syntax indicates:

- The programming language (Fortran, C, C++, or PL/I)
- Each possible subroutine name that you can code in the calling sequence. Each name is separated by the | (or) symbol. You specify only one of these names in your calling sequence. (You do not code the | in the calling sequence.)
- The arguments, listed in the order in which you code them in the calling sequence. You must code them all in your calling sequence.

You can distinguish between input arguments and output arguments by looking at the “On Entry” and “On Return” sections, respectively. An argument used for both input and output is described in both the “On Entry” and “On Return” sections. In this case, the input value for the argument is overlaid with the output value.

The names of the arguments give an indication of the type of data that you should specify for the argument; for example:

- Names beginning with the letters i through n, such as m, incx, iopt, and isign, indicate that you specify integer data.
- Names beginning with the letters a through h and o through z, such as b, t, alpha, sigma, and omega, indicate that you specify real or complex data.

On Entry

This lists the input arguments, which are the arguments you pass to the ESSL subroutine. Each argument description first gives the meaning of the argument, and then gives the form of data required for the argument. (To help you avoid errors, output arguments are also listed, along with a reference to the On Return section.)
On Return

This lists the output arguments, which are the arguments passed back to your program from the ESSL subroutine. Each argument description first gives the meaning of the argument, and then gives the form of data passed back to your program for the argument.

Notes

The notes describe any programming considerations and restrictions that apply to the arguments or the data for the arguments. There may be references to other parts of the book for further information.

Function

This is a functional, or mathematical, description of the function performed by this subroutine. It explains what computation is performed, not the implementation. It explains the variations in the computation depending on the input arguments. References are made, where appropriate, to mathematical background books listed in the bibliography. References appear as a number enclosed in square brackets, where the number refers to the item listed under that number in the bibliography. For example, reference [1] cites the first item listed.

Special Usage

These are unique ways you can use the subroutine in your application. In most cases, this book does not address applications of the ESSL subroutines; however, in special situations where the functional capability of the subroutine can be extended by following certain rules for its use, these rules are described in this section.

Error Conditions

These are all the ESSL run-time errors that can occur in the subroutine. They are organized under three headings; Computational Errors, Input-Argument Errors, and Resource Errors. The return code values resulting from these errors are also explained.

Examples

The examples show how you would call the subroutine from a Fortran program. They show a variety of uses of the subroutine. Except where it is important to show differences in use between the various versions of the subroutine, the simplest version of the subroutine is used in the examples. In most cases, this is the short-precision real version of the subroutine. Each example provides a description of the important features of the example, followed by the Fortran calling sequence, the input data, and the resulting output data.
What's New for ESSL for AIX

This section summarizes all the changes made to ESSL for AIX.

What's New for ESSL Version 3 Release 2

- The ESSL Libraries are tuned for the RS/6000 POWER3-II.
- The Dense Linear Algebraic Equations Subroutines now include these new subroutines:
 - Symmetric Indefinite Matrix Factorization and Multiple Right-Hand Side Solve.
 - Symmetric Indefinite Matrix Factorization.
 - Symmetric Indefinite Matrix Multiple Right-Hand Side Solve.
- The Linear Least Squares Subroutines now include this new subroutine:
 - General Matrix QR Factorization.
- The ESSL POWER and Thread-Safe libraries have been replaced by a thread-safe library referred to as the ESSL Serial Library.
- The ESSL POWER2 and Thread-Safe POWER2 libraries are no longer provided; the ESSL Serial or the ESSL SMP Library should be used instead. See “Migrating ESSL Version 3 Programs to Version 3 Release 2” on page 165.
- The ESSL Version 3 Guide and Reference manual is provided in pdf format with the product package; the postscript file is no longer provided.
- The ESSL Product Package is now distributed on a CD.

Changes for ESSL Version 3 Release 1.2

- The ESSL POWER Library, the ESSL Thread-Safe Library, and the ESSL Symmetric Multi-Processing (SMP) Library are tuned for the RS/6000 POWER3 SMP thin, wide, and high nodes.
- The serial and SMP performance of the packed Dense Linear Algebraic Equation subroutines, _PPF, _PPFCD, and _PPICD have been improved in many cases by utilizing new algorithms based on recursive packed storage format (See references [52], [66], and [67]).
- The SMP performance of the Dense Linear Algebraic Equation subroutine, DPOF, has been improved for a positive definite symmetric matrix stored in upper storage mode.
- Additional multi-threaded ESSL SMP subroutines are provided (see Table 21 on page 24).
Changes for ESSL Version 3 Release 1.1

- The ESSL POWER Library, the ESSL Thread-Safe Library, and the ESSL SMP Library are tuned for the RS/6000 POWER3.

- The ESSL POWER Library, the ESSL Thread-Safe Library, and the ESSL SMP Library now support both 32-bit environment and 64-bit environment applications. For details on creating 64-bit environment applications see Chapter 4 on page 109 and Chapter 5 on page 161. If you are migrating to a 64-bit environment, you may need to make changes to your calls to ERRSET. For details see “ERRSET—ESL ERRSET Subroutine for ESSL” on page 986.

- ESSL for AIX provides distinct libraries for AIX 4.2.1 and AIX 4.3.2:
 - The AIX 4.2.1 ESSL Thread-Safe Library, the ESSL Thread-Safe POWER2 Library, and the ESSL SMP Library were built using the pthreads draft 7 library supplied on AIX 4.2.1. This is the same as ESSL Version 3.1.
 - The AIX 4.3.2 ESSL Thread-Safe Library, the ESSL Thread-Safe POWER2 Library, and the ESSL SMP Library were built using the pthreads library that conforms to the IEEE POSIX 1003.1-1996 specification supplied on AIX 4.3.

Changes for ESSL Version 3

- ESSL for AIX provides two new run-time libraries:
 - The ESSL SMP Library provides thread-safe versions of the ESSL subroutines for use on the RS/6000 SMP (for example 604e) processors. In addition, a subset of these subroutines are also multithreaded versions; that is, they support the shared memory parallel processing programming model. You do not have to change your existing application programs that call ESSL to take advantage of the increased performance of using the SMP processors. You can simply re-link your existing programs. For a list of the multithreaded subroutines in the ESSL SMP Library, see Table 21 on page 24.
 - The ESSL Thread-Safe Library provides thread-safe versions of the ESSL subroutines for use on all RS/6000 processors. You may use this library to develop your own multithreaded applications.

 If your existing application program calls ESSL, you only need to re-link your program to take advantage of the increased performance of the ESSL SMP Library or to use the ESSL Thread-Safe Library.

- ESSL provides new subroutines (_GETRF and _GETRS), bringing the total number of subroutines to 458.

- For those ESSL subroutines that require extra working storage to perform computations, ESSL now provides a way to dynamically allocate storage when it does not need to persist after the subroutine call. See “Using Auxiliary Storage in ESSL” on page 30.

- The files for the Hypertext Markup Language (HTML) version of the ESSL Version 3 Guide and Reference are packaged with the ESSL product.

- All the ESSL messages are provided in an ESSL message catalog.
Future Migration

If you are concerned with migration to possible future releases of ESSL or possible future hardware, you should read “Planning for Future Migration” on page 167. That section explains what you can do now to prevent future migration problems.
In Brief—What's Provided in ESSL for AIX

- ESSL provides two run-time libraries:
 - The ESSL SMP Library provides thread-safe versions of the ESSL subroutines for use on the RS/6000 SMP (for example, 604e or 630) processors. In addition, a subset of these subroutines are also multithreaded versions; that is, they support the shared memory parallel processing programming model. You do not have to change your existing application programs that call ESSL to take advantage of the increased performance of using the SMP processors. You can simply re-link your existing application programs. For a list of the multithreaded subroutines in the ESSL SMP Library, see Table 21 on page 24.
 - The ESSL Serial Library provides thread-safe versions of the ESSL subroutines for use on all RS/6000 processors. You may use this library to develop your own multithreaded applications.

All libraries are designed to provide high levels of performance for numerically intensive computing jobs on these respective processors. All versions provide mathematically equivalent results.

The ESSL Serial Library and the ESSL SMP Library support both 32-bit environment and 64-bit environment applications.

- Callable from Fortran, C, C++, and PL/I programs.
- For a list of subroutines, refer to “List of ESSL Subroutines” on page 10.
Part 1. Guide Information

This part of the book is organized into seven chapters, providing guidance information on how to use ESSL. It is organized as follows:

- Learning about ESSL
- Designing your program
- Setting up your data structures
- Coding your program
- Processing your program
- Migrating your programs
- Handling problems
Chapter 1. Introduction and Requirements

This chapter introduces you to the Engineering and Scientific Subroutine Library (ESSL) for Advanced Interactive Executive (AIX*).

Overview of ESSL

This section gives an overview of the ESSL capabilities and requirements.

ESSL is a state-of-the-art collection of subroutines providing a wide range of mathematical functions for many different scientific and engineering applications. Its primary characteristics are performance, functional capability, and usability.

Performance and Functional Capability

The mathematical subroutines, in nine computational areas, are tuned for performance on the RS/6000*. The computational areas are:

- Linear Algebra Subprograms
- Matrix Operations
- Linear Algebraic Equations
- Eigensystem Analysis
- Fourier Transforms, Convolutions and Correlations, and Related Computations
- Sorting and Searching
- Interpolation
- Numerical Quadrature
- Random Number Generation

ESSL provides two run-time libraries:

- The ESSL Symmetric Multi-Processing (SMP) Library provides thread-safe versions of the ESSL subroutines for use on the RS/6000 SMP (for example, 604e or 630) processors. In addition, a subset of these subroutines are also multithreaded versions; that is, they support the shared memory parallel processing programming model. For a list of the multithreaded subroutines in the ESSL SMP Library, see Table 21 on page 24.

- The ESSL Serial Library provides thread-safe versions of the ESSL subroutines for use on all RS/6000 processors. You may use this library to develop your own multithreaded applications.

All libraries are designed to provide high levels of performance for numerically intensive computing jobs on these respective processors. All versions provide mathematically equivalent results.

The ESSL Serial Library and the ESSL SMP Library support both 32-bit environment and 64-bit environment applications.

The ESSL subroutines can be called from application programs written in Fortran, C, C++, and Programming Language/I (PL/I). ESSL runs under the AIX operating system.
Usability

ESL is designed for usability:

- It has an easy-to-use call interface.
- If your existing application programs use the ESSL Serial library, you only need to re-link your program to take advantage of the increased performance of the ESSL SMP Library.
- It supports a 64-bit environment.

64-bit applications can be created on any system, but can only run on 64-bit hardware.

The data model used for a 64-bit environment is referred to as LP64. This data model supports 32-bit integers and 64-bit pointers. In accordance with the LP64 data model, all ESSL integer arguments remain 32-bits except for the iusadr argument for ERRSET. See “ERRSET—ESSL ERRSET Subroutine for ESSL” on page 986.
- It has informative error-handling capabilities, enabling you to calculate auxiliary storage sizes and transform lengths.
- An online book that can be displayed using an Hypertext Markup Language (HTML) document browser, is available for use with ESSL.

The Variety of Mathematical Functions

This section describes the mathematical functions included in ESSL.

Areas of Application

ESL provides a variety of mathematical functions for many different types of scientific and engineering applications. Some of the industries using these applications are: Aerospace, Automotive, Electronics, Petroleum, Finance, Utilities, and Research. Examples of applications in these industries are:

- Structural Analysis
- Computational Chemistry
- Fluid Dynamics Analysis
- Seismic Analysis
- Reservoir Modeling
- Quantitative Analysis
- Time Series Analysis
- Computational Techniques
- Mathematical Analysis
- Dynamic Systems Simulation
- Nuclear Engineering
- Electronic Circuit Design

What ESSL Provides

The subroutines provided in ESSL, summarized in Table 1, fall into the following groups:

- Nine major areas of mathematical computation, providing the computations commonly used by the industry applications listed above
- Utilities, performing general-purpose functions

To help you select the ESSL subroutines that fulfill your needs for performance, accuracy, storage, and so forth, see “Selecting an ESSL Subroutine” on page 23.
Table 1. Summary of ESSL Subroutines

<table>
<thead>
<tr>
<th>ESSL Area of Computation</th>
<th>Integer Subroutines</th>
<th>Short-Precision Subroutines</th>
<th>Long-Precision Subroutines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Algebra Subprograms:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Vector-scalar</td>
<td>0</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>• Sparse vector-scalar</td>
<td>0</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>• Matrix-vector</td>
<td>0</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>• Sparse matrix-vector</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Matrix Operations:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Dense linear algebraic equations</td>
<td>0</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>• Banded linear algebraic equations</td>
<td>0</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>• Sparse linear algebraic equations</td>
<td>0</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>• Linear least squares</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Eigensystem Analysis:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Solutions to the algebraic eigensystem analysis problem and the generalized eigensystem analysis problem</td>
<td>0</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>(Signal Processing) Computations:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Fourier transforms</td>
<td>0</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>• Convolutions and correlations</td>
<td>0</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>• Related computations</td>
<td>0</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Sorting and Searching:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Sorting, sorting with index, and binary and sequential searching</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Interpolation:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Polynomial and cubic spline interpolation</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Numerical Quadrature:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Numerical quadrature on a set of points or on a function</td>
<td>0</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Random Number Generation:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Generating vectors of uniformly distributed and normally distributed random numbers</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Utilities:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• General service operations</td>
<td>11</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Total ESSL Subroutines</td>
<td>16</td>
<td>217</td>
<td>229</td>
</tr>
</tbody>
</table>

ESSL—Processing Capabilities

ESSL provides two run-time libraries, the ESSL SMP Library and the ESSL Serial Library. These libraries are designed to provide high levels of performance for numerically intensive computing jobs on the RS/6000 processors. To order the IBM Engineering and Scientific Subroutine Library for AIX, specify program number 5765-C42. Most of the subroutine calls are compatible with those in the ESSL/370 product. See the Engineering and Scientific Subroutine Library Version 2.2 Guide and Reference for details.
Accuracy of the Computations

ESSL provides accuracy comparable to libraries using equivalent algorithms with identical precision formats. Both short- and long-precision real versions of the subroutines are provided in most areas of ESSL. In some areas, short- and long-precision complex versions are also provided, and, occasionally, an integer version is provided. The data types operated on by the short-precision, long-precision, and integer versions of the subroutines are RS/6000 architecture precisions: ANSI/IEEE 32-bit and 64-bit binary floating-point format, and 32-bit integer. See the ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985, for more detail. (There are ESSL-specific rules that apply to the results of computations on workstation processors using the ANSI/IEEE standards. For details, see “What Data Type Standards Are Used by ESSL, and What Exceptions Should You Know About?” on page 43.)

For more information on accuracy, see “Getting the Best Accuracy” on page 42.

High Performance of ESSL

Algorithms: The ESSL subroutines have been designed to provide high performance. (See references [30], [41], and [42].) To achieve this performance, the subroutines use state-of-the-art algorithms tailored to specific operational characteristics of the hardware, such as cache size, Translation Lookaside Buffer (TLB) size, and page size.

Most subroutines use the following techniques to optimize performance:

- Managing the cache and TLB efficiently so the hit ratios are maximized; that is, data is blocked so it stays in the cache or TLB for its computation.
- Accessing data stored contiguously—that is, using stride-1 computations.
- Exploiting the large number of available floating-point registers.
- Using algorithms that minimize paging.

On the SMP processors:

- The ESSL SMP Library is designed to exploit the processing power and shared memory of the SMP processor. In addition, a subset of the ESSL SMP subroutines have been coded to take advantage of increased performance from multithreaded (parallel) programming techniques. For a list of the multithreaded subroutines in the ESSL SMP Library, see Table 21 on page 24.
- Choosing the number of threads depends on the problem size, the specific subroutine being called, and the number of physical processors you are running on. To achieve optimal performance, experimentation is necessary; however, picking the number of threads equal to the number of online processors generally provides good performance in most cases. In some cases, performance may increase if you choose the number of threads to be less than the number of online processors.

You should use the the XL Fortran XLSMPOPTS environment variable to specify the number of threads you want to create.

On the POWER3 and POWER3–II processors:

- Structuring the ESSL subroutines so, where applicable, the compiled code fully utilizes the dual floating-point execution units. Because two
Multiply-Add instructions can be executed each cycle, neglecting overhead, this allows four floating-point operations per cycle to be performed.

- Structuring the ESSL subroutines so, where applicable, the compiled code takes full advantage of the hardware data prefetching.

 • On the POWER processor:
 - Using algorithms that balance floating-point operations with loads in the innermost loop.
 - Using algorithms that minimize stores in the innermost loops.
 - Structuring the ESSL subroutines so, where applicable, the compiled code uses the Multiply-Add instructions. Neglecting overhead, these instructions perform two floating-point operations per cycle.

Mathematical Techniques: All areas of ESSL use state-of-the-art mathematical techniques to achieve high performance. For example, the matrix-vector linear algebra subprograms operate on a higher-level data structure, matrix-vector rather than vector-scalar. As a result, they optimize performance directly for your program and indirectly through those ESSL subroutines using them.

The Fortran Language Interface to the Subroutines

The ESSL subroutines follow standard Fortran calling conventions and must run in the Fortran run-time environment. When ESSL subroutines are called from a program in a language other than Fortran, such as C, C++, or PL/I, the Fortran conventions must be used. This applies to all aspects of the interface, such as the linkage conventions and the data conventions. For example, array ordering must be consistent with Fortran array ordering techniques. Data and linkage conventions for each language are given in Chapter 4 on page 109.

Software and Hardware Products That Can Be Used with ESSL

This section describes the hardware and software products you can use with ESSL, as well as those products for installing ESSL and displaying the online documentation.

For ESSL—Hardware

ESSL runs on the IBM* RS/6000 processors supported by the AIX operating systems.

64-bit applications require 64-bit hardware.

ESSL—Operating Systems

ESSL is supported in the following operating system environments:

- AIX Version 4.3.3.10 or later modification levels (product number 5765-C34)
ESSL—Software Products

ESSL requires the software products shown in Table 2 for compiling and running.

To assist C and C++ users, an ESSL header file is provided. Use of this file is described in “C Programs” on page 127 and “C++ Programs” on page 143.

<table>
<thead>
<tr>
<th>Table 2. Software Products Required for Use with ESSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>For Compiling</td>
</tr>
<tr>
<td>XL Fortran for AIX, Version 7.1 (program number</td>
</tr>
<tr>
<td>5765-E02) –or–</td>
</tr>
<tr>
<td>IBM Visual Age C++ Professional for AIX Version 5.0.0</td>
</tr>
<tr>
<td>(program number 5765–E26)–or–</td>
</tr>
<tr>
<td>C for AIX, Version 5.0.1 (program number</td>
</tr>
<tr>
<td>5765–E32)–or–</td>
</tr>
<tr>
<td>PL/I Set for AIX, Version 1.1 or later (program number</td>
</tr>
<tr>
<td>5765-549)</td>
</tr>
</tbody>
</table>

1 The AIX Version 4 product includes the C and math libraries in the Application Development Toolkit.

Installation and Customization Products

The ESSL licensed program is distributed on a CD. The ESSL Version 3 Installation Memo provides the detailed information you need to install ESSL.

The ESSL product is packaged according to the AIX guidelines, as described in the IBM AIX Version 4 General Programming Concepts: Writing and Debugging Programs manual. The product can be installed using the smit command, as described in the IBM AIX Version 4 System Management Guide: Operating System and Devices manual.

Software Products for Displaying ESSL Online Information

The ESSL Guide and Reference Version 3 is available in PDF and HTML format on the product media.

To view the online publications shipped on the product media, you need the following:

- Access to a common HTML document browser (such as Netscape Navigator).
- The location of the HTML index file provided with the file sets. Contact your system administrator or installer for this location.

ESSL Internet Resources

This section describes how you can use the ESSL resources available over the Internet.
Obtaining Documentation
The ESSL Version 3 Guide and Reference is available in PDF and HTML format at the IBM RS/6000 Web site at:

http://www.rs6000.ibm.com/resource/aix_resource/sp_books

To view the ESSL PDF publication, you need access to the Adobe Acrobat Reader 3.0.1. The Acrobat Reader is shipped with the AIX Version 4.3 Bonus Pack and is also freely available for downloading from the Adobe web site at:

Accessing ESSL's Product Home Pages
The following home pages contain information on ESSL and Parallel ESSL:

- For ESSL for AIX, use:
 http://www.rs6000.ibm.com/software/Apps/essl.html
- For Parallel ESSL, use:

Getting on the ESSL Mailing List
Late breaking information about ESSL can be obtained by being placed on the ESSL mailing list. In addition, users on the mailing list will receive information about new ESSL function and may receive customer satisfaction surveys and requirements surveys, to provide feedback to ESSL Development on the product and user requirements.

You can be placed on the mailing list by sending a request to either of the following, asking to be placed on the ESSL mailing list:

International Business Machines Corporation
ESSSL Development
Department LQJA / MS P963
2455 South Rd.
Poughkeepsie, N.Y. 12601-5400

e-mail: essl@us.ibm.com

Note: You should send us e-mail if you would like to be withdrawn from the ESSL mailing list.

When requesting to be placed on the mailing list or asking any questions, please provide the following information:

- Your name
- The name of your company
- Your mailing address
- Your Internet address
- Your phone number
List of ESSL Subroutines

This section provides an overview of the subroutines in each of the areas of ESSL.

Appendix A on page APA-1 contains a list of Level 1, 2, and 3 Basic Linear Algebra Subprograms (BLAS) included in ESSL.

Appendix B on page APB-1 contains a list of Linear Algebra Package (LAPACK) subroutines included in ESSL.

Linear Algebra Subprograms

The linear algebra subprograms consist of:

- Vector-scalar linear algebra subprograms (Table 3)
- Sparse vector-scalar linear algebra subprograms (Table 4)
- Matrix-vector linear algebra subprograms (Table 5)
- Sparse matrix-vector linear algebra subprograms (Table 6)

Notes:

1. The term subprograms is used to be consistent with the Basic Linear Algebra Subprograms (BLAS), because many of these subprograms correspond to the BLAS.

2. Some of the linear algebra subprograms were designed in accordance with the Level 1 and Level 2 BLAS de facto standard. If these subprograms do not comply with the standard as approved, IBM will consider updating them to do so. If IBM updates these subprograms, the updates could require modifications of the calling application program.

Vector-Scalar Linear Algebra Subprograms

The vector-scalar linear algebra subprograms include a subset of the standard set of Level 1 BLAS. For details on the BLAS, see reference [79]. The remainder of the vector-scalar linear algebra subprograms are commonly used computations provided for your applications. Both real and complex versions of the subprograms are provided.

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subprogram</th>
<th>Long-Precision Subprogram</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position of the First or Last Occurrence of the Vector Element Having the Largest Magnitude</td>
<td>ISAMAX†</td>
<td>IDAMAX†</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>ICAMAX†</td>
<td>IZAMAX†</td>
<td></td>
</tr>
<tr>
<td>Position of the First or Last Occurrence of the Vector Element Having Minimum Absolute Value</td>
<td>ISAMIN†</td>
<td>IDAMIN†</td>
<td>202</td>
</tr>
<tr>
<td>Position of the First or Last Occurrence of the Vector Element Having Maximum Value</td>
<td>ISMAX†</td>
<td>IDMAX†</td>
<td>205</td>
</tr>
<tr>
<td>Position of the First or Last Occurrence of the Vector Element Having Minimum Value</td>
<td>ISMIN†</td>
<td>IDMIN†</td>
<td>208</td>
</tr>
<tr>
<td>Sum of the Magnitudes of the Elements in a Vector</td>
<td>SASUM†</td>
<td>DASUM†</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>SCASUM†</td>
<td>DZASUM†</td>
<td></td>
</tr>
<tr>
<td>Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in the Vector Y</td>
<td>SAXPY†</td>
<td>DAXPY†</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>CAXPY†</td>
<td>ZAXPY†</td>
<td></td>
</tr>
<tr>
<td>Descriptive Name</td>
<td>Short-Precision Subprogram</td>
<td>Long-Precision Subprogram</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------</td>
<td>----------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Copy a Vector</td>
<td>SCOPY*</td>
<td>DCOPY*</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>CCOPY*</td>
<td>ZCOPY*</td>
<td></td>
</tr>
<tr>
<td>Dot Product of Two Vectors</td>
<td>SDOT†</td>
<td>DDOT†</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>CDOTU†</td>
<td>ZDOTU†</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CDOTC†</td>
<td>ZDOTC†</td>
<td></td>
</tr>
<tr>
<td>Compute SAXPY or DAXPY N Times</td>
<td>SNAXPY</td>
<td>DNAXPY</td>
<td>224</td>
</tr>
<tr>
<td>Compute Special Dot Products N Times</td>
<td>SNDOT</td>
<td>DNDOT</td>
<td>229</td>
</tr>
<tr>
<td>Euclidean Length of a Vector with Scaling of Input to Avoid Destructive Underflow and Overflow</td>
<td>SNRM2†</td>
<td>DNRM2†</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>SCNRM2†</td>
<td>DZNRM2†</td>
<td></td>
</tr>
<tr>
<td>Euclidean Length of a Vector with No Scaling of Input</td>
<td>SNORM2†</td>
<td>DNORM2†</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td>CNORM2†</td>
<td>ZNORM2†</td>
<td></td>
</tr>
<tr>
<td>Construct a Givens Plane Rotation</td>
<td>SROTG*</td>
<td>DROTG*</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>CROTG*</td>
<td>ZROTG*</td>
<td></td>
</tr>
<tr>
<td>Apply a Plane Rotation</td>
<td>SROT†</td>
<td>DROT†</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>CROT†</td>
<td>ZROT†</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSROT†</td>
<td>ZDROT†</td>
<td></td>
</tr>
<tr>
<td>Multiply a Vector X by a Scalar and Store in the Vector X</td>
<td>SSCAL*</td>
<td>DSCAL*</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>CSCAL*</td>
<td>ZSCAL*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSSCAL*</td>
<td>ZDSCAL*</td>
<td></td>
</tr>
<tr>
<td>Interchange the Elements of Two Vectors</td>
<td>SSWAP*</td>
<td>DSWAP*</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>CSWAP*</td>
<td>ZSWAP*</td>
<td></td>
</tr>
<tr>
<td>Add a Vector X to a Vector Y and Store in a Vector Z</td>
<td>SVEA</td>
<td>DVEA</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>CVEA</td>
<td>ZVEA</td>
<td></td>
</tr>
<tr>
<td>Subtract a Vector Y from a Vector X and Store in a Vector Z</td>
<td>SVES</td>
<td>DVES</td>
<td>261</td>
</tr>
<tr>
<td></td>
<td>CVES</td>
<td>ZVES</td>
<td></td>
</tr>
<tr>
<td>Multiply a Vector X by a Vector Y and Store in a Vector Z</td>
<td>SVEM</td>
<td>DVEM</td>
<td>265</td>
</tr>
<tr>
<td></td>
<td>CVEM</td>
<td>ZVEM</td>
<td></td>
</tr>
<tr>
<td>Multiply a Vector X by a Scalar and Store in a Vector Y</td>
<td>SYAX</td>
<td>DYAX</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>CYAX</td>
<td>ZYAX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSYAX</td>
<td>ZDYAX</td>
<td></td>
</tr>
<tr>
<td>Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in a Vector Z</td>
<td>SZAXPY</td>
<td>DZAXPY</td>
<td>272</td>
</tr>
<tr>
<td></td>
<td>CZAXPY</td>
<td>ZZAXPY</td>
<td></td>
</tr>
</tbody>
</table>

† This subprogram is invoked as a function in a Fortran program.

* Level 1 BLAS

Sparse Vector-Scalar Linear Algebra Subprograms

The sparse vector-scalar linear algebra subprograms operate on sparse vectors; that is, only the nonzero elements of the vector are stored. These subprograms provide similar functions to the vector-scalar subprograms. These subprograms represent a subset of the sparse extensions to the Level 1 BLAS described in reference [29]. Both real and complex versions of the subprograms are provided.
Table 4. List of Sparse Vector-Scalar Linear Algebra Subprograms

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subprogram</th>
<th>Long-Precision Subprogram</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scatter the Elements of a Sparse Vector X in Compressed-Vector Storage Mode into Specified Elements of a Sparse Vector Y in Full-Vector Storage Mode</td>
<td>SSCTR CSCTR</td>
<td>DSCTR ZSCTR</td>
<td>277</td>
</tr>
<tr>
<td>Gather Specified Elements of a Sparse Vector Y in Full-Vector Storage Mode into a Sparse Vector X in Compressed-Vector Storage Mode</td>
<td>SGTHR CGTHR</td>
<td>DGTHR ZGTHR</td>
<td>280</td>
</tr>
<tr>
<td>Gather Specified Elements of a Sparse Vector Y in Full-Vector Mode into a Sparse Vector X in Compressed-Vector Mode, and Zero the Same Specified Elements of Y</td>
<td>SGTHRZ CGTHRZ</td>
<td>DGTHRZ ZGTHRZ</td>
<td>283</td>
</tr>
<tr>
<td>Multiply a Sparse Vector X in Compressed-Vector Storage Mode by a Scalar, Add to a Sparse Vector Y in Full-Vector Storage Mode, and Store in the Vector Y</td>
<td>SAXPYI CAXPYI</td>
<td>DAXPYI ZAXPYI</td>
<td>286</td>
</tr>
<tr>
<td>Dot Product of a Sparse Vector X in Compressed-Vector Storage Mode and a Sparse Vector Y in Full-Vector Storage Mode</td>
<td>SDOTI† CDOTCI† CDOTUI†</td>
<td>DDOTI† ZDOTCI† ZDOTUI†</td>
<td>289</td>
</tr>
</tbody>
</table>

† This subprogram is invoked as a function in a Fortran program.

Matrix-Vector Linear Algebra Subprograms
The matrix-vector linear algebra subprograms operate on a higher-level data structure—matrix-vector rather than vector-scalar—using optimized algorithms to improve performance. These subprograms include a subset of the standard set of Level 2 BLAS. For details on the Level 2 BLAS, see [34] and [35]. Both real and complex versions of the subprograms are provided.

Table 5 (Page 1 of 2). List of Matrix-Vector Linear Algebra Subprograms

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subprogram</th>
<th>Long-Precision Subprogram</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix-Vector Product for a General Matrix, Its Transpose, or Its Conjugate Transpose</td>
<td>SGMV* CGMV* SGEMX§ SGEMTX§</td>
<td>DGMV* ZGMV* DGMEMX§ DGMEMTX§</td>
<td>294</td>
</tr>
<tr>
<td>Rank-One Update of a General Matrix</td>
<td>SGER* CGERU* CGERC*</td>
<td>DGER* ZGERU* ZGERC*</td>
<td>305</td>
</tr>
<tr>
<td>Matrix-Vector Product for a Real Symmetric or Complex Hermitian Matrix</td>
<td>SSPMV* CHPMV* SSYMV* CHEMV* SSLMX§</td>
<td>DSPMV* ZHPMV* DSYMV* ZHEMV* DSLMX§</td>
<td>313</td>
</tr>
<tr>
<td>Rank-One Update of a Real Symmetric or Complex Hermitian Matrix</td>
<td>SSRP* CHPR* SSYR* CHER* SSLR1§</td>
<td>DSPR* ZHPR* DSYR* ZHER* DSLR1§</td>
<td>321</td>
</tr>
</tbody>
</table>
Table 5 (Page 2 of 2). List of Matrix-Vector Linear Algebra Subprograms

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subprogram</th>
<th>Long-Precision Subprogram</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank-Two Update of a Real Symmetric or Complex Hermitian Matrix</td>
<td>SSR2*</td>
<td>DSSPR2*</td>
<td>329</td>
</tr>
<tr>
<td></td>
<td>CHPR2*</td>
<td>ZHPRE2*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYR2*</td>
<td>DSYR2*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHER2*</td>
<td>ZHER2*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SSLR2§</td>
<td>DSSLR2§</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DSPR2*</td>
<td>ZDSPR2*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZHPR2*</td>
<td>ZZHPRE2*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DSYR2*</td>
<td>ZDSYR2*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZHER2*</td>
<td>ZZHER2*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DSSLR2§</td>
<td>ZDSSLR2§</td>
<td></td>
</tr>
<tr>
<td>Matrix-Vector Product for a General Band Matrix, Its Transpose, or Its Conjugate Transpose</td>
<td>SGBMV*</td>
<td>DGBMV*</td>
<td>338</td>
</tr>
<tr>
<td></td>
<td>CGBMV*</td>
<td>ZGBMV*</td>
<td></td>
</tr>
<tr>
<td>Matrix-Vector Product for a Real Symmetric or Complex Hermitian Band Matrix</td>
<td>SSBMV*</td>
<td>DSBMV*</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>CHBMV*</td>
<td>ZHBVM*</td>
<td></td>
</tr>
<tr>
<td>Matrix-Vector Product for a Triangular Matrix, Its Transpose, or Its Conjugate Transpose</td>
<td>STRMV*</td>
<td>DTRMV*</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>CTRMV*</td>
<td>ZTRMV*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STPMV*</td>
<td>DTPMV*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTPMV*</td>
<td>ZTPMV*</td>
<td></td>
</tr>
<tr>
<td>Matrix-Vector Product for a Triangular Band Matrix, Its Transpose, or Its Conjugate Transpose</td>
<td>STBMV*</td>
<td>DTBMV*</td>
<td>356</td>
</tr>
<tr>
<td></td>
<td>CTBMV*</td>
<td>ZTBMV*</td>
<td></td>
</tr>
</tbody>
</table>

* Level 2 BLAS

§ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new programs.

Sparse Matrix-Vector Linear Algebra Subprograms

The sparse matrix-vector linear algebra subprograms operate on sparse matrices; that is, only the nonzero elements of the matrix are stored. These subprograms provide similar functions to the matrix-vector subprograms.

Table 6. List of Sparse Matrix-Vector Linear Algebra Subprograms

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Long-Precision Subprogram</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix-Vector Product for a Sparse Matrix in Compressed-Matrix Storage Mode</td>
<td>DSMMX</td>
<td>363</td>
</tr>
<tr>
<td>Transpose a Sparse Matrix in Compressed-Matrix Storage Mode</td>
<td>DSMTM</td>
<td>366</td>
</tr>
<tr>
<td>Matrix-Vector Product for a Sparse Matrix or Its Transpose in Compressed-Diagonal Storage Mode</td>
<td>DSDMX</td>
<td>370</td>
</tr>
</tbody>
</table>

Matrix Operations

Some of the matrix operation subroutines were designed in accordance with the Level 3 BLAS de facto standard. If these subroutines do not comply with the standard as approved, IBM will consider updating them to do so. If IBM updates these subroutines, the updates could require modifications of the calling application program. For details on the Level 3 BLAS, see reference [32]. The matrix operation subroutines also include the commonly used matrix operations: addition, subtraction, multiplication, and transposition.
Table 7. List of Matrix Operation Subroutines

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subroutine</th>
<th>Long-Precision Subroutine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix Addition for General Matrices or Their Transposes</td>
<td>SGEADD</td>
<td>DGEADD</td>
<td>379</td>
</tr>
<tr>
<td></td>
<td>CGEADD</td>
<td>ZGEADD</td>
<td></td>
</tr>
<tr>
<td>Matrix Subtraction for General Matrices or Their Transposes</td>
<td>SGESUB</td>
<td>DGESUB</td>
<td>386</td>
</tr>
<tr>
<td></td>
<td>CGESUB</td>
<td>ZGESUB</td>
<td></td>
</tr>
<tr>
<td>Matrix Multiplication for General Matrices, Their Transposes, or Conjugate Transposes</td>
<td>SGEMUL</td>
<td>DGEMLP§</td>
<td>393</td>
</tr>
<tr>
<td></td>
<td>CGEMUL</td>
<td>ZGEMUL§</td>
<td></td>
</tr>
<tr>
<td>Matrix Multiplication for General Matrices, Their Transposes, or Conjugate Transposes Using Winograd's Variation of Strassen's Algorithm</td>
<td>SGEMMS</td>
<td>DGEMMS§</td>
<td>403</td>
</tr>
<tr>
<td></td>
<td>CGEMMS</td>
<td>ZGEMMS§</td>
<td></td>
</tr>
<tr>
<td>Combined Matrix Multiplication and Addition for General Matrices, Their Transposes, or Conjugate Transposes</td>
<td>SGEMM♦</td>
<td>DGEMM♦</td>
<td>409</td>
</tr>
<tr>
<td></td>
<td>CGEMM♦</td>
<td>ZGEMM♦</td>
<td></td>
</tr>
<tr>
<td>Matrix-Matrix Product Where One Matrix is Real or Complex Symmetric or Complex Hermitian</td>
<td>SSYMM♦</td>
<td>DSYMM♦</td>
<td>418</td>
</tr>
<tr>
<td></td>
<td>CSYMM♦</td>
<td>ZSYMM♦</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEMM♦</td>
<td>ZHEMM♦</td>
<td></td>
</tr>
<tr>
<td>Triangular Matrix-Matrix Product</td>
<td>STRMM♦</td>
<td>DTRMM♦</td>
<td>426</td>
</tr>
<tr>
<td></td>
<td>CTRMM♦</td>
<td>ZTRMM♦</td>
<td></td>
</tr>
<tr>
<td>Rank-K Update of a Real or Complex Symmetric or a Complex Hermitian Matrix</td>
<td>SSYRK♦</td>
<td>DSYRK♦</td>
<td>433</td>
</tr>
<tr>
<td></td>
<td>CSYRK♦</td>
<td>ZSYRK♦</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHERK♦</td>
<td>ZHERK♦</td>
<td></td>
</tr>
<tr>
<td>Rank-2K Update of a Real or Complex Symmetric or a Complex Hermitian Matrix</td>
<td>SSYR2K♦</td>
<td>DSYR2K♦</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>CSYR2K♦</td>
<td>ZSYR2K♦</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHER2K♦</td>
<td>ZHER2K♦</td>
<td></td>
</tr>
<tr>
<td>General Matrix Transpose (In-Place)</td>
<td>SGETMI</td>
<td>DGETMI</td>
<td>448</td>
</tr>
<tr>
<td></td>
<td>CGETMI</td>
<td>ZGETMI</td>
<td></td>
</tr>
<tr>
<td>General Matrix Transpose (Out-of-Place)</td>
<td>SGETMO</td>
<td>DGETMO</td>
<td>451</td>
</tr>
<tr>
<td></td>
<td>CGETMO</td>
<td>ZGETMO</td>
<td></td>
</tr>
</tbody>
</table>

* Level 3 BLAS

§ This subroutine is provided only for migration from earlier release of ESSL and is not intended for use in new programs.

Linear Algebraic Equations

The linear algebraic equations consist of:
- Dense linear algebraic equations (Table 8)
- Banded linear algebraic equations (Table 9)
- Sparse linear algebraic equations (Table 10)
- Linear least squares (Table 11)
Notes:
1. Some of the linear algebraic equations were designed in accordance with the Level 2 BLAS, Level 3 BLAS, and LAPACK de facto standard. If these subprograms do not comply with the standard as approved, IBM will consider updating them to do so. If IBM updates these subprograms, the updates could require modifications of the calling application program. For details on the Level 2 and 3 BLAS, see [32] and [34]. For details on LAPACK, see [8].

Dense Linear Algebraic Equations
The dense linear algebraic equation subroutines provide solutions to linear systems of equations for both real and complex general matrices and their transposes, positive definite real symmetric and complex Hermitian matrices, real symmetric indefinite matrices and triangular matrices. Some of these subroutines correspond to the Level 2 BLAS, Level 3 BLAS, and LAPACK routines described in references [32], 34] and [8].

| Table 8 (Page 1 of 2). List of Dense Linear Algebraic Equation Subroutines |
|-------------------|-------------------|-------------------|---|
| Descriptive Name | Short-Precision Subroutine | Long-Precision Subroutine | Page |
| General Matrix Factorization | SGEF CGEF SGETRF \(^A \) CGETRF \(^A \) | DGEF ZGEF DGGETRF \(^A \) ZGETRF \(^A \) DGEFP\(^\$ \) | 465 478 |
| General Matrix, Its Transpose, or Its Conjugate Transpose Solve | SGES CGES | DGES ZGES | 468 |
| General Matrix, Its Transpose, or Its Conjugate Transpose Multiple Right-Hand Side Solve | SGESM CGESM SGETRS\(^A \) CGETRS\(^A \) | DGESM ZGESM DGGETRS\(^A \) ZGETRS\(^A \) | 472 482 |
| General Matrix Factorization, Condition Number Reciprocal, and Determinant | SGEFCD | DGEFCD | 487 |
| Positive Definite Real Symmetric or Complex Hermitian Matrix Factorization | SPPF SPF SPOF | DPPF DPOF ZPOF DPPFP\(^\$ \) | 491 |
| Positive Definite Real Symmetric Matrix Solve | SPPS | DPPS | 499 |
| Positive Definite Real Symmetric or Complex Hermitian Matrix Multiple Right-Hand Side Solve | SPOSM | DPOSM ZPOSM | 502 |
| Positive Definite Real Symmetric Matrix Factorization, Condition Number Reciprocal, and Determinant | SPPFCD SPOFCD | DPPFCD DPOFCD | 507 |
| Symmetric Indefinite Matrix Factorization and Multiple Right-Hand Side Solve | DBSSV | | 514 |
| Symmetric Indefinite Matrix Factorization | DBSTRF | | 520 |
| Symmetric Indefinite Matrix Multiple Right-Hand Side Solve | DBSTRS | | 525 |
| General Matrix Inverse, Condition Number Reciprocal, and Determinant | SGEICD | DGEICD | 529 |
| Positive Definite Real Symmetric Matrix Inverse, Condition Number Reciprocal, and Determinant | SPPICD SPOICD | DPPICD DPOICD | 534 |
Table 8 (Page 2 of 2). List of Dense Linear Algebraic Equation Subroutines

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subroutine</th>
<th>Long-Precision Subroutine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution of a Triangular System of Equations with a Single Right-Hand Side</td>
<td>STRSV• CTRSV• STPSV• CTPSV•</td>
<td>DTRSV• ZTRSV• DTPSV• ZTPSV•</td>
<td>541</td>
</tr>
<tr>
<td>Solution of Triangular Systems of Equations with Multiple Right-Hand Sides</td>
<td>STRSM• CTRSM•</td>
<td>DTRSM• ZTRSM•</td>
<td>547</td>
</tr>
<tr>
<td>Triangular Matrix Inverse</td>
<td>STRI STPI</td>
<td>DTRI DTPI</td>
<td>555</td>
</tr>
</tbody>
</table>

♦ Level 2 BLAS
♦ Level 3 BLAS
△ LAPACK
§ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new programs. Documentation for this subroutine is no longer provided.

Banded Linear Algebraic Equations
The banded linear algebraic equation subroutines provide solutions to linear systems of equations for real general band matrices, real positive definite symmetric band matrices, real or complex general tridiagonal matrices, real positive definite symmetric tridiagonal matrices, and real or complex triangular band matrices.

Table 9 (Page 1 of 2). List of Banded Linear Algebraic Equation Subroutines

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subroutine</th>
<th>Long-Precision Subroutine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Band Matrix Factorization</td>
<td>SGBF</td>
<td>DGBF</td>
<td>561</td>
</tr>
<tr>
<td>General Band Matrix Solve</td>
<td>SGBS</td>
<td>DGBS</td>
<td>565</td>
</tr>
<tr>
<td>Positive Definite Symmetric Band Matrix Factorization</td>
<td>SPBF SPBCHF</td>
<td>DPBF DPBCHF</td>
<td>568</td>
</tr>
<tr>
<td>Positive Definite Symmetric Band Matrix Solve</td>
<td>SPBS SPBCHS</td>
<td>DPBS DPBCHS</td>
<td>572</td>
</tr>
<tr>
<td>General Tridiagonal Matrix Factorization</td>
<td>SGTF</td>
<td>DGTF</td>
<td>575</td>
</tr>
<tr>
<td>General Tridiagonal Matrix Solve</td>
<td>SGTS</td>
<td>DGTG</td>
<td>578</td>
</tr>
<tr>
<td>General Tridiagonal Matrix Combined Factorization and Solve with No Pivoting</td>
<td>SGTNP CGTNP</td>
<td>DGTNP ZGTNP</td>
<td>580</td>
</tr>
<tr>
<td>General Tridiagonal Matrix Factorization with No Pivoting</td>
<td>SGTNPF CGTNPF</td>
<td>DGTNPF ZGTNPF</td>
<td>583</td>
</tr>
<tr>
<td>General Tridiagonal Matrix Solve with No Pivoting</td>
<td>SGTNPS CGTNPS</td>
<td>DGTNPS ZGTNPS</td>
<td>586</td>
</tr>
<tr>
<td>Positive Definite Symmetric Tridiagonal Matrix Factorization</td>
<td>SPTF</td>
<td>DPTF</td>
<td>589</td>
</tr>
<tr>
<td>Positive Definite Symmetric Tridiagonal Matrix Solve</td>
<td>SPTS</td>
<td>DPTS</td>
<td>591</td>
</tr>
</tbody>
</table>
Sparse Linear Algebraic Equations

The sparse linear algebraic equation subroutines provide direct and iterative solutions to linear systems of equations both for general sparse matrices and their transposes and for sparse symmetric matrices.

Linear Least Squares

The linear least squares subroutines provide least squares solutions to linear systems of equations for real general matrices. Two methods are provided: one that uses the singular value decomposition and another that uses a QR decomposition with column pivoting.
Table 11. List of Linear Least Squares Subroutines

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subroutine</th>
<th>Long-Precision Subroutine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singular Value Decomposition for a General Matrix</td>
<td>SGESVF</td>
<td>DGESVF</td>
<td>690</td>
</tr>
<tr>
<td>Linear Least Squares Solution for a General Matrix Using the Singular Value Decomposition</td>
<td>SGESVS</td>
<td>DGESVS</td>
<td>698</td>
</tr>
<tr>
<td>General Matrix QR Factorization</td>
<td></td>
<td>DGEQRF</td>
<td>703</td>
</tr>
<tr>
<td>Linear Least Squares Solution for a General Matrix Using a QR Decomposition with Column Pivoting</td>
<td>SGELLS</td>
<td>DGELLS</td>
<td>708</td>
</tr>
</tbody>
</table>

Eigensystem Analysis

The eigensystem analysis subroutines provide solutions to the algebraic eigensystem analysis problem $A z = w z$ and the generalized eigensystem analysis problem $A z = w B z$ (Table 12). Many of the eigensystem analysis subroutines use the algorithms presented in *Linear Algebra* by Wilkinson and Reinsch [99] or use adaptations of EISPACK routines, as described in the *EISPACK Guide Lecture Notes in Computer Science* in reference [87] or in the *EISPACK Guide Extension Lecture Notes in Computer Science* in reference [58]. (EISPACK is available from the sources listed in reference [49].)

Table 12. List of Eigensystem Analysis Subroutines

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subroutine</th>
<th>Long-Precision Subroutine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eigenvalues and, Optionally, All or Selected Eigenvectors of a General Matrix</td>
<td>SGEEV</td>
<td>DGEEV</td>
<td>718</td>
</tr>
<tr>
<td></td>
<td>CGEEV</td>
<td>ZGEEV</td>
<td></td>
</tr>
<tr>
<td>Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric Matrix or a Complex Hermitian Matrix</td>
<td>SSPEV</td>
<td>DSPEV</td>
<td>729</td>
</tr>
<tr>
<td></td>
<td>CHPEV</td>
<td>ZHPEV</td>
<td></td>
</tr>
<tr>
<td>Extreme Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric Matrix or a Complex Hermitian Matrix</td>
<td>SSPSV</td>
<td>DSPSV</td>
<td>738</td>
</tr>
<tr>
<td></td>
<td>CHPSV</td>
<td>ZHPSV</td>
<td></td>
</tr>
<tr>
<td>Eigenvalues and, Optionally, the Eigenvectors of a Generalized Real Eigensystem, $A z = w B z$, where A and B Are Real General Matrices</td>
<td>SGEGV</td>
<td>DGEVG</td>
<td>746</td>
</tr>
<tr>
<td>Eigenvalues and, Optionally, the Eigenvectors of a Generalized Real Symmetric Eigensystem, $A z = w B z$, where A Is Real Symmetric and B Is Real Symmetric Positive Definite</td>
<td>SSYGV</td>
<td>DSYGV</td>
<td>752</td>
</tr>
</tbody>
</table>

Fourier Transforms, Convolutions and Correlations, and Related Computations

This signal processing area provides:

- Fourier transform subroutines (Table 13)
- Convolution and correlation subroutines (Table 14)
- Related-computation subroutines (Table 15)
Fourier Transforms
The Fourier transform subroutines perform mixed-radix transforms in one, two, and three dimensions.

Table 13. List of Fourier Transform Subroutines

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subroutine</th>
<th>Long-Precision Subroutine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex Fourier Transform</td>
<td>SCFT</td>
<td>DCFT</td>
<td>769</td>
</tr>
<tr>
<td>Real-to-Complex Fourier Transform</td>
<td>SRCFT</td>
<td>DRCFT</td>
<td>777</td>
</tr>
<tr>
<td>Complex-to-Real Fourier Transform</td>
<td>SCRFT</td>
<td>DCRFT</td>
<td>785</td>
</tr>
<tr>
<td>Cosine Transform</td>
<td>SCOSF</td>
<td>DCOSF</td>
<td>793</td>
</tr>
<tr>
<td>Sine Transform</td>
<td>SSINF</td>
<td>DSINF</td>
<td>800</td>
</tr>
<tr>
<td>Complex Fourier Transform in Two Dimensions</td>
<td>SCFT2</td>
<td>DCFT2</td>
<td>807</td>
</tr>
<tr>
<td>Real-to-Complex Fourier Transform in Two Dimensions</td>
<td>SRCFT2</td>
<td>DRCFT2</td>
<td>814</td>
</tr>
<tr>
<td>Complex-to-Real Fourier Transform in Two Dimensions</td>
<td>SCRFT2</td>
<td>DCRFT2</td>
<td>821</td>
</tr>
<tr>
<td>Complex Fourier Transform in Three Dimensions</td>
<td>SCFT3</td>
<td>DCFT3</td>
<td>829</td>
</tr>
<tr>
<td>Real-to-Complex Fourier Transform in Three Dimensions</td>
<td>SRCFT3</td>
<td>DRCFT3</td>
<td>835</td>
</tr>
<tr>
<td>Complex-to-Real Fourier Transform in Three Dimensions</td>
<td>SCRFT3</td>
<td>DCRFT3</td>
<td>841</td>
</tr>
</tbody>
</table>

§ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new programs. Documentation for this subroutine is no longer provided.

Convolutions and Correlations
The convolution and correlation subroutines provide the choice of using Fourier methods or direct methods. The Fourier-method subroutines contain a high-performance mixed-radix capability. There are also several direct-method subroutines that provide decimated output.

Table 14 (Page 1 of 2). List of Convolution and Correlation Subroutines

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subroutine</th>
<th>Long-Precision Subroutine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convolution or Correlation of One Sequence with One or More Sequences</td>
<td>SCON§</td>
<td>DCON§</td>
<td>848</td>
</tr>
<tr>
<td>Convolution or Correlation of One Sequence with Another Sequence Using a Direct Method</td>
<td>SCOND</td>
<td>DCOND</td>
<td>854</td>
</tr>
<tr>
<td>Convolution or Correlation of One Sequence with One or More Sequences Using the Mixed-Radix Fourier Method</td>
<td>SCONF</td>
<td>DCONF</td>
<td>860</td>
</tr>
<tr>
<td>Convolution or Correlation with Decimated Output Using a Direct Method</td>
<td>SDCON</td>
<td>DDCON</td>
<td>869</td>
</tr>
<tr>
<td>Autocorrelation of One or More Sequences</td>
<td>SACOR§</td>
<td>DDCOR§</td>
<td>873</td>
</tr>
</tbody>
</table>
Table 14 (Page 2 of 2). List of Convolution and Correlation Subroutines

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subroutine</th>
<th>Long-Precision Subroutine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autocorrelation of One or More Sequences Using the Mixed-Radix Fourier Method</td>
<td>SACORF</td>
<td></td>
<td>877</td>
</tr>
</tbody>
</table>

§ These subroutines are provided only for migration from earlier releases of ESSL and are not intended for use in new programs.

Related Computations

The related-computation subroutines consist of a group of computations that can be used in general signal processing applications. They are similar to those provided on the IBM 3838 Array Processor; however, the ESSL subroutines generally solve a wider range of problems.

Table 15. List of Related-Computation Subroutines

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subroutine</th>
<th>Long-Precision Subroutine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polynomial Evaluation</td>
<td>SPOLY</td>
<td>DPOLY</td>
<td>883</td>
</tr>
<tr>
<td>I-th Zero Crossing</td>
<td>SIZC</td>
<td>DIZC</td>
<td>886</td>
</tr>
<tr>
<td>Time-Varying Recursive Filter</td>
<td>STREC</td>
<td>DTREC</td>
<td>889</td>
</tr>
<tr>
<td>Quadratic Interpolation</td>
<td>SQINT</td>
<td>DQINT</td>
<td>892</td>
</tr>
<tr>
<td>Wiener-Levinson Filter Coefficients</td>
<td>SWLEV</td>
<td>DWLEV</td>
<td>896</td>
</tr>
</tbody>
</table>

Sorting and Searching

The sorting and searching subroutines operate on three types of data: integer, short-precision real, and long-precision real (Table 16). The sorting subroutines perform sorts with or without index designations. The searching subroutines perform either a binary or sequential search.

Table 16. List of Sorting and Searching Subroutines

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Integer Subroutine</th>
<th>Short-Precision Subroutine</th>
<th>Long-Precision Subroutine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sort the Elements of a Sequence</td>
<td>ISORT</td>
<td>SSORT</td>
<td>DSORT</td>
<td>904</td>
</tr>
<tr>
<td>Sort the Elements of a Sequence and Note the Original Element Positions</td>
<td>ISORTX</td>
<td>SSORTX</td>
<td>DSORTX</td>
<td>906</td>
</tr>
<tr>
<td>Sort the Elements of a Sequence Using a Stable Sort and Note the Original Element Positions</td>
<td>ISORTS</td>
<td>SSORTS</td>
<td>DSORTS</td>
<td>909</td>
</tr>
<tr>
<td>Binary Search for Elements of a Sequence X in a Sorted Sequence Y</td>
<td>IBSRCH</td>
<td>SBSRCH</td>
<td>DBSRCH</td>
<td>912</td>
</tr>
<tr>
<td>Sequential Search for Elements of a Sequence X in the Sequence Y</td>
<td>ISSRCH</td>
<td>SSSRCH</td>
<td>DSSRCH</td>
<td>916</td>
</tr>
</tbody>
</table>
Interpolation

The interpolation subroutines provide the capabilities of doing polynomial interpolation, local polynomial interpolation, and both one- and two-dimensional cubic spline interpolation (Table 17).

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subroutine</th>
<th>Long-Precision Subroutine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polynomial Interpolation</td>
<td>SPINT</td>
<td>DPINT</td>
<td>923</td>
</tr>
<tr>
<td>Local Polynomial Interpolation</td>
<td>STPINT</td>
<td>DTPINT</td>
<td>928</td>
</tr>
<tr>
<td>Cubic Spline Interpolation</td>
<td>SCSINT</td>
<td>DCSINT</td>
<td>931</td>
</tr>
<tr>
<td>Two-Dimensional Cubic Spline Interpolation</td>
<td>SCSIN2</td>
<td>DCSIN2</td>
<td>937</td>
</tr>
</tbody>
</table>

Numerical Quadrature

The numerical quadrature subroutines provide Gaussian quadrature methods for integrating a tabulated function and a user-supplied function over a finite, semi-infinite, or infinite region of integration (Table 18).

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subroutine</th>
<th>Long-Precision Subroutine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical Quadrature Performed on a Set of Points</td>
<td>SPTNQ</td>
<td>DPTNQ</td>
<td>945</td>
</tr>
<tr>
<td>Numerical Quadrature Performed on a Function Using Gauss-Legendre Quadrature</td>
<td>SGLNQ†</td>
<td>DGLNQ†</td>
<td>948</td>
</tr>
<tr>
<td>Numerical Quadrature Performed on a Function Over a Rectangle Using Two-Dimensional Gauss-Legendre Quadrature</td>
<td>SGLNQ2†</td>
<td>DGLNQ2†</td>
<td>951</td>
</tr>
<tr>
<td>Numerical Quadrature Performed on a Function Using Gauss-Laguerre Quadrature</td>
<td>SGLGQ†</td>
<td>DGLGQ†</td>
<td>957</td>
</tr>
<tr>
<td>Numerical Quadrature Performed on a Function Using Gauss-Rational Quadrature</td>
<td>SGRAQ†</td>
<td>DGRAQ†</td>
<td>960</td>
</tr>
<tr>
<td>Numerical Quadrature Performed on a Function Using Gauss-Hermite Quadrature</td>
<td>SGHMQ†</td>
<td>DGHMQ†</td>
<td>964</td>
</tr>
</tbody>
</table>

† This subprogram is invoked as a function in a Fortran program.

Random Number Generation

Random number generation subroutines generate uniformly distributed random numbers or normally distributed random numbers (Table 19).
Table 19. List of Random Number Generation Subroutines

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subroutine</th>
<th>Long-Precision Subroutine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generate a Vector of Uniformly Distributed Random Numbers</td>
<td>SURAND</td>
<td>DURAND</td>
<td>968</td>
</tr>
<tr>
<td>Generate a Vector of Normally Distributed Random Numbers</td>
<td>SNRAND</td>
<td>DNRAND</td>
<td>971</td>
</tr>
<tr>
<td>Generate a Vector of Long Period Uniformly Distributed Random Numbers</td>
<td>SURXOR</td>
<td>DURXOR</td>
<td>975</td>
</tr>
</tbody>
</table>

Utilities

The utility subroutines perform general service functions that support ESSL, rather than mathematical computations (Table 20).

Table 20. List of Utility Subroutines

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Subroutine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESSL Error Information-Handler Subroutine</td>
<td>EINFO</td>
<td>982</td>
</tr>
<tr>
<td>ESSL ERRSAV Subroutine for ESSL</td>
<td>ERRSAV</td>
<td>985</td>
</tr>
<tr>
<td>ESSL ERRSET Subroutine for ESSL</td>
<td>ERRSET</td>
<td>986</td>
</tr>
<tr>
<td>ESSL ERRSTR Subroutine for ESSL</td>
<td>ERRSTR</td>
<td>988</td>
</tr>
<tr>
<td>Set the Vector Section Size (VSS) for the ESSL/370 Scalar Library</td>
<td>IVSSET§</td>
<td></td>
</tr>
<tr>
<td>Set the Extended Vector Operations Indicator for the ESSL/370 Scalar Library</td>
<td>IEVOPS§</td>
<td></td>
</tr>
<tr>
<td>Determine the Level of ESSL Installed</td>
<td>IESSSL</td>
<td>989</td>
</tr>
<tr>
<td>Determine the Stride Value for Optimal Performance in Specified Fourier Transform Subroutines</td>
<td>STRIDE</td>
<td>991</td>
</tr>
<tr>
<td>Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode</td>
<td>DSRSM</td>
<td>1001</td>
</tr>
<tr>
<td>For a General Sparse Matrix, Convert Between Diagonal-Out and Profile-In Skyline Storage Mode</td>
<td>DGKTRN</td>
<td>1005</td>
</tr>
<tr>
<td>For a Symmetric Sparse Matrix, Convert Between Diagonal-Out and Profile-In Skyline Storage Mode</td>
<td>DSKTRN</td>
<td>1011</td>
</tr>
</tbody>
</table>

§ This subroutine is provided for migration from earlier releases of ESSL and is not intended for use in new programs. Documentation for this subroutine is no longer provided.
Chapter 2. Planning Your Program

This chapter provides information about ESSL that you need when planning your program. Its purpose is to help you in performing the following tasks:

- Selecting an ESSL subroutine
- Avoiding Conflicts with Internal ESSL Routine Names That are Exported
- Setting up your data
- Setting up your ESSL calling sequences
- Using auxiliary storage in ESSL
- Providing a correct transform length to ESSL
- Getting the best accuracy
- Getting the best performance
- Dealing with errors when using ESSL

If you are using ESSL with PL/I Set for AIX, Version 1, see the PL/I publications for details on calling subroutines and functions.

Selecting an ESSL Subroutine

Your choice of which ESSL subroutine to use is based mainly on the functional needs of your program. However, you have a choice of several variations of many of the subroutines. In addition, there are instances where certain subroutines cannot be used. This section describes these variations and limitations. See the answers to each question below that applies to you.

Which ESSL Library Do You Want to Use?

ESSL provides two run-time libraries:

- The **ESSL SMP Library** provides thread-safe versions of the ESSL subroutines for use on the RS/6000 SMP processors. In addition, a subset of these subroutines are also multithreaded versions; that is, they support the shared memory parallel processing programming model. For a list of the multithreaded subroutines in the ESSL SMP Library, see Table 21 on page 24.

- The **ESSL Serial Library** provides thread-safe versions of the ESSL subroutines for use on all RS/6000 processors. You may choose to use this library if you decide to develop your own multithreaded programs that call the thread-safe ESSL subroutines.

The number of threads you choose to use depends on the problem size, the specific subroutine being called, and the number of physical processors you are running on. To achieve optimal performance, experimentation is necessary; however, picking the number of threads equal to the number of online processors generally provides good performance in most cases. In a few cases, performance may increase if you choose the number of threads to be less than the number of online processors. For more information about thread concepts, see *IBM AIX Version 4 General Programming Concepts: Writing and Debugging Programs*.

The **ESSL SERIAL Library** and the **ESSL SMP Library** support both 32-bit environment and 64-bit environment applications. For details see Chapter 4 on page 109 and Chapter 5 on page 161.
Table 21 (Page 1 of 2). Multithreaded ESSL SMP Subroutines

<table>
<thead>
<tr>
<th>Subroutine Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector-Scalar Linear Algebra Subprograms:</td>
</tr>
<tr>
<td>SASUM, DASUM, SCASUM, DZASUM</td>
</tr>
<tr>
<td>SAXPY, DAXPY, CAXPY, ZAXPY</td>
</tr>
<tr>
<td>SCOPY, DCOPY, CCOPY, ZCOPY</td>
</tr>
<tr>
<td>SDOT, DDOT, CDOTU, ZDOTU, CDOTC, ZDOTC</td>
</tr>
<tr>
<td>SNDOT, DNDOT</td>
</tr>
<tr>
<td>SNORM2, DNORM2, CNORM2, ZNORM2</td>
</tr>
<tr>
<td>SROT, DROT, CROT, ZROT, CSROT, ZDROT</td>
</tr>
<tr>
<td>SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, ZDSCAL</td>
</tr>
<tr>
<td>SSWAP, DSWAP, CSWAP, ZSWAP</td>
</tr>
<tr>
<td>SVEA, DVEA, CVEA, ZVEA</td>
</tr>
<tr>
<td>SVES, DVES, CVES, ZVES</td>
</tr>
<tr>
<td>SVEM, DVEM, CVEM, ZVEM</td>
</tr>
<tr>
<td>SYAX, DYAX, CYAX, ZYAX, CSYAX, ZDYAX</td>
</tr>
<tr>
<td>SZAXPY, DZAXPY, CZAXPY, ZZAXPY</td>
</tr>
</tbody>
</table>

| Matrix-Vector Linear Algebra Subprograms: |
| SGBMV*, DGBMV*, CGBMV*, ZGBMV* |
| SSBMV*, DSBMV*, CHBMV*, ZHBVM* |
| STRMV, DTRMV, CTRMV, ZTRMV |
| STPMV, DTPMV, CTPMV, ZTPMV |
| STBMV*, DTBMV* |
| CTBMV*, ZTBVM* |

| Matrix Operations: |
| SGEADD, DGEADD, CGEADD, ZGEADD |
| SGESUB, DGESUB, CGESUB, ZGESUB |
| SGEMUL, DGMUL, CGMUL, ZGMUL |
| SGEMM, DGMEM, CGMEM, ZGEMM |
| SSYM, DSYM, CSYM, ZSYM, CHEM, ZHEM |
| STRM, DTRM, CTRM, ZTRM |
| STPM, DTPM, CTPM, ZTPM |
| STBM, DTBM, CTBM, ZTBM |
| SGETMI, DGETMI, CGETMI, ZGETMI |
| SGETMO, DGETMO, CGETMO, ZGETMO |

| Dense Linear Algebraic Equations: |
| SGEF, DGGEF, CGE, ZGGEF |
| SGETRF, DGETRF, CGETRF, ZGETRF |
| SPPF, DPPF, DPOF |
| SPPFCD*, DPPFCD*, DPOFCD* |
| SPPICD*, DPPICD*, DPOICD* |
| STRSV, DTRSV, CTRSV, ZTRSV |
| STPSV, DTPSV, CTPSV, ZTPSV |
| STRSM, DTRSM, CTRSM, ZTRSM |
| STRI, DTRI |
Table 21 (Page 2 of 2). Multithreaded ESSL SMP Subroutines

<table>
<thead>
<tr>
<th>Subroutine Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sparse Linear Algebraic Equations:</td>
</tr>
<tr>
<td>DSRIS†</td>
</tr>
<tr>
<td>Linear Least Squares:</td>
</tr>
<tr>
<td>DGEQRF</td>
</tr>
<tr>
<td>Fourier Transforms:</td>
</tr>
<tr>
<td>SCFT, DCFT</td>
</tr>
<tr>
<td>SRCFT, DRCFT</td>
</tr>
<tr>
<td>SCRFT, DCRFT</td>
</tr>
<tr>
<td>SCFT2, DCFT2</td>
</tr>
<tr>
<td>SRCFT2, DRCFT2</td>
</tr>
<tr>
<td>SCRFT2, DCRFT2</td>
</tr>
<tr>
<td>SCFT3, DCFT3</td>
</tr>
<tr>
<td>SRCFT3, DRCFT3</td>
</tr>
<tr>
<td>DCRFT3, DCRFT3</td>
</tr>
</tbody>
</table>

Convolution and Correlation:
SCOND, SCORD
SDCON, SDCOR, DDCON, DDCOR

Many of the dense linear algebraic equations and eigensystem analysis subroutines make one or more calls to the multithreaded versions of the matrix-vector linear algebra and matrix operation subroutines shown in this table. SCOSF, DCOSF, SSINF, and DSINF make one or more calls to the multithreaded versions of the Fourier Transform subroutines shown in this table. These subroutines benefit from the increased performance of the multithreaded versions of the ESSL SMP subroutines.

Your performance may be improved by setting the Environment variables:

```bash
export MALLOCMULTIHEAP=true
export XLSMPOPTS="spins=0;yields=0".
```

For additional information, see the AIX Performance Monitoring and Tuning Guide, SC23-2365 and the XLF Manuals.

† DSRIS only uses multiple threads when IPARM(4) = 1 or 2.
♦ The Level 2 Banded BLAS use multiple threads only when the bandwidth is sufficiently large.
* Multiple threads are used for the factor or inverse computation.

What Type of Data Are You Processing in Your Program?

The version of the ESSL subroutine you select should agree with the data you are using. ESSL provides a short- and long-precision version of most of its subroutines processing short- and long-precision data, respectively. In a few cases, it also provides an integer version processing integer data or returning just integer data. The subroutine names are distinguished by a one- or two-letter prefix based on the following letters:

- S for short-precision real
- D for long-precision real
- C for short-precision complex
- Z for long-precision complex
- I for integer
The precision of your data affects the accuracy of your results. This is discussed in “Getting the Best Accuracy” on page 42. For a description of these data types, see “How Do You Set Up Your Scalar Data?” on page 26.

How Is Your Data Structured? And What Storage Technique Are You Using?

Some subroutines process specific data structures, such as sparse vectors and matrices or dense and banded matrices. In addition, these data structures can be stored using various storage techniques. You should select the proper subroutine on the basis of the type of data structure you have and the storage technique you want to use. If possible, you should use a storage technique that conserves storage and potentially improves performance. For more about storage techniques, see “Setting Up Your Data.”

What about Performance and Accuracy?

ESSL provides variations among some of its subroutines. You should consider performance and accuracy when deciding which subroutine is the best to use. Study the “Function” section in each subroutine description. It helps you understand exactly what each subroutine does, and helps you determine which subroutine is best for you. For example, some subroutines perform multiple computations of a certain type. This might give you better performance than a subroutine that does each computation individually. In other cases, one subroutine may do scaling while another does not. If scaling is not necessary for your data, you get better performance by using the subroutine without scaling.

Avoiding Conflicts with Internal ESSL Routine Names That are Exported

Do not use names for your own subroutines, functions, and global variables that are the same as the ESSL exported names. All internal ESSL routine names that are exported begin with the ESV prefix, so you should avoid using this prefix for your own names.

Setting Up Your Data

This section explains how to set up your scalar and array data and points you to where you can find more detail.

How Do You Set Up Your Scalar Data?

A scalar item is a single item of data, whether it is a constant, a variable, or an element of an array. ESSL assumes that your scalar data conforms to the appropriate standards, as described below. The scalar data types and how you should code them for each programming language are listed under “Coding Your Scalar Data” in each language section in Chapter 4 on page 109.
Internal Representation
Scalar data passed to ESSL from all types of programs, including Fortran, C, and C++, should conform to the ANSI/IEEE 32-bit and 64-bit binary floating-point format, as described in the ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985.

How Do You Set Up Your Arrays?
An array represents an area of storage in your program, containing data stored in a series of locations. An array has a single name. It is made up of one or more pieces of scalar data, all the same type. These are the elements of the array. It can be passed to the ESSL subroutine as input, returned to your program as output, or used for both input and output, in which case the original contents are overwritten.

Arrays can contain conceptual (mathematical) data structures, such as vectors, matrices, or sequences. There are many different types of data structures. Each type of data structure requires a unique arrangement of data in an array and does not necessarily have to include all the elements of the array. In addition, the elements of these data structures are not always contiguous in storage within an array. Stride and leading dimension arguments passed to ESSL subroutines define the separations in array storage for the elements of the vector, matrix, and sequence. All these aspects of data structures are described in Chapter 3 on page 53. You must first understand array storage techniques to fully understand the concepts of data structures, stride, and leading dimension, especially if you are using them in unconventional ways.

ESSL subroutines assume that all arrays passed to them are stored using the Fortran array storage techniques (in column-major order), and they process your data accordingly. For details, see “Setting Up Arrays in Fortran” on page 110. On the other hand, C, C++, and PL/I programs store arrays in row-major order. For details on what you can do, see:

- For C, see page “Setting Up Arrays in C” on page 131.
- For C++, see page “Setting Up Arrays in C++” on page 147.
- For PL/I, see the PL/I publications.

How Should Your Array Data Be Aligned?
All arrays, regardless of the type of data, should be aligned on a doubleword boundary to ensure optimal performance; however, when running on a POWER2 processor, it is best to align your long-precision arrays on a quadword boundary. For information on how your programming language aligns data, see your programming language manuals.

What Storage Mode Should You Use for Your Data?
The amount of storage used by arrays and the storage arrangement of data in the arrays can affect overall program performance. As a result, ESSL provides subroutines that operate on different types of data structures, stored using various storage modes. You should choose a storage mode that conserves storage and potentially improves performance. For definitions of the various data structures and their corresponding storage modes, see Chapter 3 on page 53. You can also find special storage considerations, where applicable, in the “Notes” section of each subroutine description.
How Do You Convert from One Storage Mode to Another?
This section describes how you can convert from one storage mode to another.

Conversion Subroutines
ESSL provides several subroutines that help you convert from one storage mode to another:

- DSRSM is used to migrate your existing program from sparse matrices stored by rows to sparse matrices stored in compressed-matrix storage mode. This converts the matrices into a storage format that is compatible with the input requirements for some ESSL sparse matrix subroutines, such as DSMMX.

- DGKTRN and DSKTRN are used to convert your sparse matrix from one skyline storage mode to another, if necessary, before calling the subroutines DGKFS/DGKFSP or DSKFS/DSKFSP, respectively.

Sample Programs
In addition, sample programs are provided with many of the storage mode descriptions in Chapter 3 on page 53. You can use these sample programs to convert your data to the desired storage mode by adapting them to your application program.

Setting Up Your ESSL Calling Sequences
This section gives the general rules for setting up the ESSL calling sequences. The information given here applies to all types of programs, running in all environments. For a description and examples of how to code the ESSL calling sequences in your particular programming language, see the following sections:

- “Fortran Programs” on page 109
- “C Programs” on page 127
- “C++ Programs” on page 143

For details on the conventions used in this book to describe the calling sequence syntax, see “How to Interpret the Subroutine Descriptions” on page xxviii. It describes how required and optional arguments are indicated in the calling sequence and the naming conventions used for different data types.

What Is an Input-Output Argument?
Some arguments are used for both input and output. The contents of the input argument are overlaid with the output value(s) on return to your program. Be careful that you save any data you need to preserve before calling the ESSL subroutine.

What Are the General Rules to Follow when Specifying Data for the Arguments?
You should follow the syntax rules given for each argument in “On Entry” in the subroutine description. Input-argument error messages may be issued, and your program may terminate when you make an error specifying the input arguments. For example:

- Data passed to ESSL must be of the correct type: integer, character, real, complex, short-precision, or long-precision. There is no conversion of data.
Assuming you are using the ESSL header file with your C and C++ programs, you first need to define the following:

- Complex and logical data in C programs, using the guidelines given on page 130.
- Short-precision complex and logical data in C++ programs, using the guidelines given on page 146.

• Character values must be one of the specified values. For example, it may have to be ‘N’, ‘T’, or ‘C’.
• Numeric values must fall within the correct range for that argument. For example, a numeric value may need to be greater than or equal to 0, or it may have to be a nonzero value.
• Arrays must be defined correctly; that is, they must have the correct dimensions, or the dimensions must fall within the correct range. For example, input and output matrices may need to be conformable, or the number of rows in the matrix must be less than or equal to the leading dimension specified. (ESSL assumes all arrays are stored in column-major order.)

What Happens When a Value of 0 Is Specified for N?

For most ESSL subroutines, if you specify 0 for the number of elements to be processed in a vector or the order of a matrix (usually argument \(n \)), no computation is performed. After checking for input-argument errors, the subroutine returns immediately and no result is returned. In the other subroutines, an error message may be issued.

How Do You Specify the Beginning of the Data Structure in the ESSL Calling Sequence?

When you specify a vector, matrix, or sequence in your calling sequence, **it does not necessarily have to start at the beginning of the array.** It can begin at any point in the array. For example, if you want vector \(x \) to start at element 3 in array \(A \), which is declared \(A(1:12) \), specify \(A(3) \) in your calling sequence for argument \(x \), such as in the following SASUM calling sequence in your Fortran program:

\[
\begin{align*}
N & \quad X & \quad \text{INCX} \\
& \mid & \mid \\
X &= \text{SASUM}(4, A(3), 2)
\end{align*}
\]

Also, for example, if you want matrix \(A \) to start at the second row and third column of array \(A \), which is declared \(A(0:10,2:8) \), specify \(A(1,4) \) in your calling sequence for argument \(a \), such as in the following SGEADD calling sequence in your Fortran program:

\[
\begin{align*}
A & \quad \text{LDA} & \quad \text{TRANSA} & \quad B & \quad \text{LDB} & \quad \text{TRANSB} & \quad C & \quad \text{LDC} & \quad M & \quad N \\
\mid & \mid \\
\text{CALL} & \quad \text{SGEADD}(A(1,4), 11, 'N', B, 4, 'N', C, 4, 4, 3)
\end{align*}
\]

For more examples of specifying vectors and matrices, see Chapter 3 on page 53.
Using Auxiliary Storage in ESSL

For the ESSL subroutines listed in Table 22, you need to provide extra working storage to perform the computation. This section describes the use of dynamic allocation for providing auxiliary storage in ESSL and how to calculate the amount of auxiliary storage you need by use of formulas or error-handling capabilities provided in ESSL, if dynamic allocation is not an option.

Auxiliary storage, or working storage, is supplied through one or more arguments, such as aux, in the calling sequence for the ESSL subroutine. **If the working storage does not need to persist after the subroutine call, it is suggested you use dynamic allocation.** For example, in the Fourier Transforms subroutines, you may allocate aux2 dynamically, but not aux1. See the subroutine descriptions in Part 2 of this book for details and variations.

| Table 22: ESSL Subroutines Requiring Auxiliary Working Storage |
| Subroutine Names |
| Linear Algebra Subprograms: |
| DSMTM |
| Matrix Operations: |
| _GEMMS |
| Dense Linear Algebraic Equations: |
| _GEFCD _PPFCD _GEICD _PPICD _POFCD |
| _POICD DGEFP ∆ DPPFP ∆ |
| Sparse Linear Algebraic Equations: |
| DGSF DGSS DGKFS DGKFSP ∆ DSKFS DSKFSP ∆ |
| DSRIS DSMCG DSDCG DSMGCG DSDGCG |
| Linear Least Squares: |
| _GESVF _GELLS DGEQRF |
| Eigensystem Analysis: |
| _GEEV _SPEV _HPEV _SPSV _HPSV |
| _GEGV _SYGV |
| Fourier Transforms: |
| _CFT _RCFT _CRFT _COSF _SINF |
| SCOSFT ∆ _CFT2 _RCFT2 _CRFT2 _CFT3 |
| _RCFT3 _CRFT3 SCFTP ∆ SCFT2P ∆ SCFT3P ∆ |
| Convolutions and Correlations: |
| SCONF SCORF SACORF |
| Related Computations: |
| _WLEV |
| Interpolation: |
| _TPINT _CSIN2 |
| Random Number Generation: |
| _NRAND |
| Utilities: |
| DGKTRN DSKTRN |

^ Documentation for this subroutine is no longer provided. The aux and naux arguments for the subroutine are specified the same as for the corresponding serial ESSL subroutine.
Dynamic Allocation of Auxiliary Storage

Dynamic allocation for the auxiliary storage is performed when error 2015 is unrecoverable and \(naux=0 \). For details on which \(aux \) arguments allow dynamic allocation, see the subroutine descriptions in Part 2 of this book.

Setting Up Auxiliary Storage When Dynamic Allocation Is Not Used

You set up the storage area in your program and pass it to ESSL through arguments, specifying the size of the \(aux \) work area in the \(naux \) argument.

Who Do You Want to Calculate the Size? You or ESSL?

You have a choice of two methods for determining how much auxiliary storage you should specify:

- Use the formulas provided in the subroutine description to derive sufficient values for your current and future needs. Use them if ease of migration to future machines and future releases of ESSL is your primary concern. For details, see “How Do You Calculate the Size Using the Formulas?”

- Use the ESSL error-handling facilities to return to you a minimum value for the particular processor you are currently running on. (Values vary by platform.) Use this approach if conserving storage is your primary concern. For details, see “How Do You Get ESSL to Calculate the Size Using ESSL Error Handling?” on page 32.

How Do You Calculate the Size Using the Formulas?

The formulas provided for calculating \(naux \) indicate a sufficient amount of auxiliary storage required, which, in most cases, is larger than the minimum amount, returned by ESSL error handling. There are two types of formulas:

- Simple formulas
 These are given in the \(naux \) argument syntax descriptions. In general, these formulas result in the minimum required value, but, in a few cases, they provide overestimates.

- Processor-independent formulas
 These are given in separate sections in the subroutine description. In general, these provide overestimates.

Both types of formulas provide values that are sufficient for all processors. As a result, you can migrate to any other processor and to future releases of ESSL without being concerned about having to increase the amount of storage for \(aux \). You do, of course, need to weigh your storage requirements against the convenience of using this larger value.

To calculate the amount of storage using the formulas, you must substitute values for specific variables, such as \(n \), \(m \), \(n1 \), or \(n2 \). These variables are arguments specified in the ESSL calling sequence or derived from the arguments in the calling sequence.
How Do You Get ESSL to Calculate the Size Using ESSL Error Handling?

This section describes how you can get ESSL to calculate auxiliary storage.

Here Are the Two Ways You Can Do It

Ask yourself which of the following ways you prefer to obtain the information from ESSL:

- **By leaving error 2015 unrecoverable**, you can obtain the minimum required value of `naux` from the input-argument error message, but your program terminates.

- **By making error 2015 recoverable**, you can obtain the minimum required value of `naux` from the input-argument error message and have the updated `naux` argument returned to your program.

For both techniques, the amount returned by the ESSL error-handling facility is the minimum amount of auxiliary storage required to run your program successfully on the particular processor you are currently running on. The ESSL error-handling capability usually returns a smaller value than you derive by using the formulas listed for the subroutine. This is because the formulas provide a good estimate, but ESSL can calculate exactly what is needed on the basis of your data.

The values returned by ESSL error handling may not apply to future processors. You should not use them if you plan to run your program on a future processor. You should use them only if you are concerned with minimizing the amount of auxiliary storage used by your program.

The First Way

In this case, you obtain the minimum required value of `naux` from the error message, but your program terminates. The following description assumes that dynamic allocation is not selected as an option.

Leave error 2015 as unrecoverable, without calls to EINFO and ERRSET. Run your program with the `naux` values smaller than required by the subroutine for the particular processor you are running on. As a general guideline, specify values smaller than those listed in the formulas. However, if a lower limit is specified in the syntax (only for several `naux1` arguments in the Fourier transform, convolution, and correlation subroutines), you should not go below that limit. The ESSL error monitor returns the necessary sizes of the `aux` storage areas in the input-argument error message. This does, however, terminate your program when the error is encountered. (If you accidentally specify a sufficient amount of storage for the ESSL subroutine to perform the computation, error handling does not issue an error message and processing continues normally.) Figure 1 on page 33 illustrates what happens when error 2015 is unrecoverable.
The Second Way

In this case, you obtain the minimum required value of `naux` from the error message and from the updated `naux` argument returned to your program.

Use EINFO and ERRSET with an ESSL error exit routine, ENOTRM, to make error 2015 recoverable. This allows you to dynamically determine in your program the minimum sizes required for the auxiliary working storage areas, specified in the `naux` arguments. Run your program with the `naux` values smaller than required by the subroutine for the particular processor you are running on. As a general guideline, specify values smaller than those listed in the formulas. However, if a lower limit is specified in the syntax (only for several `naux1` arguments in the
Fourier transform, convolution, and correlation subroutines), you should not go below that limit. The ESSL error monitor returns the necessary sizes of the aux storage areas in the input-argument error message and a return code is passed back to your program, indicating that updated values are also returned in the naux arguments. You can then react to these updated values during run time in your program. ESSL does not perform any computation when this error occurs. For details on how to do this, see Chapter 4 on page 109. (If you accidentally specify a sufficient amount of storage for the ESSL subroutine to perform the computation, error handling does not issue an error message and processing continues normally.) Figure 2 illustrates what happens when error 2015 is recoverable.

* This check applies only to several NAUX1 arguments in the Fourier transform, convolution, and correlation subroutines.

Figure 2. How to Obtain an NAUX Value from an Error Message and in Your Program
Here Is an Example of What Happens When You Use These Two Techniques

The following example illustrates all the actions taken by the ESSL error-handling facility for each possible value of a recoverable input argument, \(naux \). A key point here is that if you want to have the updated argument value returned to your program, you must make error 2015 recoverable and then specify an \(naux \) value greater than or equal to 20 and less than 300. For values out of that range, the error recovery facility is not in effect. (These values of \(naux \), 20 and 300, are used only for the purposes of this example and do not relate to any of the ESSL subroutines.)

NAUX Meaning of the NAUX Value

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(naux < 20)</td>
<td>An input-argument error message is issued. The value in the error message is the lower limit, 20. The application program stops.</td>
<td>An input-argument error message is issued. The value in the error message is the lower limit, 20. The application program stops.</td>
</tr>
<tr>
<td>(20 \leq naux < 300)</td>
<td>An input-argument error message is issued. The value in the error message is the minimum required value, 300. The application program stops.</td>
<td>ESSL returns the value of (naux) as 300 to the application program, and an input-argument error message is issued. The value in the error message is the minimum required value, 300. ESSL does no computation, and control is returned to the application program.</td>
</tr>
<tr>
<td>(naux \geq 300)</td>
<td>Your application program runs successfully.</td>
<td>Your application program runs successfully.</td>
</tr>
</tbody>
</table>

Table 23 describes the actions taken by ESSL in every possible situation for the values given in this example.

Here Is How You Code It in Your Program

If you leave error 2015 unrecoverable, you do not code anything in your program. You just look at the error messages to get the sizes of auxiliary storage. On the other hand, if you want to make error 2015 recoverable to obtain the auxiliary storage sizes dynamically in your program, you need to add some coding statements to your program. For details on coding these statements in each programming language, see the following examples:

- For Fortran, see page 119
- For C, see page 137
- For C++, see page 153
You may want to provide a separate subroutine to calculate the auxiliary storage size whenever you need it. Figure 3 on page 36 shows how you might code a separate Fortran subroutine. Before calling SCFT in your program, call this subroutine, SCFT which calculates the minimum size and stores it in the `naux` arguments. Upon return, your program checks the return code. If it is nonzero, the `naux` arguments were updated, as planned. You should then make sure adequate storage is available and call SCFT. On the other hand, if the return code is zero, error handling was not invoked, the `naux` arguments were not updated, and the initialization step was performed for SCFT.

```fortran
SUBROUTINE SCFT
  * N, M, ISIGN, SCALE, AUX1, NAUX1, AUX2, NAUX2)
  REAL*4 X(0:*), Y(0:*), SCALE
  REAL*8 AUX1(7), AUX2(0:*)
  INTEGER*4 INIT, INC1X, INC2X, INC1Y, INC2Y, N, M, ISIGN, NAUX1, NAUX2
  EXTERNAL ENOTRM
  CHARACTER*8 S2015
  CALL EINFO(0)
  CALL ERRSAV(2015, S2015)
  CALL ERRSET(2015, 0, -1, 1, ENOTRM, 0)

  C SETS NAUX1 AND NAUX2 TO THE MINIMUM VALUES REQUIRED TO USE
  C THE RECOVERABLE INPUT-ARGUMENT ERROR-HANDLING FACILITY
  NAUX1 = 7
  NAUX2 = 0
  CALL SCFT(INIT, X, INC1X, INC2X, Y, INC1Y, INC2Y, *
    N, M, ISIGN, SCALE, AUX1, NAUX1, AUX2, NAUX2, *10)
  CALL ERRSTR(2015, S2015)
  RETURN
10 CONTINUE
  CALL ERRSTR(2015, S2015)
  RETURN 1
END
```

Figure 3. Fortran Subroutine to Calculate Auxiliary Storage Sizes

Providing a Correct Transform Length to ESSL

This section describes how to calculate the length of your transform by use of formulas or error-handling capabilities provided in ESSL.

What ESSL Subroutines Require Transform Lengths?

For the ESSL subroutines listed in Table 24 on page 37, you need to provide one or more transform lengths for the computation of a Fourier transform. These transform lengths are supplied through one or more arguments, such as `n`, `n1`, `n2`, and `n3`, in the calling sequence for the ESSL subroutine. Only certain lengths of transforms are permitted in the computation.
Table 24. ESSL Subroutines Requiring Transform Lengths

<table>
<thead>
<tr>
<th>Subroutine Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourier Transforms:</td>
</tr>
<tr>
<td>_CFT _RCFT _CRFT _COSF _SINF</td>
</tr>
<tr>
<td>SCOSFT _CFT2 _RCFT2 _CRFT2 _CFT3</td>
</tr>
<tr>
<td>_RCFT3 _CRFT3 SCFTP SCFT2P SCFT3P</td>
</tr>
</tbody>
</table>

Who Do You Want to Calculate the Length? You or ESSL?

You have a choice of two methods for determining an acceptable length for your transform to be processed by ESSL:

- Use the formula or large table in “Acceptable Lengths for the Transforms” on page 761 to determine an acceptable length. For details, see “How Do You Calculate the Length Using the Table or Formula?.”
- Use the ESSL error-handling facilities to return to you an acceptable length. For details, see “How Do You Get ESSL to Calculate the Length Using ESSL Error Handling?”

How Do You Calculate the Length Using the Table or Formula?

The lengths ESSL accepts for transforms in the Fourier transform subroutines are listed in “Acceptable Lengths for the Transforms” on page 761. You should use the table in that section to find the two values your length falls between. You then specify the larger length for your transform. If you find a perfect match, you can use that value without having to change it. The formula provided in that section expresses how to calculate the acceptable values listed in the table. If necessary, you can use the formula to dynamically check lengths in your program.

How Do You Get ESSL to Calculate the Length Using ESSL Error Handling?

This section describes how to get ESSL to calculate transform lengths.

Here Are the Two Ways You Can Do It

Ask yourself which of the following ways you prefer to obtain the information from ESSL:

- **By leaving error 2030 unrecoverable**, you can obtain an acceptable value for \(n \) from the input-argument error message, but your program terminates.
- **By making error 2030 recoverable**, you obtain an acceptable value for \(n \) from the input-argument error message and have the updated \(n \) argument returned to your program.

Because the Fourier transform subroutines allow only certain lengths for transforms, ESSL provides this error-handling capability to return acceptable lengths to your program. It returns them in the transform length arguments. The value ESSL returns is the **next larger acceptable length** for a transform, based on the length you specify in the \(n \) argument.
The First Way
In this case, you obtain an acceptable value of n from the error message, but your program terminates.

Leave error 2030 as unrecoverable, without calls to EINFO and ERRSET. Run your program with a close approximation of the transform length you want to use. If this happens not to be an acceptable length, the ESSL error monitor returns an acceptable length of the transform in input-argument error message. This does, however, terminates your program when the error is encountered. (If you do happen to specify an acceptable length for the transform, error handling does not issue an error message and processing continues normally.) Figure 4 illustrates what happens when error 2030 is unrecoverable.

The Second Way
In this case, you obtain an acceptable value of n from the error message and from the updated n argument returned to your program.

Use EINFO and ERRSET with an ESSL error exit routine, ENOTRM, to make error 2030 recoverable. This allows you to dynamically determine in your program an acceptable length for your transform, specified in the n argument(s). Run your program with a close approximation of the transform length you want to use. If this happens not to be an acceptable length, the ESSL error monitor returns an acceptable length of the transform in the input-argument error message and a return code is passed back to your program, indicating that updated values are also returned in the n argument(s). You can then react to these updated values during run time in your program. ESSL does not perform any computation when this error occurs. For details on how to do this, see Chapter 4 on page 109. (If you do happen to specify an acceptable length for the transform, error handling does not
issue an error message and processing continues normally.) Figure 5 on page 39 illustrates what happens when error 2030 is recoverable.

Figure 5. How to Obtain an N Value from an Error Message and in Your Program

Here Is an Example of What Happens When You Use These Two Techniques

The following example illustrates all the actions taken by the ESSL error-handling facility for each possible value of a recoverable input argument, \(n \). The values of \(n \) used in the example are as follows:

<table>
<thead>
<tr>
<th></th>
<th>Meaning of the N Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7208960</td>
<td>An acceptable transform length, required for successful computing of a Fourier transform</td>
</tr>
<tr>
<td>7340032</td>
<td>The next larger acceptable transform length, required for successful computing of a Fourier transform</td>
</tr>
</tbody>
</table>
Table 25 on page 40 describes the actions taken by ESSL in every possible situation for the values given in this example.

<table>
<thead>
<tr>
<th>N Value</th>
<th>Action When 2030 Is an Unrecoverable Input-Argument Error</th>
<th>Action When 2030 Is a Recoverable Input-Argument Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 7208960) or (n = 7340032)</td>
<td>Your application program runs successfully.</td>
<td>Your application program runs successfully.</td>
</tr>
<tr>
<td>(7208960 < n < 7340032)</td>
<td>An input-argument error message is issued. The value in the error message is 7340032. The application program stops.</td>
<td>ESSL returns the value of (n) as 7340032 to the application program, and an input-argument error message is issued. The value in the error message is 7340032. ESSL does no computation, and control is returned to the application program.</td>
</tr>
</tbody>
</table>

Here Is How You Code It in Your Program

If you leave error 2030 unrecoverable, you do not code anything in your program. You just look at the error messages to get the transform lengths. On the other hand, if you want to make error 2030 recoverable to obtain the transform lengths dynamically in your program, you need to add some coding statements to your program. For details on coding these statements in each programming language, see the following examples:

- For Fortran, see page 119
- For C, see page 137
- For C++, see page 153

You may want to provide a separate subroutine to calculate the transform length whenever you need it. Figure 6 on page 41 shows how you might code a separate Fortran subroutine. Before calling SCFT in your program, you call this subroutine, SCFT which calculates the correct length and stores it in \(n \). Upon return, your program checks the return code. If it is nonzero, the \(n \) argument was updated, as planned. You then do any necessary data setup and call SCFT. On the other hand, if the return code is zero, error handling was not invoked, the \(n \) argument was not updated, and the initialization step was performed for SCFT.
SUBROUTINE SCFT
* N, M, ISIGN, SCALE, AUX1, NAUX1, AUX2, NAUX2)
REAL*4 X(0:*),Y(0:*),SCALE
REAL*8 AUX1(7),AUX2(0:*)
INTEGER*4 INIT,INC1X,INC2X,INC1Y,INC2Y,N,M,ISIGN,NAUX1,NAUX2
EXTERNAL ENOTRM
CHARACTER*8 S2, S215, S230
CALL EINFO(0)
 CALL ERRSAV(2030,S230)
 CALL SCFT(INIT,X,INC1X,INC2X,Y,INC1Y,INC2Y,
 N,M,ISIGN,SCALE,AUX1,NAUX1,AUX2,NAUX2,*10)
 CALL ERRSTR(2030,S230)
 RETURN
 CONTINUE
 CALL ERRSTR(2030,S230)
 RETURN 1
END

Figure 6. Fortran Subroutine to Calculate Transform Length

You might want to combine the request for auxiliary storage sizes along with your
request for transform lengths. Figure 7 shows how you might code a separate
Fortran subroutine combining both requests. It combines the functions performed by
the subroutines in Figure 3 on page 36 and Figure 6.

SUBROUTINE SCFT
* N, M, ISIGN, SCALE, AUX1, NAUX1, AUX2, NAUX2)
REAL*4 X(0:*),Y(0:*),SCALE
REAL*8 AUX1(7),AUX2(0:*)
INTEGER*4 INIT,INC1X,INC2X,INC1Y,INC2Y,N,M,ISIGN,NAUX1,NAUX2
EXTERNAL ENOTRM
CHARACTER*8 S2, S215, S230
CALL EINFO(0)
 CALL ERRSAV(2015,S215)
 CALL ERRSAV(2030,S230)
 CALL SCFT(INIT,X,INC1X,INC2X,Y,INC1Y,INC2Y,
 N,M,ISIGN,SCALE,AUX1,NAUX1,AUX2,NAUX2,*10)
 CALL ERRSTR(2030,S215)
 CALL ERRSTR(2030,S230)
 RETURN
 CONTINUE
 CALL ERRSTR(2015,S215)
 CALL ERRSTR(2030,S230)
 RETURN 1
END

Figure 7. Fortran Subroutine to Calculate Auxiliary Storage Sizes and Transform Length
Getting the Best Accuracy

This section explains how accuracy of your results can be affected in various situations and what you can do to achieve the best possible accuracy.

What Precisions Do ESSL Subroutines Operate On?

Both short- and long-precision real versions of the subroutines are provided in most areas of ESSL. In some areas, short- and long-precision complex versions are also provided, and, occasionally, an integer version is provided. The subroutine names are distinguished by a one- or two-letter prefix based on the following letters:

- S for short-precision real
- D for long-precision real
- C for short-precision complex
- Z for long-precision complex
- I for integer

For a description of these data types, see “How Do You Set Up Your Scalar Data?” on page 26. The scalar data types and how you should code them for each programming language are listed under “Coding Your Scalar Data” in each language section in Chapter 4 on page 109.

How does the Nature of the ESSL Computation Affect Accuracy?

In subroutines performing operations such as copy and swap, the accuracy of data is not affected. In subroutines performing computations involving mathematical operations on array data, the accuracy of the result may be affected by the following:

- The algorithm, which can vary depending on values or array sizes within the computation or the number of threads used.
- The matrix and vector sizes

For this reason, the ESSL subroutines do not have a closed formula for the error of computation. In other words, there is no formula with which you can calculate the error of computation in each subroutine.

Short-precision subroutines sometimes provide increased accuracy of results by accumulating intermediate results in long precision. This is also noted in the functional description for each subroutine. See the RS/6000 POWERstation and POWERserver Hardware Technical Reference Information—General Architectures manual for details.

For the RS/6000 POWER and POWER2, the short-precision, floating-point operands are stored by the hardware in the floating-point registers as long-precision values, and, as a result, all arithmetic operations are performed in long-precision. Where applicable, the ESSL subroutines use the Multiply-Add instructions, which combine a Multiply and Add operation without an intermediate rounding operation.

For the ESSL POWER Library, ESSL Thread-Safe Library, and ESSL SMP Library, results obtained by 32-bit environment and 64-bit environment applications using the same ESSL library are mathematically equivalent but may not be bit identical.
What Data Type Standards Are Used by ESSL, and What Exceptions Should You Know About?

There are ESSL-specific rules that apply to the results of computations using the ANSI/IEEE standards. When running your program, the result of a multiplication of NaN ("Not-a-Number") by a scalar zero, under certain circumstances, may differ in the ESSL subroutines from the result you expect.

Usually, when NaN is multiplied by a scalar zero, the result is NaN; however, in some ESSL subroutines where scaling is performed, the result may be zero. For example, in computing \(\alpha A \), where \(\alpha \) is a scalar and \(A \) is a matrix, if \(\alpha \) is zero and one (or more) of the elements of \(A \) is NaN, the scaled result, using that element, may be a zero, rather than NaN. To avoid problems, you should consider this when designing your program.

How is Underflow Handled?

ESSL does not mask underflow. If your program incurs a number of unmasked underflows, its overall performance decreases. *For the RS/6000, floating-point exception trapping is disabled by default. Therefore, you do not have to mask underflow unless you have changed the default.*

Where Can You Find More Information on Accuracy?

Information about accuracy can be found in the following places:

- Migration considerations concerning accuracy of results between releases, platforms, and so forth are described in Chapter 6 on page 165.
- Specific information on accuracy for each area of ESSL is given in “Performance and Accuracy Considerations” in each chapter introduction in Part 2.
- The functional description under “Function” for each subroutine explains what you need to know about the accuracy of the computation. Varying implementation techniques are sometimes used to improve performance. To let you know how accuracy is affected, the functional description may explain in general terms the different techniques used in the computation.

Getting the Best Performance

This section describes how you can achieve the best possible performance from the ESSL subroutines.

What General Coding Techniques Can You Use to Improve Performance?

There are many ways in which you can improve the performance of your program. Here are some of them:

- Use the basic linear algebra subprograms and matrix operations in the order of optimum performance: matrix-matrix computations, matrix-vector computations,
and vector-scalar computations. When data is presented in matrices or vectors, rather than vectors or scalars, multiple operations can be performed by a single ESSL subroutine.

- Where possible, use subroutines that do multiple computations, such as SNDOT and SNAXPY, rather than individual computations, such as SDOT and SAXPY.

- Use a stride of 1 for the data in your computations. Not having vector elements consecutively accessed in storage can degrade your performance. The closer the vector elements are to each other in storage, the better your performance. For an explanation of stride, see “How Stride Is Used for Vectors” on page 56.

- Do not specify the size of the leading dimension of an array (lda) or stride of a vector (inc) equal to or near a multiple of:
 - 128 for a long-precision array
 - 256 for a short-precision array

- Do not specify the individual sizes of your one-dimensional arrays as multiples of 128. This is especially important when you are passing several one-dimensional arrays to an ESSL subroutine. (The multiplicity can cause a performance problem that otherwise might not occur.)

- For small problems, avoid using a large leading dimension (lda) for your matrix.

- In general, align your arrays on doubleword boundaries, regardless of the type of data; however, when running on a POWER2 processor, it is best to align your long-precision arrays on a quadword boundary. For information on how your programming language aligns data, see your programming language manuals.

- One subroutine may do scaling while another does not. If scaling is not necessary for your data, you get better performance by using the subroutine without scaling. SNORM2 and DNORM2 are examples of subroutines that do not do scaling, versus SNRM2 and DNRM2, which do scaling.

- Use the STRIDE subroutine to calculate the optimal stride values for your input or output data when using any of the Fourier transform subroutines, except _RCFT and _CRFT. Using these stride values for your data allows the Fourier transform subroutines to achieve maximum performance. You first obtain the optimal stride values from STRIDE, calling it once for each stride value desired. You then arrange your data using these stride values. After the data is set up, you call the Fourier transform subroutine. For details on the STRIDE subroutine and how to use it for each Fourier transform subroutine, see “STRIDE—Determine the Stride Value for Optimal Performance in Specified Fourier Transform Subroutines” on page 991. For additional information, see “Setting Up Your Data” on page 764.

Where Can You Find More Information on Performance?

Information about performance can be found in the following places:

- Many of the techniques ESSL uses to achieve the best possible performance are described in the “High Performance of ESSL” on page 6.

- Migration considerations concerning performance are described in “Migrating ESSL Version 2 Programs to Version 3” on page 166.
• Specific information on performance for each area of ESSL is given in “Performance and Accuracy Considerations” in each chapter introduction in Part 2.

• Detailed performance information for selected subroutines can be found in reference [30], [41], [42].

Dealing with Errors when Using ESSL

At run time, you can encounter different types of errors or messages that are related to the use of the ESSL subroutines:

• Program exceptions
• ESSL input-argument errors
• ESSL computational errors
• ESSL resource errors
• ESSL attention messages

This section explains how to handle all these situations.

What Can You Do about Program Exceptions?

The program exceptions you can encounter in ESSL are described in the RS/6000 architecture manuals. For details, see:

• The RS/6000 POWERstation and POWERserver Hardware Technical Reference Information—General Architectures manual

What Can You Do about ESSL Input-Argument Errors?

This section gives an overview on how you can handle input-argument errors.

All Input-Argument Errors

ESSL checks the validity of most input arguments. If it finds that any are invalid, it issues the appropriate error messages. Also, except for the three recoverable errors described below, it terminates your program. You should use standard programming techniques to diagnose and fix unrecoverable input-argument errors, as described in Chapter 7 on page 171.

You can determine the input-argument errors that can occur in a subroutine by looking under “Error Conditions” in the subroutine description in Part 2 of this book. Error messages for all input-argument errors are listed in “Input-Argument Error Messages(2001-2099)” on page 177.

Recoverable Errors 2015, 2030 and 2200 Can Return Updated Values in the NAUX, N and NSINFO Arguments

For three input-argument errors, 2015, 2030, and 2200 in Fortran, C, C++, and PL/I programs, you have the option to continue running and have an updated value of the input argument returned to your program for subsequent use. These are called recoverable errors. This recoverable error-handling capability gives you flexibility in determining the correct values for the arguments. You can:
• Determine the correct size of an auxiliary work area by using error 2015. For help in deciding whether you want to use this capability and details on how to use it, see “Using Auxiliary Storage in ESSL” on page 30.

• Determine the correct length of a transform by using error 2030. For help in deciding whether you want to use this capability and details on how to use it, see “Providing a Correct Transform Length to ESSL” on page 36.

• Determine the minimal size of the array AP for DBSTRF and DBSSV by using error 2200. For help deciding whether you want to use this capability, see “DBSTRF—Symmetric Indefinite Matrix Factorization” on page 520 and “DBSSV—Symmetric Indefinite Matrix Factorization and Multiple Right-Hand Side Solve” on page 514.

If you chose to leave errors 2015, 2030 and 2200 unrecoverable, you do not need to make any coding changes to your program. The input-argument error message is issued upon termination, containing the updated values you could have specified for the program to run successfully. You then make the necessary corrections in your program and rerun it.

If you choose to make errors 2015, 2030 and 2200 recoverable, you call the ERRSET subroutine to set up the ESSL error exit routine, ENOTRM, and then call the ESSL subroutine. When one or more of these errors occurs, the input-argument error message is issued with the updated values. In addition, the updated values are returned to your program in the input arguments named in the error message, along with a nonzero return code and processing continues. Return code values associated with these recoverable errors are described under “Error Conditions” for each ESSL subroutine in Part 2.

For details on how to code the necessary statements in your program to make 2015, 2030 and 2200 recoverable, see the following sections:

• “Input-Argument Errors in Fortran” on page 117
• “Input-Argument Errors in C” on page 134
• “Input-Argument Errors in C++” on page 150

What Can You Do about ESSL Computational Errors?
This section gives an overview on how you can handle computational errors.

All Computational Errors
ESL computational errors are errors occurring in the computational data, such as in your vectors and matrices. You can determine the computational errors that can occur in a subroutine by looking under “Error Conditions” in the subroutine description in Part 2 of this book. These errors cause your program to terminate abnormally unless you take preventive action. A message is also provided in your output, containing information about the error. Messages are listed in “Computational Error Messages(2100-2199)” on page 185.

When a computational error occurs, you should assume that the results are unpredictable. The result of the computation is valid only if no errors have occurred. In this case, a zero return code is returned.

Figure 8 on page 47 shows what happens when a computational error occurs.
Recoverable Computational Errors Can Return Values Through EINFO

In Fortran, C, C++, and PL/I programs, you have the capability to make certain computational errors recoverable and have information returned to your program about the errors. Recoverable computational errors are listed in Table 171 on page 982. First, you call EINFO in the beginning of your program to initialize the ESSL error option table. You then call ERRSET to reset the number of allowable errors for the computational error codes in which you are interested. When a computational error occurs, a nonzero return code is returned for each computational error. Return code values associated with these errors are described under “Error Conditions” in each subroutine description. Based on the return code, your program can branch to an appropriate statement to call the ESSL error information-handler subroutine, EINFO, to obtain specific information about the data involved in the error. This information is returned in the EINFO output arguments, inf1 and, optionally, inf2. You can then check the information returned and continue processing, if you choose. The syntax for EINFO is described under “EINFO—ESSL Error Information-Handler Subroutine” on page 982. You also get a message in your output for each computational error encountered, containing information about the error. The EINFO subroutine provides the same information in the messages as it provides to your program.

For details on how to code the necessary statements in your program to obtain specific information on computational errors, see the following sections:

- “Computational Errors in Fortran” on page 120
- “Computational Errors in C” on page 138
- “Computational Errors in C++” on page 155
Figure 9 on page 48 shows what happens if you make a computational error recoverable.

What Can You Do about ESSL Resource Errors?

This section gives an overview on how you can handle resource errors.

All Resource Errors

ESL returns a resource error and terminates your program when an attempt to allocate work area fails. Some ESSL subroutines attempt to allocate work area for their internal use. Other ESSL subroutines attempt to dynamically allocate auxiliary storage when a user requests it through calling sequence arguments, such as aux and naux. For information on how you could reduce memory constraints on the system or increase the amount of memory available before rerunning the application program, see "ESL Resource Error Messages" on page 174.

You can determine the resource errors that can occur in a subroutine by looking under “Error Conditions” in the subroutine description in Part 2 of this book. Error messages for all resource errors are listed in “Resource Error Messages(2400-2499)” on page 188.
What Can You Do about ESSL Attention Messages?

This section gives an overview on how you can handle attention messages.

All Attention Messages

ESSL returns an attention message to describe a condition that occurred, however, ESSL is able to continue processing. For information on how you could reduce memory constraints on the system or increase the amount of memory available, see “ESSL Resource Error Messages” on page 174.

For example, an attention message may be issued when enough work area was available to continue processing, but was not the amount initially requested. An attention message would be issued to indicate that performance may be degraded.

For a list of subroutines that may generate an attention message, see Table 31 on page 175. For a list of attention messages, see “Informational and Attention Error Messages(2600-2699)” on page 188.

How Do You Control Error Handling by Setting Values in the ESSL Error Option Table?

This section explains all aspects of using the ESSL error option table.

What Values Are Set in the ESSL Error Option Table?

The ESSL error option table contains information that tells ESSL what to do every time it encounters an ESSL-generated error. Table 26 shows the default values established in the table when ESSL is installed.

<table>
<thead>
<tr>
<th>Range of Error Messages (From–To)</th>
<th>Number of Allowable Errors (ALLOW)</th>
<th>Number of Messages Printed (PRINT)</th>
<th>Modifiable Table Entry (MODENT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2538–2000</td>
<td>Unlimited</td>
<td>255</td>
<td>NO</td>
</tr>
<tr>
<td>2538–2001 through 2538–2073</td>
<td>Unlimited</td>
<td>255</td>
<td>YES</td>
</tr>
<tr>
<td>2538–2074</td>
<td>Unlimited</td>
<td>5</td>
<td>YES</td>
</tr>
<tr>
<td>2538–2075 through 2538–2098</td>
<td>Unlimited</td>
<td>255</td>
<td>YES</td>
</tr>
<tr>
<td>2538–2099</td>
<td>1</td>
<td>255</td>
<td>YES</td>
</tr>
<tr>
<td>2538–2100 through 2538–2101</td>
<td>1</td>
<td>255</td>
<td>YES</td>
</tr>
<tr>
<td>2538–2102</td>
<td>Unlimited</td>
<td>255</td>
<td>YES</td>
</tr>
<tr>
<td>2538–2103 through 2538–2113</td>
<td>1</td>
<td>255</td>
<td>YES</td>
</tr>
<tr>
<td>2538–2114</td>
<td>Unlimited</td>
<td>255</td>
<td>YES</td>
</tr>
<tr>
<td>2538–2115 through 2538–2122</td>
<td>1</td>
<td>255</td>
<td>YES</td>
</tr>
<tr>
<td>2538–2123 through 2538–2124</td>
<td>Unlimited</td>
<td>255</td>
<td>YES</td>
</tr>
<tr>
<td>2538–2125 through 2538–2126</td>
<td>1</td>
<td>255</td>
<td>YES</td>
</tr>
<tr>
<td>2538–2127</td>
<td>Unlimited</td>
<td>255</td>
<td>YES</td>
</tr>
<tr>
<td>2538–2128 through 2538–2137</td>
<td>1</td>
<td>255</td>
<td>YES</td>
</tr>
<tr>
<td>2538–2138 through 2538–2143</td>
<td>Unlimited</td>
<td>255</td>
<td>YES</td>
</tr>
<tr>
<td>2538–2144 through 2538–2145</td>
<td>1</td>
<td>255</td>
<td>YES</td>
</tr>
</tbody>
</table>
Table 26 (Page 2 of 2). ESSL Error Option Table Default Values

<table>
<thead>
<tr>
<th>Range of Error Messages (From–To)</th>
<th>Number of Allowable Errors (ALLOW)</th>
<th>Number of Messages Printed (PRINT)</th>
<th>Modifiable Table Entry (MODENT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2538–2146 through 2538–2147</td>
<td>Unlimited</td>
<td>255</td>
<td>YES</td>
</tr>
<tr>
<td>2538–2148 through 2538–2198</td>
<td>1</td>
<td>255</td>
<td>YES</td>
</tr>
<tr>
<td>2538–2199</td>
<td>1</td>
<td>255</td>
<td>YES</td>
</tr>
<tr>
<td>2538–2200 through 2538–2299</td>
<td>Unlimited</td>
<td>255</td>
<td>YES</td>
</tr>
<tr>
<td>2538–2400 through 2538–2499</td>
<td>1</td>
<td>255</td>
<td>NO</td>
</tr>
<tr>
<td>2538–2600 through 2538–2699</td>
<td>Unlimited</td>
<td>255</td>
<td>NO</td>
</tr>
<tr>
<td>2538–2700 through 2538–2799</td>
<td>1</td>
<td>255</td>
<td>NO</td>
</tr>
</tbody>
</table>

How Can You Change the Values in the Error Option Table?
You can change any of the values in the ESSL error option table by calling the ERRSET subroutine in your program. This dynamically changes values at run time. You can also save and restore entries in the table by using the ERRSAV and ERRSTR subroutines, respectively. For a description of the ERRSET, ERRSAV, and ERRSTR subroutines see Chapter 17 on page 979.

When Do You Change the Values in the Error Option Table?
Because you can change the information in the error option table, you can control what happens when any of the ESSL errors occur. There are a number of instances when you may want to do this:

To Customize Your Error-Handling Environment: You may simply want to adjust the number of times an error is allowed to occur before your program terminates. You can use any of the capabilities available in ERRSET.

To Obtain Auxiliary Storage Sizes and Transform Lengths: You may want to make ESSL input-argument error 2015 or 2030 recoverable, so ESSL returns updated auxiliary storage sizes or transform lengths, respectively, to your program. For a more detailed discussion, see “What Can You Do about ESSL Input-Argument Errors?” on page 45. For how to use ERRSET to do this, see the section for your programming language in Chapter 4 on page 109.

To Obtain the Minimal Size of the Array AP for DBSTRF and DBSSV: You may want to make ESSL input-argument error 2200 recoverable, so ESSL returns an updated size to your program. For a more detailed discussion, see “What Can You Do about ESSL Input-Argument Errors?” on page 45. For how to use ERRSET to do this, see the section for your programming language in Chapter 4 on page 109.

To Get More Information About a Computational Error: You may want ESSL to return information about a computational error to your program. For a more detailed discussion, see “What Can You Do about ESSL Computational Errors?” on page 46. For how to do use ERRSET to do this, see the section for your programming language in Chapter 4 on page 109.
To Allow Parts of Your Application to Have Unique Error-Handling Environments: If your program is part of a large application, you may want to dynamically save and restore entries in the error option table that have been altered by ERRSET. This ensures the integrity of the error option table when it is used by multiple programs within an application. For a more detailed discussion, see “How Can You Control Error Handling in Large Applications by Saving and Restoring Entries in the Error Option Table?” For how to use ERRSAV and ERRSTR, see the section for your programming language in Chapter 4 on page 109.

How Can You Control Error Handling in Large Applications by Saving and Restoring Entries in the Error Option Table?
When your program is part of a larger application, you should consider that one of the following can occur:

- If you use ERRSET in your program to reset any of the values in the error option table for any of the ESSL input-argument errors or computational errors, some other program in the application may be adversely affected. It may be expecting its original values.
- If some other program in the application uses ERRSET to reset any of the values in the error option table for any of the ESSL input-argument errors or computational errors, your program may be adversely affected. You may need a certain value in the error option table, and the application may have reset that value.

These situations can be avoided if every program that uses ERRSET, in the large application, also uses the ERRSAV and ERRSTR facilities. For a particular error number, ERRSAV saves an entry from the error option table in an area accessible to your program. ERRSTR then stores the entry back into the error option table from the storage area. You code an ERRSAV and ERRSTR for each input-argument error number and computational error number for which you do an ERRSET to reset the values in the error option table. Call ERRSAV at the beginning of your program after you call EINFO, and then call ERRSTR at the end of your program after all ESSL computations are completed. This saves the original contents of the error option table while your program is running with different values, and then restores it to its original contents when your program is done. For details on how to code these statements in your program, see Chapter 4 on page 109.

How does Error Handling Work in a Threaded Environment?
When your application program or Fortran first creates a thread, ESSL initializes the error option table information to the default settings shown in Table 26 on page 49. You can change the default settings for each thread you created by calling the appropriate error handling subroutines (ERRSET, ERRSAV, or ERRSTR) from each thread. An example of how to initialize the error option table and change the default settings on multiple threads is shown in “Example of Handling Errors in a Multithreaded Application Program” on page 125.

ESSL issues error messages as they occur in a threaded environment. Error messages issued from any of the existing threads are written to standard output in the order in which they occur.
When a terminating condition occurs on any of the existing threads (for example, the number of allowable errors was exceeded), ESSL terminates your application program. One set of summary information corresponding to the terminating thread is always printed. Summary information corresponding to other threads may also be printed.

Where Can You Find More Information on Errors?

Information about errors and how to handle them can be found in the following places:

- How to code your program to use the ESSL error-handling facilities is described in Chapter 4 on page 109.
- All ESSL error messages are listed under “Messages” on page 176.
- The errors and return codes associated with each ESSL subroutine are listed under “Error Conditions” in each subroutine description in Part 2.
- Complete diagnostic procedures for all types of ESSL programming and documentation problems, along with how to collect information and report a problem, are provided in Chapter 7 on page 171.
Chapter 3. Setting Up Your Data Structures

This chapter provides you with information that you need to set up your data structures, consisting of vectors, matrices, and sequences. These techniques apply to programs in all programming languages.

Concepts

Vectors, matrices, and sequences are conceptual data structures contained in arrays. In many cases, ESSL uses stride or leading dimension to select the elements of the vector, matrix, or sequence from an array. In other cases, ESSL uses a specific mapping, or storage layout, that identifies the elements of the vector, matrix, or sequence in an array, sometimes requiring several arrays to help define the mapping. These elements selected from the array(s) make up the conceptual data structure.

When you call an ESSL subroutine, it assumes that the data structure is set up properly in the array(s) you pass to it. If it is not, your results are unpredictable. ESSL also uses these same storage layouts for data structures passed back to your program.

The use of the terms vector, matrix, and sequence in this book is consistent with standard mathematical definitions, and their representations are consistent with conventions used in mathematical texts. Special notations and conventions used in this book for describing vectors, matrices, and sequences are explained in “Special Notations and Conventions” on page xxiii.

Overlapping Data Structures: Most of the subroutines do not allow vectors, matrices, or sequences to overlap. If this occurs, results are unpredictable. Where this applies, it is explained in Notes in each subroutine description. This means the elements of the data structure cannot reside in the same storage locations as any of the other data structures. It is possible, however, to have elements of different data structures in the same array, as long as the elements are interleaved through storage using strides greater than 1. For example, using vectors x and y with strides of 2, where x starts at $A(1)$ and y starts at $A(2)$, the elements reside in array A in the order x_1, y_1, x_2, y_2, x_3, y_3, ... and so forth.

When you use this technique, you should be careful that you specify different starting locations for each data structure contained in the array.

Vectors

A vector is a one-dimensional, ordered collection of numbers. It can be a column vector, which represents an n by 1 ordered collection, or a row vector, which represents a 1 by n ordered collection.

The column vector appears symbolically as follows:
A row vector appears symbolically as follows:

\[\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} \]

Vectors can contain either real or complex numbers. When they contain real numbers, they are sometimes called real vectors. When they contain complex numbers, they are called complex vectors.

Transpose of a Vector

The transpose of a vector changes a column vector to a row vector, or vice versa:

\[\mathbf{x}^\top = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} \]

\[(\mathbf{x}^\top)^\top = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} \]

The ESSL subroutines use the vector as it is intended in the computation, as either a column vector or a row vector; therefore, no movement of data is necessary.

In the examples provided with the subroutine descriptions in Part 2 of this book, both types of vectors are represented in the same way, showing the elements of the array that make up the vector \(\mathbf{x} \), as follows:

\((1.0, 2.0, 3.0, 4.0, 5.0, 6.0) \)

Conjugate Transpose of a Vector

The conjugate transpose of a vector \(\mathbf{x} \), containing complex numbers, is denoted by \(\mathbf{x}^\dagger \) and is expressed as follows:

\[\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} \]

\[\mathbf{x}^\dagger = \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \\ \bar{x}_3 \\ \vdots \\ \bar{x}_n \end{bmatrix} \]
In Storage

A vector is usually stored within a one- or two-dimensional array. Its elements are stored sequentially in the array, but not necessarily contiguously.

The location of the vector in the array is specified by the argument for the vector in the ESSL calling sequence. It can be specified in a number of ways. For example, if A is an array of length 12, and you want to specify vector \(x \) as starting at the first element of array \(A \), specify \(A \) as the argument, such as in:

\[
X = \text{SASUM} \ (4, A(1), 2)
\]

where the number of elements to be summed in the vector is 4, the location of the vector is \(A \), and the stride is 2.

If you want to specify vector \(x \) as starting at element 3 in array \(A \), which is declared as \(A(1:12) \), specify:

\[
X = \text{SASUM} \ (4, A(3), 2)
\]

If \(A \) is declared as \(A(-1:8) \), specify the following for element 3:

\[
X = \text{SASUM} \ (4, A(1), 2)
\]

If \(A \) is a two-dimensional array and declared as \(A(1:4,1:10) \), and you want vector \(x \) to start at the second row and third column of \(A \), specify the following:

\[
X = \text{SASUM} \ (4, A(2,3), 2)
\]

The stride specified in the ESSL calling sequence is used to step through the array to select the vector elements. The direction in which the vector elements are selected from the array—that is, front to back or back to front—is indicated by the sign (+ or −) of the stride. The absolute value of the stride gives the spacing between each element selected from the array.

To calculate the total number of elements needed in an array for a vector, you can use the following formula, which takes into account the number of elements, \(n \), in the array and the stride, \(inc \), specified for the vector:

\[
1+ (n-1)|inc|
\]

An array can be much larger than the vector that it contains; that is, there can be many elements following the vector in the array, as well as elements preceding the vector.

For a complete description of how vectors are stored within arrays, see “How Stride Is Used for Vectors” on page 56.

For a complex vector, a special storage arrangement is used to accommodate the two parts, \(a \) and \(b \), of each complex number \((a+b\text{i}) \) in the array. For each complex number, two sequential storage locations are required in the array. Therefore, exactly twice as much storage is required for complex vectors and matrices as for real vectors and matrices of the same precision. See “How Do You Set Up Your Scalar Data?” on page 26 for a description of real and complex numbers, and
How Do You Set Up Your Arrays?

on page 27 for a description of how real and
complex data is stored in arrays.

How Stride Is Used for Vectors

The stride for a vector is an increment that is used to step through array storage to
select the vector elements from an array. To define exactly which elements become
the conceptual vector in the array, the following items are used together:

- The location of the vector within the array
- The stride for the vector
- The number of elements, \(n \), to be processed

The stride can be positive, negative, or 0. For positive and negative strides, if you
specify vector elements beyond the range of the array, your results are be
unpredictable, and you may get program errors.

This section explains how each of the three types of stride is used to select the
vector elements from the array.

Positive Stride

When a positive stride is specified for a vector, the location specified by the
argument for the vector is the location of the first element in the vector, element \(x_1 \).
The vector is in forward order in the array: \((x_1, x_2, ..., x_n)\). For example, if you
specify \(X(1) \) for vector \(x \), where \(X \) is declared as \(X(0:12) \) and defined as:

\[
X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0)
\]

then processing begins at the second element in \(X \), which is 2.0.

To find each successive element, the stride is added cumulatively to the starting
point of vector \(x \) in the array. In this case, the starting point is \(X(1) \). If the stride
specified for vector \(x \) is 3 and the number of elements to be processed is 4, then
the resulting elements selected from \(X \) for vector \(x \) are: \(x(1), x(4), x(7) \), and
\(x(10) \).

Vector \(x \) is then:

\[
(2.0, 5.0, 8.0, 11.0)
\]

As shown in this example, a vector does not have to extend to the end of the array.
Elements are selected from the second to the eleventh element of the array, and
the array elements after that are not used.

This element selection can be expressed in general terms. Using \(\text{BEGIN} \) as the
starting point in an array \(X \) and \(\text{inc} \) as the stride, this results in the following
elements being selected from the array:

\[
X(\text{BEGIN})
X(\text{BEGIN}+\text{inc})
X(\text{BEGIN}+(2)\text{inc})
X(\text{BEGIN}+(3)\text{inc})
\cdot
\cdot
\cdot
X(\text{BEGIN}+(n-1)\text{inc})
\]
The following general formula can be used to calculate each vector element position in a one-dimensional array:

\[x_i = X(BEGIN + (i-1)(inc)) \] for \(i = 1, n \)

When using an array with more than one dimension, you should understand how the array elements are stored to ensure that elements are selected properly. For a description of array storage, see “Setting Up Arrays in Fortran” on page 110. You should remember that the elements of an array are selected as they are arranged in storage, regardless of the number of dimensions defined in the array. Stride is used to step through array storage until \(n \) elements are selected. ESSL processing stops at that point. For example, given the following two-dimensional array, declared as \(A(1:7,1:4) \).

Matrix \(A \) is:

\[
\begin{bmatrix}
1.0 & 8.0 & 15.0 & 22.0 \\
2.0 & 9.0 & 16.0 & 23.0 \\
3.0 & 10.0 & 17.0 & 24.0 \\
4.0 & 11.0 & 18.0 & 25.0 \\
5.0 & 12.0 & 19.0 & 26.0 \\
6.0 & 13.0 & 20.0 & 27.0 \\
7.0 & 14.0 & 21.0 & 28.0
\end{bmatrix}
\]

with \(A(3,1) \) specified for vector \(x \), a stride of 2, and the number of elements to be processed as 12, the resulting vector \(x \) is:

\((3.0, 5.0, 7.0, 9.0, 11.0, 13.0, 15.0, 17.0, 19.0, 21.0, 23.0, 25.0)\)

This is not a conventional use of arrays, and you should be very careful when using this technique.

Zero Stride

When a zero stride is specified for a vector, the starting point for the vector is the only element used in the computation. The starting point for the vector is at the location specified by the argument for the vector, just as though you had specified a positive stride. For example, if you specify \(X \) for vector \(x \), where \(X \) is defined as:

\[X = (5.0, 4.0, 3.0, 2.0, 1.0) \]

and you specify the number of elements, \(n \), to be processed as 6, then processing begins at the first element, which is 5.0. This element is used for each of the six elements in vector \(x \).

This makes the conceptual vector \(x \) appear as:

\((5.0, 5.0, 5.0, 5.0, 5.0, 5.0)\)

The following general formula shows how to calculate each vector position in a one-dimensional array:

\[x_i = X(BEGIN) \] for \(i = 1, n \)
Negative Stride

When a negative stride is specified for a vector, the location specified for the vector is actually the location of the last element in the vector. In other words, the vector is in reverse order in the array: \((x_n, x_{n-1}, \ldots, x_1)\). You specify the end of the vector, \((x_n)\). ESSL then calculates where the starting point \((x_1)\) is by using the following arguments:

- The location of the vector in the array
- The stride for the vector, \(inc\)
- The number of elements, \(n\), to be processed

If you specify vector \(x\) at location \(X(\text{BEGIN})\) in array \(X\) with a negative stride of \(inc\) and \(n\) elements to be processed, then the following formula gives the starting point of vector \(x\) in the array:

\[
X(\text{BEGIN} + (-n+1)(inc))
\]

For example, if you specify \(X(2)\) for vector \(x\), where \(X\) is declared as \(X(1:9)\) and defined as:

\[
X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0)
\]

and if you specify a stride of \(-2\), and four elements to be processed, processing begins at the following element in \(X\):

\[
X(2 + (-4+1)(-2)) = X(8)
\]

where element \(X(8)\) is 8.0.

To find each of the \(n\) successive element positions in the array, you successively add the stride to the starting point \(n-1\) times. Suppose the formula calculated a starting point of \(X(\text{SP})\); the elements selected are:

\[
\begin{align*}
X(\text{SP}) \\
X(\text{SP} + inc) \\
X(\text{SP} + (2)inc) \\
X(\text{SP} + (3)inc) \\
\ldots \\
\ldots \\
X(\text{SP} + (n-1)inc)
\end{align*}
\]

In the above example, the resulting elements selected from \(X\) for vector \(x\) are \(X(8)\), \(X(6)\), \(X(4)\), and \(X(2)\). This makes the resulting vector \(x\) appear as follows:

\[(8.0, 6.0, 4.0, 2.0)\]

The following general formula can be used to calculate each vector element position in a one-dimensional array:

\[
x_i = X(\text{BEGIN} + (-n+i)(inc)) \text{ for } i = 1, n
\]

Sparse Vector

A sparse vector is a vector having a relatively small number of nonzero elements.

Consider the following as an example of a sparse vector \(x\) with \(n\) elements, where \(n\) is 11, and vector \(x\) is:
In Storage

There are two storage modes that apply to sparse vectors: full-vector storage mode and compressed-vector storage mode. When a sparse vector is stored in full-vector storage mode, all its elements, including its zero elements, are stored in an array.

For example, sparse vector \(\mathbf{x} \) is stored in full-vector storage mode in a one-dimensional array \(\mathbf{X} \), as follows:

\[
\mathbf{X} = (0.0, 0.0, 1.0, 0.0, 2.0, 3.0, 0.0, 4.0, 0.0, 5.0, 0.0)
\]

When a sparse vector is stored in compressed-vector storage mode, it is stored without its zero elements. It consists of two one-dimensional arrays, each with a length of \(nz \), where \(nz \) is the number of nonzero elements in vector \(\mathbf{x} \):

- The first array contains the nonzero elements of the sparse vector \(\mathbf{x} \), stored contiguously within the array.

Note: The ESSL subroutines do not check that all elements are nonzero. You do not get an error if any elements are zero.

- The second array contains a sequence of integers indicating the element positions (indices) of the nonzero elements of the sparse vector \(\mathbf{x} \) stored in full-vector storage mode. This is referred to as the indices array.

For example, the sparse vector \(\mathbf{x} \) shown above might have its five nonzero elements stored in ascending order in array \(\mathbf{X} \) of length 5, as follows:

\[
\mathbf{X} = (1.0, 2.0, 3.0, 4.0, 5.0)
\]

in which case, the array of indices, \(\text{INDX} \), also of length 5, contains:

\[
\text{INDX} = (3, 5, 6, 8, 10)
\]

If the sparse vector \(\mathbf{x} \) has its elements stored in random order in the array \(\mathbf{X} \) as:

\[
\mathbf{X} = (5.0, 3.0, 4.0, 1.0, 2.0)
\]

then the array \(\text{INDX} \) contains:

\[
\text{INDX} = (10, 6, 8, 3, 5)
\]

In general terms, this storage technique can be expressed as follows:

For each \(x_j \neq 0 \), for \(j = 1, n \)
there exists \(i \), where \(1 \leq i \leq nz \),
such that \(\mathbf{X}(i) = x_j \) and \(\text{INDX}(i) = j \).

where:

- \(x_1, ..., x_n \) are the \(n \) elements of sparse vector \(\mathbf{x} \), stored in full-vector storage mode.
- \(\mathbf{X} \) is the array containing the \(nz \) nonzero elements of sparse vector \(\mathbf{x} \); that is, vector \(\mathbf{x} \) is stored in compressed-vector storage mode.
- \(\text{INDX} \) is the array containing the \(nz \) indices indicating the element positions.
To avoid an error when using the \texttt{INDX} array to access the elements in any other target vector, the length of the target vector must be greater than or equal to \(\max(\texttt{INDX}(i)) \) for \(i = 1, nz \).

\section*{Matrices}

A matrix, also referred to as a general matrix, is an \(m \) by \(n \) ordered collection of numbers. It is represented symbolically as:

\[
A = \begin{bmatrix}
a_{11} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{m1} & \cdots & a_{mn}
\end{bmatrix}
\]

where the matrix is named \(A \) and has \(m \) rows and \(n \) columns. The elements of the matrix are \(a_{ij} \) where \(i = 1, m \) and \(j = 1, n \).

Matrices can contain either real or complex numbers. Those containing real numbers are called real matrices; those containing complex numbers are called complex matrices.

\section*{Transpose of a Matrix}

The transpose of a matrix \(A \) is a matrix formed from \(A \) by interchanging the rows and columns such that row \(i \) of matrix \(A \) becomes column \(i \) of the transposed matrix. The transpose of \(A \) is denoted by \(A^T \). Each element \(a_{ij} \) in \(A \) becomes element \(a_{ji} \) in \(A^T \). If \(A \) is an \(m \) by \(n \) matrix, then \(A^T \) is an \(n \) by \(m \) matrix. The following represents a matrix and its transpose:

\[
A = \begin{bmatrix}
a_{11} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{m1} & \cdots & a_{mn}
\end{bmatrix}, \quad A^T = \begin{bmatrix}
a_{11} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{m1} & \cdots & a_{mn}
\end{bmatrix}
\]

ESSL assumes that all matrices are stored in untransformed format, such as matrix \(A \) shown above. No movement of data is necessary in your application program when you are processing transposed matrices. The ESSL subroutines adjust their selection of elements from the matrix when an argument in the calling sequence indicates that the transposed matrix is to be used in the computation. Examples of this are the \texttt{transa} and \texttt{transb} arguments specified for \texttt{SGEADD}, matrix addition.

\section*{Conjugate Transpose of a Matrix}

The conjugate transpose of a matrix \(A \), containing complex numbers, is denoted by \(A^H \) and is expressed as follows:
Just as for the transpose of a matrix, the conjugate transpose of a matrix is stored in untransformed format. No movement of data is necessary in your program.

In Storage

A matrix is usually stored in a two-dimensional array. Its elements are stored successively within the array. Each column of the matrix is stored successively in the array. The leading dimension argument is used to select the matrix elements from each successive column of the array. The starting point of the matrix in the array is specified as the argument for the matrix in the ESSL calling sequence. For example, if matrix A is contained in array A and starts at the first element in the first row and first column of A, you should specify A as the argument for matrix A, such as in:

```
CALL SGEMX (5,2,1.:zircon,A,6,X,1,Y,1)
```

where, in the matrix-vector product, the number of rows in matrix A is 5, the number of columns in matrix A is 2, the scaling constant is 1.0, the location of the matrix is A, the leading dimension is 6, the vectors used in the matrix-vector product are X and Y, and their strides are 1.

If matrix A is contained in the array BIG, declared as $\text{BIG}(1:20,1:30)$, and starts at the second row and third column of BIG, you should specify $\text{BIG}(2,3)$ as the argument for matrix A, such as in:

```
CALL SGEMX (5,2,1.0,BIG(2,3),6,X,1,Y,1)
```

See “How Leading Dimension Is Used for Matrices” for a complete description of how matrices are stored within arrays.

For a complex matrix, a special storage arrangement is used to accommodate the two parts, a and b, of each complex number $(a+bi)$ in the array. For each complex number, two sequential storage locations are required in the array. Therefore, exactly twice as much storage is required for complex matrices as for real matrices of the same precision. See “How Do You Set Up Your Scalar Data?” on page 26 for a description of real and complex numbers, and “How Do You Set Up Your Arrays?” on page 27 for a description of how real and complex data is stored in arrays.

How Leading Dimension Is Used for Matrices

The leading dimension for a two-dimensional array is an increment that is used to find the starting point for the matrix elements in each successive column of the array. To define exactly which elements become the conceptual matrix in the array, the following items are used together:

- The location of the matrix within the array
- The leading dimension
- The number of rows, m, to be processed in the array
The number of columns, \(n \), to be processed in the array

The leading dimension must always be positive. It must always be greater than or equal to \(m \), the number of rows in the matrix to be processed. For an array, \(A \), declared as \(A(E1:E2,F1:F2) \), the leading dimension is equal to:

\[
(E2-E1+1)
\]

The starting point for selecting the matrix elements from the array is at the location specified by the argument for the matrix in the ESSL calling sequence. For example, if you specify \(A(3,0) \) for a 4 by 4 matrix \(A \), where \(A \) is declared as \(A(1:7,0:4) \):

\[
\begin{array}{cccc}
1.0 & 8.0 & 15.0 & 22.0 & 29.0 \\
2.0 & 9.0 & 16.0 & 23.0 & 30.0 \\
3.0 & 10.0 & 17.0 & 24.0 & 31.0 \\
4.0 & 11.0 & 18.0 & 25.0 & 32.0 \\
5.0 & 12.0 & 19.0 & 26.0 & 33.0 \\
6.0 & 13.0 & 20.0 & 27.0 & 34.0 \\
7.0 & 14.0 & 21.0 & 28.0 & 35.0 \\
\end{array}
\]

then processing begins at the element at row 3 and column 0 in array \(A \), which is 3.0.

The leading dimension is used to find the starting point for the matrix elements in each of the \(n \) successive columns in the array. ESSL subroutines assume that the arrays are stored in column-major order, as described under “How Do You Set Up Your Arrays?” on page 27, and they add the leading dimension (times the size of the element in bytes) to the starting point. They do this \(n-1 \) times. This finds the starting point in each of the \(n \) columns of the array.

In the above example, the leading dimension is:

\[
E2-E1+1 = 7-1+1 = 7
\]

If the number of columns, \(n \), to be processed is 4, the starting points are: \(A(3,0) \), \(A(3,1) \), \(A(3,2) \), and \(A(3,3) \). These are elements 3.0, 10.0, 17.0, and 24.0 for \(a_{11} \), \(a_{12} \), \(a_{13} \), and \(a_{14} \), respectively.

In general terms, this results in the following starting positions of each column in the matrix being calculated as follows:

\[
A(BEGINI, BEGINJ) \\
A(BEGINI, BEGINJ+1) \\
A(BEGINI, BEGINJ+2) \\
\vdots \\
\vdots \\
A(BEGINI, BEGINJ+n-1)
\]

To find the elements in each column of the array, 1 is added successively to the starting point in the column until \(m \) elements are selected. This is why the leading dimension must be greater than or equal to \(m \); otherwise, you go past the end of each dimension of the array. In the above example, if the number of elements, \(m \), to be processed in each column is 4, the following elements are selected from array \(A \) for the first column of the matrix: \(A(3,0) \), \(A(4,0) \), \(A(5,0) \), and \(A(6,0) \).
These are elements 3.0, 4.0, 5.0, and 6.0, corresponding to the matrix elements \(a_{11}, a_{21}, a_{31}, \text{ and } a_{41}\), respectively.

Column element selection can also be expressed in general terms. Using \(A(\text{BEGINI}, \text{BEGINJ})\) as the starting point in the array, this results in the following elements being selected from each column in the array:

\[
\begin{align*}
A(\text{BEGINI}, \text{BEGINJ}) \\
A(\text{BEGINI}+1, \text{BEGINJ}) \\
A(\text{BEGINI}+2, \text{BEGINJ}) \\
&\ldots \\
A(\text{BEGINI}+m-1, \text{BEGINJ})
\end{align*}
\]

Combining this with the technique already described for finding the starting point in each column of the array, the resulting matrix in the example is:

\[
A = \begin{bmatrix}
a_{11} & \cdots & a_{14} \\
\vdots & \ddots & \vdots \\
\vdots & \ddots & \vdots \\
a_{41} & \cdots & a_{44}
\end{bmatrix} = \begin{bmatrix}
3.0 & 10.0 & 17.0 & 24.0 \\
4.0 & 11.0 & 18.0 & 25.0 \\
5.0 & 12.0 & 19.0 & 26.0 \\
6.0 & 13.0 & 20.0 & 27.0
\end{bmatrix}
\]

As shown in this example, a matrix does not have to include all columns and rows of an array. The elements of matrix \(A\) are selected from rows 3 through 6 and columns 0 through 3 of the array. Rows 1, 2, and 7 and column 4 of the array are not used.

Symmetric Matrix

The matrix \(A\) is symmetric if it has the property \(A = A^T\), which means:

- It has the same number of rows as it has columns; that is, it has \(n\) rows and \(n\) columns.
- The value of every element \(a_{ij}\) on one side of the main diagonal equals its mirror image \(a_{ji}\) on the other side: \(a_{ij} = a_{ji}\) for \(1 \leq i \leq n\) and \(1 \leq j \leq n\).

The following matrix illustrates a symmetric matrix of order \(n\); that is, it has \(n\) rows and \(n\) columns. The subscripts on each side of the diagonal appear the same to show which elements are equal:

\[
A = \begin{bmatrix}
a_{11} & a_{21} & a_{31} & \cdots & a_{n1} \\
a_{21} & a_{22} & a_{32} & \cdots & \vdots \\
a_{31} & a_{32} & a_{33} & \cdots & \vdots \\
& & & \ddots & \vdots \\
& & & & a_{n1} & \cdots & a_{nn}
\end{bmatrix}
\]
In Storage

The four storage modes used for storing symmetric matrices are described in the following sections:

- “Lower-Packed Storage Mode”
- “Upper-Packed Storage Mode” on page 65
- “Lower Storage Mode” on page 66
- “Upper Storage Mode” on page 67

The storage technique you should use depends on the ESSL subroutine you are using and is given under Notes in each subroutine description.

Lower-Packed Storage Mode: When a symmetric matrix is stored in lower-packed storage mode, the lower triangular part of the symmetric matrix is stored, including the diagonal, in a one-dimensional array. The lower triangle is packed by columns. (This is equivalent to packing the upper triangle by rows.) The matrix is packed sequentially column by column in \(n(n+1)/2 \) elements of a one-dimensional array. To calculate the location of each element \(a_{ij} \) of matrix \(A \) in an array, \(AP \), using the lower triangular packed technique, use the following formula:

\[
AP(i + ((2n-j)(j-1)/2)) = a_{ij} \quad \text{where } i \geq j
\]

This results in the following storage arrangement for the elements of a symmetric matrix \(A \) in an array \(AP \):

\[
\begin{align*}
AP(1) &= a_{11} \text{ (start the first column)} \\
AP(2) &= a_{21} \\
AP(3) &= a_{31} \\
&\quad \vdots \\
AP(n) &= a_{n1} \\
AP(n+1) &= a_{22} \text{ (start the second column)} \\
AP(n+2) &= a_{32} \\
&\quad \vdots \\
AP(2n-1) &= a_{n2} \\
AP(2n) &= a_{33} \text{ (start the third column and so forth)} \\
AP(2n+1) &= a_{43} \\
&\quad \vdots \\
AP(n(n+1)/2) &= a_{nn}
\end{align*}
\]

Following is an example of a symmetric matrix that uses the element values to show the order in which the matrix elements are stored in the array.

Given the following matrix \(A \):
the array is:

\[
\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 6 & 7 & 8 & 9 \\
3 & 7 & 10 & 11 & 12 \\
4 & 8 & 11 & 13 & 14 \\
5 & 9 & 12 & 14 & 15 \\
\end{array}
\]

\[
\text{AP} = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)
\]

Note: Additional work storage is required in the array for some ESSL subroutines; for example, in the simultaneous linear algebraic equation subroutines SPPF, DPPF, SPPS, and DPPS. See the description of those subroutines in Part 2 for details.

Following is an example of how to transform your symmetric matrix to lower-packed storage mode:

\[
\begin{align*}
K &= 0 \\
\text{DO } 1
\quad &J = 1, N \\
\quad &\text{DO } 2
\quad & I = J, N \\
\quad &K = K + 1 \\
\quad &\text{AP}(K) = A(I, J) \\
\quad &2 \quad \text{CONTINUE} \\
1 \quad \text{CONTINUE}
\end{align*}
\]

Upper-Packed Storage Mode: When a symmetric matrix is stored in upper-packed storage mode, the upper triangular part of the symmetric matrix is stored, including the diagonal, in a one-dimensional array. The upper triangle is packed by columns. (This is equivalent to packing the lower triangle by rows.) The matrix is packed sequentially column by column in \(n(n+1)/2\) elements of a one-dimensional array. To calculate the location of each element \(a_{ij}\) of matrix \(A\) in an array \(AP\) using the upper triangular packed technique, use the following formula:

\[
\text{AP}(i + (j(j-1)/2)) = a_{ij} \quad \text{where } j \geq i
\]

This results in the following storage arrangement for the elements of a symmetric matrix \(A\) in an array \(AP\):

\[
\begin{align*}
\text{AP}(1) &= a_{11} \text{ (start the first column)} \\
\text{AP}(2) &= a_{12} \text{ (start the second column)} \\
\text{AP}(3) &= a_{22} \\
\text{AP}(4) &= a_{13} \text{ (start the third column)} \\
\text{AP}(5) &= a_{23} \\
\text{AP}(6) &= a_{33} \\
\text{AP}(7) &= a_{14} \text{ (start the fourth column)} \\
\cdot &\cdot \\
\cdot &\cdot \\
\cdot &\cdot \\
\text{AP}(j(j-1)/2+1) &= a_{ij} \text{ (start the } j\text{-th column)} \\
\text{AP}(j(j-1)/2+2) &= a_{2j} \\
\text{AP}(j(j-1)/2+3) &= a_{3j} \\
\cdot &\cdot \\
\cdot &\cdot \\
\text{AP}(j(j-1)/2+j) &= a_{ij} \text{ (end of the } j\text{-th column)}
\end{align*}
\]
\(AP(n(n+1)/2) = a_{nn} \)

Following is an example of a symmetric matrix that uses the element values to show the order in which the matrix elements are stored in the array. Given the following matrix \(A \):

\[
\begin{pmatrix}
1 & 2 & 4 & 7 & 11 \\
2 & 3 & 5 & 8 & 12 \\
4 & 5 & 6 & 9 & 13 \\
7 & 8 & 9 & 10 & 14 \\
11 & 12 & 13 & 14 & 15
\end{pmatrix}
\]

the array is:

\(AP = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) \)

Following is an example of how to transform your symmetric matrix to upper-packed storage mode:

\[
\begin{align*}
K &= 0 \\
&\text{DO } 1 \ J=1,N \\
&\quad \text{DO } 2 \ I=1,J \\
&\quad \quad K = K+1 \\
&\quad \quad AP(K)=A(I,J)
\end{align*}
\]

\(2 \hspace{1cm} \text{CONTINUE} \)

\(1 \hspace{1cm} \text{CONTINUE} \)

Lower Storage Mode: When a symmetric matrix is stored in lower storage mode, the lower triangular part of the symmetric matrix is stored, including the diagonal, in a two-dimensional array. These elements are stored in the array in the same way they appear in the matrix. The upper part of the matrix is not required to be stored in the array.

Following is an example of a symmetric matrix \(A \) of order 5 and how it is stored in an array \(AL \).

Given the following matrix \(A \):

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
2 & 6 & 7 & 8 & 9 \\
3 & 7 & 10 & 11 & 12 \\
4 & 8 & 11 & 13 & 14 \\
5 & 9 & 12 & 14 & 15
\end{pmatrix}
\]

the array is:
where “*” means you do not have to store a value in that position in the array. However, these storage positions are required.

Upper Storage Mode: When a symmetric matrix is stored in upper storage mode, the upper triangular part of the symmetric matrix is stored, including the diagonal, in a two-dimensional array. These elements are stored in the array in the same way they appear in the matrix. The lower part of the matrix is not required to be stored in the array.

Following is an example of a symmetric matrix \(A \) of order 5 and how it is stored in an array \(\text{AU} \).

Given the following matrix \(A \):

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 \\
2 & 6 & 7 & 8 & 9 \\
3 & 7 & 10 & 11 & 12 \\
4 & 8 & 11 & 13 & 14 \\
5 & 9 & 12 & 14 & 15
\end{bmatrix}
\]

the array is:

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 \\
* & 6 & 7 & 8 & 9 \\
* & * & 10 & 11 & 12 \\
* & * & * & 13 & 14 \\
* & * & * & * & 15
\end{bmatrix}
\]

where “*” means you do not have to store a value in that position in the array. However, these storage positions are required.

Positive Definite or Negative Definite Symmetric Matrix

A real symmetric matrix \(A \) is positive definite if and only if \(x^T A x \) is positive for all nonzero vectors \(x \).

A real symmetric matrix \(A \) is negative definite if and only if \(x^T A x \) is negative for all nonzero vectors \(x \).

In Storage

The positive definite or negative definite symmetric matrix is stored in the same way the symmetric matrix is stored. For a description of this storage technique, see “Symmetric Matrix” on page 63.
Symmetric Indefinite Matrix

A real symmetric matrix A is indefinite if and only if $(x^T Ax) (y^T Ay) < 0$ for some non-zero vectors x and y.

In Storage

The symmetric indefinite matrix is stored in the same way the symmetric matrix is stored. For a description of this storage technique, see “Symmetric Matrix” on page 63.

Complex Hermitian Matrix

A complex matrix is Hermitian if it is equal to its conjugate transpose:

$H = H^*$

In Storage

The complex Hermitian matrix is stored using the same four techniques used for symmetric matrices:

- Lower-packed storage mode, as described in “Lower-Packed Storage Mode” on page 64. (The complex Hermitian matrix is not symmetric; therefore, lower-packed storage mode is not equivalent to packing the upper triangle by rows, as it is for a symmetric matrix.)

- Upper-packed storage mode, as described in “Upper-Packed Storage Mode” on page 65. (The complex Hermitian matrix is not symmetric; therefore, upper-packed storage mode is not equivalent to packing the lower triangle by rows, as it is for a symmetric matrix.)

- Lower storage mode, as described in “Lower Storage Mode” on page 66.

- Upper storage mode, as described in “Upper Storage Mode” on page 67.

Following is an example of a complex Hermitian matrix H of order 5.

Given the following matrix H:

\[
\begin{bmatrix}
(11, 0) & (21, -1) & (31, 1) & (41, -1) & (51, -1) \\
(21, 1) & (22, 0) & (32, -1) & (42, -1) & (52, 1) \\
(31, -1) & (32, 1) & (33, 0) & (43, -1) & (53, -1) \\
(41, 1) & (42, 1) & (43, 1) & (44, 0) & (54, -1) \\
(51, 1) & (52, -1) & (53, 1) & (54, 1) & (55, 0)
\end{bmatrix}
\]

it is stored in a one-dimensional array, HP, in $n(n+1)/2 = 15$ elements as follows:

- In lower-packed storage mode:

 $HP = ((11, +), (21, 1), (31, -1), (41, 1), (51, 1),
 (22, +), (32, 1), (42, 1), (52, -1), (33, +),
 (43, 1), (53, 1), (44, +), (54, 1), (55, +))$

- In upper-packed storage mode:

 $HP = ((11, +), (21, -1), (22, +), (31, 1), (32, -1),
 (33, +), (41, -1), (42, -1), (43, -1), (44, +),
 (51, -1), (52, 1), (53, -1), (54, -1), (55, +))$

or it is stored in a two-dimensional array, HP, as follows:
In lower storage mode:

\[
HP = \begin{bmatrix}
(11, *) & * & * & * & * \\
(21, 1) & (22, *) & * & * & * \\
(31, -1) & (32, 1) & (33, *) & * & * \\
(41, 1) & (42, 1) & (43, 1) & (44, *) & * \\
(51, 1) & (52, -1) & (53, 1) & (54, 1) & (55, *)
\end{bmatrix}
\]

In upper storage mode:

\[
HP = \begin{bmatrix}
(11, *) & (21, -1) & (31, 1) & (41, -1) & (51, -1) \\
* & (22, *) & (32, -1) & (42, -1) & (52, 1) \\
* & * & (33, *) & (43, -1) & (53, -1) \\
* & * & * & (44, *) & (54, -1) \\
* & * & * & * & (55, *)
\end{bmatrix}
\]

where “*” means you do not have to store a value in that position in the array. The imaginary parts of the diagonal elements of a complex Hermitian matrix are always 0, so you do not need to set these values. The ESSL subroutines always assume that the values in these positions are 0.

Positive Definite or Negative Definite Complex Hermitian Matrix

A complex Hermitian matrix \(A \) is positive definite if and only if \(x^H A x \) is positive for all nonzero vectors \(x \).

A complex Hermitian matrix \(A \) is negative definite if and only if \(x^H A x \) is negative for all nonzero vectors \(x \).

In Storage

The positive definite or negative definite complex Hermitian matrix is stored in the same way the complex Hermitian matrix is stored. For a description of this storage technique, see “Complex Hermitian Matrix” on page 68.

Positive Definite or Negative Definite Symmetric Toeplitz Matrix

A positive definite or negative definite symmetric matrix \(A \) of order \(n \) is also a Toeplitz matrix if and only if:

\[
a_{ij} = a_{i-1,j-1} \quad \text{for } i = 2, n \text{ and } j = 2, n
\]

The elements on each diagonal of the Toeplitz matrix have a constant value. For the definition of a positive definite or negative definite symmetric matrix, see “Positive Definite or Negative Definite Symmetric Matrix” on page 67.

The following matrix illustrates a symmetric Toeplitz matrix of order \(n \); that is, it has \(n \) rows and \(n \) columns:
A symmetric Toeplitz matrix of order n is represented by a vector x of length n containing the elements of the first column of the matrix (or the elements of the first row), such that $x_i = a_{ii}$ for $i = 1, n$.

The following vector represents the matrix A shown above:

$$x = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{bmatrix}$$

In Storage

The elements of the vector x, which represent a positive definite symmetric Toeplitz matrix, are stored sequentially in an array. This is called packed-symmetric-Toeplitz storage mode. Following is an example of a positive definite symmetric Toeplitz matrix A and how it is stored in an array X.

Given the following matrix A:

$$A = \begin{bmatrix}
99 & 12 & 13 & 14 & 15 & 16 \\
12 & 99 & 12 & 13 & 14 & 15 \\
13 & 12 & 99 & 12 & 13 & 14 \\
14 & 13 & 12 & 99 & 12 & 13 \\
15 & 14 & 13 & 12 & 99 & 12 \\
16 & 15 & 14 & 13 & 12 & 99
\end{bmatrix}$$

the array is:

$$X = (99, 12, 13, 14, 15, 16)$$

Positive Definite or Negative Definite Complex Hermitian Toeplitz Matrix

A positive definite or negative definite complex Hermitian matrix A of order n is also a Toeplitz matrix if and only if:

$$a_{ij} = a_{i-1,j-1}$$

for $i = 2, n$ and $j = 2, n$.

The real part of the diagonal elements of the Toeplitz matrix must have a constant value. The imaginary part of the diagonal elements must be zero.
For the definition of a positive definite of negative definite complex Hermitian matrix, see “Positive Definite or Negative Definite Complex Hermitian Matrix” on page 69.

The following matrix illustrates a complex Hermitian Toeplitz matrix of order n; that is, it has n rows and n columns:

$$A = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\
 \bar{a}_{12} & a_{11} & a_{12} & \cdots & \cdot \\
 \bar{a}_{13} & \bar{a}_{12} & a_{11} & \cdots & \cdot \\
 \cdot & \cdot & \cdot & \cdots & a_{13} \\
 \cdot & \cdot & \cdot & \cdots & a_{12} \\
 \bar{a}_{1n} & \cdots & a_{1n} & \cdots & \bar{a}_{12} & a_{11}
\end{bmatrix}$$

A complex Hermitian Toeplitz matrix of order n is represented by a vector x of length n containing the elements of the first row of the matrix.

The following vector represents the matrix A shown above.

$$x = \begin{bmatrix}
 a_{11} \\
 a_{12} \\
 a_{13} \\
 \cdot \\
 \cdot \\
 a_{1n}
\end{bmatrix}$$

In Storage

The elements of the vector x, which represent a positive definite complex Hermitian Toeplitz matrix, are stored sequentially in an array. This is called packed-Hermitian-Toeplitz storage mode. Following is an example of a positive definite complex Hermitian Toeplitz matrix A and how it is stored in an array X.

Given the following matrix A:

$$A = \begin{bmatrix}
 (10.0, 0.0) & (2.0, -3.0) & (-3.0, 1.0) & (1.0, 1.0) \\
 (2.0, 3.0) & (10.0, 0.0) & (2.0, -3.0) & (-3.0, 1.0) \\
 (-3.0, -1.0) & (2.0, 3.0) & (10.0, 0.0) & (2.0, -3.0) \\
 (1.0, -1.0) & (-3.0, -1.0) & (2.0, 3.0) & (10.0, 0.0)
\end{bmatrix}$$

the array is:

$$X = ((10.0, 0.0), (2.0, -3.0), (-3.0, 1.0), (1.0, 1.0))$$
Triangular Matrix

There are two types of triangular matrices: upper triangular matrix and lower triangular matrix. Triangular matrices have the same number of rows as they have columns; that is, they have \(n \) rows and \(n \) columns.

A matrix \(U \) is an upper triangular matrix if its nonzero elements are found only in the upper triangle of the matrix, including the main diagonal; that is:

\[
u_{ij} = 0 \quad \text{if} \quad i > j
\]

A matrix \(L \) is an lower triangular matrix if its nonzero elements are found only in the lower triangle of the matrix, including the main diagonal; that is:

\[
l_{ij} = 0 \quad \text{if} \quad i < j
\]

The following matrices, \(U \) and \(L \), illustrate upper and lower triangular matrices of order \(n \), respectively:

\[
U = \begin{bmatrix}
 u_{11} & u_{12} & u_{13} & \cdots & u_{1n} \\
 0 & u_{22} & u_{23} & \cdots & 0 \\
 0 & 0 & u_{33} & \cdots & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & \cdots & 0 & \cdots & u_{nn}
\end{bmatrix}
\]

\[
L = \begin{bmatrix}
 l_{11} & 0 & 0 & \cdots & 0 \\
 l_{21} & l_{22} & 0 & \cdots & 0 \\
 l_{31} & l_{32} & l_{33} & \cdots & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 l_{n1} & \cdots & \cdots & 0 & l_{nn}
\end{bmatrix}
\]

A unit triangular matrix is a triangular matrix in which all the diagonal elements have a value of one; that is:

- For an upper triangular matrix, \(u_{ij} = 1 \) if \(i = j \).
- For an lower triangular matrix, \(l_{ij} = 1 \) if \(i = j \).

The following matrices, \(U \) and \(L \), illustrate upper and lower unit real triangular matrices of order \(n \), respectively:

\[
U = \begin{bmatrix}
 1 & u_{12} & u_{13} & \cdots & u_{1n} \\
 0 & 1 & u_{23} & \cdots & 0 \\
 0 & 0 & 1 & \cdots & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & \cdots & 0 & \cdots & 1
\end{bmatrix}
\]

\[
L = \begin{bmatrix}
 1 & 0 & 0 & \cdots & 0 \\
 l_{21} & 1 & 0 & \cdots & 0 \\
 l_{31} & l_{32} & 1 & \cdots & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 l_{n1} & \cdots & \cdots & 0 & 1
\end{bmatrix}
\]

In Storage

The four storage modes used for storing triangular matrices are described in the following sections:

- “Upper-Triangular-Packed Storage Mode” on page 73
- “Lower-Triangular-Packed Storage Mode” on page 73
- “Upper-Triangular Storage Mode” on page 74
- “Lower-Triangular Storage Mode” on page 74
It is important to note that because the diagonal elements of a unit triangular matrix are always one, you do not need to set these values in the array for these four storage modes. ESSL always assumes that the values in these positions are one.

Upper-Triangular-Packed Storage Mode: When an upper-triangular matrix is stored in upper-triangular-packed storage mode, the upper triangle of the matrix is stored, including the diagonal, in a one-dimensional array. The upper triangle is packed by columns. The elements are packed sequentially, column by column, in \(n(n+1)/2 \) elements of a one-dimensional array. To calculate the location of each element of the triangular matrix in the array, use the technique described in “Upper-Packed Storage Mode” on page 65.

Following is an example of an upper triangular matrix \(U \) of order 5 and how it is stored in array \(UP \). It uses the element values to show the order in which the elements are stored in the one-dimensional array.

Given the following matrix \(U \):

\[
\begin{bmatrix}
1 & 2 & 4 & 7 & 11 \\
0 & 3 & 5 & 8 & 12 \\
0 & 0 & 6 & 9 & 13 \\
0 & 0 & 0 & 10 & 14 \\
0 & 0 & 0 & 0 & 15 \\
\end{bmatrix}
\]

the array is:

\[UP = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) \]

Lower-Triangular-Packed Storage Mode: When a lower-triangular matrix is stored in lower-triangular-packed storage mode, the lower triangle of the matrix is stored, including the diagonal, in a one-dimensional array. The lower triangle is packed by columns. The elements are packed sequentially, column by column, in \(n(n+1)/2 \) elements of a one-dimensional array. To calculate the location of each element of the triangular matrix in the array, use the technique described in “Lower-Packed Storage Mode” on page 64.

Following is an example of a lower triangular matrix \(L \) of order 5 and how it is stored in array \(LP \). It uses the element values to show the order in which the elements are stored in the one-dimensional array.

Given the following matrix \(L \):

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
2 & 6 & 0 & 0 & 0 \\
3 & 7 & 10 & 0 & 0 \\
4 & 8 & 11 & 13 & 0 \\
5 & 9 & 12 & 14 & 15 \\
\end{bmatrix}
\]

the array is:

\[LP = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) \]
Upper-Triangular Storage Mode: A triangular matrix is stored in upper-triangular storage mode in a two-dimensional array. Only the elements in the upper triangle of the matrix, including the diagonal, are stored in the upper triangle of the array.

Following is an example of an upper triangular matrix U of order 5 and how it is stored in array UTA.

Given the following matrix U:

$$
\begin{bmatrix}
11 & 12 & 13 & 14 & 15 \\
0 & 22 & 23 & 24 & 25 \\
0 & 0 & 33 & 34 & 35 \\
0 & 0 & 0 & 44 & 45 \\
0 & 0 & 0 & 0 & 55 \\
\end{bmatrix}
$$

the array is:

$$
\begin{bmatrix}
11 & 12 & 13 & 14 & 15 \\
* & 22 & 23 & 24 & 25 \\
* & * & 33 & 34 & 35 \\
* & * & * & 44 & 45 \\
* & * & * & * & 55 \\
\end{bmatrix}
$$

where "*" means you do not have to store a value in that position in the array.

Lower-Triangular Storage Mode: A triangular matrix is stored in lower-triangular storage mode in a two-dimensional array. Only the elements in the lower triangle of the matrix, including the diagonal, are stored in the lower triangle of the array.

Following is an example of a lower triangular matrix L of order 5 and how it is stored in array LTA.

Given the following matrix L:

$$
\begin{bmatrix}
11 & 0 & 0 & 0 & 0 \\
21 & 22 & 0 & 0 & 0 \\
31 & 32 & 33 & 0 & 0 \\
41 & 42 & 43 & 44 & 0 \\
51 & 52 & 53 & 54 & 55 \\
\end{bmatrix}
$$

the array is:

$$
\begin{bmatrix}
11 & * & * & * & * \\
21 & 22 & * & * & * \\
31 & 32 & 33 & * & * \\
41 & 42 & 43 & 44 & * \\
51 & 52 & 53 & 54 & 55 \\
\end{bmatrix}
$$

where "*" means you do not have to store a value in that position in the array.
General Band Matrix

A general band matrix has its nonzero elements arranged uniformly near the diagonal, such that:

\[a_{ij} = 0 \quad \text{if} \quad (i-j) > ml \text{ or } (j-i) > mu \]

where \(ml \) and \(mu \) are the lower and upper band widths, respectively, and \(ml+mu+1 \) is the total band width.

The following matrix illustrates a square general band matrix of order \(n \), where the band widths are \(ml = q-1 \) and \(mu = p-1 \):

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} & \ldots & a_{1p} & 0 & 0 \\
 a_{21} & a_{22} & a_{23} & \ldots & 0 & 0 & \\
 a_{31} & a_{32} & a_{33} & \ldots & 0 & 0 & \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
 a_{q1} & 0 & \ldots & 0 & 0 & \ldots & 0 \\
 0 & 0 & \ldots & 0 & a_{m} & \ldots & \ldots \\
 0 & 0 & \ldots & 0 & 0 & \ldots & a_{m} \\
\end{bmatrix}
\]

Some special types of band matrices are:

- Tridiagonal matrix: \(ml = mu = 1 \)
- 9-diagonal matrix: \(ml = mu = 4 \)

The following two matrices illustrate \(m \) by \(n \) rectangular general band matrices, where the band widths are \(ml = q-1 \) and \(mu = p-1 \). For both matrices, the leading diagonal is \(a_{11}, a_{22}, a_{33}, \ldots, a_{nn} \). Following is a general band matrix with \(m > n \):

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} & \ldots & a_{1p} & 0 & 0 \\
 a_{21} & a_{22} & a_{23} & \ldots & 0 & 0 & \\
 a_{31} & a_{32} & a_{33} & \ldots & 0 & 0 & \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
 a_{q1} & 0 & \ldots & 0 & 0 & \ldots & 0 \\
 0 & 0 & \ldots & 0 & a_{m} & \ldots & \ldots \\
 0 & 0 & \ldots & 0 & 0 & \ldots & a_{m} \\
\end{bmatrix}
\]

Following is a general band matrix with \(m < n \):
In Storage
The two storage modes used for storing general band matrices are described in the following sections:

- “General-Band Storage Mode”
- “BLAS-General-Band Storage Mode” on page 78

General-Band Storage Mode: (This storage mode is used only for square matrices.) Only the band elements of a general band matrix are stored for general-band storage mode. Additional storage must also be provided for fill-in. General-band storage mode packs the matrix elements by columns into a two-dimensional array, such that each diagonal of the matrix appears as a row in the packed array.

For a matrix A of order n with band widths ml and mu, the array must have a leading dimension, lda, greater than or equal to $2ml+mu+16$. The size of the second dimension must be (at least) n, the number of columns in the matrix.

Using array AGB, which is declared as $AGB(2ml+mu+16, n)$, the columns of elements in matrix A are stored in each column in array AGB as follows, where a_{11} is stored at $AGB(ml+mu+1, 1)$:
where “*” means you do not store an element in that position in the array.

In the ESSL subroutine computation, some of the positions in the array indicated by an “*” are used for fill-in. Other positions may not be accessed at all.

Following is an example of a band matrix \(A \) of order 9 and band widths of \(ml = 2 \) and \(mu = 3 \).

Given the following matrix \(A \):

\[
\begin{bmatrix}
11 & 12 & 13 & 14 & 0 & 0 & 0 & 0 & 0 \\
21 & 22 & 23 & 24 & 25 & 0 & 0 & 0 & 0 \\
31 & 32 & 33 & 34 & 35 & 36 & 0 & 0 & 0 \\
0 & 42 & 43 & 44 & 45 & 46 & 47 & 0 & 0 \\
0 & 0 & 53 & 54 & 55 & 56 & 57 & 58 & 0 \\
0 & 0 & 0 & 64 & 65 & 66 & 67 & 68 & 69 \\
0 & 0 & 0 & 0 & 75 & 76 & 77 & 78 & 79 \\
0 & 0 & 0 & 0 & 0 & 86 & 87 & 88 & 89 \\
0 & 0 & 0 & 0 & 0 & 0 & 97 & 98 & 99
\end{bmatrix}
\]

you store it in general-band storage mode in a 23 by 9 array \(AGB \) as follows, where \(a_{11} \) is stored in \(AGB(6,1) \):
Following is an example of how to transform your general band matrix, of order n, to general-band storage mode:

```plaintext
MD=ML+MU+1
DO 1 J=1,N
  DO 1 I=MAX(J-MU,1),MIN(J+ML,N)
  AGB(I-J+MD,J)=A(I,J)
1 CONTINUE
```

BLAS-General-Band Storage Mode: (This storage mode is used for both square and rectangular matrices.) Only the band elements of a general band matrix are stored for BLAS-general-band storage mode. The storage mode packs the matrix elements by columns into a two-dimensional array, such that each diagonal of the matrix appears as a row in the packed array.

For an m by n matrix A with band widths ml and mu, the array AGB must have a leading dimension, lda, greater than or equal to $ml+mu+1$. The size of the second dimension must be (at least) n, the number of columns in the matrix.

Using the array AGB, which is declared as $AGB(ml+mu+1, n)$, the columns of elements in matrix A are stored in each column in array AGB as follows, where a_{11} is stored at $AGB(mu+1, 1)$:

\[
AGB = \begin{bmatrix}
 * & * & * & * & * & * & * & * & * \\
 * & * & * & * & * & * & * & * & * \\
 * & 14 & 25 & 36 & 47 & 58 & 69 & * & * \\
 * & 13 & 24 & 35 & 46 & 57 & 68 & 79 & * \\
 11 & 22 & 33 & 44 & 55 & 66 & 77 & 88 & 99 \\
 21 & 32 & 43 & 54 & 65 & 76 & 87 & 98 & * \\
 31 & 42 & 53 & 64 & 75 & 86 & 97 & * & * \\
 * & * & * & * & * & * & * & * & * \\
 * & * & * & * & * & * & * & * & * \\
 * & * & * & * & * & * & * & * & * \\
 * & * & * & * & * & * & * & * & * \\
 * & * & * & * & * & * & * & * & * \\
 * & * & * & * & * & * & * & * & * \\
 * & * & * & * & * & * & * & * & * \\
 * & * & * & * & * & * & * & * & * \\
 * & * & * & * & * & * & * & * & * \\
 * & * & * & * & * & * & * & * & * \\
\end{bmatrix}
\]
where "*" means you do not store an element in that position in the array. These positions are not accessed by ESSL. **Unused positions in the array always occur in the upper left triangle of the array, but may not occur in the lower right triangle of the array, as you can see from the examples given here.**

Following is an example where $m > n$, and general band matrix A is 9 by 8 with band widths of $ml = 2$ and $mu = 3$.

Given the following matrix A:

$$
\begin{bmatrix}
11 & 12 & 13 & 14 & 0 & 0 & 0 & 0 \\
21 & 22 & 23 & 24 & 25 & 0 & 0 & 0 \\
31 & 32 & 33 & 34 & 35 & 36 & 0 & 0 \\
0 & 42 & 43 & 44 & 45 & 46 & 47 & 0 \\
0 & 0 & 53 & 54 & 55 & 56 & 57 & 58 \\
0 & 0 & 0 & 64 & 65 & 66 & 67 & 68 \\
0 & 0 & 0 & 0 & 75 & 76 & 77 & 78 \\
0 & 0 & 0 & 0 & 0 & 86 & 87 & 88 \\
0 & 0 & 0 & 0 & 0 & 0 & 97 & 98
\end{bmatrix}
$$

you store it in array AGB, declared as $AGB(6,8)$, as follows, where a_{11} is stored in $AGB(4,1)$:

$$
AGB = \begin{bmatrix}
* & * & * & 14 & 25 & 36 & 47 & 58 \\
* & * & 13 & 24 & 35 & 46 & 57 & 68 \\
* & 12 & 23 & 34 & 45 & 56 & 67 & 78 \\
11 & 22 & 33 & 44 & 55 & 66 & 77 & 88 \\
21 & 32 & 43 & 54 & 65 & 76 & 87 & 98 \\
31 & 42 & 53 & 64 & 75 & 86 & 97 & *
\end{bmatrix}
$$

Following is an example where $m < n$, and general band matrix A is 7 by 9 with band widths of $ml = 2$ and $mu = 3$.

Given the following matrix A:
you store it in array AGB, declared as AGB(6,9), as follows, where \(a_{11}\) is stored in AGB(4,1) and the leading diagonal does not fill up the whole row:

\[
\begin{bmatrix}
11 & 12 & 13 & 14 & 0 & 0 & 0 & 0 & 0 \\
21 & 22 & 23 & 24 & 25 & 0 & 0 & 0 & 0 \\
31 & 32 & 33 & 34 & 35 & 36 & 0 & 0 & 0 \\
0 & 42 & 43 & 44 & 45 & 46 & 47 & 0 & 0 \\
0 & 0 & 53 & 54 & 55 & 56 & 57 & 58 & 0 \\
0 & 0 & 0 & 64 & 65 & 66 & 67 & 68 & 69 \\
0 & 0 & 0 & 0 & 75 & 76 & 77 & 78 & 79
\end{bmatrix}
\]

\[
\begin{bmatrix}
* & * & * & 14 & 25 & 36 & 47 & 58 & 69 \\
* & * & 13 & 24 & 35 & 46 & 57 & 68 & 79 \\
AGB = & * & 12 & 23 & 34 & 45 & 56 & 67 & 78 & * \\
11 & 22 & 33 & 44 & 55 & 66 & 77 & * & * \\
21 & 32 & 43 & 54 & 65 & 76 & * & * & * \\
31 & 42 & 53 & 64 & 75 & * & * & * & *
\end{bmatrix}
\]

and where “*” means you do not store an element in that position in the array.

Following is an example of how to transform your general band matrix, for all values of \(m\) and \(n\), to BLAS-general-band storage mode:

\[
\text{DO 20 J}=1,N \\
\quad K=MU+1-J \\
\text{DO 10 I}=\text{MAX}(1,J-MU),\text{MIN}(M,J+ML) \\
\quad AGB(K+I,J)=A(I,J) \\
10 \quad \text{CONTINUE} \\
20 \quad \text{CONTINUE}
\]

Symmetric Band Matrix

A symmetric band matrix is a symmetric matrix whose nonzero elements are arranged uniformly near the diagonal, such that:

\[a_{ij} = 0 \quad \text{if} \quad |i-j| > k\]

where \(k\) is the half band width.

The following matrix illustrates a symmetric band matrix of order \(n\), where the half band width \(k = q-1\):
In Storage

The two storage modes used for storing symmetric band matrices are described in the following sections:

- “Upper-Band-Packed Storage Mode”
- “Lower-Band-Packed Storage Mode” on page 82

Upper-Band-Packed Storage Mode: Only the band elements of the upper triangular part of a symmetric band matrix, including the main diagonal, are stored for upper-band-packed storage mode.

For a matrix \(A \) of order \(n \) and a half band width of \(k \), the array must have a leading dimension, \(lda \), greater than or equal to \(k+1 \), and the size of the second dimension must be (at least) \(n \).

Using array \(ASB \), which is declared as \(ASB(lda,n) \), where \(p = lda = k+1 \), the elements of a symmetric band matrix are stored as follows:

\[
\begin{bmatrix}
* & * & \ldots & a_{1p} & a_{2,p+1} & \ldots & a_{n-k,n} \\
* & \ddots & \ldots & \ddots & \ddots & \ddots & \ddots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
a_{11} & a_{12} & \ldots & a_{13} & a_{24} & \ldots & a_{nn}
\end{bmatrix}
\]

where "*" means you do not store an element in that position in the array.

Following is an example of a symmetric band matrix \(A \) of order 6 and a half band width of 3.

Given the following matrix \(A \):

\[
A = \begin{bmatrix}
a_{11} & a_{21} & a_{31} & \ldots & a_{q1} & 0 & \ldots & 0 \\
a_{21} & a_{22} & a_{32} & \ldots & 0 & \ldots & 0 \\
a_{31} & a_{32} & a_{33} & \ldots & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \ddots \\
a_{q1} & \ldots & 0 & \ldots & 0 & \ldots & 0 \\
0 & \ldots & 0 & \ldots & 0 & \ldots & 0 \\
0 & \ldots & 0 & \ldots & 0 & \ldots & a_{nn}
\end{bmatrix}
\]
you store it in upper-band-packed storage mode in array ASB, declared as ASB(4,6), as follows.

\[
\begin{bmatrix}
 * & * & * & 14 & 25 & 36 \\
 * & * & 13 & 24 & 35 & 46 \\
 * & 12 & 23 & 34 & 45 & 56 \\
 11 & 22 & 33 & 44 & 55 & 66 \\
\end{bmatrix}
\]

Following is an example of how to transform your symmetric band matrix to upper-band-packed storage mode:

\[
\begin{align*}
\text{DO 2 J=1,N} \\
\text{M=K+1-J} \\
\text{DO 1 I=MAX(1,J-K),J} \\
\text{ASB(M+I,J)=A(I,J)}
\end{align*}
\]

\text{1: CONTINUE} \\
\text{2: CONTINUE}

\textbf{Lower-Band-Packed Storage Mode}: Only the band elements of the lower triangular part of a symmetric band matrix, including the main diagonal, are stored for lower-band-packed storage mode.

For a matrix \(A \) of order \(n \) and a half band width of \(k \), the array must have a leading dimension, \(lda \), greater than or equal to \(k+1 \), and the size of the second dimension must be (at least) \(n \).

Using array \(ASB \), which is declared as \(ASB(lda,n) \), where \(q=lda=k+1 \), the elements of a symmetric band matrix are stored as follows:

\[
\begin{bmatrix}
 a_{11} & a_{22} & \cdots & a_{nn} \\
 a_{21} & a_{32} & \cdots & * \\
 a_{31} & a_{42} & \cdots & . \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{q1} & a_{q+1,2} & \cdots & a_{n,n-k} & * & \cdots & *
\end{bmatrix}
\]

where “*” means you do not store an element in that position in the array.

Following is an example of a symmetric band matrix \(A \) of order 6 and a half band width of 2.

Given the following matrix \(A \):
you store it in lower-band-packed storage mode in array ASB, declared as ASB(3,6), as follows:

\[
\begin{bmatrix}
11 & 22 & 33 & 44 & 55 & 66 \\
21 & 32 & 43 & 54 & 65 & *
\end{bmatrix}
\]

Following is an example of how to transform your symmetric band matrix to lower-band-packed storage mode:

\[
\text{DO } 2:\text{ro}t \text{J}=1,N \\
\text{DO } 1:\text{ro}t \text{I}=J,\text{MIN}(J+K,N) \\
\text{ASB}(I-J+1,J)=A(I,J) \\
1:\text{ro}t \text{CONTINUE} \\
2:\text{ro}t \text{CONTINUE}
\]

Positive Definite Symmetric Band Matrix

A real symmetric band matrix \(A \) is positive definite if and only if \(x^T A x \) is positive for all nonzero vectors \(x \).

In Storage

The positive definite symmetric band matrix is stored in the same way a symmetric band matrix is stored. For a description of this storage technique, see “Symmetric Band Matrix” on page 80.

Complex Hermitian Band Matrix

A complex band matrix is Hermitian if it is equal to its conjugate transpose:

\(H = H^\dagger \)

In Storage

The complex Hermitian band matrix is stored using the same two techniques used for symmetric band matrices:

- Lower-band-packed storage mode, as described in “Lower-Band-Packed Storage Mode” on page 82
- Upper-band-packed storage mode, as described in “Upper-Band-Packed Storage Mode” on page 81

Following is an example of a complex Hermitian band matrix \(H \) of order 5, having a half band width of 2.

Given the following matrix \(H \):
you store it in a two-dimensional array HP, as follows:

- In lower-band-packed storage mode:

$$ HP = \begin{bmatrix}
(11, 0) & (21, -1) & (31, 1) & (0, 0) & (0, 0) \\
(21, 1) & (22, 0) & (32, -1) & (42, -1) & (0, 0) \\
(31, -1) & (32, 1) & (33, 0) & (43, -1) & (53, -1) \\
(0, 0) & (42, 1) & (43, 1) & (44, 0) & (54, -1) \\
(0, 0) & (0, 0) & (53, 1) & (54, 1) & (55, 0)
\end{bmatrix} $$

- In upper-band-packed storage mode:

$$ HP = \begin{bmatrix}
(11, *) & (22, *) & (33, *) & (44, *) & (55, *) \\
(21, 1) & (32, 1) & (43, 1) & (54, 1) & * \\
(31, -1) & (42, 1) & (53, 1) & * & *
\end{bmatrix} $$

where “*” means you do not have to store a value in that position in the array. The imaginary parts of the diagonal elements of a complex Hermitian band matrix are always 0, so you do not need to set these values. The ESSL subroutines always assume that the values in these positions are 0.

Triangular Band Matrix

There are two types of triangular band matrices: upper triangular band matrix and lower triangular band matrix. Triangular band matrices have the same number of rows as they have columns; that is, they have n rows and n columns. They have an upper or lower band width of k.

A band matrix U is an upper triangular band matrix if its nonzero elements are found only in the upper triangle of the matrix, including the main diagonal; that is:

$$ u_{ij} = 0 \quad \text{if } i > j $$

Its band elements are arranged uniformly near the diagonal in the upper triangle of the matrix, such that:

$$ u_{ij} = 0 \quad \text{if } j-i > k $$

The following matrix U illustrates an upper triangular band matrix of order n with an upper band width $k = q-1$:

$$ U = \begin{bmatrix}
(11, 0) & (21, -1) & (31, 1) & (0, 0) & (0, 0) \\
(21, 1) & (22, 0) & (32, -1) & (42, -1) & (0, 0) \\
(31, -1) & (32, 1) & (33, 0) & (43, -1) & (53, -1) \\
(0, 0) & (42, 1) & (43, 1) & (44, 0) & (54, -1) \\
(0, 0) & (0, 0) & (53, 1) & (54, 1) & (55, 0)
\end{bmatrix} $$
A band matrix L is a lower triangular band matrix if its nonzero elements are found only in the lower triangle of the matrix, including the main diagonal; that is:

$$l_{ij} = 0 \text{ if } i < j$$

Its band elements are arranged uniformly near the diagonal in the lower triangle of the matrix such that:

$$l_{ij} = 0 \text{ if } i-j > k$$

The following matrix L illustrates an upper triangular band matrix of order n with a lower band width $k = q-1$:

$$U = \begin{bmatrix}
 u_{11} & u_{21} & u_{31} & \cdots & u_{q1} & 0 & \cdots & 0 \\
 0 & u_{22} & u_{32} & \cdots & 0 & \cdots & 0 \\
 0 & 0 & u_{33} & \cdots & 0 & \cdots & 0 \\
 \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
 0 & \cdots & 0 & \cdots & 0 & \cdots & u_{nn}
\end{bmatrix}$$

A triangular band matrix can also be a unit triangular band matrix if all the diagonal elements have a value of 1. For an illustration of a unit triangular matrix, see “Triangular Matrix” on page 72.

In Storage

The two storage modes used for storing triangular band matrices are described in the following sections:

- “Upper-Triangular-Band-Packed Storage Mode” on page 86
- “Lower-Triangular-Band-Packed Storage Mode” on page 87

It is important to note that because the diagonal elements of a unit triangular band matrix are always one, you do not need to set these values in the array for these two storage modes. ESSL always assumes that the values in these positions are one.
Upper-Triangular-Band-Packed Storage Mode: Only the band elements of the upper triangular part of an upper triangular band matrix, including the main diagonal, are stored for upper-triangular-band-packed storage mode.

For a matrix U of order n and an upper band width of k, the array must have a leading dimension, lda, greater than or equal to $k+1$, and the size of the second dimension must be (at least) n.

Using array UTB, which is declared as $UTB(lda,n)$, where $p = lda = k+1$, the elements of an upper triangular band matrix are stored as follows:

$$
UTB = \begin{bmatrix}
* & \cdot & \cdot & \cdot & \cdot & \cdot & \cdots & \cdot & u_{1p} & u_{2,p+1} & \cdots & u_{n-k,n} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdots & \cdots & \cdot & \cdot & \cdot & \cdots & \cdots \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdots \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdots \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdots \\
& \cdots \\
\end{bmatrix}
$$

where “*” means you do not store an element in that position in the array.

Following is an example of an upper triangular band matrix U of order 6 and an upper band width of 3.

Given the following matrix U:

$$
\begin{bmatrix}
11 & 12 & 13 & 14 & 0 & 0 \\
0 & 22 & 23 & 24 & 25 & 0 \\
0 & 0 & 33 & 34 & 35 & 36 \\
0 & 0 & 0 & 44 & 45 & 46 \\
0 & 0 & 0 & 0 & 55 & 56 \\
0 & 0 & 0 & 0 & 0 & 66 \\
\end{bmatrix}
$$

you store it in upper-triangular-band-packed storage mode in array UTB, declared as $UTB(4,6)$, as follows:

$$
UTB = \begin{bmatrix}
\cdot & \cdot & \cdot & 14 & 25 & 36 \\
\cdot & \cdot & 13 & 24 & 35 & 46 \\
\cdot & 12 & 23 & 34 & 45 & 56 \\
11 & 22 & 33 & 44 & 55 & 66 \\
\end{bmatrix}
$$

Following is an example of how to transform your upper triangular band matrix to upper-triangular-band-packed storage mode:
DO 20 J=1,N
 M=K+1-J
DO 10 I=MAX(1,J-K),J
 UTB(M+I,J)=U(I,J)
10 CONTINUE
20 CONTINUE

Lower-Triangular-Band-Packed Storage Mode: Only the band elements of the lower triangular part of a lower triangular band matrix, including the main diagonal, are stored for lower-triangular-band-packed storage mode.

Note: As an alternative to this storage mode, you can specify your arguments in your subroutine in a special way so that ESSL selects the matrix elements properly, and you can leave your matrix stored in full-matrix storage mode. For details, see the Notes in the subroutine description in Part 2 of this book.

For a matrix L of order n and a lower band width of k, the array must have a leading dimension, lda, greater than or equal to $k+1$, and the size of the second dimension must be (at least) n.

Using array LTB, which is declared as $LTB(lda,n)$, where $q = lda = k+1$, the elements of a lower triangular band matrix are stored as follows:

$$
LTB = \begin{bmatrix}
 l_{11} & l_{22} & \cdots & l_{nn} \\
 l_{21} & l_{32} & \cdots & * \\
 l_{31} & l_{42} & \ddots & \\
 \vdots & \vdots & \ddots & \\
 l_{q1} & l_{q+1,2} & \cdots & l_{n,n-k} & * & \cdots & * \\
\end{bmatrix}
$$

where "*" means you do not store an element in that position in the array.

Following is an example of a lower triangular band matrix L of order 6 and a lower band width of 2.

Given the following matrix L:

$$
\begin{bmatrix}
 11 & 0 & 0 & 0 & 0 & 0 \\
 21 & 22 & 0 & 0 & 0 & 0 \\
 31 & 32 & 33 & 0 & 0 & 0 \\
 0 & 42 & 43 & 44 & 0 & 0 \\
 0 & 0 & 53 & 54 & 55 & 0 \\
 0 & 0 & 0 & 64 & 65 & 66 \\
\end{bmatrix}
$$

you store it in lower-triangular-band-packed storage mode in array LTB, declared as $LTB(3,6)$, as follows:
Following is an example of how to transform your lower triangular band matrix to lower-triangular-band-packed storage mode:

```fortran
DO 20 J=1,N
   M=1-J
   DO 10 I=J,MIN(N,J+K)
      LTB(M+I,J)=L(I,J)
   10 CONTINUE
20 CONTINUE
```

General Tridiagonal Matrix

A general tridiagonal matrix is a matrix whose nonzero elements are found only on the diagonal, subdiagonal, and superdiagonal of the matrix; that is:

\[a_{ij} = 0 \quad \text{if } |i-j| > 1 \]

The following matrix illustrates a general tridiagonal matrix of order \(n \):

\[
A = \begin{bmatrix}
 a_{11} & a_{12} & 0 & \cdots & 0 \\
 a_{21} & a_{22} & a_{23} & 0 & \cdots \\
 0 & a_{32} & a_{33} & a_{34} & 0 & \cdots \\
 \vdots & 0 & a_{43} & a_{44} & \ddots & \ddots \\
 \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
 0 & \cdots & \cdots & \cdots & \cdots & a_{nn}
\end{bmatrix}
\]

In Storage

Only the diagonal, subdiagonal, and superdiagonal elements of the general tridiagonal matrix are stored. This is called tridiagonal storage mode. The elements of a general tridiagonal matrix, \(A \), of order \(n \) are stored in three one-dimensional arrays, \(C \), \(D \), and \(E \), each of length \(n \), where array \(C \) contains the subdiagonal elements, stored as follows:

\[
C = (*, a_{21}, a_{32}, a_{43}, \ldots, a_{n,n-1})
\]

and array \(D \) contains the main diagonal elements, stored as follows:

\[
D = (a_{11}, a_{22}, a_{33}, \ldots, a_{nn})
\]

and array \(E \) contains the superdiagonal elements, stored as follows:

\[
E = (a_{12}, a_{23}, a_{34}, \ldots, a_{n-1,n}, *)
\]

where "*" means you do not store an element in that position in the array.

Following is an example of a general tridiagonal matrix \(A \) of order 5:

\[
\begin{bmatrix}
 a_{11} & a_{12} & 0 & \cdots & 0 \\
 a_{21} & a_{22} & a_{23} & 0 & \cdots \\
 0 & a_{32} & a_{33} & a_{34} & 0 & \cdots \\
 \vdots & 0 & a_{43} & a_{44} & \ddots & \ddots \\
 \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
 0 & \cdots & \cdots & \cdots & \cdots & a_{nn}
\end{bmatrix}
\]
which you store in tridiagonal storage mode in arrays C, D, and E, each of length 5, as follows:

\[
C = (\ast, 21, 32, 43, 54) \\
D = (11, 22, 33, 44, 55) \\
E = (12, 23, 34, 45, \ast)
\]

Note: Some ESSL subroutines provide an option for specifying at least \(n \) additional locations at the end of each of the arrays C, D, and E. These additional locations are used for working storage by the ESSL subroutine. The reasons for choosing this option are explained in the subroutine descriptions.

Symmetric Tridiagonal Matrix

A tridiagonal matrix \(A \) is also symmetric if and only if its nonzero elements are found only on the diagonal, subdiagonal, and superdiagonal of the matrix, and its subdiagonal elements and superdiagonal elements are equal; that is:

\[
(a_{ij} = 0 \text{ if } |i-j| > 1) \quad \text{and} \quad (a_{ij} = a_{ji} \text{ if } |i-j| = 1)
\]

The following matrix illustrates a symmetric tridiagonal matrix of order \(n \):

\[
A = \begin{bmatrix}
 a_{11} & a_{21} & 0 & \ldots & 0 \\
 a_{21} & a_{22} & a_{32} & 0 & \ldots \\
 0 & a_{32} & a_{33} & a_{43} & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & \ldots & \ldots & \ldots & a_{nn}
\end{bmatrix}
\]

In Storage

Only the diagonal and subdiagonal elements of the positive definite symmetric tridiagonal matrix are stored. This is called symmetric-tridiagonal storage mode. The elements of a symmetric tridiagonal matrix \(A \) of order \(n \) are stored in two one-dimensional arrays \(C \) and \(D \), each of length \(n \), where array \(C \) contains the subdiagonal elements, stored as follows:

\[
C = (\ast, a_{21}, a_{32}, a_{43}, \ldots, a_{n,n-1})
\]

where “\(\ast \)” means you do not store an element in that position in the array. Then array \(D \) contains the main diagonal elements, stored as follows:

\[
D = (a_{11}, a_{22}, a_{33}, \ldots, a_{nn})
\]
Following is an example of a symmetric tridiagonal matrix \(A \) of order 5:

\[
\begin{bmatrix}
10 & 1 & 0 & 0 & 0 \\
1 & 20 & 2 & 0 & 0 \\
0 & 2 & 30 & 3 & 0 \\
0 & 0 & 3 & 40 & 4 \\
0 & 0 & 0 & 4 & 50
\end{bmatrix}
\]

which you store in symmetric-tridiagonal storage mode in arrays \(C \) and \(D \), each of length 5, as follows:

\[
C = (*, 1, 2, 3, 4) \\
D = (10, 20, 30, 40, 50)
\]

Note: Some ESSL subroutines provide an option for specifying at least \(n \) additional locations at the end of each of the arrays \(C \) and \(D \). These additional locations are used for working storage by the ESSL subroutine. The reasons for choosing this option are explained in the subroutine descriptions.

Positive Definite Symmetric Tridiagonal Matrix

A real symmetric tridiagonal matrix \(A \) is positive definite if and only if \(x^T A x \) is positive for all nonzero vectors \(x \).

In Storage

The positive definite symmetric tridiagonal matrix is stored in the same way the symmetric tridiagonal matrix is stored. For a description of this storage technique, see “Symmetric Tridiagonal Matrix” on page 89.

Sparse Matrix

A sparse matrix is a matrix having a relatively small number of nonzero elements.

Consider the following as an example of a sparse matrix \(A \):

\[
\begin{bmatrix}
11 & 0 & 13 & 0 & 0 & 0 \\
21 & 22 & 0 & 24 & 0 & 0 \\
0 & 32 & 33 & 0 & 35 & 0 \\
0 & 0 & 43 & 44 & 0 & 46 \\
51 & 0 & 0 & 54 & 55 & 0 \\
61 & 62 & 0 & 0 & 65 & 66
\end{bmatrix}
\]

In Storage

A sparse matrix can be stored in full-matrix storage mode or a packed storage mode. When a sparse matrix is stored in full-matrix storage mode, all its elements, including its zero elements, are stored in an array.

The seven packed storage modes used for storing sparse matrices are described in the following sections:

- “Compressed-Matrix Storage Mode” on page 91
- “Compressed-Diagonal Storage Mode” on page 92
• “Storage-by-Indices” on page 95
• “Storage-by-Columns” on page 96
• “Storage-by-Rows” on page 97
• “Diagonal-Out Skyline Storage Mode” on page 99
• “Profile-In Skyline Storage Mode” on page 101

Note: When the elements of a sparse matrix are stored using any of these storage modes, the ESSL subroutines do not check that all elements are nonzero. You do not get an error if any elements are zero.

Compressed-Matrix Storage Mode: The sparse matrix A, stored in compressed-matrix storage mode, uses two two-dimensional arrays to define the sparse matrix storage, AC and KA. See reference [73]. Given the m by n sparse matrix A, having a maximum of nz nonzero elements in each row:

- AC is defined as $AC(lda,nz)$, where the leading dimension, lda, must be greater than or equal to m. Each row of array AC contains the nonzero elements of the corresponding row of matrix A. For each row in matrix A containing less than nz nonzero elements, the corresponding row in array AC is padded with zeros. The elements in each row can be stored in any order.

- KA is an integer array defined as $KA(lda,nz)$, where the leading dimension, lda, must be greater than or equal to m. It contains the column numbers of the matrix A elements that are stored in the corresponding positions in array AC. For each row in matrix A containing less than nz nonzero elements, the corresponding row in array KA is padded with any values from 1 to n. Because this array is used by the ESSL subroutines to access other target vectors in the computation, you must adhere to these required values to avoid errors.

Unless all the rows of sparse matrix A contain approximately the same number of nonzero elements, this storage mode requires a large amount of storage. This diminishes the performance you can obtain by using this storage mode.

Consider the following as an example of a 6 by 6 sparse matrix A with a maximum of four nonzero elements in each row. It shows how matrix A can be stored in arrays AC and KA.

Given the following matrix A:

$$
\begin{bmatrix}
11 & 0 & 13 & 0 & 0 & 0 \\
21 & 22 & 0 & 24 & 0 & 0 \\
0 & 32 & 33 & 0 & 35 & 0 \\
0 & 0 & 43 & 44 & 0 & 46 \\
51 & 0 & 0 & 54 & 55 & 0 \\
61 & 62 & 0 & 0 & 65 & 66
\end{bmatrix}
$$

the arrays are:
where “*” means you can store any value from 1 to 6 in that position in the array.

Symmetric sparse matrices use the same storage technique as nonsymmetric sparse matrices; that is, all nonzero elements of a symmetric matrix \(A \) must be stored in array \(AC \), not just the elements of the upper triangle and diagonal of matrix \(A \).

In general terms, this storage technique can be expressed as follows:

For each \(a_{ij} \neq 0 \), for \(i = 1, m \) and \(j = 1, n \) there exists \(k \), where \(1 \leq k \leq nz \), such that \(AC(i,k) = a_{ij} \) and \(KA(i,k) = j \).

For all other elements of \(AC \) and \(KA \), \(AC(i,k) = 0 \) and \(1 \leq KA(i,k) \leq n \)

where:
- \(a_{ij} \) are the elements of the \(m \) by \(n \) matrix \(A \) that has a maximum of \(nz \) nonzero elements in each row.
- Array \(AC \) is defined as \(AC(Lda,nz) \), where \(Lda \geq m \).
- Array \(KA \) is defined as \(KA(Lda,nz) \), where \(Lda \geq m \).

Compressed-Diagonal Storage Mode: The storage mode used for square sparse matrices stored in compressed-diagonal storage mode has two variations, depending on whether the matrix is a general sparse matrix or a symmetric sparse matrix. This section explains both of these variations. This section begins, however, by explaining the conventions used for numbering the diagonals in the matrix, which apply to the storage descriptions.

Matrix \(A \) of order \(n \) has \(2n-1 \) diagonals. Because \(k = j-i \) is constant for the elements \(a_{ij} \) along each diagonal, each diagonal can be assigned a diagonal number, \(k \), having a value from \(1-n \) to \(n-1 \). Then the diagonals can be referred to as \(d_k \), where \(k = 1-n, n-1 \).

The following matrix shows the starting position of each diagonal, \(d_k \):
For a general (square) sparse matrix \(A \), compressed-diagonal storage mode uses two arrays to define the sparse matrix storage, \(AD \) and \(LA \). Using the above convention for numbering the diagonals, and given that sparse matrix \(A \) contains \(nd \) diagonals having nonzero elements, arrays \(AD \) and \(LA \) are set up as follows:

- \(AD \) is defined as \(AD(lda, nd) \), where the leading dimension, \(lda \), must be greater than or equal to \(n \). Each diagonal of matrix \(A \) that has at least one nonzero element is stored in a column of array \(AD \). All of the elements of the diagonal, including its zero elements, are stored in \(n \) contiguous locations in the array, in the same order as they appear in the diagonal. Padding with zeros is required as follows to fill the \(n \) locations in each column of array \(AD \):
 - Each superdiagonal \((k > 0) \), which has \(n-k \) elements, is padded with \(k \) trailing zeros.
 - The main diagonal \((k = 0) \), which has \(n \) elements, does not require padding.
 - Each subdiagonal \((k < 0) \), which has \(n-|k| \) elements, is padded with \(|k| \) leading zeros.

The diagonals can be stored in any columns in array \(AD \).

- \(LA \) is a one-dimensional integer array of length \(nd \), containing the diagonal numbers \(k \) for the diagonals stored in each corresponding column in array \(AD \).

Because this storage mode requires entire diagonals to be stored, if the nonzero elements in matrix \(A \) are not concentrated along a few diagonals, this storage mode requires a large amount of storage. This diminishes the performance you obtain by using this storage mode.

Consider the following as an example of how a 6 by 6 general sparse matrix \(A \) with 5 nonzero diagonals is stored in arrays \(AD \) and \(LA \).

Given the following matrix \(A \):

\[
\begin{bmatrix}
11 & 0 & 13 & 0 & 0 & 0 \\
21 & 22 & 0 & 24 & 0 & 0 \\
0 & 32 & 33 & 0 & 35 & 0 \\
0 & 0 & 43 & 44 & 0 & 46 \\
51 & 0 & 0 & 54 & 55 & 0 \\
61 & 62 & 0 & 0 & 65 & 66 \\
\end{bmatrix}
\]

the arrays are:
For a symmetric sparse matrix, where each superdiagonal k is equal to subdiagonal $-k$, compressed-diagonal storage mode uses the same storage technique as for the general sparse matrix, except that only the nonzero main diagonal and one diagonal of each couple of nonzero diagonals, k and $-k$, are used in setting up arrays AD and LA. You can store either the upper or the lower diagonal of each couple.

Consider the following as an example of a symmetric sparse matrix of order 6 and how it is stored in arrays AD and LA, using only three nonzero diagonals in the matrix.

Given the following matrix A:

\[
\begin{bmatrix}
11 & 0 & 13 & 0 & 51 & 0 \\
0 & 22 & 0 & 24 & 0 & 62 \\
13 & 0 & 33 & 0 & 35 & 0 \\
0 & 24 & 0 & 44 & 0 & 46 \\
51 & 0 & 35 & 0 & 55 & 0 \\
0 & 62 & 0 & 46 & 0 & 66
\end{bmatrix}
\]

the arrays are:

\[
AD = \begin{bmatrix}
11 & 13 & 0 \\
22 & 24 & 0 \\
33 & 35 & 0 \\
44 & 46 & 0 \\
55 & 0 & 51 \\
66 & 0 & 62
\end{bmatrix}
\]

\[
LA = (0, 2, -4)
\]

In general terms, this storage technique can be expressed as follows:

For each $d_k \neq (0, \ldots, 0)$, for $k = 1-n, n-1$
for general square sparse matrices, or
for each unique $d_k \neq (0, \ldots, 0)$, for $k = 1-n, n-1$
for symmetric sparse matrices,
there exists l, where $1 \leq l \leq nd$,
such that $LA(l) = k$ and column l in array AD contains dp_k.

where:
Array \(AD \) is defined as \(AD(\text{lda}, nd) \), where \(\text{lda} \geq n \), and where \(nd \) is the number of nonzero diagonals, \(d_k \) that are stored in array \(AD \).

Array \(LA \) has \(nd \) elements.

\(k \) is the diagonal number of each diagonal, \(d_k \), where \(k = i-j \).

\(dp_k \) are the diagonals, \(d_k \), with padding, which are constructed from the sparse matrix \(A \) elements, \(a_{ij} \) for \(i, j = 1, n \) as follows:

- For superdiagonals (\(k > 0 \)), \(dp_k \) has \(k \) trailing zeros: \(dp_k = (a_{1,k+1}, a_{2,k+2}, \ldots, a_{n-k,n}, 0, \ldots, 0) \)
- For the main diagonal (\(k = 0 \)), \(dp_0 \) has no padding: \(dp_0 = (a_{11}, a_{22}, \ldots, a_{nn}) \)
- For subdiagonals (\(k < 0 \)), \(dp_k \) has \(|k| \) leading zeros: \(dp_k = (0, 1, \ldots, 0|k|, a_{|k|+1,1}, a_{|k|+2,2}, \ldots, a_{n,n-|k|}) \)

Storage-by-Indices: For a sparse matrix \(A \), storage-by-indices uses three one-dimensional arrays to define the sparse matrix storage, \(AR \), \(IA \), and \(JA \). Given the \(m \) by \(n \) sparse matrix \(A \) having \(ne \) nonzero elements, the arrays are set up as follows:

- \(AR \) of (at least) length \(ne \) contains the \(ne \) nonzero elements of the sparse matrix \(A \), stored contiguously in any order.
- \(IA \), an integer array of (at least) length \(ne \) contains the corresponding row numbers of each nonzero element, \(a_{ij} \) in matrix \(A \).
- \(JA \), an integer array of (at least) length \(ne \) contains the corresponding column numbers of each nonzero element, \(a_{ij} \) in matrix \(A \).

Consider the following as an example of a 6 by 6 sparse matrix \(A \) and how it can be stored in arrays \(AR \), \(IA \), and \(JA \):

Given the following matrix \(A \):

\[
\begin{bmatrix}
11 & 0 & 13 & 0 & 0 & 0 \\
21 & 22 & 0 & 24 & 0 & 0 \\
0 & 32 & 33 & 0 & 35 & 0 \\
0 & 0 & 43 & 44 & 0 & 46 \\
0 & 0 & 0 & 0 & 0 & 0 \\
61 & 62 & 0 & 0 & 65 & 66 \\
\end{bmatrix}
\]

the arrays are:

\[
AR = (11, 22, 32, 33, 13, 21, 43, 24, 66, 46, 35, 62, 61, 65, 44)
\]

\[
IA = (1, 2, 3, 3, 1, 2, 4, 2, 6, 4, 3, 6, 6, 6, 4)
\]

\[
JA = (1, 2, 2, 3, 3, 1, 3, 4, 6, 6, 5, 2, 1, 5, 4)
\]

In general terms, this storage technique can be expressed as follows:

For each \(a_{ij} \neq 0 \), for \(i = 1, m \) and \(j = 1, n \) there exists \(k \), where \(1 \leq k \leq ne \), such that:

\[
AR(k) = a_{ij} \\
IA(k) = i \\
JA(k) = j
\]
where:

- \(a_{ij}\) are the elements of the \(m \times n\) sparse matrix \(A\).
- Arrays \(AR\), \(IA\), and \(JA\) each have \(ne\) elements.

Storage-by-Columns: For a sparse matrix, \(A\), storage-by-columns uses three one-dimensional arrays to define the sparse matrix storage, \(AR\), \(IA\), and \(JA\). Given the \(m \times n\) sparse matrix \(A\) having \(ne\) nonzero elements, the arrays are set up as follows:

- \(AR\) of (at least) length \(ne\) contains the \(ne\) nonzero elements of the sparse matrix \(A\), stored contiguously. The columns of matrix \(A\) are stored consecutively from 1 to \(n\) in \(AR\). The elements in each column of \(A\) are stored in any order in \(AR\).
- \(IA\), an integer array of (at least) length \(ne\) contains the corresponding row numbers of each nonzero element, \(a_{ij}\), in matrix \(A\).
- \(JA\), an integer array of (at least) length \(n+1\) contains the relative starting position of each column of matrix \(A\) in array \(AR\); that is, each element \(JA(j)\) of the column pointer array indicates where column \(j\) begins in array \(AR\). If all elements in column \(j\) are zero, then \(JA(j) = JA(j+1)\). The last element, \(JA(n+1)\), indicates the position after the last element in array \(AR\), which is \(ne+1\).

Consider the following as an example of a \(6 \times 6\) sparse matrix \(A\) and how it can be stored in arrays \(AR\), \(IA\), and \(JA\).

Given the following matrix \(A\):

\[
\begin{bmatrix}
11 & 0 & 13 & 0 & 0 & 0 \\
21 & 22 & 0 & 24 & 0 & 0 \\
0 & 32 & 33 & 0 & 0 & 0 \\
0 & 0 & 43 & 44 & 0 & 46 \\
0 & 0 & 0 & 0 & 0 & 0 \\
61 & 62 & 0 & 0 & 0 & 66
\end{bmatrix}
\]

the arrays are:

- \(AR = (11, 61, 21, 62, 32, 22, 13, 33, 43, 44, 24, 46, 66)\)
- \(IA = (1, 6, 2, 6, 3, 2, 1, 3, 4, 4, 2, 4, 6)\)
- \(JA = (1, 4, 7, 10, 12, 12, 14)\)

In general terms, this storage technique can be expressed as follows:

For each \(a_{ij} \neq 0\), for \(i = 1, m\) and \(j = 1, n\) there exists \(k\), where \(1 \leq k \leq ne\), such that

- \(AR(k) = a_{ij}\)
- \(IA(k) = i\)

And for \(j = 1, n\),

- \(JA(j) = k\), where \(a_{ij}\) in \(AR(k)\), is the first element stored in \(AR\) for column \(j\)
- \(JA(j) = JA(j+1)\), where all \(a_{ij} = 0\) in column \(j\)
- \(JA(n+1) = ne+1\)

where:

- \(a_{ij}\) are the elements of the \(m \times n\) sparse matrix \(A\).
Arrays \(AR \) and \(IA \) each have \(ne \) elements.

Array \(JA \) has \(n+1 \) elements.

Storage-by-Rows: The storage mode used for sparse matrices stored by rows has three variations, depending on whether the matrix is a general sparse matrix or a symmetric sparse matrix. This section explains these variations.

For a **general** sparse matrix \(A \), storage-by-rows uses three one-dimensional arrays to define the sparse matrix storage, \(AR \), \(IA \), and \(JA \). Given the \(m \) by \(n \) sparse matrix \(A \) having \(ne \) nonzero elements, the arrays are set up as follows:

- \(AR \) of (at least) length \(ne \) contains the \(ne \) nonzero elements of the sparse matrix \(A \), stored contiguously. The rows of matrix \(A \) are stored consecutively from 1 to \(m \) in \(AR \). The elements in each row of \(A \) are stored in any order in \(AR \).

- \(IA \), an integer array of (at least) length \(m+1 \) contains the relative starting position of each row of matrix \(A \) in array \(AR \); that is, each element \(IA(i) \) of the row pointer array indicates where row \(i \) begins in array \(AR \). If all elements in row \(i \) are zero, then \(IA(i) = IA(i+1) \). The last element, \(IA(m+1) \), indicates the position after the last element in array \(AR \), which is \(ne+1 \).

- \(JA \), an integer array of (at least) length \(ne \) contains the corresponding column numbers of each nonzero element, \(a_{ij} \) in matrix \(A \).

Consider the following as an example of a 6 by 6 general sparse matrix \(A \) and how it can be stored in arrays \(AR \), \(IA \), and \(JA \).

Given the following matrix \(A \):

\[
\begin{bmatrix}
11 & 0 & 13 & 0 & 0 & 0 \\
21 & 22 & 0 & 24 & 0 & 0 \\
0 & 32 & 33 & 0 & 0 & 0 \\
0 & 0 & 43 & 44 & 0 & 46 \\
0 & 0 & 0 & 0 & 0 & 0 \\
61 & 62 & 0 & 0 & 0 & 66
\end{bmatrix}
\]

the arrays are:

\[
AR = (11, 13, 24, 22, 21, 32, 33, 44, 43, 46, 61, 62, 66)
\]

\[
IA = (1, 3, 6, 8, 11, 11, 14)
\]

\[
JA = (1, 3, 4, 2, 1, 2, 3, 4, 3, 6, 1, 2, 6)
\]

For a **symmetric** sparse matrix of order \(m \), storage-by-rows uses the same storage technique as for the general sparse matrix, except that only the upper or lower triangle and diagonal elements are used in setting up arrays \(AR \), \(IA \), and \(JA \).

Consider the following as an example of a symmetric sparse matrix \(A \) of order 6 and how it can be stored in arrays \(AR \), \(IA \), and \(JA \) using upper-storage-by-rows, which stores only the upper triangle and diagonal elements.

Given the following matrix \(A \):
the arrays are:

\[
\begin{bmatrix}
11 & 0 & 13 & 0 & 0 & 0 \\
0 & 22 & 23 & 24 & 0 & 0 \\
13 & 23 & 33 & 0 & 35 & 0 \\
0 & 24 & 0 & 44 & 0 & 46 \\
0 & 0 & 35 & 0 & 55 & 0 \\
0 & 0 & 0 & 46 & 0 & 0
\end{bmatrix}
\]

\[
\text{AR} = (11, 13, 22, 24, 23, 33, 35, 46, 44, 55)
\]

\[
\text{IA} = (1, 3, 6, 8, 10, 11, 11)
\]

\[
\text{JA} = (1, 3, 2, 3, 4, 3, 5, 4, 6, 5)
\]

Using the same symmetric matrix \(A \), consider the following as an example of how it can be stored in arrays AR, IA, and JA using lower-storage-by-rows, which stores only the lower triangle and diagonal elements:

\[
\text{AR} = (11, 22, 23, 33, 13, 24, 44, 55, 35, 46)
\]

\[
\text{IA} = (1, 2, 3, 6, 8, 10, 11)
\]

\[
\text{JA} = (1, 2, 2, 3, 1, 2, 4, 5, 3, 4)
\]

In general terms, this storage technique can be expressed as follows:

For each \(a_{ij} \neq 0 \),

for \(i = 1, m \) and \(j = 1, n \) for general sparse matrices

or

for \(i = 1, m \) and \(j = i, m \) for symmetric sparse matrices using the lower triangle

or

for \(i = 1, m \) and \(j = 1, i \) for symmetric sparse matrices using the upper triangle

there exists \(k \), where \(1 \leq k \leq ne \), such that

\[
\text{AR}(k) = a_{ij}
\]

\[
\text{JA}(k) = j
\]

And for \(i = 1, m \),

\[
\text{IA}(i) = k, \text{ where } a_{ij}, \text{ in } \text{AR}(k), \text{ is the first element stored in } \text{AR} \text{ for row } i
\]

\[
\text{IA}(i) = \text{IA}(i+1), \text{ where all } a_{ij} = 0 \text{ in row } i
\]

\[
\text{IA}(m+1) = ne+1
\]

where:

- \(a_{ij} \) are the elements of sparse matrix \(A \), which is either an \(m \) by \(n \) general sparse matrix or a symmetric sparse matrix of order \(m \) containing \(ne \) nonzero elements.
- Arrays \(\text{AR} \) and \(\text{JA} \) each have \(ne \) elements.
- Array \(\text{IA} \) has \(m+1 \) elements.
Diagonal-Out Skyline Storage Mode: The diagonal-out skyline storage mode used for sparse matrices has two variations, depending on whether the matrix is a general sparse matrix or a symmetric sparse matrix. Both of these variations are explained here.

For a general sparse matrix A, diagonal-out skyline storage mode uses four one-dimensional arrays to define the sparse matrix storage, AU, IDU, AL, and IDL. Given the sparse matrix A of order n, containing $nu+nl-n$ elements under the top and left profiles, the arrays are set up as follows:

- AU of (at least) length nu contains the upper triangle of the sparse matrix A, where the columns are stored consecutively from 1 to n in AU in the following way. For each column, the elements starting at the diagonal element and ending at the topmost nonzero element in the column are stored contiguously in AU. The elements stored may include zero elements along with the nonzero elements. If all elements in the column to be stored are zero, the diagonal element, a_{ii}, having a value of zero, is stored in AU for that column. A total of nu elements are stored for the upper triangle of A.

- IDU, an integer array of (at least) length $n+1$ contains the relative position of each diagonal element of matrix A in array AU; that is, each element $IDU(i)$ of the diagonal pointer array indicates where diagonal element a_{ii} is stored in array AU. One-origin is used, so the first element of IDU is always 1. The last element, $IDU(n+1)$, indicates the position after the last element in array AU, which is $nu+1$.

- AL of (at least) length nl contains the lower triangle of the sparse matrix A, where the rows are stored consecutively from 1 to n in AL in the following way. For each row, the elements starting at the diagonal element and ending at the leftmost nonzero element in the row are stored contiguously in AL. The elements stored may include zero elements along with the nonzero elements. If all elements in the row to be stored are zero, the diagonal element, a_{ii}, having a value of zero, is stored in AL for that row. A total of nl elements are stored for the lower triangle of A. The values of the diagonal elements are meaningless, so you can store any values in those positions in AL.

- IDL, an integer array of (at least) length $n+1$ contains the relative position of each diagonal element of matrix A in array AL; that is, each element $IDL(i)$ of the diagonal pointer array indicates where diagonal element a_{ii} is stored in array AL. One-origin is used, so the first element of IDL is always 1. The last element, $IDL(n+1)$, indicates the position after the last element in array AL, which is $nl+1$.

Consider the following as an example of a 6 by 6 general sparse matrix A and how it is stored in arrays AU, IDU, AL, and IDL.

Given the following matrix A:

$$
\begin{bmatrix}
0 & 12 & 13 & 0 & 0 & 0 \\
21 & 22 & 0 & 24 & 0 & 0 \\
31 & 0 & 33 & 34 & 0 & 36 \\
41 & 42 & 43 & 44 & 45 & 0 \\
0 & 0 & 0 & 54 & 55 & 56 \\
0 & 0 & 63 & 0 & 65 & 66
\end{bmatrix}
$$
the arrays are:

\[
AU = (0, 22, 12, 33, 0, 13, 44, 34, 24, 55, 45, 66, 56, 0, 36)
\]

IDU = (1, 2, 4, 7, 10, 12, 16) where \(nu=15\)

\[
AL = (*, *, 21, *, 0, 31, *, 43, 42, 41, *, 54, *, 65, 0, 63)
\]

IDL = (1, 2, 4, 7, 11, 13, 17) where \(nl=16\)

and where “*” means you do not have to store a value in that position in the array. However, these storage positions are required.

For a **symmetric** sparse matrix of order \(n\), diagonal-out skyline storage mode uses the same storage technique as for the upper triangle and diagonal elements of the general sparse matrix; therefore, only the \(AU\) and \(IDU\) arrays are needed.

Consider the following as an example of a symmetric sparse matrix \(A\) of order 6 and how it is stored in arrays \(AU\) and \(IDU\).

Given the following matrix \(A\):

\[
\begin{array}{cccccc}
0 & 12 & 13 & 0 & 0 & 0 \\
12 & 22 & 0 & 24 & 0 & 0 \\
13 & 0 & 33 & 34 & 0 & 36 \\
0 & 24 & 34 & 44 & 45 & 0 \\
0 & 0 & 0 & 45 & 55 & 56 \\
0 & 0 & 36 & 0 & 56 & 66 \\
\end{array}
\]

the arrays are:

\[
AU = (0, 22, 12, 33, 0, 13, 44, 34, 24, 55, 45, 66, 56, 0, 36)
\]

IDU = (1, 2, 4, 7, 10, 12, 16) where \(nu=15\)

In general terms, this storage technique can be expressed as follows:

For general sparse matrices and symmetric sparse matrices:

For each \(a_{ij}\) for \(j = 1, n\) and \(i = j, k,\)

where \(a_{ij}\) is the topmost \(a_{ij} \neq 0\) in each column \(j,\)

there exists \(m,\) where \(1 \leq m \leq nu,\) such that

\[
AU(m+j-i) = a_{ij}
\]

\[
IDU(j) = m \text{ for each } a_{ij}
\]

\[
IDU(n+1) = nu+1
\]

Also, for general sparse matrices:

For each \(a_{ij}\) for \(i = 1, n\) and \(i = j, k,\)

where \(a_{ik}\) is the leftmost \(a_{ij} \neq 0\) in each row \(i,\)

there exists \(m,\) where \(1 \leq m \leq nl,\) such that

\[
AL(m+i-j) = a_{ij}
\]

\[
IDL(i) = m \text{ for each } a_{ij}
\]

\[
IDL(n+1) = nl+1
\]

where:

- \(a_{ij}\) are the elements of sparse matrix \(A,\) of order \(n.\)
• Array AU has nu elements.
• Array AL has nl elements.
• Arrays IDU and IDL each have $n+1$ elements.

Profile-In Skyline Storage Mode: The profile-in skyline storage mode used for sparse matrices has two variations, depending on whether the matrix is a general sparse matrix or a symmetric sparse matrix. Both of these variations are explained here.

For a **general** sparse matrix A, profile-in skyline storage mode uses four one-dimensional arrays to define the sparse matrix storage, AU, IDU, AL, and IDL. Given the sparse matrix A of order n, containing $nu+nl-n$ elements under the top and left profiles, the arrays are set up as follows:

• AU of (at least) length nu contains the upper triangle of the sparse matrix A, where the columns are stored consecutively from 1 to n in AU in the following way. For each column, the elements starting at the topmost nonzero element in the column and ending at the diagonal element are stored contiguously in AU. The elements stored may include zero elements along with the nonzero elements. If all elements in the column to be stored are zero, the diagonal element, a_{ii} having a value of zero, is stored in AU for that column. A total of nu elements are stored for the upper triangle of A.

• IDU, an integer array of (at least) length $n+1$ contains the relative position of each diagonal element of matrix A in array AU; that is, each element IDU(i) of the diagonal pointer array indicates where diagonal element a_{ii} is stored in array AU. One-origin is used, so the first element of IDU is always 1. The last element, IDU($n+1$), indicates the position after the last element in array AU, which is $nu+1$.

• AL of (at least) length nl contains the lower triangle of the sparse matrix A, where the rows are stored consecutively from 1 to n in AL in the following way. For each row, the elements starting at the leftmost nonzero element in the row and ending at the diagonal element are stored contiguously in AL. The elements stored may include zero elements along with the nonzero elements. If all elements in the row to be stored are zero, the diagonal element, a_{ii} having a value of zero, is stored in AL for that row. A total of nl elements are stored for the lower triangle of A. The values of the diagonal elements are meaningless, so you can store any values in those positions in AL.

• IDL, an integer array of (at least) length $n+1$ contains the relative position of each diagonal element of matrix A in array AL; that is, each element IDL(i) of the diagonal pointer array indicates where diagonal element a_{ii} is stored in array AL. One-origin is used, so the first element of IDL is always 1. The last element, IDL($n+1$), indicates the position after the last element in array AL, which is $nl+1$.

Consider the following as an example of a 6 by 6 general sparse matrix A and how it is stored in arrays AU, IDU, AL, and IDL.

Given the following matrix A:

\[
\begin{bmatrix}
1 & 2 & 0 & 0 & 0 & 0 \\
0 & 3 & 4 & 0 & 0 & 0 \\
0 & 0 & 5 & 6 & 0 & 0 \\
0 & 0 & 0 & 7 & 8 & 0 \\
0 & 0 & 0 & 0 & 0 & 9 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]
For each value a_{ij} for $j = 1, n$ and $i = k, j$,
where a_{kj} is the topmost $a_{ij} \neq 0$ in each column j,
there exists m, where $1 \leq m \leq nu$, such that

\[
\begin{align*}
\text{AU}(m-j+i) &= a_{ij} \\
\text{IDU}(j) &= m \quad \text{for each } a_{ij} \\
\text{IDU}(n+1) &= nu+1
\end{align*}
\]

Also, for general sparse matrices:

For each value a_{ij} for $i = 1, n$ and $j = k, i$,
where a_{ij} is the leftmost $a_{ij} \neq 0$ in each row i, there exists m, where $1 \leq m \leq nl$, such that
\[
AL(m-i+j) = a_{ij}
\]
\[
IDL(i) = m \text{ for each } a_{ij}
\]
\[
IDL(n+1) = nl+1
\]

where:
- a_{ij} are the elements of sparse matrix A, of order n.
- Array AU has nu elements.
- Array AL has nl elements.
- Arrays IDU and IDL each have $n+1$ elements.

Sequences

A sequence is an ordered collection of numbers. It can be a one-, two-, or three-dimensional sequence. Sequences are used in the areas of sorting, searching, Fourier transforms, convolutions, and correlations.

Real and Complex Elements in Storage

Sequences can contain either real or complex data. For sequences containing complex data, a special storage arrangement is used to accommodate the two parts, a and b, of each complex number, $a+bi$, in the array. For each complex number, two sequential storage locations are required in the array. Therefore, exactly twice as much storage is required for complex sequences as for real sequences of the same precision. See “How Do You Set Up Your Scalar Data?” on page 26 for a description of real and complex numbers, and “How Do You Set Up Your Arrays?” on page 27 for a description of how real and complex data is stored in arrays.

One-Dimensional Sequences

A one-dimensional sequence appears symbolically as follows, where the subscripts indicate the element positions within the sequence:
\[
(x_1, x_2, x_3, \ldots x_n)
\]

In Storage

A one-dimensional sequence is stored in an array using stride in the same way a vector uses stride. For details, see “How Stride Is Used for Vectors” on page 56.

Two-Dimensional Sequences

A two-dimensional sequence appears symbolically as a series of columns of elements. (They are represented in the same way as a matrix without the square brackets.) The two subscripts indicate the element positions in the first and second dimensions, respectively.
In Storage
A two-dimensional sequence is stored in an array using the stride for the second dimension in the same way that a matrix uses leading dimension. It uses a stride of 1 for the first dimension. For details, see “How Leading Dimension Is Used for Matrices” on page 61. (In the area of Fourier transforms, a two-dimensional sequence may be stored in transposed form in an array. In this case, the stride for the second dimension is 1, and the stride for the first dimension is the leading dimension of the array.)

Three-Dimensional Sequences
A three-dimensional sequence is represented as a series of blocks of elements. Each block is equivalent to a two-dimensional sequence. The number of blocks indicates the length of the third dimension. The three subscripts indicate the element positions in the first, second, and third dimensions, respectively:
Plane 0:

\[
\begin{array}{cccc}
 a_{0,0,0} & \cdots & a_{0,n-1,0} \\
 a_{1,0,0} & \cdots & a_{1,n-1,0} \\
 \vdots & \ddots & \vdots \\
 \vdots & \ddots & \vdots \\
 a_{m-1,0,0} & \cdots & a_{m-1,n-1,0}
\end{array}
\]

Plane 1:

\[
\begin{array}{cccc}
 a_{0,0,1} & \cdots & a_{0,n-1,1} \\
 a_{1,0,1} & \cdots & a_{1,n-1,1} \\
 \vdots & \ddots & \vdots \\
 \vdots & \ddots & \vdots \\
 a_{m-1,0,1} & \cdots & a_{m-1,n-1,1}
\end{array}
\]

Plane \((p-1)\):

\[
\begin{array}{cccc}
 a_{0,0,p-1} & \cdots & a_{0,n-1,p-1} \\
 a_{1,0,p-1} & \cdots & a_{1,n-1,p-1} \\
 \vdots & \ddots & \vdots \\
 \vdots & \ddots & \vdots \\
 a_{m-1,0,p-1} & \cdots & a_{m-1,n-1,p-1}
\end{array}
\]

In Storage

Each block of elements in a three-dimensional sequence is stored successively in an array. The stride for the third dimension is used to select the elements for each successive block of elements in the array. The starting point of the three-dimensional sequence is specified as the argument for the sequence in the ESSL calling statement. For example, if the three-dimensional sequence is contained in array BIG, declared as \(\text{BIG}(1:20,1:30,1:10) \), and starts at the second element in the first dimension, the third element in the second dimension, and the first element in the third dimension of array BIG, you should specify \(\text{BIG}(2,3,1) \) as the argument for the sequence, such as in:

\[
\text{CALL SCFT3 (BIG(2,3,1),20,600,Y,32,2056,16,20,10,1,1.0,AUX,30000)}
\]

See “How Stride Is Used for Three-Dimensional Sequences” on page 106 for a detailed description of how three-dimensional sequences are stored within arrays using strides.
How Stride Is Used for Three-Dimensional Sequences

The elements of the three-dimensional sequence can be defined as a_{ijk} for $i = 1, m$, $j = 1, n$, and $k = 1, p$. The first two subscripts, i and j, define the elements in the first two dimensions of the sequence, and the third subscript, k, defines the elements in the third dimension. Using this definition of three-dimensional sequences, this section explains how these elements are mapped into an array using the concepts of stride. (Remember that the elements a_{ijk} are the elements of the conceptual data structure, the three-dimensional sequence to be processed by ESSL. The sequence does not have to include all the elements in the array. Strides are used by the ESSL subroutines to select the desired elements to be processed in the array.)

The sequence elements in the first two dimensions are mapped into an array in the same way a matrix or two-dimensional sequence is mapped into an array. It uses all the items listed in “How Leading Dimension Is Used for Matrices” on page 61, such as the starting point, the number of rows and columns, and the leading dimension. The stride for the first dimension, inc_1, of a three-dimensional sequence is assumed to be 1, as for matrices. The stride for the second dimension, inc_2, of a three-dimensional sequence is equivalent to the leading dimension for a matrix.

The stride for the third dimension, inc_3, is used to define the array elements that make up the third dimension of the three-dimensional sequence. The stride for the third dimension is used as an increment to step through the array to find the starting point for each of the p successive blocks of elements in the array. The stride, inc_3, must always be positive. It must always be greater than or equal to the number of elements to be processed in the first two dimensions; that is, $inc_3 \geq (inc_2)(n)$.

A three-dimensional sequence is usually stored in a one-, two-, or three-dimensional array; however, for the sake of this discussion, a three-dimensional array is used here. For an array, A, declared as $A(E1:E2,F1:F2,G1:G2)$, the strides in the first, second, and third dimensions are:

$$inc_1 = 1$$
$$inc_2 = (E2–E1+1)$$
$$inc_3 = (E2–E1+1)(F2–F1+1)$$

Given an array A, declared as $A(1:7,1:3,0:3)$, where the lengths of the first, second, and third dimensions are 7, 3, and 4, respectively, the resulting strides are $inc_1 = 1$, $inc_2 = 7$, and $inc_3 = 21$.

The starting point for a three-dimensional sequence in an array is at the location specified by the argument for the sequence in the ESSL calling statement. Using the array A, described above, if you specify $A(2,2,1)$ for a three-dimensional sequence, where A is defined as follows, in four blocks, for planes 0 - 3, respectively:

<table>
<thead>
<tr>
<th></th>
<th>1.0</th>
<th>8.0</th>
<th>15.0</th>
<th>22.0</th>
<th>29.0</th>
<th>36.0</th>
<th>43.0</th>
<th>50.0</th>
<th>57.0</th>
<th>64.0</th>
<th>71.0</th>
<th>78.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>9.0</td>
<td>16.0</td>
<td>23.0</td>
<td>30.0</td>
<td>37.0</td>
<td>44.0</td>
<td>51.0</td>
<td>58.0</td>
<td>65.0</td>
<td>72.0</td>
<td>79.0</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>10.0</td>
<td>17.0</td>
<td>24.0</td>
<td>31.0</td>
<td>38.0</td>
<td>45.0</td>
<td>52.0</td>
<td>59.0</td>
<td>66.0</td>
<td>73.0</td>
<td>80.0</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>11.0</td>
<td>18.0</td>
<td>25.0</td>
<td>32.0</td>
<td>39.0</td>
<td>46.0</td>
<td>53.0</td>
<td>60.0</td>
<td>67.0</td>
<td>74.0</td>
<td>81.0</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>12.0</td>
<td>19.0</td>
<td>26.0</td>
<td>33.0</td>
<td>40.0</td>
<td>47.0</td>
<td>54.0</td>
<td>61.0</td>
<td>68.0</td>
<td>75.0</td>
<td>82.0</td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td>13.0</td>
<td>20.0</td>
<td>27.0</td>
<td>34.0</td>
<td>41.0</td>
<td>48.0</td>
<td>55.0</td>
<td>62.0</td>
<td>69.0</td>
<td>76.0</td>
<td>83.0</td>
<td></td>
</tr>
<tr>
<td>7.0</td>
<td>14.0</td>
<td>21.0</td>
<td>28.0</td>
<td>35.0</td>
<td>42.0</td>
<td>49.0</td>
<td>56.0</td>
<td>63.0</td>
<td>70.0</td>
<td>77.0</td>
<td>84.0</td>
<td></td>
</tr>
</tbody>
</table>
then processing begins in the second block of elements at row 2 and column 2 in array \(A \), which is 30.0. The stride in the third dimension is then used to find the starting point for each of the next \(p - 1 \) successive blocks of elements in the array. The stride, \(inc3 \), is added to the starting point \(p - 1 \) times. In this example, the stride for the third dimension is 21, and the number of blocks of elements, \(p \), to be processed is 3, so the starting points in array \(A \) are \(A(2,2,1), A(2,2,2), \) and \(A(2,2,3) \). These are elements 30.0, 51.0, and 72.0. These array elements then correspond to the sequence elements \(a_{111}, a_{112}, \) and \(a_{113} \), respectively.

In general terms, this results in the following starting positions for the blocks of elements in the array:

\[
\begin{align*}
A(&BEGINI, BEGINJ, BEGINK) \\
A(&BEGINI, BEGINJ, BEGINK+1) \\
A(&BEGINI, BEGINJ, BEGINK+2) \\
\vdots \\
\vdots \\
A(&BEGINI, BEGINJ, BEGINK+p-1)
\end{align*}
\]

Using \(m = 4 \), \(n = 2 \), and \(p = 3 \) to define the elements of the three-dimensional data structure in this example, the resulting three-dimensional sequence is defined as follows, in three blocks, for planes 0 - 2, respectively:

\[
\begin{array}{ccc}
\text{Plane 0:} & \text{Plane 1:} & \text{Plane 2:} \\
\begin{align*}
a_{000} & a_{010} & a_{001} & a_{011} & a_{002} & a_{012} \\
a_{100} & a_{110} & a_{101} & a_{111} & a_{102} & a_{112} \\
a_{200} & a_{210} & a_{201} & a_{211} & a_{202} & a_{212} \\
a_{300} & a_{310} & a_{301} & a_{311} & a_{302} & a_{312}
\end{align*}
\end{array}
\]

As shown in this example, the three-dimensional sequence does not have to include all the blocks of elements in the array. In this case, the three-dimensional sequence includes only the second through the fourth block of elements in the array. The first block is not used. Elements of an array are selected as they are arranged in storage, regardless of the number of dimensions defined in the array. Therefore, when using a one- or two-dimensional array to store your three-dimensional sequence, you should understand how your array elements are stored to ensure that elements are selected properly. See “Setting Up Arrays in Fortran” on page 110 for a description of array storage.

Note: Three-dimensional sequences are used by the three-dimensional Fourier transform subroutines. By specifying certain stride values for \(inc2 \) and \(inc3 \) and declaring your arrays to have certain number of dimensions, you achieve optimal performance in these subroutines. For details, see “Setting Up Your Data” on page 764 and the Notes section for each subroutine.
Chapter 4. Coding Your Program

This chapter provides you with information you need to code your Fortran, C, C++, and PL/I programs using ESSL.

Fortran Programs

This section describes how to code your Fortran program using any of the ESSL run-time libraries.

Calling ESSL Subroutines and Functions in Fortran

In Fortran programs, most ESSL subroutines are invoked with the CALL statement:

```
CALL subroutine-name (argument-1, . . . , argument-n)
```

An example of a calling sequence for the SAXPY subroutine might be:

```
CALL SAXPY (5,A,X,J+INC,Y,1)
```

The remaining ESSL subroutines are invoked as functions by coding a function reference. You first declare the type of value returned by the function: short- or long-precision real, short- or long-precision complex, or integer. Then you code the function reference as part of an expression in a statement. An example of declaring and invoking the DASUM function might be:

```fortran
DOUBLE PRECISION DASUM,SUM,X
.
.
SUM = DASUM (N,X,INCX)
```

Values are returned differently for ESSL subroutines and functions. For subroutines, the results of the computation are returned in an argument specified in the calling sequence. In the CALL statement above, the result is returned in argument Y. For functions, the result is returned as the value of the function. In the assignment statement above, the result is assigned to SUM.

See the Fortran publications for details on how to code the CALL statement and a function reference.

Setting Up a User-Supplied Subroutine for ESSL in Fortran

Some ESSL numerical quadrature subroutines call a user-supplied subroutine, subf, identified in the ESSL calling sequence. If your program that calls the numerical quadrature subroutines is coded in Fortran, there are some coding rules you must follow:

- You must declare subf as EXTERNAL in your program.
- You should code the subf subroutine to the specifications given in “Programming Considerations for the SUBF Subroutine” on page 942. For examples of coding a subf subroutine in Fortran, see the subroutine descriptions in that chapter.
Setting Up Scalar Data in Fortran

Table 27 lists the scalar data types in Fortran that are used for ESSL. Only those types and lengths used by ESSL are listed.

Table 27. Scalar Data Types in Fortran Programs

<table>
<thead>
<tr>
<th>Terminology Used by ESSL</th>
<th>Fortran Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Character item¹</td>
<td>CHARACTER*1</td>
</tr>
<tr>
<td>'N', 'T', 'C' or 'n', 't', 'c'</td>
<td>'N', 'T', 'C'</td>
</tr>
<tr>
<td>Logical item</td>
<td>LOGICAL</td>
</tr>
<tr>
<td>.TRUE., .FALSE.</td>
<td>.TRUE., .FALSE.</td>
</tr>
<tr>
<td>32-bit environment integer</td>
<td>INTEGER or INTEGER*4</td>
</tr>
<tr>
<td>12345, −12345</td>
<td>12345, −12345</td>
</tr>
<tr>
<td>64-bit environment integer²</td>
<td>INTEGER*8³</td>
</tr>
<tr>
<td>12345, −12345</td>
<td>12345_8, −12345_8</td>
</tr>
<tr>
<td>Short-precision real number⁴</td>
<td>REAL or REAL*4</td>
</tr>
<tr>
<td>12.345</td>
<td>0.12345E2</td>
</tr>
<tr>
<td>Long-precision real number⁴</td>
<td>DOUBLE PRECISION or REAL*8</td>
</tr>
<tr>
<td>12.345</td>
<td>0.12345D2</td>
</tr>
<tr>
<td>Short-precision complex number⁴</td>
<td>COMPLEX or COMPLEX*8</td>
</tr>
<tr>
<td>(123.45, −54321.0)</td>
<td>(123.45E0, −543.21E2)</td>
</tr>
<tr>
<td>Long-precision complex number⁴</td>
<td>COMPLEX*16</td>
</tr>
<tr>
<td>(123.45, −54321.0)</td>
<td>(123.45D0, −543.21D2)</td>
</tr>
</tbody>
</table>

¹ ESSL accepts character data in either upper- or lowercase in its calling sequences.
² In accordance with the LP64 data model, all ESSL integer arguments remain 32-bits except for the iusadr argument for ERRSET.
³ INTEGER may be used if you specify the compiler option -qintsize=8.
⁴ Short- and long-precision numbers look the same in this book.

Setting Up Arrays in Fortran

Arrays are declared in Fortran by specifying the array name, the number of dimensions, and the range of each dimension in a DIMENSION statement or an explicit data type statement, such as REAL, DOUBLE PRECISION, and so forth.

Real and Complex Array Elements

Each array element can be either a real or complex data item of short or long precision. The type of the array determines the size of the element storage locations. Short-precision data requires 4 bytes, and long-precision data requires 8 bytes. Complex data requires two storage locations of either 4 or 8 bytes each, for short or long precision, respectively, to accommodate the two parts of the complex number: \(c = a + bi \). Therefore, exactly twice as much storage is required for complex data as for real data of the same precision. See “How Do You Set Up Your Scalar Data?” on page 26 for a description of real and complex numbers.

Even though complex data items require two storage locations, the same number of elements exist in the array as for real data. A reference to an element—for
example, $C(3)$—in an array containing complex data gives you the whole complex number; that is, it contains both a and b, where the complex number is expressed as follows:

$C(I) \rightarrow (a_i, b_i)$ for a one-dimensional array

$C(I, J) \rightarrow (a_{ij}, b_{ij})$ for a two-dimensional array

$C(I, J, K) \rightarrow (a_{ijk}, b_{ijk})$ for a three-dimensional array

One-Dimensional Array

For a one-dimensional array in Fortran 77, you can code:

```fortran
DIMENSION A(E1:E2)
```

where A is the name of the array, $E1$ is the lower bound, and $E2$ is the upper bound of the single dimension in the array. If the lower bound is not specified, such as in $A(E2)$, the value is assumed to be 1. The upper bound is required.

A one-dimensional array is stored in ascending storage locations (relative to some base storage address) in the following order:

<table>
<thead>
<tr>
<th>Relative Location</th>
<th>Array Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$A(E1)$</td>
</tr>
<tr>
<td>2</td>
<td>$A(E1+1)$</td>
</tr>
<tr>
<td>3</td>
<td>$A(E1+2)$</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>$E2-E1+1$</td>
<td>$A(E2)$</td>
</tr>
</tbody>
</table>

For example, the array A of length 4 specified in the DIMENSION statement as $A(0:3)$ and containing the following elements:

$A = (1, 2, 3, 4)$

has its elements arranged in storage as follows:

<table>
<thead>
<tr>
<th>Relative Location</th>
<th>Array Element Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Two-Dimensional Array

For a two-dimensional array in Fortran 77, you can code:

```fortran
DIMENSION A(E1:E2,F1:F2)
```

where A is the name of the array, $E1$ and $F1$ are the lower bounds of the first and second dimensions, respectively, and $E2$ and $F2$ are the upper bounds of the first and second dimensions, respectively. If either of the lower bounds is not specified, such as in $A(E2,F1:F2)$, the value is assumed to be 1. The upper bounds are always required for each dimension. For examples of Fortran 77 usage, see “SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX—Matrix-Vector Product for a General Matrix, Its Transpose, or Its Conjugate Transpose” on page 294.

The elements of a two-dimensional array are stored in column-major order; that is, they are stored in the following ascending storage locations (relative to some base...
storage address) with the value of the first (row) subscript expression increasing most rapidly and the value of the second (column) subscript expression increasing least rapidly. Following are the locations of the elements in the array:

<table>
<thead>
<tr>
<th>Relative Location</th>
<th>Array Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(A(E_1,F_1)) (starting column 1)</td>
</tr>
<tr>
<td>2</td>
<td>(A(E_1+1,F_1))</td>
</tr>
<tr>
<td>. .</td>
<td></td>
</tr>
<tr>
<td>. .</td>
<td></td>
</tr>
<tr>
<td>(E_2-E_1+1)</td>
<td>(A(E_2,F_1))</td>
</tr>
<tr>
<td>((E_2-E_1+1)+1)</td>
<td>(A(E_1,F_1+1)) (starting column 2)</td>
</tr>
<tr>
<td>((E_2-E_1+1)+2)</td>
<td>(A(E_1+1,F_1+1))</td>
</tr>
<tr>
<td>. .</td>
<td></td>
</tr>
<tr>
<td>. .</td>
<td></td>
</tr>
<tr>
<td>((E_2-E_1+1)(2))</td>
<td>(A(E_2,F_1+1))</td>
</tr>
<tr>
<td>((E_2-E_1+1)(2)+1)</td>
<td>(A(E_1,F_1+2)) (starting column 3)</td>
</tr>
<tr>
<td>((E_2-E_1+1)(2)+2)</td>
<td>(A(E_1+1,F_1+2))</td>
</tr>
<tr>
<td>. .</td>
<td></td>
</tr>
<tr>
<td>. .</td>
<td></td>
</tr>
<tr>
<td>((E_2-E_1+1)(F_2-F_1))</td>
<td>(A(E_2,F_2-1))</td>
</tr>
<tr>
<td>((E_2-E_1+1)(F_2-F_1)+1)</td>
<td>(A(E_1,F_2)) (starting column F_2-F_1+1)</td>
</tr>
<tr>
<td>((E_2-E_1+1)(F_2-F_1)+2)</td>
<td>(A(E_1+1,F_2))</td>
</tr>
<tr>
<td>. .</td>
<td></td>
</tr>
<tr>
<td>. .</td>
<td></td>
</tr>
<tr>
<td>((E_2-E_1+1)(F_2-F_1+1))</td>
<td>(A(E_2,F_2))</td>
</tr>
</tbody>
</table>

For example, the 3 by 4 array \(A\) specified in the DIMENSION statement as \(A(2:4,1:4)\) and containing the following elements:

\[
A = \begin{bmatrix}
11 & 12 & 13 & 14 \\
21 & 22 & 23 & 24 \\
31 & 32 & 33 & 34
\end{bmatrix}
\]

has its elements arranged in storage as follows:

<table>
<thead>
<tr>
<th>Relative Location</th>
<th>Array Element Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11 (starting column 1)</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>31</td>
</tr>
<tr>
<td>4</td>
<td>12 (starting column 2)</td>
</tr>
<tr>
<td>5</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>13 (starting column 3)</td>
</tr>
<tr>
<td>8</td>
<td>23</td>
</tr>
<tr>
<td>9</td>
<td>33</td>
</tr>
<tr>
<td>10</td>
<td>14 (starting column 4)</td>
</tr>
<tr>
<td>11</td>
<td>24</td>
</tr>
<tr>
<td>12</td>
<td>34</td>
</tr>
</tbody>
</table>
Each element $A(i,j)$ of the array A, declared $A(1:n, 1:m)$, containing real or complex data, occupies the storage location whose address is given by the following formula:

$$\text{address} \{A(i,j)\} = \text{address} \{A\} + (i-1 + n(j-1))/f$$

for:

- $I = 1, n$ and
- $J = 1, m$

where:

- $f = 4$ for short-precision real numbers
- $f = 8$ for long-precision real numbers
- $f = 8$ for short-precision complex numbers
- $f = 16$ for long-precision complex numbers

Three-Dimensional Array

For a three-dimensional array in Fortran 77, you can code:

```fortran
DIMENSION A(E1:E2,F1:F2,G1:G2)
```

where A is the name of the array, $E1$, $F1$, and $G1$ are the lower bounds of the first, second, and third dimensions, respectively, and $E2$, $F2$, and $G2$ are the upper bounds of the first, second, and third dimensions, respectively. If any of the lower bounds are not specified, such as in $A(E1:E2,F1:F2,G2)$, the value is assumed to be 1. The upper bounds are always required for each dimension. For examples of Fortran 77 usage, see “SCFT3 and DCFT3—Complex Fourier Transform in Three Dimensions” on page 829.

The elements of a three-dimensional array can be thought of as a set of two-dimensional arrays, stored sequentially in ascending storage locations in the array. The elements in each two-dimensional array are stored as defined in the previous section. In the three-dimensional array, the value of the first (row) subscript expression increases most rapidly, the second (column) subscript expression increases less rapidly, and the third subscript expression (set of rows and columns) increases least rapidly. Following are the locations of the elements in the array:

<table>
<thead>
<tr>
<th>Relative Location</th>
<th>Array Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$A(E1,F1,G1)$ (starting the first set)</td>
</tr>
<tr>
<td>2</td>
<td>$A(E1+1,F1,G1)$</td>
</tr>
<tr>
<td></td>
<td>$A(E1+1,F1+1), \ldots, A(E2,F1+1)$</td>
</tr>
<tr>
<td></td>
<td>$A(E1,F1,G1+1)$ (starting the second set)</td>
</tr>
<tr>
<td></td>
<td>$A(E1+1,F1+1), \ldots, A(E2,F1+1)+(E2-E1+1)$</td>
</tr>
<tr>
<td></td>
<td>$A(E2,F1+1)$</td>
</tr>
<tr>
<td></td>
<td>$A(E2,F1+1)(2)$ (starting the third set)</td>
</tr>
<tr>
<td></td>
<td>$A(E2,F1+1)(2), \ldots, A(E2,F1+1)(2)+(E2-E1+1)$</td>
</tr>
</tbody>
</table>
\[(E_2-E_1+1)(F_2-F_1+1)(G_2-G_1)\] \[A(E_2,F_2,G_2-1)\]

\[(E_2-E_1+1)(F_2-F_1+1)(G_2-G_1+1)+1\] \[A(E_1,F_1,G_2)\]

\[(E_2-E_1+1)(F_2-F_1+1)(G_2-G_1)+2\] \[A(E_1+1,F_1,G_2)\]

\[(E_2-E_1+1)(F_2-F_1+1)(G_2-G_1+1)\] \[A(E_2,F_2,G_2)\]

The last set is the \(G_2-G_1+1\) set.

For example, the 3 by 2 by 4 array \(A\) specified in the DIMENSION statement as \(A(1:3,0:1,2:5)\) and containing the following sets of rows and columns of elements:

\[
A = \begin{bmatrix}
111 & 121 \\
211 & 221 \\
311 & 321 \\
112 & 122 \\
212 & 222 \\
312 & 322 \\
113 & 123 \\
213 & 223 \\
313 & 323 \\
114 & 124 \\
214 & 224 \\
314 & 324 \\
\end{bmatrix}
\]

has its elements arranged in storage as follows:

<table>
<thead>
<tr>
<th>Relative Location</th>
<th>Array Element Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>111 (starting the first set)</td>
</tr>
<tr>
<td>2</td>
<td>211</td>
</tr>
<tr>
<td>3</td>
<td>311</td>
</tr>
<tr>
<td>4</td>
<td>121</td>
</tr>
<tr>
<td>5</td>
<td>221</td>
</tr>
<tr>
<td>6</td>
<td>321</td>
</tr>
<tr>
<td>7</td>
<td>112 (starting the second set)</td>
</tr>
<tr>
<td>8</td>
<td>212</td>
</tr>
<tr>
<td>9</td>
<td>312</td>
</tr>
<tr>
<td>10</td>
<td>122</td>
</tr>
<tr>
<td>11</td>
<td>222</td>
</tr>
<tr>
<td>12</td>
<td>322</td>
</tr>
<tr>
<td>13</td>
<td>113 (starting the third set)</td>
</tr>
<tr>
<td>14</td>
<td>213</td>
</tr>
<tr>
<td>15</td>
<td>313</td>
</tr>
<tr>
<td>16</td>
<td>123</td>
</tr>
<tr>
<td>17</td>
<td>223</td>
</tr>
<tr>
<td>18</td>
<td>323</td>
</tr>
<tr>
<td>19</td>
<td>114 (starting the fourth set)</td>
</tr>
<tr>
<td>20</td>
<td>214</td>
</tr>
<tr>
<td>21</td>
<td>314</td>
</tr>
<tr>
<td>22</td>
<td>124</td>
</tr>
<tr>
<td>23</td>
<td>224</td>
</tr>
<tr>
<td>24</td>
<td>324</td>
</tr>
</tbody>
</table>

Each element \(A(I,J,K)\) of the array \(A\), declared \(A(1:n, 1:m, 1:p)\), containing real or complex data, occupies the storage location whose address is given by the following formula:

\[
\text{address} \{A(I,J,K)\} = \text{address} \{A\} + (I-1 + n(J-1) + mn(K-1))f
\]

for:

\[I = 1, n\]
\[J = 1, m \]
\[K = 1, p \]

where:

\[f = 4 \text{ for short-precision real numbers} \]
\[f = 8 \text{ for long-precision real numbers} \]
\[f = 8 \text{ for short-precision complex numbers} \]
\[f = 16 \text{ for long-precision complex numbers} \]

Creating Multiple Threads and Calling ESSL from Your Fortran Program

The example shown below shows how to create up to a maximum of eight threads, where each thread calls the DURAND and DGEICD subroutines.

Be sure to compile this program with the xlf_r command and the -qnosave option.

![Program Listing]

```fortran
program matinv_example
  implicit none
!
! program to invert m nxn random matrices
!
  real(8), allocatable :: A(:, :, i), det(:, i), rcond(:)
  real(8) :: dummy_aux, seed=1998, sd
  integer :: rc, i, m=8, n=500, iopt=3, naux=0
!
! allocate storage
!
  allocate(A(n, n, m), stat=rc)
  call error_exit(rc, "Allocation of matrix A")
  allocate(det(2, m), stat=rc)
  call error_exit(rc, "Allocation of det")
  allocate(rcond(m), stat=rc)
  call error_exit(rc, "Allocation of rcond")
!
! Calculate inverses in parallel
!
  !SMP$ parallel do private(i, sd), schedule(static),
  !SMP$& share(n, a, iopt, rcond, det, dummy_aux, naux)
  do i=1, m
    sd = seed + 100*i
    call durand(sd, n*n, A(1, 1, i))
    call dgeicd(A(1, 1, i), n, n, iopt, rcond(i), det(1, i),
               & dummy_aux, naux)
  enddo
```
Handling Errors in Your Fortran Program

ESSL provides you with flexibilities in handling both input-argument errors and computational errors:

- For input-argument errors 2015, 2030, and 2200 which are optionally-recoverable errors, ESSL allows you to obtain corrected input-argument values and react at run time.

 Note: In the case where error 2015 is unrecoverable, you have the option of dynamic allocation for most of the aux arguments. For details see the subroutine descriptions in Part 2 of this book.

- For computational errors, ESSL provides a return code and additional information to help you analyze the problem in your program and react at run time.

"Input-Argument Errors in Fortran" on page 117 and “Computational Errors in Fortran” on page 120 explain how to use these facilities by describing the additional statements you must code in your program.

For multithreaded application programs, if you want to initialize the error option table and change the default settings for input-argument and computational errors, you need to implement the steps shown in “Input-Argument Errors in Fortran” on page 117 and “Computational Errors in Fortran” on page 120 on each thread that calls ESSL. An example is shown in “Example of Handling Errors in a Multithreaded Application Program” on page 125.
Input-Argument Errors in Fortran

To obtain corrected input-argument values in a Fortran program and to avert program termination for the optionally-recoverable input-argument errors 2015, 2030, and 2200 add the statements in the following steps your program. Steps 3 and 7 for ERRSAV and ERRSTR, respectively, are optional. Adding these steps makes the effect of the call to ERRSET temporary.

Step 1. Declare ENOTRM as External

```fortran
EXTERNAL ENOTRM
```

This declares the ESSL error exit routine ENOTRM as an external reference in your program. This should be coded in the beginning of your program before any of the following statements.

Step 2. Call EINFO for Initialization

```fortran
CALL EINFO (0)
```

This calls the EINFO subroutine with one argument of value 0 to initialize the ESSL error option table. It is required only if you call ERRSET in your program. It is coded only once in the beginning of your program before any calls to ERRSET. For a description of EINFO, see “EINFO—ESSL Error Information-Handler Subroutine” on page 982.

Step 3. Call ERRSAV

```fortran
CALL ERRSAV (ierno,tabent)
```

(This is an optional step.) This calls the ERRSAV subroutine, which stores the error option table entry for error number ierno in an 8-byte storage area, tabent, which is accessible to your program. ERRSAV must be called for each entry you want to save. This step is used, along with step 7, for ERRSTR. For information on whether you should use ERRSAV and ERRSTR, see “How Can You Control Error Handling in Large Applications by Saving and Restoring Entries in the Error Option Table?” on page 51. For an example, see “Example 3” on page 124, as the use is the same as for computational errors.

Step 4. Call ERRSET

```fortran
CALL ERRSET (ierno,inoal,inomes,itrace,iusadr,irange)
```

This calls the ERRSET subroutine, which allows you to dynamically modify the action taken when an error occurs. For optionally-recoverable ESSL input-argument errors, you need to call ERRSET only if you want to avoid terminating your program and you want the input arguments associated with this error to be assigned correct values in your program when the error occurs. For one error (ierno) or a range of errors (irange), you can specify:
• How many times each error can occur before execution terminates \((inoal)\)
• How many times each error message can be printed \((inomes)\)
• The ESSL exit routine ENOTRM, to be invoked for the error indicated \((iusadr)\)

ERRSET must be called for each error code you want to indicate as being recoverable. For ESSL, \(ierno\) should have a value of 2015, 2030 or 2200. If you want to eliminate error messages, you should indicate a negative number for \(inomes\); otherwise, you should specify 0 for this argument. All the other ERRSET arguments should be specified as 0.

For a list of the default values set in the ESSL error option table, see Table 26 on page 49. For a description of the input-argument errors, see “Input-Argument Error Messages(2001-2099)” on page 177. For a description of ERRSET, see Chapter 17 on page 979.

Step 5. Call ESSL

```
CALL name (arg-1,...,arg-n,yyy,zzz,...)
```

This calls the ESSL subroutine and specifies a branch on one or more return code values, where:

• \(name\) specifies the ESSL subroutine.
• \(arg-1,..., arg-n\) are the input and output arguments.
• \(yyy, zzz, and any other statement numbers preceded by an “*” are the Fortran statement numbers indicating where you want to branch when you get a nonzero return code. Each corresponds to a different ESSL value. Control goes to the corresponding statement number when a nonzero return code value is returned for the CALL statement. Return code values are described under “Error Conditions” in each ESSL subroutine description in Part 2 of this book.

Step 6. Perform the Desired Action: These are the statements at statement number \(yyy\) or \(zzz\), shown in the CALL statement in Step 5, and preceded by an “*.” The statement to which control is passed corresponds to the return code value for the error.

These statements perform whatever action is desired when the recoverable error occurs. These statements may check the new values set in the input arguments to determine whether adequate program storage is available, and then decide whether to continue or terminate the program. Otherwise, these statements may check that the size of the working storage arrays or the length of the transform agrees with other data in the program. The program may also store this corrected input argument value for future reference.

Step 7. Call ERRSTR

```
CALL ERRSTR (ierno,tabent)
```

(This is an optional step.) This calls the ERRSTR subroutine, which stores an entry in the error option table for error number \(ierno\) from an 8-byte storage area, \(tabent\).
which is accessible to your program. ERRSTR must be called for each entry you want to store. This step is used, along with step 3, for ERRSAV. For information on whether you should use ERRSAV and ERRSTR, see “How Can You Control Error Handling in Large Applications by Saving and Restoring Entries in the Error Option Table?” on page 51. For an example, see “Example 3” on page 124, as the use is the same as for computational errors.

Example
This example shows an error code 2015, which resets the size of the work area aux, specified in naux, if the value specified is too small. It also indicates that no error messages should be issued.

```
C DECLARE ENOTRM AS EXTERNAL
EXTERNAL ENOTRM
C INITIALIZE THE ESSL ERROR OPTION TABLE
CALL EINFO(0)
C MAKE ERROR CODE 2:z"ro"ot15 A RECOVERABLE ERROR AND SUPPRESS PRINTING ALL ERROR MESSAGES FOR IT
CALL ERRSET(2:z"ro"ot15,:z"ro"ot,-1,:z"ro"ot,ENOTRM,2:z"ro"ot15)
C CALL ESSL ROUTINE SWLEV.
C IF THE NAUX INPUT ARGUMENT IS TOO SMALL, ERROR 2015 OCCURS. THE MINIMUM VALUE REQUIRED IS STORED IN THE NAUX INPUT ARGUMENT AND CONTROL GOES TO LABEL 4:z"ro"ot:z"ro"ot.
CALL SWLEV(X,INCX,U,INCU,Y,INCY,N,AUX,NAUX,+400)
```

Computational Errors in Fortran

To obtain information about an ESSL computational error in a Fortran program, add the statements in the following steps to your program. Steps 2 and 7 for ERRSAV and ERRSTR, respectively, are optional. Adding these steps makes the effect of the call to ERRSET temporary. For a list of those computational errors that return information and to which these steps apply, see “EINFO—ESSL Error Information-Handler Subroutine” on page 982.

Step 1. Call EINFO for Initialization

CALL EINFO (0)

This calls the EINFO subroutine with one argument of value 0 to initialize the ESSL error option table. It is required only if you call ERRSET in your program. It is coded only once in the beginning of your program before any calls to ERRSET. For a description of EINFO, see “EINFO—ESSL Error Information-Handler Subroutine” on page 982.

Step 2. Call ERRSAV

CALL ERRSAV (ieren,tabent)

(This is an optional step.) This calls the ERRSAV subroutine, which stores the error option table entry for error number ierno in an 8-byte storage area, tabent, which is accessible to your program. ERRSAV must be called for each entry you want to save. This step is used, along with step 7, for ERRSTR. For information on whether you should use ERRSAV and ERRSTR, see “How Can You Control Error Handling in Large Applications by Saving and Restoring Entries in the Error Option Table?” on page 51.

Step 3. Call ERRSET

CALL ERRSET (ieren,inoal,inomes,itrace,iusadr,irange)

This calls the ERRSET subroutine, which allows you to dynamically modify the action taken when an error occurs. For ESSL computational errors, you need to call ERRSET only if you want to change the default values in the ESSL error option table. For one error (ieren) or a range of errors (irange), you can specify:

- How many times each error can occur before execution terminates (inoal)
• How many times each error message can be printed \textit{(inomes)}

ERRSET must be called for each error code for which you want to change the default values. For ESSL, \textit{ino} should be set to one of the eligible values listed in Table 171 on page 982. To allow your program to continue after an error in the specified range occurs, \textit{inon} must be set to a value greater than 1. For ESSL, \textit{iusadr} should be specified as either 0 or 1 in a 32-bit environment (0-_8 or 1-_8 in a 64-bit environment), so a user exit is not taken.

For a list of the default values set in the ESSL error option table, see Table 26 on page 49. For a description of the computational errors, see “Computational Error Messages(2100-2199)” on page 185. For a description of ERRSET, see Chapter 17 on page 979.

\textit{Step 4. Call ESSL}

\begin{verbatim}
CALL name (arg-1,...,arg-n,*yyy,*zzz,...)
\end{verbatim}

This calls the ESSL subroutine and specifies a branch on one or more return code values, where:

• \textit{name} specifies the ESSL subroutine.
• \textit{arg-1,..., arg-n} are the input and output arguments.
• \textit{yyy, zzz}, and any other statement numbers preceded by an “*” are the Fortran statement numbers indicating where you want to branch when you get a nonzero return code. Each corresponds to a different ESSL value. Control goes to the corresponding statement number when a nonzero return code value is returned for the CALL statement. Return code values are described under “Error Conditions” in each ESSL subroutine description in Part 2 of this book.

\textit{Step 5. Call EINFO for Information}

\begin{verbatim}
nmbr CALL EINFO (icode,inf1)
-or-
nmbr CALL EINFO (icode,inf1,inf2)
\end{verbatim}

This calls the EINFO subroutine, which returns information about certain computational errors, where:

• \textit{nmbr} is the statement number \textit{yyy}, \textit{zzz}, or any of the other statement numbers preceded by an “*” in the CALL statement in Step 4, corresponding to the return code value for this error code.
• \textit{icode} is the error code of interest.
• \textit{inf1} and \textit{inf2} are the integer variables used to receive the information, where \textit{inf1} is assigned a value for all errors, and \textit{inf2} is assigned a value for some errors. For a description of EINFO, see “EINFO—ESSL Error Information-Handler Subroutine” on page 982.
Step 6. Check the Values in the Information Receivers: These statements check the values returned in the output argument information receivers, inf1 and inf2, which contain the information about the computational error.

Step 7. Call ERRSTR

```fortran
CALL ERRSTR (ierno,tabent)
```

(This is an optional step.) This calls the ERRSTR subroutine, which stores an entry in the error option table for error number ierno from an 8-byte storage area, tabent, which is accessible to your program. ERRSTR must be called for each entry you want to store. This step is used, along with step 2, for ERRSAV. For information on whether you should use ERRSAV and ERRSTR, see “How Can You Control Error Handling in Large Applications by Saving and Restoring Entries in the Error Option Table?” on page 51.

Example 1
This 32-bit environment example shows an error code 2104, which returns one piece of information: the index of the last diagonal with nonpositive value (I1).

```fortran
C INITIALIZE THE ESSL ERROR OPTION TABLE
CALL EINFO(0)
C ALLOW 100 ERRORS FOR CODE 2104
CALL ERRSET(2104,100,0,0,0,2104)
C CALL ESSL ROUTINE DPPF.
C IF THE INPUT MATRIX IS NOT
C POSITIVE DEFINITE, CONTROL GOES TO
C LABEL 400
IOPT=0
CALL DPPF(APP,N,IOPT,*400)
```

122 Engineering and Scientific Subroutine Library Version 3 Guide and Reference
Example 2
This 32-bit environment example shows an error code 2103, which returns one piece of information: the index of the zero diagonal (I1) found by DGEF.
Example 3
This 32-bit environment example shows an error code 2101, which returns two pieces of information: the eigenvalue (I1) that failed to converge after the indicated (I2) number of iterations. It uses ERRSAV and ERRSTR to insulate the effects of the error handling for error 2101 by this program.
Example of Handling Errors in a Multithreaded Application Program

This 32-bit environment example shows how to modify the MATINV_EXAMPLE program in “Creating Multiple Threads and Calling ESSL from Your Fortran Program” on page 115 with calls to the ESSL error handling subroutines. The ESSL error handling subroutines are called from each thread to: initialize the error option table, save the current error option table values for input-argument error 2015 and computational error 2105, change the default values for errors 2015 and 2105, and then restore the original default values for errors 2015 and 2105.

```fortran
program matinv_example
  implicit none
 !
  ! program to invert m nxn random matrices
  !
  real(8), allocatable :: A(:,,:), det(:,), rcond(:)
  real(8) :: dummy_aux, seed=1998, sd
  integer :: rc, i, m=8, n=500, iopt=3, naux=0
  integer :: inf1(8)
  character(8) :: sav2015(8)
  character(8) :: sav2105(8)
  integer :: ENOTRM
```

```
C CALL THE INFORMATION-HANDLER
C ROUTINE FOR ERROR CODE 2101 TO
C RETURN TWO PIECES OF INFORMATION.
C VARIABLE I1 CONTAINS THE EIGENVALUE
C THAT FAILED TO CONVERGE. VARIABLE
C I2 CONTAINS THE NUMBER OF ITERATIONS.
400 CALL EINFO (2101,I1,I2)
.
.
C RESTORE THE PREVIOUS ERROR OPTION
C TABLE ENTRY FOR ERROR CODE 2101.
C ERROR PROCESSING RETURNS TO HOW IT
C WAS BEFORE IT WAS ALTERED BY THE ABOVE
C ERRSET STATEMENT.
CALL ERRSTR(2101,SAV2101)
.
.
```
allocate storage
allocate(A(n,n,m),stat=rc)
call error_exit(rc,"Allocation of matrix A")
allocate(det(2,m),stat=rc)
call error_exit(rc,"Allocation of det")
allocate(rcond(m),stat=rc)
call error_exit(rc,"Allocation of rcond")

! Calculate inverses in parallel
! SMP$ parallel do private(i,sd), schedule(static),
! share(n,m,a,iopt,rcond,det,dummy_aux,naux,sav2015,sav2105,inf1)
do i=1,m
! initialize error handling
call einfo(0)
! Save existing option table values for error 2015
call errsav(2015,sav2015(i))
! Set Error 2015 to be non-recoverable so dgeicd will dynamically
! allocate the work area.
call errset(2015,100,100,0,1,2015)
! Save existing option table values for error 2105
call errsav(2105,sav2105(i))
! Set Error 2105 to be recoverable
call errset(2105,100,100,0,ENOTRM,2105)

sd = seed + 100*i
call durand(sd,n*n,A(1,1,i))
call dgeicd(A(1,1,i),n,n,iopt,rcond(i),det(1,i),
 & dummy_aux,naux,*10,*20)
! goto 30
C Programs

This section describes how to code your C program.

Calling ESSL Subroutines and Functions in C

This section shows how to call ESSL subroutines and functions from your C program.

Before You Call ESSL

Before you can call the ESSL subroutines from your C program, you must have the appropriate ESSL header file installed on your system. The ESSL header file allows you to code your function calls as described in this section. It contains entries for all the ESSL subroutines. The ESSL header file is distributed with the ESSL package. The ESSL header file to be used with the C compiler is named essl.h. You should check with your system support group to verify that the appropriate ESSL header file is installed.

In the beginning of your program, before you call any of the ESSL subroutines, you must code the following statement for the ESSL header file:
#include <essl.h>

If you are planning to create your own threads for the ESSL Thread-Safety or SMP Library, you must include the pthread.h header file as the first include file in your C program. For an example, see “Creating Multiple Threads and Calling ESSL from Your C Program” on page 132.

Coding the Calling Sequences
In C programs, the ESSL subroutines, not returning a function value, are invoked with the following type of statement:

```
subroutine-name (argument-1, . . . , argument-n);
```

An example of a calling sequence for SAXPY might be:
```
saxpy (5,a,x,incx,y,1);
```

The ESSL subroutines returning a function value are invoked with the following type of statement:

```
function-value-name = subroutine-name (argument-1, . . . , argument-n);
```

An example of invoking DASUM might be:
```
sum = dasum (n,x,incx);
```

See the C publications for details about how to code the function calls.

Passing Arguments in C
This section describes how to pass arguments in your C program.

About the Syntax Shown in This Book
The argument syntax shown in this book assumes that you have installed and are using the ESSL header file. For further details, see “Calling ESSL Subroutines and Functions in C” on page 127.

No Optional Arguments
In the ESSL calling sequences for C, there are no optional arguments, as for some programming languages. You must code all the arguments listed in the syntax.

Arguments That Must Be Passed by Value
All scalar arguments that are not modified must be passed by value in the ESSL calling sequence. (This refers to input-only scalar arguments, such as incx, m, and lda.)

Arguments That Must Be Passed by Reference
Following are the instances in which you pass your arguments by reference (as a pointer) in the ESSL calling sequence:

Arrays: Arguments that are arrays are passed by reference, as usual.
Subroutine Names: Some ESSL subroutines call a user-supplied subroutine. The name is part of the ESSL calling sequence. It must be passed by reference.

Output Scalar Arguments: When an output argument is a scalar data item, it must be passed by reference. This is true for all scalar data types: real, complex, and so forth. *When this occurs, it is listed in the notes of each subroutine description in Part 2 of this book.*

Character Arguments: Character arguments must be passed as strings, by reference. You specify the character, in upper- or lowercase, in the ESSL calling sequence with double quotation marks around it, as in "t". Following is an example of how you can call SGEADD, specifying the transa and transb arguments as strings n and t, respectively:

```c
sgeadd (a, 5, "n", b, 3, "t", c, 4, 4, 3);
```

Altered Arguments When Using Error Handling: If you use ESSL error handling in your C program, as described in “Handling Errors in Your C Program” on page 134, you must pass by reference all the arguments that can potentially be altered by ESSL error handling. This applies to all your ESSL call statements after the point where you code the #define statement, shown in step 1 in “Input-Argument Errors in C” on page 134 and in step 1 in “Computational Errors in C” on page 138. The two types of ESSL arguments are:

- naux arguments for auxiliary storage
- n arguments for transform lengths

Setting Up a User-Supplied Subroutine for ESSL in C

Some ESSL numerical quadrature subroutines call a user-supplied subroutine, subf, identified in the ESSL calling sequence. If your program that calls the numerical quadrature subroutines is coded in C, there are some coding rules you must follow for the subf subroutine:

- You can code the subf subroutine using only C or Fortran.
- You must declare subf as an external subroutine in your application program.
- You should code the subf subroutine to the specifications given in “Programming Considerations for the SUBF Subroutine” on page 942. For an example of coding a subf subroutine in C, see “Example 1” on page 953.

Setting Up Scalar Data in C

Table 28 lists the scalar data types in C that are used for ESSL. Only those types and lengths used by ESSL are listed.

<table>
<thead>
<tr>
<th>Terminology Used by ESSL</th>
<th>C Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Character item(^1)</td>
<td>char *</td>
</tr>
<tr>
<td>‘N’, ‘T’, ‘C’ or ‘n’, ‘t’, ‘c’</td>
<td>"n", "t", "c"</td>
</tr>
<tr>
<td>Logical item</td>
<td>Specify it as described in “Setting Up Complex and Logical Data Types in C” on page 130.(^2)</td>
</tr>
</tbody>
</table>

\(^1\) Specify it as described in “Setting Up Complex and Logical Data Types in C” on page 130.

\(^2\) Specify it as described in “Setting Up Complex and Logical Data Types in C” on page 130.
Table 28 (Page 2 of 2). Scalar Data Types in C Programs

<table>
<thead>
<tr>
<th>Terminology Used by ESSL</th>
<th>C Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>32-bit environment integer</td>
<td>signed int</td>
</tr>
<tr>
<td>12345, −12345</td>
<td></td>
</tr>
<tr>
<td>64-bit environment integer(^3)</td>
<td>long</td>
</tr>
<tr>
<td>12345l, −12345l</td>
<td></td>
</tr>
<tr>
<td>Short-precision real number(^4)</td>
<td>float</td>
</tr>
<tr>
<td>12.345</td>
<td></td>
</tr>
<tr>
<td>Long-precision real number(^4)</td>
<td>double</td>
</tr>
<tr>
<td>12.345</td>
<td></td>
</tr>
<tr>
<td>Short-precision complex number(^4)</td>
<td>Specify it as described in “Setting Up Complex and Logical Data Types in C” on page 130.(^2)</td>
</tr>
<tr>
<td>(123.45, −54321.0)</td>
<td></td>
</tr>
<tr>
<td>Long-precision complex number(^4)</td>
<td>Specify it as described in “Setting Up Complex and Logical Data Types in C” on page 130.(^2)</td>
</tr>
<tr>
<td>(123.45, −54321.0)</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) ESSL accepts character data in either upper- or lowercase in its calling sequences.

\(^2\) There are no equivalent data types for logical and complex data in C. These require special procedures. For details, see the referenced section.

\(^3\) In accordance with the LP64 data model, all ESSL integer arguments remain 32-bits except for the \(\text{iusadr}\) argument for ERRSET.

\(^4\) Short- and long-precision numbers look the same in this book.

Setting Up Complex and Logical Data Types in C

Complex and logical data types are not part of the C language; however, some ESSL subroutines require arguments of these data types.

Complex Data

ESSL provides identifiers, \texttt{cmplx} and \texttt{dcmplx}, for complex data types, defined in the ESSL header file, as well as two macro definitions, \texttt{RE} and \texttt{IM}, for handling the real and imaginary parts of complex numbers:

```c
#ifndef _CMPLX
#ifndef _REIM
#define _REIM 1
#endif
typedef union { struct { float _re, _im; _data; double _align; } cmplx;
#endif
#ifndef _DCMPLX
#ifndef _REIM
#define _REIM 1
#endif
typedef union { struct { double _re, _im; _data; double _align; } dcmplx;
#endif
#ifndef _REIM
#define RE(x) ((x)._data._re)
#define IM(x) ((x)._data._im)
#endif
```

These macros provide a convenient way to access the real and imaginary parts of a complex number in C.

130 Engineering and Scientific Subroutine Library Version 3 Guide and Reference
You must, therefore, code an include statement for the ESSL header file in the beginning of your program to use these definitions. For details, see “Calling ESSL Subroutines and Functions in C” on page 127.

Assuming you are using the ESSL header file, if you declare data items to be of type cmplx or dcmplx, you can pass them as short- and long-precision complex data to ESSL, respectively. You may want to write a CSET macro to initialize complex variables, using the RE and IM macros provided in the ESSL header file. Following is an example of how to use the CSET macro to initialize the complex variable alpha:

```c
#include <essl.h>
define CSET(x,a,b) (RE(x)=a, IM(x)=b)
main()
{
    cmplx alpha,t[3],s[5];
    .
    .
    CSET (alpha,2.0,3.0);
    caxpy (3,alpha,s,1,t,2);
    .
    .
}
```

If you choose to use your own definitions for complex data, instead of those provided in the ESSL header file, you can define _CMPLX and _DCMPLX in your program for short- and long-precision complex data, respectively, using the following #define statements. These statements are coded with your global declares in the front of your program and must be coded before the #include statement for the ESSL header file.

```c
#define _CMPLX
#define _DCMPLX
```

If you prefer to define your complex data at compile time, you can use the job processing procedures described in “Compiling” on page 161.

Logical Data

By coding the following simple macro definitions in your program, you can then use TRUE or FALSE in assigning values to or specifying any logical arguments passed to ESSL:

```c
#define FALSE 0
#define TRUE 1
```

Setting Up Arrays in C

C arrays are arranged in storage in row-major order. This means that the last subscript expression increases most rapidly, the next-to-the-last subscript expression increases less rapidly, and so forth, with the first subscript expression increasing least rapidly. ESSL subroutines require that arrays passed as arguments be in column-major order. This is the array storage convention used by Fortran, described in “Setting Up Arrays in Fortran” on page 110. To pass an array from your C program to ESSL, to have ESSL process the data correctly, and to get a
result that is in the proper form for your C program, you can do any of the following:

- Build and process the matrix, logically transposed from the outset, and transpose the results as necessary.
- Before the ESSL call, transpose the input arrays. Then, following the ESSL call, transpose any arrays updated as output.
- If there are arguments in the ESSL calling sequence indicating whether the arrays are to be processed in normal or transposed form, such as the transa and transb arguments in the _GEMM subroutines, use these arguments in combination with the matrix equivalence rules to avoid having to transpose your data in separate operations. For further detail, see “SGEMMS, DGEMMS, CGEMMS, and ZGEMMS—Matrix Multiplication for General Matrices, Their Transposes, or Conjugate Transposes Using Winograd’s Variation of Strassen’s Algorithm” on page 403.

Creating Multiple Threads and Calling ESSL from Your C Program

The example shown below shows how to create two threads, where each thread calls the ISAMAX subroutine. To use the AIX pthreads library, you must specify the pthread.h header file as the first include file in your program.

Be sure to compile this program with the cc_r command.

```c
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>
#include <essl.h>

/* Create structure for argument list */
typedef struct {
    int n;
    float *x;
    int incx;
} arg_list;
```
/ Define prototype for thread routine */
void *Thread(void *v);

int main()
{
 float sx2[8] = { 1.,12., 7., -8., -5., -10., -9., 19.};
 pthread_t first_th;
 pthread_t second_th;
 int rc;
 arg_list a_l,b_l;

 /* Creating argument list for the first thread */
 a_l.n = 9;
 a_l.incx = 1;
 a_l.x = sx1;

 /* Creating argument list for the second thread */
 b_l.n = 8;
 b_l.incx = 1;
 b_l.x = sx2;

 /* Creating first thread which calls the ESSL subroutine ISAMAX */
 rc = pthread_create(&first_th, NULL, Thread, (void *) &a_l);
 if (rc) exit(-1);

 /* Creating second thread which calls the ESSL subroutine ISAMAX */
 rc = pthread_create(&second_th, NULL, Thread, (void *) &b_l);
 if (rc) exit(-1);

 sleep(1);
 exit(0);
}

/* Thread routine which call ESSL routine ISAMAX */
void *Thread(void *v)
{
 arg_list *al;
 float *x;
 int n,incx;
 int i;

 al = (arg_list *)(v);
 x = al->x;
 n = al->n;
 incx = al->incx;
Handling Errors in Your C Program

ESL provides you with flexibilities in handling both input-argument errors and computational errors:

- For input-argument errors 2015, 2030, and 2200, which are optionally-recoverable errors, ESSL allows you to obtain corrected input-argument values and react at run time.

 Note: In the case where error 2015 is unrecoverable, you have the option of dynamic allocation for most of the aux arguments. For details see the subroutine descriptions in Part 2 of this book.

- For computational errors, ESSL provides a return code and additional information to help you analyze the problem in your program and react at run time.

“Input-Argument Errors in C” and “Computational Errors in C” on page 138 explain how to use these facilities by describing the additional statements you must code in your program.

For multithreaded application programs, if you want to initialize the error option table and change the default settings for input-argument and computational errors, you need to implement the steps shown in “Input-Argument Errors in C” and “Computational Errors in C” on page 138 on each thread that calls ESSL.

Input-Argument Errors in C

To obtain corrected input-argument values in a C program and to avert program termination for the optionally-recoverable input-argument errors 2015, 2030, and 2200, add the statements in the following steps to your program. Steps 4 and 8 for ERRSAV and ERRSTR, respectively, are optional. Adding these steps makes the effect of the call to ERRSET temporary.

Step 1. Code the Global Statements for ESSL Error Handling

```c
/* Code two underscores */
/* before the letters ESVERR */
#define __ESVERR
#include <essl.h>
extern int enotrm();
```

These statements are coded with your global declares in the front of your program. The `#define` must be coded before the `#include` statement for the ESSL header.
The external statement declares the ESSL error exit routine ENOTRM as an external reference in your program. After the point where you code these statements in your program, you must pass by reference all ESSL calling sequence arguments that can potentially be altered by ESSL error handling. This applies to all your ESSL call statements. The two types of arguments are:

- `naux` arguments for auxiliary storage
- `n` arguments for transform lengths

Step 2. Declare the Variables

```c
int (*iusadr) ();
int ierno, inoal, inomes, itrace, irange, irc, dummy;
char storarea[8];
```

This declares a pointer, `iusadr`, to be used for the ESSL error exit routine ENOTRM. Also included are declares for the variables used by the ESSL and Fortran error-handling subroutines. Note that `storarea` must be 8 characters long. These should be coded in the beginning of your program before any of the following statements.

Step 3. Do Initialization for ESSL

```c
iusadr = enotrm;
einfo (0, &dummy, &dummy);
```

The first statement sets the function pointer, `iusadr`, to ENOTRM, the ESSL error exit routine. The last statement calls the EINFO subroutine to initialize the ESSL error option table, where `dummy` is a declared integer and is a placeholder. For a description of EINFO, see “EINFO—ESSL Error Information-Handler Subroutine” on page 982. These statements should be coded only once in the beginning of your program before calls to ERRSET.

Step 4. Call ERRSAV

```c
errsav (&ierno, storarea);
```

(This is an optional step.) This calls the ERRSAV subroutine, which stores the error option table entry for error number `ierno` in an 8-byte storage area, `storarea`, which is accessible to your program. ERRSAV must be called for each entry you want to save. This step is used, along with step 8, for ERRSTR. For information on whether you should use ERRSAV and ERRSTR, see “How Can You Control Error Handling in Large Applications by Saving and Restoring Entries in the Error Option Table?” on page 51. For an example, see “Example 1” on page 141, as the use is the same as for computational errors.

Step 5. Call ERRSET

```c
errset (&ierno, &inoal, &inomes, &itrace, &iusadr, &irange);
```
This calls the ERRSET subroutine, which allows you to dynamically modify the action taken when an error occurs. For optionally-recoverable ESSL input-argument errors, you need to call ERRSET only if you want to avoid terminating your program and you want the input arguments associated with this error to be assigned correct values in your program when the error occurs. For one error (ierno) or a range of errors (irange), you can specify:

- How many times each error can occur before execution terminates (inoal)
- How many times each error message can be printed (inomes)
- The ESSL exit routine ENOTRM, to be invoked for the error indicated (iusadr)

ERRSET must be called for each error code you want to indicate as being recoverable. For ESSL, ierno should have a value of 2015, 2030, or 2200. If you want to eliminate error messages, you should indicate a negative number for inomes; otherwise, you should specify 0 for this argument. All the other ERRSET arguments should be specified as 0.

For a list of the default values set in the ESSL error option table, see Table 26 on page 49. For a description of the input-argument errors, see “Input-Argument Error Messages(2001-2099)” on page 177. For a description of ERRSET, see Chapter 17 on page 979.

Step 6. Call ESSL

```plaintext
irc = name (arg1,...,argn);
if irc == rc1
    {
        ...
    }
```

This calls the ESSL subroutine and specifies a branch on one or more return code values, where:

- *name* specifies the ESSL subroutine.
- *arg1,...,argn* are the input and output arguments. As explained in step 1, all arguments that can potentially be altered by error handling must be coded by reference.
- *irc* is the integer variable containing the return code resulting from the computation performed by the ESSL subroutine.
- *rc1, rc2*, and so forth are the possible return code values that can be passed back from the ESSL subroutine to C. The values can be 0, 1, 2, and so forth. Return code values are described under “Error Conditions” in each ESSL subroutine description in Part 2 of this book.

Step 7. Perform the Desired Action: These are the statements following the test for each value of the return code, returned in irc in step 6. These statements perform whatever action is desired when the recoverable error occurs. These statements may check the new values set in the input arguments to determine whether adequate program storage is available, and then decide whether to continue or terminate the program. Otherwise, these statements may check that the
size of the working storage arrays or the length of the transform agrees with other
data in the program. The program may also store this corrected input argument
value for future reference.

Step 8. Call ERRSTR

```
errstr (&ierno,storarea);
```

(This is an optional step.) This calls the ERRSTR subroutine, which stores an entry
in the error option table for error number ierno from an 8-byte storage area,
storarea, which is accessible to your program. ERRSTR must be called for each
entry you want to store. This step is used, along with step 4, for ERRSAV. For
information on whether you should use ERRSAV and ERRSTR, see “How Can
You Control Error Handling in Large Applications by Saving and Restoring Entries
in the Error Option Table?” on page 51. For an example, see “Example 1” on
page 141, as the use is the same as for computational errors.

Example 1
This example shows an error code 2015, which resets the size of the work area
aux, specified in naux, if the value specified is too small. It also indicates that no
error messages should be issued.
Computational Errors in C
To obtain information about an ESSL computational error in a C program, add the statements in the following steps to your program. Steps 4 and 9 for ERRSAV and ERRSTR, respectively, are optional. Adding these steps makes the effect of the call to ERRSET temporary. For a list of those computational errors that return information and to which these steps apply, see “EINFO—ESSL Error Information-Handler Subroutine” on page 982.

Step 1. Code the Global Statements for ESSL Error Handling

```c
/*INITIALIZE THE ESSL ERROR OPTION TABLE*/
einfo (0,&dummy,&dummy);

/*MAKE ERROR CODE 2015 A RECOVERABLE ERROR AND SUPPRESS PRINTING ALL ERROR MESSAGES FOR IT*/
ierno = 2015;
inoal = 0;
inomes = -1;
itrace = 0;
irange = 2015;
errset (&ierno,&inoal,&inomes,&itrace,&iusadr,&irange);

/*CALL ESSL SUBROUTINE SWLEV. NAUX IS PASSED BY REFERENCE. IF THE NAUX INPUT IS TOO SMALL, ERROR 2015 OCCURS. THE MINIMUM VALUE REQUIRED IS STORED IN THE NAUX INPUT ARGUMENT, AND THE RETURN CODE OF 1 IS SET IN IRC.*/
irc = swlev (x,incx,u,incu,y,incy,n,aux,&naux);
if irc == 1
{
    /*CHECK THE RESULTING INPUT ARGUMENT VALUE IN NAUX AND TAKE THE DESIRED ACTION*/
}
```
These statements are coded with your global declares in the front of your program. The `#define` must be coded before the `#include` statement for the ESSL header file. **After the point where you code these statements in your program, you must pass by reference all ESSL calling sequence arguments that can potentially be altered by ESSL error handling.** This applies to all your ESSL call statements. The two types of arguments are:

- `naux` arguments for auxiliary storage
- `n` arguments for transform lengths

Step 2. Declare the Variables

```c
int ierno, inoal, inomes, itrace, iusadr, irange, irc;
int inf1, inf2, dummy;
char storarea[8];
```

These statements include declares for the variables used by the ESSL and Fortran error-handling subroutines. Note that `storarea` must be 8 characters long. These should be coded in the beginning of your program before any of the following statements.

Step 3. Do Initialization for ESSL

```c
einfo (0, &dummy, &dummy);
```

This statement calls the EINFO subroutine to initialize the ESSL error option table, where `dummy` is a declared integer and is a placeholder. For a description of EINFO, see “EINFO—ESSL Error Information-Handler Subroutine” on page 982. These statements should be coded only once in the beginning of your program before calls to ERRSET.

Step 4. Call ERRSAV

```c
errsav (&ierno, storarea);
```

(This is an optional step.) This calls the ERRSAV subroutine, which stores the error option table entry for error number `ierno` in an 8-byte storage area, `storarea`, which is accessible to your program. ERRSAV must be called for each entry you want to save. This step is used, along with step 8, for ERRSTR. For information on whether you should use ERRSAV and ERRSTR, see “How Can You Control Error Handling in Large Applications by Saving and Restoring Entries in the Error Option Table?” on page 51. For an example, see “Example 1” on page 141.

Step 5. Call ERRSET
This calls the ERRSET subroutine, which allows you to dynamically modify the action taken when an error occurs. For ESSL computational errors, you need to call ERRSET only if you want to change the default values in the ESSL error option table. For one error (ierno) or a range of errors (irange), you can specify:

- How many times each error can occur before execution terminates (inoal)
- How many times each error message can be printed (inomes)

ERRSET must be called for each error code for which you want to change the default values. For ESSL, ierno should be set to one of the eligible values listed in Table 171 on page 982. To allow your program to continue after an error in the specified range occurs, inoal must be set to a value greater than 1. For ESSL, iusadr should be specified as either 0 or 1 in a 32-bit environment (0l or 1l in a 64-bit environment), so a user exit is not taken.

For a list of the default values set in the ESSL error option table, see Table 26 on page 49. For a description of the computational errors, see “Computational Error Messages(2100-2199)” on page 185. For a description of ERRSET, see Chapter 17 on page 979.

Step 6. Call ESSL

```c
irc = name (arg1,...,argn);
if irc == rc1
    {
        .
        .
        .
    }
if irc == rc2
    {
        .
        .
        .
    }
```

This calls the ESSL subroutine and specifies a branch on one or more return code values, where:

- name specifies the ESSL subroutine.
- arg1,...,argn are the input and output arguments. As explained in step 1, all arguments that can potentially be altered by error handling must be coded by reference.
- irc is the integer variable containing the return code resulting from the computation performed by the ESSL subroutine.
- rc1, rc2, and so forth are the possible return code values that can be passed back from the ESSL subroutine to C. The values can be 0, 1, 2, and so forth. Return code values are described under “Error Conditions” in each ESSL subroutine description in Part 2 of this book.
The statements following each test of the return code can perform any desired action. This includes calling EINFO for more information about the error, as described in step 7.

Step 7. Call EINFO for Information

```
einfo (ierno,&inf1,&inf2);
```

This calls the EINFO subroutine, which returns information about certain computational errors, where:

- `ierno` is the error code of interest.

- `inf1` and `inf2` are the integer variables used to receive the information, where `inf1` is assigned a value for all errors, and `inf2` is assigned a value for some errors. You must specify both arguments, as there are no optional arguments for C. Both arguments must be passed by reference, because they are output scalar arguments. For a description of EINFO, see “EINFO—ESSL Error Information-Handler Subroutine” on page 982.

Step 8. Check the Values in the Information Receivers: These statements check the values returned in the output argument information receivers, `inf1` and `inf2`, which contain the information about the computational error.

Step 9. Call ERRSTR

```
errstr (&ierno,storarea);
```

(This is an optional step.) This calls the ERRSTR subroutine, which stores an entry in the error option table for error number `ierno` from an 8-byte storage area, `storarea`, which is accessible to your program. ERRSTR must be called for each entry you want to store. This step is used, along with step 4, for ERRSAV. For information on whether you should use ERRSAV and ERRSTR, see “How Can You Control Error Handling in Large Applications by Saving and Restoring Entries in the Error Option Table?” on page 51. For an example, see “Example 1.”

Example 1

This 32-bit environment example shows an error code 2105, which returns one piece of information: the index of the pivot element (i) near zero, causing factorization to fail. It uses ERRSAV and ERRSTR to insulate the effects of the error handling for error 2105 by this program.


```c
/*GLOBAL STATEMENTS FOR ESSL ERROR HANDLING*/
#define __ESVERR
#include <essl.h>

/*DECLARE THE VARIABLES*/
main ()
{
    int ierno,inoal,inomes,itrace,iusadr,irange,irc;
    int inf1,inf2,dummy;
    char sav2105[8];

    /*INITIALIZE THE ESSL ERROR OPTION TABLE*/
einfo (0,&dummy,&dummy);
    /*SAVE THE EXISTING ERROR OPTION TABLE ENTRY FOR ERROR CODE 2105*/
    ierno = 2105;
    errsav (&ierno,sav2105);

    /*MAKE ERROR CODES 2101 THROUGH 2105 RECOVERABLE ERRORS AND SUPPRESS PRINTING ALL ERROR MESSAGES FOR THEM. THIS SHOWS HOW YOU CODE THE ERRSET ARGUMENTS FOR A RANGE OF ERRORS. */
    ierno = 2101;
    inoal = 0;
    inomes = 0; /*A DUMMY ARGUMENT*/
    itrace = 0; /*A DUMMY ARGUMENT*/
    iusadr = 0; /*A DUMMY ARGUMENT*/
    irange = 2105
    errset (&ierno,&inoal,&inomes,&itrace, &iusadr,&irange);

    /*CALL ESSL SUBROUTINE DGEICD. IF THE INPUT MATRIX IS SINGULAR OR NEARLY SINGULAR, ERROR 2105 OCCURS. A RETURN CODE OF 2 IS SET IN IRC.*/
    irc = dgeicd (a,lda,n,iopt,&rcond,det,aux,&naux);
    if irc == 2
```
C++ Programs

This section describes how to code your C++ program.

Calling ESSL Subroutines and Functions in C++

This section shows how to call ESSL subroutines and functions from your C++ program.

Before You Call ESSL

Before you can call the ESSL subroutines from your C++ program, you must have the appropriate ESSL header file installed on your system. The ESSL header file allows you to code your function calls as described in this section. It contains entries for all the ESSL subroutines. The ESSL header file is distributed with the ESSL package. The ESSL header file to be used with the C++ compiler is named essl.h.

In the beginning of your program, before you call any of the ESSL subroutines, you must code the following statement for the ESSL header file:

```c
#include <essl.h>
```

If you are creating your own threads for the ESSL Thread-Safe or SMP Library, you must include the pthread.h header file in your C++ program. For an example, see “Creating Multiple Threads and Calling ESSL from Your C++ Program” on page 148.
Coding the Calling Sequences

In C++ programs, the ESSL subroutines, not returning a function value, are invoked with the following type of statement:

\[
\text{subroutine-name (argument-1, \ldots, argument-n);}
\]

An example of a calling sequence for SAXPY might be:

\[
\text{saxpy (5,a,x,incx,y,1);}
\]

The ESSL subroutines returning a function value are invoked with the following type of statement:

\[
\text{function-value-name= subroutinename (argument-1, \ldots, argument-n);}
\]

An example of invoking DASUM might be:

\[
\text{sum = dasum (n,x,incx);}
\]

See the C++ publications for details about how to code the function calls.

Passing Arguments in C++

This section describes how to pass arguments in your C++ program.

About the Syntax Shown in This Book

The argument syntax shown in this book assumes that you have installed and are using the ESSL header file. For further details, see “Calling ESSL Subroutines and Functions in C++” on page 143.

No Optional Arguments

In the ESSL calling sequences for C++, there are no optional arguments, as for some programming languages. You must code all the arguments listed in the syntax.

Arguments That Must Be Passed by Value

All scalar arguments that are not modified must be passed by value in the ESSL calling sequence. (This refers to input-only scalar arguments, such as \textit{incx}, \textit{m}, and \textit{lda}.)

Arguments That Must Be Passed by Reference

Following are the instances in which you pass your arguments by reference (as a pointer) in the ESSL calling sequence:

\textbf{Arrays:} Arguments that are arrays are passed by reference, as usual.

\textbf{Subroutine Names:} Some ESSL subroutines call a user-supplied subroutine. The name is part of the ESSL calling sequence. It must be passed by reference.

\textbf{Character Arguments:} Character arguments must be passed as strings, by reference. You specify the character, in upper- or lowercase, in the ESSL calling sequence with double quotation marks around it, as in "t". Following is an example
of how you can call SGEADD, specifying the transa and transb arguments as strings n and t, respectively:

\[
\text{sgeadd (a,5,"n",b,3,"t",c,4,4,3)};
\]

Setting Up a User-Supplied Subroutine for ESSL in C++

Some ESSL numerical quadrature subroutines call a user-supplied subroutine, \(\textit{subf} \), identified in the ESSL calling sequence. If your program that calls the numerical quadrature subroutines is coded in C++, there are some coding rules you must follow for the \(\textit{subf} \) subroutine:

- You can code the \(\textit{subf} \) subroutine using only C, C++, or Fortran.
- You must declare \(\textit{subf} \) as an external subroutine in your application program.
- You should code the \(\textit{subf} \) subroutine to the specifications given in “Programming Considerations for the SUBF Subroutine” on page 942. For an example of coding a \(\textit{subf} \) subroutine in C++, see “Example 1” on page 953.

Setting Up Scalar Data in C++

Table 29 lists the scalar data types in C++ that are used for ESSL. Only those types and lengths used by ESSL are listed.

<table>
<thead>
<tr>
<th>Terminology Used by ESSL</th>
<th>C++ Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Character item(^1)</td>
<td>char <code>n</code>, <code>t</code>, <code>c</code></td>
</tr>
<tr>
<td>'N', 'T', 'C' or 'n', 't', 'c'</td>
<td></td>
</tr>
<tr>
<td>Logical item</td>
<td>Specify it as described in “Setting Up Short-Precision Complex Data Types and Logical Data Types in C++” on page 146.(^2)</td>
</tr>
<tr>
<td>.TRUE., .FALSE.</td>
<td></td>
</tr>
<tr>
<td>32-bit environment integer</td>
<td>signed int</td>
</tr>
<tr>
<td>12345, −12345</td>
<td></td>
</tr>
<tr>
<td>64-bit environment integer(^3)</td>
<td>long</td>
</tr>
<tr>
<td>12345L, −12345L</td>
<td></td>
</tr>
<tr>
<td>Short-precision real number(^4)</td>
<td>float</td>
</tr>
<tr>
<td>12.345</td>
<td></td>
</tr>
<tr>
<td>Long-precision real number(^4)</td>
<td>double</td>
</tr>
<tr>
<td>12.345</td>
<td></td>
</tr>
<tr>
<td>Short-precision complex number(^4)</td>
<td>Specify it as described in “Setting Up Short-Precision Complex Data Types and Logical Data Types in C++” on page 146.(^2)</td>
</tr>
<tr>
<td>(123.45, −54321.0)</td>
<td></td>
</tr>
<tr>
<td>Long-precision complex number(^4)</td>
<td>complex(^5)</td>
</tr>
<tr>
<td>(123.45, −54321.0)</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Character item may be 'N', 'T', 'C', or 'n', 't', 'c'.
\(^2\) See page 146 for details.
\(^3\) 64-bit environment integers are used in 32-bit environments.
\(^4\) Short-precision and long-precision real numbers and complex numbers are used in different contexts.
\(^5\) Complex numbers are used in specific contexts.
Table 29 (Page 2 of 2). Scalar Data Types in C++ Programs

<table>
<thead>
<tr>
<th>Terminology Used by ESSL</th>
<th>C++ Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ESSL accepts character data in either upper- or lowercase in its calling sequences.</td>
<td></td>
</tr>
<tr>
<td>2 There are no equivalent data types for logical and short-precision complex data in C++. These require special procedures. For details, see the referenced section.</td>
<td></td>
</tr>
<tr>
<td>3 In accordance with the LP64 data model, all ESSL integer arguments remain 32-bits except for the iusadr argument for ERRSET.</td>
<td></td>
</tr>
<tr>
<td>4 Short- and long-precision numbers look the same in this book.</td>
<td></td>
</tr>
<tr>
<td>5 This data type is defined in file <complex.h> for C++.</td>
<td></td>
</tr>
</tbody>
</table>

Setting Up Short-Precision Complex Data Types and Logical Data Types in C++

Short-precision complex data types and logical data types are not part of the C++ language; however, some ESSL subroutines require arguments of these data types.

Short-Precision Complex Data

ESSL provides an identifier, cmplx, for the short-precision complex data type, defined in the ESSL header file, as well as two member functions, sreal and simag, for handling the real and imaginary parts of short-precision complex numbers:

```
#ifndef _CMPLX
class cmplx
{
 private:
  float _re, _im;
 public:
  cmplx() { _re = 0.0; _im = 0.0; }
  cmplx(float r, float i = 0.0) { _re = r; _im = i; }
  friend inline float sreal(const cmplx& a) { return a._re; }
  friend inline float simag(const cmplx& a) { return a._im; }
};
#endif
```

You must, therefore, code an include statement for the ESSL header file in the beginning of your program to use these definitions. For details, see “Calling ESSL Subroutines and Functions in C++” on page 143.

Assuming you are using the ESSL header file, if you declare data items to be of type cmplx or complex, you can pass them as short- or long-precision complex data to ESSL, respectively. Following is an example of how you might code your program:
#include <complex.h>
#include <essl.h>

main()
{
 cmplx alpha,t[3],s[5];
 complex beta,td[3],sd[5];

 alpha = cmplx(2.:z"ro"ot,3.:z"ro"ot);
 caxpy (3,alpha,s,1,t,2);

 beta = complex(2.:z"ro"ot,3.:z"ro"ot);
 zaxpy (3,beta,sd,1,td,2);

}

If you choose to use your own definition for short-precision complex data, instead of that provided in the ESSL header file, you can define _CMPLX in your program, using the following #define statement. This statement is coded with your global declares in the front of your program and must be coded before the #include statement for the ESSL header file.

#define _CMPLX

If you prefer to define your short-precision complex data at compile time, you can use the job processing procedures described in “Compiling” on page 161.

Logical Data
By coding the following simple macro definitions in your program, you can then use TRUE or FALSE in assigning values to or specifying any logical arguments passed to ESSL:

#define FALSE 0
#define TRUE 1

Setting Up Arrays in C++

C++ arrays are arranged in storage in row-major order. This means that the last subscript expression increases most rapidly, the next-to-the-last subscript expression increases less rapidly, and so forth, with the first subscript expression increasing least rapidly. ESSL subroutines require that arrays passed as arguments be in column-major order. This is the array storage convention used by Fortran, described in “Setting Up Arrays in Fortran” on page 110. To pass an array from your C++ program to ESSL, to have ESSL process the data correctly, and to get a result that is in the proper form for your C++ program, you can do any of the following:

• Build and process the matrix, logically transposed from the outset, and transpose the results as necessary.

• Before the ESSL call, transpose the input arrays. Then, following the ESSL call, transpose any arrays updated as output.
If there are arguments in the ESSL calling sequence indicating whether the arrays are to be processed in normal or transposed form, such as the \texttt{transa} and \texttt{transb} arguments in the _GEMM subroutines, use these arguments in combination with the matrix equivalence rules to avoid having to transpose your data in separate operations. For further detail, see “SGEMMS, DGEMMS, CGEMMS, and ZGEMMS—Matrix Multiplication for General Matrices, Their Transposes, or Conjugate Transposes Using Winograd's Variation of Strassen's Algorithm” on page 403.

Creating Multiple Threads and Calling ESSL from Your C++ Program

The example shown below shows how to create two threads, where each thread calls the ISAMAX subroutine. To use the AIX pthreads library, you must remember to code the 	exttt{pthread.h} header file in your C++ program.

Be sure to compile this program with the \texttt{xlC_r} command.

```
#include "essl.h"
#include <iostream.h>

/* Define prototype for thread routine */
void *Thread(void *v);

/* Define prototype for thread library routine, which is in C */
extern "C" {
#include <pthread.h>
#include <stdlib.h>
int pthread_create(pthread_t *tid, const pthread_attr_t *attr,
                  void *(*start_routine)(void *), void *arg);
}

eextern "Fortran" int isamax(const int &, float *, const int &);

/* Create structure for argument list */
struct arg_list {
    int n;
    float *x;
    int incx;
};
```
void main()
{
float sx2[8] = { 1., 12., 7., -8., -5., -10., -9., 19.};
pthread_t first_th;
pthread_t second_th;
int rc;
struct arg_list a_l,b_l;

a_l.n = 9;
a_l.incx = 1;
a_l.x = sx1;

b_l.n = 8;
b_l.incx = 1;
b_l.x = sx2;

/* Creating argument list for first thread */
rc = pthread_create(&first_th, NULL, Thread, (void *) &a_l);
if (rc) exit(-1);

/* Creating argument list for second thread */
rc = pthread_create(&second_th, NULL, Thread, (void *) &b_l);
if (rc) exit(-1);

sleep(20);
exit(0);
}

/* Thread routine which calls the ESSL subroutine ISAMAX */
void* Thread(void *v)
{
struct arg_list *al;
float *t;
int n,incx;
int i;

al = (struct arg_list *)(v);
t = al->x;
n = al->n;
incx = al->incx;
Handling Errors in Your C++ Program

ESSL provides you with flexibilities in handling both input-argument errors and computational errors:

- For input-argument errors 2015, 2030, and 2200 which are optionally-recoverable errors, ESSL allows you to obtain corrected input-argument values and react at run time.

 Note: In the case where error 2015 is unrecoverable, you have the option of dynamic allocation for most of the aux arguments. For details see the subroutine descriptions in Part 2 of this book.

- For computational errors, ESSL provides a return code and additional information to help you analyze the problem in your program and react at run time.

"Input-Argument Errors in C++" and "Computational Errors in C++" on page 155 explain how to use these facilities by describing the additional statements you must code in your program.

For multithreaded application programs, if you want to initialize the error option table and change the default settings for input-argument and computational errors, you need to implement the steps shown in “Input-Argument Errors in C++” and “Computational Errors in C++” on page 155 on each thread that calls ESSL.

Input-Argument Errors in C++

To obtain corrected input-argument values in a C++ program and to avert program termination for the optionally-recoverable input-argument errors 2015, 2030, and 2200, add the statements in the following steps to your program. Steps 4 and 8 for ERRSAV and ERRSTR, respectively, are optional. Adding these steps makes the effect of the call to ERRSET temporary.

Step 1. Code the Global Statements for ESSL Error Handling

```c++
/* Code one underscore */
/* before the letters ESVERR */
#define _ESVERR
#include <iostream.h>
#include <stdio.h>
#include <essl.h>
extern "Fortran" int enotrm(int &,int &);
extern "Fortran" typedef int (*FN) (int &,int &);
```
These statements are coded with your global declares in the front of your program. The \#define must be coded before the \#include statements for the ESSL header file. The extern statements are required to call the ESSL error exit routine ENOTRM as an external reference in your program.

Step 2. Declare the Variables

```c
FN iusadr;
int ierno, inoal, inomes, itrace, irange, irc, dummy;
char storarea[8];
```

This declares a pointer, \textit{iusadr}, to be used for the ESSL error exit routine ENOTRM. Also included are declares for the variables used by the ESSL and Fortran error-handling subroutines. Note that \textit{storarea} must be 8 characters long. These should be coded in the beginning of your program before any of the following statements.

Step 3. Do Initialization for ESSL

```c
iusadr = enotrm;
dummy = 0;
einfo (0, dummy, dummy);
```

The first statement sets the function pointer, \textit{iusadr}, to ENOTRM, the ESSL error exit routine. The last statement calls the EINFO subroutine to initialize the ESSL error option table, where \textit{dummy} is a declared integer and is a placeholder. For a description of EINFO, see “EINFO—ESSL Error Information-Handler Subroutine” on page 982. These statements should be coded only once in the beginning of your program before calls to ERRSET.

Step 4. Call ERRSAV

```c
errsav (ierno, storarea);
```

(This is an optional step.) This calls the ERRSAV subroutine, which stores the error option table entry for error number \textit{ierno} in an 8-byte storage area, \textit{storarea}, which is accessible to your program. ERRSAV must be called for each entry you want to save. This step is used, along with step 8, for ERRSTR. For information on whether you should use ERRSAV and ERRSTR, see “How Can You Control Error Handling in Large Applications by Saving and Restoring Entries in the Error Option Table?” on page 51. For an example, see “Example” on page 157, as the use is the same as for computational errors.

Step 5. Call ERRSET

```c
errset (ierno, inoal, inomes, itrace, iusadr, irange);
```
This calls the ERRSET subroutine, which allows you to dynamically modify the action taken when an error occurs. For optionally-recoverable ESSL input-argument errors, you need to call ERRSET only if you want to avoid terminating your program and you want the input arguments associated with this error to be assigned correct values in your program when the error occurs. For one error \((ierno)\) or a range of errors \((irange)\), you can specify:

- How many times each error can occur before execution terminates \((inoal)\)
- How many times each error message can be printed \((inomes)\)
- The ESSL exit routine ENOTRM, to be invoked for the error indicated \((iusadr)\)

ERRSET must be called for each error code you want to indicate as being recoverable. For ESSL, \(ierno\) should have a value of 2015, 2030, or 2200. If you want to eliminate error messages, you should indicate a negative number for \(inomes\); otherwise, you should specify 0 for this argument. All the other ERRSET arguments should be specified as 0.

For a list of the default values set in the ESSL error option table, see Table 26 on page 49. For a description of the input-argument errors, see “Input-Argument Error Messages(2001-2099)” on page 177. For a description of ERRSET, see Chapter 17 on page 979.

Step 6. Call ESSL

```c
irc = name (arg1,...,argn);
if irc == rc1
    {
        ...
    }
if irc == rc2
    {
        ...
    }
```

This calls the ESSL subroutine and specifies a branch on one or more return code values, where:

- **name** specifies the ESSL subroutine.
- **arg1,...,argn** are the input and output arguments.
- **irc** is the integer variable containing the return code resulting from the computation performed by the ESSL subroutine.
- **rc1, rc2**, and so forth are the possible return code values that can be passed back from the ESSL subroutine to C++. The values can be 0, 1, 2, and so forth. Return code values are described under “Error Conditions” in each ESSL subroutine description in Part 2 of this book.
Step 7. Perform the Desired Action: These are the statements following the test for each value of the return code, returned in *irc* in step 6. These statements perform whatever action is desired when the recoverable error occurs. These statements may check the new values set in the input arguments to determine whether adequate program storage is available, and then decide whether to continue or terminate the program. Otherwise, these statements may check that the size of the working storage arrays or the length of the transform agrees with other data in the program. The program may also store this corrected input argument value for future reference.

Step 8. Call ERRSTR

```c
errstr (ierno,storarea);
```

(This is an optional step.) This calls the ERRSTR subroutine, which stores an entry in the error option table for error number *ierno* from an 8-byte storage area, *storarea*, which is accessible to your program. ERRSTR must be called for each entry you want to store. This step is used, along with step 4, for ERRSAV. For information on whether you should use ERRSAV and ERRSTR, see “How Can You Control Error Handling in Large Applications by Saving and Restoring Entries in the Error Option Table?” on page 51. For an example, see “Example” on page 157, as the use is the same as for computational errors.

Example

This example shows an error code 2015, which resets the size of the work area *aux*, specified in *naux*, if the value specified is too small. It also indicates that no error messages should be issued.

```c
/*GLOBAL STATEMENTS FOR ESSL ERROR HANDLING*/
#define _ESVERR
#include <essl.h>
#include <iostream.h>
#include <stdio.h>
extern "Fortran" int enotrm(int &,int &);
extern "Fortran" typedef int (*FN) (int &,int &);
```

Chapter 4. Coding Your Program 153
main ()
{
FN iusadr;
int ierno,inoal,inomes,itrace,irc,dummy;
int naux;
.
.
.
/*INITIALIZE THE POINTER TO THE ENOTRM ROUTINE*/
iusadr = enotrm;
.
.
.
/*INITIALIZE THE ESSL ERROR OPTION TABLE*/
dummy = 0;
einfo (0,dummy,dummy);
.
.
.
/*MAKE ERROR CODE 2015 A RECOVERABLE ERROR AND SUPPRESS PRINTING ALL ERROR MESSAGES FOR IT*/
ierno = 2015;
inoal = 0;
inomes = -1;
itrace = 0;
irange = 2015;
errset (ierno,inoal,inomes,itrace,iusadr,irange);
.
.
.
/*CALL ESSL SUBROUTINE SWLEV. NAUX IS PASSED BY REFERENCE. IF THE NAUX INPUT IS TOO SMALL, ERROR 2015 OCCURS. THE MINIMUM VALUE REQUIRED IS STORED IN THE NAUX INPUT ARGUMENT, AND THE RETURN CODE OF 1 IS SET IN IRC.*/
irc = swlev (x,incx,u,incu,y,incy,n,aux,naux);
if irc == 1
{
/*CHECK THE RESULTING INPUT ARGUMENT VALUE IN NAUX AND TAKE THE DESIRED ACTION*/
.
}
.
.
.
}
Computational Errors in C++

To obtain information about an ESSL computational error in a C++ program, add the statements in the following steps to your program. Steps 4 and 9 for ERRSAV and ERRSTR, respectively, are optional. Adding these steps makes the effect of the call to ERRSET temporary. For a list of those computational errors that return information and to which these steps apply, see “EINFO—ESSL Error Information-Handler Subroutine” on page 982.

Step 1. Code the Global Statements for ESSL Error Handling

```cpp
/* Code one underscore */
/* before the letters ESVERR */
#define _ESVERR
#include <iostream.h>
#include <stdio.h>
#include <essl.h>
```

These statements are coded with your global declares in the front of your program. The `#define _ESVERR` must be coded before the `#include` statement for the ESSL header file.

Step 2. Declare the Variables

```cpp
int ierno, inoal, inomes, itrace, iusadr, irange, irc;
int inf1, inf2, dummy;
char storarea[8];
```

These statements include declares for the variables used by the ESSL and Fortran error-handling subroutines. Note that `storarea` must be 8 characters long. These should be coded in the beginning of your program before any of the following statements.

Step 3. Do Initialization for ESSL

```cpp
dummy = 0;
einfo (0, dummy, dummy);
```

The last statement calls the EINFO subroutine to initialize the ESSL error option table, where `dummy` is a declared integer and is a placeholder. For a description of EINFO, see “EINFO—ESSL Error Information-Handler Subroutine” on page 982. These statements should be coded only once in the beginning of your program before calls to ERRSET.

Step 4. Call ERRSAV

```cpp
errsav (ierno, storarea);
```
(This is an optional step.) This calls the ERRSAV subroutine, which stores the error option table entry for error number ierno in an 8-byte storage area, storarea, which is accessible to your program. ERRSAV must be called for each entry you want to save. This step is used, along with step 8, for ERRSTR. For information on whether you should use ERRSAV and ERRSTR, see “How Can You Control Error Handling in Large Applications by Saving and Restoring Entries in the Error Option Table?” on page 51. For an example, see “Example” on page 157.

Step 5. Call ERRSET

```c
errset (ierno,inoo,inoal,inomes,itrace,iusadr,irange);
```

This calls the ERRSET subroutine, which allows you to dynamically modify the action taken when an error occurs. For ESSL computational errors, you need to call ERRSET only if you want to change the default values in the ESSL error option table. For one error (ierno) or a range of errors (irange), you can specify:

- How many times each error can occur before execution terminates (inoal)
- How many times each error message can be printed (inomes)

ERRSET must be called for each error code for which you want to change the default values. For ESSL, ierno should be set to one of the eligible values listed in Table 171 on page 982. To allow your program to continue after an error in the specified range occurs, inoal must be set to a value greater than 1. For ESSL, iusadr should be specified as either 0 or 1 in a 32-bit environment (0l or 1l in a 64-bit environment), so a user exit is not taken.

For a list of the default values set in the ESSL error option table, see Table 26 on page 49. For a description of the computational errors, see “Computational Error Messages(2100-2199)” on page 185. For a description of ERRSET, see Chapter 17 on page 979.

Step 6. Call ESSL

```c
irc = name (arg1,...,argn);
if irc == rc1
{
   ...
   ...
   ...
}
if irc == rc2
{
   ...
   ...
   ...
}
```

This calls the ESSL subroutine and specifies a branch on one or more return code values, where:

- *name* specifies the ESSL subroutine.
• \(arg_1,\ldots, arg_n\) are the input and output arguments.

• \(irc\) is the integer variable containing the return code resulting from the computation performed by the ESSL subroutine.

• \(rc_1, rc_2, \ldots\) are the possible return code values that can be passed back from the ESSL subroutine to C++. The values can be 0, 1, 2, and so forth. Return code values are described under “Error Conditions” in each ESSL subroutine description in Part 2 of this book.

The statements following each test of the return code can perform any desired action. This includes calling EINFO for more information about the error, as described in step 7.

Step 7. Call EINFO for Information

```
    einfo (ierno, inf1, inf2);
```

This calls the EINFO subroutine, which returns information about certain computational errors, where:

• \(ierno\) is the error code of interest.

• \(inf1\) and \(inf2\) are the integer variables used to receive the information, where \(inf1\) is assigned a value for all errors, and \(inf2\) is assigned a value for some errors. You must specify both arguments, as there are no optional arguments for C. For a description of EINFO, see “EINFO—ESSL Error Information-Handler Subroutine” on page 982.

Step 8. Check the Values in the Information Receivers: These statements check the values returned in the output argument information receivers, \(inf1\) and \(inf2\), which contain the information about the computational error.

Step 9. Call ERRSTR

```
    errstr (ierno, storarea);
```

(This is an optional step.) This calls the ERRSTR subroutine, which stores an entry in the error option table for error number \(ierno\) from an 8-byte storage area, \(storarea\), which is accessible to your program. ERRSTR must be called for each entry you want to store. This step is used, along with step 4, for ERRSAV. For information on whether you should use ERRSAV and ERRSTR, see “How Can You Control Error Handling in Large Applications by Saving and Restoring Entries in the Error Option Table?” on page 51. For an example, see “Example.”

Example

This 32-bit environment example shows an error code 2105, which returns one piece of information: the index of the pivot element \((i)\) near zero, causing factorization to fail. It uses ERRSAV and ERRSTR to insulate the effects of the error handling for error 2105 by this program.
/*GLOBAL STATEMENTS FOR ESSL ERROR HANDLING*/
#define _ESVERR
#include <essl.h>
#include <iostream.h>
#include <stdio.h>
.
.
/*DECLARE THE VARIABLES*/

main ()
{
 int ierno,inoal,inomes,itrace,iusadr,irange,irc;
 int inf1,inf2,dummy;
 char sav2105[8];
 .
 .

 /*INITIALIZE THE ESSL ERROR OPTION TABLE*/
dummy = 0;
einfo (0,dummy,dummy);
 /*SAVE THE EXISTING ERROR OPTION TABLE ENTRY
 FOR ERROR CODE 2105*/
 ierno = 2105;
 errsav (ierno,sav2105);
 .
 .

 /*MAKE ERROR CODES 2101 THROUGH 2105 RECOVERABLE
 ERRORS AND SUPPRESS PRINTING ALL ERROR MESSAGES
 FOR THEM. THIS SHOWS HOW YOU CODE THE
 ERRSET ARGUMENTS FOR A RANGE OF ERRORS. */
 ierno = 2101;
inooal = 0;
inomes = 0; /*A DUMMY ARGUMENT*/
itrace = 0; /*A DUMMY ARGUMENT*/
iusadr = 0; /*A DUMMY ARGUMENT*/
irange = 2105
 errset (ierno,inoal,inomes,itrace, iusadr,irange);
 .
 .

 /*CALL ESSL SUBROUTINE DGEICD. IF THE INPUT MATRIX
 IS SINGULAR OR NEARLY SINGULAR, ERROR 2105
 OCCURS. A RETURN CODE OF 2 IS SET IN IRC.*/
 irc = dgeicd (a,lda,n,iopt,rcond,det,aux,naux);
 if irc == 2

{
 /*CALL THE INFORMATION-HANDLER ROUTINE FOR ERROR CODE 2105 TO RETURN ONE PIECE OF INFORMATION IN VARIABLE INF1, THE INDEX OF THE PIVOT ELEMENT NEAR ZERO, CAUSING FACTORIZATION TO FAIL. INF2 IS NOT USED, BUT MUST BE SPECIFIED. BOTH INF1 AND INF2 ARE PASSED BY REFERENCE, BECAUSE THEY ARE OUTPUT SCALAR ARGUMENTS.*/
 ierno = 2105;
 einfo (ierno,inf1,inf2);
 /*CHECK THE VALUE IN VARIABLE INF1 AND TAKE THE DESIRED ACTION*/
 .
 .
 }

 /*RESTORE THE PREVIOUS ERROR OPTION TABLE ENTRY FOR ERROR CODE 2105. ERROR PROCESSING RETURNS TO HOW IT WAS BEFORE IT WAS ALTERED BY THE ABOVE ERRSAVE STATEMENT*/
 ierno = 2105;
 errstr (ierno,sav2105);
 .
 .
}

PL/I Programs

If you are using ESSL with PL/I Set for AIX, Version 1, see the PL/I publications for details on calling subroutines and functions.
Chapter 5. Processing Your Program

This chapter provides information on how to process your program. It contains processing procedures that apply to Fortran, C, and C++ programs using ESSL. It describes only the ESSL-specific changes you need to make to your job setup procedures. For complete examples of job setup procedures, see your programming language's programming guide.

Notes:
1. For the ESSL SMP Library, you can use the XL Fortran XLSMPOPTS environment variable to specify options which affect SMP execution. For details, see the Fortran publications.

Compiling

This section describes how to compile your program.

General Procedures

You can use any procedures you are currently using for compiling your program. ESSL requires no changes to the compile-time setup procedures for C or C++ programs, because the ESSL header file, essl.h, which is used for C and C++ programs, is installed in the /usr/include directory.

ESSL supports the XL Fortran compile-time option -qextname. For details, see the Fortran manuals.

You must use only the allowable compilers or assemblers listed in Table 2 on page 8.

Using Your Own Complex Data Definitions in C Programs

If you want to specify your own definitions for short- and long-precision complex data, add -D_CMPLX and -D_DCMPLX, respectively, to your compile command, as shown here:

<table>
<thead>
<tr>
<th>ESSL Library Name</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMP or Serial</td>
<td>cc_r -oD_CMPLX -D_CMPLX -D_DCMPLX xyz.c</td>
</tr>
<tr>
<td></td>
<td>cc -oD_CMPLX -D_CMPLX -D_DCMPLX xyz.c</td>
</tr>
</tbody>
</table>

where xyz.c is the name of your C program. Otherwise, you automatically use the definitions of short- and long-precision complex data provided in the ESSL header file.
Using Your Own Short Complex Data Definitions in C++ Programs

If you want to specify your own definition for short-precision complex data, add -D_CMPLX to your command, as shown here:

<table>
<thead>
<tr>
<th>ESSL Library Name</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMP -or- Serial</td>
<td><code>x1C_r -cO -D_CMPLX xyz.C -qnocinc=/usr/include/essl</code></td>
</tr>
<tr>
<td>Serial</td>
<td><code>x1C -cO -D_CMPLX xyz.C -qnocinc=/usr/include/essl</code></td>
</tr>
</tbody>
</table>

where `xyz.C` is the name of your C++ program. Otherwise, you automatically use the definition of short-precision complex data provided in the ESSL header file.

Compiling and Linking

You can use any procedures you are currently using to link or run your program, as long as you make the necessary modifications for ESSL. This section describes these modifications. For details on the complete procedures, see your operating system and programming language manuals.

64-bit environment

64-bit environment applications can be created on any AIX 4.3.3 system, but can run only on 64-bit hardware.

If you are accessing ESSL from a 64-bit environment program, you must add the -q64 compiler option. This compiler option is language independent.

<table>
<thead>
<tr>
<th>ESSL Library Name</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMP</td>
<td><code>xlf_r -O -qnosave -q64 xyz.f -lesslsmp</code></td>
</tr>
<tr>
<td>Serial</td>
<td><code>cc_r -O -q64 xyz.c -lessl</code></td>
</tr>
<tr>
<td>Serial</td>
<td><code>xlf -O xyz.f -lessl</code></td>
</tr>
</tbody>
</table>

where `xyz.f` is the name of your Fortran program, `xyz.c` is the name of your C program, and `xyz.C` is the name of your C++ program.

Fortran Programs

If you are accessing ESSL from a Fortran program and want to compile and link in one step, you can use the following command:

<table>
<thead>
<tr>
<th>ESSL Library Name</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMP</td>
<td><code>xlf_r -O -qnosave xyz.f -lesslsmp</code></td>
</tr>
<tr>
<td>Serial</td>
<td><code>xlf -O xyz.f -lessl</code></td>
</tr>
</tbody>
</table>

where `xyz.f` is the name of your Fortran program.

If you want to compile and link your Fortran program in separate steps, you can use the following commands:
where \texttt{xyz.f} is the name of your Fortran program, and \texttt{xyz.o} is the name of your object file.

C Programs

If you are accessing ESSL from a C program and want to compile and link in one step, you can use the following command:

\begin{center}
\begin{tabular}{|l|l|}
\hline
ESSL Library Name & Command \\
\hline
SMP & \texttt{cc_r -O xyz.c -lesslsmp} \\
Serial & \texttt{cc_r -cO xyz.c} \\
Serial & \texttt{cc_r xyz.o -lessl} \\
\hline
\end{tabular}
\end{center}

where \texttt{xyz.c} is the name of your C program.

If you want to compile and link your C program in separate steps, you can use the following commands:

\begin{center}
\begin{tabular}{|l|l|}
\hline
ESSL Library Name & Command \\
\hline
SMP & \texttt{cc_r -cO xyz.c} \\
Serial & \texttt{cc_r xyz.o -lessl} \\
Serial & \texttt{cc -cO xyz.c} \\
Serial & \texttt{cc xyz.o -lessl} \\
\hline
\end{tabular}
\end{center}

where \texttt{xyz.c} is the name of your C program and \texttt{xyz.o} is the name of your object file.

In the above cases, you automatically use the definitions of short- and long-precision complex data provided in the ESSL header file. If you prefer to specify your own definitions for short- and long-precision complex data, add \texttt{-D_CMPLX} and \texttt{-D_DCMPLX}, respectively, to your commands, as shown here:

\begin{center}
\begin{tabular}{|l|l|}
\hline
ESSL Library Name & Command \\
\hline
SMP & \texttt{cc_r -0 -D_CMPLX -D_DCMPLX xyz.c -lesslsmp} \\
Serial & \texttt{cc_r -0 -D_CMPLX -D_DCMPLX xyz.c -lessl} \\
Serial & \texttt{cc -0 -D_CMPLX -D_DCMPLX xyz.c -lessl} \\
\hline
\end{tabular}
\end{center}
C++ Programs

If you are accessing ESSL from a C++ program and want to compile and link in one step, you can use the following command:

<table>
<thead>
<tr>
<th>ESSL Library Name</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMP</td>
<td>xlC_r -O xyz.C -lesslsmpp -qnocinc=/usr/include/essl</td>
</tr>
<tr>
<td>Serial</td>
<td>xlC_r -O xyz.C -lessl -qnocinc=/usr/include/essl</td>
</tr>
<tr>
<td>Serial</td>
<td>xlC -O xyz.C -lessl -qnocinc=/usr/include/essl</td>
</tr>
</tbody>
</table>

where xyz.C is the name of your C++ program.

If you want to compile and link your C++ program in separate steps, you can use the following commands:

<table>
<thead>
<tr>
<th>ESSL Library Name</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMP</td>
<td>xlC_r -cO xyz.C -qnocinc=/usr/include/essl</td>
</tr>
<tr>
<td></td>
<td>xlC_r xyz.o -lesslsmpp</td>
</tr>
<tr>
<td>Serial</td>
<td>xlC_r -cO xyz.C -qnocinc=/usr/include/essl</td>
</tr>
<tr>
<td></td>
<td>xlC_r xyz.o -lessl</td>
</tr>
<tr>
<td>Serial</td>
<td>xlC -cO xyz.C -qnocinc=/usr/include/essl</td>
</tr>
<tr>
<td></td>
<td>xlC xyz.o -lessl</td>
</tr>
</tbody>
</table>

where xyz.C is the name of your C++ program, and xyz.o is the name of your object file.

In the above cases, you automatically use the definition of short-precision complex data provided in the ESSL header file. If you prefer to specify your own definition for short-precision complex data, add -D_CMPLX to your commands, as shown here:

<table>
<thead>
<tr>
<th>ESSL Library Name</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMP</td>
<td>xlC_r -O -D_CMPLX xyz.C -lesslsmpp -qnocinc=/usr/include/essl</td>
</tr>
<tr>
<td>Serial</td>
<td>xlC_r -O -D_CMPLX xyz.C -lessl -qnocinc=/usr/include/essl</td>
</tr>
<tr>
<td>Serial</td>
<td>xlC -O -D_CMPLX xyz.C -lessl -qnocinc=/usr/include/essl</td>
</tr>
</tbody>
</table>
Chapter 6. Migrating Your Programs

This chapter explains many aspects of migrating your application programs to use the ESSL subroutines. It covers:

- Migrating ESSL Version 3 programs to Version 3 Release 2
- Migrating ESSL Version 3 programs to Version 3 Release 1.2
- Migrating ESSL Version 3 programs to Version 3 Release 1.1
- Migrating ESSL Version 2 programs to Version 3
- Planning for future migration
- Migrating between RS/6000 processors
- Migrating from other libraries to ESSL

Migrating ESSL Version 3 Programs to Version 3 Release 2

This section describes all the aspects of migrating your ESSL Version 3 application programs to Version 3 Release 2.

Note: For a list of the new features added in ESSL Version 3 Release 2, see “What's New for ESSL Version 3 Release 2” on page xxxi.

- No changes to your application programs are required if you are migrating from ESSL Version 3 Release 1.2 to ESSL Version 3 Release 2.
- The ESSL POWER2 and Thread-Safe POWER2 libraries are no longer provided. Existing applications that use these libraries will continue to run because appropriate symbolic links are created at install time to preserve binary compatibility. However, if you are creating new applications you should use:
 - The ESSL Serial or SMP library instead of the ESSL Thread-Safe POWER2 Library.
 - The ESSL Serial Library instead of the ESSL POWER2 Library.
- The ESSL POWER and Thread-Safe libraries have been replaced by a thread-safe library referred to as the ESSL Serial Library.

ESSL Subroutines

The calling sequences for the subroutines in ESSL Version 3 Release 1.2 and ESSL Version 3 Release 2 are identical. No changes to your application programs are required if you are migrating from ESSL Version 3 Release 1.2 to ESSL Version 3 Release 2.

Migrating ESSL Version 3 Programs to Version 3 Release 1.2

This section describes all the aspects of migrating your ESSL Version 3 application programs to Version 3 Release 1.2.

Note: For a list of the new features added in ESSL Version 3 Release 1.2, see “Changes for ESSL Version 3 Release 1.2” on page xxxi.

1 Customers that require the tuned POWER2 libraries for performance reasons have the option of retaining the ESSL Version 3 Release 1.2 POWER2 libraries when ESSL Version 3 Release 2 is installed. See the ESSL Install Memo for details.
ESSL Subroutines

The calling sequences for the subroutines in ESSL Version 3 Release 1.1 and ESSL Version 3 Release 1.2 are identical. No changes to your application programs are required if you are migrating from ESSL Version 3 Release 1.1 to ESSL Version 3 Release 1.2.

Migrating ESSL Version 3 Programs to Version 3 Release 1.1

This section describes all the aspects of migrating your ESSL Version 3 application programs to Version 3 Release 1.1.

Note: For a list of the new features added in ESSL Version 3 Release 1.1, see “Changes for ESSL Version 3 Release 1.1” on page xxxii.

ESSL Subroutines

The calling sequences for the subroutines in ESSL Version 3 and ESSL Version 3 Release 1.1 are identical.

Distinct libraries are provided for AIX 4.2.1 and AIX 4.3.2

- For AIX 4.2.1, the ESSL Thread-Safe Library, the ESSL Thread-Safe POWER2 Library, and the ESSL SMP Library were built using the pthreads draft 7 supplied on AIX 4.2.1. (This is the same as ESSL 3.1)
- For AIX 4.3.2, the ESSL Thread-Safe Library, the ESSL Thread-Safe POWER2 Library, and the ESSL SMP Library were built using the pthreads library that conforms to the IEEE POSIX 1003.1-1996 specification supplied on AIX 4.3.

Threaded applications built using ESSL 3.1 will continue to run with ESSL 3.1.1.

If you are migrating to a 64-bit environment you may need to make changes to your call to ERRSET. See “ERRSET—ESSL ERRSET Subroutine for ESSL” on page 986.

Migrating ESSL Version 2 Programs to Version 3

This section describes all the aspects of migrating your ESSL Version 2 application programs to Version 3.

Note: For a list of the new features and subroutines added in ESSL Version 3, see “Changes for ESSL Version 3” on page xxxii.

ESSL Subroutines

The calling sequences for the subroutines in ESSL Version 2 and ESSL Version 3 are identical. This includes the new ESSL SMP and Thread-Safe Libraries that are included in the ESSL Version 3 product. You do not have to change your existing application programs that call ESSL subroutines when migrating to the ESSL Version 3 product. You must, however, re-link your application program. Therefore, you can simply re-link your existing programs to take advantage of the increased performance of using the ESSL SMP Library on the SMP processors.

For the _GEF and _GEFCD subroutines, the first column of the matrix L with the corresponding $U_{ii} = 0$ diagonal element is identified in a computational error.
message. Previously, the last column was identified. You do not have to make any modifications to your existing application programs that call these subroutines.

ESSL Messages

The text of message format has changed. ESV has been removed from the message text. For details on the new format, see “Message Format” on page 176.

Some input-argument and computational error message numbers have been changed. The old message numbers can still be used when calling ERRSET, however, you should migrate to the new message numbers. The following describes which error messages have been modified:

<table>
<thead>
<tr>
<th>Old Error Message Number</th>
<th>New Error Message Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2074</td>
<td>2608</td>
</tr>
<tr>
<td>2123</td>
<td>2609</td>
</tr>
<tr>
<td>2128</td>
<td>2700</td>
</tr>
</tbody>
</table>

Planning for Future Migration

With respect to planning for the future, if working storage does not need to persist after the subroutine call, you should use dynamic allocation. Otherwise, you should use the processor-independent formulas or simple formulas for calculating the values for the $naux$ arguments in the ESSL calling sequences. Two things may occur that could cause the minimum values of $naux$, returned by ESSL error handling, to increase in the future:

- If changes are made to the ESSL subroutines to improve performance
- If changes are necessary to support future processors

The formulas allow you to specify your auxiliary storage large enough to accommodate any future improvements to ESSL and any future processors. If you do not provide, at least, these amounts of storage, your program may not run in the future.

You should use the following rule of thumb: To protect your application from having to be recoded in the future because of possible increased requirements for auxiliary storage, use dynamic allocation if possible. If the working storage must persists after the subroutine call, then you should provide as much storage as possible in your current application. In determining the right amount to specify, you should weigh your storage constraints against the inconvenience of making future changes, then specify what you think is best. If possible, you should provide this larger amount of storage to prevent future migration problems.

Migrating between RS/6000 Processors

This section describes all the aspects of migrating your ESSL application programs (back and forth) between the RS/6000 PowerPC, POWER, POWER2, POWER3, and POWER3–II processors.
Auxiliary Storage
The minimum amount of auxiliary storage returned by ESSL error handling may vary among the RS/6000 processors for the following subroutines: all the Fourier transform subroutines, SCONF, SCORF, and SACORF. Therefore, to guarantee that your application programs always migrate from any platform to any other platform, you should use the processor independent formulas to determine the amount of auxiliary storage to use.

Bitwise-Identical Results
Because of hardware and ESSL design differences, the results you obtain when migrating from one ESSL Library to another may not be bitwise identical. The results, however, are mathematically equivalent.

Migrating from Other Libraries to ESSL
This section describes some general aspects of moving from an IBM or non-IBM engineering and scientific library to ESSL.

Migrating from ESSL/370
There is a high degree of compatibility between ESSL/370 and ESSL for AIX. However you may need to make some coding changes for certain subroutines. See the Engineering and Scientific Subroutine Library Version 2.2 Guide and Reference for details.

Migrating from Another IBM Subroutine Library
If you are migrating from other IBM library products—such as Subroutine Library—Mathematics (SL MATH) or Scientific Subroutine Package (SSP), which have some functions similar to ESSL—the ESSL calling sequences differ from the calling sequences you are currently using. Your program must be modified to add the ESSL calling sequences and make the other ESSL-related coding changes.

If you are migrating from the Basic Linear Algebra Subroutine Library provided with the RS/6000 basic operating system, your calling sequences do not need to be changed.

Migrating from LAPACK
ESSL contains a few subroutines that conform to the LAPACK interface (see Appendix B on page APB-1). If you are using these subroutines, no coding changes are needed to migrate to ESSL.

Additionally, you may be interested in using the Call Conversion Interface (CCI) that is available with LAPACK. The CCI substitutes a call to an ESSL subroutine in place of an LAPACK subroutine whenever an ESSL subroutine provides either functional or near-functional equivalence. Using the CCI allows LAPACK users to obtain the optimized performance of ESSL for an additional subset of LAPACK subroutines. For details, see reference [40].
Migrating from a Non-IBM Subroutine Library

If you are using a non-IBM library, ESSL may provide subroutines corresponding to those you are currently using. You may choose to migrate your program to benefit from the increased performance offered by the ESSL subroutines. In this case, you may have to recode your program to use the ESSL calling sequences, because the names and arguments used by ESSL may be different from those used by the non-IBM library. On the other hand, if you are using any of the standard Level 1, 2, and 3 BLAS or LAPACK routines that correspond to ESSL subroutines, you do not need to recode the calling sequences. The ESSL calling sequences are the same as the public domain code.
Chapter 7. Handling Problems

This chapter provides the following information for your use when dealing with errors:

- How to obtain IBM support.
- What to do about NLS (National Language Support) problems.
- A description of the different types of errors that can occur in ESSL. It explains what happens when an error occurs and, in some instances, how you can use error handling to obtain further information.
- All of the ESSL error messages are categorized into the different error types. There is also a description of the error message format.

Where to Find More Information About Errors

Specific errors associated with each ESSL subroutine are listed under "Error Conditions" in each subroutine description in Part 3 of this book.

Getting Help from IBM Support

Should you require help from IBM in resolving an ESSL problem, report it and provide the following information, if available and appropriate.

1. Your customer number
2. The ESSL program number:
 - 5765-C42
 This is important information that speeds up the correct routing of your call.
3. The version and release of the operating system that you are running on. To get this information on AIX, enter the following command:
 oslevel
4. The names and versions of key products being run. To get this information on AIX, enter the following command:
 lslpp -h product
 where the appropriate values of product for AIX Version 4 are listed in Table 30.

<table>
<thead>
<tr>
<th>Product File Sets</th>
<th>Descriptive Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>essl.*</td>
<td>ESSL</td>
</tr>
<tr>
<td>xfrte</td>
<td>XL Fortran Run-Time Environment</td>
</tr>
<tr>
<td>xismp.rte</td>
<td>SMP Run-Time Environment</td>
</tr>
<tr>
<td>xlfcmp</td>
<td>XL Fortran Compiler</td>
</tr>
<tr>
<td>vac.C</td>
<td>C for AIX Compiler</td>
</tr>
<tr>
<td>vacpp.cmp.C</td>
<td>Visual Age C++ Professional for AIX Compiler</td>
</tr>
</tbody>
</table>
5. The message that is returned when an error is detected.
6. Any error message relating to core dumps.
7. The compiler listings, including compiler options in effect, and any run-time
 listings produced
8. Program changes made in comparison with a previous successful run
9. A small test case demonstrating the problem using the minimum number of
 statements and variables, including input data

Consult your IBM Service representative for more assistance.

National Language Support
For National Language Support (NLS), all ESSL subroutines display messages
located in externalized message catalogs. English versions of the message
catalogs are shipped with the IBM Engineering and Scientific Subroutine Library for
AIX product, but your site maybe using its own translated message catalogs. The
AIX environment variable NLSPATH is used by the various ESSL subroutines to
find the appropriate message catalog. NLSPATH specifies a list of directories to
search for message catalogs. The directories are searched, in the order listed, to
locate the message catalog. In resolving the path to the message catalog,
NLSPATH is affected by the value of the environment variables LC_MESSAGES
and LANG. If you get an error saying that a message catalog is not found and want
the default message catalog, enter the following:

```bash
export NLSPATH = /usr/lib/nls/msg/%L/%N
export LANG = C
```

The ESSL message catalogs are in English, and are located in the following
directories:
```
/usr/lib/nls/msg/C
/usr/lib/nls/msg/En_US
/usr/lib/nls/msg/en_US
```

If your site is using its own translations of the message catalogs, consult your
system administrator for the appropriate value of NLSPATH or LANG. For
additional information on NLS and message catalogs, see IBM AIX Version 4 for
RISC System/6000 General Programming Concepts.

If ESSL cannot successfully find a message, ESSL returns message 2799,
indicating which message could not be located. Message 2799 is described in
“Miscellaneous Error Messages” on page 176.

Dealing with Errors
At run time, you can encounter a number of different types of errors that are
specifically related to the use of the ESSL subroutines:

- Program exceptions
- Input-argument errors (2001-2099) and (2200–2299)
- Computational errors (2100-2199)
Program Exceptions

The program exceptions you can encounter in ESSL are described in the RS/6000 architecture manuals. For details, see:

- RS/6000 POWERstation and POWERserver Hardware Technical Reference Information—General Architectures.

ESSL Input-Argument Error Messages

If you receive an error message in the form 2538-20nn or 2538–22nn, you have an input-argument error in the calling sequence for an ESSL subroutine. Your program terminated at this point unless you did one of the following:

- Specified the ESSL user exit routine, ENOTRM, with ERRSET to determine the correct input argument values in your program for the optionally-recoverable ESSL errors 2015, 2030 or 2200. For details on how to do this, see Chapter 4 on page 109.
- Reset the number of allowable errors (2099) during ESSL installation or using ERRSET in your program. This is not recommended for input-argument errors.

Note: For many of the ESSL subroutines requiring auxiliary storage, you can avoid program termination due to error 2015 by allowing ESSL to dynamically allocate auxiliary storage for you. You do this by setting \(naux = 0 \) and making error 2015 unrecoverable. For details on which aux arguments allow dynamic allocation and how to specify them, see the subroutine descriptions in Part 2 of this book.

The name of the ESSL subroutine detecting the error is listed as part of the message. The argument number(s) involved in the error appears in the message text. See “Input-Argument Error Messages(2001-2099)” on page 177 for a complete description of the information contained in each message and for an indication of which messages correspond to optionally-recoverable errors. Regardless of whether the name in the message is a user-callable ESSL subroutine or an internal ESSL routine, the message-text and its unique parts apply to the user-callable ESSL subroutine. Return code values are described under “Error Conditions” for each ESSL subroutine in Part 2 of this book.

You may get more than one error message, because most of the arguments are checked by ESSL for possible errors during each call to the subroutine. The ESSL subroutine returns as many messages as there are errors detected. As a result, fewer runs are necessary to diagnose your program.

Fix the error(s), recompile, relink, and rerun your program.
ESSL Computational Error Messages

If you receive an error message in the form 2538-21nn, you have a computational error in the ESSL subroutine. A computational error is any error occurring in the ESSL subroutine while using the computational data (that is, scalar and array data). The name of the ESSL subroutine detecting the error is listed as part of the message. Regardless of whether the name in the message is a user-callable ESSL subroutine or an internal ESSL routine, the message-text and its unique parts apply to the user-callable ESSL subroutine. A nonzero return code is returned when the ESSL subroutine encounters a computational error. See “Computational Error Messages(2100-2199)” on page 185 for a complete description of the information in each message. Return code values are described under “Error Conditions” for each ESSL subroutine in Part 2 of this book.

Your program terminates for some computational errors unless you have called ERRSET to reset the number of allowable errors for that particular error, and the number has not been exceeded. A message is issued for each computational error. You should use the message to determine where the error occurred in your program.

If you called ERRSET and you have not reached the limit of errors you had set, you can check the return code. If it is not 0, you should call the EINFO subroutine to obtain information about the data involved in the error. EINFO provides the same information provided in the messages; however, it is provided to your program so your program can check the information during run time. Depending on what you want to do, you may choose to continue processing or terminate your program after the error occurs. For information on how to make these changes in your program to reset the number of allowable errors, how to diagnose the error, and how to decide whether to continue or terminate your program, see Chapter 4 on page 109.

If you are unable to solve the problem, report it and provide the following information, if available and appropriate:

- The message number and the module that detected an error
- The system dump, system error code, and system log of this job
- The compiler listings, including compiler options in effect, and any run-time listings produced
- Program changes made in comparison with a previous successful run
- A small test case demonstrating the problem using the minimum number of statements and variables, including input data
- A brief description of the problem

ESSL Resource Error Messages

If you receive a message in the form 2538-24nn, it means that ESSL issued a resource error message.

A resource error occurs when a buffer storage allocation request fails in a ESSL subroutine. In general, the ESSL subroutines allocate internal auxiliary storage dynamically as needed. Without sufficient storage, the subroutine cannot complete the computation.
When a buffer storage allocation request fails, a resource error message is issued, and the application program is terminated. You need to reduce the memory constraint on the system or increase the amount of memory available before rerunning the application program.

The following ways may reduce memory constraints:

- Investigate the load of your process and run in a more dedicated environment.
- Increase your processor's paging space.
- Select a machine with more memory.
- Consider specifying the -bmaxdata binder option when linking your program. For details see the Fortran publications.
- Check the setting of your user ID's user limit (ulimit). (see the IBM AIX Version 4 Commands Reference).

ESSL Informational and Attention Messages

If you receive a message in the form 2538-26nn, it means that ESSL issued an informational or attention message.

Informational Messages

When you receive an informational message, check your application to determine why the condition was detected.

ESSL Attention Messages

An attention message is issued to describe a condition that occurred. ESSL is able to continue processing, but performance may be degraded.

One condition that may produce an attention message is when enough work area was available to continue processing, but was not the amount initially requested. ESSL does not terminate your application program, but performance may be degraded. If you want to reduce the memory constraint on the system or increase the amount of memory available to eliminate the attention message, see the suggestions in “ESSL Resource Error Messages” on page 174. For a list of subroutines that may generate this type of attention message, see Table 31.

<table>
<thead>
<tr>
<th>Table 31 (Page 1 of 2). ESSL Subroutines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subroutine Names</td>
</tr>
<tr>
<td>Matrix-Vector Linear Algebra Subprograms:</td>
</tr>
<tr>
<td>_GEMV, _GER, _SPMV, _SYMV, _SPR, _SYR, _SPR2, _SYR2</td>
</tr>
<tr>
<td>_GERC, _GERU, _HPMV, _HEMV, _HPR, _HER, _HPR2, _HER2</td>
</tr>
<tr>
<td>_SBMV, _TBMV, _GBMV</td>
</tr>
<tr>
<td>_TPMV</td>
</tr>
<tr>
<td>_TRMV</td>
</tr>
<tr>
<td>Matrix Operations:</td>
</tr>
<tr>
<td>_GEMM, _GEMUL</td>
</tr>
<tr>
<td>_SYMM, _SYR2K, _TRMM</td>
</tr>
<tr>
<td>_HEMM, _HER2K</td>
</tr>
</tbody>
</table>
ESSL Subroutines

<table>
<thead>
<tr>
<th>Subroutine Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dense Linear Algebraic Equations:</td>
</tr>
<tr>
<td>_POF, _POICD, _PPF, _PPFCD, _PPICD</td>
</tr>
<tr>
<td>_GEICD, _TPI, _TRI</td>
</tr>
<tr>
<td>_TRSM, _TPSV</td>
</tr>
<tr>
<td>_TRSV</td>
</tr>
<tr>
<td>Banded Linear Algebraic Equations:</td>
</tr>
<tr>
<td>STBSV, DTBSV</td>
</tr>
<tr>
<td>Linear Least Squares:</td>
</tr>
<tr>
<td>_GESVS</td>
</tr>
<tr>
<td>Fourier Transforms:</td>
</tr>
<tr>
<td>_CFT, _CFT3</td>
</tr>
<tr>
<td>_RCFT, _RCFT3</td>
</tr>
<tr>
<td>_CRFT, _CRFT3</td>
</tr>
</tbody>
</table>

Miscellaneous Error Messages

If you receive a message in the form 2538-27nn, it means that ESSL issued a miscellaneous error message.

A miscellaneous error is an error that does not fall under any other categories.

When ESSL detects a miscellaneous error, you receive an error message with information on how to proceed and your application program is terminated.

Messages

This section explains the conventions used for the ESSL messages and lists all the ESSL messages. For a description of each of the four types of ESSL messages, see “Dealing with Errors” on page 172.

Message Conventions

This section describes the message conventions for the ESSL product.

About Upper- and Lowercase

The literals, such as, ‘N’, ‘T’, ‘U’, and so forth, appear in the messages in this book in uppercase; however, they may be specified in your ESSL calling sequence in either upper- or lowercase, for example, ‘n’, ‘t’, and ‘u’.

Message Format

The ESSL messages are issued in your output in the following format:

```
rtm-name : 2538-mmnn
message-text
```

Figure 10. Message Format
rtn-name gives the name of the ESSL subroutine that encountered the error.

2538 is the ESSL component identification number.

mm indicates the type of ESSL error message:

- 20 — Input-argument error message
- 21 — Computational error message
- 22 — Input-argument error message
- 24 — Resource error message
- 26 — Information and attention message
- 27 — Miscellaneous error message

nn is the message identification number.

message-text describes the nature of the error. Where one of several possible message-texts can be issued for a particular ESSL error, they are listed in this book with an “or” between them. The possible unique parts are:

- The argument number of each argument involved in the error is included in the message description as (ARG NO. _)
- Additional information about the error is included in the message. The placement of this information is shown in the messages as (_)

Input-Argument Error Messages(2001-2099)

RTN_NAME : 2538-2001
The number of elements (ARG NO. _) in a vector must be greater than or equal to zero.

RTN_NAME : 2538-2002
The stride (ARG NO. _) for a vector must be nonzero.

RTN_NAME : 2538-2003
The number of rows (ARG NO. _) in a matrix must be greater than or equal to zero.

RTN_NAME : 2538-2004
The number of columns (ARG NO. _) in a matrix must be greater than or equal to zero.

RTN_NAME : 2538-2005
The size of the leading dimension (ARG NO. _) of an array must be greater than zero.

RTN_NAME : 2538-2006
The number of rows (ARG NO. _) of a matrix must be less than or equal to the size of the leading dimension (ARG NO. _) of its array.

RTN_NAME : 2538-2007
The degree of a polynomial (ARG NO. _) must be greater than or equal to zero.

RTN_NAME : 2538-2008
The number of elements (ARG NO. _) to be scanned must be greater than or equal to 2.
The number of elements (ARG NO. _) in a vector to be processed must be greater than or equal to 3.

The transform length (ARG NO. _) must be a power of 2.

The number of points used in the interpolation (ARG NO. _) must be greater than or equal to zero and less than or equal to the number of data points (ARG NO. _).

The transform length (ARG NO. _) must be less than or equal to (_).

The transform length (ARG NO. _) must be greater than or equal to (_).

The routine must be initialized with the present value of (ARG NO. _).

The number of elements (ARG NO. _) in a work array must be greater than or equal to (_).

The form (ARG NO. _) of a matrix must be 'N' or 'T'.

The form (ARG NO. _) of a matrix must be 'N', 'T', or 'C'.

The form (ARG NO. _) of a matrix must be 'N' or 'C'.

The dimension (ARG NO. _) of the matrices must be greater than or equal to zero.

The matrix form is specified by (ARG NO. _); therefore, the leading dimension (ARG NO. _) of its array must be greater than or equal to the number of its rows (ARG NO. _).

The number of sequences (ARG NO. _) must be greater than zero.

(ARG NO. _) must be nonzero.

The storage control switch (ARG NO. _) must be 1, 2, 3, or 4.

(ARG NO. _) must be less than (_).

The outer loop increment (ARG NO. _) must be greater than or equal to zero.

The stride (ARG NO. _) for a vector must be greater than or equal to zero.
The stride (ARG NO. _) for a vector must be greater than zero.

The stride (ARG NO. _) for a vector must be greater than or equal to (_).

The order (ARG NO. _) of a matrix must be greater than or equal to zero.

The job option argument (ARG NO. _) must be 0, 1, or 2.

The job option argument (ARG NO. _) must be 0, 1, 2, or 3.

The job option argument (ARG NO. _) must be 0, 1, 2, 10, 11, or 12.

The job option argument (ARG NO. _) must be 0, 1, 10, or 11.

The job option argument (ARG NO. _) must be 0, 1, 20, or 21.

The job option argument (ARG NO. _) must be 0, 1, 10, 11, 20, 21, 30, or 31.

The job option argument (ARG NO. _) must be 0, 1, 2, 3, or 4.

The job option argument (ARG NO. _) must be 0 or 1.

The transform length (ARG NO. _) is not an allowed value. The next higher allowed value is (_).

The resulting convolution length obtained from ARG NO. 10 = (_), ARG NO.11 = (_), ARG NO.13 = (_), and ARG NO.14 = (_) must be less than (_).

The size of the leading dimension (ARG NO. _) of the matrix must be greater than or equal to (_), the bandwidth constraint.

The lower bandwidth (ARG NO. _) must be greater than or equal to zero.

The upper bandwidth (ARG NO. _) must be greater than or equal to zero.

The half-band bandwidth (ARG NO. _) must be greater than or equal to zero.

The lower bandwidth (ARG NO. _) must be less than the order (ARG NO. _) of the matrix.

The upper bandwidth (ARG NO. _) must be less than the order (ARG NO. _) of the matrix.
The half-band bandwidth (ARG NO. _) must be less than the order (ARG NO. _) of the matrix.

(ARG NO. _) must be greater than zero.

Insufficient storage allocated for positive definite solve. (_ additional bytes required.

The resulting correlation length obtained from ARG NO. 8 = (_) and ARG NO. 10 = (_) must be less than (_).

(ARG NO. _) must be greater than or equal to zero.

(ARG NO. _) must be greater than (_).

The number of initialized coefficients (ARG NO. _) cannot exceed the size of the coefficient vector (ARG NO. _).

The order specified (ARG NO. _) is not supported for this quadrature method. The nearest supported order is (_).

The scaling parameter (ARG NO. _) must be greater than zero for this quadrature method.

The scaling parameter (ARG NO. _) must be nonzero for this quadrature method.

The sum of (ARG NO. _) and (ARG NO. _) must be nonzero for this quadrature method.

The number of data points (ARG NO. _) must be greater than one in order to perform numerical quadrature.

The number of columns specified for the arrays to store the matrix in compressed matrix mode (ARG NO. _) must be greater than or equal to (_).

The number of columns (ARG NO. _) specified for the matrix used to store the sparse matrix in compressed mode must be greater than zero.

The total number of non-zero elements of the input sparse matrix stored by rows, obtained from element (_) of the row pointers array (ARG NO. _), must be greater than or equal to zero.
RTN_NAME : 2538-2053
The number of non-zero elements in row (__) obtained from the row pointer array (ARG NO. __) is less than zero.

RTN_NAME : 2538-2054
The number of diagonals (ARG NO.__) specified for the matrix used to store the sparse matrix in compressed diagonal mode must be greater than zero.

RTN_NAME : 2538-2055
Element (__) of the vector used to store the diagonal numbers (ARG NO. __) is incompatible with the order of the sparse matrix (ARG NO. __).

RTN_NAME : 2538-2056
The matrix is singular because the number of non-zero entries (ARG NO. __) is zero.

RTN_NAME : 2538-2057
Element (__) in the integer parameter vector (ARG NO. __) must be greater than or equal to zero.

RTN_NAME : 2538-2058
Element (__) in the integer parameter vector (ARG NO. __) must be (__),(__), or (__).

RTN_NAME : 2538-2059
Element (__) in the real parameter vector (ARG NO. __) must be greater than zero.

RTN_NAME : 2538-2060
The size of the leading dimension (ARG NO. __) of an array must be greater than or equal to the maximum of (ARG NO. __) and (ARG NO. __).

RTN_NAME : 2538-2061
Parameter (ARG NO. __), which specifies the number of columns of the input sparse matrix (ARG NO. __ and ARG NO. __) must be greater than or equal to (__).

RTN_NAME : 2538-2062
The number of random numbers generated (ARG NO. __) must be even and greater than or equal to zero.

RTN_NAME : 2538-2063
SIDE (ARG NO. __), which specifies whether the triangular input matrix (ARG NO. __) appears on the left or right of the other input matrix, must be 'L' or 'R'.

RTN_NAME : 2538-2064
UPLO (ARG NO. __), which specifies whether an input matrix (ARG NO. __) is upper or lower triangular, must be 'U' or 'L'.

RTN_NAME : 2538-2065
DIAG (ARG NO. __), which specifies whether an input matrix (ARG NO. __) is unit triangular, must be 'U' or 'N'.

RTN_NAME : 2538-2066
Given the value which has been assigned to SIDE (ARG NO. __), the leading dimension (ARG NO. __) for the triangular input matrix must be greater than or equal to (ARG NO. __).
TRANSA (ARG NO. _) specifies whether an input matrix (ARG NO. _), its transpose, or its conjugate transpose should be used. TRANSA must be 'N', 'T', or 'C'.

The size of the leading dimension (ARG NO. _) of an array must be greater than or equal to zero.

The vector section size of the scalar library (ARG NO. _) must be 128 or 256.

Element (_) in (ARG NO. _) must be 0 or 1.

or

Element (_) in (ARG NO. _) must be greater than zero.

or

Element (_) in (ARG NO. _) must be greater than or equal to zero.

or

Element (_) in (ARG NO. _) must be greater than or equal to zero and less than or equal to 1.

or

Element (_) in (ARG NO. _) must be greater than the preceding element.

or

Element (_) in (ARG NO. _) must be greater than or equal to 1 and less than or equal to n.

or

Element (_) in (ARG NO. _) must be -1 or 1.

or

Element (_) in (ARG NO. _) must be nonzero.

or

Element (_) in (ARG NO. _) must be 0, 1, 2, 10, or 11.

or

Element (_) in (ARG NO. _) must be 0, 1, 2, 10, 11, 100, 102, or 110.

or

Element (_) in (ARG NO. _) must be 0.

or

Element (_) in (ARG NO. _) must be 1.

or

Element (_) in (ARG NO. _) must be 0, 1, 2, 10, 11, 100, 101, 102, 110, or 111.

or

Element (_) in (ARG NO. _) must be 1, 2, 3, or 4.

or

Element (_) in (ARG NO. _) must be 1, 2, 3, 4, or 5.

The number of eigenvalues (ARG NO. _) must be less than or equal to the order of the matrix (ARG NO. _).

The work area (ARG NO. _) does not contain a valid vector seed. The routine must be called with a nonzero value of ISEED (ARG NO. _).

(ARG NO. _) must be a double precision whole number greater than or equal to 1.0 and less than 2147483647.0.
Performance can be improved by using a larger work array. For best performance, specify the number of elements (ARG NO. _) in the work array to be greater than or equal to (_).

The data type parameter (ARG NO. _) must be 'S', 'D', 'C', or 'Z'.

(ARG NO. _) must be greater than or equal to (_) and smaller than (_).

The matrix is singular. Column (_) is empty in the matrix specified by (ARG NO. _), (ARG NO. _), and (ARG NO. _).

The matrix is singular. Row (_) is empty in the matrix specified by (ARG NO. _), (ARG NO. _), and (ARG NO. _).

The matrix, specified by (ARG NO. _), (ARG NO. _), and (ARG NO. _), contains at least one duplicate column index in row (_).

Element (_) in (ARG NO. _) must be greater than or equal to (_) and less than or equal to (_).

or
Element (_) in (ARG NO. _) must be greater than or equal to (_) and less than or equal to (ARG NO. _).

or
Element (_) in (ARG NO. _) must be greater than or equal to element (_) and less than or equal to (_).

or
Element (_) in (ARG NO. _) must be zero or must be greater than or equal to (_).

Element (_) in (ARG NO. _) must be less than or equal to (_).

Element (_) in (ARG NO. _) may cause incorrect or misleading results. A nonzero number with absolute value less than or equal to 1 is recommended.

or
Element (_) in (ARG NO. _) may cause incorrect or misleading results. A positive number less than or equal to 1 is recommended.

The pivot tolerance (element (_) in (ARG NO. _)) may cause incorrect or misleading results. A number greater than or equal to 0 and less than or equal to 1 is recommended.

The dimension (ARG NO. _) of the array (ARG NO. _) must be greater than or equal to (_).

The number of steps after which the generalized minimum residual method is restarted, element (_) in (ARG NO. _), must be greater than 0.
The acceleration parameter, element (_) in (ARG NO. _), must be greater than 0 when using the SSOR preconditioner.

STOR (ARG NO. _), which specifies the storage variation used to represent the input sparse matrix, must be 'G', 'L', or 'U'.

INIT (ARG NO. _), which specifies the type of computation to be performed, must be 'I', or 'S'.

Element (_) in (ARG NO. _) must be greater than or equal to (_).

STOR (ARG NO. _) specifies the storage variation used to represent the input sparse matrix. Must be 'G', 'L', or 'U'.

The acceleration parameter, element (_) in (ARG NO. _), must be greater than 0 when using the SSOR preconditioner.

The index into (ARG NO. _) is out of range. This index is element (_,_,_) of (ARG NO. _).

The index into (ARG NO. _) is out of range. This index is element (_,_,_,_) of (ARG NO. _).

For level (_), the number of grid points for dimension (_) must be an odd number greater than 1.

Since the mesh spacing (ARG NO. _) here is not constant, the second order prolongation method must be used. That is, element (_) of (ARG NO. _) must be (_).

The index into (ARG NO. _) is out of range. This index is element (_,_,_ _) of (ARG NO. _).

The index into (ARG NO. _) is out of range. This index is element (_,_,_,_ _) of (ARG NO. _).

The number of grid points for dimension (_) on level (_) must be changed to a positive value.

Excess space in (ARG NO. _) has been decreased and may be inadequate. To avoid this, specify the coarse level matrix as the final item in this argument.

For level (_), the matrix type, solver, and preconditioner are incompatible.

The solver requested for level (_) requires a square matrix. Elements (_,_,_) and (_,_,_,_) in (ARG NO. _) must be equal.

Element (_,_,_,_) of (ARG NO. _) must be greater than or equal to (_).
Note: There are more input-argument error messages listed in “Input-Argument Error Messages(2200-2299)” on page 188

Computational Error Messages(2100-2199)

RTN_NAME : 2538-2100
The computed index of a vector is out of the range (_) to (_).

RTN_NAME : 2538-2101
Eigenvalue (_) failed to converge after (_) iterations.

RTN_NAME : 2538-2102
Eigenvector (_) failed to converge after (_) iterations.

RTN_NAME : 2538-2103
The matrix (ARG NO. _) is singular.
Zero diagonal element (_) has been detected.

RTN_NAME : 2538-2104
The matrix (ARG NO. _) is not positive definite. The last diagonal element with nonpositive value is (_).

RTN_NAME : 2538-2105
Factorization failed due to near zero pivot number (_).

RTN_NAME : 2538-2106
Vector boundary misalignment detected in ESSL scalar library.

RTN_NAME : 2538-2107
Singular value (_) failed to converge after (_) iterations.

RTN_NAME : 2538-2108
The matrix specified by (ARG NO. _) and (ARG NO. _) is not definite because the diagonal is not of constant sign.

RTN_NAME : 2538-2109
The matrix specified by (ARG NO. _) and (ARG NO. _) is not definite and the iterative process is stopped at iteration number (_).

RTN_NAME : 2538-2110
The maximum allowed number of iterations, element number (_) of (ARG NO. _), were performed but the iterative process did not converge to a solution according to the stopping procedure.

RTN_NAME : 2538-2111
The factorization matrix (ARG NO. _) is not consistent with the sparse matrix specified by (ARG NO. _) and (ARG NO. _).

RTN_NAME : 2538-2112
The incomplete factorization of the sparse matrix specified by (ARG NO. _) and (ARG NO. _) is not stable.

RTN_NAME : 2538-2113
Unexpected nonzero vector mask detected in ESSL scalar routine. Contact your IBM Service Representative.

RTN_NAME : 2538-2114
Eigenvalue (_) failed to converge after (_) iterations.
The matrix (ARG NO. _) is not positive definite. The leading minor of order (_) has a nonpositive determinant.

The matrix specified by (ARG NO. _) and (ARG NO. _) is singular.

The pivot element in column (_) is smaller than the first element in (ARG NO. _).

The pivot element in row (_) is smaller than the first element in (ARG NO. _).

The storage space, specified by (ARG NO. _), is insufficient.

The matrix is singular. The last row processed in the matrix was row (_).

The matrix is singular. the last column processed was column (_).

The factorization failed. No pivot element was found in the active submatrix.

Performance can be improved by specifying a larger value for (ARG NO. _). (_ compressions were performed.

The data contained in AUX1, (ARG NO. _), was computed for a different algorithm.

This subroutine initializes part of the ESSL run-time environment. It may be called only once, at the beginning of the run. It must be called before any ESSL computational routines are called.

The pivot value at row (_) is not acceptable based on pivot criteria ((ARG NO. _) and (ARG NO. _)). No fixup was applicable to this pivot. The matrix (ARG NO. _) may be singular or not definite.

The pivot value at row (_) was replaced with element (_) in (ARG NO. _). The matrix (ARG NO. _) may be singular or not definite.

Internal ESSL error. contact your IBM service representative.

The matrix specified by (ARG NO. _), (ARG NO. _), and (ARG NO. _) is not definite because the diagonal is not of constant sign or some diagonal element is zero.
RTN_NAME : 2538-2130
The incomplete factorization of the sparse matrix specified by (ARG NO. _),
(ARG NO. _), and (ARG NO. _) is not stable.

RTN_NAME : 2538-2131
The matrix specified by (ARG NO. _), (ARG NO. _), and (ARG NO. _) is singular.

RTN_NAME : 2538-2132
Element (_) in (ARG NO. _) indicates that factorization was done on a previous
call. The data passed is not the result of a prior valid factorization.

RTN_NAME : 2538-2133
An error occurred on level (_), in the user-supplied subroutine specified
by (ARG NO. _).

RTN_NAME : 2538-2134
The data contained in (ARG NO. _) is not consistent with the sparse matrix
specified by (ARG NO. _), (ARG NO. _), and (ARG NO. _).

RTN_NAME : 2538-2135
For level (_), loss of orthogonality occurred in a minimum residual solver
because the input matrix (element (_,_) of (ARG NO. _)) is inappropriate.
Choose one of the other non-symmetric solvers.

RTN_NAME : 2538-2136
For level (_), the main diagonal element for row (_) of a matrix is 0.

RTN_NAME : 2538-2137
This subroutine may be called only once in the beginning of the program.

RTN_NAME : 2538-2138
An error was detected while attempting to open the ESSLPARM file. A default
ESSL processor family number of (_) will be assumed. This may not be the
best choice for optimal performance. Be sure that you have defined the
interface to ESSLPARM correctly for the run. If you have, contact ESSL
system installation personnel.

RTN_NAME : 2538-2139
An error was detected while attempting to close the ESSLPARM file. An ESSL
processor family number of (_) was assigned.

RTN_NAME : 2538-2140
An input/output error was detected while attempting to read line (_) of
the ESSLPARM file. A default ESSL process or family number of (_) will
be assumed. This may not be the best choice for optimal performance.
Be sure that you have defined the interface to ESSLPARM correctly for the run.
If you have, contact ESSL system installation personnel.

RTN_NAME : 2538-2141
The end of file marker on line (_) of the ESSLPARM file was reached
before a valid specification for the ESSL processor family number was read.
A default ESSL processor family number of (_) will be assumed.
This may not be the best choice for optimal performance. Be sure that you
have defined the interface to ESSLPARM correctly for the run. If you have,
contact ESSL system installation personnel.

RTN_NAME : 2538-2142
A syntax error was detected on line (_), column (_), of the ESSLPARM
file. No valid specification for the ESSL processor family number was read. A default ESSL processor family number of (_) will be assumed. This may not be the best choice for optimal performance. Contact ESSL system installation personnel.

RTN_NAME : 2538-2143
The processor family number (_) on line (_) of the ESSLPARM file is not in the allowable range. Please specify a processor family number greater than or equal to (_) and less than or equal to (_). A default ESSL processor family number of (_) will be assumed. This may not be the best choice for optimal performance. Contact ESSL system installation personnel.

RTN_NAME : 2538-2144
This subroutine must be called before any computational ESSL routines are called.

RTN_NAME : 2538-2145
The input matrix (ARG NO. _) is singular. The first diagonal element found to be exactly 0, was in column (_).

RTN_NAME : 2538-2146
The input matrix (ARG NO. _) is singular. The first diagonal element found to be exactly 0, was in column (_).

RTN_NAME : 2538-2147
The matrix (ARG NO. _) is singular. Zero diagonal element (_) has been detected.

RTN_NAME : 2538-2199
End of computational error reporting. For more information, refer to Engineering and Scientific Subroutine Library Guide and Reference (SA22-7272).

Input-Argument Error Messages(2200-2299)

<table>
<thead>
<tr>
<th>RTN_NAME : 2538-2200</th>
</tr>
</thead>
<tbody>
<tr>
<td>The dimension (ARG NO. _) of the array (ARG NO.) must be greater than or equal to ().</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RTN_NAME : 2538-2201</th>
</tr>
</thead>
<tbody>
<tr>
<td>The number of elements (ARG NO. _) in a work array (ARG NO.) must be zero, to indicate dynamic allocation, minus one, to indicate workspace query, or greater than or equal to () if a work array is being supplied.</td>
</tr>
</tbody>
</table>

Resource Error Messages(2400-2499)

<table>
<thead>
<tr>
<th>RTN_NAME : 2538-2400</th>
</tr>
</thead>
<tbody>
<tr>
<td>An internal buffer allocation has failed due to insufficient memory.</td>
</tr>
</tbody>
</table>

Informational and Attention Error Messages(2600-2699)
RTN_NAME : 2538-2600
Performance may be degraded due to limited buffer space availability.

RTN_NAME : 2538-2601
Execution terminating due to error count for error number (_)
Message summary: Message number - Count

RTN_NAME : 2538-2602
User error corrective routine entered.
User corrective action taken. Execution continuing.

RTN_NAME : 2538-2603
Standard corrective action taken. Execution continuing.

RTN_NAME : 2538-2604
Execution terminating due to error count for error number _.

RTN_NAME : 2538-2605
Message summary: _ - _

RTN_NAME : 2538-2606
Serial execution is taking place since the input array is equal to the output array and either:
INC2X (ARG NO. _) is not equal to 2 times INC2Y (ARG NO. _) or
INC3X (ARG NO. _) is not equal to 2 times INC3Y (ARG NO. _).

RTN_NAME : 2538-2607
Serial execution is taking place since the input array is equal to the output array and either:
INC2X (ARG NO. _) is not equal to INC2Y (ARG NO. _) or
INC3X (ARG NO. _) is not equal to INC3Y (ARG NO. _).

RTN_NAME : 2538-2608
Performance may be improved by using a larger work array. For best performance, specify the number of elements (ARG NO. _) in the work array to be greater than or equal to (_).

RTN_NAME : 2538-2609
Performance may be improved by specifying a larger value for (ARG NO. _). (_) compressions were performed.

Miscellaneous Error Messages(2700-2799)

RTN_NAME : 2538-2700
Internal ESSL error number (_).
Contact your IBM service representative.

RTN_NAME : 2538-2703
Internal ESSL error: message number requested (_) is outside of the valid range. Contact your IBM service representative.
This part of the book is organized into ten areas, providing reference information for coding the ESSL calling sequences. It is organized as follows:

- Linear Algebra Subprograms
- Matrix Operations
- Linear Algebraic Equations
- Eigensystem Analysis
- Fourier Transforms, Convolutions and Correlations, and Related Computations
- Sorting and Searching
- Interpolation
- Numerical Quadrature
- Random Number Generation
- Utilities
Chapter 8. Linear Algebra Subprograms

The linear algebra subprograms, provided in four areas, are described in this chapter.

Overview of the Linear Algebra Subprograms

This section describes the subprograms in each of the four linear algebra subprogram areas:

- Vector-scalar linear algebra subprograms (Table 32)
- Sparse vector-scalar linear algebra subprograms (Table 33)
- Matrix-vector linear algebra subprograms (Table 34)
- Sparse matrix-vector linear algebra subprograms (Table 35)

Notes:

1. The term subprograms is used to be consistent with the Basic Linear Algebra Subprograms (BLAS), because many of these subprograms correspond to the BLAS.

2. Some of the linear algebra subprograms were designed in accordance with the Level 1 and Level 2 BLAS de facto standard. If these subprograms do not comply with the standard as approved, IBM will consider updating them to do so. If IBM updates these subprograms, the updates could require modifications of the calling application program.

Vector-Scalar Linear Algebra Subprograms

The vector-scalar linear algebra subprograms include a subset of the standard set of Level 1 BLAS. For details on the BLAS, see reference [79]. The remainder of the vector-scalar linear algebra subprograms are commonly used computations provided for your applications. Both real and complex versions of the subprograms are provided.

Table 32 (Page 1 of 2). List of Vector-Scalar Linear Algebra Subprograms

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subprogram</th>
<th>Long-Precision Subprogram</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position of the First or Last Occurrence of the Vector Element Having the Largest Magnitude</td>
<td>ISAMAX† ISAMAX†</td>
<td>IDAMAX† IDAMAX†</td>
<td>199</td>
</tr>
<tr>
<td>Position of the First or Last Occurrence of the Vector Element Having Minimum Absolute Value</td>
<td>ISAMIN†</td>
<td>IDAMIN†</td>
<td>202</td>
</tr>
<tr>
<td>Position of the First or Last Occurrence of the Vector Element Having Maximum Value</td>
<td>ISMAX†</td>
<td>IDMAX†</td>
<td>205</td>
</tr>
<tr>
<td>Position of the First or Last Occurrence of the Vector Element Having Minimum Value</td>
<td>ISMIN†</td>
<td>IDMIN†</td>
<td>208</td>
</tr>
<tr>
<td>Sum of the Magnitudes of the Elements in a Vector</td>
<td>SASUM† SCASUM†</td>
<td>DASUM† DZASUM†</td>
<td>211</td>
</tr>
<tr>
<td>Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in the Vector Y</td>
<td>SAXPY* CAXPY*</td>
<td>DAXPY* ZAXPY*</td>
<td>214</td>
</tr>
</tbody>
</table>
Table 32 (Page 2 of 2). List of Vector-Scalar Linear Algebra Subprograms

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subprogram</th>
<th>Long-Precision Subprogram</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy a Vector</td>
<td>SCOPY</td>
<td>DCOPY</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>CCOPY</td>
<td>ZCOPY</td>
<td></td>
</tr>
<tr>
<td>Dot Product of Two Vectors</td>
<td>SDOT†</td>
<td>DDOT†</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>CDOTU†</td>
<td>ZDOTU†</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CDOTC†</td>
<td>ZDOTC†</td>
<td></td>
</tr>
<tr>
<td>Compute SAXPY or DAXPY N Times</td>
<td>SNAXPY</td>
<td>DNAXPY</td>
<td>224</td>
</tr>
<tr>
<td>Compute Special Dot Products N Times</td>
<td>SNDOT</td>
<td>DNDOT</td>
<td>229</td>
</tr>
<tr>
<td>Euclidean Length of a Vector with Scaling of Input to Avoid Destructive Underflow and Overflow</td>
<td>SNRM2†</td>
<td>DNRM2†</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>SCNRM2†</td>
<td>DZNRM2†</td>
<td></td>
</tr>
<tr>
<td>Euclidean Length of a Vector with No Scaling of Input</td>
<td>SNORM2†</td>
<td>DNORM2†</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td>CNORM2†</td>
<td>ZNORM2†</td>
<td></td>
</tr>
<tr>
<td>Construct a Givens Plane Rotation</td>
<td>SROTG</td>
<td>DROTG</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>CROTG</td>
<td>ZROTG</td>
<td></td>
</tr>
<tr>
<td>Apply a Plane Rotation</td>
<td>SROT†</td>
<td>DROT†</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>CROT†</td>
<td>ZROT†</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSROT†</td>
<td>ZDROT†</td>
<td></td>
</tr>
<tr>
<td>Multiply a Vector X by a Scalar and Store in the Vector X</td>
<td>SSCALE†</td>
<td>DSCALE†</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>CSCALE†</td>
<td>ZSCALE†</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSSCAL†</td>
<td>ZDSCAL†</td>
<td></td>
</tr>
<tr>
<td>Interchange the Elements of Two Vectors</td>
<td>SSWAP†</td>
<td>DSWAP†</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>CSWAP†</td>
<td>ZSWAP†</td>
<td></td>
</tr>
<tr>
<td>Add a Vector X to a Vector Y and Store in a Vector Z</td>
<td>SVEA</td>
<td>DVEA</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>CVEA</td>
<td>ZVEA</td>
<td></td>
</tr>
<tr>
<td>Subtract a Vector Y from a Vector X and Store in a Vector Z</td>
<td>SVES</td>
<td>DVES</td>
<td>261</td>
</tr>
<tr>
<td></td>
<td>CVES</td>
<td>ZVES</td>
<td></td>
</tr>
<tr>
<td>Multiply a Vector X by a Vector Y and Store in a Vector Z</td>
<td>SVEM</td>
<td>DVEM</td>
<td>265</td>
</tr>
<tr>
<td></td>
<td>CVEM</td>
<td>ZVEM</td>
<td></td>
</tr>
<tr>
<td>Multiply a Vector X by a Scalar and Store in a Vector Y</td>
<td>SYAX</td>
<td>DYAX</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>CYAX</td>
<td>ZYAX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSYAX</td>
<td>ZDYAX</td>
<td></td>
</tr>
<tr>
<td>Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in a Vector Z</td>
<td>SZAXPY</td>
<td>DZAXPY</td>
<td>272</td>
</tr>
<tr>
<td></td>
<td>CZAXPY</td>
<td>ZZAXPY</td>
<td></td>
</tr>
</tbody>
</table>

† This subprogram is invoked as a function in a Fortran program.

▪ Level 1 BLAS

Sparse Vector-Scalar Linear Algebra Subprograms

The sparse vector-scalar linear algebra subprograms operate on sparse vectors using optimized storage techniques; that is, only the nonzero elements of the vector are stored. These subprograms provide similar functions to the vector-scalar subprograms. These subprograms represent a subset of the sparse extensions to the Level 1 BLAS described in reference [29]. Both real and complex versions of the subprograms are provided.
Table 33. List of Sparse Vector-Scalar Linear Algebra Subprograms

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subprogram</th>
<th>Long-Precision Subprogram</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scatter the Elements of a Sparse Vector X in Compressed-Vector Storage Mode into Specified Elements of a Sparse Vector Y in Full-Vector Storage Mode</td>
<td>SSCTR CSCTR</td>
<td>DSCTR ZSCTR</td>
<td>277</td>
</tr>
<tr>
<td>Gather Specified Elements of a Sparse Vector Y in Full-Vector Storage Mode into a Sparse Vector X in Compressed-Vector Storage Mode</td>
<td>SGTHR CGTHR</td>
<td>DGTHR ZGTHR</td>
<td>280</td>
</tr>
<tr>
<td>Gather Specified Elements of a Sparse Vector Y in Full-Vector Mode into a Sparse Vector X in Compressed-Vector Mode, and Zero the Same Specified Elements of Y</td>
<td>SGTHRZ CGTHRZ</td>
<td>DGTHRZ ZGTHRZ</td>
<td>283</td>
</tr>
<tr>
<td>Multiply a Sparse Vector X in Compressed-Vector Storage Mode by a Scalar, Add to a Sparse Vector Y in Full-Vector Storage Mode, and Store in the Vector Y</td>
<td>SAXPYI CAXPYI</td>
<td>DAXPYI ZAXPYI</td>
<td>286</td>
</tr>
<tr>
<td>Dot Product of a Sparse Vector X in Compressed-Vector Storage Mode and a Sparse Vector Y in Full-Vector Storage Mode</td>
<td>SDOT† CDOTCI† CDOTUI†</td>
<td>DDOT† ZDOTCI† ZDOTUI†</td>
<td>289</td>
</tr>
</tbody>
</table>

† This subprogram is invoked as a function in a Fortran program.

Matrix-Vector Linear Algebra Subprograms

The matrix-vector linear algebra subprograms operate on a higher-level data structure—matrix-vector rather than vector-scalar—using optimized algorithms to improve performance. These subprograms represent a subset of the Level 2 BLAS described in references [34] and [35]. Both real and complex versions of the subprograms are provided.

Table 34 (Page 1 of 2). List of Matrix-Vector Linear Algebra Subprograms

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subprogram</th>
<th>Long-Precision Subprogram</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix-Vector Product for a General Matrix, Its Transpose, or Its Conjugate Transpose</td>
<td>SGEMV• CGEMV• SGEMX§ SGEMTX§</td>
<td>DGEMV• ZGEMV• DGEMX§ DGEMTX§</td>
<td>294</td>
</tr>
<tr>
<td>Rank-One Update of a General Matrix</td>
<td>SGER• CGERU• CGERC•</td>
<td>DGER• ZGERU• ZGERC•</td>
<td>305</td>
</tr>
<tr>
<td>Matrix-Vector Product for a Real Symmetric or Complex Hermitian Matrix</td>
<td>SSPMV• CHPMV• SSYMV• CHEMV• SSLMX§</td>
<td>DSPMV• ZHPMV• DSMV• ZHEMV• DSLMX§</td>
<td>313</td>
</tr>
<tr>
<td>Rank-One Update of a Real Symmetric or Complex Hermitian Matrix</td>
<td>SPR• CHP• SSYR• CHER• SSLR1§</td>
<td>SPR• ZHP• DSMR• ZHER• DSLR1§</td>
<td>321</td>
</tr>
</tbody>
</table>
Sparse Matrix-Vector Linear Algebra Subprograms

The sparse matrix-vector linear algebra subprograms operate on sparse matrices using optimized storage techniques; that is, only the nonzero elements of the vector are stored. These subprograms provide similar functions to the matrix-vector subprograms.

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subprogram</th>
<th>Long-Precision Subprogram</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix-Vector Product for a Sparse Matrix in Compressed-Matrix Storage Mode</td>
<td>DSMMX</td>
<td></td>
<td>363</td>
</tr>
<tr>
<td>Transpose a Sparse Matrix in Compressed-Matrix Storage Mode</td>
<td>DSMTM</td>
<td></td>
<td>366</td>
</tr>
<tr>
<td>Matrix-Vector Product for a Sparse Matrix or Its Transpose in Compressed-Diagonal Storage Mode</td>
<td>DSDMX</td>
<td></td>
<td>370</td>
</tr>
</tbody>
</table>

Use Considerations

If your program uses a sparse matrix stored by rows, as defined in “Storage-by-Rows” on page 97, you should first convert your sparse matrix to compressed-matrix storage mode by using the subroutine DSRSM on page 1001. DSRSM converts a matrix to compressed-matrix storage mode. To convert your sparse matrix to compressed-diagonal storage mode, you need to perform this conversion in your application program before calling the ESSL subroutine.
Performance and Accuracy Considerations

1. In ESSL, the SSCAL and DSCAL subroutines provide the fastest way to zero out contiguous (stride 1) arrays, by specifying \(\text{incx} = 1 \) and \(\alpha = 0 \).

2. Where possible, use the matrix-vector linear algebra subprograms, rather than the vector-scalar, to optimize performance. Because data is presented in matrices rather than vectors, multiple operations can be performed by a single ESSL subroutine.

3. Where possible, use subprograms that do multiple computations, such as SNDOT and SNAXPY, rather than individual computations, such as SDOT and SAXPY. You get better performance.

4. Many of the short-precision subprograms provide increased accuracy by accumulating results in long precision. This is noted in the functional description of each subroutine.

5. In some of the subprograms, because implementation techniques vary to optimize performance, accuracy of the results may vary for different array sizes. In the subprograms in which this occurs, a general description of the implementation techniques is given in the functional description for each subroutine.

6. To select the sparse matrix subroutine that gives you the best performance, you must consider the layout of the data in your matrix. From this, you can determine the most efficient storage mode for your sparse matrix. ESSL provides two versions of each of its sparse matrix-vector subroutines that you can use. One operates on sparse matrices stored in compressed-matrix storage mode, and the other operates on sparse matrices stored in compressed-diagonal storage mode. These two storage modes are described in “Sparse Matrix” on page 90.

 Compressed-matrix storage mode is generally applicable. It should be used when each row of the matrix contains approximately the same number of nonzero elements. However, if the matrix has a special form—that is, where the nonzero elements are concentrated along a few diagonals—compressed-diagonal storage mode gives improved performance.

7. There are some ESSL-specific rules that apply to the results of computations on the workstation processors using the ANSI/IEEE standards. For details, see “What Data Type Standards Are Used by ESSL, and What Exceptions Should You Know About?” on page 43.
Vector-Scalar Subprograms

This section contains the vector-scalar subprogram descriptions.
ISAMAX, IDAMAX, ICAMAX, and IZAMAX—Position of the First or Last Occurrence of the Vector Element Having the Largest Magnitude

ISAMAX and IDAMAX find the position i of the first or last occurrence of a vector element having the maximum absolute value. ICAMAX and IZAMAX find the position i of the first or last occurrence of a vector element having the largest sum of the absolute values of the real and imaginary parts of the vector elements.

You get the position of the first or last occurrence of an element by specifying positive or negative stride, respectively, for vector x. Regardless of the stride, the position i is always relative to the location specified in the calling sequence for vector x (in argument x).

Table 36. Data Types

<table>
<thead>
<tr>
<th>x</th>
<th>Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>ISAMAX</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>IDAMAX</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>ICAMAX</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>IZAMAX</td>
</tr>
</tbody>
</table>

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>ISAMAX</th>
<th>IDAMAX</th>
<th>ICAMAX</th>
<th>IZAMAX (n, x, incx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>isamax</td>
<td>idamax</td>
<td>icamax</td>
<td>izamax (n, x, incx);</td>
</tr>
<tr>
<td>PL/I</td>
<td>ISAMAX</td>
<td>IDAMAX</td>
<td>ICAMAX</td>
<td>IZAMAX (n, x, incx);</td>
</tr>
</tbody>
</table>

On Entry

n

is the number of elements in vector x. Specified as: a fullword integer; $n \geq 0$.

x

is the vector x of length n. Specified as: a one-dimensional array of (at least) length $1+(n-1)|\text{incx}|$, containing numbers of the data type indicated in Table 36.

incx

is the stride for vector x. Specified as: a fullword integer. It can have any value.

On Return

Function value

is the position i of the element in the array, where:

- If $\text{incx} \geq 0$, i is the position of the first occurrence.
- If $\text{incx} < 0$, i is the position of the last occurrence.

Returned as: a fullword integer; $0 \leq i \leq n$.

Note: Declare the ISAMAX, IDAMAX, ICAMAX, and IZAMAX functions in your program as returning a fullword integer value.
Function: ISAMAX and IDAMAX find the first element \(x_k \), where \(k \) is defined as the smallest index \(k \), such that:
\[|x_k| = \max\{|x_j| \text{ for } j = 1, n\} \]

ICAMAX and IZAMAX find the first element \(x_k \), where \(k \) is defined as the smallest index \(k \), such that:
\[|a_k| + |b_k| = \max\{|a_j| + |b_j| \text{ for } j = 1, n\} \]
where \(x_k = (a_k, b_k) \)

By specifying a positive or negative stride for vector \(x \), the first or last occurrence, respectively, is found in the array. The position \(i \), returned as the value of the function, is always figured relative to the location specified in the calling sequence for vector \(x \) (in argument \(x \)). Therefore, depending on the stride specified for \(\text{incx} \), \(i \) has the following values:
- For \(\text{incx} \geq 0 \), \(i = k \)
- For \(\text{incx} < 0 \), \(i = n-k+1 \)

See reference [79]. The result is returned as a function value. If \(n \) is 0, then 0 is returned as the value of the function.

Error Conditions

Computational Errors: None

Input-Argument Errors: \(n < 0 \)

Example 1: This example shows a vector, \(x \), with a stride of 1.

Function Reference and Input
\[
\begin{array}{c|c|c}
N & X & \text{INCX} \\
\hline
IMAX = \text{ISAMAX}(9, X, 1)
\end{array}
\]
\[
X = (1.0, 2.0, 7.0, -8.0, -5.0, -10.0, -9.0, 10.0, 6.0)
\]
Output
\[
\begin{array}{c}
\text{IMAX} = 6
\end{array}
\]

Example 2: This example shows a vector, \(x \), with a stride greater than 1.

Function Reference and Input
\[
\begin{array}{c|c|c}
N & X & \text{INCX} \\
\hline
IMAX = \text{ISAMAX}(5, X, 2)
\end{array}
\]
\[
X = (1.0, ., 7.0, ., -5.0, ., -9.0, ., 6.0)
\]
Output
\[
\begin{array}{c}
\text{IMAX} = 4
\end{array}
\]

Example 3: This example shows a vector, \(x \), with a stride of 0.
Function Reference and Input

\[
\text{N} \quad \text{X} \quad \text{INCX} \\
\]
IMAX = ISAMAX(9, X, 0)

\[
X = (1.0, ., ., ., ., ., ., ., .) \]

Output
IMAX = 1

Example 4: This example shows a vector, \(x \), with a negative stride. Processing begins at element \(X(15) \), which is 2.0.

Function Reference and Input

\[
\text{N} \quad \text{X} \quad \text{INCX} \\
\]
IMAX = ISAMAX(8, X, -2)

\[
X = (3.0, ., 5.0, ., -8.0, ., 6.0, ., 8.0, ., 4.0, ., 8.0, ., 2.0) \]

Output
IMAX = 7

Example 5: This example shows a vector, \(x \), containing complex numbers and having a stride of 1.

Function Reference and Input

\[
\text{N} \quad \text{X} \quad \text{INCX} \\
\]
IMAX = ICAMAX(5, X, 1)

\[
X = ((9.0, 2.0), (7.0, -8.0), (-5.0, -10.0), (-4.0, 10.0), (6.0, 3.0)) \]

Output
IMAX = 2
ISAMIN and IDAMIN—Position of the First or Last Occurrence of the Vector Element Having Minimum Absolute Value

These subprograms find the position \(i \) of the first or last occurrence of a vector element having the minimum absolute value.

You get the position of the first or last occurrence of an element by specifying positive or negative stride, respectively, for vector \(x \). Regardless of the stride, the position \(i \) is always relative to the location specified in the calling sequence for vector \(x \) (in argument \(x \)).

Syntax

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>ISAMIN</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>IDAMIN</td>
</tr>
</tbody>
</table>

On Entry

- \(n \) is the number of elements in vector \(x \). Specified as: a fullword integer; \(n \geq 0 \).
- \(x \) is the vector \(x \) of length \(n \). Specified as: a one-dimensional array of (at least) length \(1+(n-1)|incx| \), containing numbers of the data type indicated in Table 37.
- \(incx \) is the stride for vector \(x \). Specified as: a fullword integer. It can have any value.

On Return

Function value

is the position \(i \) of the element in the array, where:

- If \(incx \geq 0 \), \(i \) is the position of the first occurrence.
- If \(incx < 0 \), \(i \) is the position of the last occurrence.

Returned as: a fullword integer; \(0 \leq i \leq n \).

Note: Declare the ISAMIN and IDAMIN functions in your program as returning a fullword integer value.

Function: These subprograms find the first element \(x_k \), where \(k \) is defined as the smallest index \(k \), such that:

\[|x_k| = \min\{|x_j| \text{ for } j = 1, n\} \]

By specifying a positive or negative stride for vector \(x \), the first or last occurrence, respectively, is found in the array. The position \(i \), returned as the value of the
function, is always figured relative to the location specified in the calling sequence for vector \(x \) (in argument \(x \)). Therefore, depending on the stride specified for \(\text{incx} \), \(i \) has the following values:

For \(\text{incx} \geq 0 \), \(i = k \)
For \(\text{incx} < 0 \), \(i = n-k+1 \)

See reference [79]. The result is returned as a function value. If \(n \) is 0, then 0 is returned as the value of the function.

Error Conditions

Computational Errors: None

Input-Argument Errors: \(n < 0 \)

Example 1: This example shows a vector, \(x \), with a stride of 1.

Function Reference and Input

\[
\begin{array}{c|c|c}
N & X & \text{INCX} \\
| & | & \\
IMIN = \text{ISAMIN}(6 , X , 1) \\
X & = & (3.0, 4.0, 1.0, 8.0, 1.0, 3.0) \\
Output \\
IMIN & = & 3
\end{array}
\]

Example 2: This example shows a vector, \(x \), with a stride greater than 1.

Function Reference and Input

\[
\begin{array}{c|c|c}
N & X & \text{INCX} \\
| & | & \\
IMIN = \text{ISAMIN}(4 , X , 2) \\
X & = & (-3.0, . , -9.0, . , -8.0, . , 3.0) \\
Output \\
IMIN & = & 1
\end{array}
\]

Example 3: This example shows a vector, \(x \), with a positive stride and two elements with the minimum absolute value. The position of the first occurrence is returned.

Function Reference and Input

\[
\begin{array}{c|c|c}
N & X & \text{INCX} \\
| & | & \\
IMIN = \text{ISAMIN}(4 , X , 2) \\
X & = & (2.0, . , -1.0, . , 4.0, . , 1.0) \\
Output \\
IMIN & = & 2
\end{array}
\]
Example 4: This example shows a vector, x, with a negative stride and two elements with the minimum absolute value. The position of the last occurrence is returned. Processing begins at element $x(7)$, which is 1.0.

Function Reference and Input

```
   N   X   INCX
```

$\text{IMIN} = \text{ISAMIN}(4, X, -2)$

$X = (2.0, . , -1.0, . , 4.0, . , 1.0)$

Output

$\text{IMIN} = 4$
ISMAX and IDMAX—Position of the First or Last Occurrence of the Vector Element Having the Maximum Value

These subprograms find the position i of the first or last occurrence of a vector element having the maximum value.

You get the position of the first or last occurrence of an element by specifying positive or negative stride, respectively, for vector x. Regardless of the stride, the position i is always relative to the location specified in the calling sequence for vector x (in argument x).

Syntax

<table>
<thead>
<tr>
<th>x</th>
<th>Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>ISMAX</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>IDMAX</td>
</tr>
</tbody>
</table>

On Entry

- n is the number of elements in vector x. Specified as: a fullword integer; $n \geq 0$.
- x is the vector x of length n. Specified as: a one-dimensional array of (at least) length $1+(n-1)|incx|$, containing numbers of the data type indicated in Table 38.
- $incx$ is the stride for vector x. Specified as: a fullword integer. It can have any value.

On Return

Function value is the position i of the element in the array, where:

- If $incx \geq 0$, i is the position of the first occurrence.
- If $incx < 0$, i is the position of the last occurrence.

Returned as: a fullword integer; $0 \leq i \leq n$.

Note: Declare the ISMAX and IDMAX functions in your program as returning a fullword integer value.

Function: These subprograms find the first element x_k, where k is defined as the smallest index k, such that:

$$x_k = \max \{x_j \text{ for } j = 1, n\}$$

By specifying a positive or negative stride for vector x, the first or last occurrence, respectively, is found in the array. The position i, returned as the value of the function, is always figured relative to the location specified in the calling sequence.
ISMAX and IDMAX

for vector \(\mathbf{x} \) (in argument \(\mathbf{x} \)). Therefore, depending on the stride specified for \(\text{incx} \), \(i \) has the following values:

\[
\begin{align*}
\text{For } \text{incx} \geq 0, & \quad i = k \\
\text{For } \text{incx} < 0, & \quad i = n-k+1
\end{align*}
\]

See reference \([79]\). The result is returned as a function value. If \(n \) is 0, then 0 is returned as the value of the function.

Error Conditions

Computational Errors: None

Input-Argument Errors: \(n < 0 \)

Example 1: This example shows a vector, \(\mathbf{x} \), with a stride of 1.

Function Reference and Input

\[
\begin{array}{ccc}
N & X & \text{INCX} \\
\hline
\text{IMAX} & = & \text{ISMAX(6 , X , 1)} \\
\end{array}
\]

\[
\begin{array}{l}
\mathbf{X} = (3.0, 4.0, 1.0, 8.0, 1.0, 8.0) \\
\end{array}
\]

Output

\[
\begin{array}{l}
\text{IMAX} = 4 \\
\end{array}
\]

Example 2: This example shows a vector, \(\mathbf{x} \), with a stride greater than 1.

Function Reference and Input

\[
\begin{array}{ccc}
N & X & \text{INCX} \\
\hline
\text{IMAX} & = & \text{ISMAX(4 , X , 2)} \\
\end{array}
\]

\[
\begin{array}{l}
\mathbf{X} = (-3.0, . , 9.0, . , -8.0, . , 3.0) \\
\end{array}
\]

Output

\[
\begin{array}{l}
\text{IMAX} = 2 \\
\end{array}
\]

Example 3: This example shows a vector, \(\mathbf{x} \), with a positive stride and two elements with the maximum value. The position of the first occurrence is returned.

Function Reference and Input

\[
\begin{array}{ccc}
N & X & \text{INCX} \\
\hline
\text{IMAX} & = & \text{ISMAX(4 , X , 2)} \\
\end{array}
\]

\[
\begin{array}{l}
\mathbf{X} = (2.0, . , 4.0, . , 4.0, . , 1.0) \\
\end{array}
\]

Output

\[
\begin{array}{l}
\text{IMAX} = 2 \\
\end{array}
\]
Example 4: This example shows a vector, x, with a negative stride and two elements with the maximum value. The position of the last occurrence is returned. Processing begins at element $X(7)$, which is 1.0.

Function Reference and Input

\[
\begin{array}{ccc}
N & X & INCX \\
\hline
\end{array}
\]

\[\text{IMAX} = \text{ISMAX}(4, X, -2)\]

\[X = (2.0, . , 4.0, . , 4.0, . , 1.0)\]

Output

\[\text{IMAX} = 3\]
ISMIN and IDMIN—Position of the First or Last Occurrence of the Vector Element Having Minimum Value

These subprograms find the position i of the first or last occurrence of a vector element having the minimum value.

You get the position of the first or last occurrence of an element by specifying positive or negative stride, respectively, for vector x. Regardless of the stride, the position i is always relative to the location specified in the calling sequence for vector x (in argument x).

Syntax

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>ISMIN</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>IDMIN</td>
</tr>
</tbody>
</table>

On Entry

- n is the number of elements in vector x. Specified as: a fullword integer; $n \geq 0$.
- x is the vector x of length n. Specified as: a one-dimensional array of (at least) length $1+(n-1)|incx|$, containing numbers of the data type indicated in Table 39.
- $incx$ is the stride for vector x. Specified as: a fullword integer. It can have any value.

On Return

Function value is the position i of the element in the array, where:

- If $incx \geq 0$, i is the position of the first occurrence.
- If $incx < 0$, i is the position of the last occurrence.

Returned as: a fullword integer; $0 \leq i \leq n$.

Note: Declare the ISMIN and IDMIN functions in your program as returning a fullword integer value.

Function: These subprograms find the first element x_k, where k is defined as the smallest index k, such that:

$$x_k = \min(x_j \text{ for } j = 1, n)$$

By specifying a positive or negative stride for vector x, the first or last occurrence, respectively, is found in the array. The position i, returned as the value of the function, is always figured relative to the location specified in the calling sequence.
for vector \(\mathbf{x} \) (in argument \(x \)). Therefore, depending on the stride specified for \(\text{incx} \), \(i \) has the following values:

- For \(\text{incx} \geq 0 \), \(i = k \)
- For \(\text{incx} < 0 \), \(i = n-k+1 \)

See reference [79]. The result is returned as a function value. If \(n \) is 0, then 0 is returned as the value of the function.

Error Conditions

Computational Errors: None

Input-Argument Errors: \(n < 0 \)

Example 1: This example shows a vector, \(\mathbf{x} \), with a stride of 1.

Function Reference and Input

\[
\begin{array}{c|c|c}
N & X & \text{INCX} \\
\hline
6 & \text{(3.0, 4.0, 1.0, 8.0, 1.0, 3.0)} & 1 \\
\end{array}
\]

Output

\[
\begin{array}{c}
\text{IMIN} = 3 \\
\end{array}
\]

Example 2: This example shows a vector, \(\mathbf{x} \), with a stride greater than 1.

Function Reference and Input

\[
\begin{array}{c|c|c}
N & X & \text{INCX} \\
\hline
4 & \text{(-3.0, , -9.0, , -8.0, , 3.0)} & 2 \\
\end{array}
\]

Output

\[
\begin{array}{c}
\text{IMIN} = 2 \\
\end{array}
\]

Example 3: This example shows a vector, \(\mathbf{x} \), with a positive stride and two elements with the minimum value. The position of the first occurrence is returned. Processing begins at element \(X(7) \), which is 1.0.

Function Reference and Input

\[
\begin{array}{c|c|c}
N & X & \text{INCX} \\
\hline
4 & \text{(2.0, , 1.0, , 4.0, , 1.0)} & 2 \\
\end{array}
\]

Output

\[
\begin{array}{c}
\text{IMIN} = 2 \\
\end{array}
\]
Example 4: This example shows a vector, \(x \), with a negative stride and two elements with the minimum value. The position of the last occurrence is returned.
Processing begins at element \(X(7) \), which is 1.0.

Function Reference and Input

\[
\begin{array}{c|c|c|c|}
N & X & \text{INCX} \\
\hline
\text{IMIN} & \text{ISMIN(4 , X , -2)} \\
\end{array}
\]

\(X = (2.0, . , 1.0, . , 4.0, . , 1.0) \)

Output

\(\text{IMIN} = 4 \)
SASUM, DASUM, SCASUM, and DZASUM—Sum of the Magnitudes of the Elements in a Vector

SASUM and DASUM compute the sum of the absolute values of the elements in vector \(x \). SCASUM and DZASUM compute the sum of the absolute values of the real and imaginary parts of the elements in vector \(x \).

<table>
<thead>
<tr>
<th>Table 40. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
<tr>
<td>Short-precision complex</td>
</tr>
<tr>
<td>Long-precision complex</td>
</tr>
</tbody>
</table>

Syntax

Fortran

SASUM | DASUM | SCASUM | DZASUM \((n, x, \text{incx})\)

C and C++

sasum | dasum | scasum | dzasum \((n, x, \text{incx})\);

PL/I

SASUM | DASUM | SCASUM | DZASUM \((n, x, \text{incx})\);

On Entry

\(n \)

is the number of elements in vector \(x \). Specified as: a fullword integer; \(n \geq 0 \).

\(x \)

is the vector \(x \) of length \(n \). Specified as: a one-dimensional array of (at least) length \(1+(n-1)|\text{incx}| \), containing numbers of the data type indicated in Table 40.

\(\text{incx} \)

is the stride for vector \(x \). Specified as: a fullword integer. It can have any value.

On Return

Function value

is the result of the summation. Returned as: a number of the data type indicated in Table 40.

Note: Declare this function in your program as returning a value of the type indicated in Table 40.

Function: SASUM and DASUM compute the sum of the absolute values of the elements of \(x \), which is expressed as follows:

\[
\sum_{i=1}^{n} |x_i| = |x_1| + |x_2| + \ldots + |x_n|
\]

SCASUM and DZASUM compute the sum of the absolute values of the real and imaginary parts of the elements of \(x \), which is expressed as follows:
\[\sum_{i=1}^{n} (|a_i| + |b_i|) = (|a_1| + |b_1|) + (|a_2| + |b_2|) + \ldots + (|a_n| + |b_n|) \]

where \(x_i = (a_i, b_i) \)

See reference [79]. The result is returned as a function value. If \(n \) is 0, then 0.0 is returned as the value of the function. For SASUM and SCASUM, intermediate results are accumulated in long precision.

Error Conditions

Computational Errors: None

Input-Argument Errors: \(n < 0 \)

Example 1: This example shows a vector, \(x \), with a stride of 1.

Function Reference and Input

\[
\begin{align*}
N & \quad X & \quad INCX \\
\mid & \quad \mid & \quad \mid \\
SUMM & = \text{SASUM(7 , X , 1)} \\
X & = (1.0, -3.0, -6.0, 7.0, 5.0, 2.0, -4.0)
\end{align*}
\]

Output

\[SUMM = 28.0 \]

Example 2: This example shows a vector, \(x \), with a stride greater than 1.

Function Reference and Input

\[
\begin{align*}
N & \quad X & \quad INCX \\
\mid & \quad \mid & \quad \mid \\
SUMM & = \text{SASUM(4 , X , 2)} \\
X & = (1.0, . , -6.0, . , 5.0, . , -4.0)
\end{align*}
\]

Output

\[SUMM = 16.0 \]

Example 3: This example shows a vector, \(x \), with negative stride. Processing begins at element \(x(7) \), which is \(-4.0\).

Function Reference and Input

\[
\begin{align*}
N & \quad X & \quad INCX \\
\mid & \quad \mid & \quad \mid \\
SUMM & = \text{SASUM(4 , X , -2)} \\
X & = (1.0, . , -6.0, . , 5.0, . , -4.0)
\end{align*}
\]

Output

\[SUMM = 16.0 \]
Example 4: This example shows a vector, \(x \), with a stride of 0. The result in \(\text{SUMM} \) is \(nx_1 \).

Function Reference and Input

\[
\begin{array}{ccc}
N & X & INCX \\
\hline
\end{array}
\]

\[
\text{SUMM} = \text{SASUM}(7, X, 0)
\]

\(X = (-2.0, \ldots, \ldots, \ldots) \)

Output

\(\text{SUMM} = 14.0 \)

Example 5: This example shows a vector, \(x \), containing complex numbers and having a stride of 1.

Function Reference and Input

\[
\begin{array}{ccc}
N & X & INCX \\
\hline
\end{array}
\]

\[
\text{SUMM} = \text{SCASUM}(5, X, 1)
\]

\(X = ((1.0, 2.0), (-3.0, 4.0), (5.0, -6.0), (-7.0, -8.0), (9.0, 10.0)) \)

Output

\(\text{SUMM} = 55.0 \)
SAXPY, DAXPY, CAXPY, and ZAXPY

Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in the Vector Y

These subprograms perform the following computation, using the scalar α and vectors x and y:

$$y \leftarrow y + \alpha x$$

<table>
<thead>
<tr>
<th>Data Types</th>
<th>Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>α, x, y</td>
<td></td>
</tr>
<tr>
<td>Short-precision real</td>
<td>SAXPY</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DAXPY</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>CAXPY</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>ZAXPY</td>
</tr>
</tbody>
</table>

Syntax

<table>
<thead>
<tr>
<th>Language</th>
<th>Call</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>CALL SAXPY</td>
<td>n, α, x, $incx$, y, $incy$</td>
</tr>
<tr>
<td>C and C++</td>
<td>saxpy</td>
<td>n, α, x, $incx$, y, $incy$</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SAXPY</td>
<td>n, α, x, $incx$, y, $incy$</td>
</tr>
</tbody>
</table>

On Entry

- n is the number of elements in vectors x and y. Specified as: a fullword integer; $n \geq 0$.
- α is the scalar α. Specified as: a number of the data type indicated in Table 41.
- x is the vector x of length n. Specified as: a one-dimensional array of (at least) length $1+(n-1)|incx|$, containing numbers of the data type indicated in Table 41.
- $incx$ is the stride for vector x. Specified as: a fullword integer. It can have any value.
- y is the vector y of length n. Specified as: a one-dimensional array of (at least) length $1+(n-1)|incy|$, containing numbers of the data type indicated in Table 41.
- $incy$ is the stride for vector y. Specified as: a fullword integer. It can have any value.

On Return

- y is the vector y, containing the results of the computation $y + \alpha x$. Returned as: a one-dimensional array, containing numbers of the data type indicated in Table 41.

Notes

1. If you specify the same vector for x and y, $incx$ and $incy$ must be equal; otherwise, results are unpredictable.
2. If you specify different vectors for \(x \) and \(y \), they must have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.

Function: The computation is expressed as follows:

\[
\begin{bmatrix}
 y_1 \\
 \vdots \\
 y_n
\end{bmatrix}
\leftarrow
\begin{bmatrix}
 y_1 \\
 \vdots \\
 y_n
\end{bmatrix}
+ \alpha
\begin{bmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{bmatrix}
\]

See reference [79]. If \(\alpha \) or \(n \) is zero, no computation is performed. For CAXPY, intermediate results are accumulated in long precision.

Error Conditions

Computational Errors: None

Input-Argument Errors: \(n < 0 \)

Example 1: This example shows vectors \(x \) and \(y \) with positive strides.

Call Statement and Input

\[
\begin{array}{cccc}
 N & ALPHA & X & INCX \\
 5 & 2.0 & X & 1 \\
 CALL & SAXPY(& 5 , & 2.0 , X , 1 , Y , 2) \\
\end{array}
\]

\[
\begin{array}{c}
 X = (1.0, 2.0, 3.0, 4.0, 5.0) \\
 Y = (1.0, ., 1.0, ., 1.0, ., 1.0, ., 1.0) \\
\end{array}
\]

Output

\[
\begin{array}{c}
 Y = (3.0, ., 5.0, ., 7.0, ., 9.0, ., 11.0) \\
\end{array}
\]

Example 2: This example shows vectors \(x \) and \(y \) having strides of opposite signs. For \(y \), which has negative stride, processing begins at element \(Y(5) \), which is 1.0.

Call Statement and Input

\[
\begin{array}{cccc}
 N & ALPHA & X & INCX \\
 5 & 2.0 & X & 1 \\
 CALL & SAXPY(& 5 , & 2.0 , X , 1 , Y , -1) \\
\end{array}
\]

\[
\begin{array}{c}
 X = (1.0, 2.0, 3.0, 4.0, 5.0) \\
 Y = (5.0, 4.0, 3.0, 2.0, 1.0) \\
\end{array}
\]

Output

\[
\begin{array}{c}
 Y = (15.0, 12.0, 9.0, 6.0, 3.0) \\
\end{array}
\]

Example 3: This example shows a vector, \(x \), with 0 stride. Vector \(x \) is treated like a vector of length \(n \), all of whose elements are the same as the single element in \(x \).

Call Statement and Input

\[
\begin{array}{cccc}
 N & ALPHA & X & INCX \\
 5 & 2.0 & X & 1 \\
 CALL & SAXPY(& 5 , & 2.0 , X , 1) \\
\end{array}
\]

\[
\begin{array}{c}
 X = (5.0, 4.0, 3.0, 2.0, 1.0) \\
\end{array}
\]
SAXPY, DAXPY, CAXPY, and ZAXPY

Example 1:

\[
\begin{align*}
\text{CALL SAXPY}(& 5, 2.0, X, 0, Y, 1) \\
X &= (1.0) \\
Y &= (5.0, 4.0, 3.0, 2.0, 1.0)
\end{align*}
\]

Output

\[
Y = (7.0, 6.0, 5.0, 4.0, 3.0)
\]

Example 4:

This example shows how SAXPY can be used to compute a scalar value. In this case, vectors \(x \) and \(y \) contain scalar values and the strides for both vectors are 0. The number of elements to be processed, \(n \), is 1.

Call Statement and Input

\[
\begin{align*}
\text{CALL SAXPY}(& 1, 2.0, X, 0, Y, 0) \\
X &= (1.0) \\
Y &= (5.0)
\end{align*}
\]

Output

\[
Y = (7.0)
\]

Example 5:

This example shows how to use CAXPY, where vectors \(x \) and \(y \) contain complex numbers. In this case, vectors \(x \) and \(y \) have positive strides.

Call Statement and Input

\[
\begin{align*}
\text{CALL CAXPY}(& 3, \alpha, X, 1, Y, 2) \\
\alpha &= (2.0, 3.0) \\
X &= ((1.0, 2.0), (2.0, 0.0), (3.0, 5.0)) \\
Y &= ((1.0, 1.0), \ldots, (0.0, 2.0), \ldots, (5.0, 4.0))
\end{align*}
\]

Output

\[
Y = ((-3.0, 8.0), \ldots, (4.0, 8.0), \ldots, (-4.0, 23.0))
\]
SCOPY, DCOPY, CCOPY, and ZCOPY—Copy a Vector

These subprograms copy vector x to another vector, y:

$$ y \leftarrow x $$

Syntax

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>SCOPY</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DCOPY</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>CCOPY</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>ZCOPY</td>
</tr>
</tbody>
</table>

Fortran

```fortran
CALL SCOPY | DCOPY | CCOPY | ZCOPY (n, x, inx, y, incy)
```

C and C++

```c
scopy | dcopy | ccopy | zcopy (n, x, inx, y, incy);
```

PL/I

```pli
CALL SCOPY | DCOPY | CCOPY | ZCOPY (n, x, inx, y, incy);
```

On Entry

- n is the number of elements in vectors x and y. Specified as: a fullword integer; $n \geq 0$.
- x is the vector x of length n. Specified as: a one-dimensional array of (at least) length $1+(n-1)|\text{incx}|$, containing numbers of the data type indicated in Table 42.
- incx is the stride for vector x. Specified as: a fullword integer. It can have any value.
- y is the vector y of length n. Specified as: a fullword integer. It can have any value.
- incy is the stride for vector y. Specified as: a fullword integer. It can have any value.

On Return

- y is the vector y of length n. Returned as: a one-dimensional array of (at least) length $1+(n-1)|\text{incy}|$, containing numbers of the data type indicated in Table 42.

Notes

1. If you specify the same vector for x and y, incx and incy must be equal; otherwise, results are unpredictable.
2. If you specify different vectors for x and y, they must have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.

Function:

The copy is expressed as follows:
SCOPY, DCOPY, CCOPY, and ZCOPY

If \(n \) is 0, no copy is performed.

Error Conditions

Computational Errors: None

Input-Argument Errors: \(n < 0 \)

Example 1: This example shows input vector \(x \) and output vector \(y \) with positive strides.

Call Statement and Input

```
N X INCX Y INCY
5 1 1 2
CALL SCOPY( 5 , X , 1 , Y , 2 )
```

\[X = (1.0, 2.0, 3.0, 4.0, 5.0) \]

Output

\[Y = (1.0, . , 2.0, . , 3.0, . , 4.0, . , 5.0) \]

Example 2: This example shows how to obtain a reverse copy of the input vector \(x \) by specifying strides with the same absolute value, but with opposite signs, for input vector \(x \) and output vector \(y \). For \(y \), which has a negative stride, results are stored beginning at element \(Y(5) \).

Call Statement and Input

```
N X INCX Y INCY
5 1 1 -1
CALL SCOPY( 5 , X , 1 , Y , -1 )
```

\[X = (1.0, 2.0, 3.0, 4.0, 5.0) \]

Output

\[Y = (5.0, 4.0, 3.0, 2.0, 1.0) \]

Example 3: This example shows an input vector, \(x \), with 0 stride. Vector \(x \) is treated like a vector of length \(n \), all of whose elements are the same as the single element in \(x \). This is a technique for replicating an element of a vector.

Call Statement and Input

```
N X INCX Y INCY
5 0 0 1
CALL SCOPY( 5 , X , 0 , Y , 1 )
```

\[X = (13.0) \]
Output

\[Y = (13.0, 13.0, 13.0, 13.0, 13.0) \]

Example 4: This example shows input vector \(x \) and output vector \(y \), containing complex numbers and having positive strides.

Call Statement and Input

\[
\begin{array}{c|c|c|c|c|c}
\text{N} & \text{X} & \text{INCX} & \text{Y} & \text{INCY} \\
\hline
4 & X & 1 & Y & 2 \\
\end{array}
\]

\[
\text{CALL CCOPY(4, X, 1, Y, 2)}
\]

\[X = ((1.0, 1.0), (2.0, 2.0), (3.0, 3.0), (4.0, 4.0)) \]

Output

\[Y = ((1.0, 1.0), . , (2.0, 2.0), . , (3.0, 3.0), . , (4.0, 4.0)) \]
Dot Product of Two Vectors

SDOT, DDOT, CDOTU, and ZDOTU compute the dot product of vectors \(x \) and \(y \):

\[
x \cdot y
\]

CDOTC and ZDOTC compute the dot product of the complex conjugate of vector \(x \) with vector \(y \):

\[
\overline{x} \cdot y
\]

Table 43. Data Types

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>SDOT</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DDOT</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>CDOTU and CDOTC</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>ZDOTU and ZDOTC</td>
</tr>
</tbody>
</table>

Syntax

Fortran

\[
\text{SDOT | DDOT | CDOTU | ZDOTU | CDOTC | ZDOTC (} n, x, \text{incx, y, incy}))
\]

C and C++

\[
sdot | ddot | cdotu | zdotu | cdotc | zdotc (} n, x, \text{incx, y, incy});
\]

PL/I

\[
\text{SDOT | DDOT | CDOTU | ZDOTU | CDOTC | ZDOTC (} n, x, \text{incx, y, incy});
\]

On Entry

- \(n \) is the number of elements in vectors \(x \) and \(y \). Specified as: a fullword integer; \(n \geq 0 \).
- \(x \) is the vector \(x \) of length \(n \). Specified as: a one-dimensional array of (at least) length \(1+(n-1)\mid\text{incx}\mid \), containing numbers of the data type indicated in Table 43.
- \(\text{incx} \) is the stride for vector \(x \). Specified as: a fullword integer. It can have any value.
- \(y \) is the vector \(y \) of length \(n \). Specified as: a one-dimensional array of (at least) length \(1+(n-1)\mid\text{incy}\mid \), containing numbers of the data type indicated in Table 43.
- \(\text{incy} \) is the stride for vector \(y \). Specified as: a fullword integer. It can have any value.

On Return

Function value

is the result of the dot product computation. Returned as: a number of the data type indicated in Table 43.

Note: Declare this function in your program as returning a value of the data type indicated in Table 43.
Function: SDOT, DDOT, CDOTU, ZDOTU, CDOTC, and ZDOTC compute the dot product of the vectors \(x \) and \(y \), which is expressed as follows:

\[
x \cdot y = x_1y_1 + x_2y_2 + \ldots + x_ny_n
\]

CDOTC and ZDOTC compute the dot product of the complex conjugate of vector \(x \) with vector \(y \), which is expressed as follows:

\[
\bar{x} \cdot y = \bar{x}_1y_1 + \bar{x}_2y_2 + \ldots + \bar{x}_ny_n
\]

See reference [79]. The result is returned as a function value. If \(n \) is 0, then zero is returned as the value of the function.

For SDOT, CDOTU, and CDOTC, intermediate results are accumulated in long precision.

Error Conditions

Computational Errors: None

Input-Argument Errors: \(n < 0 \)

Example 1: This example shows how to compute the dot product of two vectors, \(x \) and \(y \), having strides of 1.

Function Reference and Input

<table>
<thead>
<tr>
<th>N</th>
<th>X INCX</th>
<th>Y INCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
DOTT = \text{SDOT}(5, x, 1, y, 1)
\]

\[
X = (1.0, 2.0, -3.0, 4.0, 5.0)
\]

\[
Y = (9.0, 8.0, 7.0, -6.0, 5.0)
\]

Output

\[
DOTT = (9.0 + 16.0 - 21.0 - 24.0 + 25.0) = 5.0
\]

Example 2: This example shows how to compute the dot product of a vector, \(x \), with a stride of 1, and a vector, \(y \), with a stride greater than 1.

Function Reference and Input

<table>
<thead>
<tr>
<th>N</th>
<th>X INCX</th>
<th>Y INCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

\[
DOTT = \text{SDOT}(5, x, 1, y, 2)
\]

\[
X = (1.0, 2.0, -3.0, 4.0, 5.0)
\]

\[
Y = (9.0, . , 7.0, . , 5.0, . , -3.0, . , 1.0)
\]

Output

\[
DOTT = (9.0 + 14.0 - 15.0 - 12.0 + 5.0) = 1.0
\]
Example 3: This example shows how to compute the dot product of a vector, \(x \), with a negative stride, and a vector, \(y \), with a stride greater than 1. For \(x \), processing begins at element \(X(5) \), which is 5.0.

Function Reference and Input

\[
\begin{array}{cccc}
N & X & INCX & Y & INCY \\
\hline
5 & X & -1 & Y & 2 \\
\end{array}
\]

\[
DOTT = \text{SDOT}(5, X, -1, Y, 2)
\]

\[
X = (1.0, 2.0, -3.0, 4.0, 5.0)
\]

\[
Y = (9.0, . , 7.0, . , 5.0, . , -3.0, . , 1.0)
\]

Output

\[
DOTT = (45.0 + 28.0 - 15.0 - 6.0 + 1.0) = 53.0
\]

Example 4: This example shows how to compute the dot product of a vector, \(x \), with a stride of 0, and a vector, \(y \), with a stride of 1. The result in \(DOTT \) is \(x_1(y_1 + ... + y_n) \).

Function Reference and Input

\[
\begin{array}{cccc}
N & X & INCX & Y & INCY \\
\hline
5 & X & 0 & Y & 1 \\
\end{array}
\]

\[
DOTT = \text{SDOT}(5, X, 0, Y, 1)
\]

\[
X = (1.0, . , . , . , .)
\]

\[
Y = (9.0, 8.0, 7.0, -6.0, 5.0)
\]

Output

\[
DOTT = (1.0) \times (9.0 + 8.0 + 7.0 - 6.0 + 5.0) = 23.0
\]

Example 5: This example shows how to compute the dot product of two vectors, \(x \) and \(y \), with strides of 0. The result in \(DOTT \) is \(nx_1y_1 \).

Function Reference and Input

\[
\begin{array}{cccc}
N & X & INCX & Y & INCY \\
\hline
5 & X & 0 & Y & 0 \\
\end{array}
\]

\[
DOTT = \text{SDOT}(5, X, 0, Y, 0)
\]

\[
X = (1.0, . , . , . , .)
\]

\[
Y = (9.0, . , . , . , .)
\]

Output

\[
DOTT = (5) \times (1.0) \times (9.0) = 45.0
\]

Example 6: This example shows how to compute the dot product of two vectors, \(x \) and \(y \), containing complex numbers, where \(x \) has a stride of 1, and \(y \) has a stride greater than 1.

Function Reference and Input
SDOT, DDOT, CDOTU, ZDOTU, CDOTC, and ZDOTC

\[
\begin{align*}
N & \quad X & \quad \text{INCX} & \quad Y & \quad \text{INCY} \\
& & & & \\
DOTT & = \text{CDOTU}(3, X, 1, Y, 2) \\
\end{align*}
\]

\[
\begin{align*}
X &= ((1.0, 2.0), (3.0, -4.0), (-5.0, 6.0)) \\
Y &= ((10.0, 9.0), \ldots, (-6.0, 5.0), \ldots, (2.0, 1.0)) \\
\end{align*}
\]

Output

\[
\begin{align*}
DOTT &= ((1.0 \times 10.0 - 18.0 - 1.0 \times 2.0, \\
& \quad 9.0 + 15.0 - 5.0) + (20.0 + 24.0 + 12.0)) \\
&= (-22.0, 75.0) \\
\end{align*}
\]

Example 7: This example shows how to compute the dot product of the conjugate of a vector, \(x\), with vector \(y\), both containing complex numbers, where \(x\) has a stride of 1, and \(y\) has a stride greater than 1.

Function Reference and Input

\[
\begin{align*}
N & \quad X & \quad \text{INCX} & \quad Y & \quad \text{INCY} \\
& & & & \\
DOTT & = \text{CDOTC}(3, X, 1, Y, 2) \\
\end{align*}
\]

\[
\begin{align*}
X &= ((1.0, 2.0), (3.0, -4.0), (-5.0, 6.0)) \\
Y &= ((10.0, 9.0), \ldots, (-6.0, 5.0), \ldots, (2.0, 1.0)) \\
\end{align*}
\]

Output

\[
\begin{align*}
DOTT &= ((10.0 - 18.0 - 10.0) + (18.0 - 20.0 + 6.0), \\
& \quad (9.0 + 15.0 - 5.0) - (20.0 + 24.0 + 12.0)) \\
&= (-14.0, -37.0) \\
\end{align*}
\]
SNAXPY and DNAXPY—Compute SAXPY or DAXPY N Times

These subprograms compute SAXPY or DAXPY, respectively, \(n \) times:

\[
y_i \leftarrow y_i + \alpha_i x_i \quad \text{for } i = 1, n
\]

where each \(\alpha_i \) is a scalar value, contained in the vector \(a \), and each \(x_i \) and \(y_i \) are vectors, contained in vectors (or matrices) \(x \) and \(y \), respectively. For an explanation of the SAXPY and DAXPY computations, see “SAXPY, DAXPY, CAXPY, and ZAXPY—Multiply a Vector \(X \) by a Scalar, Add to a Vector \(Y \), and Store in the Vector \(Y \)” on page 214.

Table 44. Data Types

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>SNAXPY</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DNAXPY</td>
</tr>
</tbody>
</table>

Syntax

Fortran

```fortran
CALL SNAXPY | DNAXPY (n, m, a, inca, x, incxi, incxo, y, incyi, incyo)
```

C and C++

```c
snaxpy | dnaxpy (n, m, a, inca, x, incxi, incxo, y, incyi, incyo);
```

PL/I

```pli
CALL SNAXPY | DNAXPY (n, m, a, inca, x, incxi, incxo, y, incyi, incyo);
```

On Entry

- \(n \) is the number of SAXPY or DAXPY computations to be performed and the number of elements in vector \(a \). Specified as: a fullword integer; \(n \geq 0 \).
- \(m \) is the number of elements in vectors \(x_i \) and \(y_i \) for each SAXPY or DAXPY computation. Specified as: a fullword integer; \(m \geq 0 \).
- \(a \) is the vector \(a \) of length \(n \), containing the scalar values \(\alpha_i \), used in each computation of \(y_i + \alpha_i x_i \). Specified as: a one-dimensional array of (at least) length \(1+(n-1)|\text{inca}| \), containing numbers of the data type indicated in Table 44.
- \(\text{inca} \) is the stride for vector \(a \). Specified as: a fullword integer. It can have any value.
- \(x \) is the vector (or matrix) \(x \), containing the \(x_i \) vectors of length \(m \), used in the \(n \) computations of \(y_i + \alpha_i x_i \). Specified as: a one- or two-dimensional array of (at least) length \(1+(n-1)(\text{incxo}) + (m-1)|\text{incxi}| \), containing numbers of the data type indicated in Table 44.
- \(\text{incxi} \) is the stride for \(x \) in the inner loop—that is, the stride identifying the elements in each vector \(x_i \). Specified as: a fullword integer. It can have any value.
- \(\text{incxo} \) is the stride for \(x \) in the outer loop—that is, the stride identifying each vector \(x_i \) in \(x \). Specified as: a fullword integer; \(\text{incxo} \geq 0 \).
- \(y \) is the vector (or matrix) \(y \), containing the \(y_i \) vectors of length \(m \), used in the \(n \) computations of \(y_i + \alpha_i x_i \). Specified as: a one- or two-dimensional array of (at least) length \(1+(n-1)(\text{incy}) + (m-1)|\text{incy}| \), containing numbers of the data type indicated in Table 44.
incyi
is the stride for \(y \) in the inner loop—that is, the stride identifying the elements in each vector \(y_i \) in \(y \). Specified as: a fullword integer; \(incyi > 0 \) or \(incyi < 0 \).

incyo
is the stride for \(y \) in the outer loop—that is, the stride identifying each vector \(y_i \) in \(y \). Specified as: a fullword integer; \(incyo \geq 0 \).

On Return

\(y \)
is the vector (or matrix) \(y \), containing the \(y_i \) vectors of length \(m \), which contain the results of the \(n \) SAXPY or DAXPY computations, \(y_i + \alpha_i x_i \) for \(i = 1, n \). Returned as: a one- or two-dimensional array, containing numbers of the data type indicated in Table 44 on page 224.

Note: Vector \(y \) must have no common elements with vector \(a \) or vector \(x \); otherwise, results are unpredictable. See “Concepts” on page 53.

Function: The SAXPY or DAXPY computations:

\[y \leftarrow y + \alpha x \]

are performed \(n \) times. This is expressed as follows:

\[y_i \leftarrow y_i + \alpha_i x_i \quad \text{for } i = 1, n \]

where each \(\alpha_i \) is a scalar value, contained in the vector \(a \), and each \(x_i \) and \(y_i \) are vectors, contained in vectors (or matrices) \(x \) and \(y \), respectively.

Each computation of SAXPY or DAXPY on page 214 uses the length of the \(x_i \) and \(y_i \) vectors, \(m \), for its input argument, \(n \). It also uses the strides for the inner loop, \(incxi \) and \(incyi \), for its parameters \(incx \) and \(incy \), respectively. See “Function” on page 215 for a description of how the computation is done.

The outer loop of the SNAXPY or DNAXPY computation uses the strides of \(inca \), \(incxo \), and \(incyo \) to locate the elements in \(a \) and vectors in \(x \) and \(y \) for each \(i \)-th computation. These are:

For \(i = 1, n \):

- \(\alpha_{(i-1) \cdot inca + 1} \) for \(inca \geq 0 \)
- \(\alpha_{(i-1) \cdot inca + 1} \) for \(inca < 0 \)
- \(x_{(i-1) \cdot incxo + 1} \)
- \(y_{(i-1) \cdot incyo + 1} \)

If \(m \) or \(n \) is 0, no computation is performed.

Error Conditions

Computational Errors: None

Input-Argument Errors

1. \(n < 0 \)
2. \(m < 0 \)
3. \(incxo < 0 \)
4. \(incyi = 0 \)
5. \(incyo < 0 \)
Example 1: This example shows vectors, contained in matrices, with the stride of the inner loops \textit{incxi} and \textit{incy} equal to 1.

Call Statement and Input

```plaintext
N M A INCA X INCXI INCXO Y INCYI INCYO
| | | | | | | | | |
CALL SNAXPY( 3 , 4 , A , 1 , X , 1 , 10 , Y , 1 , 5 )
```

\(A = (3.0, 2.0, 4.0) \)

\[
\begin{pmatrix}
1.0 & 4.0 & 3.0 \\
2.0 & 3.0 & 4.0 \\
3.0 & 2.0 & 2.0 \\
4.0 & 1.0 & 1.0
\end{pmatrix}
\]

\(X = \ldots \)

\[
\begin{pmatrix}
. & . & . \\
. & . & . \\
. & . & . \\
. & . & . \\
. & . & . \\
. & . & . \\
\end{pmatrix}
\]

\(Y = \begin{pmatrix}
4.0 & 1.0 & 3.0 \\
3.0 & 2.0 & 4.0 \\
2.0 & 3.0 & 2.0 \\
1.0 & 4.0 & 1.0 \\
. & . & .
\end{pmatrix} \)

Output

\[
\begin{pmatrix}
7.0 & 9.0 & 15.0 \\
9.0 & 8.0 & 20.0 \\
11.0 & 7.0 & 10.0 \\
13.0 & 6.0 & 5.0 \\
. & . & .
\end{pmatrix}
\]

Example 2: This example shows vectors, contained in matrices, with a stride of the inner loop \textit{incxi} greater than 1.

Call Statement and Input

```plaintext
N M A INCA X INCXI INCXO Y INCYI INCYO
| | | | | | | | | |
CALL SNAXPY( 3 , 4 , A , 1 , X , 2 , 10 , Y , 1 , 5 )
```

\(A = (3.0, 2.0, 4.0) \)
Example 3: This example shows vectors, contained in matrices, with a negative stride, incyi, for the inner loop.

Call Statement and Input

\[
\begin{array}{cccccccc}
N & M & A & INCA & X & INCXI & INCXO & Y & INCYI & INCYO \\
\end{array}
\]

CALL SNAXPY(3 , 4 , A , 1 , X , 1 , 10 , Y , -1 , 5)

\[
A = (3.0, 2.0, 4.0)
\]

\[
\begin{bmatrix}
1.0 & 4.0 & 3.0 \\
2.0 & 3.0 & 4.0 \\
3.0 & 2.0 & 2.0 \\
4.0 & 1.0 & 1.0 \\
\end{bmatrix}
\]

\[
X =
\begin{bmatrix}
. & . & . \\
. & . & . \\
. & . & . \\
. & . & . \\
\end{bmatrix}
\]

\[
Y =
\begin{bmatrix}
1.0 & 4.0 & 1.0 \\
2.0 & 3.0 & 2.0 \\
3.0 & 2.0 & 4.0 \\
4.0 & 1.0 & 3.0 \\
\end{bmatrix}
\]
Example 4: This example shows vectors, contained in matrices, with a negative stride, \(\text{inca} \), for vector \(a \). For vector \(a \), processing begins at element \(A(5) \), which is 3.0.

Call Statement and Input

```plaintext
CALL SNAXPY( 3 , 4 , A , -2 , X , 1 , 10 , Y , 1 , 5 )
```

\(A = (4.0, \ldots, 2.0, \ldots, 3.0) \)

\[
\begin{bmatrix}
1.0 & 4.0 & 3.0 \\
2.0 & 3.0 & 4.0 \\
3.0 & 2.0 & 2.0 \\
4.0 & 1.0 & 1.0 \\
\end{bmatrix}
\]

\(X = \ldots \)

\(Y = \begin{bmatrix}
4.0 & 1.0 & 3.0 \\
3.0 & 2.0 & 4.0 \\
2.0 & 3.0 & 2.0 \\
1.0 & 4.0 & 1.0 \\
\ldots & \ldots & \ldots \\
\end{bmatrix} \)

Output

\(Y = (\text{same as output } Y \text{ in Example 1}) \)
SNDOT and DNDOT—Compute Special Dot Products N Times

These subprograms compute one of the following special dot products n times:

\[s_i \leftarrow x_i \cdot y_i \]

Store positive dot product

\[s_i \leftarrow -x_i \cdot y_i \]

Store negative dot product

\[s_i \leftarrow s_i + x_i \cdot y_i \]

Accumulate positive dot product

\[s_i \leftarrow s_i - x_i \cdot y_i \]

Accumulate negative dot product

for \(i = 1, n \)

where each \(s_i \) is an element in vector \(s \), and each \(x_i \) and \(y_i \) are vectors contained in vectors (or matrices) \(x \) and \(y \), respectively.

Syntax

<table>
<thead>
<tr>
<th></th>
<th>s, x, y</th>
<th>Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>SNDOT</td>
<td></td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DNDOT</td>
<td></td>
</tr>
</tbody>
</table>

On Entry

\(n \)

is the number of dot product computations to be performed and the number of elements in the vector \(s \). Specified as: a fullword integer; \(n \geq 0 \).

\(m \)

is the number of elements in vectors \(x_i \) and \(y_i \) for each dot product computation. Specified as: a fullword integer; \(m \geq 0 \).

\(s \)

is the vector \(s \), containing the \(n \) scalar values \(s_i \), where: If \(isw = 1 \) or 2, \(s_i \) is not used in the computation (no input value specified.)

If \(isw = 3 \) or 4, \(s_i \) is used in the computation (input value specified.)

Specified as: a one-dimensional array of (at least) length \(1+(n-1)|incs| \), containing numbers of the data type indicated in Table 45.

\(incs \)

is the stride for vector \(s \). Specified as: a fullword integer; \(incs > 0 \) or \(incs < 0 \).

\(isw \)

indicates the type of computation to perform, depending on the value specified:

- If \(isw = 1 \), \(s_i \leftarrow x_i \cdot y_i \)
- If \(isw = 2 \), \(s_i \leftarrow -x_i \cdot y_i \)
- If \(isw = 3 \), \(s_i \leftarrow s_i + x_i \cdot y_i \)
- If \(isw = 4 \), \(s_i \leftarrow s_i - x_i \cdot y_i \)

where \(i = 1, n \)

Specified as: a fullword integer. Its value must be 1, 2, 3, or 4.
SNDOT and DNDOT

\(x \)
is the vector (or matrix) \(x \), containing the \(x_i \) vectors of length \(m \), used in the \(n \) dot product computations. Specified as: a one- or two-dimensional array of (at least) length \(1+((n-1)(incxo))+(m-1)|incxi| \), containing numbers of the data type indicated in Table 45.

\(incxi \)
is the stride for \(x \) in the inner loop—that is, the stride identifying the elements in each vector \(x_i \). Specified as: a fullword integer. It can have any value.

\(incxo \)
is the stride for \(x \) in the outer loop—that is, the stride identifying each vector \(x_i \) in \(x \). Specified as: a fullword integer; \(incxo \geq 0 \).

\(y \)
is the vector (or matrix) \(y \), containing the \(y_i \) vectors of length \(m \), used in the \(n \) dot product computations. Specified as: a one- or two-dimensional array of (at least) length \(1+((n-1)(incyo))+(m-1)|incyi| \), containing numbers of the data type indicated in Table 45 on page 229.

\(incyi \)
is the stride for \(y \) in the inner loop—that is, the stride identifying the elements in each vector \(y_i \). Specified as: a fullword integer. It can have any value.

\(incyo \)
is the stride for \(y \) in the outer loop—that is, the stride identifying each vector \(y_i \) in \(y \). Specified as: a fullword integer; \(incyo \geq 0 \).

On Return

\(s \)
is the vector \(s \) of length \(n \), containing the results of the \(n \) dot product computations. The type of dot product computation depends of the value specified for \(isw \).

If \(isw = 1 \), \(s_i \leftarrow x_i \cdot y_i \)
If \(isw = 2 \), \(s_i \leftarrow -x_i \cdot y_i \)
If \(isw = 3 \), \(s_i \leftarrow s_i + x_i \cdot y_i \)
If \(isw = 4 \), \(s_i \leftarrow s_i - x_i \cdot y_i \)
where \(i = 1, n \)

Returned as: a one-dimensional array, containing numbers of the data type indicated in Table 45 on page 229.

Function: The four possible computations that can be performed by these subprograms are:

\[s_i \leftarrow x_i \cdot y_i \quad \text{Store positive dot product} \]
\[s_i \leftarrow -x_i \cdot y_i \quad \text{Store negative dot product} \]
\[s_i \leftarrow s_i + x_i \cdot y_i \quad \text{Accumulate positive dot product} \]
\[s_i \leftarrow s_i - x_i \cdot y_i \quad \text{Accumulate negative dot product} \]
for \(i = 1, n \)

where each \(s_i \) is a scalar element in the vector \(s \) of length \(n \), and each of the \(n \) \(x_i \) and \(y_i \) vectors of length \(m \) are contained in vectors (or matrices) \(x \) and \(y \), respectively. Each computation uses the dot product, which is expressed:
\[\mathbf{x}_i \cdot \mathbf{y}_i = u_1 v_1 + u_2 v_2 + \ldots + u_m v_m \]

where \(u_i \) and \(v_i \) are elements of \(\mathbf{x}_i \) and \(\mathbf{y}_i \), respectively. To find the elements for the computation, it uses:

- The strides for the inner loops, \(\text{incxi} \) and \(\text{incyi} \), to locate the elements in vectors \(\mathbf{x}_i \) and \(\mathbf{y}_i \), respectively.
- The strides for the outer loops, \(\text{incs} \), \(\text{incxo} \), and \(\text{incyo} \), to locate the element \(s_i \) in vector \(\mathbf{s} \) and the vectors \(\mathbf{x}_i \) and \(\mathbf{y}_i \) in vectors (or matrices) \(\mathbf{x} \) and \(\mathbf{y} \), respectively.

If \(m \) or \(n \) is 0, no computation is performed. For SNDOT, intermediate results are accumulated in long precision.

Error Conditions

Computational Errors: None

Input-Argument Errors

1. \(n < 0 \)
2. \(m < 0 \)
3. \(\text{incs} = 0 \)
4. \(\text{isw} < 1 \) or \(\text{isw} > 4 \)
5. \(\text{incxo} < 0 \)
6. \(\text{incyo} < 0 \)

Example 1: This example shows a store positive dot product computation using vectors with positive strides.

Call Statement and Input

```latex
\begin{align*}
\text{CALL SNDOT(} & 3, 4, S, 1, 1, X, 1, 4, Y, 1, 4) \\
X = & \begin{bmatrix} 1.0 & 2.0 & 3.0 \\ 2.0 & 3.0 & 4.0 \\ 3.0 & 4.0 & 5.0 \\ 4.0 & 5.0 & 6.0 \end{bmatrix} \\
Y = & \begin{bmatrix} 4.0 & 3.0 & 2.0 \\ 3.0 & 2.0 & 1.0 \\ 2.0 & 1.0 & 4.0 \\ 1.0 & 4.0 & 3.0 \end{bmatrix} \\
S = & \begin{bmatrix} 20.0, 36.0, 48.0 \end{bmatrix}
\end{align*}
```

Example 2: This example shows a store negative dot product computation using vectors with positive and negative strides.
Call Statement and Input

\[
\begin{array}{cccccccccc}
N & M & S & \text{INCS} & \text{ISW} & X & \text{INCXI} & \text{INCXO} & Y & \text{INCYI} & \text{INCYO} \\
3 & 4 & S & -1 & 2 & X & 2 & 1 & Y & -1 & 6 \\
\end{array}
\]

CALL SNDOT(3 , 4 , S , -1 , 2 , X , 2 , 10 , Y , -1 , 6)

\[
X = \begin{bmatrix}
1.0 & 2.0 & 3.0 \\
\cdot & \cdot & \cdot \\
2.0 & 3.0 & 4.0 \\
\cdot & \cdot & \cdot \\
3.0 & 4.0 & 5.0 \\
\cdot & \cdot & \cdot \\
4.0 & 5.0 & 6.0 \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\end{bmatrix}
\]

\[
Y = \begin{bmatrix}
4.0 & 3.0 & 2.0 \\
3.0 & 2.0 & 1.0 \\
2.0 & 1.0 & 4.0 \\
1.0 & 4.0 & 3.0 \\
\cdot & \cdot & \cdot \\
\end{bmatrix}
\]

Output

\[
S = (-42.0, -34.0, -30.0)
\]

Example 3: This example shows an accumulative positive dot product using vectors with positive and negative strides.

Call Statement and Input

\[
\begin{array}{cccccccccc}
N & M & S & \text{INCS} & \text{ISW} & X & \text{INCXI} & \text{INCXO} & Y & \text{INCYI} & \text{INCYO} \\
3 & 4 & S & 1 & 3 & X & -2 & 1 & Y & 2 & 10 \\
\end{array}
\]

CALL SNDOT(3 , 4 , S , 1 , 3 , X , -2 , 10 , Y , 2 , 10)

\[
S = (2.0, 5.0, 8.0)
\]

\[
X = \begin{bmatrix}
1.0 & 2.0 & 3.0 \\
\cdot & \cdot & \cdot \\
2.0 & 3.0 & 4.0 \\
\cdot & \cdot & \cdot \\
3.0 & 4.0 & 5.0 \\
\cdot & \cdot & \cdot \\
4.0 & 5.0 & 6.0 \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\end{bmatrix}
\]
Example 4: This example shows an accumulative negative dot product using vectors with positive and negative strides.

Call Statement and Input

```
<table>
<thead>
<tr>
<th>N</th>
<th>M</th>
<th>S</th>
<th>INCS</th>
<th>ISW</th>
<th>X</th>
<th>INCXI</th>
<th>INCXO</th>
<th>Y</th>
<th>INCYI</th>
<th>INCYO</th>
</tr>
</thead>
</table>
```

```
CALL SNDOT( 3 , 4 , S , -1 , 4 , X , 1 , 6 , Y , 2 , 10 )
```

```
S = (3.0, 6.0, 9.0)
```

```
X =
| 1.0 | 2.0 | 3.0 |
| 2.0 | 3.0 | 4.0 |
| 3.0 | 4.0 | 5.0 |
| 4.0 | 5.0 | 6.0 |
```

```
Y =
| 4.0 | 3.0 | 2.0 |
| 3.0 | 2.0 | 1.0 |
| 2.0 | 1.0 | 4.0 |
| 1.0 | 4.0 | 3.0 |
```

Output

```
S = (-45.0, -30.0, -11.0)
```
SNRM2, DNRM2, SCNRM2, and DZNRM2—Euclidean Length of a Vector with Scaling of Input to Avoid Destructive Underflow and Overflow

These subprograms compute the Euclidean length (l_2 norm) of vector x, with scaling of input to avoid destructive underflow and overflow.

Table 46. Data Types

<table>
<thead>
<tr>
<th>x</th>
<th>Result</th>
<th>Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>Short-precision real</td>
<td>SNRM2</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>Long-precision real</td>
<td>DNRM2</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>Short-precision real</td>
<td>SCNRM2</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>Long-precision real</td>
<td>DZNRM2</td>
</tr>
</tbody>
</table>

Note: If there is a possibility that your data will cause the computation to overflow or underflow, you should use these subroutines instead of SNORM2, DNORM2, CNORM2, and ZNORM2, because the intermediate computational results may exceed the maximum or minimum limits of the machine. “Notes” on page 237 explains how to estimate whether your data will cause an overflow or underflow.

Syntax

For Fortran:

```
SNRM2 | DNRM2 | SCNRM2 | DZNRM2 (n, x, incx)
```

For C and C++:

```
snrm2 | dnrm2 | scnrm2 | dznrm2 (n, x, incx);
```

For PL/I:

```
SNRM2 | DNRM2 | SCNRM2 | DZNRM2 (n, x, incx);
```

On Entry

- n is the number of elements in vector x. Specified as: a fullword integer; $n \geq 0$.
- x is the vector x of length n, whose Euclidean length is to be computed. Specified as: a one-dimensional array of (at least) length $1+(n-1)|incx|$, containing numbers of the data type indicated in Table 46.
- $incx$ is the stride for vector x. Specified as: a fullword integer. It can have any value.

On Return

Function value is the Euclidean length (l_2 norm) of the vector x. Returned as: a number of the data type indicated in Table 46.

Note: Declare this function in your program as returning a value of the data type indicated in Table 46.

Function: The Euclidean length (l_2 norm) of vector x is expressed as follows, with scaling of input to avoid destructive underflow and overflow:
\[
\sqrt{|x_1|^2 + |x_2|^2 + \ldots + |x_n|^2}
\]

See reference [79]. The result is returned as the function value. If \(n \) is 0, then 0.0 is returned as the value of the function.

For SNRM2 and SCNRM2, the sum of the squares of the absolute values of the elements is accumulated in long precision. The square root of this long-precision sum is then computed and, if necessary, is unscaled.

Although these subroutines eliminate destructive underflow, nondestructive underflows may occur if the input elements differ greatly in magnitude. This does not affect accuracy, but it degrades performance. The system default is to mask underflow, which improves the performance of these subroutines.

Error Conditions

Computational Errors: None

Input-Argument Errors: \(n < 0 \)

Important Information About the Following Examples: Workstations use workstation architecture precisions: ANSI/IEEE 32-bit and 64-bit binary floating-point format. The ranges are:

- For short-precision: \(3.37 \times 10^{-38}\) to \(3.37 \times 10^{38}\)
- For long-precision: \(1.67 \times 10^{-308}\) to \(1.67 \times 10^{308}\)

Example 1: This example shows a vector, \(\mathbf{x} \), whose elements must be scaled to prevent overflow.

Function Reference and Input

\[
\begin{array}{ccc}
N & X & INCX \\
DNORM &=& \text{DNRM2}(6, X, 1)
\end{array}
\]

\[
X = (\sqrt{0.68056D+200}, \sqrt{0.25521D+200}, \sqrt{0.34028D+200}, \\
 \sqrt{0.85071D+200}, \sqrt{0.25521D+200}, \sqrt{0.85071D+200})
\]

Output

\[
\text{DNORM} = 0.1469D+201
\]

Example 2: This example shows a vector, \(\mathbf{x} \), whose elements must be scaled to prevent destructive underflow.

Function Reference and Input

\[
\begin{array}{ccc}
N & X & INCX \\
DNORM &=& \text{DNRM2}(4, X, 2)
\end{array}
\]

\[
X = (\sqrt{0.10795D-200}, \ldots, \sqrt{0.10795D-200}, \ldots, \sqrt{0.10795D-200}, \\
 \ldots, \sqrt{0.10795D-200})
\]

Output
\[\text{DNorm} = 0.21590 \times 10^{-200} \]

Example 3: This example shows a vector, \(x \), with a stride of 0. The result in \(\text{SNORM} \) is:

\[\sqrt{n x_1^2} \]

Function Reference and Input

\[
\begin{array}{ccc}
\text{N} & \text{X} & \text{INCX} \\
\mid & \mid & \mid \\
\text{SNORM} = \text{SNRM2} \left(4, x, 0 \right) \\
\mid & \mid & \mid \\
\text{X} & = (4.0) \\
\mid & \mid & \mid \\
\text{Output} \\
\text{SNORM} & = 8.0 \\
\end{array}
\]

Example 4: This example shows a vector, \(x \), containing complex numbers, and whose elements must be scaled to prevent overflow.

Function Reference and Input

\[
\begin{array}{ccc}
\text{N} & \text{X} & \text{INCX} \\
\mid & \mid & \mid \\
\text{DZNORM} = \text{DZNRM2} \left(3, x, 1 \right) \\
\mid & \mid & \mid \\
\text{X} & = ((0.68056D+200, 0.25521D+200), (0.34028D+200, 0.85071D+200), (0.25521D+200, 0.85071D+200)) \\
\mid & \mid & \mid \\
\text{Output} \\
\text{DZNORM} & = 0.1469D+201 \\
\end{array}
\]

Example 5: This example shows a vector, \(x \), containing complex numbers, and whose elements must be scaled to prevent destructive underflow.

Function Reference and Input

\[
\begin{array}{ccc}
\text{N} & \text{X} & \text{INCX} \\
\mid & \mid & \mid \\
\text{DZNORM} = \text{DZNRM2} \left(2, x, 2 \right) \\
\mid & \mid & \mid \\
\text{X} & = ((0.10795D-200, 0.10795D-200), \ldots, (0.10795D-200, 0.10795D-200)) \\
\mid & \mid & \mid \\
\text{Output} \\
\text{DZNORM} & = 0.2159D-200 \\
\end{array}
\]
SNORM2, DNORM2, CNORM2, and ZNORM2—Euclidean Length of a Vector with No Scaling of Input

These subprograms compute the euclidean length (l_2 norm) of vector x with no scaling of input.

<table>
<thead>
<tr>
<th>x</th>
<th>Result</th>
<th>Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>Short-precision real</td>
<td>SNORM2</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>Long-precision real</td>
<td>DNORM2</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>Short-precision real</td>
<td>CNORM2</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>Long-precision real</td>
<td>ZNORM2</td>
</tr>
</tbody>
</table>

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>SNORM2</th>
<th>DNORM2</th>
<th>CNORM2</th>
<th>ZNORM2</th>
<th>$(n, x, incx)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>snorm2</td>
<td>dnorm2</td>
<td>cnorm2</td>
<td>znorm2</td>
<td>$(n, x, incx)$;</td>
</tr>
<tr>
<td>PL/I</td>
<td>SNORM2</td>
<td>DNORM2</td>
<td>CNORM2</td>
<td>ZNORM2</td>
<td>$(n, x, incx)$;</td>
</tr>
</tbody>
</table>

On Entry

n

is the number of elements in vector x. Specified as: a fullword integer; $n \geq 0$.

x

is the vector x of length n, whose euclidean length is to be computed. Specified as: a one-dimensional array of (at least) length $1+(n-1)|incx|$, containing numbers of the data type indicated in Table 47.

$incx$

is the stride for vector x. Specified as: a fullword integer. It can have any value.

On Return

Function value

is the euclidean length (l_2 norm) of the vector x. Returned as: a number of the data type indicated in Table 47.

Notes

1. This subroutine does not underflow or overflow if the values of the elements in vector x conform to the following conditions. If these conditions are violated, overflow or destructive underflow may occur:
 - For short-precision numbers:
 - Any valid short-precision number.
 - For long-precision numbers:
 - $|x| = 0$ or $0.10010E-145 < |x| < 0.13408E+155$ for $i = 1, n$

2. Declare this function in your program as returning a value of the data type indicated in Table 47.

Function:

The euclidean length (l_2 norm) of vector x is expressed as follows with no scaling of input:
SNORM2, DNORM2, CNORM2, and ZNORM2

\[\sqrt{|x_1|^2 + |x_2|^2 + \ldots + |x_n|^2} \]

See reference [79]. The result is returned as the function value. If \(n \) is 0, then 0.0 is returned as the value of the function.

For SNORM2 and CNORM2, the sum of the squares of the absolute values of the elements is accumulated in long-precision. The square root of this long-precision sum is then computed.

This subroutine should not be used if the values in vector \(x \) do not conform to the restriction given in “Notes” on page 237.

Error Conditions

Computational Errors: None

Input-Argument Errors: \(n < 0 \)

Example 1: This example shows a vector, \(x \), with a stride of 1.

Function Reference and Input

<table>
<thead>
<tr>
<th>N</th>
<th>X</th>
<th>INCX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SNORM = SNORM2(6 , X , 1)

\[x = (3.0, 4.0, 1.0, 8.0, 1.0, 3.0) \]

Output

SNORM = 10.0

Example 2: This example shows a vector, \(x \), with a stride greater than 1.

Function Reference and Input

<table>
<thead>
<tr>
<th>N</th>
<th>X</th>
<th>INCX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SNORM = SNORM2(6 , X , 2)

\[x = (3.0, ., 4.0, ., 1.0, ., 8.0, ., 1.0, ., 3.0) \]

Output

SNORM = 10.0

Example 3: This example shows a vector, \(x \), with a stride of 0. The result in \(\text{SNORM} \) is:

\[\sqrt{n|x_1|^2} \]

Function Reference and Input
Example 4: This example shows a vector, \(x \), containing complex numbers and having a stride of 1.

Function Reference and Input

\[
\begin{array}{ccc}
N & X & INCX \\
\mid & | & | \\
SNORM &=& SNORM2(4, X, 0)
\end{array}
\]

\[
X = (4.0)
\]

Output

\[
SNORM = 8.0
\]

Example 4: This example shows a vector, \(x \), containing complex numbers and having a stride of 1.

Function Reference and Input

\[
\begin{array}{ccc}
N & X & INCX \\
\mid & | & | \\
CNORM &=& CNORM2(3, X, 1)
\end{array}
\]

\[
X = ((3.0, 4.0), (1.0, 8.0), (-1.0, 3.0))
\]

Output

\[
CNORM = 10.0
\]
SROTG, DROTG, CROTG, and ZROTG

— Construct a Givens Plane Rotation

SROTG and DROTG construct a real Givens plane rotation, and CROTG and ZROTG construct a complex Givens plane rotation. The computations use rotational elimination parameters \(a \) and \(b \). Values are returned for \(r \), as well as the cosine \(c \) and the sine \(s \) of the angle of rotation. SROTG and DROTG also return a value for \(z \).

Note: Throughout this description, the symbols \(r \) and \(z \) are used to represent two of the output values returned for this computation. It is important to note that the values for \(r \) and \(z \) are actually returned in the input-output arguments \(a \) and \(b \), respectively, overwriting the original values passed in \(a \) and \(b \).

Table 48. Data Types

<table>
<thead>
<tr>
<th></th>
<th>(a, b, r, s)</th>
<th>(c)</th>
<th>(z)</th>
<th>Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>Short-precision real</td>
<td>Short-precision real</td>
<td>SROTG</td>
<td></td>
</tr>
<tr>
<td>Long-precision real</td>
<td>Long-precision real</td>
<td>Long-precision real</td>
<td>DROTG</td>
<td></td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>Short-precision real</td>
<td>(No value returned)</td>
<td>CROTG</td>
<td></td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>Long-precision real</td>
<td>(No value returned)</td>
<td>ZROTG</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

<table>
<thead>
<tr>
<th>Language</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>`CALL SROTG</td>
</tr>
<tr>
<td>C and C++</td>
<td>`srotg</td>
</tr>
<tr>
<td>PL/I</td>
<td>`CALL SROTG</td>
</tr>
</tbody>
</table>

On Entry

- \(a \)
 - is the rotational elimination parameter \(a \). Specified as: a number of the data type indicated in Table 48.
- \(b \)
 - is the rotational elimination parameter \(b \). Specified as: a number of the data type indicated in Table 48.
- \(c \)
 - See “On Return.”
- \(s \)
 - See “On Return.”

On Return

- \(a \)
 - is the value computed for \(r \).

 For SROTG and DROTG:

 \[
 r = \sigma \sqrt{a^2 + b^2}
 \]

 where:

 \[
 \sigma = \text{SIGN}(a) \text{ if } |a| > |b|
 \]
$\sigma = \text{SIGN}(b)$ if $|a| \leq |b|$

For CROTG and ZROTG:

$$r = \psi \sqrt{|a|^2 + |b|^2} \quad \text{if} \quad |a| \neq 0$$

$$r = b \quad \text{if} \quad |a| = 0$$

where:

$$\psi = a/|a|$$

b is the value computed for z.

For SROTG and DROTG:

$$z = s \quad \text{if} \quad |a| > |b|$$

$$z = 1/c \quad \text{if} \quad |a| \leq |b| \text{ and } c \neq 0 \text{ and } r \neq 0$$

$$z = 1 \quad \text{if} \quad |a| \leq |b| \text{ and } c = 0 \text{ and } r \neq 0$$

$$z = 0 \quad \text{if} \quad r = 0$$

For CROTG and ZROTG: no value is returned, and the input value is not changed.

Returned as: a number of the data type indicated in Table 48 on page 240.

c is the cosine c of the angle of (Givens) rotation. For SROTG and DROTG:

$$c = a/r \quad \text{if} \quad r \neq 0$$

$$c = 1 \quad \text{if} \quad r = 0$$

For CROTG and ZROTG:

$$c = \frac{|a|}{\sqrt{|a|^2 + |b|^2}} \quad \text{if} \quad |a| \neq 0$$

$$c = 0 \quad \text{if} \quad |a| = 0$$

Returned as: a number of the data type indicated in Table 48 on page 240.

s is the sine s of the angle of (Givens) rotation.

For SROTG and DROTG:

$$s = b/r \quad \text{if} \quad r \neq 0$$

$$s = 0 \quad \text{if} \quad r = 0$$

For CROTG and ZROTG:
$s = \frac{\psi \bar{b}}{\sqrt{|a|^2 + |b|^2}} \quad \text{if } |a| \neq 0$

$s = (1,0,0,0) \quad \text{if } |a| = 0$

where $\psi = a/|a|$

Returned as: a number of the data type indicated in Table 48 on page 240.

Note: In your C program, arguments a, b, c, and s must be passed by reference.

Function

SROTG and DROTG: A real Givens plane rotation is constructed for values a and b by computing values for r, c, s, and z, where:

$$r = \sigma \sqrt{a^2 + b^2}$$

where:

$$\sigma = \text{SIGN}(a) \quad \text{if } |a| > |b|$$

$$\sigma = \text{SIGN}(b) \quad \text{if } |a| \leq |b|$$

$c = a/r \quad \text{if } r \neq 0$

c = 1 \quad \text{if } r = 0$

$s = b/r \quad \text{if } r \neq 0$

$s = 0 \quad \text{if } r = 0$

$z = s \quad \text{if } |a| > |b|$

$z = 1/c \quad \text{if } |a| \leq |b| \text{ and } c \neq 0 \text{ and } r \neq 0$

$z = 1 \quad \text{if } |a| \leq |b| \text{ and } c = 0 \text{ and } r \neq 0$

$z = 0 \quad \text{if } r = 0$

See reference [79].

Following are some important points about the computation:

1. The numbers for c, s, and r satisfy:

$$\begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} r \\ 0 \end{bmatrix}$$

2. Where necessary, scaling is used to avoid overflow and destructive underflow in the computation of r, which is expressed as follows:
3. \(\sigma \) is not essential to the computation of a Givens rotation matrix, but its use permits later stable reconstruction of \(c \) and \(s \) from just one stored number, \(z \). See reference [91]. \(c \) and \(s \) are reconstructed from \(z \) as follows:

- For \(z = 1 \), \(c = 0 \) and \(s = 1 \)
- For \(|z| < 1 \), \(c = \sqrt{1-z^2} \) and \(s = z \)
- For \(|z| > 1 \), \(c = 1/z \) and \(s = \sqrt{1-c^2} \)

CROTG and ZROTG: A complex Givens plane rotation is constructed for values \(a \) and \(b \) by computing values for \(r, c, \) and \(s \), where:

\[
r = \sigma (|a|+|b|) \left(\frac{a}{|a|+|b|} \right)^2 + \left(\frac{b}{|a|+|b|} \right)^2
\]

where:

\[
\psi = a/|a|
\]

\[
c = \frac{|a|}{\sqrt{|a|^2+|b|^2}} \quad \text{if } |a| \neq 0
\]

\[
c = 0 \quad \text{if } |a| = 0
\]

\[
s = \frac{\psi \overline{b}}{\sqrt{|a|^2+|b|^2}} \quad \text{if } |a| \neq 0
\]

\[
s = (1,0,0) \quad \text{if } |a| = 0
\]

See reference [79].

Following are some important points about the computation:

1. The numbers for \(c, s, \) and \(r \) satisfy:
SROTG, DROTG, CROTG, and ZROTG

\[
\begin{bmatrix}
 c & s \\
 -\bar{s} & c
\end{bmatrix}
\begin{bmatrix}
 a \\
 b
\end{bmatrix} = \begin{bmatrix}
 r \\
 0
\end{bmatrix}
\]

2. Where necessary, scaling is used to avoid overflow and destructive underflow in the computation of \(r \), which is expressed as follows:

\[
r = \sqrt{\left(|a| + |b| \right)^2 + \left(\frac{a}{|a| + |b|} \right)^2 + \left(\frac{b}{|a| + |b|} \right)^2}
\]

Error Conditions

Computational Errors: None

Input-Argument Errors: None

Example 1: This example shows the construction of a real Givens plane rotation, where \(r \) is 0.

Call Statement and Input

```
A    B    C    S
|    |    |    |
CALL SROTG( 0.0, 0.0, C, S )
```

Output

```
A = 0.0
B = 0.0
C = 1.0
S = 0.0
```

Example 2: This example shows the construction of a real Givens plane rotation, where \(c \) is 0.

Call Statement and Input

```
A    B    C    S
|    |    |    |
CALL SROTG( 0.0, 2.0, C, S )
```

Output

```
A = 2.0
B = 1.0
C = 0.0
S = 1.0
```

Example 3: This example shows the construction of a real Givens plane rotation, where \(|b| > |a| \).

Call Statement and Input
A B C S
| | | |
CALL SROTG(6.0, -8.0, C, S)

Output
A = -10.0
B = -1.666
C = -0.6
S = 0.8

Example 4: This example shows the construction of a real Givens plane rotation, where \(|a| > |b| \).

Call Statement and Input
A B C S
| | | |
CALL SROTG(8.0, 6.0, C, S)

Output
A = 10.0
B = 0.6
C = 0.8
S = 0.6

Example 5: This example shows the construction of a complex Givens plane rotation, where \(|a| = 0 \).

Call Statement and Input
A B C S
| | | |
CALL CROTG(A, B, C, S)
A = (0.0, 0.0)
B = (1.0, 0.0)

Output
A = (1.0, 0.0)
C = 0.0
S = (1.0, 0.0)

Example 6: This example shows the construction of a complex Givens plane rotation, where \(|a| \neq 0 \).

Call Statement and Input
A B C S
| | | |
CALL CROTG(A, B, C, S)
A = (3.0, 4.0)
B = (4.0, 6.0)

Output
SROTG, DROTG, CROTG, and ZROTG

\[
\begin{align*}
A & = (5.26, 7.02) \\
C & = 0.57 \\
S & = (0.82, -0.05)
\end{align*}
\]
SROT, DROT, CROT, ZROT, CSROT, and ZDROT—Apply a Plane Rotation

SROT and DROT apply a real plane rotation to real vectors; CROT and ZROT apply a complex plane rotation to complex vectors; and CSROT and ZDROT apply a real plane rotation to complex vectors. The plane rotation is applied to \(n \) points, where the points to be rotated are contained in vectors \(x \) and \(y \), and where the cosine and sine of the angle of rotation are \(c \) and \(s \), respectively.

<table>
<thead>
<tr>
<th>(x, y)</th>
<th>(c)</th>
<th>(s)</th>
<th>Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>Short-precision real</td>
<td>Short-precision real</td>
<td>SROT</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>Long-precision real</td>
<td>Long-precision real</td>
<td>DROT</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>Short-precision complex</td>
<td>Short-precision complex</td>
<td>CROT</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>Long-precision real</td>
<td>Long-precision complex</td>
<td>ZROT</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>Short-precision real</td>
<td>Short-precision real</td>
<td>CSROT</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>Long-precision real</td>
<td>Long-precision real</td>
<td>ZDROT</td>
</tr>
</tbody>
</table>

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL SROT</th>
<th>DROT</th>
<th>CROT</th>
<th>ZROT</th>
<th>CSROT</th>
<th>ZDROT ((n, x, \text{incx}, y, \text{incy}, c, s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>srot</td>
<td>drot</td>
<td>crot</td>
<td>zrot</td>
<td>csrot</td>
<td>zdrot ((n, x, \text{incx}, y, \text{incy}, c, s));</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SROT</td>
<td>DROT</td>
<td>CROT</td>
<td>ZROT</td>
<td>CSROT</td>
<td>ZDROT ((n, x, \text{incx}, y, \text{incy}, c, s));</td>
</tr>
</tbody>
</table>

On Entry

\(n \) is the number of points to be rotated—that is, the number of elements in vectors \(x \) and \(y \). Specified as: a fullword integer; \(n \geq 0 \).

\(x \) is the vector \(x \) of length \(n \), containing the \(x \) coordinates of the points to be rotated. Specified as: a one-dimensional array of (at least) length \(1+(n-1)\text{incx} \), containing numbers of the data type indicated in Table 49.

\(\text{incx} \)

is the stride for vector \(x \). Specified as: a fullword integer. It can have any value.

\(y \)

is the vector \(y \) of length \(n \), containing the \(y \) coordinates of the points to be rotated. Specified as: a one-dimensional array of (at least) length \(1+(n-1)\text{incy} \), containing numbers of the data type indicated in Table 49.

\(\text{incy} \)

is the stride for vector \(y \). Specified as: a fullword integer. It can have any value.

\(c \)

the cosine, \(c \), of the angle of rotation. Specified as: a number of the data type indicated in Table 49.

\(s \)

the sine, \(s \), of the angle of rotation. Specified as: a number of the data type indicated in Table 49.

On Return
SROT, DROT, CROT, ZROT, CSROT, and ZDROT

\[x \]

is the vector \(x \) of length \(n \), containing the rotated \(x_i \) coordinates, where:

\[x_i \leftarrow c x_i + s y_i \quad \text{for} \quad i = 1, \]

Returned as: a one-dimensional array, containing numbers of the data type indicated in Table 49 on page 247.

\[y \]

is the vector \(y \) of length \(n \), containing the rotated \(y_i \) coordinates, where:

For SROT, DROT, CSROT, and ZDROT:

\[y_i \leftarrow -s x_i + c y_i \quad \text{for} \quad i = 1, n \]

For CROT and ZROT:

\[y_i \leftarrow -s x_i + c y_i \quad \text{for} \quad i = 1, n \]

Returned as: a one-dimensional array, containing numbers of the data type indicated in Table 49 on page 247.

Note: The vectors \(x \) and \(y \) must have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.

Function: Applying a plane rotation to \(n \) points, where the points to be rotated are contained in vectors \(x \) and \(y \), is expressed as follows, where \(c \) and \(s \) are the cosine and sine of the angle of rotation, respectively. For SROT, DROT, CSROT, and ZDROT:

\[
\begin{bmatrix}
 x_i \\
 y_i
\end{bmatrix}
\leftarrow
\begin{bmatrix}
 c & s \\
 -s & c
\end{bmatrix}
\begin{bmatrix}
 x_i \\
 y_i
\end{bmatrix}
\quad \text{for} \quad i = 1, n
\]

For CROT and ZROT:

\[
\begin{bmatrix}
 x_i \\
 y_i
\end{bmatrix}
\leftarrow
\begin{bmatrix}
 c & s \\
 -s & c
\end{bmatrix}
\begin{bmatrix}
 x_i \\
 y_i
\end{bmatrix}
\quad \text{for} \quad i = 1, n
\]

See references [57] and [79]. No computation is performed if \(n \) is 0 or if \(c \) is 1.0 and \(s \) is zero. For SROT, CROT, and CSROT, intermediate results are accumulated in long precision.

Error Conditions

Computational Errors: None

Input-Argument Errors: \(n < 0 \)

Example 1: This example shows how to apply a real plane rotation to real vectors \(x \) and \(y \) having positive strides.

Call Statement and Input
Example 2: This example shows how to apply a real plane rotation to real vectors \(x \) and \(y \) having strides of opposite sign.

Call Statement and Input

\[
\begin{array}{cccccc}
N & X & INCX & Y & INCY & C & S \\
5 & & & & & 0.5 & \\
\end{array}
\]

\[
\text{CALL SROT} (5, X, 1, Y, -1, 0.5, S)
\]

\[
X = (1.0, 2.0, 3.0, 4.0, 5.0)
\]

\[
Y = (-5.0, -4.0, -3.0, -2.0, -1.0)
\]

\[
S = \frac{\sqrt{3.0}}{2.0}
\]

Output

\[
X = (-6.83, -5.464, -4.098, -2.732, -1.366)
\]

\[
Y = (-6.83, -5.464, -4.098, -2.732, -1.366)
\]

Example 3: This example shows how scalar values in vectors \(x \) and \(y \) can be processed by specifying 0 strides and the number of elements to be processed, \(n \), equal to 1.

Call Statement and Input

\[
\begin{array}{cccccc}
N & X & INCX & Y & INCY & C & S \\
1 & & & & & 0.5 & \\
\end{array}
\]

\[
\text{CALL SROT} (1, X, 0, Y, 0, 0.5, S)
\]

\[
X = (1.0)
\]

\[
Y = (-1.0)
\]

\[
S = \frac{\sqrt{3.0}}{2.0}
\]

Output
Example 4: This example shows how to apply a complex plane rotation to complex vectors \(x \) and \(y \) having positive strides.

Call Statement and Input

\[
\begin{array}{cccccc}
N & X & INCX & Y & INCY & C & S \\
3 & X & 1 & Y & 2 & 0.5 & S \\
\end{array}
\]

\[
\text{CALL CROT(3 , X , 1 , Y , 2 , \sqrt{3.0} , S)}
\]

\[
\begin{aligned}
X &= ((1.0, 2.0), (2.0, 3.0), (3.0, 4.0)) \\
Y &= ((-1.0, 5.0), \ldots, (-2.0, 4.0), \ldots, (-3.0, 3.0)) \\
S &= (0.75, 0.50)
\end{aligned}
\]

Output

\[
\begin{aligned}
X &= ((-2.75, 4.250), (-2.500, 3.500), (-2.250, 2.750)) \\
Y &= ((-2.25, 1.500), \ldots, (-4.000, 0.750), \ldots, (-5.750, 0.000))
\end{aligned}
\]

Example 5: This example shows how to apply a real plane rotation to complex vectors \(x \) and \(y \) having positive strides.

Call Statement and Input

\[
\begin{array}{cccccc}
N & X & INCX & Y & INCY & C & S \\
3 & X & 1 & Y & 2 & 0.5 & S \\
\end{array}
\]

\[
\text{CALL CSROT(3 , X , 1 , Y , 2 , \sqrt{3.0} , S)}
\]

\[
\begin{aligned}
X &= ((1.0, 2.0), (2.0, 3.0), (3.0, 4.0)) \\
Y &= ((-1.0, 5.0), \ldots, (-2.0, 4.0), \ldots, (-3.0, 3.0)) \\
S &= \frac{\sqrt{3.0}}{2.0}
\end{aligned}
\]

Output

\[
\begin{aligned}
X &= ((-0.366, 5.330), (-0.732, 4.964), (-1.098, 4.598)) \\
Y &= ((-1.366, 0.768), \ldots, (-2.732, -0.598), \ldots, (-4.098, -1.964))
\end{aligned}
\]
SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, and ZDSCAL—Multiply a Vector X by a Scalar and Store in the Vector X

These subprograms perform the following computation, using the scalar α and the vector x:

$$x \leftarrow \alpha x$$

Table 50. Data Types

<table>
<thead>
<tr>
<th>α</th>
<th>x</th>
<th>Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>Short-precision real</td>
<td>SSCAL</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>Long-precision real</td>
<td>DSCAL</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>Short-precision complex</td>
<td>CSCAL</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>Long-precision complex</td>
<td>ZSCAL</td>
</tr>
<tr>
<td>Short-precision real</td>
<td>Short-precision complex</td>
<td>CSSCAL</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>Long-precision complex</td>
<td>ZDSCAL</td>
</tr>
</tbody>
</table>

Syntax

Fortran

```fortran
CALL SSCAL | DSCAL | CSCAL | ZSCAL | CSSCAL | ZDSCAL (n, alpha, x, incx)
```

C and C++

```c
sscal | dscal | cscal | zscal | csscal | zdscal (n, alpha, x, incx);
```

PL/I

```pli
CALL SSCAL | DSCAL | CSCAL | ZSCAL | CSSCAL | ZDSCAL (n, alpha, x, incx);
```

On Entry

- n is the number of elements in vector x. Specified as: a fullword integer; $n \geq 0$.
- α is the scalar α. Specified as: a number of the data type indicated in Table 50.
- x is the vector x of length n. Specified as: a one-dimensional array of (at least) length $1+(n-1)|incx|$, containing numbers of the data type indicated in Table 50.
- $incx$ is the stride for vector x. Specified as: a fullword integer. It can have any value.

On Return

- x is the vector x of length n, containing the result of the computation αx.

 Returned as: a one-dimensional array, containing numbers of the data type indicated in Table 50.

Note: The fastest way in ESSL to zero out contiguous (stride 1) arrays is to call SSCAL or DSCAL, specifying $incx = 1$ and $\alpha = 0$.

Function: The computation is expressed as follows:
See reference [79]. If \(n \) is 0, no computation is performed. For CSCAL, intermediate results are accumulated in long precision.

Error Conditions

Computational Errors: None

Input-Argument Errors: \(n < 0 \)

Example 1: This example shows a vector, \(x \), with a stride of 1.

Call Statement and Input

\[
\begin{array}{c|c|c|c|c}
N & \text{ALPHA} & X & \text{INCX} \\
\hline
5 & 2.0 & \text{X} & 1 \\
\end{array}
\]

CALL SSCAL(5 , 2.0 , X , 1)

\[
\begin{bmatrix}
 x_1 \\
 . \\
 . \\
 . \\
 x_n \\
\end{bmatrix} \leftarrow \alpha \begin{bmatrix}
 x_1 \\
 . \\
 . \\
 . \\
 x_n \\
\end{bmatrix}
\]

Output

\(X = (1.0, 2.0, 3.0, 4.0, 5.0) \)

Example 2: This example shows vector, \(x \), with a stride greater than 1.

Call Statement and Input

\[
\begin{array}{c|c|c|c|c}
N & \text{ALPHA} & X & \text{INCX} \\
\hline
5 & 2.0 & \text{X} & 2 \\
\end{array}
\]

CALL SSCAL(5 , 2.0 , X , 2)

\[
\begin{bmatrix}
 x_1 \\
 . \\
 . \\
 . \\
 x_n \\
\end{bmatrix} \leftarrow \alpha \begin{bmatrix}
 x_1 \\
 . \\
 . \\
 . \\
 x_n \\
\end{bmatrix}
\]

Output

\(X = (2.0, . , 4.0, . , 6.0, . , 8.0, . , 10.0) \)

Example 3: This example illustrates that when the strides for two similar computations (Example 1 and Example 3) have the same absolute value but have opposite signs, the output is the same. This example is the same as Example 1, except the stride for \(x \) is negative (−1). For performance reasons, it is better to specify the positive stride. For \(x \), processing begins at element \(X(5) \), which is 5.0, and results are stored beginning at the same element.

Call Statement and Input

\[
\begin{array}{c|c|c|c|c}
N & \text{ALPHA} & X & \text{INCX} \\
\hline
5 & 2.0 & \text{X} & -1 \\
\end{array}
\]

CALL SSCAL(5 , 2.0 , X , -1)

\[
\begin{bmatrix}
 x_1 \\
 . \\
 . \\
 . \\
 x_n \\
\end{bmatrix} \leftarrow \alpha \begin{bmatrix}
 x_1 \\
 . \\
 . \\
 . \\
 x_n \\
\end{bmatrix}
\]

\(X = (1.0, 2.0, 3.0, 4.0, 5.0) \)
Output
X = (2.0, 4.0, 6.0, 8.0, 10.0)

Example 4: This example shows how SSCAL can be used to compute a scalar value. In this case, input vector \(x \) contains a scalar value, and the stride is 0. The number of elements to be processed, \(n \), is 1.

Call Statement and Input
\[
\begin{array}{llll}
N & \text{ALPHA} & X & \text{INCY} \\
1 & 2.0 & X & 0 \\
\end{array}
\]

CALL SSCAL(1 , 2.0 , X , 0)

X = (1.0)

Output
X = (2.0)

Example 5: This example shows a scalar, \(\alpha \), and a vector, \(x \), containing complex numbers, where vector \(x \) has a stride of 1.

Call Statement and Input
\[
\begin{array}{llll}
N & \text{ALPHA} & X & \text{INCY} \\
3 & \alpha & X & 1 \\
\end{array}
\]

CALL CSCAL(3 , \alpha , X , 1)

\[
\begin{array}{llll}
\text{ALPHA} & = (2.0, 3.0) \\
X & = ((1.0, 2.0), (2.0, 0.0), (3.0, 5.0)) \\
\end{array}
\]

Output
X = ((-4.0, 7.0), (4.0, 6.0), (-9.0, 19.0))

Example 6: This example shows a scalar, \(\alpha \), containing a real number, and a vector, \(x \), containing complex numbers, where vector \(x \) has a stride of 1.

Call Statement and Input
\[
\begin{array}{llll}
N & \text{ALPHA} & X & \text{INCY} \\
3 & 2.0 & X & 1 \\
\end{array}
\]

CALL CSSCAL(3 , 2.0 , X , 1)

X = ((1.0, 2.0), (2.0, 0.0), (3.0, 5.0))

Output
X = ((2.0, 4.0), (4.0, 0.0), (6.0, 10.0))
SSWAP, DSWAP, CSWAP, and ZSWAP—Interchange the Elements of Two Vectors

These subprograms interchange the elements of vectors \(x \) and \(y \):

\[y \leftrightarrow x \]

Table 51. Data Types

<table>
<thead>
<tr>
<th>(x), (y)</th>
<th>Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>SSWAP</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DSWAP</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>CSWAP</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>ZSWAP</td>
</tr>
</tbody>
</table>

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL SSWAP</th>
<th>DSWAP</th>
<th>CSWAP</th>
<th>ZSWAP ((n, x, incx, y, incy))</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>sswap</td>
<td>dswap</td>
<td>cswap</td>
<td>zswap ((n, x, incx, y, incy));</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SSWAP</td>
<td>DSWAP</td>
<td>CSWAP</td>
<td>ZSWAP ((n, x, incx, y, incy));</td>
</tr>
</tbody>
</table>

On Entry

- \(n \) is the number of elements in vectors \(x \) and \(y \). Specified as: a fullword integer; \(n \geq 0 \).
- \(x \) is the vector \(x \) of length \(n \). Specified as: a one-dimensional array of (at least) length \(1+(n-1)|incx| \), containing numbers of the data type indicated in Table 51.
- \(incx \) is the stride for vector \(x \). Specified as: a fullword integer. It can have any value.
- \(y \) is the vector \(y \) of length \(n \). Specified as: a one-dimensional array of (at least) length \(1+(n-1)|incy| \), containing numbers of the data type indicated in Table 51.
- \(incy \) is the stride for vector \(y \). Specified as: a fullword integer. It can have any value.

On Return

- \(x \) is the vector \(x \) of length \(n \), containing the elements that were swapped from vector \(y \). Returned as: a one-dimensional array, containing numbers of the data type indicated in Table 51.
- \(y \) is the vector \(y \) of length \(n \), containing the elements that were swapped from vector \(x \). Returned as: a one-dimensional array, containing numbers of the data type indicated in Table 51.

Notes

1. If you specify the same vector for \(x \) and \(y \), then \(incx \) and \(incy \) must be equal; otherwise, results are unpredictable.
2. If you specify different vectors for \(x \) and \(y \), they must have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.

Function: The elements of vectors \(x \) and \(y \) are interchanged as follows:

\[
\begin{bmatrix}
y_1 \\
. \\
. \\
y_n \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
x_1 \\
. \\
. \\
x_n \\
\end{bmatrix}
\]

See reference [79]. If \(n \) is 0, no elements are interchanged.

Error Conditions

Computational Errors: None

Input-Argument Errors: \(n < 0 \)

Example 1: This example shows vectors \(x \) and \(y \) with positive strides.

Call Statement and Input

\[
\begin{array}{|c|c|c|c|}
\hline
N & X & INCX & Y & INCY \\
\hline
5 & X & 1 & Y & 2 \\
\hline
\end{array}
\]

\[
X = (1.0, 2.0, 3.0, 4.0, 5.0) \\
Y = (-1.0, . , -2.0, . , -3.0, . , -4.0, . , -5.0)
\]

Output

\[
X = (-1.0, -2.0, -3.0, -4.0, -5.0) \\
Y = (1.0, . , 2.0, . , 3.0, . , 4.0, . , 5.0)
\]

Example 2: This example shows how to obtain output vectors \(x \) and \(y \) that are reverse copies of the input vectors \(y \) and \(x \). You must specify strides with the same absolute value, but with opposite signs. For \(y \), which has negative stride, processing begins at element \(Y(5) \), which is \(-5.0\), and the results of the swap are stored beginning at the same element.

Call Statement and Input

\[
\begin{array}{|c|c|c|c|}
\hline
N & X & INCX & Y & INCY \\
\hline
5 & X & 1 & Y & -1 \\
\hline
\end{array}
\]

\[
X = (1.0, 2.0, 3.0, 4.0, 5.0) \\
Y = (-1.0, -2.0, -3.0, -4.0, -5.0)
\]

Output

\[
X = (-5.0, -4.0, -3.0, -2.0, -1.0) \\
Y = (5.0, 4.0, 3.0, 2.0, 1.0)
\]
Example 3: This example shows how SSWAP can be used to interchange scalar values in vectors x and y by specifying 0 strides and the number of elements to be processed as 1.

Call Statement and Input

\[
\begin{align*}
N & \quad X \quad \text{INCX} \quad Y \quad \text{INCY} \\
| & \quad | & \quad | & \quad |
\end{align*}
\]

CALL SSWAP(1 , X , 0 , Y , 0)

\[
\begin{align*}
X & = (1.0) \\
Y & = (-4.0)
\end{align*}
\]

Output

\[
\begin{align*}
X & = (-4.0) \\
Y & = (1.0)
\end{align*}
\]

Example 4: This example shows vectors x and y, containing complex numbers and having positive strides.

Call Statement and Input

\[
\begin{align*}
N & \quad X \quad \text{INCX} \quad Y \quad \text{INCY} \\
| & \quad | & \quad | & \quad |
\end{align*}
\]

CALL CSWAP(4 , X , 1 , Y , 2)

\[
\begin{align*}
X & = ((1.:\text{root}, 6.:\text{root}), (2.:\text{root}, 7.:\text{root}), (3.:\text{root}, 8.:\text{root}), (4.:\text{root}, 9.:\text{root})) \\
Y & = ((-1.:\text{root}, -1.:\text{root}), . , (-2.:\text{root}, -2.:\text{root}), . , (-3.:\text{root}, -3.:\text{root}), . , \\
& \quad (-4.:\text{root}, -4.:\text{root}))
\end{align*}
\]

Output

\[
\begin{align*}
X & = ((-1.:\text{root}, -1.:\text{root}), (-2.:\text{root}, -2.:\text{root}), (-3.:\text{root}, -3.:\text{root}), (-4.:\text{root}, -4.:\text{root})) \\
Y & = ((1.:\text{root}, 6.:\text{root}), . , (2.:\text{root}, 7.:\text{root}), . , (3.:\text{root}, 8.:\text{root}), . , \\
& \quad (4.:\text{root}, 9.:\text{root}))
\end{align*}
\]
SVEA, DVEA, CVEA, and ZVEA—Add a Vector X to a Vector Y and Store in a Vector Z

These subprograms perform the following computation, using vectors \(x, y, \) and \(z \):

\[
z \leftarrow x + y
\]

<table>
<thead>
<tr>
<th>Table 52. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x, y, z)</td>
</tr>
<tr>
<td>Subprogram</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>SVEA</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
<tr>
<td>DVEA</td>
</tr>
<tr>
<td>Short-precision complex</td>
</tr>
<tr>
<td>CVEA</td>
</tr>
<tr>
<td>Long-precision complex</td>
</tr>
<tr>
<td>ZVEA</td>
</tr>
</tbody>
</table>

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL SVEA</th>
<th>DVEA</th>
<th>CVEA</th>
<th>ZVEA ((n, x, incx, y, incy, z, incz))</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>svea</td>
<td>dvea</td>
<td>cvea</td>
<td>zvea ((n, x, incx, y, incy, z, incz));</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SVEA</td>
<td>DVEA</td>
<td>CVEA</td>
<td>ZVEA ((n, x, incx, y, incy, z, incz));</td>
</tr>
</tbody>
</table>

On Entry

\(n \)

is the number of elements in vectors \(x, y, \) and \(z \). Specified as: a fullword integer; \(n \geq 0 \).

\(x \)

is the vector \(x \) of length \(n \). Specified as: a one-dimensional array of (at least) length \(1+(n-1)|incx| \), containing numbers of the data type indicated in Table 52.

\(incx \)

is the stride for vector \(x \). Specified as: a fullword integer. It can have any value.

\(y \)

is the vector \(y \) of length \(n \). Specified as: a one-dimensional array of (at least) length \(1+(n-1)|incy| \), containing numbers of the data type indicated in Table 52.

\(incy \)

is the stride for vector \(y \). Specified as: a fullword integer. It can have any value.

\(z \)

See “On Return.”

\(incz \)

is the stride for vector \(z \). Specified as: a fullword integer. It can have any value.

On Return

\(z \)

is the vector \(z \) of length \(n \), containing the result of the computation. Returned as: a one-dimensional array of (at least) length \(1+(n-1)|incz| \), containing numbers of the data type indicated in Table 52.

Notes

1. If you specify the same vector for \(x \) and \(z \), then \(incx \) and \(incz \) must be equal; otherwise, results are unpredictable. The same is true for \(y \) and \(z \).
2. If you specify different vectors for \(x \) and \(z \), they must have no common elements; otherwise, results are unpredictable. The same is true for \(y \) and \(z \). See “Concepts” on page 53.

Function: The computation is expressed as follows:

\[
\begin{bmatrix}
z_1 \\
\vdots \\
z_n
\end{bmatrix} = \begin{bmatrix}
x_1 \\
\vdots \\
x_n
\end{bmatrix} + \begin{bmatrix}
y_1 \\
\vdots \\
y_n
\end{bmatrix}
\]

If \(n \) is 0, no computation is performed.

Error Conditions

Computational Errors: None

Input-Argument Errors: \(n < 0 \)

Example 1: This example shows vectors \(x \), \(y \), and \(z \), with positive strides.

Call Statement and Input

\[
\begin{array}{c|c|c|c|c|c|c}
N & X & INCX & Y & INCY & Z & INCZ \\
\hline
5 & 1 & 1 & 2 & 1 & 1 & 1
\end{array}
\]

\[
\text{CALL SVEA} \quad 5 \ , \ X \ , \ 1 \ , \ Y \ , \ 2 \ , \ Z \ , \ 1
\]

\[
X = (1.0, 2.0, 3.0, 4.0, 5.0) \\
Y = (1.0, . , 1.0, . , 1.0, . , 1.0, . , 1.0)
\]

Output

\[
Z = (2.0, 3.0, 4.0, 5.0, 6.0)
\]

Example 2: This example shows vectors \(x \) and \(y \) having strides of opposite sign, and an output vector \(z \) having a positive stride. For \(y \), which has negative stride, processing begins at element \(Y(5) \), which is 1.0.

Call Statement and Input

\[
\begin{array}{c|c|c|c|c|c|c}
N & X & INCX & Y & INCY & Z & INCZ \\
\hline
5 & 1 & 1 & -1 & & Z & 2
\end{array}
\]

\[
\text{CALL SVEA} \quad 5 \ , \ X \ , \ 1 \ , \ Y \ , \ -1 \ , \ Z \ , \ 2
\]

\[
X = (1.0, 2.0, 3.0, 4.0, 5.0) \\
Y = (5.0, 4.0, 3.0, 2.0, 1.0)
\]

Output

\[
Z = (2.0, . , 4.0, . , 6.0, . , 8.0, . , 10.0)
\]

Example 3: This example shows a vector \(x \), with 0 stride and a vector \(z \), with negative stride. \(x \) is treated like a vector of length \(n \), all of whose elements are the same as the single element in \(x \). For vector \(z \), results are stored beginning in element \(Z(5) \).
Call Statement and Input

\[
\begin{align*}
N & \quad X & \quad INCX & \quad Y & \quad INCY & \quad Z & \quad INCZ \\
| & | & | & | & | & |
\end{align*}
\]

CALL SVEA(5, X, 0, Y, 1, Z, -1)

\[
\begin{align*}
X & = (1.0) \\
Y & = (5.0, 4.0, 3.0, 2.0, 1.0)
\end{align*}
\]

Output

\[
\begin{align*}
Z & = (2.0, 3.0, 4.0, 5.0, 6.0)
\end{align*}
\]

Example 4: This example shows a vector, \(y \), with 0 stride. \(y \) is treated like a vector of length \(n \), all of whose elements are the same as the single element in \(y \).

Call Statement and Input

\[
\begin{align*}
N & \quad X & \quad INCX & \quad Y & \quad INCY & \quad Z & \quad INCZ \\
| & | & | & | & | & |
\end{align*}
\]

CALL SVEA(5, X, 1, Y, 0, Z, 1)

\[
\begin{align*}
X & = (1.0, 2.0, 3.0, 4.0, 5.0) \\
Y & = (5.0)
\end{align*}
\]

Output

\[
\begin{align*}
Z & = (6.0, 7.0, 8.0, 9.0, 10.0)
\end{align*}
\]

Example 5: This example shows the output vector, \(z \), with 0 stride, where the vector \(x \) has positive stride, and the vector \(y \) has 0 stride. The number of elements to be processed, \(n \), is greater than 1.

Call Statement and Input

\[
\begin{align*}
N & \quad X & \quad INCX & \quad Y & \quad INCY & \quad Z & \quad INCZ \\
| & | & | & | & | & |
\end{align*}
\]

CALL SVEA(5, X, 1, Y, 0, Z, 0)

\[
\begin{align*}
X & = (1.0, 2.0, 3.0, 4.0, 5.0) \\
Y & = (5.0)
\end{align*}
\]

Output

\[
\begin{align*}
Z & = (10.0)
\end{align*}
\]

Example 6: This example shows the output vector \(z \), with 0 stride, where the vector \(x \) has 0 stride, and the vector \(y \) has negative stride. The number of elements to be processed, \(n \), is greater than 1.

Call Statement and Input

\[
\begin{align*}
N & \quad X & \quad INCX & \quad Y & \quad INCY & \quad Z & \quad INCZ \\
| & | & | & | & | & |
\end{align*}
\]

CALL SVEA(5, X, 0, Y, -1, Z, 0)

\[
\begin{align*}
X & = (1.0) \\
Y & = (5.0, 4.0, 3.0, 2.0, 1.0)
\end{align*}
\]

Output
Example 7: This example shows how SVEA can be used to compute a scalar value. In this case, vectors x and y contain scalar values. The strides of all vectors, x, y, and z, are 0. The number of elements to be processed, n, is 1.

Call Statement and Input

```
N X INCX Y INCY Z INCZ
| | | | | | |
CALL SVEA( 1 , X , 0 , Y , 0 , Z , 0 )
```

```
X = (1.0)
Y = (5.0)
```

Output

```
Z = (6.0)
```

Example 8: This example shows vectors x and y, containing complex numbers and having positive strides.

Call Statement and Input

```
N X INCX Y INCY Z INCZ
| | | | | | |
CALL CVEA( 3 , X , 1 , Y , 2 , Z , 1 )
```

```
X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))
Y = ((7.0, 8.0), . , (9.0, 10.0), . , (11.0, 12.0))
```

Output

```
Z = ((8.0, 10.0), (12.0, 14.0), (16.0, 18.0))
```
SVES, DVES, CVES, and ZVES—Subtract a Vector Y from a Vector X and Store in a Vector Z

These subprograms perform the following computation, using vectors \(x, y, \) and \(z \):

\[
z \leftarrow x - y
\]

<table>
<thead>
<tr>
<th>Table 53. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x, y, z)</td>
</tr>
<tr>
<td>Subprogram</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
<tr>
<td>Short-precision complex</td>
</tr>
<tr>
<td>Long-precision complex</td>
</tr>
</tbody>
</table>

Syntax

<table>
<thead>
<tr>
<th></th>
<th>CALL SVES</th>
<th>DVES</th>
<th>CVES</th>
<th>ZVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>((n, x, incx, y, incy, z, incz))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C and C++</td>
<td>(\text{sves} l \text{dves} l \text{cves} l \text{zves} (n, x, incx, y, incy, z, incz);)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SVES</td>
<td>DVES</td>
<td>CVES</td>
<td>ZVES</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On Entry

- \(n \) is the number of elements in vectors \(x, y, \) and \(z \). Specified as: a fullword integer; \(n \geq 0 \).
- \(x \) is the vector \(x \) of length \(n \). Specified as: a one-dimensional array of (at least) length \(1+(n-1)|\text{incx}| \), containing numbers of the data type indicated in Table 53.
- \(\text{incx} \) is the stride for vector \(x \). Specified as: a fullword integer. It can have any value.
- \(y \) is the vector \(y \) of length \(n \). Specified as: a one-dimensional array of (at least) length \(1+(n-1)|\text{incy}| \), containing numbers of the data type indicated in Table 53.
- \(\text{incy} \) is the stride for vector \(y \). Specified as: a fullword integer. It can have any value.
- \(z \) See On Return.
- \(\text{incz} \) is the stride for vector \(z \). Specified as: a fullword integer. It can have any value.

On Return

- \(z \) is the vector \(z \) of length \(n \), containing the result of the computation. Returned as: a one-dimensional array of (at least) length \(1+(n-1)|\text{incz}| \), containing numbers of the data type indicated in Table 53.

Notes

1. If you specify the same vector for \(x \) and \(z \), then \(\text{incx} \) and \(\text{incz} \) must be equal; otherwise, results are unpredictable. The same is true for \(y \) and \(z \).
2. If you specify different vectors for \(x \) and \(z \), they must have no common elements; otherwise, results are unpredictable. The same is true for \(y \) and \(z \). See “Concepts” on page 53.

Function: The computation is expressed as follows:

\[
\begin{bmatrix}
 z_1 \\
 \vdots \\
 z_n
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{bmatrix}
=
\begin{bmatrix}
 y_1 \\
 \vdots \\
 y_n
\end{bmatrix}
\]

If \(n \) is 0, no computation is performed.

Error Conditions

Computational Errors: None

Input-Argument Errors: \(n < 0 \)

Example 1: This example shows vectors \(x, y, \) and \(z \), with positive strides.

Call Statement and Input

\[
\begin{array}{lllllll}
N & X & INCX & Y & INCY & Z & INCZ \\
\hline
5 & X & 1 & Y & 2 & Z & 1 \\
\end{array}
\]

\[
\begin{array}{lllllll}
X & = & (1.0, 2.0, 3.0, 4.0, 5.0) \\
Y & = & (1.0, ., 1.0, ., 1.0, ., 1.0) \\
\end{array}
\]

Output

\[
Z = (0.0, 1.0, 2.0, 3.0, 4.0)
\]

Example 2: This example shows vectors \(x \) and \(y \) having strides of opposite sign, and an output vector \(z \) having a positive stride. For \(y \), which has negative stride, processing begins at element \(Y(5) \), which is 1.0.

Call Statement and Input

\[
\begin{array}{lllllll}
N & X & INCX & Y & INCY & Z & INCZ \\
\hline
5 & X & 1 & Y & -1 & Z & 2 \\
\end{array}
\]

\[
\begin{array}{lllllll}
X & = & (1.0, 2.0, 3.0, 4.0, 5.0) \\
Y & = & (5.0, 4.0, 3.0, 2.0, 1.0) \\
\end{array}
\]

Output

\[
Z = (0.0, ., 0.0, ., 0.0, ., 0.0)
\]

Example 3: This example shows a vector, \(x \), with 0 stride, and a vector, \(z \), with negative stride. \(x \) is treated like a vector of length \(n \), all of whose elements are the same as the single element in \(x \). For vector \(z \), results are stored beginning in element \(Z(5) \).
Example 4: This example shows a vector, \(y \), with 0 stride. \(y \) is treated like a vector of length \(n \), all of whose elements are the same as the single element in \(y \).

Call Statement and Input

\[
\begin{array}{cccccc}
N & X & INCX & Y & INCY & Z & INCZ \\
\hline
5 & X & 0 & Y & 1 & Z & -1 \\
\end{array}
\]

\[
\begin{align*}
X &= (1.0) \\
Y &= (5.0, 4.0, 3.0, 2.0, 1.0)
\end{align*}
\]

\text{Output}

\[
Z = (0.0, -1.0, -2.0, -3.0, -4.0)
\]

Example 5: This example shows the output vector \(z \), with 0 stride, where the vector \(x \) has positive stride, and the vector \(y \) has 0 stride. The number of elements to be processed, \(n \), is greater than 1.

Call Statement and Input

\[
\begin{array}{cccccc}
N & X & INCX & Y & INCY & Z & INCZ \\
\hline
5 & X & 1 & Y & 0 & Z & 1 \\
\end{array}
\]

\[
\begin{align*}
X &= (1.0, 2.0, 3.0, 4.0, 5.0) \\
Y &= (5.0)
\end{align*}
\]

\text{Output}

\[
Z = (-4.0, -3.0, -2.0, -1.0, 0.0)
\]

Example 6: This example shows the output vector \(z \), with 0 stride, where the vector \(x \) has 0 stride, and the vector \(y \) has negative stride. The number of elements to be processed, \(n \), is greater than 1.

Call Statement and Input

\[
\begin{array}{cccccc}
N & X & INCX & Y & INCY & Z & INCZ \\
\hline
5 & X & 0 & Y & -1 & Z & 0 \\
\end{array}
\]

\[
\begin{align*}
X &= (1.0) \\
Y &= (5.0, 4.0, 3.0, 2.0, 1.0)
\end{align*}
\]

\text{Output}
SVES, DVES, CVES, and ZVES

\[Z = (-4.0) \]

Example 7: This example shows how SVES can be used to compute a scalar value. In this case, vectors \(x \) and \(y \) contain scalar values. The strides of all vectors, \(x, y, \) and \(z \), are 0. The number of elements to be processed, \(n \), is 1.

Call Statement and Input

\[
\begin{array}{cccccc}
N & X & INCX & Y & INCY & Z & INCZ \\
| & | & | & | & | & \\
\end{array}
\]

\[
\text{CALL SVES(1 , X , 0 , Y , 0 , Z , 0)}
\]

\[
X = (1.0) \\
Y = (5.0)
\]

Output

\[
Z = (-4.0)
\]

Example 8: This example shows vectors \(x \) and \(y \), containing complex numbers and having positive strides.

Call Statement and Input

\[
\begin{array}{cccccc}
N & X & INCX & Y & INCY & Z & INCZ \\
| & | & | & | & | & \\
\end{array}
\]

\[
\text{CALL CVES(3 , X , 1 , Y , 2 , Z , 1)}
\]

\[
X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0)) \\
Y = ((7.0, 8.0), \ldots, (9.0, 10.0), \ldots, (11.0, 12.0))
\]

Output

\[
Z = ((-6.0, -6.0), (-6.0, -6.0), (-6.0, -6.0))
\]
SVEM, DVEM, CVEM, and ZVEM—Multiply a Vector X by a Vector Y and Store in a Vector Z

These subprograms perform the following computation, using vectors x, y, and z:

$$ z \leftarrow xy $$

Table 54. Data Types

<table>
<thead>
<tr>
<th>x, y, z</th>
<th>Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>SVEM</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DVEM</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>CVEM</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>ZVEM</td>
</tr>
</tbody>
</table>

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL SVEM</th>
<th>DVEM</th>
<th>CVEM</th>
<th>ZVEM (n, x, incx, y, incy, z, incz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>svem</td>
<td>dvem</td>
<td>cvem</td>
<td>zvem (n, x, incx, y, incy, z, incz);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SVEM</td>
<td>DVEM</td>
<td>CVEM</td>
<td>ZVEM (n, x, incx, y, incy, z, incz);</td>
</tr>
</tbody>
</table>

On Entry

- n is the number of elements in vectors x, y, and z. Specified as: a fullword integer; $n \geq 0$.
- x is the vector x of length n. Specified as: a one-dimensional array of (at least) length $1+(n-1)|\text{incx}|$, containing numbers of the data type indicated in Table 54.
- incx is the stride for vector x. Specified as: a fullword integer. It can have any value.
- y is the vector y of length n. Specified as: a one-dimensional array of (at least) length $1+(n-1)|\text{incy}|$, containing numbers of the data type indicated in Table 54.
- incy is the stride for vector y. Specified as: a fullword integer. It can have any value.
- z is the vector z of length n, containing the result of the computation. Returned as: a one-dimensional array of (at least) length $1+(n-1)|\text{incz}|$, containing numbers of the data type indicated in Table 54.
- incz is the stride for vector z. Specified as: a fullword integer. It can have any value.

On Return

- z is the vector z of length n, containing the result of the computation. Returned as: a one-dimensional array of (at least) length $1+(n-1)|\text{incz}|$, containing numbers of the data type indicated in Table 54.

Notes

1. If you specify the same vector for x and z, then incx and incz must be equal; otherwise, results are unpredictable. The same is true for y and z.

Chapter 8. Linear Algebra Subprograms
2. If you specify different vectors for \(x \) and \(z \), they must have no common elements; otherwise, results are unpredictable. The same is true for \(y \) and \(z \). See “Concepts” on page 53.

Function: The computation is expressed as follows:

\[
zi ← xiyi \quad \text{for } i = 1, n
\]

If \(n \) is 0, no computation is performed. For CVEM, intermediate results are accumulated in long precision (short-precision Multiply followed by a long-precision Add), with the final result truncated to short precision.

Error Conditions

Computational Errors: None

Input-Argument Errors: \(n < 0 \)

Example 1: This example shows vectors \(x \), \(y \), and \(z \), with positive strides.

Call Statement and Input

\[
\begin{array}{cccccc}
N & X & INCX & Y & INCY & Z & INCZ \\
\hline
5 & X & 1 & Y & 2 & Z & 1 \\
\end{array}
\]

\[
\text{CALL SVEM(5 , X , 1 , Y , 2 , Z , 1)}
\]

\[
X = (1.0, 2.0, 3.0, 4.0, 5.0)
\]

\[
Y = (1.0, . , 1.0, . , 1.0, . , 1.0, . , 1.0)
\]

Output

\[
Z = (1.0, 2.0, 3.0, 4.0, 5.0)
\]

Example 2: This example shows vectors \(x \) and \(y \) having strides of opposite sign, and an output vector \(z \) having a positive stride. For \(y \), which has negative stride, processing begins at element \(Y(5) \), which is 1.0.

Call Statement and Input

\[
\begin{array}{cccccc}
N & X & INCX & Y & INCY & Z & INCZ \\
\hline
5 & X & 1 & Y & -1 & Z & 2 \\
\end{array}
\]

\[
\text{CALL SVEM(5 , X , 1 , Y , -1 , Z , 2)}
\]

\[
X = (1.0, 2.0, 3.0, 4.0, 5.0)
\]

\[
Y = (5.0, 4.0, 3.0, 2.0, 1.0)
\]

Output

\[
Z = (1.0, . , 4.0, . , 9.0, . , 16.0, . , 25.0)
\]

Example 3: This example shows a vector, \(x \), with 0 stride, and a vector, \(z \), with negative stride. \(x \) is treated like a vector of length \(n \), all of whose elements are the same as the single element in \(x \). For vector \(z \), results are stored beginning in element \(Z(5) \).

Call Statement and Input

\[
\begin{array}{cccccc}
N & X & INCX & Y & INCY & Z & INCZ \\
\hline
5 & X & 1 & Y & -1 & Z & 2 \\
\end{array}
\]

\[
\text{CALL SVEM(5 , X , 1 , Y , -1 , Z , 2)}
\]

\[
X = (1.0, 2.0, 3.0, 4.0, 5.0)
\]

\[
Y = (5.0, 4.0, 3.0, 2.0, 1.0)
\]

Output

\[
Z = (1.0, . , 4.0, . , 9.0, . , 16.0, . , 25.0)
\]
Example 4: This example shows a vector, \(y \), with 0 stride. \(y \) is treated like a vector of length \(n \), all of whose elements are the same as the single element in \(y \).

Call Statement and Input

\[
\begin{array}{cccccccc}
N & X & INCX & Y & INCY & Z & INCZ \\
| & | & | & | & | & |
\end{array}
\]

\[
\text{CALL SVEM}(5 , X , 0 , Y , 1 , Z , -1)
\]

\[
\begin{align*}
X &= (1.0) \\
Y &= (5.0, 4.0, 3.0, 2.0, 1.0)
\end{align*}
\]

Output

\[
\begin{align*}
Z &= (1.0, 2.0, 3.0, 4.0, 5.0)
\end{align*}
\]

Example 5: This example shows the output vector, \(z \), with 0 stride, where the vector \(x \) has positive stride, and the vector \(y \) has 0 stride. The number of elements to be processed, \(n \), is greater than 1.

Call Statement and Input

\[
\begin{array}{cccccccc}
N & X & INCX & Y & INCY & Z & INCZ \\
| & | & | & | & | & |
\end{array}
\]

\[
\text{CALL SVEM}(5 , X , 1 , Y , 0 , Z , 1)
\]

\[
\begin{align*}
X &= (1.0, 2.0, 3.0, 4.0, 5.0) \\
Y &= (5.0)
\end{align*}
\]

Output

\[
\begin{align*}
Z &= (5.0, 10.0, 15.0, 20.0, 25.0)
\end{align*}
\]

Example 6: This example shows the output vector \(z \), with 0 stride, where the vector \(x \) has 0 stride, and the vector \(y \) has negative stride. The number of elements to be processed, \(n \), is greater than 1.

Call Statement and Input

\[
\begin{array}{cccccccc}
N & X & INCX & Y & INCY & Z & INCZ \\
| & | & | & | & | & |
\end{array}
\]

\[
\text{CALL SVEM}(5 , X , 0 , Y , -1 , Z , 0)
\]

\[
\begin{align*}
X &= (1.0) \\
Y &= (5.0, 4.0, 3.0, 2.0, 1.0)
\end{align*}
\]

Output

\[
\begin{align*}
Z &= (5.0)
\end{align*}
\]
Example 7: This example shows how SVEM can be used to compute a scalar value. In this case, vectors x and y contain scalar values. The strides of all vectors, x, y, and z, are 0. The number of elements to be processed, n, is 1.

Call Statement and Input

```
   N X INCX Y INCY Z INCZ
   | | | | | | |
   CALL SVEM( 1 , X , 0 , Y , 0 , Z , 0 )
```

\[
X = (1.0) \\
Y = (5.0)
\]

Output
\[
Z = (5.0)
\]

Example 8: This example shows vectors x and y, containing complex numbers and having positive strides.

Call Statement and Input

```
   N X INCX Y INCY Z INCZ
   | | | | | | |
   CALL CVEM( 3 , X , 1 , Y , 2 , Z , 1 )
```

\[
X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0)) \\
Y = ((7.0, 8.0), . , (9.0, 10.0), . , (11.0, 12.0))
\]

Output
\[
Z = ((-9.0, 22.0), (-13.0, 66.0), (-17.0, 126.0))
\]
SYAX, DYAX, CYAX, ZYAX, CSYAX, and ZDYAX—Multiply a Vector X by a Scalar and Store in a Vector Y

These subprograms perform the following computation, using the scalar α and vectors x and y:

$$ y \leftarrow \alpha x $$

Table 55. Data Types

<table>
<thead>
<tr>
<th>α</th>
<th>x, y</th>
<th>Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>Short-precision real</td>
<td>SYAX</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>Long-precision real</td>
<td>DYAX</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>Short-precision complex</td>
<td>CYAX</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>Long-precision complex</td>
<td>ZYAX</td>
</tr>
<tr>
<td>Short-precision real</td>
<td>Short-precision complex</td>
<td>CSYAX</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>Long-precision complex</td>
<td>ZDYAX</td>
</tr>
</tbody>
</table>

Syntax

For Fortran:

```fortran
CALL SYAX | DYAX | CYAX | ZYAX | CSYAX | ZDYAX (n, alpha, x, incx, y, incy)
```

For C and C++:

```c
syax | dyax | cyax | zyax | csyax | zdyax (n, alpha, x, incx, y, incy);
```

For PL/I:

```pli
CALL SYAX | DYAX | CYAX | ZYAX | CSYAX | ZDYAX (n, alpha, x, incx, y, incy);
```

On Entry

- n is the number of elements in vector x and y. Specified as: a fullword integer; $n \geq 0$.
- $alpha$ is the scalar α. Specified as: a number of the data type indicated in Table 55.
- x is the vector x of length n. Specified as: a one-dimensional array of (at least) length $1+(n-1)|\text{incx}|$, containing numbers of the data type indicated in Table 55.
- incx is the stride for vector x. Specified as: a fullword integer. It can have any value.
- y is the vector y. Specified as: a one-dimensional array of (at least) length $1+(n-1)|\text{incy}|$, containing numbers of the data type indicated in Table 55.
- incy is the stride for vector y. Specified as: a fullword integer. It can have any value.

On Return

- y is the vector y of length n, containing the result of the computation αx. Returned as: a one-dimensional array of (at least) length $1+(n-1)|\text{incy}|$, containing numbers of the data type indicated in Table 55.

Notes

1. If you specify the same vector for x and y, then incx and incy must be equal; otherwise, results are unpredictable.
2. If you specify different vectors for \(x \) and \(y \), they must have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.

Function: The computation is expressed as follows:

\[
\begin{bmatrix}
 y_1 \\
 \vdots \\
 y_n
\end{bmatrix} \leftarrow \alpha
\begin{bmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{bmatrix}
\]

See reference [79]. If \(n \) is 0, no computation is performed. For CYAX, intermediate results are accumulated in long precision.

Error Condition

Computational Errors: None

Input-Argument Errors: \(n < 0 \)

Example 1: This example shows vectors \(x \) and \(y \) with positive strides.

Call Statement and Input

```
N ALPHA X INCX Y INCY
5  2.0  X 1  Y  2
```

\(X = (1.0, 2.0, 3.0, 4.0, 5.0) \)

Output

\(Y = (2.0, . , 4.0, . , 6.0, . , 8.0, . , 10.0) \)

Example 2: This example shows vectors \(x \) and \(y \) that have strides of opposite signs. For \(y \), which has negative stride, results are stored beginning in element \(Y(5) \).

Call Statement and Input

```
N ALPHA X INCX Y INCY
5  2.0  X 1  Y -1
```

\(X = (1.0, 2.0, 3.0, 4.0, 5.0) \)

Output

\(Y = (10.0, 8.0, 6.0, 4.0, 2.0) \)

Example 3: This example shows a vector, \(x \), with 0 stride. \(x \) is treated like a vector of length \(n \), all of whose elements are the same as the single element in \(x \).

Call Statement and Input
Example 4: This example shows how SYAX can be used to compute a scalar value. In this case both vectors \(x \) and \(y \) contain scalar values, and the strides for both vectors are 0. The number of elements to be processed, \(n \), is 1.

Call Statement and Input

```
N  ALPHA  X  INCX  Y  INCY
      |      |      |      |      |
CALL  SYAX( 5 , 2.0 , X , 0 , Y , 1 )
```

\[
X = (1.0)
\]

Output

\[
Y = (2.0, 2.0, 2.0, 2.0, 2.0)
\]

Example 5: This example shows a scalar, \(\alpha \), and vectors \(x \) and \(y \), containing complex numbers, where both vectors have a stride of 1.

Call Statement and Input

```
N  ALPHA  X  INCX  Y  INCY
      |      |      |      |      |
CALL  CYAX( 3 , ALPHAX, X , 1 , Y , 1 )
```

\[
\text{ALPHA} = (2.0, 3.0)
\]

\[
X = ((1.0, 2.0), (2.0, 0.0), (3.0, 5.0))
\]

Output

\[
Y = ((-4.0, 7.0), (4.0, 6.0), (-9.0, 19.0))
\]

Example 6: This example shows a scalar, \(\alpha \), containing a real number, and vectors \(x \) and \(y \), containing complex numbers, where both vectors have a stride of 1.

Call Statement and Input

```
N  ALPHA  X  INCX  Y  INCY
      |      |      |      |      |
CALL  CSYAX( 3 , 2.0 , X , 1 , Y , 1 )
```

\[
X = ((1.0, 2.0), (2.0, 0.0), (3.0, 5.0))
\]

Output

\[
Y = ((2.0, 4.0), (4.0, 0.0), (6.0, 10.0))
\]
SZAXPY, DZAXPY, CZAXPY, and ZZAXPY

SZAXPY, DZAXPY, CZAXPY, and ZZAXPY—Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in a Vector Z

These subprograms perform the following computation, using the scalar α and vectors x, y, and z

$$ z \leftarrow y + \alpha x $$

<table>
<thead>
<tr>
<th>Table 56. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>α, x, y, z</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
<tr>
<td>Short-precision complex</td>
</tr>
<tr>
<td>Long-precision complex</td>
</tr>
</tbody>
</table>

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL SZAXPY</th>
<th>DZAXPY</th>
<th>CZAXPY</th>
<th>ZZAXPY (n, alpha, x, incx, y, incy, z, incz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>szaxpy</td>
<td>dzaxpy</td>
<td>czaxpy</td>
<td>zzaxpy (n, alpha, x, incx, y, incy, z, incz);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SZAXPY</td>
<td>DZAXPY</td>
<td>CZAXPY</td>
<td>ZZAXPY (n, alpha, x, incx, y, incy, z, incz);</td>
</tr>
</tbody>
</table>

On Entry

n

is the number of elements in vectors x, y, and z. Specified as: a fullword integer; $n \geq 0$.

α

is the scalar α. Specified as: a number of the data type indicated in Table 56.

x

is the vector x of length n. Specified as: a one-dimensional array of (at least) length $1+((n-1)|\text{incx}|$, containing numbers of the data type indicated in Table 56.

incx

is the stride for vector x. Specified as: a fullword integer. It can have any value.

y

is the vector y of length n. Specified as: a one-dimensional array of (at least) length $1+((n-1)|\text{incy}|$, containing numbers of the data type indicated in Table 56.

incy

is the stride for vector y. Specified as: a fullword integer. It can have any value.

z

See “On Return.”

incz

is the stride for vector z. Specified as: a fullword integer. It can have any value.

On Return

z

is the vector z of length n, containing the result of the computation $y + \alpha x$.

Returned as: a one-dimensional array of (at least) length $1+((n-1)|\text{incz}|$, containing numbers of the data type indicated in Table 56.
Notes

1. If you specify the same vector for \(x \) and \(z \), then \(\text{incx} \) and \(\text{incz} \) must be equal; otherwise, results are unpredictable. The same is true for \(y \) and \(z \).

2. If you specify different vectors for \(x \) and \(z \), they must have no common elements; otherwise, results are unpredictable. The same is true for \(y \) and \(z \).

See “Concepts” on page 53.

Function: The computation is expressed as follows:

\[
\begin{bmatrix}
 z_1 \\
 \vdots \\
 z_n \\
\end{bmatrix}
\leftarrow
\begin{bmatrix}
 y_1 \\
 \vdots \\
 y_n \\
\end{bmatrix}
+ \alpha
\begin{bmatrix}
 x_1 \\
 \vdots \\
 x_n \\
\end{bmatrix}
\]

Error Conditions

Computational Errors: None

Input-Argument Errors: \(n < 0 \)

Example 1: This example shows vectors \(x \) and \(y \) with positive strides.

Call Statement and Input

\[
\begin{array}{cccccccc}
N & \text{ALPHA} & X & \text{INCX} & Y & \text{INCY} & Z & \text{IN CZ} \\
\hline
5 & 2.0 & X & 1 & Y & 2 & Z & 1 \\
\end{array}
\]

\[
\begin{array}{l}
X = (1.0, 2.0, 3.0, 4.0, 5.0) \\
Y = (1.0, . , 1.0, . , 1.0, . , 1.0, . , 1.0) \\
\end{array}
\]

Output

\[
Z = (3.0, 5.0, 7.0, 9.0, 11.0)
\]

Example 2: This example shows vectors \(x \) and \(y \) having strides of opposite sign, and an output vector \(z \) having a positive stride. For \(y \), which has negative stride, processing begins at element \(y(5) \), which is 1.0.

Call Statement and Input

\[
\begin{array}{cccccccc}
N & \text{ALPHA} & X & \text{INCX} & Y & \text{INCY} & Z & \text{IN CZ} \\
\hline
5 & 2.0 & X & 1 & Y & -1 & Z & 2 \\
\end{array}
\]

\[
\begin{array}{l}
X = (1.0, 2.0, 3.0, 4.0, 5.0) \\
Y = (5.0, 4.0, 3.0, 2.0, 1.0) \\
\end{array}
\]

Output

\[
Z = (3.0, . , 6.0, . , 9.0, . , 12.0, . , 15.0)
\]

Chapter 8. Linear Algebra Subprograms 273
Example 3: This example shows a vector, \(x \), with 0 stride, and a vector, \(z \), with negative stride. \(x \) is treated like a vector of length \(n \), all of whose elements are the same as the single element in \(x \). For vector \(z \), results are stored beginning in element \(Z(5) \).

Call Statement and Input

\[
\begin{array}{ccccccc}
N & \text{ALPHA} & X & \text{INCX} & Y & \text{INCY} & Z & \text{INCZ} \\
\end{array}
\]

\[
\text{CALL SZAXPY(5 , 2.0 , X , 0 , Y , 1 , Z , -1)}
\]

\[
X = (1.0) \\
Y = (5.0, 4.0, 3.0, 2.0, 1.0)
\]

Output

\[
Z = (3.0, 4.0, 5.0, 6.0, 7.0)
\]

Example 4: This example shows a vector, \(y \), with 0 stride. \(y \) is treated like a vector of length \(n \), all of whose elements are the same as the single element in \(y \).

Call Statement and Input

\[
\begin{array}{ccccccc}
N & \text{ALPHA} & X & \text{INCX} & Y & \text{INCY} & Z & \text{INCZ} \\
\end{array}
\]

\[
\text{CALL SZAXPY(5 , 2.0 , X , 1 , Y , 0 , Z , 1)}
\]

\[
X = (1.0, 2.0, 3.0, 4.0, 5.0) \\
Y = (5.0)
\]

Output

\[
Z = (7.0, 9.0, 11.0, 13.0, 15.0)
\]

Example 5: This example shows how SZAXPY can be used to compute a scalar value. In this case, vectors \(x \) and \(y \) contain scalar values. The strides of all vectors, \(x \), \(y \), and \(z \), are 0. The number of elements to be processed, \(n \), is 1.

Call Statement and Input

\[
\begin{array}{ccccccc}
N & \text{ALPHA} & X & \text{INCX} & Y & \text{INCY} & Z & \text{INCZ} \\
\end{array}
\]

\[
\text{CALL SZAXPY(1 , 2.0 , X , 0 , Y , 0 , Z , 0)}
\]

\[
X = (1.0) \\
Y = (5.0)
\]

Output

\[
Z = (7.0)
\]

Example 6: This example shows vectors \(x \) and \(y \), containing complex numbers and having positive strides.

Call Statement and Input
CALL CZAXPY(3 , ALPHA, X , 1 , Y , 2 , Z , 1)

ALPHA = (2.0, 3.0)
X = ((1.0, 2.0), (2.0, 0.0), (3.0, 5.0))
Y = ((1.0, 1.0), (0.0, 2.0), (5.0, 4.0))

Output
Z = ((-3.0, 8.0), (4.0, 8.0), (-4.0, 23.0))
Sparse Vector-Scalar Subprograms

This section contains the sparse vector-scalar subprogram descriptions.
SSCTR, DSCTR, CSCTR, ZSCTR—Scatter the Elements of a Sparse Vector \(X \) in Compressed-Vector Storage Mode into Specified Elements of a Sparse Vector \(Y \) in Full-Vector Storage Mode

These subprograms scatter the elements of sparse vector \(x \), stored in compressed-vector storage mode, into specified elements of sparse vector \(y \), stored in full-vector storage mode.

<table>
<thead>
<tr>
<th>(x, y)</th>
<th>Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>SSCTR</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DSCTR</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>CSCTR</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>ZSCTR</td>
</tr>
</tbody>
</table>

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL SSCTR</th>
<th>DSCTR</th>
<th>CSCTR</th>
<th>ZSCTR ((nz, x, indx, y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>ssctr</td>
<td>dsctr</td>
<td>csctr</td>
<td>zsctr ((nz, x, indx, y));</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SSCTR</td>
<td>DSCTR</td>
<td>CSCTR</td>
<td>ZSCTR ((nz, x, indx, y));</td>
</tr>
</tbody>
</table>

On Entry

\(nz \)

is the number of elements in sparse vector \(x \), stored in compressed-vector storage mode. Specified as: a fullword integer; \(nz \geq 0 \).

\(x \)

is the sparse vector \(x \), containing \(nz \) elements, stored in compressed-vector storage mode in an array, referred to as \(X \). Specified as: a one-dimensional array of (at least) length \(nz \), containing numbers of the data type indicated in Table 57.

\(indx \)

is the array, referred to as \(INDX \), containing the \(nz \) indices that indicate the positions of the elements of the sparse vector \(x \) when in full-vector storage mode. They also indicate the positions in vector \(y \) into which the elements are copied.

Specified as: a one-dimensional array of (at least) length \(nz \), containing fullword integers.

\(y \)

See “On Return.”

On Return

\(y \)

is the sparse vector \(y \), stored in full-vector storage mode, of (at least) length \(\max(\text{INDX}(i)) \) for \(i = 1, nz \), into which \(nz \) elements of vector \(x \) are copied at positions indicated by the indices array \(\text{INDX} \).

Returned as: a one-dimensional array of (at least) length \(\max(\text{INDX}(i)) \) for \(i = 1, nz \), containing numbers of the data type indicated in Table 57.
Notes

1. Each value specified in array INDX must be unique; otherwise, results are unpredictable.

2. Vectors x and y must have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.

3. For a description of how sparse vectors are stored, see “Sparse Vector” on page 58.

Function: The copy is expressed as follows:

\[y_{INDX(i)} \leftarrow x_i \quad \text{for} \quad i = 1, nz \]

where:

- \(x \) is a sparse vector, stored in compressed-vector storage mode.
- INDX is the indices array for sparse vector \(x \).
- \(y \) is a sparse vector, stored in full-vector storage mode.

See reference [29]. If \(nz \) is 0, no copy is performed.

Error Conditions

Computational Errors: None

Input-Argument Errors: \(nz < 0 \)

Example 1: This example shows how to use SSCTR to copy a sparse vector \(x \) of length 5 into the following vector \(y \), where the elements of array INDX are in ascending order:

\[Y = (6.0, 2.0, 4.0, 7.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0) \]

Call Statement and Input

```fortran
NZ X INDX Y
| | | |
CALL SSCTR( 5 , X , INDX , Y )
```

\(X = (1.0, 2.0, 3.0, 4.0, 5.0) \)

\(\text{INDX} = (1, 3, 4, 7, 10) \)

Output

\(Y = (1.0, 2.0, 2.0, 3.0, 6.0, 10.0, 4.0, 8.0, 9.0, 5.0) \)

Example 2: This example shows how to use SSCTR to copy a sparse vector \(x \) of length 5 into the following vector \(y \), where the elements of array INDX are in random order:

\[Y = (6.0, 2.0, 4.0, 7.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0) \]

Call Statement and Input
Example 3: This example shows how to use CSCTR to copy a sparse vector \(x \) of length 3 into the following vector \(y \), where the elements of array \(\text{INDX} \) are in random order:

\[
Y = ((6.0, 5.0), (-2.0, 3.0), (15.0, 4.0), (9.0, 0.0))
\]

Call Statement and Input

```
NZ X   INDX   Y
|      |      |      |
CALL CSCTR( 3 , X , INDX , Y )
```

\[
X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))
\]

\[
\text{INDX} = (4, 1, 3)
\]

Output

\[
Y = ((3.0, 4.0), (-2.0, 3.0), (5.0, 6.0), (1.0, 2.0))
\]
SGTHR, DGTHR, CGTHR, and ZGTHR

SGTHR, DGTHR, CGTHR, and ZGTHR—Gather Specified Elements of a Sparse Vector Y in Full-Vector Storage Mode into a Sparse Vector X in Compressed-Vector Storage Mode

These subprograms gather specified elements of vector \(y \), stored in full-vector storage mode, into sparse vector \(x \), stored in compressed-vector storage mode.

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL SGTHR</th>
<th>DGTHR</th>
<th>CGTHR</th>
<th>ZGTHR (nz, y, x, indx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>sgthr</td>
<td>dgthr</td>
<td>cgthr</td>
<td>zgthr (nz, y, x, indx);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SGTHR</td>
<td>DGTHR</td>
<td>CGTHR</td>
<td>ZGTHR (nz, y, x, indx);</td>
</tr>
</tbody>
</table>

On Entry

\(nz \)

is the number of elements in sparse vector \(x \), stored in compressed-vector storage mode. Specified as: a fullword integer; \(nz \geq 0 \).

\(y \)

is the sparse vector \(y \), stored in full-vector storage mode, of (at least) length max(INDX(\(i \))) for \(i = 1, nz \), from which \(nz \) elements are copied from positions indicated by the indices array INDX.

Specified as: a one-dimensional array of (at least) length max(INDX(\(i \))) for \(i = 1, nz \), containing numbers of the data type indicated in Table 58.

\(x \)

See “On Return.”

On Return

\(indx \)

is the array, referred to as INDX, containing the \(nz \) indices that indicate the positions of the elements of the sparse vector \(x \) when in full-vector storage mode. They also indicate the positions in vector \(y \) from which elements are copied.

Specified as: a one-dimensional array of (at least) length \(nz \), containing fullword integers.

\(x \)

is the sparse vector \(x \), containing \(nz \) elements, stored in compressed-vector storage mode in an array, referred to as \(X \), into which are copied the elements of vector \(y \) from positions indicated by the indices array INDX.

Returned as: a one-dimensional array of (at least) length \(nz \), containing numbers of the data type indicated in Table 58.
Notes
1. Vectors x and y must have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.

2. For a description of how sparse vectors are stored, see “Sparse Vector” on page 58.

Function: The copy is expressed as follows:

\[x_i \leftarrow y_{\text{INDX}(i)} \quad \text{for } i = 1, nz \]

where:
- x is a sparse vector, stored in compressed-vector storage mode.
- INDX is the indices array for sparse vector x.
- y is a sparse vector, stored in full-vector storage mode.

See reference [29]. If nz is 0, no copy is performed.

Error Conditions

Computational Errors: None

Input-Argument Errors: $nz < 0$

Example 1: This example shows how to use SGTHR to copy specified elements of a vector y into a sparse vector x of length 5, where the elements of array INDX are in ascending order.

Call Statement and Input

\[
\begin{array}{c|c|c|c|c}
\text{NZ} & \text{Y} & \text{X} & \text{INDX} \\
\hline
5 & \text{(6.0, 2.0, 4.0, 7.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)} & \text{(1, 3, 4, 7, 9)} \\
\end{array}
\]

Output
\[
\text{X} = (6.0, 4.0, 7.0, -2.0, 9.0)
\]

Example 2: This example shows how to use SGTHR to copy specified elements of a vector y into a sparse vector x of length 5, where the elements of array INDX are in random order. (Note that the element 0.0 occurs in output vector x. This does not produce an error.)

Call Statement and Input

\[
\begin{array}{c|c|c|c|c}
\text{NZ} & \text{Y} & \text{X} & \text{INDX} \\
\hline
5 & \text{(6.0, 2.0, 4.0, 7.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)} & \text{(4, 3, 1, 10, 7)} \\
\end{array}
\]

Output
Example 3: This example shows how to use CGTHR to copy specified elements of a vector, \(y \), into a sparse vector, \(x \), of length 3, where the elements of array \(\text{INDX} \) are in random order.

Call Statement and Input

\[
\begin{align*}
\text{NZ} & \quad \text{Y} & \quad \text{X} & \quad \text{INDX} \\
| & | & | & |
\end{align*}
\]

\[
\text{CALL CGTHR(3 , Y , X , INDX)}
\]

\[
\begin{align*}
\text{Y} & \quad = \quad ((6.0, 5.0), (-2.0, 3.0), (15.0, 4.0), (9.0, 0.0)) \\
\text{INDX} & \quad = \quad (4, 1, 3)
\end{align*}
\]

Output

\[
\begin{align*}
\text{X} & \quad = \quad ((9.0, 0.0), (6.0, 5.0), (15.0, 4.0))
\end{align*}
\]
SGTHRZ, DGTHRZ, CGTHRZ, and ZGTHRZ—Gather Specified Elements of a Sparse Vector Y in Full-Vector Mode into a Sparse Vector X in Compressed-Vector Mode, and Zero the Same Specified Elements of Y

These subprograms gather specified elements of sparse vector \(y \), stored in full-vector storage mode, into sparse vector \(x \), stored in compressed-vector storage mode, and zero the same specified elements of vector \(y \).

<table>
<thead>
<tr>
<th>Table 59. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x, y)</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
<tr>
<td>Short-precision complex</td>
</tr>
<tr>
<td>Long-precision complex</td>
</tr>
</tbody>
</table>

Syntax

Fortran

```fortran
CALL SGTHRZ | DGTHRZ | CGTHRZ | ZGTHRZ (nz, y, x, indx)
```

C and C++

```c
sgthrz | dgthrz | cgthrz | zgthrz (nz, y, x, indx);
```

PL/I

```pli
CALL SGTHRZ | DGTHRZ | CGTHRZ | ZGTHRZ (nz, y, x, indx);
```

On Entry

\(nz \)

is the number of elements in sparse vector \(x \), stored in compressed-vector storage mode. Specified as: a fullword integer; \(nz \geq 0 \).

\(y \)

is the sparse vector \(y \), stored in full-vector storage mode, of (at least) length \(\max(\text{INDX}(i)) \) for \(i = 1, nz \), from which \(nz \) elements are copied from positions indicated by the indices array \(\text{INDX} \).

Specified as: a one-dimensional array of (at least) length \(\max(\text{INDX}(i)) \) for \(i = 1, nz \), containing numbers of the data type indicated in Table 59.

\(x \)

See “On Return.”

\(\text{indx} \)

is the array, referred to as \(\text{INDX} \), containing the \(nz \) indices that indicate the positions of the elements of the sparse vector \(x \) when in full-vector storage mode. They also indicate the positions in vector \(y \) from which elements are copied then set to zero.

Specified as: a one-dimensional array of (at least) length \(nz \), containing fullword integers.

On Return

\(y \)

is the sparse vector \(y \), stored in full-vector storage mode, of (at least) length \(\max(\text{INDX}(i)) \) for \(i = 1, nz \), whose elements are set to zero at positions indicated by the indices array \(\text{INDX} \).
Returned as: a one-dimensional array, containing numbers of the data type indicated in Table 59.

\(x \)

is the sparse vector \(x \), containing \(nz \) elements stored in compressed-vector storage mode in an array, referred to as \(X \), into which are copied the elements of vector \(y \) from positions indicated by the indices array \(\text{INDX} \).

Returned as: a one-dimensional array of (at least) length \(nz \), containing numbers of the data type indicated in Table 59 on page 283.

Notes

1. Each value specified in array \(\text{INDX} \) must be unique; otherwise, results are unpredictable.

2. Vectors \(x \) and \(y \) must have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.

3. For a description of how sparse vectors are stored, see “Sparse Vector” on page 58.

Function: The copy is expressed as follows:

\[
\begin{align*}
 x_i & \leftarrow y_{\text{INDX}(i)}^y \\
 y_{\text{INDX}(i)}^y & \leftarrow 0.0 \quad \text{(for SGTHRZ and DGTHRZ)} \\
 y_{\text{INDX}(i)}^y & \leftarrow (0.0,0.0) \quad \text{(for CGTHRZ and ZGTHRZ)} \\
 \text{for } i & = 1, nz
\end{align*}
\]

where:

\(x \) is a sparse vector, stored in compressed-vector storage mode.

\(\text{INDX} \) is the indices array for sparse vector \(x \).

\(y \) is a sparse vector, stored in full-vector storage mode.

See reference [29]. If \(nz \) is 0, no computation is performed.

Error Conditions

Computational Errors: None

Input-Argument Errors: \(nz < 0 \)

Example 1: This example shows how to use SGTHRZ to copy specified elements of a vector \(y \) into a sparse vector \(x \) of length 5, where the elements of array \(\text{INDX} \) are in ascending order.

Call Statement and Input

\[
\begin{align*}
 \text{NZ} & \quad Y \quad X \quad \text{INDX} \\
 | & \quad | & \quad | & \quad | \\
 \text{CALL SGTHRZ} & (5 , \ Y , \ X , \ \text{INDX})
\end{align*}
\]

\[
\begin{align*}
 Y & = (6.0, 2.0, 4.0, 7.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0) \\
 \text{INDX} & = (1, 3, 4, 7, 9)
\end{align*}
\]

Output

\[
\begin{align*}
 Y & = (0.0, 2.0, 0.0, 0.0, 6.0, 10.0, 0.0, 8.0, 0.0, 0.0) \\
 X & = (6.0, 4.0, 7.0, -2.0, 9.0)
\end{align*}
\]
Example 2: This example shows how to use SGTHRZ to copy specified elements of a vector y into a sparse vector x of length 5, where the elements of array INDX are in random order. (Note that the element 0.0 occurs in output vector x. This does not produce an error.)

Call Statement and Input
\[
\begin{array}{c|c|c|c|c}
NZ & Y & X & INDX \\
--- & --- & --- & --- \\
\hline
\end{array}
\]
CALL SGTHRZ(5 , Y , X , INDX)

\[
\begin{align*}
Y &= (6.0, 2.0, 4.0, 7.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0) \\
\text{INDX} &= (4, 3, 1, 10, 7)
\end{align*}
\]

Output
\[
\begin{align*}
Y &= (0.0, 2.0, 0.0, 6.0, 10.0, 0.0, 8.0, 9.0, 0.0) \\
X &= (7.0, 4.0, 6.0, 0.0, -2.0)
\end{align*}
\]

Example 3: This example shows how to use CGTHRZ to copy specified elements of a vector y into a sparse vector x of length 3, where the elements of array INDX are in random order.

Call Statement and Input
\[
\begin{array}{c|c|c|c|c}
NZ & Y & X & INDX \\
--- & --- & --- & --- \\
\hline
\end{array}
\]
CALL CGTHRZ(3 , Y , X , INDX)

\[
\begin{align*}
Y &= ((6.0, 5.0), (-2.0, 3.0), (15.0, 4.0), (9.0, 0.0)) \\
\text{INDX} &= (4, 1, 3)
\end{align*}
\]

Output
\[
\begin{align*}
Y &= ((0.0, 0.0), (-2.0, 3.0), (0.0, 0.0), (0.0, 0.0)) \\
X &= ((9.0, 0.0), (6.0, 5.0), (15.0, 4.0))
\end{align*}
\]
SAXPYI, DAXPYI, CAXPYI, and ZAXPYI—Multiply a Sparse Vector X in Compressed-Vector Storage Mode by a Scalar, Add to a Sparse Vector Y in Full-Vector Storage Mode, and Store in the Vector Y

These subprograms multiply sparse vector \(x \), stored in compressed-vector storage mode, by scalar \(\alpha \), add it to sparse vector \(y \), stored in full-vector storage mode, and store the result in vector \(y \).

Table 60. Data Types

<table>
<thead>
<tr>
<th>(\alpha, x, y)</th>
<th>Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>SAXPYI</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DAXPYI</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>CAXPYI</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>ZAXPYI</td>
</tr>
</tbody>
</table>

Syntax

Fortran

```fortran
CALL SAXPYI | DAXPYI | CAXPYI | ZAXPYI (nz, alpha, x, indx, y)
```

C and C++

```c
saxpyi | daxpyi | caxpyi | zaxpyi (nz, alpha, x, indx, y);
```

PL/I

```pli
CALL SAXPYI | DAXPYI | CAXPYI | ZAXPYI (nz, alpha, x, indx, y);
```

On Entry

- \(nz \)

 is the number of elements in sparse vector \(x \), stored in compressed-vector storage mode. Specified as: a fullword integer; \(nz \geq 0 \).

- \(alpha \)

 is the scalar \(\alpha \). Specified as: a number of the data type indicated in Table 60.

- \(x \)

 is the sparse vector \(x \), containing \(nz \) elements, stored in compressed-vector storage mode in an array, referred to as \(X \). Specified as: a one-dimensional array of (at least) length \(nz \), containing numbers of the data type indicated in Table 60.

- \(indx \)

 is the array, referred to as \(INDX \), containing the \(nz \) indices that indicate the positions of the elements of the sparse vector \(x \) when in full-vector storage mode. They also indicate the positions of the elements in vector \(y \) that are used in the computation.

 Specified as: a one-dimensional array of (at least) length \(nz \), containing fullword integers.

- \(y \)

 is the sparse vector \(y \), stored in full-vector storage mode, of (at least) length \(\max(\text{INDX}(i)) \) for \(i = 1, nz \). Specified as: a one-dimensional array of (at least) length \(\max(\text{INDX}(i)) \) for \(i = 1, nz \), containing numbers of the data type indicated in Table 60.

On Return
y is the sparse vector y, stored in full-vector storage mode, of (at least) length $\max(\text{INDX}(i))$ for $i = 1, nz$ containing the results of the computation, stored at positions indicated by the indices array INDX.

Returned as: a one-dimensional array, containing numbers of the data type indicated in Table 60 on page 286.

Notes

1. Each value specified in array INDX must be unique; otherwise, results are unpredictable.
2. Vectors x and y must have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.
3. For a description of how sparse vectors are stored, see “Sparse Vector” on page 58.

Function: The computation is expressed as follows:

$$y_{\text{INDX}(i)}^{(1)} \leftarrow y_{\text{INDX}(i)}^{(0)} + \alpha x_i$$ for $i = 1, nz$

where:

- x is a sparse vector, stored in compressed-vector storage mode.
- INDX is the indices array for sparse vector x.
- y is a sparse vector, stored in full-vector storage mode.

See reference [29]. If α or nz is zero, no computation is performed. For SAXPYI and CAXPYI, intermediate results are accumulated in long-precision.

Error Conditions

Computational Errors: None

Input-Argument Errors: $nz < 0$

Example 1: This example shows how to use SAXPYI to perform a computation using a sparse vector x of length 5, where the elements of array INDX are in ascending order.

Call Statement and Input

```fortran
NZ ALPHA   X   INDX   Y
| | | | |
CALL SAXPYI( 5 , 2.0 , X , INDX , Y )
```

Output

<table>
<thead>
<tr>
<th>X</th>
<th>1.0, 2.0, 3.0, 4.0, 5.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDX</td>
<td>(1, 3, 4, 7, 10)</td>
</tr>
<tr>
<td>Y</td>
<td>1.0, 5.0, 4.0, 3.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0</td>
</tr>
</tbody>
</table>

Example 2: This example shows how to use SAXPYI to perform a computation using a sparse vector x of length 5, where the elements of array INDX are in random order.
SAXPYI, DAXPYI, CAXPYI, and ZAXPYI

Call Statement and Input

\[\begin{array}{cccc}
NZ & ALPHA & X & INDX & Y \\
\end{array} \]

\[
\text{CALL SAXPYI(5, 2.0, X, INDX, Y)}
\]

\[
\begin{align*}
X &= (1.0, 2.0, 3.0, 4.0, 5.0) \\
INDX &= (4, 3, 1, 10, 7) \\
Y &= (1.0, 5.0, 4.0, 3.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)
\end{align*}
\]

Output

\[
Y = (7.0, 5.0, 8.0, 5.0, 6.0, 10.0, 8.0, 8.0, 9.0, 8.0)
\]

Example 3: This example shows how to use CAXPYI to perform a computation using a sparse vector \(x\) of length 3, where the elements of array \(\text{INDX}\) are in random order.

Call Statement and Input

\[\begin{array}{cccc}
NZ & ALPHA & X & INDX & Y \\
\end{array} \]

\[
\text{CALL CAXPYI(3, ALPHA, X, INDX, Y)}
\]

\[
\begin{align*}
\text{ALPHA} &= (2.0, 3.0) \\
X &= ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0)) \\
INDX &= (4, 1, 3) \\
Y &= ((6.0, 5.0), (-2.0, 3.0), (15.0, 4.0), (9.0, 0.0))
\end{align*}
\]

Output

\[
Y = ((0.0, 22.0), (-2.0, 3.0), (7.0, 31.0), (5.0, 7.0))
\]
SDOTI, DDOTI, CDOTUI, ZDOTUI, CDOTCI, and ZDOTCI—Dot Product of a Sparse Vector X in Compressed-Vector Storage Mode and a Sparse Vector Y in Full-Vector Storage Mode

SDOTI, DDOTI, CDOTUI, and ZDOTUI compute the dot product of sparse vector \(x \), stored in compressed-vector storage mode, and full vector \(y \), stored in full-vector storage mode.

CDOTCI and ZDOTCI compute the dot product of the complex conjugate of sparse vector \(x \), stored in compressed-vector storage mode, and full vector \(y \), stored in full-vector storage mode.

<table>
<thead>
<tr>
<th>Table 61. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x), (y), Result</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
<tr>
<td>Short-precision complex</td>
</tr>
<tr>
<td>Long-precision complex</td>
</tr>
<tr>
<td>Short-precision complex</td>
</tr>
<tr>
<td>Long-precision complex</td>
</tr>
</tbody>
</table>

Syntax

- **Fortran**

 `SDOTI | DDOTI | CDOTUI | ZDOTUI | CDOTCI | ZDOTCI (nz, x, indx, y)`

- **C and C++**

 `sdtol | ddotl | cdotul | zdotul | cdotcl | zdotcl (nz, x, indx, y);`

- **PL/I**

 `SDOTI | DDOTI | CDOTUI | ZDOTUI | CDOTCI | ZDOTCI (nz, x, indx, y);`

On Entry

\(nz \)

is the number of elements in sparse vector \(x \), stored in compressed-vector storage mode. Specified as: a fullword integer; \(nz \geq 0 \).

\(x \)

is the sparse vector \(x \), containing \(nz \) elements, stored in compressed-vector storage mode in an array, referred to as \(X \). Specified as: a one-dimensional array of (at least) length \(nz \), containing numbers of the data type indicated in Table 61.

\(indx \)

is the array, referred to as \(INDX \), containing the \(nz \) indices that indicate the positions of the elements of the sparse vector \(x \) when in full-vector storage mode. They also indicate the positions of elements in vector \(y \) that are used in the computation.

Specified as: a one-dimensional array of (at least) length \(nz \), containing fullword integers.

\(y \)

is the sparse vector \(y \), stored in full-vector storage mode, of (at least) length \(\max(\text{INDX}(i)) \) for \(i = 1, nz \). Specified as: a one-dimensional array of (at least) length \(\max(\text{INDX}(i)) \) for \(i = 1, nz \), containing numbers of the data type indicated in Table 61.
SDOTI, DDOTI, CDOTUI, ZDOTUI, CDOTCI, and ZDOTCI

On Return

Function value

is the result of the dot product computation.

Returned as: a number of the data type indicated in Table 61 on page 289.

Note

1. Declare this function in your program as returning a value of the data type indicated in Table 61 on page 289.
2. For a description of how sparse vectors are stored, see “Sparse Vector” on page 58.

Function: For SDOTI, DDOTI, CDOTUI, and ZDOTUI, the dot product computation is expressed as follows:

\[
\sum_{i=1}^{nz} x_i y_{\text{INDX}(i)} = x_1 y_{\text{INDX}(1)} + x_2 y_{\text{INDX}(2)} + \ldots + x_{nz} y_{\text{INDX}(nz)}
\]

For CDOTCI and ZDOTCI, the dot product computation is expressed as follows:

\[
\sum_{i=1}^{nz} \bar{x}_i y_{\text{INDX}(i)} = \bar{x}_1 y_{\text{INDX}(1)} + \bar{x}_2 y_{\text{INDX}(2)} + \ldots + \bar{x}_{nz} y_{\text{INDX}(nz)}
\]

where:

\(x\) is a sparse vector, stored in compressed-vector storage mode.

\(\bar{x}\) is the complex conjugate of a sparse vector, stored in compressed-vector storage mode.

\(\text{INDX}\) is the indices array for sparse vector \(x\).

\(y\) is a sparse vector, stored in full-vector storage mode.

See reference [29]. The result is returned as the function value. If \(nz\) is 0, then zero is returned as the value of the function.

For SDOTI, CDOTUI, and CDOTCI, intermediate results are accumulated in long-precision.

Error Conditions

Computational Errors: None

Input-Argument Errors: \(nz < 0\)
Example 1: This example shows how to use SDOTI to compute a dot product using a sparse vector x of length 5, where the elements of array INDX are in ascending order.

Function Reference and Input

$$\text{NZ} \quad \text{X} \quad \text{INDX} \quad \text{Y}$$

$$\text{DOTT} = \text{SDOTI}(5, \text{X}, \text{INDX}, \text{Y})$$

$X = (1.0, 2.0, 3.0, 4.0, 5.0)$

$\text{INDX} = (1, 3, 4, 7, 10)$

$Y = (1.0, 5.0, 4.0, 3.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)$

Output

$\text{DOTT} = (1.0 + 8.0 + 9.0 - 8.0 + 0.0) = 10.0$

Example 2: This example shows how to use SDOTI to compute a dot product using a sparse vector x of length 5, where the elements of array INDX are in random order.

Function Reference and Input

$$\text{NZ} \quad \text{X} \quad \text{INDX} \quad \text{Y}$$

$$\text{DOTT} = \text{SDOTI}(5, \text{X}, \text{INDX}, \text{Y})$$

$X = (1.0, 2.0, 3.0, 4.0, 5.0)$

$\text{INDX} = (4, 3, 1, 10, 7)$

$Y = (1.0, 5.0, 4.0, 3.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)$

Output

$\text{DOTT} = (3.0 + 8.0 + 3.0 + 0.0 - 10.0) = 4.0$

Example 3: This example shows how to use CDOTUI to compute a dot product using a sparse vector x of length 3, where the elements of array INDX are in ascending order.

Function Reference and Input

$$\text{NZ} \quad \text{X} \quad \text{INDX} \quad \text{Y}$$

$$\text{DOTT} = \text{CDOTUI}(3, \text{X}, \text{INDX}, \text{Y})$$

$X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))$

$\text{INDX} = (1, 3, 4)$

$Y = ((6.0, 5.0), (-2.0, 3.0), (15.0, 4.0), (9.0, 0.0))$

Output

$\text{DOTT} = (70.0, 143.0)$

Example 4: This example shows how to use CDOTCI to compute a dot product using the complex conjugate of a sparse vector x of length 3, where the elements of array INDX are in random order.

Function Reference and Input
\[
\text{NZ X INDX Y} \\
\text{DOTT = CDOTCI(3, X, INDX, Y)}
\]

\[
X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0)) \\
\text{INDX} = (4, 1, 3) \\
Y = ((6.0, 5.0), (-2.0, 3.0), (15.0, 4.0), (9.0, 0.0))
\]

Output

\[
\text{DOTT} = (146.0, -97.0)
\]
Matrix-Vector Subprograms

This section contains the matrix-vector subprogram descriptions.
SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX—Matrix-Vector Product for a General Matrix, Its Transpose, or Its Conjugate Transpose

SGEMV and DGEMV compute the matrix-vector product for either a real general matrix or its transpose, using the scalars α and β, vectors x and y, and matrix A or its transpose:

$$y \leftarrow \beta y + \alpha A x$$
$$y \leftarrow \beta y + \alpha A^T x$$

CGEMV and ZGEMV compute the matrix-vector product for either a complex general matrix, its transpose, or its conjugate transpose, using the scalars α and β, vectors x and y, and matrix A, its transpose, or its conjugate transpose:

$$y \leftarrow \beta y + \alpha A x$$
$$y \leftarrow \beta y + \alpha A^T x$$
$$y \leftarrow \beta y + \alpha A^H x$$

SGEMX and DGEMX compute the matrix-vector product for a real general matrix, using the scalar α, vectors x and y, and matrix A:

$$y \leftarrow y + \alpha A x$$

SGEMTX and DGEMTX compute the matrix-vector product for the transpose of a real general matrix, using the scalar α, vectors x and y, and the transpose of matrix A:

$$y \leftarrow y + \alpha A^T x$$

Table 62. Data Types

<table>
<thead>
<tr>
<th>α, β, x, y, A</th>
<th>Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>SGEMV, SGEMX, and SGEMTX</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DGEMV, DGEMX, and DGEMTX</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>CGEMV</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>ZGEMV</td>
</tr>
</tbody>
</table>

Note: SGEMV and DGEMV are Level 2 BLAS subroutines. It is suggested that these subroutines be used instead of SGEMX, DGEMX, SGEMTX, and DGEMTX, which are provided only for compatibility with earlier releases of ESSL.

Syntax

Fortran

```fortran
CALL SGEMV | DGEMV | CGEMV | ZGEMV (transa, m, n, alpha, a, lda, x, incx, beta, y, incy)
CALL SGEMX | DGEMX | SGEMTX | DGEMTX (m, n, alpha, a, lda, x, incx, y, incy)
```

C and C++

```c
sgemv | dgemv | cgemv | zgemv (transa, m, n, alpha, a, lda, x, incx, beta, y, incy);
sgemx | dgemx | sgemtx | dgemtx (m, n, alpha, a, lda, x, incx, y, incy);
```

PL/I

```pli
CALL SGEMV | DGEMV | CGEMV | ZGEMV (transa, m, n, alpha, a, lda, x, incx, beta, y, incy);
CALL SGEMX | DGEMX | SGEMTX | DGEMTX (m, n, alpha, a, lda, x, incx, y, incy);
```
On Entry

transa
indicates the form of matrix A to use in the computation, where:

If transa = 'N', A is used in the computation.
If transa = 'T', \(A^T\) is used in the computation.
If transa = 'C', \(A^H\) is used in the computation.

Specified as: a single character. It must be 'N', 'T', or 'C'.

m
is the number of rows in matrix A, and:

For SGEMV, DGEMV, CGEMV, and ZGEMV:
 If transa = 'N', it is the length of vector y.
 If transa = 'T' or 'C', it is the length of vector x.

For SGEMX and DGEMX, it is the length of vector y.
For SGEMTX and DGEMTX, it is the length of vector x.

Specified as: a fullword integer; 0 \(\leq m \leq\) lda.

n
is the number of columns in matrix A, and:

For SGEMV, DGEMV, CGEMV, and ZGEMV:
 If transa = 'N', it is the length of vector x.
 If transa = 'T' or 'C', it is the length of vector y.

For SGEMX and DGEMX, it is the length of vector x.
For SGEMTX and DGEMTX, it is the length of vector y.

Specified as: a fullword integer; n \(\geq 0\).

alpha
is the scaling constant \(\alpha\). Specified as: a number of the data type indicated in Table 62 on page 294.

a
is the \(m\) by \(n\) matrix A, where:

For SGEMV, DGEMV, CGEMV, and ZGEMV:
 If transa = 'N', A is used in the computation.
 If transa = 'T', \(A^T\) is used in the computation.
 If transa = 'C', \(A^H\) is used in the computation.

For SGEMX and DGEMX, A is used in the computation.
For SGEMTX and DGEMTX, \(A^T\) is used in the computation.

Note: No data should be moved to form \(A^T\) or \(A^H\); that is, the matrix A should always be stored in its untransposed form.

Specified as: an lda by (at least) \(n\) array, containing numbers of the data type indicated in Table 62 on page 294.

lda
is the leading dimension of the array specified for a. Specified as: a fullword integer; lda > 0 and lda \(\geq m\).
SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX

\[x \]

is the vector \(x \), where:

For SGEMV, DGEMV, CGEMV, and ZGEMV:
- If \(\text{transa} = 'N' \), it has length \(n \).
- If \(\text{transa} = 'T' \) or \('C' \), it has length \(m \).

For SGEMX and DGEMX, it has length \(n \).
For SGEMTX and DGEMTX, it has length \(m \).

Specified as: a one-dimensional array, containing numbers of the data type indicated in Table 62 on page 294, where:

For SGEMV, DGEMV, CGEMV, and ZGEMV:
- If \(\text{transa} = 'N' \), it must have at least \(1+(n-1)|\text{incx}| \) elements.
- If \(\text{transa} = 'T' \) or \('C' \), it must have at least \(1+(m-1)|\text{incx}| \) elements.

For SGEMX and DGEMX, it must have at least \(1+(n-1)|\text{incx}| \) elements.
For SGEMTX and DGEMTX, it must have at least \(1+(m-1)|\text{incx}| \) elements.

\(\text{incx} \)

is the stride for vector \(x \). Specified as: a fullword integer; It can have any value.

\(\beta \)

is the scaling constant \(\beta \). Specified as: a number of the data type indicated in Table 62 on page 294.

\[y \]

is the vector \(y \), where:

For SGEMV, DGEMV, CGEMV, and ZGEMV:
- If \(\text{transa} = 'N' \), it has length \(m \).
- If \(\text{transa} = 'T' \) or \('C' \), it has length \(n \).

For SGEMX and DGEMX, it has length \(m \).
For SGEMTX and DGEMTX, it has length \(n \).

Specified as: a one-dimensional array, containing numbers of the data type indicated in Table 62 on page 294, where:

For SGEMV, DGEMV, CGEMV, and ZGEMV:
- If \(\text{transa} = 'N' \), it must have at least \(1+(m-1)|\text{incy}| \) elements.
- If \(\text{transa} = 'T' \) or \('C' \), it must have at least \(1+(n-1)|\text{incy}| \) elements.

For SGEMX and DGEMX, it must have at least \(1+(m-1)|\text{incy}| \) elements.
For SGEMTX and DGEMTX, it must have at least \(1+(n-1)|\text{incy}| \) elements.

\(\text{incy} \)

is the stride for vector \(y \). Specified as: a fullword integer; \(\text{incy} > 0 \) or \(\text{incy} < 0 \).

On Return

\[y \]

is the vector \(y \), containing the result of the computation, where:

For SGEMV, DGEMV, CGEMV, and ZGEMV:
- If \(\text{transa} = 'N' \), it has length \(m \).
- If \(\text{transa} = 'T' \) or \('C' \), it has length \(n \).
Function: The possible computations that can be performed by these subroutines are described in the following sections. Varying implementation techniques are used for this computation to improve performance. As a result, accuracy of the computational result may vary for different computations.

For SGEMV, CGEMV, SGEMX, and SGEMTX, intermediate results are accumulated in long precision. Occasionally, for performance reasons, these intermediate results are stored.

See references [34], [35], [38], [46], and [79]. No computation is performed if \(m \) or \(n \) is 0 or if \(\alpha \) is zero and \(\beta \) is one.

General Matrix: For SGEMV, DGEMV, CGEMV, and ZGEMV, the matrix-vector product for a general matrix:

\[
y \leftarrow \beta y + \alpha Ax
\]

is expressed as follows:

\[
\begin{bmatrix}
y_1 \\
\vdots \\
y_m
\end{bmatrix} \leftarrow \beta \begin{bmatrix}
y_1 \\
\vdots \\
y_m
\end{bmatrix} + \alpha \begin{bmatrix}
a_{11} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{m1} & \cdots & a_{mn}
\end{bmatrix} \begin{bmatrix}
x_1 \\
\vdots \\
x_n
\end{bmatrix}
\]

For SGEMX and DGEMX, the matrix-vector product for a real general matrix:

\[
y \leftarrow y + \alpha Ax
\]

is expressed as follows:
SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX

\[
\begin{bmatrix}
 y_1 \\
 \vdots \\
 y_m \\
\end{bmatrix} \leftarrow \begin{bmatrix}
 y_1 \\
 \vdots \\
 y_m \\
\end{bmatrix} + \alpha \begin{bmatrix}
 a_{11} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{m1} & \cdots & a_{mn} \\
\end{bmatrix} \begin{bmatrix}
 x_1 \\
 \vdots \\
 x_n \\
\end{bmatrix}
\]

In these expressions:
- \(y \) is a vector of length \(m \).
- \(\alpha \) is a scalar.
- \(\beta \) is a scalar.
- \(A \) is an \(m \) by \(n \) matrix.
- \(x \) is a vector of length \(n \).

Transpose of a General Matrix: For SGEMV, DGEMV, CGEMV and ZGEMV, the matrix-vector product for the transpose of a general matrix:

\[
y \leftarrow \beta y + \alpha A^T x
\]

is expressed as follows:

\[
\begin{bmatrix}
 y_1 \\
 \vdots \\
 y_n \\
\end{bmatrix} \leftarrow \beta \begin{bmatrix}
 y_1 \\
 \vdots \\
 y_n \\
\end{bmatrix} + \alpha \begin{bmatrix}
 a_{11} & \cdots & a_{m1} \\
 \vdots & \ddots & \vdots \\
 a_{1n} & \cdots & a_{mn} \\
\end{bmatrix} \begin{bmatrix}
 x_1 \\
 \vdots \\
 x_n \\
\end{bmatrix}
\]

For SGEMTX and DGEMTX, the matrix-vector product for the transpose of a real general matrix:

\[
y \leftarrow y + \alpha A^\top x
\]

is expressed as follows:

\[
\begin{bmatrix}
 y_1 \\
 \vdots \\
 y_n \\
\end{bmatrix} \leftarrow \begin{bmatrix}
 y_1 \\
 \vdots \\
 y_n \\
\end{bmatrix} + \alpha \begin{bmatrix}
 a_{11} & \cdots & a_{m1} \\
 \vdots & \ddots & \vdots \\
 a_{1n} & \cdots & a_{mn} \\
\end{bmatrix} \begin{bmatrix}
 x_1 \\
 \vdots \\
 x_n \\
\end{bmatrix}
\]

In these expressions:
- \(y \) is a vector of length \(n \).
- \(\alpha \) is a scalar.
- \(\beta \) is a scalar.
- \(A^\top \) is the transpose of matrix \(A \), where \(A \) is an \(m \) by \(n \) matrix.
- \(x \) is a vector of length \(m \).

Conjugate Transpose of a General Matrix: For CGEMV and ZGEMV, the matrix-vector product for the conjugate transpose of a general matrix:

\[
y \leftarrow \beta y + \alpha A^H x
\]
is expressed as follows:

\[
\begin{bmatrix}
y_1 \\
\vdots \\
y_n
\end{bmatrix}
\leftarrow
\begin{bmatrix}
y_1 \\
\vdots \\
y_n
\end{bmatrix} + \alpha
\begin{bmatrix}
\tilde{a}_{11} & \cdots & \tilde{a}_{1n} \\
\vdots & \ddots & \vdots \\
\tilde{a}_{m1} & \cdots & \tilde{a}_{mn}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
\vdots \\
x_m
\end{bmatrix}
\]

where:

- \(y \) is a vector of length \(n \).
- \(\alpha \) is a scalar.
- \(\beta \) is a scalar.
- \(A^H \) is the conjugate transpose of matrix \(A \), where \(A \) is an \(m \) by \(n \) matrix.
- \(x \) is a vector of length \(m \).

Error Conditions

Resource Errors: Unable to allocate internal work area (for SGEMV, DGEMV, CGEMV, and ZGEMV).

Computational Errors: None

Input-Argument Errors
1. \(\text{transa} \neq 'N', 'T', \) or 'C'
2. \(m < 0 \)
3. \(m > \text{lda} \)
4. \(n < 0 \)
5. \(\text{lda} \leq 0 \)
6. \(\text{incy} = 0 \)

Example 1: This example shows the computation for \(\text{transa} \) equal to 'N', where the real general matrix \(A \) is used in the computation. Because \(\text{lda} \) is 10 and \(n \) is 3, array \(A \) must be declared as \(A(E1:E2,F1:F2) \), where \(E2-E1+1 = 10 \) and \(F2-F1+1 \geq 3 \). In this example, array \(A \) is declared as \(A(1:10,0:2) \).

Call Statement and Input

\[
\begin{array}{ccccccccc}
\text{TRANSA} & M & N & \text{ALPHA} & A & \text{LDA} & X & \text{INCY} & \text{BETA} & Y
\end{array}
\]
\[
\begin{array}{ccccccccc}
\text{CALL SGEMV}('N',4,3,1.0,A(1,0),10,X,1,1.0,Y,2)
\end{array}
\]

\[
A = \begin{bmatrix}
 1.0 & 2.0 & 3.0 \\
 2.0 & 2.0 & 4.0 \\
 3.0 & 2.0 & 2.0 \\
 4.0 & 2.0 & 1.0 \\
 \end{bmatrix}
\]

Chapter 8. Linear Algebra Subprograms 299
SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX

X = (3.0, 2.0, 1.0)
Y = (4.0, 5.0, 2.0, 3.0)

Output
Y = (14.0, 19.0, 17.0, 20.0)

Example 2: This example shows the computation for TRANSA equal to 'T', where the transpose of the real general matrix A is used in the computation. Array A must follow the same rules as given in Example 1. In this example, array A is declared as A(-1:8,1:3).

Call Statement and Input

```
TRANSA M N ALPHA A LDA X INCX BETA Y INCY
```

```
CALL SGEMV( 'T' , 4 , 3 , 1.0 , A(-1,1) , 1.0 , X , 1 , 2.0 , Y , 2 )
```

A = (same as input A in Example 1)
X = (3.0, 2.0, 1.0, 4.0)
Y = (1.0, 2.0, 3.0)

Output
Y = (28.0, 24.0, 29.0)

Example 3: This example shows the computation for TRANSA equal to 'N', where the complex general matrix A is used in the computation.

Call Statement and Input

```
TRANSA M N ALPHA A LDA X INCX BETA Y INCY
```

```
CALL CGEMV( 'N' , 5 , 3 , ALPHA , A , 1 , X , 1 , BETA , Y , 1 )
```

```
ALPHA = (1.0, 0.0)
```

```
\[
A = \begin{bmatrix}
(1.0, 2.0) & (3.0, 5.0) & (2.0, 0.0) \\
(2.0, 3.0) & (7.0, 9.0) & (4.0, 8.0) \\
(7.0, 4.0) & (1.0, 4.0) & (6.0, 0.0) \\
(8.0, 2.0) & (2.0, 5.0) & (8.0, 0.0) \\
(9.0, 1.0) & (3.0, 6.0) & (1.0, 0.0) \\
. & . & . \\
. & . & . \\
. & . & . \\
. & . & . \\
. & . & .
\end{bmatrix}
```

X = ((1.0, 2.0), (4.0, 0.0), (1.0, 1.0))
BETA = (1.0, 0.0)
Y = ((1.0, 2.0), (4.0, 0.0), (1.0, -1.0), (3.0, 4.0), (2.0, 0.0))

Output
Y = ((12.0, 28.0), (24.0, 55.0), (10.0, 39.0), (23.0, 50.0), (22.0, 44.0))
Example 4: This example shows the computation for TRANSA equal to 'T', where the transpose of complex general matrix \(A \) is used in the computation. Because \(\beta \) is zero, the result of the computation is \(\alpha A^T x \)

Call Statement and Input

\[
\begin{align*}
\text{TRANSA} & \quad M \quad N \quad \text{ALPHA} \quad A \quad \text{LDA} \quad X \quad \text{INCX} \quad \text{BETA} \quad Y \quad \text{INCY} \\
\text{CALL} & \quad \text{CGEMV('T', 5, 3, ALPHA, A, 1:root, X, 1, BETA, Y, 1)} \\
\end{align*}
\]

Output

\[
Y = ((42.0, 67.0), (10.0, 87.0), (50.0, 74.0))
\]

Example 5: This example shows the computation for TRANSA equal to 'C', where the conjugate transpose of the complex general matrix \(A \) is used in the computation.

Call Statement and Input

\[
\begin{align*}
\text{TRANSA} & \quad M \quad N \quad \text{ALPHA} \quad A \quad \text{LDA} \quad X \quad \text{INCX} \quad \text{BETA} \quad Y \quad \text{INCY} \\
\text{CALL} & \quad \text{CGEMV('C', 5, 3, ALPHA, A, 10, X, 1, BETA, Y, 1)} \\
\end{align*}
\]

Output

\[
Y = ((-73.0, -13.0), (-74.0, 57.0), (-49.0, -11.0))
\]

Example 6: This example shows a matrix, \(A \), contained in a larger array, \(A \). The strides of vectors \(x \) and \(y \) are positive. Because \(lda \) is 10 and \(n \) is 3, array \(A \) must be declared as \(A(E1:E2,F1:F2) \), where \(E2-E1+1 \geq 10 \) and \(F2-F1+1 \geq 3 \). For this example, array \(A \) is declared as \(A(1:10,0:2) \).

Call Statement and Input

\[
\begin{align*}
M \quad N \quad \text{ALPHA} \quad A \quad \text{LDA} \quad X \quad \text{INCX} \quad Y \quad \text{INCY} \\
\text{CALL} & \quad \text{SGEMX(4, 3, 1.0, A(1,0), 10, X, 1, Y, 2)} \\
\end{align*}
\]
SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX

\[
A = \begin{bmatrix}
1.0 & 2.0 & 3.0 \\
2.0 & 2.0 & 4.0 \\
3.0 & 2.0 & 2.0 \\
4.0 & 2.0 & 1.0 \\
\end{bmatrix}
\]

\[X = (3.0, 2.0, 1.0)\]

\[Y = (4.0, ., 5.0, ., 2.0, ., 3.0)\]

Output

\[Y = (14.0, ., 19.0, ., 17.0, ., 20.0)\]

Example 7: This example shows a matrix, \(A\), contained in a larger array, \(A\). The strides of vectors \(x\) and \(y\) are of opposite sign. For \(y\), which has negative stride, processing begins at element \(Y(7)\), which is 4.0. Array \(A\) must follow the same rules as given in Example 6. For this example, array \(A\) is declared as \(A(-1:8,1:3)\).

Call Statement and Input

```
M N ALPHA A LDA X INCX Y INCY
| | | | | | | | |
CALL SGEMX( 4, 3, 1.0, A(-1,1), 1, X, 1, Y, -2 )
```

\[A = \text{(same as input } A \text{ in Example 6)}\]

\[X = (3.0, 2.0, 1.0)\]

\[Y = (3.0, ., 2.0, ., 5.0, ., 4.0)\]

Output

\[Y = (20.0, ., 17.0, ., 19.0, ., 14.0)\]

Example 8: This example shows a matrix, \(A\), contained in a larger array, \(A\), and the first element of the matrix is not the first element of the array. Array \(A\) must follow the same rules as given in Example 6. For this example, array \(A\) is declared as \(A(1:10,1:3)\).

Call Statement and Input

```
M N ALPHA A LDA X INCX Y INCY
| | | | | | | | |
CALL SGEMX( 4, 3, 1.0, A(5,1), 10, X, 1, Y, 1 )
```

302 Engineering and Scientific Subroutine Library Version 3 Guide and Reference
Example 9: This example shows a matrix, \(A \), and an array, \(A \), having the same number of rows. For this case, \(m \) and \(lda \) are equal. Because \(lda \) is 4 and \(n \) is 3, array \(A \) must be declared as \(A(E1:E2,F1:F2) \), where \(E2-E1+1=4 \) and \(F2-F1+1 \geq 3 \). For this example, array \(A \) is declared as \(A(1:4,0:2) \).

Call Statement and Input

\[
\begin{align*}
& \text{M N ALPHA A LDA X INCX Y INCY} \\
& \text{CALL SGEMX(4 , 3 , 1.0 , A(1,0) , 4 , X , 1 , Y , 1)}
\end{align*}
\]

\[
A = \begin{bmatrix}
1.0 & 2.0 & 3.0 \\
2.0 & 2.0 & 4.0 \\
3.0 & 2.0 & 2.0 \\
4.0 & 2.0 & 1.0
\end{bmatrix}
\]

\[
X = (3.0, 2.0, 1.0)
\]

\[
Y = (4.0, 5.0, 2.0, 3.0)
\]

Output

\[
Y = (14.0, 19.0, 17.0, 20.0)
\]

Example 10: This example shows a matrix, \(A \), and an array, \(A \), having the same number of rows. For this case, \(m \) and \(lda \) are equal. Because \(lda \) is 4 and \(n \) is 3, array \(A \) must be declared as \(A(E1:E2,F1:F2) \), where \(E2-E1+1=4 \) and \(F2-F1+1 \geq 3 \). For this example, array \(A \) is declared as \(A(1:4,0:2) \).

Call Statement and Input

\[
\begin{align*}
& \text{M N ALPHA A LDA X INCX Y INCY} \\
& \text{CALL SGEMX(4 , 3 , 1.0 , A(1,0) , 4 , X , 1 , Y , 1)}
\end{align*}
\]

\[
A = \begin{bmatrix}
1.0 & 2.0 & 3.0 \\
2.0 & 2.0 & 4.0 \\
3.0 & 2.0 & 2.0 \\
4.0 & 2.0 & 1.0
\end{bmatrix}
\]

\[
X = (3.0, 2.0, 1.0)
\]

\[
Y = (4.0, 5.0, 2.0, 3.0)
\]

Output

\[
Y = (14.0, 19.0, 17.0, 20.0)
\]
CALL SGEMTX(4 , 3 , 1.0 , A(1,0) , 4 , X , 1 , Y , 1)

\[A = \begin{bmatrix}
1.0 & 2.0 & 3.0 \\
2.0 & 2.0 & 4.0 \\
3.0 & 2.0 & 2.0 \\
4.0 & 2.0 & 1.0
\end{bmatrix} \]

\[X = (3.0, 2.0, 1.0, 4.0) \]
\[Y = (1.0, 2.0, 3.0) \]

Output
\[Y = (27.0, 22.0, 26.0) \]

Example 11: This example shows a computation in which \(\alpha \) is greater than 1. Array \(A \) must follow the same rules as given in Example 10. For this example, array \(A \) is declared as \(A(-1:2,1:3) \).

Call Statement and Input

CALL SGEMTX(4 , 3 , 2.0 , A(-1,1) , 4 , X , 1 , Y , 1)

\[A = \text{(same as input } A \text{ in Example 10)} \]
\[X = (3.0, 2.0, 1.0, 4.0) \]
\[Y = (1.0, 2.0, 3.0) \]

Output
\[Y = (53.0, 42.0, 49.0) \]
SGER, DGER, CGERU, ZGERU, CGERC, and ZGERC—Rank-One Update of a General Matrix

SGER, DGER, CGERU, and ZGERU compute the rank-one update of a general matrix, using the scalar α, matrix A, vector x, and the transpose of vector y:

$$ A \leftarrow A + \alpha xy^T $$

CGERC and ZGERC compute the rank-one update of a general matrix, using the scalar α, matrix A, vector x, and the conjugate transpose of vector y:

$$ A \leftarrow A + \alpha xy^H $$

Table 63. Data Types

<table>
<thead>
<tr>
<th>α, A, x, y</th>
<th>Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>SGER</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DGER</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>CGERU and CGERC</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>ZGERU and ZGERC</td>
</tr>
</tbody>
</table>

Note: For compatibility with earlier releases of ESSL, you can use the names SGER1 and DGER1 for SGER and DGER, respectively.

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL SGER</th>
<th>DGER</th>
<th>CGERU</th>
<th>ZGERU</th>
<th>CGERC</th>
<th>ZGERC $(m, n, \alpha, x, incx, y, incy, a, lda)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>sger</td>
<td>dger</td>
<td>cgeru</td>
<td>zgeru</td>
<td>cgerc</td>
<td>zgerc $(m, n, \alpha, x, incx, y, incy, a, lda)$;</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SGER</td>
<td>DGER</td>
<td>CGERU</td>
<td>ZGERU</td>
<td>CGERC</td>
<td>ZGERC $(m, n, \alpha, x, incx, y, incy, a, lda)$;</td>
</tr>
</tbody>
</table>

On Entry

m

is the number of rows in matrix A and the number of elements in vector x.

Specified as: a fullword integer; $0 \leq m \leq lda$.

n

is the number of columns in matrix A and the number of elements in vector y.

Specified as: a fullword integer; $n \geq 0$.

α

is the scaling constant α. Specified as: a number of the data type indicated in Table 63.

x

is the vector x of length m. Specified as: a one-dimensional array of (at least) length $1+\text{length } (m-1)|\text{incx}|$, containing numbers of the data type indicated in Table 63.

incx

is the stride for vector x. Specified as: a fullword integer. It can have any value.

y

is the vector y of length n, whose transpose or conjugate transpose is used in the computation.

Note: No data should be moved to form y^T or y^H; that is, the vector y should always be stored in its untransposed form.
SGER, DGER, CGERU, ZGERU, CGERC, and ZGERC

Specified as: a one-dimensional array of (at least) length 1+(n-1)|incy|, containing numbers of the data type indicated in Table 63.

incy
is the stride for vector y. Specified as: a fullword integer. It can have any value.

a
is the m by n matrix A. Specified as: an lda by (at least) n array, containing numbers of the data type indicated in Table 63 on page 305.

lda
is the size of the leading dimension of the array specified for a. Specified as: a fullword integer; lda > 0 and lda ≥ m.

On Return

a
is the m by n matrix A, containing the result of the computation.

Returned as: a two-dimensional array, containing numbers of the data type indicated in Table 63 on page 305.

Notes

1. In these subroutines, incx = 0 and incy = 0 are valid; however, the Level 2 BLAS standard considers incx = 0 and incy = 0 to be invalid. See references [34] and [35].

2. Matrix A can have no common elements with vectors x and y; otherwise, results are unpredictable. See “Concepts” on page 53.

Function: SGER, DGER, CGERU, and ZGERU compute the rank-one update of a general matrix:

\[A \leftarrow A + \alpha xy^T \]

where:

A is an m by n matrix.
\(\alpha \) is a scalar.
x is a vector of length m.
y^T is the transpose of vector y of length n.

It is expressed as follows:

\[
\begin{bmatrix}
 a_{11} & \ldots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{m1} & \ldots & a_{mn}
\end{bmatrix}
\leftarrow
\begin{bmatrix}
 a_{11} & \ldots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{m1} & \ldots & a_{mn}
\end{bmatrix}
+ \alpha
\begin{bmatrix}
 x_1 \\
 \vdots \\
 x_m
\end{bmatrix}
\times
\begin{bmatrix}
 y_1 \\
 \vdots \\
 y_n
\end{bmatrix}
\]

It can also be expressed as:
SGER, DGER, CGERU, ZGERU, CGERC, and ZGERC compute a slightly different rank-one update of a general matrix:

\[A \leftarrow A + \alpha xy^H \]

where:
- \(A \) is an \(m \times n \) matrix.
- \(\alpha \) is a scalar.
- \(x \) is a vector of length \(m \).
- \(y^H \) is the conjugate transpose of vector \(y \) of length \(n \).

It is expressed as follows:

\[
\begin{bmatrix}
 a_{11} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{m1} & \cdots & a_{mn}
\end{bmatrix} \leftarrow \begin{bmatrix}
 a_{11} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{m1} & \cdots & a_{mn}
\end{bmatrix} + \alpha \begin{bmatrix}
 x_1 \\
 \vdots \\
 x_m
\end{bmatrix}
\begin{bmatrix}
 y_1 \\
 \vdots \\
 y_n
\end{bmatrix}
\]

It can also be expressed as:

\[
\begin{bmatrix}
 a_{11} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{m1} & \cdots & a_{mn}
\end{bmatrix} \leftarrow \begin{bmatrix}
 a_{11} + \alpha x_1 y_1 & \cdots & a_{1n} + \alpha x_1 y_n \\
 \vdots & \ddots & \vdots \\
 a_{m1} + \alpha x_m y_1 & \cdots & a_{mn} + \alpha x_m y_n
\end{bmatrix}
\]

See references [34], [35], and [79]. No computation is performed if \(m, n \), or \(\alpha \) is zero. For CGERU and CGERC, intermediate results are accumulated in long precision. For SGER, intermediate results are accumulated in long precision on some platforms.

Error Conditions

Resource Errors: Unable to allocate internal work area.

Computational Errors: None

Input-Argument Errors
1. \(m < 0 \)
2. \(n < 0 \)
3. \(lda \leq 0 \)
4. \(m > lda \)
Example 1: This example shows a matrix, A, contained in a larger array, A. The strides of vectors x and y are positive. Because lda is 10 and n is 3, array A must be declared as $A(E1:E2,F1:F2)$, where $E2-E1+1=10$ and $F2-F1+1 = 3$. For this example, array A is declared as $A(1:10,0:2)$.

Call Statement and Input

```
    CALL SGER( 4 , 3 , 1:10 , X , 1 , Y , 2 , A(1,0) , 10 )
```

$X = (3.0, 2.0, 1.0, 4.0)$

$Y = (1.0, . , 2.0, . , 3.0)$

$A = \begin{bmatrix}
1.0 & 2.0 & 3.0 \\
2.0 & 2.0 & 4.0 \\
3.0 & 2.0 & 2.0 \\
4.0 & 2.0 & 1.0 \\
. & . & . \\
. & . & . \\
. & . & . \\
. & . & . \\
. & . & . \\
. & . & . \\
\end{bmatrix}$

Output

```
    CALL SGER( 4 , 3 , 1:10 , X , 1 , Y , 2 , A(1,0) , 10 )
```

$A = \begin{bmatrix}
4.0 & 8.0 & 12.0 \\
4.0 & 6.0 & 10.0 \\
4.0 & 4.0 & 5.0 \\
8.0 & 10.0 & 13.0 \\
. & . & . \\
. & . & . \\
. & . & . \\
. & . & . \\
. & . & . \\
. & . & . \\
\end{bmatrix}$

Example 2: This example shows a matrix, A, contained in a larger array, A. The strides of vectors x and y are of opposite sign. For y, which has negative stride, processing begins at element $Y(5)$, which is 1.0. Array A must follow the same rules as given in Example 1. For this example, array A is declared as $A(-1:8,1:3)$.

Call Statement and Input

```
    CALL SGER( 4 , 3 , 1:10 , X , 1 , Y , -2 , A(-1,0) , 10 )
```

$X = (3.0, 2.0, 1.0, 4.0)$

$Y = (3.0, . , 2.0, . , 1.0)$

$A =$ same as input A in Example 1
Output

\[A = \text{(same as input } A \text{ in Example 1)} \]

Example 3: This example shows a matrix, \(A \), contained in a larger array, \(A \), and the first element of the matrix is not the first element of the array. Array \(A \) must follow the same rules as given in Example 1. For this example, array \(A \) is declared as \(A(1:10,1:3) \).

Call Statement and Input

\[
\begin{align*}
M & \quad N & \quad \text{ALPHA} & \quad X & \quad \text{INCX} & \quad Y & \quad \text{INCY} & \quad A & \quad \text{LDA} \\
\hline
4 & \quad 3 & \quad 1.0 & \quad X & \quad 3 & \quad Y & \quad 1 & \quad A(4,1) & \quad 10 \\
\end{align*}
\]

\[
\text{CALL SGER(4, 3, 1.0, X, 3, Y, 1, A(4,1), 10)}
\]

\[X = (3.0, . , . , 2.0, . , . , 1.0, . , . , 4.0) \]

\[Y = (1.0, 2.0, 3.0) \]

\[
A = \begin{bmatrix}
1.0 & 2.0 & 3.0 \\
2.0 & 2.0 & 4.0 \\
3.0 & 2.0 & 2.0 \\
4.0 & 2.0 & 1.0 \\
. & . & . \\
. & . & . \\
. & . & . \\
. & . & . \\
\end{bmatrix}
\]

Output

\[
A = \begin{bmatrix}
. & . & . \\
. & . & . \\
. & . & . \\
4.0 & 8.0 & 12.0 \\
4.0 & 6.0 & 10.0 \\
4.0 & 4.0 & 5.0 \\
8.0 & 10.0 & 13.0 \\
. & . & . \\
. & . & . \\
. & . & . \\
\end{bmatrix}
\]

Example 4: This example shows a matrix, \(A \), and array, \(A \), having the same number of rows. For this case, \(m \) and \(lda \) are equal. Because \(lda \) is 4 and \(n \) is 3, array \(A \) must be declared as \(A(E1:E2,F1:F2) \), where \(E2-E1+1=4 \) and \(F2-F1+1 \geq 3 \). For this example, array \(A \) is declared as \(A(1:4,0:2) \).

Call Statement and Input

\[
\begin{align*}
M & \quad N & \quad \text{ALPHA} & \quad X & \quad \text{INCX} & \quad Y & \quad \text{INCY} & \quad A & \quad \text{LDA} \\
\hline
4 & \quad 3 & \quad 1.0 & \quad X & \quad 1 & \quad Y & \quad 1 & \quad A(1,0) & \quad 4 \\
\end{align*}
\]

\[
\text{CALL SGER(4, 3, 1.0, X, 1, Y, 1, A(1,0), 4)}
\]

\[X = (3.0, 2.0, 1.0, 4.0) \]

\[Y = (1.0, 2.0, 3.0) \]
SGER, DGER, CGERU, ZGERU, CGERC, and ZGERC

\[
A = \begin{bmatrix}
1.0 & 2.0 & 3.0 \\
2.0 & 2.0 & 4.0 \\
3.0 & 2.0 & 2.0 \\
4.0 & 2.0 & 1.0 \\
\end{bmatrix}
\]

Output

\[
A = \begin{bmatrix}
4.0 & 8.0 & 12.0 \\
4.0 & 6.0 & 10.0 \\
4.0 & 4.0 & 5.0 \\
8.0 & 10.0 & 13.0 \\
\end{bmatrix}
\]

Example 5: This example shows a computation in which scalar value for alpha is greater than 1. Array A must follow the same rules as given in Example 4. For this example, array A is declared as A(-1:2,1:3).

Call Statement and Input

\[
\begin{align*}
& \text{CALL SGER(4, 3, 2.0, X, 1, Y, 1, A(-1,1), 4)} \\
& X = (3.0, 2.0, 1.0, 4.0) \\
& Y = (1.0, 2.0, 3.0) \\
& A = \text{same as input A in Example 4}
\end{align*}
\]

Output

\[
A = \begin{bmatrix}
7.0 & 14.0 & 21.0 \\
6.0 & 10.0 & 16.0 \\
5.0 & 6.0 & 8.0 \\
12.0 & 18.0 & 25.0 \\
\end{bmatrix}
\]

Example 6: This example shows a rank-one update in which all data items contain complex numbers, and the transpose \(y^T\) is used in the computation. Matrix A is contained in a larger array, A. The strides of vectors \(x\) and \(y\) are positive. The Fortran DIMENSION statement for array A must follow the same rules as given in Example 1. For this example, array A is declared as A(1:10,0:2).

Call Statement and Input

\[
\begin{align*}
& \text{CALL CGERU(5, 3, ALPHA, X, 1, Y, 1, A(1,:), 1:2)} \\
& \text{ALPHA} = (1.0, 0.0) \\
& X = ((1.0, 2.0), (4.0, 0.0), (1.0, 1.0), (3.0, 4.0), (2.0, 0.0)) \\
& Y = ((1.0, 2.0), (4.0, 0.0), (1.0, -1.0))
\end{align*}
\]
Example 7: This example shows a rank-one update in which all data items contain complex numbers, and the conjugate transpose y^* is used in the computation. Matrix A is contained in a larger array, A. The strides of vectors x and y are positive. The Fortran DIMENSION statement for array A must follow the same rules as given in Example 1. For this example, array A is declared as $A(1:10,0:2)$.

Call Statement and Input

```
CALL CGERC( 5 , 3 , ALPHA , X , 1 , Y , 1 , A(1,:z"ro"ot) , 1:z"ro"ot )
```

```
ALPHA = (1.0, 0.0)
X = ((1.0, 2.0), (4.0, 0.0), (1.0, 1.0), (3.0, 4.0), (2.0, 0.0))
Y = ((1.0, 2.0), (4.0, 0.0), (1.0, -1.0))
A = (same as input A in Example 6 )
```
SGER, DGER, CGERU, ZGERU, CGERC, and ZGERC

\[
A = \begin{bmatrix}
(6.0, 2.0) & (7.0, 13.0) & (1.0, 3.0) \\
(6.0, -5.0) & (23.0, 9.0) & (8.0, 12.0) \\
(10.0, 3.0) & (5.0, 8.0) & (6.0, 2.0) \\
(19.0, 0.0) & (14.0, 21.0) & (7.0, 7.0) \\
(11.0, -3.0) & (11.0, 6.0) & (3.0, 2.0) \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& &
\end{bmatrix}
\]
SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, ZHEMV, SSLMX, and DSLMX — Matrix-Vector Product for a Real Symmetric or Complex Hermitian Matrix

SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, ZHEMV, SSLMX, and DSLMX compute the matrix-vector product for either a real symmetric matrix or a complex Hermitian matrix, using the scalars α and β, matrix A, and vectors x and y:

$$y \leftarrow \beta y + \alpha Ax$$

SSLX and DSLMX compute the matrix-vector product for a real symmetric matrix, using the scalar α, matrix A, and vectors x and y:

$$y \leftarrow y + \alpha Ax$$

The following storage modes are used:

- For SSPMV, DSPMV, CHPMV, and ZHPMV, matrix A is stored in upper- or lower-packed storage mode.
- For SSYMV, DSYMV, CHEMV, and ZHEMV, matrix A is stored in upper or lower storage mode.
- For SSLMX and DSLMX, matrix A is stored in lower-packed storage mode.

Table 64. Data Types

<table>
<thead>
<tr>
<th>α, β, A, x, y</th>
<th>Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>SSPMV, SSYMV, and SSLMX</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DSPMV, DSYMV, and DSLMX</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>CHPMV and CHEMV</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>ZHPMV and ZHEMV</td>
</tr>
</tbody>
</table>

Note: SSPMV and DSPMV are Level 2 BLAS subroutines. You should use these subroutines instead of SSLMX and DSLMX, which are provided only for compatibility with earlier releases of ESSL.

Syntax

Fortran

- CALL SSPMV | DSPMV | CHPMV | ZHPMV (uplo, n, alpha, ap, x, incx, beta, y, incy)
- CALL SSYMV | DSYMV | CHEMV | ZHEMV (uplo, n, alpha, a, lda, x, incx, beta, y, incy)
- CALL SSLMX | DSLMX (n, alpha, ap, x, incx, y, incy)

C and C++

- sspmv | dspmv | chpmv | zhpmv (uplo, n, alpha, ap, x, incx, beta, y, incy);
- ssymv | dsymv | chemv | zhemv (uplo, n, alpha, a, lda, x, incx, beta, y, incy);
- sslmx | dslmx (n, alpha, ap, x, incx, y, incy);

PL/I

- CALL SSPMV | DSPMV | CHPMV | ZHPMV (uplo, n, alpha, ap, x, incx, beta, y, incy);
- CALL SSYMV | DSYMV | CHEMV | ZHEMV (uplo, n, alpha, a, lda, x, incx, beta, y, incy);
- CALL SSLMX | DSLMX (n, alpha, ap, x, incx, y, incy);

On Entry
uplo indicates the storage mode used for matrix A, where:

- If $uplo = 'U'$, A is stored in upper-packed or upper storage mode.
- If $uplo = 'L'$, A is stored in lower-packed or lower storage mode.

Specified as: a single character. It must be 'U' or 'L'.

n is the number of elements in vectors x and y and the order of matrix A.

Specified as: a fullword integer; $n \geq 0$.

α is the scaling constant α. Specified as: a number of the data type indicated in Table 64 on page 313.

ap has the following meaning:

- For SSPMV and DSPMV, ap is the real symmetric matrix A of order n, stored in upper- or lower-packed storage mode.
- For CHPMV and ZHPMV, ap is the complex Hermitian matrix A of order n, stored in upper- or lower-packed storage mode.
- For SSLMX and DSLMX, ap is the real symmetric matrix A of order n, stored in lower-packed storage mode.

Specified as: a one-dimensional array of (at least) length $n(n+1)/2$, containing numbers of the data type indicated in Table 64 on page 313.

a has the following meaning:

- For SSYMV and DSYMV, a is the real symmetric matrix A of order n, stored in upper or lower storage mode.
- For CHEMV and ZHEMV, a is the complex Hermitian matrix A of order n, stored in upper or lower storage mode.

Specified as: an lda by (at least) n array, containing numbers of the data type indicated in Table 64 on page 313.

lda is the leading dimension of the array specified for a. Specified as: a fullword integer; $lda > 0$ and $lda \geq n$.

x is the vector x of length n. Specified as: a one-dimensional array of (at least) length $1+(n-1)|incx|$, containing numbers of the data type indicated in Table 64 on page 313.

$incx$ is the stride for vector x. Specified as: a fullword integer, where:

- For SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, and ZHEMV, $incx < 0$ or $incx > 0$.
- For SSLMX and DSLMX, $incx$ can have any value.

β is the scaling constant β. Specified as: a number of the data type indicated in Table 64 on page 313.

y is the vector y of length n. Specified as: a one-dimensional array of (at least) length $1+(n-1)|incy|$, containing numbers of the data type indicated in Table 64 on page 313.
incy

is the stride for vector y. Specified as: a fullword integer; $incy > 0$ or $incy < 0$.

On Return

y

is the vector y of length n, containing the result of the computation. Returned as: a one-dimensional array, containing numbers of the data type indicated in Table 64 on page 313.

Notes

1. All subroutines accept lowercase letters for the uplo argument.
2. The vector y must have no common elements with vector x or matrix A; otherwise, results are unpredictable. See “Concepts” on page 53.
3. On input, the imaginary parts of the diagonal elements of the complex Hermitian matrix A are assumed to be zero, so you do not have to set these values.
4. For a description of how symmetric matrices are stored in upper- or lower-packed storage mode and upper or lower storage mode, see “Symmetric Matrix” on page 63. For a description of how complex Hermitian matrices are stored in upper- or lower-packed storage mode and upper or lower storage mode, see “Complex Hermitian Matrix” on page 68.

Function: These subroutines perform the computations described in the two sections below. See references [34], [35], and [79]. For SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, and ZHEMV, if n is zero or if α is zero and β is one, no computation is performed. For SSLMX and DSLMX, if n or α is zero, no computation is performed.

For SSLMX, SSPMV, SSYMV, CHPMV, and CHEMV, intermediate results are accumulated in long precision. However, several intermediate stores may occur for each element of the vector y.

For SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, and ZHEMV: These subroutines compute the matrix-vector product for either a real symmetric matrix or a complex Hermitian matrix:

$$ y \leftarrow \beta y + \alpha A x $$

where:

y is a vector of length n.
α is a scalar.
β is a scalar.
A is a real symmetric or complex Hermitian matrix of order n.
x is a vector of length n.

It is expressed as follows:
SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, ZHEMV, SSLMX, and DSLMX

For SSLMX and DSLMX: These subroutines compute the matrix-vector product for a real symmetric matrix stored in lower-packed storage mode:

\[y \leftarrow y + \alpha Ax \]

where:
- \(y \) is a vector of length \(n \).
- \(\alpha \) is a scalar.
- \(A \) is a real symmetric matrix of order \(n \).
- \(x \) is a vector of length \(n \).

It is expressed as follows:

\[
\begin{bmatrix}
 y_1 \\
 \vdots \\
 y_n \\
\end{bmatrix}
\leftarrow
\begin{bmatrix}
 y_1 \\
 \vdots \\
 y_n \\
\end{bmatrix}
+ \alpha
\begin{bmatrix}
 a_{11} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{n1} & \cdots & a_{nn} \\
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 \vdots \\
 x_n \\
\end{bmatrix}
\]

Error Conditions

Computational Errors: None

Input-Argument Errors
1. \(\text{uplo} \neq \text{'L'} \) or \(\text{'U'} \)
2. \(n < 0 \)
3. \(\text{lda} < n \)
4. \(\text{lda} \leq 0 \)
5. \(\text{incx} = 0 \)
6. \(\text{incy} = 0 \)

Example 1: This example shows vectors \(x \) and \(y \) with positive strides and a real symmetric matrix \(A \) of order 3, stored in lower-packed storage mode. Matrix \(A \) is:

\[
\begin{bmatrix}
 8.0 & 4.0 & 2.0 \\
 4.0 & 6.0 & 7.0 \\
 2.0 & 7.0 & 3.0 \\
\end{bmatrix}
\]

Call Statement and Input
SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, ZHEMV, SSLMX, and DSLMX

UPLO N ALPHA AP X INCX BETA Y INCY
| | | | | | |
CALL SSPMV('L' , 3 , 1.0 , AP , X , 1 , 1.0 , Y , 2)

AP = (8.0, 4.0, 2.0, 6.0, 7.0, 3.0)
X = (3.0, 2.0, 1.0)
Y = (5.0, ., 3.0, ., 2.0)

Output
Y = (39.0, ., 34.0, ., 25.0)

Example 2: This example shows vector \(x \) and \(y \) having strides of opposite signs. For \(x \), which has negative stride, processing begins at element \(x(5) \), which is 1.0. The real symmetric matrix \(A \) of order 3 is stored in upper-packed storage mode. It uses the same input matrix \(A \) as in Example 1.

Call Statement and Input

UPLO N ALPHA AP X INCX BETA Y INCY
| | | | | | |
CALL SSPMV('U' , 3 , 1.0 , AP , X , -2 , 2.0 , Y , 1)

AP = (8.0, 4.0, 6.0, 2.0, 7.0, 3.0)
X = (4.0, ., 2.0, ., 1.0)
Y = (6.0, 5.0, 4.0)

Output
Y = (36.0, 54.0, 36.0)

Example 3: This example shows vector \(x \) and \(y \) with positive stride and a complex Hermitian matrix \(A \) of order 3, stored in lower-packed storage mode. Matrix \(A \) is:

\[
\begin{bmatrix}
(1.0, 0.0) & (3.0, 5.0) & (2.0, -3.0) \\
(3.0, -5.0) & (7.0, 0.0) & (4.0, -8.0) \\
(2.0, 3.0) & (4.0, 8.0) & (6.0, 0.0)
\end{bmatrix}
\]

Note: On input, the imaginary parts of the diagonal elements of the complex Hermitian matrix \(A \) are assumed to be zero, so you do not have to set these values.

Call Statement and Input

UPLO N ALPHA AP X INCX BETA Y INCY
| | | | | | |
CALL CHPMV('L' , 3 , ALPHA , AP , X , 1 , BETA , Y , 2)

ALPHA = (1.0, 0.0)
AP = ((1.0, .), (3.0, -5.0), (2.0, 3.0), (7.0, .),
 (4.0, 8.0), (6.0, .))
X = ((1.0, 2.0), (4.0, 0.0), (3.0, 4.0))
BETA = (1.0, 0.0)
Y = ((1.0, 0.0), . , (2.0, -1.0), . , (2.0, 1.0))

Output
Y = ((32.0, 21.0), . , (87.0, -8.0), . , (32.0, 64.0))
Example 4: This example shows vector x and y having strides of opposite signs. For x, which has negative stride, processing begins at element $X(5)$, which is $(1.0, 2.0)$. The complex Hermitian matrix A of order 3 is stored in upper-packed storage mode. It uses the same input matrix A as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex Hermitian matrix A are assumed to be zero, so you do not have to set these values.

Call Statement and Input

```
CALL CHPMV( 'U' , 3 , ALPHA , AP , X , -2 , BETA , Y , 2 )
```

Output

$Y = ((31.0, 21.0), \ldots, (85.0, -7.0), \ldots, (30.0, 63.0))$

Example 5: This example shows vectors x and y with positive strides and a real symmetric matrix A of order 3, stored in lower storage mode. It uses the same input matrix A as in Example 1.

Call Statement and Input

```
CALL SSYMV( 'L' , 3 , 1.0 , A , 3 , X , 1 , 1.0 , Y , 2 )
```

Output

$Y = (39.0, \ldots, 34.0, \ldots, 25.0)$

Example 6: This example shows vector x and y having strides of opposite signs. For x, which has negative stride, processing begins at element $X(5)$, which is 1.0. The real symmetric matrix A of order 3 is stored in upper storage mode. It uses the same input matrix A as in Example 1.

Call Statement and Input

```
CALL SSYMV( 'L' , 3 , 1.0 , A , 3 , X , 1 , 1.0 , Y , 2 )
```
Example 7: This example shows vector x and y with positive stride and a complex Hermitian matrix A of order 3, stored in lower storage mode. It uses the same input matrix A as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex Hermitian matrix A are assumed to be zero, so you do not have to set these values.

Call Statement and Input

```
UPLO N ALPHA A LDA X INCX BETA Y INCY
```

```
CALL CHEMV( 'L' , 3 , ALPHA , A , 3 , X , 1 , BETA , Y , 2 )
```

Output

```
A = 
(1.0 , 0.0)
```

```
X = ((1.0, 2.0), (4.0, 0.0), (3.0, 4.0))
BETA = (1.0 , 0.0)
Y = ((1.0, 0.0), . , (2.0, -1.0), . , (2.0, 1.0))
```

Example 8: This example shows vector x and y having strides of opposite signs. For x, which has negative stride, processing begins at element $X(5)$, which is $(1.0, 2.0)$. The complex Hermitian matrix A of order 3 is stored in upper storage mode. It uses the same input matrix A as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex Hermitian matrix A are assumed to be zero, so you do not have to set these values.

Call Statement and Input

```
UPLO N ALPHA A LDA X INCX BETA Y INCY
```

```
CALL SSYMV( 'U' , 3 , ALPHA , A , 4 , X , -2 , BETA , Y , 1)
```

```
A = 
8.0 4.0 2.0
6.0 7.0
3.0
```

```
X = (4.0, . , 2.0, . , 1.0)
Y = (6.0, 5.0, 4.0)
```

Output

```
A = (36.0, 54.0, 36.0)
```

Chapter 8. Linear Algebra Subprograms 319
Example 9: This example shows vectors \(x \) and \(y \) with positive strides and a real symmetric matrix \(A \) of order 3. Matrix \(A \) is:

\[
\begin{bmatrix}
8.0 & 4.0 & 2.0 \\
4.0 & 6.0 & 7.0 \\
2.0 & 7.0 & 3.0
\end{bmatrix}
\]

Call Statement and Input

\[
\text{CALL SSLMX}(3, 1.0, \text{AP}, X, 1, Y, 2)
\]

\(\text{AP} = (8.0, 4.0, 2.0, 6.0, 7.0, 3.0) \)

\(X = (3.0, 2.0, 1.0) \)

\(Y = (5.0, . , 3.0, . , 2.0) \)

Output

\(Y = (39.0, . , 34.0, . , 25.0) \)
SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and DSLR1 —Rank-One Update of a Real Symmetric or Complex Hermitian Matrix

SSPR, DSPR, SSYR, DSYR, SSLR1, and DSLR1 compute the rank-one update of a real symmetric matrix, using the scalar α, matrix A, vector x, and its transpose x^T:

$$A \leftarrow A + \alpha xx^T$$

CHPR, ZHPR, CHER, and ZHER compute the rank-one update of a complex Hermitian matrix, using the scalar α, matrix A, vector x, and its conjugate transpose x^H:

$$A \leftarrow A + \alpha xx^H$$

The following storage modes are used:

- For SSPR, DSPR, CHPR, and ZHPR, matrix A is stored in upper- or lower-packed storage mode.
- For SSYR, DSYR, CHER, and ZHER, matrix A is stored in upper or lower storage mode.
- For SSLR1 and DSLR1, matrix A is stored in lower-packed storage mode.

<table>
<thead>
<tr>
<th>Table 65. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, x</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
<tr>
<td>Short-precision complex</td>
</tr>
<tr>
<td>Long-precision complex</td>
</tr>
</tbody>
</table>

Note: SSPR and DSPR are Level 2 BLAS subroutines. You should use these subroutines instead of SSLR1 and DSLR1, which are only provided for compatibility with earlier releases of ESSL.

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL SSPR</th>
<th>DSPR</th>
<th>CHPR</th>
<th>ZHPR (uplo, n, alpha, x, incx, ap)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CALL SSYR</td>
<td>DSYR</td>
<td>CHER</td>
<td>ZHER (uplo, n, alpha, x, incx, a, lda)</td>
</tr>
<tr>
<td></td>
<td>CALL SSLR1</td>
<td>DSLR1 (n, alpha, x, incx, ap)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C and C++</td>
<td>sspr</td>
<td>dspr</td>
<td>chpr</td>
<td>zhpr (uplo, n, alpha, x, incx, ap);</td>
</tr>
<tr>
<td></td>
<td>ssyr</td>
<td>dsyr</td>
<td>cher</td>
<td>zher (uplo, n, alpha, x, incx, a, lda);</td>
</tr>
<tr>
<td></td>
<td>sslr1</td>
<td>dslr1 (n, alpha, x, incx, ap);</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SSPR</td>
<td>DSPR</td>
<td>CHPR</td>
<td>ZHPR (uplo, n, alpha, x, incx, ap);</td>
</tr>
<tr>
<td></td>
<td>CALL SSYR</td>
<td>DSYR</td>
<td>CHER</td>
<td>ZHER (uplo, n, alpha, x, incx, a, lda);</td>
</tr>
<tr>
<td></td>
<td>CALL SSLR1</td>
<td>DSLR1 (n, alpha, x, incx, ap);</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On Entry
SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and DSLR1

uplo indicates the storage mode used for matrix \(A \), where:

- If \(uplo = 'U' \), \(A \) is stored in upper-packed or upper storage mode.
- If \(uplo = 'L' \), \(A \) is stored in lower-packed or lower storage mode.

Specified as: a single character. It must be \('U' \) or \('L' \).

n is the number of elements in vector \(x \) and the order of matrix \(A \). Specified as: a fullword integer; \(n \geq 0 \).

alpha is the scaling constant \(\alpha \). Specified as: a number of the data type indicated in Table 65 on page 321.

x is the vector \(x \) of length \(n \). Specified as: a one-dimensional array of (at least) length \(1+(n−1)|incx| \), containing numbers of the data type indicated in Table 65 on page 321.

incx is the stride for vector \(x \). Specified as: a fullword integer, where:

- For SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, and ZHER, \(incx < 0 \) or \(incx > 0 \).
- For SSLR1 and DSLR1, \(incx \) can have any value.

ap has the following meaning:

- For SSPR and DSPR, \(ap \) is the real symmetric matrix \(A \) of order \(n \), stored in upper- or lower-packed storage mode.
- For CHPR and ZHPR, \(ap \) is the complex Hermitian matrix \(A \) of order \(n \), stored in upper- or lower-packed storage mode.
- For SSLR1 and DSLR1, \(ap \) is the real symmetric matrix \(A \) of order \(n \), stored in lower-packed storage mode.

Specified as: a one-dimensional array of (at least) length \(n(n+1)/2 \), containing numbers of the data type indicated in Table 65 on page 321.

a has the following meaning:

- For SSYR and DSYR, \(a \) is the real symmetric matrix \(A \) of order \(n \), stored in upper or lower storage mode.
- For CHER and ZHER, \(a \) is the complex Hermitian matrix \(A \) of order \(n \), stored in upper or lower storage mode.

Specified as: an \(lda \) by (at least) \(n \) array, containing numbers of the data type indicated in Table 65 on page 321.

lda is the leading dimension of the array specified for \(a \). Specified as: a fullword integer; \(lda > 0 \) and \(lda \geq n \).

On Return

ap is the matrix \(A \) of order \(n \), containing the results of the computation. Returned as: a one-dimensional array, containing numbers of the data type indicated in Table 65 on page 321.
\(a \)
is the matrix \(A \) of order \(n \), containing the results of the computation. Returned as: a two-dimensional array, containing numbers of the data type indicated in Table 65 on page 321.

Notes

1. All subroutines accept lowercase letters for the \textit{uplo} argument.
2. The vector \(x \) must have no common elements with matrix \(A \); otherwise, results are unpredictable. See “Concepts” on page 53.
3. On input, the imaginary parts of the diagonal elements of the complex Hermitian matrix \(A \) are assumed to be zero, so you do not have to set these values. On output, if \(\alpha \neq 0.0 \), they are set to zero.
4. For a description of how symmetric matrices are stored in upper- or lower-packed storage mode and upper or lower storage mode, see “Symmetric Matrix” on page 63. For a description of how complex Hermitian matrices are stored in upper- or lower-packed storage mode and upper or lower storage mode, see “Complex Hermitian Matrix” on page 68.

Function: These subroutines perform the computations described in the two sections below. See references [34], [35], and [79]. If \(n \) or \(\alpha \) is 0, no computation is performed.

For CHPR and CHER, intermediate results are accumulated in long precision. For SSPR, SSYR, and SSLR1, intermediate results are accumulated in long precision on some platforms.

For **SSPR, DSPR, SSYR, DSYR, SSLR1, and DSLR1:** These subroutines compute the rank-one update of a real symmetric matrix:

\[
A \leftarrow A + \alpha xx^T
\]

where:

- \(A \) is a real symmetric matrix of order \(n \).
- \(\alpha \) is a scalar.
- \(x \) is a vector of length \(n \).
- \(x^T \) is the transpose of vector \(x \).

It is expressed as follows:

\[
\begin{bmatrix}
 a_{11} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{n1} & \cdots & a_{nn}
\end{bmatrix}
\leftarrow
\begin{bmatrix}
 a_{11} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{n1} & \cdots & a_{nn}
\end{bmatrix}
+ \alpha
\begin{bmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{bmatrix}
\]

For **CHPR, ZHPR, CHER, and ZHER:** These subroutines compute the rank-one update of a complex Hermitian matrix:

\[
A \leftarrow A + \alpha xx^H
\]

where:
\(A \) is a complex Hermitian matrix of order \(n \).
\(\alpha \) is a scalar.
\(\mathbf{x} \) is a vector of length \(n \).
\(\mathbf{x}^\dagger \) is the conjugate transpose of vector \(\mathbf{x} \).

It is expressed as follows:

\[
\begin{bmatrix}
 a_{11} & \ldots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{n1} & \ldots & a_{nn}
\end{bmatrix} \leftarrow \begin{bmatrix}
 a_{11} & \ldots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{n1} & \ldots & a_{nn}
\end{bmatrix} + \alpha \begin{bmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{bmatrix}
\]

Error Condition

Computational Errors: None

Input-Argument Errors

1. \(\text{uplo} \neq 'L' \) or \('U' \)
2. \(n < 0 \)
3. \(\text{incx} = 0 \)
4. \(\text{lda} \leq 0 \)
5. \(\text{lda} < n \)

Example 1: This example shows a vector \(\mathbf{x} \) with a positive stride, and a real symmetric matrix \(A \) of order 3, stored in lower-packed storage mode. Matrix \(A \) is:

\[
\begin{bmatrix}
 8.0 & 4.0 & 2.0 \\
 4.0 & 6.0 & 7.0 \\
 2.0 & 7.0 & 3.0
\end{bmatrix}
\]

Call Statement and Input

```
UPLO   N   ALPHA   X   INCX   AP
| | | | | |
CALL SSPR( 'L' , 3 , 1.0 , X , 1 , AP )
```

\(\mathbf{X} = (3.0, 2.0, 1.0) \)
\(\mathbf{AP} = (8.0, 4.0, 2.0, 6.0, 7.0, 3.0) \)

Output

\(\mathbf{AP} = (17.0, 10.0, 5.0, 10.0, 9.0, 4.0) \)

Example 2: This example shows a vector \(\mathbf{x} \) with a negative stride, and a real symmetric matrix \(A \) of order 3, stored in upper-packed storage mode. It uses the same input matrix \(A \) as in Example 1.

Call Statement and Input
SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and DSLR1

CALL SSPR('U' , 3 , 1.:z"ro"ot , X , -2 , AP)

\[
X = (1.0, 2.0, 3.0)
\]
\[
AP = (8.0, 4.0, 6.0, 2.0, 7.0, 3.0)
\]

Output
\[
AP = (17.0, 10.0, 10.0, 5.0, 9.0, 4.0)
\]

Example 3: This example shows a vector \(x \) with a positive stride, and a complex Hermitian matrix \(A \) of order 3, stored in lower-packed storage mode. Matrix \(A \) is:

\[
\begin{pmatrix}
10.0 & 3.0 & 2.0 \\
3.0 & 7.0 & 0.0 \\
2.0 & 4.0 & 6.0
\end{pmatrix}
\]

Note: On input, the imaginary parts of the diagonal elements of the complex Hermitian matrix \(A \) are assumed to be zero, so you do not have to set these values. On output, if \(\alpha \neq 0.0 \), they are set to zero.

Call Statement and Input

CALL CHPR('L' , 3 , 1.0 , X , 1 , AP)

\[
X = ((1.0, 2.0), (4.0, 0.0), (3.0, 4.0))
\]
\[
AP = ((1.0, .), (3.0, -5.0), (2.0, 3.0), (7.0, .),
(4.0, 8.0), (6.0, .))
\]

Output
\[
AP = ((6.0, 0.0), (7.0, -13.0), (13.0, 1.0), (23.0, 0.0),
(16.0, 24.0), (31.0, 0.0))
\]

Example 4: This example shows a vector \(x \) with a negative stride, and a complex Hermitian matrix \(A \) of order 3, stored in upper-packed storage mode. It uses the same input matrix \(A \) as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex Hermitian matrix \(A \) are assumed to be zero, so you do not have to set these values. On output, if \(\alpha \neq 0.0 \), they are set to zero.

Call Statement and Input

CALL CHPR('U' , 3 , 1.0 , X , -2 , AP)

\[
X = ((3.0, 4.0), . , (4.0, 0.0), . , (1.0, 2.0))
\]
\[
AP = ((1.0, .), (3.0, 5.0), (7.0, .), (2.0, -3.0),
(4.0, -8.0), (6.0, .))
\]

Output
\[
AP = ((6.0, 0.0), (7.0, 13.0), (23.0, 0.0), (13.0, -1.0),
(16.0, -24.0), (31.0, 0.0))
\]
Example 5: This example shows a vector x with a positive stride, and a real symmetric matrix A of order 3, stored in lower storage mode. It uses the same input matrix A as in Example 1.

Call Statement and Input

```
UPLO N ALPHA X INCX A LDA
| | | | | |
CALL SSYR( 'L' , 3 , 1.0 , X , 1 , A , 3 )
```

$X = (3.0, 2.0, 1.0)$

$A = \begin{bmatrix}
8.0 & . & . \\
4.0 & 6.0 & . \\
2.0 & 7.0 & 3.0 \\
\end{bmatrix}$

Output

```
A = \begin{bmatrix}
17.0 & . & . \\
10.0 & 10.0 & . \\
5.0 & 9.0 & 4.0 \\
\end{bmatrix}
```

Example 6: This example shows a vector x with a negative stride, and a real symmetric matrix A of order 3, stored in upper storage mode. It uses the same input matrix A as in Example 1.

Call Statement and Input

```
UPLO N ALPHA X INCX A LDA
| | | | | |
CALL SSYR( 'U' , 3 , 1.0 , X , -2 , A , 4 )
```

$X = (1.0, . , 2.0, . , 3.0)$

$A = \begin{bmatrix}
8.0 & 4.0 & 2.0 \\
. & 6.0 & 7.0 \\
. & . & 3.0 \\
. & . & . \\
\end{bmatrix}$

Output

```
A = \begin{bmatrix}
17.0 & 10.0 & 5.0 \\
. & 10.0 & 9.0 \\
. & . & 4.0 \\
. & . & . \\
\end{bmatrix}
```

Example 7: This example shows a vector x with a positive stride, and a complex Hermitian matrix A of order 3, stored in lower storage mode. It uses the same input matrix A as in Example 3.
Note: On input, the imaginary parts of the diagonal elements of the complex Hermitian matrix A are assumed to be zero, so you do not have to set these values. On output, if $\alpha \neq 0.0$, they are set to zero.

Call Statement and Input

```
CALL CHER('L', 3, 1.0, X, 1, A, 3)
```

$$X = ((1.0, 2.0), (4.0, 0.0), (3.0, 4.0))$$

$$A = \begin{bmatrix}
(1.0, .) & . & . \\
(3.0, -5.0) & (7.0, .) & . \\
(2.0, 3.0) & (4.0, 8.0) & (6.0, .)
\end{bmatrix}$$

Output

$$A = \begin{bmatrix}
(6.0, 0.0) & . & . \\
(7.0, -13.0) & (23.0, 0.0) & . \\
(13.0, 1.0) & (16.0, 24.0) & (31.0, 0.0)
\end{bmatrix}$$

Example 8: This example shows a vector x with a negative stride, and a complex Hermitian matrix A of order 3, stored in upper storage mode. It uses the same input matrix A as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex Hermitian matrix A are assumed to be zero, so you do not have to set these values. On output, if $\alpha \neq 0.0$, they are set to zero.

Call Statement and Input

```
CALL CHER('U', 3, 1.0, X, -2, A, 3)
```

$$X = ((3.0, 4.0), ., (4.0, 0.0), ., (1.0, 2.0))$$

$$A = \begin{bmatrix}
(1.0, .) & (3.0, 5.0) & (2.0, -3.0) \\
. & (7.0, .) & (4.0, -8.0) \\
. & . & (6.0, .)
\end{bmatrix}$$

Output

$$A = \begin{bmatrix}
(6.0, 0.0) & (7.0, 13.0) & (13.0, -1.0) \\
. & (23.0, 0.0) & (16.0, -24.0) \\
. & . & (31.0, 0.0)
\end{bmatrix}$$

Example 9: This example shows a vector x with a positive stride, and a real symmetric matrix A of order 3, stored in lower-packed storage mode. It uses the same input matrix A as in Example 1.
Call Statement and Input

\[
\begin{array}{c|c|c|c|c}
\text{N} & \text{ALPHA} & \text{X} & \text{INCX} & \text{AP} \\
\hline
\end{array}
\]

\text{CALL SSLR1(3 , 1.0 , X , 1 , AP)}

\begin{align*}
\text{X} & = (3.0, 2.0, 1.0) \\
\text{AP} & = (8.0, 4.0, 2.0, 6.0, 7.0, 3.0)
\end{align*}

Output

\begin{align*}
\text{AP} & = (17.0, 10.0, 5.0, 10.0, 9.0, 4.0)
\end{align*}
SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2, and DSLR2—Rank-Two Update of a Real Symmetric or Complex Hermitian Matrix

SSPR2, DSPR2, SSYR2, DSYR2, SSLR2, and DSLR2 compute the rank-two update of a real symmetric matrix, using the scalar α, matrix A, vectors x and y, and their transposes x^T and y^T:

$$A \leftarrow A + \alpha xy^T + \alpha yx^T$$

CHPR2, ZHPR2, CHER2, and ZHER2, compute the rank-two update of a complex Hermitian matrix, using the scalar α, matrix A, vectors x and y, and their conjugate transposes x^H and y^H:

$$A \leftarrow A + \alpha xy^H + \overline{\alpha} yx^H$$

The following storage modes are used:

- For SSPR2, DSPR2, CHPR2, and ZHPR2, matrix A is stored in upper- or lower-packed storage mode.
- For SSYR2, DSYR2, CHER2, and ZHER2, matrix A is stored in upper or lower storage mode.
- For SSLR2 and DSLR2, matrix A is stored in lower-packed storage mode.

<table>
<thead>
<tr>
<th>Table 66. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>α, A, x, y</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
<tr>
<td>Short-precision complex</td>
</tr>
<tr>
<td>Long-precision complex</td>
</tr>
</tbody>
</table>

Note: SSPR2 and DSPR2 are Level 2 BLAS subroutines. You should use these subroutines instead of SSLR2 and DSLR2, which are only provided for compatibility with earlier releases of ESSL.

Syntax

Fortran

```fortran
CALL SSPR2 | DSPR2 | CHPR2 | ZHPR2 (uplo, n, alpha, x, incx, y, incy, ap)
CALL SSYR2 | DSYR2 | CHER2 | ZHER2 (uplo, n, alpha, x, incx, y, incy, a, lda)
CALL SSLR2 | DSLR2 (n, alpha, x, incx, y, incy, ap)
```

C and C++

```c
sspr2 | dspr2 | chpr2 | zhpr2 (uplo, n, alpha, x, incx, y, incy, ap);
ssyr2 | dsyr2 | cher2 | zher2 (uplo, n, alpha, x, incx, y, incy, a, lda);
sslr2 | dslr2 (n, alpha, x, incx, y, incy, ap);
```

PL/I

```pli
CALL SSPR2 | DSPR2 | CHPR2 | ZHPR2 (uplo, n, alpha, x, incx, y, incy, ap);
CALL SSYR2 | DSYR2 | CHER2 | ZHER2 (uplo, n, alpha, x, incx, y, incy, a lda);
CALL SSLR2 | DSLR2 (n, alpha, x, incx, y, incy, ap);
```
On Entry

uplo
depicts the storage mode used for matrix \(A \), where:

If \(\text{uplo} = \text{'U'} \), \(A \) is stored in upper-packed or upper storage mode.

If \(\text{uplo} = \text{'L'} \), \(A \) is stored in lower-packed or lower storage mode.

Specified as: a single character. It must be \text{'U'} or \text{'L'} .

\(n \)
is the number of elements in vectors \(x \) and \(y \) and the order of matrix \(A \).
Specified as: a fullword integer; \(n \geq 0 \).

\(\alpha \)
is the scaling constant \(\alpha \). Specified as: a number of the data type indicated in Table 66 on page 329.

\(x \)
is the vector \(x \) of length \(n \). Specified as: a one-dimensional array of (at least)
length \(1+(n-1)\text{incx} \), containing numbers of the data type indicated in Table 66
on page 329.

\(\text{incx} \)
is the stride for vector \(x \).
Specified as: a fullword integer, where:
For SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, and ZHER2,
\(\text{incx} < 0 \) or \(\text{incx} > 0 \).
For SSLR2 and DSLR2, \(\text{incx} \) can have any value.

\(y \)
is the vector \(y \) of length \(n \). Specified as: a one-dimensional array of (at least)
length \(1+(n-1)\text{incy} \), containing numbers of the data type indicated in Table 66
on page 329.

\(\text{incy} \)
is the stride for vector \(y \). Specified as: a fullword integer, where:
For SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, and ZHER2,
\(\text{incy} < 0 \) or \(\text{incy} > 0 \).
For SSLR2 and DSLR2, \(\text{incy} \) can have any value.

\(\text{ap} \)
has the following meaning:

For SSPR2 and DSPR2, \(\text{ap} \) is the real symmetric matrix \(A \) of order \(n \), stored in
upper- or lower-packed storage mode.

For CHPR2 and ZHPR2, \(\text{ap} \) is the complex Hermitian matrix \(A \) of order \(n \),
stored in upper- or lower-packed storage mode.

For SSLR2 and DSLR2, \(\text{ap} \) is the real symmetric matrix \(A \) of order \(n \), stored in
lower-packed storage mode.

Specified as: a one-dimensional array of (at least) length \(n(n+1)/2 \), containing
numbers of the data type indicated in Table 66 on page 329.

\(a \)
has the following meaning:

For SSYR2 and DSYR2, \(a \) is the real symmetric matrix \(A \) of order \(n \), stored in
upper or lower storage mode.

For CHER2 and ZHER2, \(a \) is the complex Hermitian matrix \(A \) of order \(n \), stored in
upper or lower storage mode.
SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2, and DSLR2

Specified as: an \textit{lda} by (at least) \textit{n} array, containing numbers of the data type indicated in Table 66 on page 329.

\textit{lda}

is the leading dimension of the array specified for \textit{a}. Specified as: a fullword integer; \textit{lda} > 0 and \textit{lda} ≥ \textit{n}.

On Return

\textit{ap}

is the matrix \(A \) of order \textit{n}, containing the results of the computation. Returned as: a one-dimensional array, containing numbers of the data type indicated in Table 66 on page 329.

\textit{a}

is the matrix \(A \) of order \textit{n}, containing the results of the computation. Returned as: a two-dimensional array, containing numbers of the data type indicated in Table 66 on page 329.

Notes

1. All subroutines accept lowercase letters for the \textit{uplo} argument.
2. The vectors \textit{x} and \textit{y} must have no common elements with matrix \(A \); otherwise, results are unpredictable. See “Concepts” on page 53.
3. On input, the imaginary parts of the diagonal elements of the complex Hermitian matrix \(A \) are assumed to be zero, so you do not have to set these values. On output, if \(\alpha \neq 0 \), the imaginary parts of the diagonal elements are set to zero.
4. For a description of how symmetric matrices are stored in upper- or lower-packed storage mode and upper or lower storage mode, see “Symmetric Matrix” on page 63. For a description of how complex Hermitian matrices are stored in upper- or lower-packed storage mode and upper or lower storage mode, see “Complex Hermitian Matrix” on page 68.

Function: These subroutines perform the computation described in the two sections below. See references [34], [35], and [79]. If \textit{n} or \textit{\alpha} is zero, no computation is performed.

For SSPR2, SSYR2, SSLR2, CHPR2, and CHER2, intermediate results are accumulated in long precision.

\textit{SSPR2, DSPR2, SSYR2, DSYR2, SSLR2, and DSLR2}: These subroutines compute the rank-two update of a real symmetric matrix:

\[
A \leftarrow A + \alpha xy^T + \alpha yx^T
\]

where:

- \(A \) is a real symmetric matrix of order \textit{n}.
- \(\alpha \) is a scalar.
- \(x \) is a vector of length \textit{n}.
- \(x^T \) is the transpose of vector \(x \).
- \(y \) is a vector of length \textit{n}.
- \(y^T \) is the transpose of vector \(y \).

It is expressed as follows:
SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2, and DSLR2

\[
\begin{bmatrix}
a_{11} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{n1} & \cdots & a_{nn}
\end{bmatrix}
\leftarrow
\begin{bmatrix}
a_{11} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{n1} & \cdots & a_{nn}
\end{bmatrix}
+ \alpha
\begin{bmatrix}
x_1 \\
\vdots \\
x_n
\end{bmatrix}
\begin{bmatrix}
y_1 \\
\vdots \\
y_n
\end{bmatrix}
\]

\[+ \alpha
\begin{bmatrix}
y_1 \\
\vdots \\
y_n
\end{bmatrix}
\begin{bmatrix}
x_1 & \cdots & x_n
\end{bmatrix}
\]

CHPR2, ZHPR2, CHER2, and ZHER2: These subroutines compute the rank-two update of a complex Hermitian matrix:

\[A \leftarrow A + \alpha \mathbf{xy}^H + \overline{\alpha \mathbf{yx}}^H\]

where:
- \(A\) is a complex Hermitian matrix of order \(n\).
- \(\alpha\) is a scalar.
- \(\mathbf{x}\) is a vector of length \(n\).
- \(\mathbf{x}^H\) is the conjugate transpose of vector \(\mathbf{x}\).
- \(\mathbf{y}\) is a vector of length \(n\).
- \(\mathbf{y}^H\) is the conjugate transpose of vector \(\mathbf{y}\).

It is expressed as follows:

\[
\begin{bmatrix}
a_{11} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{n1} & \cdots & a_{nn}
\end{bmatrix}
\leftarrow
\begin{bmatrix}
a_{11} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{n1} & \cdots & a_{nn}
\end{bmatrix}
+ \alpha
\begin{bmatrix}
x_1 \\
\vdots \\
x_n
\end{bmatrix}
\begin{bmatrix}
y_1 \\
\vdots \\
y_n
\end{bmatrix}
\]

\[+ \overline{\alpha}
\begin{bmatrix}
y_1 \\
\vdots \\
y_n
\end{bmatrix}
\begin{bmatrix}
x_1 & \cdots & x_n
\end{bmatrix}
\]

Error Condition

Computational Errors: None

Input-Argument Errors
1. \(\text{uplo} \neq \text{'L'}\) or \text{'U'}\)
2. \(n < 0\)
3. \(\text{incx} = 0\)
4. incy = 0
5. lda \leq 0
6. lda < n

Example 1: This example shows vectors \(x \) and \(y \) with positive strides and a real symmetric matrix \(A \) of order 3, stored in lower-packed storage mode. Matrix \(A \) is:

\[
\begin{bmatrix}
8.0 & 4.0 & 2.0 \\
4.0 & 6.0 & 7.0 \\
2.0 & 7.0 & 3.0
\end{bmatrix}
\]

Call Statement and Input

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{UPLO} & \text{N} & \text{ALPHA} & \text{X} & \text{INCX} & \text{Y} & \text{INCY} & \text{AP} \\
\hline
\text{L} & 3 & 1.0 & \text{X} & 1 & \text{Y} & 2 & \text{AP} \\
\hline
\end{array}
\]

\[
\text{CALL SSPR2}('L' , 3 , 1.0 , \text{X} , 1 , \text{Y} , 2 , \text{AP})
\]

\[
\begin{align*}
\text{X} &= (3.0, 2.0, 1.0) \\
\text{Y} &= (5.0, ., 3.0, ., 2.0) \\
\text{AP} &= (8.0, 4.0, 2.0, 6.0, 7.0, 3.0)
\end{align*}
\]

Output

\[
\text{AP} = (38.0, 23.0, 13.0, 18.0, 14.0, 7.0)
\]

Example 2: This example shows vector \(x \) and \(y \) having strides of opposite signs. For \(x \), which has negative stride, processing begins at element \(X(5) \), which is 3.0. The real symmetric matrix \(A \) of order 3 is stored in upper-packed storage mode. It uses the same input matrix \(A \) as in Example 1.

Call Statement and Input

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{UPLO} & \text{N} & \text{ALPHA} & \text{X} & \text{INCX} & \text{Y} & \text{INCY} & \text{AP} \\
\hline
\text{U} & 3 & 1.0 & \text{X} & -2 & \text{Y} & 2 & \text{AP} \\
\hline
\end{array}
\]

\[
\text{CALL SSPR2}('U' , 3 , 1.0 , \text{X} , -2 , \text{Y} , 2 , \text{AP})
\]

\[
\begin{align*}
\text{X} &= (1.0, ., 2.0, ., 3.0) \\
\text{Y} &= (5.0, ., 3.0, ., 2.0) \\
\text{AP} &= (8.0, 4.0, 6.0, 2.0, 7.0, 3.0)
\end{align*}
\]

Output

\[
\text{AP} = (38.0, 23.0, 18.0, 13.0, 14.0, 7.0)
\]

Example 3: This example shows vector \(x \) and \(y \) with positive stride and a complex Hermitian matrix \(A \) of order 3, stored in lower-packed storage mode. Matrix \(A \) is:

\[
\begin{bmatrix}
(1.0, 0.0) & (3.0, 5.0) & (2.0, -3.0) \\
(3.0, -5.0) & (7.0, 0.0) & (4.0, -8.0) \\
(2.0, 3.0) & (4.0, 8.0) & (6.0, 0.0)
\end{bmatrix}
\]

Note: On input, the imaginary parts of the diagonal elements of the complex Hermitian matrix \(A \) are assumed to be zero, so you do not have to set these values. On output, if \(\alpha \neq 0 \), the imaginary parts of the diagonal elements are set to zero.
Call Statement and Input

\[
\begin{array}{cccccc}
\text{UPLO} & N & \text{ALPHA} & X & \text{INCX} & Y & \text{INCY} & \text{AP} \\
| & | & | & | & | & | & \\
\text{CALL CHPR2}('L' , 3 , \text{ALPHA} , X , 1 , Y , 2 , \text{AP})
\end{array}
\]

\[
\begin{align*}
\text{ALPHA} & = (1.0, 0.0) \\
X & = ((1.0, 2.0), (4.0, 0.0), (3.0, 4.0)) \\
Y & = ((1.0, 0.0), \ldots, (2.0, -1.0), \ldots, (2.0, 1.0)) \\
\text{AP} & = ((1.0, \ldots), (3.0, -5.0), (2.0, 3.0), (7.0, \ldots), (4.0, 8.0), (6.0, \ldots))
\end{align*}
\]

Output

\[
\begin{align*}
\text{AP} & = ((3.0, 0.0), (7.0, -10.0), (9.0, 4.0), (23.0, 0.0), (14.0, 23.0), (26.0, 0.0))
\end{align*}
\]

Example 4: This example shows vector \(x \) and \(y \) having strides of opposite signs. For \(x \), which has negative stride, processing begins at element \(X(5) \), which is \((1.0,2.0)\). The complex Hermitian matrix \(A \) of order 3 is stored in upper-packed storage mode. It uses the same input matrix \(A \) as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex Hermitian matrix \(A \) are assumed to be zero, so you do not have to set these values. On output, if \(\alpha \neq \) zero, the imaginary parts of the diagonal elements are set to zero.

Call Statement and Input

\[
\begin{array}{cccccc}
\text{UPLO} & N & \text{ALPHA} & X & \text{INCX} & Y & \text{INCY} & \text{AP} \\
| & | & | & | & | & | & \\
\text{CALL CHPR2}('U' , 3 , \text{ALPHA} , X , -2 , Y , 2 , \text{AP})
\end{array}
\]

\[
\begin{align*}
\text{ALPHA} & = (1.0, 0.0) \\
X & = ((3.0, 4.0), \ldots, (4.0, 0.0), \ldots, (1.0, 2.0)) \\
Y & = ((1.0, 0.0), \ldots, (2.0, -1.0), \ldots, (2.0, 1.0)) \\
\text{AP} & = ((1.0, \ldots), (3.0, 5.0), (7.0, \ldots), (2.0, -3.0), (4.0, -8.0), (6.0, \ldots))
\end{align*}
\]

Output

\[
\begin{align*}
\text{AP} & = ((3.0, 0.0), (7.0, 10.0), (23.0, 0.0), (9.0, -4.0), (14.0, -23.0), (26.0, 0.0))
\end{align*}
\]

Example 5: This example shows vectors \(x \) and \(y \) with positive strides, and a real symmetric matrix \(A \) of order 3, stored in lower storage mode. It uses the same input matrix \(A \) as in Example 1.

Call Statement and Input
Example 6: This example shows vector \(x \) and \(y \) having strides of opposite signs. For \(x \), which has negative stride, processing begins at element \(x(5) \), which is 3.0. The real symmetric matrix \(A \) of order 3 is stored in upper storage mode. It uses the same input matrix \(A \) as in Example 1.

Call Statement and Input

```
UPLO N ALPHA X INCX Y INCY A LDA
| | | | | | | |
CALL SSYR2( 'U' , 3 , 1.0 , X , -2 , Y , 2 , A , 4 )
```

\[
X = (1.0, . , 2.0, . , 3.0)
Y = (5.0, . , 3.0, . , 2.0)
\]

```
\[
A = \begin{bmatrix}
8.0 & . & . \\
4.0 & 6.0 & . \\
2.0 & 7.0 & 3.0 \\
\end{bmatrix}
\]
```

Output

```
\[
A = \begin{bmatrix}
38.0 & . & . \\
23.0 & 18.0 & . \\
13.0 & 14.0 & 7.0 \\
\end{bmatrix}
\]
```

Example 7: This example shows vector \(x \) and \(y \) with positive stride, and a complex Hermitian matrix \(A \) of order 3, stored in lower storage mode. It uses the same input matrix \(A \) as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex Hermitian matrix \(A \) are assumed to be zero, so you do not have to set these values. On output, if \(\alpha \neq \text{zero} \), the imaginary parts of the diagonal elements are set to zero.
Call Statement and Input

```fortran
UPLO N ALPHA X INCX Y INCY A LDA
| | | | | | | |
CALL CHER2( 'L' , 3 , ALPHA , X , 1 , Y , 2 , A , 3 )
```

ALPHA = (1.0, 0.0)
X = ((1.0, 2.0), (4.0, 0.0), (3.0, 4.0))
Y = ((1.0, 0.0), (2.0, -1.0), (2.0, 1.0))

\[
A = \begin{pmatrix}
 (1.0, .) & . & . \\
 (3.0, -5.0) & (7.0, .) & . \\
 (2.0, 3.0) & (4.0, 8.0) & (6.0, .)
\end{pmatrix}
\]

Output

\[
A = \begin{pmatrix}
 (3.0, 0.0) & . & . \\
 (7.0, -10.0) & (23.0, 0.0) & . \\
 (9.0, 4.0) & (14.0, 23.0) & (26.0, 0.0)
\end{pmatrix}
\]

Example 8: This example shows vector \(x \) and \(y \) having strides of opposite signs. For \(x \), which has negative stride, processing begins at element \(x(5) \), which is (1.0, 2.0). The complex Hermitian matrix \(A \) of order 3 is stored in upper storage mode. It uses the same input matrix \(A \) as in Example 3.

Note: On input, the imaginary parts of the diagonal elements of the complex Hermitian matrix \(A \) are assumed to be zero, so you do not have to set these values. On output, if \(\alpha \neq 0 \), the imaginary parts of the diagonal elements are set to zero.

Call Statement and Input

```fortran
UPLO N ALPHA X INCX Y INCY A LDA
| | | | | | | |
CALL CHER2( 'U' , 3 , ALPHA , X , -2 , Y , 2 , A , 3 )
```

ALPHA = (1.0, 0.0)
X = ((3.0, 4.0), (4.0, 0.0), (1.0, 2.0))
Y = ((1.0, 0.0), (2.0, -1.0), (2.0, 1.0))

\[
A = \begin{pmatrix}
 (1.0, .) & (3.0, 5.0) & (2.0, -3.0) \\
 . & (7.0, .) & (4.0, -8.0) \\
 . & . & (6.0, .)
\end{pmatrix}
\]

Output

\[
A = \begin{pmatrix}
 (3.0, 0.0) & (7.0, 10.0) & (9.0, -4.0) \\
 . & (23.0, 0.0) & (14.0, -23.0) \\
 . & . & (26.0, 0.0)
\end{pmatrix}
\]

Example 9: This example shows vectors \(x \) and \(y \) with positive strides and a real symmetric matrix \(A \) of order 3, stored in lower-packed storage mode. It uses the same input matrix \(A \) as in Example 1.
SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2, and DSLR2

Call Statement and Input

\[
\begin{array}{cccccc}
N & ALPHA & X & INCX & Y & INCY & AP \\
\hline
| & | & | & | & |
\end{array}
\]

CALL SSLR2(3, 1.0, X, 1, Y, 2, AP)

\[
\begin{align*}
X &= (3.0, 2.0, 1.0) \\
Y &= (5.0, ., 3.0, ., 2.0) \\
AP &= (8.0, 4.0, 2.0, 6.0, 7.0, 3.0)
\end{align*}
\]

Output

\[
\begin{align*}
AP &= (38.0, 23.0, 13.0, 18.0, 14.0, 7.0)
\end{align*}
\]
SGBMV, DGBMV, CGBMV, and ZGBMV

SGBMV, DGBMV, CGBMV, and ZGBMV—Matrix-Vector Product for a General Band Matrix, Its Transpose, or Its Conjugate Transpose

SGBMV and DGBMV compute the matrix-vector product for either a real general band matrix or its transpose, where the general band matrix is stored in BLAS-general-band storage mode. It uses the scalars \(\alpha \) and \(\beta \), vectors \(x \) and \(y \), and general band matrix \(A \) or its transpose:

\[
y' \leftarrow \beta y + \alpha Ax
\]

\[
y' \leftarrow \beta y + \alpha A^T x
\]

CGBMV and ZGBMV compute the matrix-vector product for either a complex general band matrix, its transpose, or its conjugate transpose, where the general band matrix is stored in BLAS-general-band storage mode. It uses the scalars \(\alpha \) and \(\beta \), vectors \(x \) and \(y \), and general band matrix \(A \), its transpose, or its conjugate transpose:

\[
y' \leftarrow \beta y + \alpha Ax
\]

\[
y' \leftarrow \beta y + \alpha A^T x
\]

\[
y' \leftarrow \beta y + \alpha A^H x
\]

Table 67. Data Types

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>SGBMV</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DGBMV</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>CGBMV</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>ZGBMV</td>
</tr>
</tbody>
</table>

Syntax

Fortran

```fortran
CALL SGBMV | DGBMV | CGBMV | ZGBMV (transa, m, n, ml, mu, alpha, a, lda, x, incx, beta, y, incy)
```

C and C++

```c
sgbmv | dgbmv | cgbmv | zgbmv (transa, m, n, ml, mu, alpha, a, lda, x, incx, beta, y, incy);
```

PL/I

```pli
CALL SGBMV | DGBMV | CGBMV | ZGBMV (transa, m, n, ml, mu, alpha, a, lda, x, incx, beta, y, incy);
```

On Entry

transa

indicates the form of matrix \(A \) to use in the computation, where:

- If \(transa = \text{'N'} \), \(A \) is used in the computation.
- If \(transa = \text{'T'} \), \(A^T \) is used in the computation.
- If \(transa = \text{'C'} \), \(A^H \) is used in the computation.

Specified as: a single character. It must be 'N', 'T', or 'C'.

m

is the number of rows in matrix \(A \), and:

- If \(transa = \text{'N'} \), it is the length of vector \(y \).
- If \(transa = \text{'T'} \) or 'C', it is the length of vector \(x \).
Specified as: a fullword integer; \(m \geq 0 \).

\(n \) is the number of columns in matrix \(A \), and:
- If \(\text{transa} = 'N' \), it is the length of vector \(x \).
- If \(\text{transa} = 'T' \) or \('C' \), it is the length of vector \(y \).

Specified as: a fullword integer; \(n \geq 0 \).

\(ml \) is the lower band width \(ml \) of the matrix \(A \). Specified as: a fullword integer; \(ml \geq 0 \).

\(mu \) is the upper band width \(mu \) of the matrix \(A \). Specified as: a fullword integer; \(mu \geq 0 \).

\(\alpha \) is the scaling constant \(\alpha \). Specified as: a number of the data type indicated in Table 67 on page 338.

\(a \) is the \(m \) by \(n \) general band matrix \(A \), stored in BLAS-general-band storage mode. It has an upper band width \(mu \) and a lower band width \(ml \). Also:
- If \(\text{transa} = 'N' \), \(A \) is used in the computation.
- If \(\text{transa} = 'T' \), \(A^T \) is used in the computation.
- If \(\text{transa} = 'C' \), \(A^H \) is used in the computation.

Note: No data should be moved to form \(A^T \) or \(A^H \); that is, the matrix \(A \) should always be stored in its untransposed form in BLAS-general-band storage mode.

Specified as: an \(lda \) by (at least) \(n \) array, containing numbers of the data type indicated in Table 67 on page 338, where \(lda \geq ml+mu+1 \).

\(lda \) is the leading dimension of the array specified for \(a \). Specified as: a fullword integer; \(lda > 0 \) and \(lda \geq ml+mu+1 \).

\(x \) is the vector \(x \), where:
- If \(\text{transa} = 'N' \), it has length \(n \).
- If \(\text{transa} = 'T' \) or \('C' \), it has length \(m \).

Specified as: a one-dimensional array, containing numbers of the data type indicated in Table 67 on page 338, where:
- If \(\text{transa} = 'N' \), it must have at least \(1+(n-1)|incx| \) elements.
- If \(\text{transa} = 'T' \) or \('C' \), it must have at least \(1+(m-1)|incx| \) elements.

\(incx \) is the stride for vector \(x \). Specified as: a fullword integer; \(incx > 0 \) or \(incx < 0 \).

\(\beta \) is the scaling constant \(\beta \). Specified as: a number of the data type indicated in Table 67 on page 338.

\(y \) is the vector \(y \), where:
- If \(\text{transa} = 'N' \), it has length \(m \).
- If \(\text{transa} = 'T' \) or \('C' \), it has length \(n \).
SGBMV, DGBMV, CGBMV, and ZGBMV

Specified as: a one-dimensional array, containing numbers of the data type indicated in Table 67 on page 338, where:

If transa = 'N', it must have at least 1+(m-1)|incy| elements.

If transa = 'T' or 'C', it must have at least 1+(n-1)|incy| elements.

incy is the stride for vector y. Specified as: a fullword integer; incy > 0 or incy < 0.

On Return

y

is the vector y, containing the result of the computation, where:

If transa = 'N', it has length m.

If transa = 'T' or 'C', it has length n.

Returned as: a one-dimensional array, containing numbers of the data type indicated in Table 67 on page 338.

Notes

1. For SGBMV and DGBMV, if you specify 'C' for the transa argument, it is interpreted as though you specified 'T'.

2. All subroutines accept lowercase letters for the transa argument.

3. Vector y must have no common elements with matrix A or vector x; otherwise, results are unpredictable. See “Concepts” on page 53.

4. To achieve optimal performance, use lda = mu+ml+1.

5. For general band matrices, if you specify ml ≥ m or mu ≥ n, ESSL assumes, only for purposes of the computation, that the lower band width is m−1 or the upper band width is n−1, respectively. However, ESSL uses the original values for ml and mu for the purposes of finding the locations of element a_{11} and all other elements in the array specified for A, as described in “General Band Matrix” on page 75. For an illustration of this technique, see “Example 4” on page 343.

6. For a description of how a general band matrix is stored in BLAS-general-band storage mode in an array, see “General Band Matrix” on page 75.

Function: The possible computations that can be performed by these subroutines are described in the following sections. Varying implementation techniques are used for this computation to improve performance. As a result, accuracy of the computational result may vary for different computations.

In all the computations, general band matrix A is stored in its untransposed form in an array, using BLAS-general-band storage mode.

For SGBMV and CGBMV, intermediate results are accumulated in long precision. Occasionally, for performance reasons, these intermediate results are truncated to short precision and stored.

See references [34], [35], [38], [46], and [79]. No computation is performed if m or n is 0 or if α is zero and β is one.
General Band Matrix: For SGBMV, DGBMV, CGBMV, and ZGBMV, the matrix-vector product for a general band matrix is expressed as follows:

\[y \leftarrow \beta y + \alpha Ax \]

where:
- \(x \) is a vector of length \(n \).
- \(y \) is a vector of length \(m \).
- \(\alpha \) is a scalar.
- \(\beta \) is a scalar.
- \(A \) is an \(m \) by \(n \) general band matrix, having a lower band width of \(ml \) and an upper band width of \(mu \).

Transpose of a General Band Matrix: For SGBMV, DGBMV, CGBMV, and ZGBMV, the matrix-vector product for the transpose of a general band matrix is expressed as:

\[y \leftarrow \beta y + \alpha A^T x \]

where:
- \(x \) is a vector of length \(m \).
- \(y \) is a vector of length \(n \).
- \(\alpha \) is a scalar.
- \(\beta \) is a scalar.
- \(A^T \) is the transpose of an \(m \) by \(n \) general band matrix \(A \), having a lower band width of \(ml \) and an upper band width of \(mu \).

Conjugate Transpose of a General Band Matrix: For CGBMV and ZGBMV, the matrix-vector product for the conjugate transpose of a general band matrix is expressed as follows:

\[y \leftarrow \beta y + \alpha A^H x \]

where:
- \(x \) is a vector of length \(m \).
- \(y \) is a vector of length \(n \).
- \(\alpha \) is a scalar.
- \(\beta \) is a scalar.
- \(A^H \) is the conjugate transpose of an \(m \) by \(n \) general band matrix \(A \) of order \(n \), having a lower band width of \(ml \) and an upper band width of \(mu \).

Error Conditions

Computational Errors: None

Input-Argument Errors
1. \(\text{transa} \neq 'N', 'T', \text{or} 'C' \)
2. \(m < 0 \)
3. \(n < 0 \)
4. \(ml < 0 \)
5. \(mu < 0 \)
6. \(lda \leq 0 \)
7. \(lda < ml + mu + 1 \)
8. \(incx = 0 \)
Example 1: This example shows how to use SGBMV to perform the computation $y \leftarrow \beta y + \alpha Ax$, where \text{TRANSA} is equal to 'N', and the following real general band matrix A is used in the computation. Matrix A is:

\[
\begin{bmatrix}
1.0 & 1.0 & 1.0 & 0.0 \\
2.0 & 2.0 & 2.0 & 2.0 \\
3.0 & 3.0 & 3.0 & 3.0 \\
4.0 & 4.0 & 4.0 & 4.0 \\
0.0 & 5.0 & 5.0 & 5.0 \\
\end{bmatrix}
\]

Call Statement and Input

\[
\begin{array}{cccccccccccc}
\text{TRANSA} & M & N & ML & MU & \text{ALPHA} & A & LDA & X & INCX & \text{BETA} & Y & INCY \\
\end{array}
\]

\[
\begin{array}{cccccccccccc}
\text{CALL} & \text{SGBMV} & (& 'N' & , & 5 & , & 4 & , & 3 & , & 2 &) & \\
\end{array}
\]

Output

$Y = (22.0, 60.0, 90.0, 120.0, 140.0, .)$

Example 2: This example shows how to use SGBMV to perform the computation $y \leftarrow \beta y + \alpha A^{T}x$, where \text{TRANSA} is equal to 'T', and the transpose of a real general band matrix A is used in the computation. It uses the same input as Example 1.

Call Statement and Input

\[
\begin{array}{cccccccccccc}
\text{TRANSA} & M & N & ML & MU & \text{ALPHA} & A & LDA & X & INCX & \text{BETA} & Y & INCY \\
\end{array}
\]

\[
\begin{array}{cccccccccccc}
\text{CALL} & \text{SGBMV} & (& 'T' & , & 5 & , & 4 & , & 3 & , & 2 &) & \\
\end{array}
\]

Output

$Y = (70.0, 130.0, 140.0, 148.0, .)$

Example 3: This example shows how to use CGBMV to perform the computation $y \leftarrow \beta y + \alpha A^{H}x$, where \text{TRANSA} is equal to 'C', and the complex conjugate of the following general band matrix A is used in the computation. Matrix A is:
Example 4: This example shows how to use SGMBV to perform the computation
\[y \leftarrow \beta y + \alpha Ax \], where \(ml \geq m \) and \(mu \geq n \), TRANSA is equal to 'N', and the following real general band matrix \(A \) is used in the computation. Matrix \(A \) is:

\[
\begin{bmatrix}
1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
2.0 & 2.0 & 2.0 & 2.0 & 2.0 \\
3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
4.0 & 4.0 & 4.0 & 4.0 & 4.0 \\
\end{bmatrix}
\]
SGBMV, DGBMV, CGBMV, and ZGBMV

\[
A = \begin{bmatrix}
0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 1.0 & 2.0 & 0.0 & 0.0 \\
0.0 & 2.0 & 3.0 & 4.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0
\end{bmatrix}
\]

\[
X = (1.0, 2.0, 3.0, 4.0, 5.0)
\]

\[
Y = (1.0, . , 2.0, . , 3.0, . , 4.0, .)
\]

Output
\[
Y = (40.0, . , 80.0, . , 120.0, . , 160.0, .)
\]
SSBMV, DSBMV, CHBMV, and ZHBMV—Matrix-Vector Product for a Real Symmetric or Complex Hermitian Band Matrix

SSBMV and DSBMV compute the matrix-vector product for a real symmetric band matrix. CHBMV and ZHBMV compute the matrix-vector product for a complex Hermitian band matrix. The band matrix A is stored in either upper- or lower-band-packed storage mode. It uses the scalars α and β, vectors x and y, and band matrix A:

$$y \leftarrow \beta y + \alpha Ax$$

$$y \leftarrow \beta y + \alpha Ax$$

<table>
<thead>
<tr>
<th>Table 68. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>α, β, x, y, A</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
<tr>
<td>Short-precision complex</td>
</tr>
<tr>
<td>Long-precision complex</td>
</tr>
</tbody>
</table>

Syntax

Fortran

```fortran
CALL SSBMV | DSBMV | CHBMV | ZHBMV (uplo, n, k, alpha, a, lda, x, incx, beta, y, incy)
```

C and C++

```c
ssbmv | dsbmv | chbmv | zhbmv (uplo, n, k, alpha, a, lda, x, incx, beta, y, incy);
```

PL/I

```pli
CALL SSBMV | DSBMV | CHBMV | ZHBMV (uplo, n, k, alpha, a, lda, x, incx, beta, y, incy);
```

On Entry

- uplo indicates the storage mode used for matrix A, where either the upper or lower triangle can be stored:
 - If $\text{uplo} = 'U'$, A is stored in upper-band-packed storage mode.
 - If $\text{uplo} = 'L'$, A is stored in lower-band-packed storage mode.
 Specified as: a single character. It must be 'U' or 'L'.

- n is the order of matrix A and the number of elements in vectors x and y. Specified as: a fullword integer; $n \geq 0$.

- k is the half band width k of the matrix A. Specified as: a fullword integer; $k \geq 0$.

- α is the scaling constant α. Specified as: a number of the data type indicated in Table 68.

- a is the real symmetric or complex Hermitian band matrix A of order n, having a half band width of k, where:
 - If $\text{uplo} = 'U'$, A is stored in upper-band-packed storage mode.
 - If $\text{uplo} = 'L'$, A is stored in lower-band-packed storage mode.
 Specified as: an lda by (at least) n array, containing numbers of the data type indicated in Table 68, where $\text{lda} \geq k+1$.

Chapter 8. Linear Algebra Subprograms 345
SSBMV, DSBMV, CHBMV, and ZHBMV

lda
is the leading dimension of the array specified for a. Specified as: a fullword integer; lda > 0 and lda ≥ k+1.
x
is the vector x of length n. Specified as: a one-dimensional array of (at least) length 1+(n−1)|incx|, containing numbers of the data type indicated in Table 68 on page 345.
incx
is the stride for vector x. Specified as: a fullword integer; incx > 0 or incx < 0.
beta
is the scaling constant β. Specified as: a number of the data type indicated in Table 68 on page 345.
y
is the vector y of length n. Specified as: a one-dimensional array of (at least) length n, containing numbers of the data type indicated in Table 68 on page 345.
incy
is the stride for vector y. Specified as: a fullword integer; incy > 0 or incy < 0.

On Return

y
is the vector y of length n, containing the result of the computation. Returned as: a one-dimensional array, containing numbers of the data type indicated in Table 68 on page 345.

Notes

1. All subroutines accept lowercase letters for the uplo argument.
2. Vector y must have no common elements with matrix A or vector x; otherwise, results are unpredictable. See “Concepts” on page 53.
3. To achieve optimal performance in these subroutines, use lda = k+1.
4. The imaginary parts of the diagonal elements of the complex Hermitian matrix A are assumed to be zero, so you do not have to set these values.
5. For real symmetric and complex Hermitian band matrices, if you specify k ≥ n, ESSL assumes, only for purposes of the computation, that the half band width of matrix A is n−1; that is, it processes matrix A, of order n, as though it is a (nonbanded) real symmetric or complex Hermitian matrix. However, ESSL uses the original value for k for the purposes of finding the locations of element a_{1,1} and all other elements in the array specified for A, as described in the storage modes referenced in the next note. For an illustration of this technique, see “Example 3” on page 348.
6. For a description of how a real symmetric band matrix is stored, see “Upper-Band-Packed Storage Mode” on page 81 or “Lower-Band-Packed Storage Mode” on page 82. For a description of how a complex Hermitian band matrix is stored, see “Complex Hermitian Matrix” on page 68.

Function: These subroutines perform the following matrix-vector product, using a real symmetric or complex Hermitian band matrix A, stored in either upper- or lower-band-packed storage mode:

\[y \leftarrow \beta y + \alpha Ax \]
where:

- x and y are vectors of length n.
- α and β are scalars.
- A is an real symmetric or complex Hermitian band matrix of order n, having a half band width of k.

For SSBMV and CHBMV, intermediate results are accumulated in long precision. Occasionally, for performance reasons, these intermediate results are truncated to short precision and stored.

See references [34], [38], [46], and [79]. No computation is performed if n is 0 or if α is zero and β is one.

Error Conditions

Computational Errors: None

Input-Argument Errors

1. uplo ≠ 'U' or 'L'
2. $n < 0$
3. $k < 0$
4. $lda \leq 0$
5. $lda < k+1$
6. $incx = 0$
7. $incy = 0$

Example 1: This example shows how to use SSBMV to perform the matrix-vector product, where the real symmetric band matrix A of order 7 and half band width of 3 is stored in upper-band-packed storage mode. Matrix A is:

\[
\begin{bmatrix}
1.0 & 1.0 & 1.0 & 1.0 & 0.0 & 0.0 & 0.0 \\
1.0 & 2.0 & 2.0 & 2.0 & 2.0 & 0.0 & 0.0 \\
1.0 & 2.0 & 3.0 & 3.0 & 3.0 & 3.0 & 0.0 \\
1.0 & 2.0 & 3.0 & 4.0 & 4.0 & 4.0 & 4.0 \\
0.0 & 2.0 & 3.0 & 4.0 & 5.0 & 5.0 & 5.0 \\
0.0 & 0.0 & 3.0 & 4.0 & 5.0 & 6.0 & 6.0 \\
0.0 & 0.0 & 0.0 & 4.0 & 5.0 & 6.0 & 7.0
\end{bmatrix}
\]

Call Statement and Input

```
UPLO N K ALPHA A LDA X INCX BETA Y INCY
| | | | | | |
CALL SSBMV( 'U' , 7 , 3 , 2.0 , A , 5 , X , 1 , 1.0 , Y , 2 )
```

```
A = [ . . . 1.0 2.0 3.0 4.0 ]
    [ . . 1.0 2.0 3.0 4.0 5.0 ]
    [ 1.0 2.0 3.0 4.0 5.0 6.0 7.0 ]
    [ . . . . . . . ]

X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0)
Y = (1.0, . , 2.0, . , 3.0, . , 4.0, . , 5.0, . , 6.0, . , 7.0)
```
Output

\[Y = (30.0, \ldots, 78.0, \ldots, 148.0, \ldots, 244.0, \ldots, 288.0, \ldots, 316.0, \ldots, 322.0) \]

Example 2: This example shows how to use CHBMV to perform the matrix-vector product, where the complex Hermitian band matrix \(A \) of order 7 and half band width of 3 is stored in lower-band-packed storage mode. Matrix \(A \) is:

\[
\begin{bmatrix}
(1.0, 0.0) & (1.0, 1.0) & (1.0, 1.0) & (0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) \\
(1.0, -1.0) & (2.0, 0.0) & (2.0, 2.0) & (2.0, 2.0) & (0.0, 0.0) & (0.0, 0.0) \\
(1.0, -1.0) & (2.0, -2.0) & (3.0, 0.0) & (3.0, 3.0) & (3.0, 3.0) & (0.0, 0.0) \\
(1.0, -1.0) & (2.0, -2.0) & (3.0, -3.0) & (4.0, 0.0) & (4.0, 4.0) & (4.0, 4.0) \\
(0.0, 0.0) & (2.0, -2.0) & (3.0, -3.0) & (4.0, -4.0) & (5.0, 0.0) & (5.0, 5.0) \\
(0.0, 0.0) & (0.0, 0.0) & (3.0, -3.0) & (4.0, -4.0) & (6.0, 0.0) & (6.0, 6.0) \\
(0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) & (4.0, -4.0) & (5.0, -5.0) & (6.0, -6.0) \\
& & & & & (7.0, 0.0)
\end{bmatrix}
\]

Note: The imaginary parts of the diagonal elements of a complex Hermitian matrix are assumed to be zero, so you do not need to set these values.

Call Statement and Input

\[
\begin{align*}
& \text{UPLO} \quad N \quad K \quad \text{ALPHA} \quad A \quad \text{LDA} \quad X \quad \text{INCY} \quad \text{BETA} \quad Y \quad \text{INCY} \\
& \text{CALL CHBMV} ('L', 7, 3, \text{ALPHA}, A, 5, X, 1, \text{BETA}, Y, 2)
\end{align*}
\]

\[
\begin{align*}
\text{ALPHA} &= (2.0, 0.0) \\
\text{BETA} &= (10.0, 0.0)
\end{align*}
\]

\[
\begin{bmatrix}
(1.0, .) & (2.0, .) & (3.0, .) & (4.0, .) & (5.0, .) & (6.0, .) & (7.0, .) \\
(1.0, 1.0) & (2.0, 2.0) & (3.0, 3.0) & (4.0, 4.0) & (5.0, 5.0) & (6.0, 6.0) \\
(1.0, 1.0) & (2.0, 2.0) & (3.0, 3.0) & (4.0, 4.0) & (5.0, 5.0) & . & . \\
& & & & & (7.0, 7.0)
\end{bmatrix}
\]

\[
\begin{align*}
X &= ((1.0, 1.0), (2.0, 2.0), (3.0, 3.0), (4.0, 4.0), (5.0, 5.0), (6.0, 6.0), (7.0, 7.0)) \\
Y &= ((1.0, 1.0), . , (2.0, 2.0), . , (3.0, 3.0), . , (4.0, 4.0), . , (5.0, 5.0), . , (6.0, 6.0), . , (7.0, 7.0))
\end{align*}
\]

Output

\[
\begin{align*}
Y &= ((48.0, 12.0), . , (124.0, 32.0), . , (228.0, 68.0), . , (360.0, 128.0), . , (360.0, 216.0), . , (300.0, 332.0), . , (168.0, 476.0))
\end{align*}
\]

Example 3: This example shows how to use SSBMV to perform the matrix-vector product, where \(n \geq k \). Matrix \(A \) is a real 5 by 5 symmetric band matrix with a half band width of 5, stored in upper-band-packed storage mode. Matrix \(A \) is:

\[
\begin{bmatrix}
(1.0, 0.0) & (1.0, 1.0) & (1.0, 1.0) & (0.0, 0.0) & (0.0, 0.0) \\
(1.0, -1.0) & (2.0, 0.0) & (2.0, 2.0) & (2.0, 2.0) & (0.0, 0.0) \\
(1.0, -1.0) & (2.0, -2.0) & (3.0, 0.0) & (3.0, 3.0) & (3.0, 3.0) \\
(1.0, -1.0) & (2.0, -2.0) & (3.0, -3.0) & (4.0, 0.0) & (4.0, 4.0) \\
(0.0, 0.0) & (2.0, -2.0) & (3.0, -3.0) & (4.0, -4.0) & (5.0, 0.0) \\
(0.0, 0.0) & (0.0, 0.0) & (3.0, -3.0) & (4.0, -4.0) & (6.0, 0.0) \\
(0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) & (4.0, -4.0) & (5.0, -5.0) \\
& & & & (6.0, -6.0) \\
& & & & (7.0, 0.0)
\end{bmatrix}
\]
SSBMV, DSBMV, CHBMV, and ZHBMV

\[
\begin{bmatrix}
1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
1.0 & 2.0 & 2.0 & 2.0 & 2.0 \\
1.0 & 2.0 & 3.0 & 3.0 & 3.0 \\
1.0 & 2.0 & 3.0 & 4.0 & 4.0 \\
1.0 & 2.0 & 3.0 & 4.0 & 5.0
\end{bmatrix}
\]

Call Statement and Input

```
UPLO N K ALPHA A LDA X INCX BETA Y INCY
|  |  |  |  |  |  |  |  |  |
CALL SSBMV( 'U' , 5 , 5 , 2.0 , A , 7 , X , 1 , 10.0 , Y , 2 )
```

\[
A = \begin{bmatrix}
. & . & . & . & . \\
. & . & . & 1.0 & . \\
. & . & 1.0 & 2.0 & . \\
. & 1.0 & 2.0 & 3.0 & 4.0 \\
1.0 & 2.0 & 3.0 & 4.0 & 5.0 \\
. & . & . & . & .
\end{bmatrix}
\]

\[
X = (1.0, 2.0, 3.0, 4.0, 5.0)
\]

\[
Y = (1.0, . , 2.0, . , 3.0, . , 4.0, . , 5.0, .)
\]

Output

\[
Y = (40.0, . , 78.0, . , 112.0, . , 140.0, . , 160.0, .)
\]
STRMV, DTRMV, CTRMV, ZTRMV, STPMV, DTPMV, CTPMV, and ZTPMV—Matrix-Vector Product for a Triangular Matrix, Its Transpose, or Its Conjugate Transpose

STRMV, DTRMV, STPMV, and DTPMV compute one of the following matrix-vector products, using the vector x and triangular matrix A or its transpose:

- $x \leftarrow Ax$
- $x \leftarrow A^T x$

CTRVM, ZTRMV, CTPMV, and ZTPMV compute one of the following matrix-vector products, using the vector x and triangular matrix A, its transpose, or its conjugate transpose:

- $x \leftarrow Ax$
- $x \leftarrow A^T x$
- $x \leftarrow A^H x$

Matrix A can be either upper or lower triangular, where:

- For the _TRMV subroutines, it is stored in upper- or lower-triangular storage mode, respectively.
- For the _TPMV subroutines, it is stored in upper- or lower-triangular-packed storage mode, respectively.

<table>
<thead>
<tr>
<th>Table 69. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, x</td>
</tr>
<tr>
<td>Subprogram</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
<tr>
<td>Short-precision complex</td>
</tr>
<tr>
<td>Long-precision complex</td>
</tr>
</tbody>
</table>

Syntax

Fortran

CALL STRMV | DTRMV | CTRMV | ZTRMV (uplo, transa, diag, n, a, lda, x, incx)
CALL STPMV | DTPMV | CTPMV | ZTPMV (uplo, transa, diag, n, ap, x, incx)

C and C++

strmv | dtrmv | ctrmv | ztrmv (uplo, transa, diag, n, a, lda, x, incx);
stpmv | dtpmv | ctpmv | ztpmv (uplo, transa, diag, n, ap, x, incx);

PL/I

CALL STRMV | DTRMV | CTRMV | ZTRMV (uplo, transa, diag, n, a, lda, x, incx);
CALL STPMV | DTPMV | CTPMV | ZTPMV (uplo, transa, diag, n, ap, x, incx);

On Entry

$uplo$

indicates whether matrix A is an upper or lower triangular matrix, where:

If $uplo = 'U'$, A is an upper triangular matrix.
If $uplo = 'L'$, A is a lower triangular matrix.

Specified as: a single character. It must be 'U' or 'L'.
transa
indicates the form of matrix \(A \) to use in the computation, where:

- If \(\text{transa} = 'N' \), \(A \) is used in the computation.
- If \(\text{transa} = 'T' \), \(A^T \) is used in the computation.
- If \(\text{transa} = 'C' \), \(A^H \) is used in the computation.

Specified as: a single character. It must be 'N', 'T', or 'C'.

diag
indicates the characteristics of the diagonal of matrix \(A \), where:

- If \(\text{diag} = 'U' \), \(A \) is a unit triangular matrix.
- If \(\text{diag} = 'N' \), \(A \) is not a unit triangular matrix.

Specified as: a single character. It must be 'U' or 'N'.

\(n \)
is the order of triangular matrix \(A \). Specified as: a fullword integer; \(0 \leq n \leq \text{lda} \).

\(a \)
is the upper or lower triangular matrix \(A \) of order \(n \), stored in upper- or lower-triangular storage mode, respectively.

Note: No data should be moved to form \(A^T \) or \(A^H \); that is, the matrix \(A \) should always be stored in its untransposed form.

Specified as: an \(\text{lda} \) by (at least) \(n \) array, containing numbers of the data type indicated in Table 69 on page 350.

\(\text{lda} \)
is the leading dimension of the array specified for \(a \). Specified as: a fullword integer; \(\text{lda} > 0 \) and \(\text{lda} \geq n \).

\(\text{ap} \)
is the upper or lower triangular matrix \(A \) of order \(n \), stored in upper- or lower-triangular-packed storage mode, respectively. Specified as: a one-dimensional array of (at least) length \(n(n+1)/2 \), containing numbers of the data type indicated in Table 69 on page 350.

\(x \)
is the vector \(x \) of length \(n \). Specified as: a one-dimensional array of (at least) length \(1+(n-1)|\text{incx}| \), containing numbers of the data type indicated in Table 69 on page 350.

\(\text{incx} \)
is the stride for vector \(x \). Specified as: a fullword integer; \(\text{incx} > 0 \) or \(\text{incx} < 0 \).

On Return

\(x \)
is the vector \(x \) of length \(n \), containing the results of the computation. Returned as: a one-dimensional array, containing numbers of the data type indicated in Table 69 on page 350.

Notes

1. These subroutines accept lowercase letters for the \(\text{uplo} \), \(\text{transa} \), and \(\text{diag} \) arguments.

2. For STRMV, DTRMV, STPMV, and DTPMV if you specify 'C' for the \(\text{transa} \) argument, it is interpreted as though you specified 'T'.

3. Matrix \(A \) and vector \(x \) must have no common elements; otherwise, results are unpredictable.
4. ESSL assumes certain values in your array for parts of a triangular matrix. As a result, you do not have to set these values. For unit triangular matrices, the elements of the diagonal are assumed to be 1.0 for real matrices and (1.0, 0.0) for complex matrices. When using upper- or lower-triangular storage, the unreferenced elements in the lower and upper triangular part, respectively, are assumed to be zero.

5. For a description of triangular matrices and how they are stored in upper- and lower-triangular storage mode and in upper- and lower-triangular-packed storage mode, see “Triangular Matrix” on page 72.

Function: These subroutines can perform the following matrix-vector product computations, using the triangular matrix \(A \), its transpose, or its conjugate transpose, where \(A \) can be either upper or lower triangular:

\[
\begin{align*}
 x & \leftarrow Ax \\
 x & \leftarrow A^T x \\
 x & \leftarrow A^H x \quad \text{(for CTRMV, ZTRMV, CTPMV, and ZTPMV only)}
\end{align*}
\]

where:

- \(x \) is a vector of length \(n \).
- \(A \) is an upper or lower triangular matrix of order \(n \). For _TRMV, it is stored in upper- or lower-triangular storage mode, respectively. For _TPMV, it is stored in upper- or lower-triangular-packed storage mode, respectively.

See references [32] and [38]. If \(n \) is 0, no computation is performed.

Error Conditions

Computational Errors: None

Input-Argument Errors

1. \(\text{uplo} \neq \ 'L' \) or \(\ 'U' \)
2. \(\text{transa} \neq \ 'T', \ 'N', \) or \(\ 'C' \)
3. \(\text{diag} \neq \ 'N' \) or \(\ 'U' \)
4. \(n < 0 \)
5. \(\text{lda} \leq 0 \)
6. \(\text{lda} < n \)
7. \(\text{incx} = 0 \)

Example 1: This example shows the computation \(x \leftarrow Ax \). Matrix \(A \) is a real 4 by 4 lower triangular matrix that is unit triangular, stored in lower-triangular storage mode. Vector \(x \) is a vector of length 4. Matrix \(A \) is:

\[
\begin{bmatrix}
 1.0 & . & . & . \\
 1.0 & 1.0 & . & . \\
 2.0 & 3.0 & 1.0 & . \\
 3.0 & 4.0 & 3.0 & 1.0 \\
\end{bmatrix}
\]

Note: Because matrix \(A \) is unit triangular, the diagonal elements are not referenced. ESSL assumes a value of 1.0 for the diagonal elements.

Call Statement and Input
Example 2: This example shows the computation \(\mathbf{x} \leftarrow A^T \mathbf{x} \). Matrix \(A \) is a real 4 by 4 upper triangular matrix that is unit triangular, stored in upper-triangular storage mode. Vector \(\mathbf{x} \) is a vector of length 4. Matrix \(A \) is:

\[
\begin{bmatrix}
1.0 & 2.0 & 3.0 & 2.0 \\
. & 1.0 & 2.0 & 5.0 \\
. & . & 1.0 & 3.0 \\
. & . & . & 1.0
\end{bmatrix}
\]

Output

\(\mathbf{x} = (5.0, 14.0, 26.0, 41.0) \)

Note: Because matrix \(A \) is unit triangular, the diagonal elements are not referenced. ESSL assumes a value of 1.0 for the diagonal elements.

Example 3: This example shows the computation \(\mathbf{x} \leftarrow A^H \mathbf{x} \). Matrix \(A \) is a complex 4 by 4 upper triangular matrix that is unit triangular, stored in upper-triangular storage mode. Vector \(\mathbf{x} \) is a vector of length 4. Matrix \(A \) is:

\[
\begin{bmatrix}
(1.0, 0.0) & (2.0, 0.0) & (3.0, 0.0) & (2.0, 0.0) \\
. & (1.0, 0.0) & (2.0, 0.0) & (5.0, 5.0) \\
. & . & (1.0, 0.0) & (3.0, 3.0) \\
. & . & . & (1.0, 0.0)
\end{bmatrix}
\]
Note: Because matrix A is unit triangular, the diagonal elements are not referenced. ESSL assumes a value of $(1.0, 0.0)$ for the diagonal elements.

Call Statement and Input

```fortran
UPLO TRANS A DIAG N A LDA X INCX
```

```fortran
CALL CTRMV( 'U', 'C', 'U', 4, A, 4, X, 1 )
```

\[
A = \begin{bmatrix}
(2.0, 2.0) & (3.0, 3.0) & (2.0, 2.0) \\
(2.0, 2.0) & (5.0, 5.0) \\
(3.0, 3.0) & . & . \\
. & . & .
\end{bmatrix}
\]

\[
X = ((5.0, 5.0), (4.0, 4.0), (3.0, 3.0), (2.0, 2.0))
\]

Example 4: This example shows the computation $x \leftarrow Ax$. Matrix A is a real 4 by 4 lower triangular matrix that is unit triangular, stored in lower-triangular-packed storage mode. Vector x is a vector of length 4. Matrix A is:

\[
A = \begin{bmatrix}
1.0 & . & . & . \\
1.0 & 1.0 & . & . \\
2.0 & 3.0 & 1.0 & . \\
3.0 & 4.0 & 3.0 & 1.0
\end{bmatrix}
\]

Note: Because matrix A is unit triangular, the diagonal elements are not referenced. ESSL assumes a value of 1.0 for the diagonal elements.

Call Statement and Input

```fortran
UPLO TRANS A DIAG N AP X INCX
```

```fortran
CALL STPMV( 'L', 'N', 'U', 4, AP, X, 1 )
```

\[
AP = (. , 1.0, 2.0, 3.0, . , 3.0, 4.0, . , 3.0, .)
\]

\[
X = (1.0, 2.0, 3.0, 4.0)
\]

Output

\[
X = (1.0, 3.0, 11.0, 24.0)
\]

Example 5: This example shows the computation $x \leftarrow A^T x$. Matrix A is a real 4 by 4 upper triangular matrix that is not unit triangular, stored in upper-triangular-packed storage mode. Vector x is a vector of length 4. Matrix A is:

\[
A = \begin{bmatrix}
1.0 & 2.0 & 3.0 & 2.0 \\
. & 2.0 & 2.0 & 5.0 \\
. & . & 3.0 & 3.0 \\
. & . & . & 1.0
\end{bmatrix}
\]
Call Statement and Input

```
CALL STPMV( 'U' , 'T' , 'N' , 4 , AP , X , 1 )
```

\[\begin{align*}
AP & = (1.0, 2.0, 2.0, 3.0, 2.0, 3.0, 2.0, 5.0, 3.0, 1.0) \\
X & = (5.0, 4.0, 3.0, 2.0)
\end{align*} \]

Output

\[\begin{align*}
X & = (5.0, 18.0, 32.0, 41.0)
\end{align*} \]

Example 6: This example shows the computation \(x \leftarrow A^H x \). Matrix \(A \) is a complex 4 by 4 upper triangular matrix that is unit triangular, stored in upper-triangular-packed storage mode. Vector \(x \) is a vector of length 4. Matrix \(A \) is:

\[
\begin{bmatrix}
(1.0, 0.0) & (2.0, 2.0) & (3.0, 3.0) & (2.0, 2.0) \\
. & (1.0, 0.0) & (2.0, 2.0) & (5.0, 5.0) \\
. & . & (1.0, 0.0) & (3.0, 3.0) \\
. & . & . & (1.0, 0.0)
\end{bmatrix}
\]

Note: Because matrix \(A \) is unit triangular, the diagonal elements are not referenced. ESSL assumes a value of (1.0, 0.0) for the diagonal elements.

Call Statement and Input

```
CALL CTPMV( 'U' , 'C' , 'U' , 4 , AP , X , 1 )
```

\[\begin{align*}
AP & = (. , (2.0, 2.0), . , (3.0, 3.0), (2.0, 2.0), . , \\
& \quad (2.0, 2.0), (5.0, 5.0), (3.0, 3.0), .) \\
X & = ((5.0, 5.0), (4.0, 4.0), (3.0, 3.0), (2.0, 2.0))
\end{align*} \]

Output

\[\begin{align*}
X & = ((5.0, 5.0), (24.0, 4.0), (49.0, 3.0), (8.0, 2.0))
\end{align*} \]
STBMV, DTBMV, CTBMV, and ZTBMV—Matrix-Vector Product for a Triangular Band Matrix, Its Transpose, or Its Conjugate Transpose

STBMV and DTBMV compute one of the following matrix-vector products, using the vector x and triangular band matrix A or its transpose:

$$x \leftarrow Ax$$
$$x \leftarrow A^T x$$

CTBMV and ZTBMV compute one of the following matrix-vector products, using the vector x and triangular band matrix A, its transpose, or its conjugate transpose:

$$x \leftarrow Ax$$
$$x \leftarrow A^T x$$
$$x \leftarrow A^H x$$

Matrix A can be either upper or lower triangular and is stored in upper- or lower-triangular-band-packed storage mode, respectively.

<table>
<thead>
<tr>
<th>Table 70. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, x</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
<tr>
<td>Short-precision complex</td>
</tr>
<tr>
<td>Long-precision complex</td>
</tr>
</tbody>
</table>

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL STBMV</th>
<th>DTBMV</th>
<th>CTBMV</th>
<th>ZTBMV (uplo, transa, diag, n, k, a, lda, x, incx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>stbmv</td>
<td>dtbmv</td>
<td>ctbmv</td>
<td>ztbmv (uplo, transa, diag, n, k, a, lda, x, incx);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL STBMV</td>
<td>DTBMV</td>
<td>CTBMV</td>
<td>ZTBMV (uplo, transa, diag, n, k, a, lda, x, incx);</td>
</tr>
</tbody>
</table>

On Entry

- **uplo** indicates whether matrix A is an upper or lower triangular band matrix, where:
 - If $uplo = 'U'$, A is an upper triangular matrix.
 - If $uplo = 'L'$, A is a lower triangular matrix.
 Specified as: a single character. It must be 'U' or 'L'.

- **transa** indicates the form of matrix A to use in the computation, where:
 - If $transa = 'N'$, A is used in the computation.
 - If $transa = 'T'$, A^T is used in the computation.
 - If $transa = 'C'$, A^H is used in the computation.
 Specified as: a single character. It must be 'N', 'T', or 'C'.
diag
indicates the characteristics of the diagonal of matrix \(A \), where:

If \(\text{diag} = 'U' \), \(A \) is a unit triangular matrix.

If \(\text{diag} = 'N' \), \(A \) is not a unit triangular matrix.

Specified as: a single character. It must be 'U' or 'N'.

\(n \)
is the order of triangular band matrix \(A \). Specified as: a fullword integer; \(n \geq 0 \).

\(k \)
is the upper or lower band width \(k \) of the matrix \(A \). Specified as: a fullword integer; \(k \geq 0 \).

\(a \)
is the upper or lower triangular band matrix \(A \) of order \(n \), stored in upper- or lower-triangular-band-packed storage mode, respectively.

Note: No data should be moved to form \(A^T \) or \(A^H \); that is, the matrix \(A \) should always be stored in its untransposed form.

Specified as: an \(\text{lda} \) by (at least) \(n \) array, containing numbers of the data type indicated in Table 70 on page 356.

\(\text{lda} \)
is the leading dimension of the array specified for \(a \). Specified as: a fullword integer; \(\text{lda} > 0 \) and \(\text{lda} \geq k+1 \).

\(x \)
is the vector \(x \) of length \(n \). Specified as: a one-dimensional array of (at least) length \(1+(n-1)|\text{incx}| \), containing numbers of the data type indicated in Table 70 on page 356.

\(\text{incx} \)
is the stride for vector \(x \). Specified as: a fullword integer; \(\text{incx} > 0 \) or \(\text{incx} < 0 \).

On Return

\(x \)
is the vector \(x \) of length \(n \), containing the results of the computation. Returned as: a one-dimensional array, containing numbers of the data type indicated in Table 70 on page 356.

Notes

1. These subroutines accept lowercase letters for the \(\text{uplo}, \text{transa}, \) and \(\text{diag} \) arguments.

2. For STBMV and DTBMV, if you specify 'C' for the \(\text{transa} \) argument, it is interpreted as though you specified 'T'.

3. Matrix \(A \) and vector \(x \) must have no common elements; otherwise, results are unpredictable.

4. To achieve optimal performance in these subroutines, use \(\text{lda} = k+1 \).

5. For unit triangular matrices, the elements of the diagonal are assumed to be 1.0 for real matrices and (1.0, 0.0) for complex matrices. As a result, you do not have to set these values.

6. For both upper and lower triangular band matrices, if you specify \(k \geq n \), ESSL assumes, **only for purposes of the computation**, that the upper or lower band width of matrix \(A \) is \(n-1 \); that is, it processes matrix \(A \), of order \(n \), as though it is a (nonbanded) triangular matrix. However, ESSL uses the original
value for \(k \) for the purposes of finding the locations of element \(a_{11} \) and all other elements in the array specified for \(A \), as described in "Triangular Band Matrix" on page 84. For an illustration of this technique, see "Example 4" on page 361.

7. For a description of triangular band matrices and how they are stored in upper- and lower-triangular-band-packed storage mode, see "Triangular Band Matrix" on page 84.

8. If you are using a lower triangular band matrix, you may want to use this alternate approach instead of using lower-triangular-band-packed storage mode. Leave matrix \(A \) in full-matrix storage mode when you pass it to ESSL and specify the \(lda \) argument to be \(lda+1 \), which is the leading dimension of matrix \(A \) plus 1. ESSL then processes the matrix elements in the same way as though you had set them up in lower-triangular-band-packed storage mode.

Function: These subroutines can perform the following matrix-vector product computations, using the triangular band matrix \(A \), its transpose, or its conjugate transpose, where \(A \) can be either upper or lower triangular:

\[
\begin{align*}
 x & \leftarrow Ax \\
 x & \leftarrow A^T x \\
 x & \leftarrow A^H x \quad \text{(for CTBMV and ZTBMV only)}
\end{align*}
\]

where:

- \(x \) is a vector of length \(n \).
- \(A \) is an upper or lower triangular band matrix of order \(n \), stored in upper- or lower-triangular-band-packed storage mode, respectively.

See references [34], [46], and [38]. If \(n \) is 0, no computation is performed.

Error Conditions

Computational Errors: None

Input-Argument Errors

1. \(\text{uplo} \neq 'L' \text{ or 'U'} \)
2. \(\text{transa} \neq 'T', 'N', \text{ or 'C'} \)
3. \(\text{diag} \neq 'N' \text{ or 'U'} \)
4. \(n < 0 \)
5. \(k < 0 \)
6. \(\text{lda} \leq 0 \)
7. \(\text{lda} < k+1 \)
8. \(\text{incx} = 0 \)

Example 1: This example shows the computation \(x \leftarrow Ax \). Matrix \(A \) is a real 7 by 7 upper triangular band matrix with a half band width of 3 that is not unit triangular, stored in upper-triangular-band-packed storage mode. Vector \(x \) is a vector of length 7. Matrix \(A \) is:
STBMV, DTBMV, CTBMV, and ZTBMV

Call Statement and Input

\[
\begin{bmatrix}
1.0 & 1.0 & 1.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 2.0 & 2.0 & 2.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 3.0 & 3.0 & 3.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 4.0 & 4.0 & 4.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 5.0 & 5.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 6.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\end{bmatrix}
\]

\[\begin{bmatrix}
\ . & \ . & 1.0 & 2.0 & 3.0 & 4.0 \\
\ . & \ . & 1.0 & 2.0 & 3.0 & 4.0 & 5.0 \\
\ 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 \\
\ . & \ . & \ . & \ . & \ . & \ . & \ . \\
\end{bmatrix}
\]

\[X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0)\]

Output

\[X = (10.0, 28.0, 54.0, 88.0, 90.0, 78.0, 49.0)\]

Example 2: This example shows the computation \(\mathbf{x} \leftarrow A^\top \mathbf{x}\). Matrix \(A\) is a real 7 by 7 lower triangular band matrix with a half band width of 3 that is not unit triangular, stored in lower-triangular-band-packed storage mode. Vector \(x\) is a vector of length 7. Matrix \(A\) is:

\[
\begin{bmatrix}
1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
1.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
1.0 & 2.0 & 3.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
1.0 & 2.0 & 3.0 & 4.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 2.0 & 3.0 & 4.0 & 5.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 3.0 & 4.0 & 5.0 & 6.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 4.0 & 5.0 & 6.0 & 7.0 \\
\end{bmatrix}
\]

Call Statement and Input
Example 3: This example shows the computation $x \leftarrow A^t x$. Matrix A is a complex 7 by 7 upper triangular band matrix with a half band width of 3 that is not unit triangular, stored in upper-triangular-band-packed storage mode. Vector x is a vector of length 7. Matrix A is:

$$A = \begin{bmatrix}
(1.0, 1.0) & (1.0, 1.0) & (1.0, 1.0) & (1.0, 1.0) & (0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) \\
(0.0, 0.0) & (2.0, 2.0) & (2.0, 2.0) & (2.0, 2.0) & (2.0, 2.0) & (0.0, 0.0) & (0.0, 0.0) \\
(0.0, 0.0) & (0.0, 0.0) & (3.0, 3.0) & (3.0, 3.0) & (3.0, 3.0) & (3.0, 3.0) & (0.0, 0.0) \\
(0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) & (4.0, 4.0) & (4.0, 4.0) & (4.0, 4.0) & (4.0, 4.0) \\
(0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) & (5.0, 5.0) & (5.0, 5.0) & (5.0, 5.0) \\
(0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) & (6.0, 6.0) & (6.0, 6.0) \\
(0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) & (7.0, 7.0)
\end{bmatrix}$$

Output

$$X = ((1.0, 2.0), (7.0, 9.0), (24.0, 23.0), (58.0, 46.0), (112.0, 79.0), (186.0, 122.0), (280.0, 175.0))$$
Example 4: This example shows the computation $x \leftarrow A^T x$, where $k > n$. Matrix A is a real 4 by 4 upper triangular band matrix with a half band width of 5 that is not unit triangular, stored in upper-triangular-band-packed storage mode. Vector x is a vector of length 4. Matrix A is:

$$
\begin{bmatrix}
1.0 & 1.0 & 1.0 & 1.0 \\
. & 2.0 & 2.0 & 2.0 \\
. & . & 3.0 & 3.0 \\
. & . & . & 4.0 \\
\end{bmatrix}
$$

Call Statement and Input

```
CALL STBMV( 'U', 'T', 'N', 4, 5, A, 6, X, 1 )
```

Matrix A is:

$$
\begin{bmatrix}
. & . & . & . \\
. & . & . & 1.0 \\
. & . & 1.0 & 2.0 \\
1.0 & 2.0 & 3.0 & 4.0 \\
\end{bmatrix}
$$

Vector x is:

$$(1.0, 2.0, 3.0, 4.0)$$

Output

$$(1.0, 5.0, 14.0, 30.0)$$
Sparse Matrix-Vector Subprograms

This section contains the sparse matrix-vector subprogram descriptions.
DSMMX—Matrix-Vector Product for a Sparse Matrix in Compressed-Matrix Storage Mode

This subprogram computes the matrix-vector product for sparse matrix \(A \), stored in compressed-matrix storage mode, using the matrix and vectors \(x \) and \(y \):

\[
y \leftarrow Ax
\]

where \(A \), \(x \), and \(y \) contain long-precision real numbers. You can use DSMTM to transpose matrix \(A \) before calling this subroutine. The resulting computation performed by this subroutine is then \(y \leftarrow A^T x \).

Syntax

<table>
<thead>
<tr>
<th>Language</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>CALL DSMMX (m, nz, ac, ka, lda, x, y)</td>
</tr>
<tr>
<td>C and C++</td>
<td>dsmmx (m, nz, ac, ka, lda, x, y);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL DSMMX (m, nz, ac, ka, lda, x, y);</td>
</tr>
</tbody>
</table>

On Entry

- \(m \)
 - is the number of rows in sparse matrix \(A \) and the number of elements in vector \(y \). Specified as: a fullword integer; \(m \geq 0 \).
- \(nz \)
 - is the maximum number of nonzero elements in each row of sparse matrix \(A \). Specified as: a fullword integer; \(nz \geq 0 \).
- \(ac \)
 - is the \(m \) by \(n \) sparse matrix \(A \), stored in compressed-matrix storage mode in an array, referred to as \(AC \). Specified as: an \(lda \) by (at least) \(nz \) array, containing long-precision real numbers.
- \(ka \)
 - is the array, referred to as \(KA \), containing the column numbers of the matrix \(A \) elements stored in the corresponding positions in array \(AC \). Specified as: an \(lda \) by (at least) \(nz \) array, containing fullword integers, where \(1 \leq (\text{elements of } KA) \leq n \).
- \(lda \)
 - is the size of the leading dimension of the arrays specified for \(ac \) and \(ka \). Specified as: a fullword integer; \(lda > 0 \) and \(lda \geq m \).
- \(x \)
 - is the vector \(x \) of length \(n \). Specified as: a one-dimensional array of (at least) length \(n \), containing long-precision real numbers.
- \(y \)
 - See “On Return.”

On Return

- \(y \)
 - is the vector \(y \) of length \(m \), containing the result of the computation. Returned as: a one-dimensional array of (at least) length \(m \), containing long-precision real numbers.

Notes

1. Matrix \(A \) must have no common elements with vectors \(x \) and \(y \); otherwise, results are unpredictable.
2. For the KA array, where there are no corresponding nonzero elements in AC, you must still fill in a number between 1 and n. See the “Example” on page 364.

3. For a description of how sparse matrices are stored in compressed-matrix storage mode, see “Compressed-Matrix Storage Mode” on page 91.

4. If your sparse matrix is stored by rows, as defined in “Storage-by-Rows” on page 97, you should first use the DSRSM utility subroutine, described in “DSRSM—Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode” on page 1001, to convert your sparse matrix to compressed-matrix storage mode.

Function: The matrix-vector product is computed for a sparse matrix, stored in compressed matrix mode:

\[y \leftarrow Ax \]

where:

- A is an m by n sparse matrix, stored in compressed-matrix storage mode in arrays AC and KA.
- x is a vector of length n.
- y is a vector of length m.

It is expressed as follows:

\[
\begin{bmatrix}
 y_1 \\
 \vdots \\
 y_m
\end{bmatrix}
\leftarrow
\begin{bmatrix}
 a_{11} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{m1} & \cdots & a_{mn}
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{bmatrix}
\]

See reference [73]. If m is 0, no computation is performed; if nz is 0, output vector y is set to zero, because matrix A contains all zeros.

If your program uses a sparse matrix stored by rows and you want to use this subroutine, you should first convert your sparse matrix to compressed-matrix storage mode by using the DSRSM utility subroutine described in “DSRSM—Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode” on page 1001.

Error Conditions

Computational Errors: None

Input-Argument Errors

1. \(m < 0 \)
2. \(lda \leq 0 \)
3. \(m > lda \)
4. \(nz < 0 \)

Example: This example shows the matrix-vector product computed for the following sparse matrix A, which is stored in compressed-matrix storage mode in arrays AC and KA. Matrix A is:
Call Statement and Input

\[
\begin{bmatrix}
4.0 & 0.0 & 7.0 & 0.0 & 0.0 & 0.0 \\
3.0 & 4.0 & 0.0 & 2.0 & 0.0 & 0.0 \\
0.0 & 2.0 & 4.0 & 0.0 & 4.0 & 0.0 \\
0.0 & 0.0 & 7.0 & 4.0 & 0.0 & 1.0 \\
1.0 & 0.0 & 0.0 & 3.0 & 4.0 & 0.0 \\
1.0 & 1.0 & 0.0 & 0.0 & 3.0 & 4.0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
4.0 & 7.0 & 0.0 & 0.0 \\
4.0 & 3.0 & 2.0 & 0.0 \\
4.0 & 2.0 & 4.0 & 0.0 \\
4.0 & 7.0 & 1.0 & 0.0 \\
4.0 & 1.0 & 3.0 & 0.0 \\
4.0 & 1.0 & 1.0 & 3.0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 3 & 1 & 1 \\
2 & 1 & 4 & 1 \\
3 & 2 & 5 & 1 \\
4 & 3 & 6 & 1 \\
5 & 1 & 4 & 1 \\
6 & 1 & 2 & 5 \\
\end{bmatrix}
\]

\[
X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0)
\]

Output

\[
Y = (25.0, 19.0, 36.0, 43.0, 33.0, 42.0)
\]
DSMTM—Transpose a Sparse Matrix in Compressed-Matrix Storage Mode

This subprogram transposes sparse matrix \(A \), stored in compressed-matrix storage mode, where \(A \) contains long-precision real numbers.

Syntax

<table>
<thead>
<tr>
<th>Language</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td><code>CALL DSMTM (m, nz, ac, ka, lda, n, nt, at, kt, ldt, aux, naux)</code></td>
</tr>
<tr>
<td>C and C++</td>
<td><code>dsmtm (m, nz, ac, ka, lda, n, nt, at, kt, ldt, aux, naux);</code></td>
</tr>
<tr>
<td>PL/I</td>
<td><code>CALL DSMTM (m, nz, ac, ka, lda, n, nt, at, kt, ldt, aux, naux);</code></td>
</tr>
</tbody>
</table>

On Entry

- \(m \)
 - is the number of rows in sparse matrix \(A \). Specified as: a fullword integer; \(m \geq 0 \).
- \(nz \)
 - is the maximum number of nonzero elements in each row of sparse matrix \(A \). Specified as: a fullword integer; \(nz \geq 0 \).
- \(ac \)
 - is the \(m \) by \(n \) sparse matrix \(A \), stored in compressed-matrix storage mode in an array, referred to as \(AC \). Specified as: an \(lda \) by (at least) \(nz \) array, containing long-precision real numbers.
- \(ka \)
 - is the array, referred to as \(KA \), containing the column numbers of the matrix \(A \) elements stored in the corresponding positions in array \(AC \). Specified as: an \(lda \) by (at least) \(nz \) array, containing fullword integers, where \(1 \leq (\text{elements of } KA) \leq n \).
- \(lda \)
 - is the size of the leading dimension of the arrays specified for \(ac \) and \(ka \). Specified as: a fullword integer; \(lda > 0 \) and \(lda \geq m \).
- \(n \)
 - is the number of columns in sparse matrix \(A \). Specified as: a fullword integer; \(0 \leq n \leq ldt \) and \(n \geq (\text{maximum column index in } KA) \).
- \(nt \)
 - is the number of columns in output arrays \(AT \) and \(KT \) that are available for use. Specified as: a fullword integer; \(nt > 0 \).
- \(at \)
 - See “On Return” on page 367.
- \(kt \)
 - See “On Return” on page 367.
- \(ldt \)
 - is the size of the leading dimension of the arrays specified for \(at \) and \(kt \). Specified as: a fullword integer; \(ldt > 0 \) and \(ldt \geq n \).
- \(aux \)
 - has the following meaning:
 - If \(naux = 0 \) and error 2015 is unrecoverable, \(aux \) is ignored.
 - Otherwise, it is a storage work area used by this subroutine. Its size is specified by \(naux \).
 - Specified as: an area of storage, containing long-precision real numbers. They can have any value.
The size of the work area specified by \(aux \)—that is, the number of elements in \(aux \). Specified as: a fullword integer, where:

- If \(naux = 0 \) and error 2015 is unrecoverable, DSMTM dynamically allocates the work area used by this subroutine. The work area is deallocated before control is returned to the calling program.
- Otherwise, \(naux \geq n \).

On Return

\(n \)

is the number of rows in the transposed matrix \(A^T \). Returned as: a fullword integer; \(n = (\text{maximum column index in } KA) \).

\(nt \)

is the maximum number of nonzero elements, \(nt \), in each row of the transposed matrix \(A^T \). Returned as: a fullword integer; \(nt \leq m \).

\(at \)

is the \(n \) by (at least) \(m \) sparse matrix transpose \(A^T \), stored in compressed-matrix storage mode in an array, referred to as \(AT \). Returned as: an \(ldt \) by (at least) \(nt \) array, containing long-precision real numbers.

\(kt \)

is the array, referred to as \(KT \), containing the column numbers of the transposed matrix \(A^T \) elements, stored in the corresponding positions in array \(AT \). Returned as: an \(ldt \) by (at least) \(nt \) array, containing fullword integers, where \(1 \leq (\text{elements of } KT) \leq m \).

Notes

1. In your C program, arguments \(n \) and \(nt \) must be passed by reference.

2. The value specified for input argument \(nt \) should be greater than or equal to the number of nonzero elements you estimate to be in each row of the transposed sparse matrix \(A^T \). The output value is less than or equal to the input value you specify.

3. For the \(KA \) array, where there are no corresponding nonzero elements in \(AC \), you must still fill in a number between 1 and \(n \). See the “Example” on page 368.

4. For a description of how sparse matrices are stored in compressed-matrix storage mode, see “Compressed-Matrix Storage Mode” on page 91.

5. If your sparse matrix is stored by rows, as defined in “Storage-by-Rows” on page 97, you should first use the DSRSM utility subroutine, described in “DSRSM—Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode” on page 1001, to convert your sparse matrix to compressed-matrix storage mode.

6. You have the option of having the minimum required value for \(naux \) dynamically returned to your program. For details, see “Using Auxiliary Storage in ESSL” on page 30.

Function: A sparse matrix \(A \), stored in arrays \(AC \) and \(KA \) in compressed-matrix storage mode, is transposed, forming \(A^T \), and is stored in arrays \(AT \) and \(KT \) in compressed-matrix storage mode. See reference [73]. This subroutine is provided for when you want to do a matrix-vector product using a transposed matrix, \(A^T \). First, you transpose a matrix, \(A \), using this subroutine, then you call DSMMX with
the transposed matrix A^T. This results in the following computation being performed: $y \leftarrow A^T x$.

If your program uses a sparse matrix stored by rows and you want to use this subroutine, you should first convert your sparse matrix to compressed-matrix storage mode by using the DSRSM utility subroutine described in “DSRSM—Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode” on page 1001.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, $naux = 0$, and unable to allocate work area.

Computational Errors: None

Input-Argument Errors

1. $m, n < 0$
2. $lda, ldt < 1$
3. $lda < m$
4. $ldt < n$
5. $nz < 0$
6. n is less than the maximum column index in KA.
7. nt or ldt are too small.
8. When the following two errors occur, arrays AT, KT, and AUX are overwritten:
 - $naux < n$
 - $nt \leq 0$
9. Error 2015 is recoverable or $naux=0$, and $naux$ is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.

Example: This example shows how to transpose the following 5 by 4 sparse matrix A, which is stored in compressed-matrix storage mode in arrays AC and KA. Matrix A is:

$$
\begin{bmatrix}
 11. & 0.0 & 0.0 & 0.0 \\
 21. & 0.0 & 23.0 & 0.0 \\
 & 0.0 & 33.0 & 34.0 \\
 & 0.0 & 42.0 & 0.0 & 44.0 \\
 & 51.0 & 0.0 & 53.0 & 0.0
\end{bmatrix}
$$

The resulting 4 by 5 matrix transpose A^T, stored in compressed-matrix storage mode in arrays AT and KT, is as follows. Matrix A^T is:

$$
\begin{bmatrix}
 11.0 & 21.0 & 0.0 & 0.0 & 51.0 \\
 & 0.0 & 0.0 & 0.0 & 42.0 & 0.0 \\
 & 0.0 & 23.0 & 33.0 & 0.0 & 53.0 \\
 & 0.0 & 0.0 & 34.0 & 44.0 & 0.0
\end{bmatrix}
$$

As shown here, the value of N is larger than the actual number of columns in the matrix A. On output, the exact number of rows in the transposed matrix is returned in the output argument N.
On output, row 6 of AT and KT is is not accessed or modified by the subroutine. Column 4 and row 5 are accessed and modified. They are of no use in further computations and will not be used, because \(NT = 3 \) and \(M = 4 \).

Call Statement and Input

\[
\begin{array}{cccccccccccc}
M & NZ & AC & KA & LDA & N & NT & AT & KT & LDT & AUX & NAUX \\
\mid | | | | | | | | | | | | |
CALL DSMTM(5 , 2 , AC , KA , 5 , 5 , 4 , AT , KT , 6 , AUX , 5)
\end{array}
\]

\[
AC = \begin{bmatrix}
11.0 & 0.0 \\
21.0 & 23.0 \\
33.0 & 34.0 \\
42.0 & 44.0 \\
51.0 & 53.0
\end{bmatrix}
\]

\[
KA = \begin{bmatrix}
1 & 1 \\
1 & 3 \\
3 & 4 \\
2 & 4 \\
1 & 3
\end{bmatrix}
\]

Output

\[
N = 4 \\
NT = 3 \\
\]

\[
AT = \begin{bmatrix}
11.0 & 21.0 & 51.0 & 0.0 \\
42.0 & 0.0 & 0.0 & 0.0 \\
33.0 & 23.0 & 53.0 & 0.0 \\
34.0 & 44.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 \\
\end{bmatrix}
\]

\[
KT = \begin{bmatrix}
1 & 2 & 5 & 1 \\
4 & 1 & 1 & 1 \\
3 & 2 & 5 & 1 \\
3 & 4 & 1 & 1 \\
1 & 1 & 1 & 1 \\
\end{bmatrix}
\]
DSDMX—Matrix-Vector Product for a Sparse Matrix or Its Transpose in Compressed-Diagonal Storage Mode

This subprogram computes the matrix-vector product for square sparse matrix \(A \), stored in compressed-diagonal storage mode, using either the matrix or its transpose, and vectors \(x \) and \(y \):

\[
y \leftarrow Ax
\]

\[
y \leftarrow A^T x
\]

where \(A \), \(x \), and \(y \) contain long-precision real numbers.

Syntax

<table>
<thead>
<tr>
<th>Language</th>
<th>Call Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>CALL DSDMX (iopt, n, nd, ad, lda, trans, la, x, y)</td>
</tr>
<tr>
<td>C and C++</td>
<td>dsdmx (iopt, n, nd, ad, lda, trans, la, x, y);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL DSDMX (iopt, n, nd, ad, lda, trans, la, x, y);</td>
</tr>
</tbody>
</table>

On Entry

- \(iopt \)
 - indicates the storage variation used for sparse matrix \(A \), stored in compressed-diagonal storage mode, where:
 - If \(iopt = 0 \), matrix \(A \) is a general sparse matrix, where all the nonzero diagonals in matrix \(A \) are used to set up the storage arrays.
 - If \(iopt = 1 \), matrix \(A \) is a symmetric sparse matrix, where only the nonzero main diagonal and one of each of the unique nonzero diagonals are used to set up the storage arrays.
 - Specified as: a fullword integer; \(iopt = 0 \) or 1.

- \(n \)
 - is the order of sparse matrix \(A \) and the number of elements in vectors \(x \) and \(y \).
 - Specified as: a fullword integer; \(n \geq 0 \).

- \(nd \)
 - is the number of diagonals stored in the columns of array \(AD \), as well as the number of columns in \(AD \) and the number of elements in array \(LA \). Specified as: a fullword integer; \(nd \geq 0 \).

- \(ad \)
 - is the sparse matrix \(A \) of order \(n \), stored in compressed diagonal storage in an array, referred to as \(AD \). The \(iopt \) argument indicates the storage variation used for storing matrix \(A \). The \(trans \) argument indicates the following:
 - If \(trans = 'N' \), \(A \) is used in the computation.
 - If \(trans = 'T' \), \(A^T \) is used in the computation.
 - Specified as: an \(lda \) by (at least) \(nd \) array, containing long-precision real numbers; \(lda \geq n \).

- \(lda \)
 - is the size of the leading dimension of the array specified for \(ad \). Specified as: a fullword integer; \(lda > 0 \) and \(lda \geq n \).
trans
indicates the form of matrix A to use in the computation, where:

If $trans = 'N'$, A is used in the computation.
If $trans = 'T'$, A^T is used in the computation.

Specified as: a single character; $trans = 'N'$ or 'T'.

la
is the array, referred to as LA, containing the diagonal numbers k for the
diagonals stored in each corresponding column in array AD. (For an explanation
of how diagonal numbers are assigned, see “Compressed-Diagonal Storage Mode” on page 92.)

Specified as: a one-dimensional array of (at least) length nd, containing fullword integers; $1-n \leq LA(i) \leq n-1$.

x
is the vector x of length n. Specified as: a one-dimensional array, containing
long-precision real numbers.

y
See “On Return.”

On Return

y
is the vector y of length n, containing the result of the computation. Returned as: a one-dimensional array, containing long-precision real numbers.

Notes

1. All subroutines accept lowercase letters for the $trans$ argument.
2. Matrix A must have no common elements with vectors x and y; otherwise, results are unpredictable.
3. For a description of how sparse matrices are stored in compressed-diagonal storage mode, see “Compressed-Diagonal Storage Mode” on page 92.

Function: The matrix-vector product of a square sparse matrix or its transpose, is computed for a matrix stored in compressed-diagonal storage mode:

$y \leftarrow Ax$
$y \leftarrow A^T x$

where:

A is a sparse matrix of order n, stored in compressed-diagonal storage mode in AD and LA, using the storage variation for either general or symmetric sparse matrices, as indicated by the $iopt$ argument.
x and y are vectors of length n.

It is expressed as follows for $y \leftarrow Ax$:

\[
\begin{bmatrix}
 y_1 \\
 \vdots \\
 y_n
\end{bmatrix}
\leftarrow
\begin{bmatrix}
 a_{11} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{n1} & \cdots & a_{nn}
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{bmatrix}
\]
It is expressed as follows for \(y \leftarrow A^T x \):

\[
\begin{bmatrix}
y_1 \\
\vdots \\
y_n
\end{bmatrix}
\leftarrow
\begin{bmatrix}
a_{11} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{m1} & \cdots & a_{mn}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
\vdots \\
x_n
\end{bmatrix}
\]

If \(n \) is 0, no computation is performed; if \(nd \) is 0, output vector \(y \) is set to zero, because matrix \(A \) contains all zeros.

Error Conditions

Computational Errors: None

Input-Argument Errors

1. \(iopt \neq 0 \) or 1
2. \(n < 0 \)
3. \(lda \leq 0 \)
4. \(n > lda \)
5. \(trans \neq 'N' \) or 'T'
6. \(nd < 0 \)
7. \(LA(j) \leq -n \) or \(LA(j) \geq n \), for any \(j = 1, n \)

Example 1: This example shows the matrix-vector product using \(trans = 'N' \), which is computed for the following sparse matrix \(A \) of order 6. The matrix is stored in compressed-matrix storage mode in arrays \(AD \) and \(LA \) using the storage variation for general sparse matrices, storing all nonzero diagonals. Matrix \(A \) is:

\[
\begin{bmatrix}
4.0 & 0.0 & 7.0 & 0.0 & 0.0 & 0.0 \\
3.0 & 4.0 & 0.0 & 2.0 & 0.0 & 0.0 \\
0.0 & 2.0 & 4.0 & 0.0 & 4.0 & 0.0 \\
0.0 & 0.0 & 7.0 & 4.0 & 0.0 & 1.0 \\
1.0 & 0.0 & 0.0 & 3.0 & 4.0 & 0.0 \\
1.0 & 1.0 & 0.0 & 0.0 & 3.0 & 4.0
\end{bmatrix}
\]

Call Statement and Input

\[
\begin{array}{cccccccc}
\text{IOPT} & \text{N} & \text{ND} & \text{AD} & \text{LDA} & \text{TRANS} & \text{LA} & \text{X} & \text{Y} \\
0 & 6 & 5 & \text{AD} & 6 & 'N' & \text{LA} & \text{X} & \text{Y}
\end{array}
\]

\[
\begin{bmatrix}
4.0 & 0.0 & 0.0 & 0.0 & 7.0 \\
4.0 & 0.0 & 0.0 & 3.0 & 2.0 \\
4.0 & 0.0 & 0.0 & 2.0 & 4.0 \\
4.0 & 0.0 & 0.0 & 7.0 & 1.0 \\
4.0 & 0.0 & 1.0 & 3.0 & 0.0 \\
4.0 & 1.0 & 1.0 & 3.0 & 0.0
\end{bmatrix}
\]

\[
\begin{array}{l}
\text{AD} = (0, -5, -4, -1, 2) \\
\text{LA} = (0, -5, -4, -1, 2) \\
\text{X} = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0)
\end{array}
\]
Output
Y = (25.0, 19.0, 36.0, 43.0, 33.0, 42.0)

Example 2: This example shows the matrix-vector product using trans = 'N', which is computed for the following sparse matrix A of order 6. The matrix is stored in compressed-matrix storage mode in arrays AD and LA using the storage variation for symmetric sparse matrices, storing the nonzero main diagonal and one of each of the unique nonzero diagonals. Matrix A is:

\[
\begin{bmatrix}
11.0 & 0.0 & 13.0 & 0.0 & 15.0 & 0.0 \\
0.0 & 22.0 & 0.0 & 24.0 & 0.0 & 26.0 \\
13.0 & 0.0 & 33.0 & 0.0 & 35.0 & 0.0 \\
0.0 & 24.0 & 0.0 & 44.0 & 0.0 & 46.0 \\
15.0 & 0.0 & 35.0 & 0.0 & 55.0 & 0.0 \\
0.0 & 26.0 & 0.0 & 46.0 & 0.0 & 66.0 \\
\end{bmatrix}
\]

Call Statement and Input

\[
\begin{array}{c}
\text{IOPT N ND AD LDA TRANS LA X Y} \\
| | | | | | | |
\end{array}
\]

CALL DSDMX(1, 6, 3, AD, 6, 'N', LA, X, Y)

AD =
\[
\begin{bmatrix}
11.0 & 13.0 & 0.0 \\
22.0 & 24.0 & 0.0 \\
33.0 & 35.0 & 0.0 \\
44.0 & 46.0 & 0.0 \\
55.0 & 0.0 & 15.0 \\
66.0 & 0.0 & 26.0 \\
\end{bmatrix}
\]

LA = (0, 2, -4)
X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0)

Output
Y = (125.0, 296.0, 287.0, 500.0, 395.0, 632.0)

Example 3: This example is the same as Example 1 except that it shows the matrix-vector product for the transpose of a matrix, using trans = 'T'. It is computed using the transpose of the following sparse matrix A of order 6, which is stored in compressed-matrix storage mode in arrays AD and LA, using the storage variation for general sparse matrices, storing all nonzero diagonals. It uses the same matrix A as in Example 1.

Call Statement and Input

\[
\begin{array}{c}
\text{IOPT N ND AD LDA TRANS LA X Y} \\
| | | | | | | |
\end{array}
\]

CALL DSDMX(0, 6, 5, AD, 6, 'T', LA, X, Y)

AD = (same as input AD in Example 1)
LA = (same as input LA in Example 1)
X = (same as input X in Example 1)

Output
Y = (21.0, 20.0, 47.0, 35.0, 50.0, 28.0)
Chapter 9. Matrix Operations

The matrix operation subroutines are described in this chapter.

Overview of the Matrix Operation Subroutines

Some of the matrix operation subroutines were designed in accordance with the Level 3 BLAS de facto standard. If these subroutines do not comply with the standard as approved, IBM will consider updating them to do so. If IBM updates these subroutines, the updates could require modifications of the calling application program. For details on the Level 3 BLAS, see reference [32]. The matrix operation subroutines also include the commonly used matrix operations: addition, subtraction, multiplication, and transposition (Table 71).

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subroutine</th>
<th>Long-Precision Subroutine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix Addition for General Matrices or Their Transposes</td>
<td>SGEADD CGEADD</td>
<td>DGEADD ZGEADD</td>
<td>379</td>
</tr>
<tr>
<td>Matrix Subtraction for General Matrices or Their Transposes</td>
<td>SGESUB CGESUB</td>
<td>DGESUB ZGESUB</td>
<td>386</td>
</tr>
<tr>
<td>Matrix Multiplication for General Matrices, Their Transposes, or Conjugate Transposes</td>
<td>SGEMUL CGEMUL</td>
<td>DGEMUL ZGEMUL DGEMULP§</td>
<td>393</td>
</tr>
<tr>
<td>Matrix Multiplication for General Matrices, Their Transposes, or Conjugate Transposes Using Winograd’s Variation of Strassen’s Algorithm</td>
<td>SGEMMS CGEMMS</td>
<td>DGEMMS ZGEMMS</td>
<td>403</td>
</tr>
<tr>
<td>Combined Matrix Multiplication and Addition for General Matrices, Their Transposes, or Conjugate Transposes</td>
<td>SGEMM♦ CGEMM♦</td>
<td>DGEMM♦ ZGEMM♦</td>
<td>409</td>
</tr>
<tr>
<td>Matrix-Matrix Product Where One Matrix is Real or Complex Symmetric or Complex Hermitian</td>
<td>SSYMM♦ CSYMM♦ CHEMM♦</td>
<td>DSYMM♦ ZSYMM♦ ZHEMM♦</td>
<td>418</td>
</tr>
<tr>
<td>Triangular Matrix-Matrix Product</td>
<td>STRMM♦ CTRMM♦</td>
<td>DTRMM♦ ZTRMM♦</td>
<td>426</td>
</tr>
<tr>
<td>Rank-K Update of a Real or Complex Symmetric or a Complex Hermitian Matrix</td>
<td>SSYRK♦ CSYRK♦ CHERK♦</td>
<td>DSYRK♦ ZSYRK♦ ZHERK♦</td>
<td>433</td>
</tr>
<tr>
<td>Rank-2K Update of a Real or Complex Symmetric or a Complex Hermitian Matrix</td>
<td>SSYR2K♦ CSYR2K♦ CHER2K♦</td>
<td>DSYR2K♦ ZSYR2K♦ ZHER2K♦</td>
<td>440</td>
</tr>
<tr>
<td>General Matrix Transpose (In-Place)</td>
<td>SGETMI CGETMI</td>
<td>DGETMI ZGETMI</td>
<td>448</td>
</tr>
<tr>
<td>General Matrix Transpose (Out-of-Place)</td>
<td>SGETMO CGETMO</td>
<td>DGETMO ZGETMO</td>
<td>451</td>
</tr>
</tbody>
</table>

♦ Level 3 BLAS

§ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new programs. Documentation for this subroutine is no longer provided.
Use Considerations

This section describes some key points about using the matrix operations subroutines.

Specifying Normal, Transposed, or Conjugate Transposed Input Matrices

On each invocation, the matrix operation subroutines can perform one of several possible computations, using different forms of the input matrices A and B. For the real and complex versions of the subroutines, there are four and nine combinations, respectively, depending on the characters specified for the transa and transb arguments:

- 'N' Normal form
- 'T' Transposed form subroutines
- 'C' Conjugate transposed form

The four and nine possible combinations are defined as follows:

<table>
<thead>
<tr>
<th>Real Combinations</th>
<th>Complex Combinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>AB</td>
</tr>
<tr>
<td>A^TB</td>
<td>A^TB</td>
</tr>
<tr>
<td></td>
<td>A^HB</td>
</tr>
<tr>
<td>AB^T</td>
<td>AB^T</td>
</tr>
<tr>
<td>A^TB^T</td>
<td>A^TB^T</td>
</tr>
<tr>
<td></td>
<td>A^HB^T</td>
</tr>
<tr>
<td></td>
<td>AB^H</td>
</tr>
<tr>
<td></td>
<td>A^TB^H</td>
</tr>
<tr>
<td></td>
<td>A^HB^H</td>
</tr>
</tbody>
</table>

Transposing or Conjugate Transposing:

This section describes some key points about using transposed and conjugate transposed matrices.

On Input

In every case, the input arrays for the matrix, its transpose, or its conjugate transpose should be stored in the original untransposed form. You then specify the desired form of the matrix to be used in the computation in the transa or transb arguments. For a description of matrix transpose and matrix conjugate transpose, see “Matrices” on page 60.

On Output

If you want to compute the transpose or the conjugate transpose of a matrix operation—that is, the output stored in matrix C—you should use the matrix identities described in Special Usage for each subroutine description. Examples are provided in the subroutine descriptions to show the use of these matrix identities. This accomplishes the transpose or conjugate transpose as part of the multiply operation.
Performance and Accuracy Considerations

This section describes some key points about performance and accuracy in the matrix operations subroutines.

In General

1. The matrix operation subroutines use algorithms that are tuned specifically to the workstation processors they run on. The techniques involve using any one of several computational methods, based on certain operation counts and sizes of data.

2. The short-precision multiplication subroutines provide increased accuracy by partially accumulating results in long precision.

3. Strassen's method is not stable for certain row or column scalings of the input matrices A and B. Therefore, for matrices A and B with divergent exponent values, Strassen's method may give inaccurate results. For these cases, you should use the _GEMUL or _GEMM subroutines.

4. There are ESSL-specific rules that apply to the results of computations on the workstation processors using the ANSI/IEEE standards. For details, see “What Data Type Standards Are Used by ESSL, and What Exceptions Should You Know About?” on page 43.

For Large Matrices

If you are using large square matrices in your matrix multiplication operations, you get better performance by using SGEMMS, DGEMMS, CGEMMS, and ZGEMMS. These subroutines use Winograd's variation of Strassen's algorithm for both real and complex matrices.

For Combined Operations

If you want to perform a combined matrix multiplication and addition with scaling, SGEMM, DGEMM, CGEMM, and ZGEMM provide better performance than if you perform the parts of the computation separately in your program. See references [32] and [35].
Matrix Operation Subroutines

This section contains the matrix operation subroutine descriptions.
SGEADD, DGEADD, CGEADD, and ZGEADD—Matrix Addition for General Matrices or Their Transposes

These subroutines can perform any one of the following matrix additions, using matrices \(A \) and \(B \) or their transposes, and matrix \(C \):

- \(C \leftarrow A + B \)
- \(C \leftarrow A^T + B \)
- \(C \leftarrow A + B^T \)
- \(C \leftarrow A^T + B^T \)

Table 72. Data Types

<table>
<thead>
<tr>
<th></th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>SGEADD</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DGEADD</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>CGEADD</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>ZGEADD</td>
</tr>
</tbody>
</table>

Syntax

Fortran

```fortran
CALL SGEADD | DGEADD | CGEADD | ZGEADD (a, lda, transa, b, ldb, transb, c, ldc, m, n)
```

C and C++

```c
sgeadd | dgeadd | cgeadd | zgeadd (a, lda, transa, b, ldb, transb, c, ldc, m, n);
```

PL/I

```pli
CALL SGEADD | DGEADD | CGEADD | ZGEADD (a, lda, transa, b, ldb, transb, c, ldc, m, n);
```

On Entry

- \(a \)
 - is the matrix \(A \), where:
 - If \(\text{transa} = 'N' \), \(A \) is used in the computation, and \(A \) has \(m \) rows and \(n \) columns.
 - If \(\text{transa} = 'T' \), \(A^T \) is used in the computation, and \(A \) has \(n \) rows and \(m \) columns.
 - **Note:** No data should be moved to form \(A^T \); that is, the matrix \(A \) should always be stored in its untransposed form.

- \(\text{lda} \)
 - is the leading dimension of the array specified for \(a \). Specified as: a fullword integer; \(\text{lda} > 0 \) and:
 - If \(\text{transa} = 'N' \), \(\text{lda} \geq m \).
 - If \(\text{transa} = 'T' \), \(\text{lda} \geq n \).

- \(\text{transa} \)
 - indicates the form of matrix \(A \) to use in the computation, where:
 - If \(\text{transa} = 'N' \), \(A \) is used in the computation.
 - If \(\text{transa} = 'T' \), \(A^T \) is used in the computation.
SGEADD, DGEADD, CGEADD, and ZGEADD

Specified as: a single character; transa = 'N' or 'T'.

\(b \)
is the matrix \(B \), where:

If \(transb = 'N' \), \(B \) is used in the computation, and \(B \) has \(m \) rows and \(n \) columns.

If \(transb = 'T' \), \(B^T \) is used in the computation, and \(B \) has \(n \) rows and \(m \) columns.

Note: No data should be moved to form \(B^T \); that is, the matrix \(B \) should always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type indicated in Table 72 on page 379, where:

If \(transb = 'N' \), its size must be \(ldb \) by (at least) \(n \).

If \(transb = 'T' \), its size must be \(ldb \) by (at least) \(m \).

\(ldb \)
is the leading dimension of the array specified for \(b \). Specified as: a fullword integer; \(ldb > 0 \) and:

If \(transb = 'N' \), \(ldb \geq m \).

If \(transb = 'T' \), \(ldb \geq n \).

\(transb \)
indicates the form of matrix \(B \) to use in the computation, where:

If \(transb = 'N' \), \(B \) is used in the computation.

If \(transb = 'T' \), \(B^T \) is used in the computation.

Specified as: a single character; \(transb = 'N' \) or 'T'.

\(c \)
See “On Return.”

\(ldc \)
is the leading dimension of the array specified for \(c \). Specified as: a fullword integer; \(ldc > 0 \) and \(ldc \geq m \).

\(m \)
is the number of rows in matrix \(C \). Specified as: a fullword integer; \(0 \leq m \leq ldc \).

\(n \)
is the number of columns in matrix \(C \). Specified as: a fullword integer; \(0 \leq n \).

On Return

\(c \)
is the \(m \) by \(n \) matrix \(C \), containing the results of the computation. Returned as: an \(ldc \) by (at least) \(n \) array, containing numbers of the data type indicated in Table 72 on page 379.

Notes

1. All subroutines accept lowercase letters for the \(transa \) and \(transb \) arguments.

2. Matrix \(C \) must have no common elements with matrices \(A \) or \(B \). However, \(C \) may (exactly) coincide with \(A \) if \(transa = 'N' \), and \(C \) may (exactly) coincide with \(B \) if \(transb = 'N' \). Otherwise, results are unpredictable. See “Concepts” on page 53.
Function: The matrix sum is expressed as follows, where \(a_{ij}, b_{ij}, \) and \(c_{ij} \) are elements of matrices \(A, B, \) and \(C \), respectively:

\[
\begin{align*}
 c_{ij} &= a_{ij} + b_{ij} & \text{for } C \leftarrow A + B \\
 c_{ij} &= a_{ji} + b_{ij} & \text{for } C \leftarrow A + B^T \\
 c_{ij} &= a_{ij} + b_{ij} & \text{for } C \leftarrow A^T + B \\
 c_{ij} &= a_{ij} + b_{ji} & \text{for } C \leftarrow A^T + B^T
\end{align*}
\]

for \(i = 1, m \) and \(j = 1, n \)

If \(m \) or \(n \) is 0, no computation is performed.

Special Usage: You can compute the transpose \(C^T \) of each of the four computations listed under “Function” by using the following matrix identities:

\[
\begin{align*}
 (A + B)^T &= A^T + B^T \\
 (A + B^T)^T &= A^T + B \\
 (A^T + B)^T &= A + B^T \\
 (A^T + B^T)^T &= A + B
\end{align*}
\]

Be careful that your output array receiving \(C^T \) has dimensions large enough to hold the transposed matrix. See “Example 4” on page 383.

Error Conditions

Computational Errors: None

Input-Argument Errors

1. \(lda, ldb, ldc \leq 0 \)
2. \(m, n < 0 \)
3. \(m > ldc \)
4. \(transa, transb \neq 'N' \) or \('T' \)
5. \(transa = 'N' \) and \(m > lda \)
6. \(transa = 'T' \) and \(n > lda \)
7. \(transb = 'N' \) and \(m > ldb \)
8. \(transb = 'T' \) and \(n > ldb \)

Example 1: This example shows the computation \(C \leftarrow A + B \), where \(A \) and \(C \) are contained in larger arrays \(A \) and \(C \), respectively, and \(B \) is the same size as array \(B \), in which it is contained.

Call Statement and Input

\[
\begin{align*}
 &A \quad LDA \quad TRANSA \quad B \quad LDB \quad TRANSB \quad C \quad LDC \quad M \quad N \\
 &\quad | \quad | \quad | \quad | \quad | \quad | \quad |
\end{align*}
\]

CALL SGEADD(A , 6 , 'N' , B , 4 , 'N' , C , 5 , 4 , 3)

\[
A = \begin{bmatrix}
 110000.0 & 120000.0 & 130000.0 \\
 210000.0 & 220000.0 & 230000.0 \\
 310000.0 & 320000.0 & 330000.0 \\
 410000.0 & 420000.0 & 430000.0 \\
 \vdots & \vdots & \vdots
\end{bmatrix}
\]
SGEADD, DGEADD, CGEADD, and ZGEADD

\[
B = \begin{bmatrix}
11.0 & 12.0 & 13.0 \\
21.0 & 22.0 & 23.0 \\
31.0 & 32.0 & 33.0 \\
41.0 & 42.0 & 43.0 \\
\end{bmatrix}
\]

Output

\[
C = \begin{bmatrix}
110011.0 & 120012.0 & 130013.0 \\
210021.0 & 220022.0 & 230023.0 \\
310031.0 & 320032.0 & 330033.0 \\
410041.0 & 420042.0 & 430043.0 \\
\end{bmatrix}
\]

Example 2: This example shows the computation \(C \leftarrow A^T + B \), where \(A, B, \) and \(C \) are the same size as arrays \(A, B, \) and \(C \), in which they are contained.

Call Statement and Input

\[
\begin{cases}
A & \text{LDA TRANSA} \\
B & \text{LDB TRANSB} \\
C & \text{LDC M N}
\end{cases}
\]

\[
\text{CALL SGEADD} (A, 3, 'T', B, 4, 'N', C, 4, 4, 3)
\]

\[
A = \begin{bmatrix}
110000.0 & 120000.0 & 130000.0 & 140000.0 \\
210000.0 & 220000.0 & 230000.0 & 240000.0 \\
310000.0 & 320000.0 & 330000.0 & 340000.0 \\
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
11.0 & 12.0 & 13.0 \\
21.0 & 22.0 & 23.0 \\
31.0 & 32.0 & 33.0 \\
41.0 & 42.0 & 43.0 \\
\end{bmatrix}
\]

Output

\[
C = \begin{bmatrix}
110011.0 & 210012.0 & 310013.0 \\
120021.0 & 220022.0 & 320023.0 \\
130031.0 & 230032.0 & 330033.0 \\
140041.0 & 240042.0 & 340043.0 \\
\end{bmatrix}
\]

Example 3: This example shows computation \(C \leftarrow A + B^T \), where \(A \) is contained in a larger array \(A \), and \(B \) and \(C \) are the same size as arrays \(B \) and \(C \), in which they are contained.

Call Statement and Input

\[
\begin{cases}
A & \text{LDA TRANSA} \\
B & \text{LDB TRANSB} \\
C & \text{LDC M N}
\end{cases}
\]

\[
\text{CALL SGEADD} (A, 5, 'N', B, 3, 'T', C, 4, 4, 3)
\]
Example 4: This example shows how to produce the transpose of the result of the computation performed in “Example 3” on page 382, \(\mathbf{C} \leftarrow \mathbf{A} + \mathbf{B}^T \), which uses the calling sequence:

\[
\text{CALL SGEADD(A, 5, 'N', B, 3, 'T', C, 4, 4, 3)}
\]

You instead code a calling sequence for \(\mathbf{C}^T \leftarrow \mathbf{A}^T + \mathbf{B} \), as shown below, where the resulting matrix \(\mathbf{C}^T \) in the output array \(\mathbf{CT} \) is the transpose of the matrix in the output array \(\mathbf{C} \) in Example 3. Note that the array \(\mathbf{CT} \) has dimensions large enough to receive the transposed matrix. For a description of all the matrix identities, see “Special Usage” on page 381.

Call Statement and Input

\[
\begin{align*}
\text{A} & \quad \text{LDA} & \quad \text{TRANSA} & \quad \text{B} & \quad \text{LDB} & \quad \text{TRANSB} & \quad \text{C} & \quad \text{LDC} & \quad \text{M} & \quad \text{N} \\
\text{CALL} & \quad \text{SGEADD(A, 5, 'T', B, 3, 'N', CT, 4, 3, 4)}
\end{align*}
\]

\[
\begin{bmatrix}
110000.0 & 120000.0 & 130000.0 \\
210000.0 & 220000.0 & 230000.0 \\
310000.0 & 320000.0 & 330000.0 \\
410000.0 & 420000.0 & 430000.0
\end{bmatrix}
\]

\[
\begin{bmatrix}
11.0 & 12.0 & 13.0 & 14.0 \\
21.0 & 22.0 & 23.0 & 24.0 \\
31.0 & 32.0 & 33.0 & 34.0
\end{bmatrix}
\]

\[
\begin{bmatrix}
110011.0 & 120021.0 & 130031.0 \\
210012.0 & 220022.0 & 230032.0 \\
310013.0 & 320023.0 & 330033.0 \\
410014.0 & 420024.0 & 430034.0
\end{bmatrix}
\]

Output

\[
\begin{bmatrix}
11.0 & 12.0 & 13.0 & 14.0 \\
21.0 & 22.0 & 23.0 & 24.0 \\
31.0 & 32.0 & 33.0 & 34.0
\end{bmatrix}
\]

\[
\begin{bmatrix}
110000.0 & 120000.0 & 130000.0 \\
210000.0 & 220000.0 & 230000.0 \\
310000.0 & 320000.0 & 330000.0 \\
410000.0 & 420000.0 & 430000.0
\end{bmatrix}
\]
SGEADD, DGEADD, CGEADD, and ZGEADD

\[
\begin{bmatrix}
110011.0 & 210012.0 & 310013.0 & 410014.0 \\
120021.0 & 220022.0 & 320023.0 & 420024.0 \\
130031.0 & 230032.0 & 330033.0 & 430034.0 \\
. & . & . & .
\end{bmatrix}
\]

\[CT = \begin{bmatrix}
11: \text{root} & 11.: \text{root} \\
12: \text{root} & 12.: \text{root} \\
13: \text{root} & 13.: \text{root} \\
. & . & . & .
\end{bmatrix}
\]

Example 5: This example shows the computation \(C \leftarrow A^T + B^T \), where \(A, B, \) and \(C \) are the same size as the arrays \(A, B, \) and \(C \), in which they are contained.

Call Statement and Input

\[
A \text{ LDA TRANSA} \quad B \text{ LDB TRANSB} \quad C \text{ LDC M N}
\]

\[
\text{CALL SGEADD(} A , 3 , 'T' , B , 3 , 'T' , C , 4 , 4 , 3 \text{)}
\]

\[
A = \begin{bmatrix}
110000.0 & 120000.0 & 130000.0 & 140000.0 \\
210000.0 & 220000.0 & 230000.0 & 240000.0 \\
310000.0 & 320000.0 & 330000.0 & 340000.0
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
11.0 & 12.0 & 13.0 & 14.0 \\
21.0 & 22.0 & 23.0 & 24.0 \\
31.0 & 32.0 & 33.0 & 34.0
\end{bmatrix}
\]

Output

\[
C = \begin{bmatrix}
110011.0 & 210021.0 & 310031.0 \\
120021.0 & 220022.0 & 320032.0 \\
130031.0 & 230032.0 & 330033.0 \\
140014.0 & 240024.0 & 340034.0
\end{bmatrix}
\]

Example 6: This example shows the computation \(C \leftarrow A + B \), where \(A, B, \) and \(C \) are contained in larger arrays \(A, B, \) and \(C \), respectively, and the arrays contain complex data.

Call Statement and Input

\[
A \text{ LDA TRANSA} \quad B \text{ LDB TRANSB} \quad C \text{ LDC M N}
\]

\[
\text{CALL CGEADD(} A , 6 , 'N' , B , 5 , 'N' , C , 5 , 4 , 3 \text{)}
\]

\[
A = \begin{bmatrix}
(1.0, 5.0) & (9.0, 2.0) & (1.0, 9.0) \\
(2.0, 4.0) & (8.0, 3.0) & (1.0, 8.0) \\
(3.0, 3.0) & (7.0, 5.0) & (1.0, 7.0) \\
(6.0, 6.0) & (3.0, 6.0) & (1.0, 4.0)
\end{bmatrix}
\]
SGEADD, DGEADD, CGEADD, and ZGEADD

\[
B = \begin{bmatrix}
(1.0, 8.0) & (2.0, 7.0) & (3.0, 2.0) \\
(4.0, 4.0) & (6.0, 8.0) & (6.0, 3.0) \\
(6.0, 2.0) & (4.0, 5.0) & (4.0, 5.0) \\
(7.0, 2.0) & (6.0, 4.0) & (1.0, 6.0) \\
. & . & . \\
\end{bmatrix}
\]

Output

\[
C = \begin{bmatrix}
(2.0, 13.0) & (11.0, 9.0) & (4.0, 11.0) \\
(6.0, 8.0) & (14.0, 11.0) & (7.0, 11.0) \\
(9.0, 5.0) & (11.0, 10.0) & (5.0, 12.0) \\
(13.0, 8.0) & (9.0, 10.0) & (2.0, 10.0) \\
. & . & . \\
\end{bmatrix}
\]
SGESUB, DGESUB, CGESUB, and ZGESUB—Matrix Subtraction for General Matrices or Their Transposes

These subroutines can perform any one of the following matrix subtractions, using matrices A and B or their transposes, and matrix C:

- $C ← A - B$
- $C ← A^T - B$
- $C ← A - B^T$
- $C ← A^T - B^T$

Table 73. Data Types

<table>
<thead>
<tr>
<th>A, B, C</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>SGESUB</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DGESUB</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>CGESUB</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>ZGESUB</td>
</tr>
</tbody>
</table>

Syntax

Fortran

```fortran
CALL SGESUB | DGESUB | CGESUB | ZGESUB (a, lda, transa, b, ldb, transb, c, ldc, m, n)
```

C and C++

`sgesub | dgesub | cgesub | zgesub (a, lda, transa, b, ldb, transb, c, ldc, m, n);`

PL/I

```pli
CALL SGESUB | DGESUB | CGESUB | ZGESUB (a, lda, transa, b, ldb, transb, c, ldc, m, n);
```

On Entry

a

is the matrix A, where:

- If $transa = 'N'$, A is used in the computation, and A has m rows and n columns.
- If $transa = 'T'$, A^T is used in the computation, and A has n rows and m columns.

Note: No data should be moved to form A^T; that is, the matrix A should always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type indicated in Table 73, where:

- If $transa = 'N'$, its size must be lda by (at least) n.
- If $transa = 'T'$, its size must be lda by (at least) m.

lda

is the leading dimension of the array specified for a. Specified as: a fullword integer; $lda > 0$ and:

- If $transa = 'N'$, $lda ≥ m$.
- If $transa = 'T'$, $lda ≥ n$.

$transa$

indicates the form of matrix A to use in the computation, where:

- If $transa = 'N'$, A is used in the computation.
- If $transa = 'T'$, A^T is used in the computation.
Specified as: a single character; \textit{transa} = 'N' or 'T'.

\textit{b} is the matrix \(B \), where:

If \textit{transb} = 'N', \(B \) is used in the computation, and \(B \) has \(m \) rows and \(n \) columns.

If \textit{transb} = 'T', \(B^T \) is used in the computation, and \(B \) has \(n \) rows and \(m \) columns.

\textbf{Note:} No data should be moved to form \(B^T \); that is, the matrix \(B \) should always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type indicated in Table 72 on page 379, where:

If \textit{transb} = 'N', its size must be \(ldb \) by (at least) \(n \).

If \textit{transb} = 'T', its size must be \(ldb \) by (at least) \(m \).

\(ldb \) is the leading dimension of the array specified for \(b \). Specified as: a fullword integer; \(ldb > 0 \) and:

If \textit{transb} = 'N', \(ldb \geq m \).

If \textit{transb} = 'T', \(ldb \geq n \).

\textit{transb} indicates the form of matrix \(B \) to use in the computation, where:

If \textit{transb} = 'N', \(B \) is used in the computation.

If \textit{transb} = 'T', \(B^T \) is used in the computation.

Specified as: a single character; \textit{transb} = 'N' or 'T'.

\(c \)

See “On Return.”

\(ldc \) is the leading dimension of the array specified for \(c \). Specified as: a fullword integer; \(ldc > 0 \) and \(ldc \geq m \).

\(m \) is the number of rows in matrix \(C \). Specified as: a fullword integer; \(0 \leq m \leq ldc \).

\(n \) is the number of columns in matrix \(C \). Specified as: a fullword integer; \(0 \leq n \).

\textbf{On Return}

\(c \) is the \(m \) by \(n \) matrix \(C \), containing the results of the computation. Returned as: an \(ldc \) by (at least) \(n \) array, containing numbers of the data type indicated in Table 73 on page 386.

\textbf{Notes}

1. All subroutines accept lowercase letters for the \textit{transa} and \textit{transb} arguments.

2. Matrix \(C \) must have no common elements with matrices \(A \) or \(B \). However, \(C \) may (exactly) coincide with \(A \) if \textit{transa} = 'N', and \(C \) may (exactly) coincide with \(B \) if \textit{transb} = 'N'. Otherwise, results are unpredictable. See “Concepts” on page 53.
Function: The matrix subtraction is expressed as follows, where \(a_{ij}, b_{ij}, \) and \(c_{ij} \) are elements of matrices \(A, B, \) and \(C, \) respectively:

\[
c_{ij} = a_{ij} - b_{ij} \quad \text{for } C \leftarrow A - B
\]

\[
c_{ij} = a_{ji} - b_{ji} \quad \text{for } C \leftarrow A - B^T
\]

\[
c_{ij} = a_{ij} - b_{ij} \quad \text{for } C \leftarrow A^T - B
\]

\[
c_{ij} = a_{ji} - b_{ji} \quad \text{for } C \leftarrow A^T - B^T
\]

for \(i = 1, m \) and \(j = 1, n \)

If \(m \) or \(n \) is 0, no computation is performed.

Special Usage: You can compute the transpose \(C^T \) of each of the four computations listed under “Function” by using the following matrix identities:

\[
(A - B)^T = A^T - B^T
\]

\[
(A - B^T)^T = A^T - B
\]

\[
(A^T - B)^T = A - B^T
\]

\[
(A^T - B^T)^T = A - B
\]

Be careful that your output array receiving \(C^T \) has dimensions large enough to hold the transposed matrix. See “Example 5” on page 390.

Error Conditions

Computational Errors: None

Input-Argument Errors
1. \(lda, ldb, ldc \leq 0 \)
2. \(m, n < 0 \)
3. \(m > ldg \)
4. \(transa, transb \neq 'N' \) or \('T' \)
5. \(transa = 'N' \) and \(m > lda \)
6. \(transa = 'T' \) and \(n > lda \)
7. \(transb = 'N' \) and \(m > ldb \)
8. \(transb = 'T' \) and \(n > ldb \)

Example 1: This example shows the computation \(C \leftarrow A - B, \) where \(A \) and \(C \) are contained in larger arrays \(A \) and \(C, \) respectively, and \(B \) is the same size as array \(B, \) in which it is contained.

Call Statement and Input

\[
\text{CALL SGESUB}(A, 6, 'N', B, 4, 'N', C, 5, 4, 3)
\]

\[
A = \begin{bmatrix}
110000.0 & 120000.0 & 130000.0 \\
210000.0 & 220000.0 & 230000.0 \\
310000.0 & 320000.0 & 330000.0 \\
410000.0 & 420000.0 & 430000.0 \\
\vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots \\
\end{bmatrix}
\]
Example 2: This example shows the computation \(C \leftarrow A^T \cdot B \), where \(A \), \(B \), and \(C \) are the same size as arrays \(A \), \(B \), and \(C \), in which they are contained.

Call Statement and Input

\[
\begin{array}{l}
A \text{ LDA TRANSA B LDB TRANSB C LDC M N} \\
\text{CALL SGESUB(} A , 3 , 'T' , B , 4 , 'N' , C , 4 , 4 , 3 \) \\
\end{array}
\]

\[
\begin{bmatrix}
110000.0 & 120000.0 & 130000.0 & 140000.0 \\
210000.0 & 220000.0 & 230000.0 & 240000.0 \\
310000.0 & 320000.0 & 330000.0 & 340000.0
\end{bmatrix}
\]

\[
\begin{bmatrix}
-11.0 & -12.0 & -13.0 \\
-21.0 & -22.0 & -23.0 \\
-31.0 & -32.0 & -33.0 \\
-41.0 & -42.0 & -43.0
\end{bmatrix}
\]

\[
\begin{bmatrix}
110011.0 & 120012.0 & 130013.0 \\
210021.0 & 220022.0 & 230023.0 \\
310031.0 & 320032.0 & 330033.0 \\
410041.0 & 420042.0 & 430043.0 \\
\end{bmatrix}
\]

Example 3: This example shows computation \(C \leftarrow A \cdot B^T \), where \(A \) is contained in a larger array \(A \), and \(B \) and \(C \) are the same size as arrays \(B \) and \(C \), in which they are contained.

Call Statement and Input

\[
\begin{array}{l}
A \text{ LDA TRANSA B LDB TRANSB C LDC M N} \\
\text{CALL SGESUB(} A , 5 , 'N' , B , 3 , 'T' , C , 4 , 4 , 3 \) \\
\end{array}
\]

\[
\begin{bmatrix}
110011.0 & 120012.0 & 130013.0 \\
210021.0 & 220022.0 & 230023.0 \\
310031.0 & 320032.0 & 330033.0 \\
410041.0 & 420042.0 & 430043.0 \\
\end{bmatrix}
\]
Example 4: This example shows the computation \(C \leftarrow A^T - B^T \), where \(A \), \(B \), and \(C \) are the same size as the arrays \(A \), \(B \), and \(C \), in which they are contained.

Call Statement and Input

\[
\begin{align*}
A &= \begin{bmatrix}
110000.0 & 120000.0 & 130000.0 \\
210000.0 & 220000.0 & 230000.0 \\
310000.0 & 320000.0 & 330000.0 \\
410000.0 & 420000.0 & 430000.0 \\
\end{bmatrix} \\
B &= \begin{bmatrix}
-11.0 & -12.0 & -13.0 & -14.0 \\
-21.0 & -22.0 & -23.0 & -24.0 \\
-31.0 & -32.0 & -33.0 & -34.0 \\
\end{bmatrix}
\end{align*}
\]

\[
C = \begin{bmatrix}
110011.0 & 120021.0 & 130031.0 \\
210012.0 & 220022.0 & 230032.0 \\
310013.0 & 320023.0 & 330033.0 \\
410014.0 & 420024.0 & 430034.0 \\
\end{bmatrix}
\]

Example 5: This example shows how to produce the transpose of the result of the computation performed in “Example 4,” \(C \leftarrow A^T - B^T \), which uses the calling sequence:

\[
\begin{align*}
\text{CALL SGESUB(A, 3, 'T', B, 3, 'T', C, 4, 4, 3)}
\end{align*}
\]

You instead code a calling sequence for \(C^t \leftarrow A - B \), as shown below, where the resulting matrix \(C^t \) in the output array \(CT \) is the transpose of the matrix in the output
array C in Example 4. Note that the array CT has dimensions large enough to receive the transposed matrix. For a description of all the matrix identities, see “Special Usage” on page 388.

Call Statement and Input

A LDA TRANSA B LDB TRANSB C LDC M N
CALL SGESUB(A, 3, 'N', B, 3, 'N', CT, 3, 3, 4)

$$A = \begin{bmatrix}
110000.0 & 120000.0 & 130000.0 & 140000.0 \\
210000.0 & 220000.0 & 230000.0 & 240000.0 \\
310000.0 & 320000.0 & 330000.0 & 340000.0
\end{bmatrix}$$

$$B = \begin{bmatrix}
-11.0 & -12.0 & -13.0 & -14.0 \\
-21.0 & -22.0 & -23.0 & -24.0 \\
-31.0 & -32.0 & -33.0 & -34.0
\end{bmatrix}$$

Output

$$CT = \begin{bmatrix}
110011.0 & 120012.0 & 130013.0 & 140014.0 \\
210021.0 & 220022.0 & 230023.0 & 240024.0 \\
310031.0 & 320032.0 & 330033.0 & 340034.0
\end{bmatrix}$$

Example 6: This example shows the computation $C \leftarrow A - B$, where A, B, and C are contained in larger arrays A, B, and C, respectively, and the arrays contain complex data.

Call Statement and Input

A LDA TRANSA B LDB TRANSB C LDC M N
CALL CGESUB(A, 6, 'N', B, 5, 'N', C, 5, 4, 3)

$$A = \begin{bmatrix}
(1.0, 5.0) & (9.0, 2.0) & (1.0, 9.0) \\
(2.0, 4.0) & (8.0, 3.0) & (1.0, 8.0) \\
(3.0, 3.0) & (7.0, 5.0) & (1.0, 7.0) \\
(6.0, 6.0) & (3.0, 6.0) & (1.0, 4.0) \\
. & . & . \\
. & . & .
\end{bmatrix}$$

$$B = \begin{bmatrix}
(1.0, 8.0) & (2.0, 7.0) & (3.0, 2.0) \\
(4.0, 4.0) & (6.0, 8.0) & (6.0, 3.0) \\
(6.0, 2.0) & (4.0, 5.0) & (4.0, 5.0) \\
(7.0, 2.0) & (6.0, 4.0) & (1.0, 6.0) \\
. & . & .
\end{bmatrix}$$

Output
\[
C = \begin{bmatrix}
(0.0, -3.0) & (7.0, -5.0) & (-2.0, 7.0) \\
(-2.0, 0.0) & (2.0, -5.0) & (-5.0, 5.0) \\
(-3.0, 1.0) & (3.0, 0.0) & (-3.0, 2.0) \\
(-1.0, 4.0) & (-3.0, 2.0) & (0.0, -2.0)
\end{bmatrix}
\]
SGEMUL, DGEMUL, CGEMUL, and ZGEMUL—Matrix Multiplication for General Matrices, Their Transposes, or Conjugate Transposes

SGEMUL and DGEMUL can perform any one of the following matrix multiplications, using matrices \(A \) and \(B \) or their transposes, and matrix \(C \):

\[
\begin{align*}
C & \leftarrow AB \\
C & \leftarrow A^TB \\
C & \leftarrow A^H B
\end{align*}
\]

CGEMUL and ZGEMUL can perform any one of the following matrix multiplications, using matrices \(A \) and \(B \), their transposes or their conjugate transposes, and matrix \(C \):

\[
\begin{align*}
C & \leftarrow AB \\
C & \leftarrow A^TB \\
C & \leftarrow A^H B \\
C & \leftarrow AB^H \\
C & \leftarrow A^TB^H \\
C & \leftarrow A^H B^H
\end{align*}
\]

Table 74. Data Types

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>SGEMUL</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DGEMUL</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>CGEMUL</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>ZGEMUL</td>
</tr>
</tbody>
</table>

Syntax

Fortran: CALL SGEMUL | DGEMUL | CGEMUL | ZGEMUL (a, lda, transa, b, ldb, transb, c, ldc, l, m, n)

C and C++: sgemul | dgemul | cgemul | zgemul (a, lda, transa, b, ldb, transb, c, ldc, l, m, n);

PL/I: CALL SGEMUL | DGEMUL | CGEMUL | ZGEMUL (a, lda, transa, b, ldb, transb, c, ldc, l, m, n);

APL2: SGEMUL | DGEMUL | CGEMUL | ZGEMUL a lda transa b ldb transb 'c' ldc l m n

On Entry

\(a \)

is the matrix \(A \), where:

If \(transa = 'N' \), \(A \) is used in the computation, and \(A \) has \(l \) rows and \(m \) columns.

If \(transa = 'T' \), \(A^T \) is used in the computation, and \(A \) has \(m \) rows and \(l \) columns.

If \(transa = 'C' \), \(A^H \) is used in the computation, and \(A \) has \(m \) rows and \(l \) columns.

Note: No data should be moved to form \(A^T \) or \(A^H \); that is, the matrix \(A \) should always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type indicated in Table 74, where:

If \(transa = 'N' \), its size must be \(lda \) by (at least) \(m \).

If \(transa = 'T' \) or \('C' \), its size must be \(lda \) by (at least) \(l \).
lda
is the leading dimension of the array specified for a. Specified as: a fullword integer; lda > 0 and:
If transa = 'N', lda ≥ l.
If transa = 'T' or 'C', lda ≥ m.
transa
indicates the form of matrix A to use in the computation, where:
If transa = 'N', A is used in the computation.
If transa = 'T', AT is used in the computation.
If transa = 'C', AH is used in the computation.
Specified as: a single character; transa = 'N' or 'T' for SGEMUL and DGEMUL; transa = 'N', 'T', or 'C' for CGEMUL and ZGEMUL.
b
is the matrix B, where:
If transb = 'N', B is used in the computation, and B has m rows and n columns.
If transb = 'T', BT is used in the computation, and B has n rows and m columns.
If transb = 'C', BH is used in the computation, and B has n rows and m columns.
Note: No data should be moved to form BT or BH; that is, the matrix B should always be stored in its untransposed form.
Specified as: a two-dimensional array, containing numbers of the data type indicated in Table 74 on page 393, where:
If transb = 'N', its size must be ldb by (at least) n.
If transb = 'T' or 'C', its size must be ldb by (at least) m.
ldb
is the leading dimension of the array specified for b. Specified as: a fullword integer; ldb > 0 and:
If transb = 'N', ldb ≥ m.
If transb = 'T' or 'C', ldb ≥ n.
transb
indicates the form of matrix B to use in the computation, where:
If transb = 'N', B is used in the computation.
If transb = 'T', BT is used in the computation.
If transb = 'C', BH is used in the computation.
Specified as: a single character; transb = 'N' or 'T' for SGEMUL and DGEMUL; transb = 'N', 'T', or 'C' for CGEMUL and ZGEMUL.
c
See “On Return” on page 395.
ldc
is the leading dimension of the array specified for c. Specified as: a fullword integer; ldc > 0 and ldc ≥ l.
l
is the number of rows in matrix C. Specified as: a fullword integer; 0 ≤ l ≤ ldc.
has the following meaning, where:
If \(\text{transa} = 'N' \), it is the number of columns in matrix \(\text{A} \).
If \(\text{transa} = 'T' \) or \('C' \), it is the number of rows in matrix \(\text{A} \).
In addition:
If \(\text{transb} = 'N' \), it is the number of rows in matrix \(\text{B} \).
If \(\text{transb} = 'T' \) or \('C' \), it is the number of columns in matrix \(\text{B} \).
Specified as: a fullword integer; \(m \geq 0 \).

\(n \) is the number of columns in matrix \(\text{C} \). Specified as: a fullword integer; \(n \geq 0 \).

On Return

\(c \) is the \(l \) by \(n \) matrix \(\text{C} \), containing the results of the computation. Returned as: an \(ldc \) by (at least) \(n \) numbers of the data type indicated in Table 74 on page 393.

Notes
1. All subroutines accept lowercase letters for the \(\text{transa} \) and \(\text{transb} \) arguments.
2. Matrix \(\text{C} \) must have no common elements with matrices \(\text{A} \) or \(\text{B} \); otherwise, results are unpredictable. See “Concepts” on page 53.

Function: The matrix multiplication is expressed as follows, where \(a_{ik} \), \(b_{kj} \), and \(c_{ij} \) are elements of matrices \(\text{A} \), \(\text{B} \), and \(\text{C} \), respectively:
SGEMUL, DGEMUL, CGEMUL, and ZGEMUL

\[c_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj} \quad \text{for } C \leftarrow A \, B \]

\[c_{ij} = \sum_{k=1}^{m} a_{kj} b_{kj} \quad \text{for } C \leftarrow A^T \, B \]

\[c_{ij} = \sum_{k=1}^{m} \overline{a}_{kj} b_{kj} \quad \text{for } C \leftarrow A^H \, B \]

\[c_{ij} = \sum_{k=1}^{m} a_{ik} \overline{b}_{jk} \quad \text{for } C \leftarrow A \, B^T \]

\[c_{ij} = \sum_{k=1}^{m} a_{kj} \overline{b}_{jk} \quad \text{for } C \leftarrow A^T \, B^T \]

\[c_{ij} = \sum_{k=1}^{m} \overline{a}_{kj} \overline{b}_{jk} \quad \text{for } C \leftarrow A^H \, B^T \]

\[c_{ij} = \sum_{k=1}^{m} a_{ik} \overline{b}_{jk} \quad \text{for } C \leftarrow A^H \, B^H \]

\[c_{ij} = \sum_{k=1}^{m} \overline{a}_{kj} \overline{b}_{jk} \quad \text{for } C \leftarrow A^H \, B^H \]

for \(i = 1, l \) and \(j = 1, n \)

See reference [38]. If \(l \) or \(n \) is 0, no computation is performed. If \(l \) and \(n \) are greater than 0, and \(m \) is 0, an \(l \) by \(n \) matrix of zeros is returned.

Special Usage

Equivalence Rules: By using the following equivalence rules, you can compute the transpose \(C^T \) or the conjugate transpose \(C^H \) of some of the computations performed by these subroutines:

<table>
<thead>
<tr>
<th>Transpose</th>
<th>Conjugate Transpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>((AB)^T = B^T A^T)</td>
<td>((AB)^H = B^H A^H)</td>
</tr>
<tr>
<td>((A^T B)^T = B^T A)</td>
<td>((A^H B)^H = B^H A)</td>
</tr>
<tr>
<td>((AB^T)^T = B A^T)</td>
<td>((AB^H)^H = B A^H)</td>
</tr>
<tr>
<td>((A^T B^H)^T = B A)</td>
<td>((A^H B^H)^H = B A)</td>
</tr>
</tbody>
</table>

When coding the calling sequences for these cases, be careful to code your matrix arguments and dimension arguments in the order indicated by the rule. Also, be careful that your output array, receiving \(C^T \) or \(C^H \), has dimensions large enough to hold the resulting transposed or conjugate transposed matrix. See “Example 2” on page 398 and “Example 4” on page 399.

Error Conditions
Resource Errors: Unable to allocate internal work area (CGEMUL and ZGEMUL only).

Computational Errors: None

Input-Argument Errors
1. lda, ldb, ldc ≤ 0
2. l, m, n < 0
3. l > ldc
4. transa, transb ≠ 'N' or 'T' for SGEMUL and DGEMUL
5. transa, transb ≠ 'N', 'T', or 'C' for CGEMUL and ZGEMUL
6. transa = 'N' and l > lda
7. transa = 'T' or 'C' and m > lda
8. transb = 'N' and m > ldb
9. transb = 'T' or 'C' and n > ldb

Example 1: This example shows the computation C ← AB, where A, B, and C are contained in larger arrays A, B, and C, respectively.

Call Statement and Input

\[
\begin{array}{c}
\text{A} \quad \text{LDA} \quad \text{TRANS} \quad \text{B} \quad \text{LDB} \quad \text{TRANSB} \quad \text{C} \quad \text{LDC} \quad \text{L} \quad \text{M} \quad \text{N} \\
\text{CALL} \quad \text{SGEMUL}(\text{A}, 8, 'N', \text{B}, 6, 'N', \text{C}, 7, 6, 5, 4) \\
\end{array}
\]

\[
\begin{bmatrix}
1.0 & 2.0 & -1.0 & -1.0 & 4.0 \\
2.0 & 0.0 & 1.0 & 1.0 & -1.0 \\
1.0 & -1.0 & -1.0 & 1.0 & 2.0 \\
-3.0 & 2.0 & 2.0 & 2.0 & 0.0 \\
4.0 & 0.0 & -2.0 & 1.0 & -1.0 \\
-1.0 & -1.0 & 1.0 & -3.0 & 2.0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1.0 & -1.0 & 0.0 & 2.0 \\
2.0 & 2.0 & -1.0 & -2.0 \\
1.0 & 0.0 & -1.0 & 1.0 \\
-3.0 & -1.0 & 1.0 & -1.0 \\
4.0 & 2.0 & -1.0 & 1.0 \\
\end{bmatrix}
\]

Output

\[
\begin{bmatrix}
23.0 & 12.0 & -6.0 & 2.0 \\
-4.0 & -5.0 & 1.0 & 3.0 \\
3.0 & 0.0 & 1.0 & 4.0 \\
-3.0 & 5.0 & -2.0 & -10.0 \\
-5.0 & -7.0 & 4.0 & 4.0 \\
15.0 & 6.0 & -5.0 & 6.0 \\
\end{bmatrix}
\]
Example 2: This example shows how to produce the transpose of the result of the computation performed in “Example 1,” \(C \leftarrow AB \), which uses the calling sequence:

```fortran
CALL SGEMUL (A,8,'N',B,6,'N',C,7,6,5,4)
```

You instead code a calling sequence for \(C^T \leftarrow B^T A^T \), as shown below, where the resulting matrix \(C^T \) in the output array \(CT \) is the transpose of the matrix in the output array \(C \) in Example 1. Note that the array \(CT \) has dimensions large enough to receive the transposed matrix. For a description of all the matrix identities, see “Special Usage” on page 396.

Call Statement and Input

```
A LDA TRANSA B LDB TRANSB C LDC L M N
|   |   | |   |   | |   |   | |   |   | |   |   |   |   |
CALL SGEMUL( B , 6 , 'T' , A , 8 , 'T' , CT , 5 , 4 , 5 , 6 )
```

\[
\begin{pmatrix}
1.0 & -1.0 & 0.0 & 2.0 \\
2.0 & 2.0 & -1.0 & -2.0 \\
1.0 & 0.0 & -1.0 & 1.0 \\
-3.0 & -1.0 & 1.0 & -1.0 \\
4.0 & 2.0 & -1.0 & 1.0 \\
\end{pmatrix}
\]

\[
B = \begin{pmatrix}
1.0 & 2.0 & -1.0 & -1.0 & 4.0 \\
2.0 & 0.0 & 1.0 & 1.0 & -1.0 \\
1.0 & -1.0 & -1.0 & 1.0 & 2.0 \\
-3.0 & 2.0 & 2.0 & 2.0 & 0.0 \\
4.0 & 0.0 & -2.0 & 1.0 & -1.0 \\
-1.0 & -1.0 & 1.0 & -3.0 & 2.0 \\
\end{pmatrix}
\]

Output

\[
\begin{pmatrix}
23.0 & -4.0 & 3.0 & -3.0 & -5.0 & 15.0 \\
12.0 & -5.0 & 0.0 & 5.0 & -7.0 & 6.0 \\
-6.0 & 1.0 & 1.0 & -2.0 & 4.0 & -5.0 \\
2.0 & 3.0 & 4.0 & -10.0 & 4.0 & 6.0 \\
\end{pmatrix}
\]

Example 3: This example shows the computation \(C \leftarrow A^T B \), where \(A \) and \(C \) are contained in larger arrays \(A \) and \(C \), respectively, and \(B \) is the same size as the

Call Statement and Input

```
A LDA TRANSA B LDB TRANSB C LDC L M N
|   |   | |   |   | |   |   | |   |   | |   |   |   |   |
CALL SGEMUL( A , 4 , 'T' , B , 3 , 'N' , C , 5 , 3 , 3 , 6 )
```
Example 4: This example shows how to produce the transpose of the result of the computation performed in “Example 3” on page 398, \(C \leftarrow A^T B \), which uses the calling sequence:

```
CALL SGEMUL (A, 4, 'T', B, 3, 'N', C, 5, 3, 3, 6)
```

You instead code the calling sequence for \(C^T \leftarrow B^T A \), as shown below, where the resulting matrix \(C^T \) in the output array \(CT \) is the transpose of the matrix in the output array \(C \) in Example 3. Note that the array \(CT \) has dimensions large enough to receive the transposed matrix. For a description of all the matrix identities, see “Special Usage” on page 396.

Call Statement and Input

```
CALL SGEMUL( B, 3, 'T', A, 4, 'N', CT, 8, 6, 3, 3 )
```

Output
Example 5: This example shows the computation \(C \leftarrow AB^T \), where \(A \) and \(C \) are contained in larger arrays \(A \) and \(C \), respectively, and \(B \) is the same size as the array \(B \) in which it is contained.

Call Statement and Input

\[
\begin{align*}
A & \quad \text{LDA TRANSA} & B & \quad \text{LDB TRANSB} & C & \quad \text{LDC L M N} \\
\text{CALL SGEMUL(A , 4 , 'N' , B , 3 , 'T' , C , 5 , 3 , 2 , 3)}
\end{align*}
\]

\[
\begin{bmatrix}
1.0 & -3.0 \\
2.0 & 4.0 \\
1.0 & -1.0
\end{bmatrix}
\]

\[
\begin{bmatrix}
1.0 & -3.0 \\
2.0 & 4.0 \\
1.0 & -1.0
\end{bmatrix}
\]

Output

\[
\begin{bmatrix}
10.0 & -10.0 & 4.0 \\
-10.0 & 20.0 & -2.0 \\
4.0 & -2.0 & 2.0
\end{bmatrix}
\]

Example 6: This example shows the computation \(C \leftarrow A^T B^T \), where \(A, B, \) and \(C \) are the same size as the arrays \(A, B, \) and \(C \) in which they are contained. (Based on the dimensions of the matrices, \(A \) is actually a column vector, and \(C \) is actually a row vector.)

Call Statement and Input

\[
\begin{align*}
A & \quad \text{LDA TRANSA} & B & \quad \text{LDB TRANSB} & C & \quad \text{LDC L M N} \\
\text{CALL SGEMUL(A , 3 , 'T' , B , 3 , 'T' , C , 1 , 1 , 3 , 3)}
\end{align*}
\]

\[
\begin{bmatrix}
1.0 \\
2.0 \\
1.0
\end{bmatrix}
\]
SGEMUL, DGEMUL, CGEMUL, and ZGEMUL

\[
\begin{bmatrix}
1.0 & -3.0 & 2.0 \\
2.0 & 4.0 & 0.0 \\
1.0 & -1.0 & -1.0
\end{bmatrix}
\]

Output

\[
\begin{bmatrix}
-3.0 & 10.0 & -2.0
\end{bmatrix}
\]

Example 7: This example shows the computation \(C \leftarrow A^T B \) using complex data, where \(A, B, \) and \(C \) are contained in larger arrays \(A, B, \) and \(C \), respectively.

Call Statement and Input

\[
\begin{array}{cccccccccc}
A & \text{LDA} & \text{TRANSA} & B & \text{LDB} & \text{TRANSB} & C & \text{LDC} & L & M & N \\
\hline
\hline
\text{CALL CGEMUL} (A , 6 , 'T' , B , 7 , 'N' , C , 3 , 2 , 3 , 3)
\end{array}
\]

\[
\begin{bmatrix}
(1.0, 2.0) & (3.0, 4.0) \\
(4.0, 6.0) & (7.0, 1.0) \\
(6.0, 3.0) & (2.0, 5.0)
\end{bmatrix}
\]

\[
\begin{bmatrix}
(1.0, 9.0) & (2.0, 6.0) & (5.0, 6.0) \\
(2.0, 5.0) & (6.0, 2.0) & (6.0, 4.0) \\
(2.0, 6.0) & (5.0, 4.0) & (2.0, 6.0)
\end{bmatrix}
\]

Output

\[
\begin{bmatrix}
-45.0 & 85.0 & (20.0, 93.0) & (-13.0, 110.0) \\
(-50.0, 90.0) & (12.0, 79.0) & (3.0, 94.0)
\end{bmatrix}
\]

Example 8: This example shows the computation \(C \leftarrow A B^\dagger \) using complex data, where \(A \) and \(C \) are contained in larger arrays \(A \) and \(C \), respectively, and \(B \) is the same size as the array \(B \) in which it is contained.

Call Statement and Input

\[
\begin{array}{cccccccccc}
A & \text{LDA} & \text{TRANSA} & B & \text{LDB} & \text{TRANSB} & C & \text{LDC} & L & M & N \\
\hline
\hline
\text{CALL CGEMUL} (A , 4 , 'N' , B , 3 , 'C' , C , 4 , 3 , 2 , 3)
\end{array}
\]
SGEMUL, DGEMUL, CGEMUL, and ZGEMUL

\[
A = \begin{bmatrix}
(1.0, 2.0) & (-3.0, 2.0) \\
(2.0, 6.0) & (4.0, 5.0) \\
(1.0, 2.0) & (-1.0, 8.0) \\
. & .
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
(1.0, 3.0) & (-3.0, 2.0) \\
(2.0, 5.0) & (4.0, 6.0) \\
(1.0, 1.0) & (-1.0, 9.0) \\
\end{bmatrix}
\]

Output

\[
C = \begin{bmatrix}
(20.0, -1.0) & (12.0, 25.0) & (24.0, 26.0) \\
(18.0, -23.0) & (80.0, -2.0) & (49.0, -37.0) \\
(26.0, -23.0) & (56.0, 37.0) & (76.0, 2.0) \\
. & . & .
\end{bmatrix}
\]
These subroutines use Winograd's variation of the Strassen's algorithm to perform the matrix multiplication for both real and complex matrices. SGEMMS and DGEMMS can perform any one of the following matrix multiplications, using matrices A and B or their transposes, and matrix C:

\[
\begin{align*}
 C &← AB \\
 C &← A^TB
\end{align*}
\]

CGEMMS and ZGEMMS can perform any one of the following matrix multiplications, using matrices A and B, their transposes or their conjugate transposes, and matrix C:

\[
\begin{align*}
 C &← AB \\
 C &← A^TB \\
 C &← A^H B \\
 C &← A^H B^H
\end{align*}
\]

Table 75. Data Types

<table>
<thead>
<tr>
<th>A, B, C</th>
<th>aux</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>Short-precision real</td>
<td>SGEMMS</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>Long-precision real</td>
<td>DGEMMS</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>Short-precision real</td>
<td>CGEMMS</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>Long-precision real</td>
<td>ZGEMMS</td>
</tr>
</tbody>
</table>

Syntax

Fortran

CALL SGEMMS | DGEMMS | CGEMMS | ZGEMMS (a, lda, transa, b, ldb, transb, c, ldc, l, m, n, aux, naux)

C and C++

sgemms | dgemms | cgemms | zgemms (a, lda, transa, b, ldb, transb, c, ldc, l, m, n, aux, naux);

PL/I

CALL SGEMMS | DGEMMS | CGEMMS | ZGEMMS (a, lda, transa, b, ldb, transb, c, ldc, l, m, n, aux, naux);

On Entry

a

is the matrix A, where:

- If $transa = 'N'$, A is used in the computation, and A has l rows and m columns.
- If $transa = 'T'$, A^T is used in the computation, and A has m rows and l columns.
- If $transa = 'C'$, A^H is used in the computation, and A has m rows and l columns.

Note: No data should be moved to form A^T or A^H; that is, the matrix A should always be stored in its untransposed form.
SGEMMS, DGEMMS, CGEMMS, and ZGEMMS

Specified as: a two-dimensional array, containing numbers of the data type indicated in Table 75, where:

If \(\text{transa} = 'N' \), its size must be \(\text{lda} \) by (at least) \(m \).
If \(\text{transa} = 'T' \) or \('C' \), its size must be \(\text{lda} \) by (at least) \(l \).

\(\text{lda} \)
is the leading dimension of the array specified for \(a \). Specified as: a fullword integer; \(\text{lda} > 0 \) and:

If \(\text{transa} = 'N' \), \(\text{lda} \geq l \).
If \(\text{transa} = 'T' \) or \('C' \), \(\text{lda} \geq m \).

\(\text{transa} \)
indicates the form of matrix \(A \) to use in the computation, where:

If \(\text{transa} = 'N' \), \(A \) is used in the computation.
If \(\text{transa} = 'T' \), \(A^T \) is used in the computation.
If \(\text{transa} = 'C' \), \(A^H \) is used in the computation.

Specified as: a single character; \(\text{transa} = 'N' \) or \('T' \) for SGEMMS and DGEMMS; \(\text{transa} = 'N', 'T', \) or \('C' \) for CGEMMS and ZGEMMS.

\(b \)
is the matrix \(B \), where:

If \(\text{transb} = 'N' \), \(B \) is used in the computation, and \(B \) has \(m \) rows and \(n \) columns.
If \(\text{transb} = 'T' \), \(B^T \) is used in the computation, and \(B \) has \(n \) rows and \(m \) columns.
If \(\text{transb} = 'C' \), \(B^H \) is used in the computation, and \(B \) has \(n \) rows and \(m \) columns.

\textbf{Note:} No data should be moved to form \(B^T \) or \(B^H \); that is, the matrix \(B \) should always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type indicated in Table 75 on page 403, where:

If \(\text{transb} = 'N' \), its size must be \(\text{ldb} \) by (at least) \(n \).
If \(\text{transb} = 'T' \) or \('C' \), its size must be \(\text{ldb} \) by (at least) \(m \).

\(\text{ldb} \)
is the leading dimension of the array specified for \(b \). Specified as: a fullword integer; \(\text{ldb} > 0 \) and:

If \(\text{transb} = 'N' \), \(\text{ldb} \geq m \).
If \(\text{transb} = 'T' \) or \('C' \), \(\text{ldb} \geq n \).

\(\text{transb} \)
indicates the form of matrix \(B \) to use in the computation, where:

If \(\text{transb} = 'N' \), \(B \) is used in the computation.
If \(\text{transb} = 'T' \), \(B^T \) is used in the computation.
If \(\text{transb} = 'C' \), \(B^H \) is used in the computation.

Specified as: a single character; \(\text{transb} = 'N' \) or \('T' \) for SGEMMS and DGEMMS; \(\text{transb} = 'N', 'T', \) or \('C' \) for CGEMMS and ZGEMMS.

\(c \)
See “On Return” on page 406.
ldc
is the leading dimension of the array specified for c. Specified as: a fullword integer; ldc > 0 and ldc ≥ l.

l
is the number of rows in matrix C. Specified as: a fullword integer; 0 ≤ l ≤ ldc.

m
has the following meaning, where:
If transa = 'N', it is the number of columns in matrix A.
If transa = 'T' or 'C', it is the number of rows in matrix A.
In addition:
If transb = 'N', it is the number of rows in matrix B.
If transb = 'T' or 'C', it is the number of columns in matrix B.
Specified as: a fullword integer; m ≥ 0.

n
is the number of columns in matrix C. Specified as: a fullword integer; n ≥ 0.

aux
has the following meaning:
If naux = 0 and error 2015 is unrecoverable, aux is ignored.
Otherwise, is the storage work area used by this subroutine. Its size is specified by naux.
Specified as: an area of storage containing numbers of the data type indicated in Table 75 on page 403.

naux
is the size of the work area specified by aux—that is, the number of elements in aux.
Specified as: a fullword integer, where:
If naux = 0 and error 2015 is unrecoverable, SGEMMS, DGEMMS, CGEMMS, and ZGEMMS dynamically allocate the work area used by the subroutine. The work area is deallocated before control is returned to the calling program.
Otherwise,
When this subroutine uses Strassen’s algorithm:
- For SGEMMS and DGEMMS:
 Use naux = max[(n)(l), 0.7m(l+n)].
- For CGEMMS and ZGEMMS:
 Use naux = max[(n)(l), 0.7m(l+n)]+nb1+nb2, where:
 - If l ≥ n, then nb1 ≥ (l)(n+20) and nb2 ≥ max[(n)(l), (m)(n+20)].
 - If l < n, then nb1 ≥ (m)(n+20) and nb2 ≥ max[(n)(l), (l)(m+20)].
When this subroutine uses the direct method (_GEMUL), use naux ≥ 0.

Notes:
1. In most cases, these formulas provide an overestimate.
2. For an explanation of when this subroutine uses the direct method versus Strassen’s algorithm, see “Notes” on page 406.
SGEMMS, DGEMMS, CGEMMS, and ZGEMMS

On Return

c is the \(l \) by \(n \) matrix \(C \), containing the results of the computation. Returned as:
an \(ldc \) by (at least) \(n \) array, containing numbers of the data type indicated in
Table 75 on page 403.

Notes

1. There are two instances when these subroutines use the direct method
(_GEMUL), rather than using Strassen's algorithm:
 - When either or both of the input matrices are small
 - For CGEMMS and ZGEMMS, when input matrices \(A \) and \(B \) overlap

 In these instances when the direct method is used, the subroutine does not use
auxiliary storage, and you can specify \(naux = 0 \).

2. For CGEMMS and ZGEMMS, one of the input matrices, \(A \) or \(B \), is rearranged
during the computation and restored to its original form on return. Keep this in
mind when diagnosing an abnormal termination.

3. All subroutines accept lowercase letters for the \textit{transa} and \textit{transb} arguments.

4. Matrix \(C \) must have no common elements with matrices \(A \) or \(B \); otherwise,
 results are unpredictable. See “Concepts” on page 53.

5. You have the option of having the minimum required value for \(naux \)
dynamically returned to your program. For details, see “Using Auxiliary Storage
in ESSL” on page 30.

Function: The matrix multiplications performed by these subroutines are
functionally equivalent to those performed by SGEMUL, DGEMUL, CGEMUL, and
ZGEMUL. For details on the computations performed, see “Function” on page 395.

SGEMMS, DGEMMS, CGEMMS, and ZGEMMS use Winograd's variation of the
Strassen's algorithm with minor changes for tuning purposes. (See pages 45 and
46 in reference [11].) The subroutines compute matrix multiplication for both real
and complex matrices of large sizes. Complex matrix multiplication uses a special
technique, using three real matrix multiplications and five real matrix additions.
Each of these three resulting matrix multiplications then uses Strassen's algorithm.

\textit{Strassen's Algorithm:} The steps of Strassen's algorithm can be repeated up to four
times by these subroutines, with each step reducing the dimensions of the matrix
by a factor of two. The number of steps used by this subroutine depends on the
size of the input matrices. Each step reduces the number of operations by about
10% from the normal matrix multiplication. On the other hand, if the matrix is small,
a normal matrix multiplication is performed without using the Strassen's algorithm,
and no improvement is gained. For details about small matrices, see “Notes.”

\textit{Complex Matrix Multiplication:} The complex multiplication is performed by forming
the real and imaginary parts of the input matrices. These subroutines uses three
real matrix multiplications and five real matrix additions, instead of the normal four
real matrix multiplications and two real matrix additions. Using only three real matrix
multiplications allows the subroutine to achieve up to a 25% reduction in matrix
operations, which can result in a significant savings in computing time for large
matrices.
Accuracy Considerations: Strassen's method is not stable for certain row or column scalings of the input matrices \(A\) and \(B\). Therefore, for matrices \(A\) and \(B\) with divergent exponent values Strassen's method may give inaccurate results. For these cases, you should use the _GEMUL or _GEMM subroutines.

Special Usage: The equivalence rules, defined for matrix multiplication of \(A\) and \(B\) in “Special Usage” on page 396, also apply to these subroutines. You should use the equivalence rules when you want to transpose or conjugate transpose the result of the multiplication computation. When coding the calling sequences for these cases, be careful to code your matrix arguments and dimension arguments in the order indicated by the rule. Also, be careful that your output array, receiving \(C^T\) or \(C^H\), has dimensions large enough to hold the resulting transposed or conjugate transposed matrix. See “Example 2” on page 398 and “Example 4” on page 399.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, \(naux = 0\), and unable to allocate work area.

Computational Errors: None

Input-Argument Errors

1. \(lda, ldb, ldc \leq 0\)
2. \(l, m, n < 0\)
3. \(l > ldc\)
4. \(transa, transb \neq 'N' \text{ or } 'T'\) for SGEMMS and DGEMMS
5. \(transa, transb \neq 'N', 'T', \text{ or } 'C'\) for CGEMMS and ZGEMMS
6. \(transa = 'N' \text{ and } l > lda\)
7. \(transa = 'T' \text{ or } 'C' \text{ and } m > lda\)
8. \(transb = 'N' \text{ and } m > ldb\)
9. \(transb = 'T' \text{ or } 'C' \text{ and } n > ldb\)
10. Error 2015 is recoverable or \(naux \neq 0\), and \(naux\) is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.

Example 1: This example shows the computation \(C \leftarrow AB\), where \(A\), \(B\), and \(C\) are contained in larger arrays \(A\), \(B\), and \(C\), respectively. It shows how to code the calling sequence for SGEMMS, but does not use the Strassen algorithm for doing the computation. The calling sequence is shown below. The input and output, other than auxiliary storage, is the same as in “Example 1” on page 397 for SGEMUL.

Call Statement and Input

```
A LDA TRANSA B LDB TRANSB C LDC L M N AUX NAUX
| | | | | | | | | | | | |
CALL SGEMMS( A , 8 , 'N' , B , 6 , 'N' , C , 7 , 6 , 5 , 4 , AUX , 0 )
```

Example 2: This example shows the computation \(C \leftarrow AB^H\), where \(A\) and \(C\) are contained in larger arrays \(A\) and \(C\), respectively, and \(B\) is the same size as the array \(B\) in which it is contained. The arrays contain complex data. This example shows how to code the calling sequence for CGEMMS, but does not use the Strassen algorithm for doing the computation. The calling sequence is shown below. The input and output, other than auxiliary storage, is the same as in “Example 8” on page 401 for CGEMUL.
Call Statement and Input

\[
\begin{array}{cccccccccc}
A & \text{LDA} & \text{TRANS}A & B & \text{LDB} & \text{TRANS}B & C & \text{LDC} & L & M & N & \text{AUX} & \text{NAUX} \\
\text{CALL CGEMMS}(A, 4, 'N', B, 3, 'C', C, 4, 3, 2, 3, \text{AUX}, 0)
\end{array}
\]
SGEMM, DGEMM, CGEMM, and ZGEMM—Combined Matrix Multiplication and Addition for General Matrices, Their Transposes, or Conjugate Transposes

SGEMM and DGEMM can perform any one of the following combined matrix computations, using scalars α and β, matrices A and B or their transposes, and matrix C:

\[
C \leftarrow \alpha AB + \beta C \\
C \leftarrow \alpha A^T B + \beta C \\
C \leftarrow \alpha A^H B + \beta C
\]

CGEMM and ZGEMM can perform any one of the following combined matrix computations, using scalars α and β, matrices A and B, their transposes or their conjugate transposes, and matrix C:

\[
C \leftarrow \alpha AB + \beta C \\
C \leftarrow \alpha A^T B + \beta C \\
C \leftarrow \alpha A^H B + \beta C
\]

Syntax

Fortran

```
CALL SGEMM | DGEMM | CGEMM | ZGEMM (transa, transb, l, n, m, alpha, a, lda, b, ldb, beta, c, ldc)
```

C and C++

```
sgemm | dgemm | cgemm | zgemm (transa, transb, l, n, m, alpha, a, lda, b, ldb, beta, c, ldc);
```

PL/I

```
CALL SGEMM | DGEMM | CGEMM | ZGEMM (transa, transb, l, n, m, alpha, a, lda, b, ldb, beta, c, ldc);
```

On Entry

transa

indicates the form of matrix A to use in the computation, where:

- If $transa = \text{"N"}$, A is used in the computation.
- If $transa = \text{"T"}$, A^T is used in the computation.
- If $transa = \text{"C"}$, A^H is used in the computation.

Specified as: a single character; $transa = \text{"N"}$, \text{"T"}, or \text{"C"}.

transb

indicates the form of matrix B to use in the computation, where:

- If $transb = \text{"N"}$, B is used in the computation.
- If $transb = \text{"T"}$, B^T is used in the computation.
- If $transb = \text{"C"}$, B^H is used in the computation.

Specified as: a single character; $transb = \text{"N"}$, \text{"T"}, or \text{"C"}.

Table 76. Data Types

<table>
<thead>
<tr>
<th>A, B, C, α, β</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>SGEMM</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DGEMM</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>CGEMM</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>ZGEMM</td>
</tr>
</tbody>
</table>
is the number of rows in matrix \(C \). Specified as: a fullword integer; \(0 \leq l \leq \text{ldc} \).

\(n \)
is the number of columns in matrix \(C \). Specified as: a fullword integer; \(n \geq 0 \).

\(m \)
has the following meaning, where:
If \(\text{transa} = 'N' \), it is the number of columns in matrix \(A \).
If \(\text{transa} = 'T' \) or \('C' \), it is the number of rows in matrix \(A \).

In addition:
If \(\text{transb} = 'N' \), it is the number of rows in matrix \(B \).
If \(\text{transb} = 'T' \) or \('C' \), it is the number of columns in matrix \(B \).

Specified as: a fullword integer; \(m \geq 0 \).

\(\alpha \)
is the scalar \(\alpha \). Specified as: a number of the data type indicated in Table 76 on page 409.

\(a \)
is the matrix \(A \), where:
If \(\text{transa} = 'N' \), \(A \) is used in the computation, and \(A \) has \(l \) rows and \(m \) columns.
If \(\text{transa} = 'T' \), \(A^T \) is used in the computation, and \(A \) has \(m \) rows and \(l \) columns.
If \(\text{transa} = 'C' \), \(A^H \) is used in the computation, and \(A \) has \(m \) rows and \(l \) columns.

Note: No data should be moved to form \(A^T \) or \(A^H \); that is, the matrix \(A \) should always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type indicated in Table 76 on page 409, where:
If \(\text{transa} = 'N' \), its size must be \(\text{lda} \) by (at least) \(m \).
If \(\text{transa} = 'T' \) or \('C' \), its size must be \(\text{lda} \) by (at least) \(l \).

\(\text{lda} \)
is the leading dimension of the array specified for \(a \). Specified as: a fullword integer; \(\text{lda} > 0 \) and:
If \(\text{transa} = 'N' \), \(\text{lda} \geq l \).
If \(\text{transa} = 'T' \) or \('C' \), \(\text{lda} \geq m \).

\(b \)
is the matrix \(B \), where:
If \(\text{transb} = 'N' \), \(B \) is used in the computation, and \(B \) has \(m \) rows and \(n \) columns.
If \(\text{transb} = 'T' \), \(B^T \) is used in the computation, and \(B \) has \(n \) rows and \(m \) columns.
If \(\text{transb} = 'C' \), \(B^H \) is used in the computation, and \(B \) has \(n \) rows and \(m \) columns.

Note: No data should be moved to form \(B^T \) or \(B^H \); that is, the matrix \(B \) should always be stored in its untransposed form.
Specified as: a two-dimensional array, containing numbers of the data type indicated in Table 76 on page 409, where:

If \(\text{transb} = 'N' \), its size must be \(\text{ldb} \) by (at least) \(n \).

If \(\text{transb} = 'T' \) or \('C' \), its size must be \(\text{ldb} \) by (at least) \(m \).

\(\text{ldb} \) is the leading dimension of the array specified for \(b \). Specified as: a fullword integer; \(\text{ldb} > 0 \) and:

If \(\text{transb} = 'N' \), \(\text{ldb} \geq m \).

If \(\text{transb} = 'T' \) or \('C' \), \(\text{ldb} \geq n \).

\(\beta \) is the scalar \(\beta \). Specified as: a number of the data type indicated in Table 76 on page 409.

\(c \) is the \(l \) by \(n \) matrix \(C \). Specified as: a two-dimensional array, containing numbers of the data type indicated in Table 76 on page 409.

\(\text{ldc} \) is the leading dimension of the array specified for \(c \). Specified as: a fullword integer; \(\text{ldc} > 0 \) and \(\text{ldc} \geq l \).

On Return

\(c \) is the \(l \) by \(n \) matrix \(C \), containing the results of the computation. Returned as: an \(\text{ldc} \) by (at least) \(n \) array, containing numbers of the data type indicated in Table 76 on page 409.

Notes

1. All subroutines accept lowercase letters for the \(\text{transa} \) and \(\text{transb} \) arguments.

2. For SGEMM and DGEMM, if you specify \('C' \) for the \(\text{transa} \) or \(\text{transb} \) argument, it is interpreted as though you specified \('T' \).

3. Matrix \(C \) must have no common elements with matrices \(A \) or \(B \); otherwise, results are unpredictable. See “Concepts” on page 53.

Function: The combined matrix addition and multiplication is expressed as follows, where \(a_{ik}, b_{jp}, \) and \(c_{ij} \) are elements of matrices \(A, B, \) and \(C \), respectively:
\[
\begin{align*}
c_{ij} &= \left(\sum_{k=1}^{m} a_{ik} b_{kj} \right) \beta c_{ij} + \beta c_{ij} \quad \text{for } C \leftarrow \alpha A \ B + \beta C \\
c_{ij} &= \left(\sum_{k=1}^{m} a_{ki} b_{ij} \right) \beta c_{ij} + \beta c_{ij} \quad \text{for } C \leftarrow \alpha A^T \ B + \beta C \\
c_{ij} &= \left(\sum_{k=1}^{m} \bar{a}_{ki} b_{kj} \right) \beta c_{ij} + \beta c_{ij} \quad \text{for } C \leftarrow \alpha A^H \ B + \beta C \\
c_{ij} &= \left(\sum_{k=1}^{m} a_{ik} \bar{b}_{jk} \right) \beta c_{ij} + \beta c_{ij} \quad \text{for } C \leftarrow \alpha A \ B^T + \beta C \\
c_{ij} &= \left(\sum_{k=1}^{m} a_{ki} \bar{b}_{ij} \right) \beta c_{ij} + \beta c_{ij} \quad \text{for } C \leftarrow \alpha A^T \ B^T + \beta C \\
c_{ij} &= \left(\sum_{k=1}^{m} \bar{a}_{ki} \bar{b}_{kj} \right) \beta c_{ij} + \beta c_{ij} \quad \text{for } C \leftarrow \alpha A^H \ B^T + \beta C \\
c_{ij} &= \left(\sum_{k=1}^{m} a_{ik} \bar{b}_{jk} \right) \beta c_{ij} + \beta c_{ij} \quad \text{for } C \leftarrow \alpha A \ B^H + \beta C \\
c_{ij} &= \left(\sum_{k=1}^{m} a_{ki} \bar{b}_{ij} \right) \beta c_{ij} + \beta c_{ij} \quad \text{for } C \leftarrow \alpha A^T \ B^H + \beta C
\end{align*}
\]

for \(i = 1, l \) and \(j = 1, n \)

See references [32] and [38]. In the following three cases, no computation is performed:

- \(l \) is 0.
- \(n \) is 0.
- \(\beta \) is 1 and \(\alpha \) is 0.

Assuming the above conditions do not exist, if \(\beta \neq 1 \) and \(m \) is 0, then \(\beta C \) is returned.

Special Usage

Equivalence Rules: The equivalence rules, defined for matrix multiplication of \(A \) and \(B \) in “Special Usage” on page 396, also apply to the matrix multiplication part of the computation performed by this subroutine. You should use the equivalent rules when you want to transpose or conjugate transpose the multiplication part of the computation. When coding the calling sequences for these cases, be careful to code your matrix arguments and dimension arguments in the order indicated by the rule. Also, be careful that your input and output array \(C \) has dimensions large enough to hold the resulting matrix. See “Example 4” on page 415.
Error Conditions

Resource Errors: Unable to allocate internal work area (CGEMM and ZGEMM only).

Computational Errors: None

Input-Argument Errors
1. lda, ldb, ldc ≤ 0
2. l, m, n < 0
3. l > ldc
4. transa, transb ≠ 'N', 'T', or 'C'
5. transa = 'N' and l > lda
6. transa = 'T' or 'C' and m > lda
7. transb = 'N' and m > ldb
8. transb = 'T' or 'C' and n > ldb

Example 1: This example shows the computation \(C \leftarrow \alpha A B + \beta C \), where \(A, B, \) and \(C \) are contained in larger arrays \(A, B, \) and \(C \), respectively.

Call Statement and Input

\[
\text{CALL SGEMM('N', 'N', 6, 4, 5, 1.0, A, 8, B, 6, 2.0, C, 7)}
\]

\[
A = \begin{bmatrix}
1.0 & 2.0 & -1.0 & -1.0 & 4.0 \\
2.0 & 0.0 & 1.0 & 1.0 & -1.0 \\
1.0 & -1.0 & -1.0 & 1.0 & 2.0 \\
-3.0 & 2.0 & 2.0 & 2.0 & 0.0 \\
4.0 & 0.0 & -2.0 & 1.0 & -1.0 \\
-1.0 & -1.0 & 1.0 & -3.0 & 2.0 \\
\cdot & \cdot & \cdot & \cdot & \cdot
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
1.0 & -1.0 & 0.0 & 2.0 \\
2.0 & 2.0 & -1.0 & -2.0 \\
1.0 & 0.0 & -1.0 & 1.0 \\
-3.0 & -1.0 & 1.0 & -1.0 \\
4.0 & 2.0 & -1.0 & 1.0 \\
\cdot & \cdot & \cdot & \cdot
\end{bmatrix}
\]

\[
C = \begin{bmatrix}
0.5 & 0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & 0.5 & 0.5 \\
\cdot & \cdot & \cdot & \cdot
\end{bmatrix}
\]

Output
Example 2: This example shows the computation $C \leftarrow \alpha AB^T + \beta C$, where A and C are contained in larger arrays A and C, respectively, and B is the same size as array B in which it is contained.

Call Statement and Input

```
CALL SGEMM( 'N' , 'T' , 3 , 3 , 2 , 1.0, A , 4 , B , 3 , 2.0, C , 5 )
```

$A = \begin{bmatrix} 1.0 & -3.0 \\ 2.0 & 4.0 \\ 1.0 & -1.0 \\ \end{bmatrix}$

$B = \begin{bmatrix} 1.0 & -3.0 \\ 2.0 & 4.0 \\ 1.0 & -1.0 \\ \end{bmatrix}$

$C = \begin{bmatrix} 0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0.5 \\ \end{bmatrix}$

Output

```
C = \begin{bmatrix} 11.0 & -9.0 & 5.0 \\ -9.0 & 21.0 & -1.0 \\ 5.0 & -1.0 & 3.0 \\ \end{bmatrix}
```

Example 3: This example shows the computation $C \leftarrow \alpha AB + \beta C$ using complex data, where A, B, and C are contained in larger arrays, A, B, and C, respectively.

Call Statement and Input

```
CALL CGEMM( 'N' , 'N' , 6 , 2 , 3 , ALPHA , A , 8 , B , 4 , BETA , C , 8 )
```

$C = \begin{bmatrix} 24.0 & 13.0 & -5.0 & 3.0 \\ -3.0 & -4.0 & 2.0 & 4.0 \\ 4.0 & 1.0 & 2.0 & 5.0 \\ -2.0 & 6.0 & -1.0 & -9.0 \\ -4.0 & -6.0 & 5.0 & 5.0 \\ 16.0 & 7.0 & -4.0 & 7.0 \\ \end{bmatrix}$
\[
\text{ALPHA} = (1.0, 0.0) \\
\text{BETA} = (2.0, 0.0) \\
\]

\[
\begin{bmatrix}
(1.0, 5.0) & (9.0, 2.0) & (1.0, 9.0) \\
(2.0, 4.0) & (8.0, 3.0) & (1.0, 8.0) \\
(3.0, 3.0) & (7.0, 5.0) & (1.0, 7.0) \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
(4.0, 2.0) & (4.0, 7.0) & (1.0, 5.0) \\
(5.0, 1.0) & (5.0, 1.0) & (1.0, 6.0) \\
(6.0, 6.0) & (3.0, 6.0) & (1.0, 4.0) \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
(1.0, 8.0) & (2.0, 7.0) \\
(4.0, 4.0) & (6.0, 8.0) \\
(6.0, 2.0) & (4.0, 5.0) \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
(0.5, 0.0) & (0.5, 0.0) \\
(0.5, 0.0) & (0.5, 0.0) \\
(0.5, 0.0) & (0.5, 0.0) \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
(-22.0, 113.0) & (-35.0, 142.0) \\
(-19.0, 114.0) & (-35.0, 141.0) \\
(-20.0, 119.0) & (-43.0, 146.0) \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
(-27.0, 110.0) & (-58.0, 131.0) \\
(8.0, 103.0) & (0.0, 112.0) \\
(-55.0, 116.0) & (-75.0, 135.0) \\
\end{bmatrix}
\]

Example 4: This example shows how to obtain the conjugate transpose of \(AB^\text{H}\).

\[
(AB^\text{H})^\text{H} = \overline{BA}^\text{T} = BA^\text{H}
\]

This shows the conjugate transpose of the computation performed in “Example 8” on page 401 for CGEMUL, which uses the following calling sequence:

```plaintext
CALL CGEMUL( A , 4 , 'N' , B , 3 , 'C' , C , 4 , 3 , 2 , 3 )
```

You instead code the calling sequence for \(C \leftarrow \beta C + \alpha BA^\text{H}\), where \(\beta = 0, \alpha = 1\), and the array \(C\) has the correct dimensions to receive the transposed matrix.
Because β is zero, $\beta \mathbf{C} = 0$. For a description of all the matrix identities, see "Special Usage" on page 396.

Call Statement and Input

\[
\text{TRANSA TRANSB L N M ALPHA A LDA B LDB BETA C LDC} \\
\text{CALL CGEMM('N', 'C', 3, 3, 2, ALPHA, B, A, BETA, C)}
\]

\[
\begin{align*}
\text{ALPHA} & = (1.0, 0.0) \\
\text{BETA} & = (0.0, 0.0)
\end{align*}
\]

\[
\begin{pmatrix}
(1.0, 0.0) & (-3.0, 2.0) \\
(2.0, 5.0) & (4.0, 6.0) \\
(1.0, 1.0) & (-1.0, 9.0)
\end{pmatrix}
\]

\[
\begin{pmatrix}
(1.0, 2.0) & (-3.0, 2.0) \\
(2.0, 6.0) & (4.0, 5.0) \\
(1.0, 2.0) & (-1.0, 8.0)
\end{pmatrix}
\]

\[
\begin{pmatrix}
(20.0, 1.0) & (18.0, 23.0) & (26.0, 23.0) \\
(12.0, -25.0) & (80.0, 2.0) & (56.0, -37.0) \\
(24.0, -26.0) & (49.0, 37.0) & (76.0, -2.0)
\end{pmatrix}
\]

Example 5: This example shows the computation $\mathbf{C} \leftarrow \alpha \mathbf{A}^\dagger \mathbf{B}^H + \beta \mathbf{C}$ using complex data, where \mathbf{A}, \mathbf{B}, and \mathbf{C} are the same size as the arrays \mathbf{A}, \mathbf{B}, and \mathbf{C}, in which they are contained. Because β is zero, $\beta \mathbf{C} = 0$. (Based on the dimensions of the matrices, \mathbf{A} is actually a column vector, and \mathbf{C} is actually a row vector.)

Call Statement and Input

\[
\text{TRANSA TRANSB L N M ALPHA A LDA B LDB BETA C LDC} \\
\text{CALL CGEMM('T', 'C', 1, 3, 3, ALPHA, A, B, BETA, C)}
\]

\[
\begin{align*}
\text{ALPHA} & = (1.0, 1.0) \\
\text{BETA} & = (0.0, 0.0)
\end{align*}
\]

\[
\begin{pmatrix}
(1.0, 2.0) \\
(2.0, 5.0) \\
(1.0, 6.0)
\end{pmatrix}
\]

\[
\begin{pmatrix}
(1.0, 6.0) & (-3.0, 4.0) & (2.0, 6.0) \\
(2.0, 3.0) & (4.0, 6.0) & (0.0, 3.0) \\
(1.0, 3.0) & (-1.0, 6.0) & (-1.0, 9.0)
\end{pmatrix}
\]
Output

\[C = \begin{bmatrix} 86.0, 44.0 & 58.0, 70.0 & 121.0, 55.0 \end{bmatrix} \]
SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM—Matrix-Vector Product Where One Matrix is Real or Complex Symmetric or Complex Hermitian

These subroutines compute one of the following matrix-vector products, using the scalars \(\alpha \) and \(\beta \) and vectors \(x, y, \) and \(z \):

1. \(\begin{align*} y & \leftarrow \alpha x + \beta y \\ z & \leftarrow \alpha y + \beta z \end{align*} \)

2. \(\begin{align*} y & \leftarrow \alpha x^T + \beta y \\ z & \leftarrow \alpha y^T + \beta z \end{align*} \)

where vector \(x \) is stored in either upper or lower storage mode, and:

- For SSYMM and DSYMM, vector \(x \) is real symmetric.
- For CSYMM and ZSYMM, vector \(x \) is complex symmetric.
- For CHEMM and ZHEMM, vector \(x \) is complex Hermitian.

Syntax

<table>
<thead>
<tr>
<th>Data Types</th>
<th>Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>SSYMM</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DSYMM</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>CSYMM and CHEMM</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>ZSYMM and ZHEMM</td>
</tr>
</tbody>
</table>

On Entry

- \(\text{side} \) indicates whether matrix \(A \) is located to the left or right of rectangular matrix \(B \) in the equation used for this computation, where:
 - If \(\text{side} = 'L' \), \(A \) is to the left of \(B \), resulting in equation 1.
 - If \(\text{side} = 'R' \), \(A \) is to the right of \(B \), resulting in equation 2.

- \(\text{uplo} \) indicates the storage mode used for matrix \(A \), where:
 - If \(\text{uplo} = 'U' \), \(A \) is stored in upper storage mode.
 - If \(\text{uplo} = 'L' \), \(A \) is stored in lower storage mode.

- \(m \) is the number of rows in rectangular matrices \(B \) and \(C \), and:
 - If \(\text{side} = 'L' \), \(m \) is the order of matrix \(A \).

- \(\text{lda}, \text{ldb}, \text{ldc} \) are the leading dimensions of matrices \(A, B, C \), respectively.
If \(\text{side} = 'L' \), \(m \leq \text{lda} \).

\(n \)

is the number of columns in rectangular matrices \(B \) and \(C \), and:
If \(\text{side} = 'R' \), \(n \) is the order of matrix \(A \).

Specified as: a fullword integer; \(n \geq 0 \) and:
If \(\text{side} = 'R' \), \(n \leq \text{lda} \).

\(\alpha \)

is the scalar \(\alpha \). Specified as: a number of the data type indicated in Table 77 on page 418.

\(\beta \)

is the scalar \(\beta \). Specified as: a number of the data type indicated in Table 77 on page 418.

\(A \)

is the real symmetric, complex symmetric, or complex Hermitian matrix \(A \), where:
If \(\text{side} = 'L' \), \(A \) is order \(m \).
If \(\text{side} = 'R' \), \(A \) is order \(n \).

and where it is stored as follows:
If \(\text{uplo} = 'U' \), \(A \) is stored in upper storage mode.
If \(\text{uplo} = 'L' \), \(A \) is stored in lower storage mode.

Specified as: a two-dimensional array, containing numbers of the data type indicated in Table 77 on page 418, where:
If \(\text{side} = 'L' \), its size must be \(\text{lda} \) by (at least) \(m \).
If \(\text{side} = 'R' \), it size must be \(\text{lda} \) by (at least) \(n \).

\(\text{lda} \)

is the leading dimension of the array specified for \(A \). Specified as: a fullword integer; \(\text{lda} > 0 \) and:
If \(\text{side} = 'L' \), \(\text{lda} \geq m \).
If \(\text{side} = 'R' \), \(\text{lda} \geq n \).

\(B \)

is the \(m \) by \(n \) rectangular matrix \(B \). Specified as: an \(\text{ldb} \) by (at least) \(n \) array, containing numbers of the data type indicated in Table 77 on page 418.

\(\text{ldb} \)

is the leading dimension of the array specified for \(B \). Specified as: a fullword integer; \(\text{ldb} > 0 \) and \(\text{ldb} \geq m \).

\(C \)

is the \(m \) by \(n \) rectangular matrix \(C \). Specified as: an \(\text{ldc} \) by (at least) \(n \) array, containing numbers of the data type indicated in Table 77 on page 418.

\(\text{ldc} \)

is the leading dimension of the array specified for \(C \). Specified as: a fullword integer; \(\text{ldc} > 0 \) and \(\text{ldc} \geq m \).

On Return

\(C \)

is the \(m \) by \(n \) matrix \(C \), containing the results of the computation.

Returned as: an \(\text{ldc} \) by (at least) \(n \) array, containing numbers of the data type indicated in Table 77 on page 418.
Notes
1. These subroutines accept lowercase letters for the side and uplo arguments.
2. Matrices A, B, and C must have no common elements; otherwise, results are unpredictable.
3. If matrix A is upper triangular (uplo = 'U'), these subroutines use only the data in the upper triangular portion of the array. If matrix A is lower triangular, (uplo = 'L'), these subroutines use only the data in the lower triangular portion of the array. In each case, the other portion of the array is altered during the computation, but restored before exit.
4. The imaginary parts of the diagonal elements of a complex Hermitian matrix A are assumed to be zero, so you do not have to set these values.
5. For a description of how symmetric matrices are stored in upper and lower storage mode, see “Symmetric Matrix” on page 63. For a description of how complex Hermitian matrices are stored in upper and lower storage mode, see “Complex Hermitian Matrix” on page 68.

Function: These subroutines can perform the following matrix-matrix product computations using matrix A, which is real symmetric for SSYMM and DSYMM, complex symmetric for CSYMM and ZSYMM, and complex Hermitian for CHEMM and ZHEMM:

1. \(C \leftarrow \alpha AB + \beta C \)
2. \(C \leftarrow \alpha BA + \beta C \)

where:
\(\alpha \) and \(\beta \) are scalars.
A is a matrix of the type indicated above, stored in upper or lower storage mode. It is order \(m \) for equation 1 and order \(n \) for equation 2.
B and C are \(m \) by \(n \) rectangular matrices.

See references [32] and [38]. In the following two cases, no computation is performed:
- \(n \) or \(m \) is 0.
- \(\beta \) is one and \(\alpha \) is zero.

Error Conditions

Resource Errors: Unable to allocate internal work area.

Computational Errors: None

Input-Argument Errors
1. \(m < 0 \)
2. \(m > \text{ldb} \)
3. \(m > \text{ldc} \)
4. \(n < 0 \)
5. \(\text{lda} \), \(\text{ldb} \), \(\text{ldc} \) ≤ 0
6. side ≠ 'L' or 'R'
7. uplo ≠ 'L' or 'U'
8. side = 'L' and \(m > \text{lda} \)
9. side = 'R' and \(n > \text{lda} \)
Example 1: This example shows the computation $C \leftarrow \alpha AB + \beta C$, where A is a real symmetric matrix of order 5, stored in upper storage mode, and B and C are 5 by 4 rectangular matrices.

Call Statement and Input

```
SIDE UPLO M N ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | |
CALL SSYMM( 'L' , 'U' , 5 , 4 , 2.:zer0ot , A , 8 , B , 6 , 1.:zer0ot , C , 5 )
```

```
A = 
| 1.:zer0ot 2.:zer0ot -1.:zer0ot -1.:zer0ot 4.:zer0ot |
| . :zer0ot.:zer0ot 1.:zer0ot 1.:zer0ot -1.:zer0ot |
| . . -1.:zer0ot 1.:zer0ot 2.:zer0ot |
| . . . . 2.:zer0ot :zer0ot.:zer0ot |
| . . . . . |
| . . . . . |
| . . . . . |

B = 
| 1.0 -1.0 0.0 2.0 |
| 2.0 2.0 -1.0 -2.0 |
| 1.0 0.0 -1.0 1.0 |
| -3.0 -1.0 1.0 -1.0 |
| 4.0 2.0 -1.0 1.0 |
| . . . . |

C = 
| 23.:zer0ot 12.:zer0ot -6.:zer0ot 2.:zer0ot |
| -4.:zer0ot -5.:zer0ot 1.:zer0ot 3.:zer0ot |
| 5.:zer0ot 6.:zer0ot -1.0 -4.:zer0ot |
| -4.:zer0ot 1.0 0.0 -5.:zer0ot |
| 8.:zer0ot -4.:zer0ot -2.0 13.:zer0ot |
```

Output

```
C = 
| 69.:zer0ot 36.:zer0ot -18.:zer0ot 6.:zer0ot |
| -12.:zer0ot -15.:zer0ot 3.:zer0ot 9.:zer0ot |
| 15.:zer0ot 18.:zer0ot -3.:zer0ot -12.:zer0ot |
| -12.:zer0ot 3.:zer0ot 0.0 -15.:zer0ot |
| 8.:zer0ot -20.:zer0ot -2.0 35.:zer0ot |
```

Example 2: This example shows the computation $C \leftarrow \alpha AB + \beta C$, where A is a real symmetric matrix of order 3, stored in lower storage mode, and B and C are 3 by 6 rectangular matrices.

Call Statement and Input

```
SIDE UPLO M N ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | |
CALL SSYMM( 'L' , 'L' , 3 , 6 , 2.0 , A , 4 , B , 5 , 6 , 3.0 , C , 5 )
```
SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM

A = \[
\begin{bmatrix}
1.0 & . & . \\
2.0 & 4.0 & . \\
1.0 & -1.0 & -1.0 \\
. & . & .
\end{bmatrix}
\]

B = \[
\begin{bmatrix}
1.0 & -3.0 & 2.0 & 2.0 & -1.0 & 2.0 \\
2.0 & 4.0 & 0.0 & 0.0 & 1.0 & -2.0 \\
1.0 & -1.0 & -1.0 & -1.0 & -1.0 & 1.0
\end{bmatrix}
\]

C = \[
\begin{bmatrix}
6.0 & 4.0 & 1.0 & 1.0 & 0.0 & -1.0 \\
9.0 & 11.0 & 5.0 & 5.0 & 3.0 & -5.0 \\
-2.0 & -6.0 & 3.0 & 3.0 & -1.0 & 32.0 \\
. & . & . & . & . & .
\end{bmatrix}
\]

Output

C = \[
\begin{bmatrix}
24.0 & 16.0 & 4.0 & 4.0 & 0.0 & -4.0 \\
36.0 & 44.0 & 20.0 & 20.0 & 12.0 & -20.0 \\
-8.0 & -24.0 & 12.0 & 12.0 & -4.0 & 12.0 \\
. & . & . & . & . & .
\end{bmatrix}
\]

Example 3: This example shows the computation $C \leftarrow \alpha BA + \beta C$, where A is a real symmetric matrix of order 3, stored in upper storage mode, and B and C are 2 by 3 rectangular matrices.

Call Statement and Input

\begin{verbatim}
SIDE UPLO M N ALPHA A LDA B LDB BETA C LDC
\end{verbatim}

CALL SSYMM('R' , 'U' , 2 , 3 , 2.0 , A , 4 , B , 3 , 1.0 , C , 5)

A = \[
\begin{bmatrix}
1.0 & -3.0 & 1.0 \\
. & 4.0 & -1.0 \\
. & . & 2.0 \\
. & . & .
\end{bmatrix}
\]

B = \[
\begin{bmatrix}
1.0 & -3.0 & 3.0 \\
2.0 & 4.0 & -1.0 \\
. & . & .
\end{bmatrix}
\]

C = \[
\begin{bmatrix}
13.0 & -18.0 & 10.0 \\
-11.0 & 11.0 & -4.0 \\
. & . & . \\
. & . & .
\end{bmatrix}
\]
Example 4: This example shows the computation \(C \leftarrow \alpha BA + \beta C \), where \(A \) is a real symmetric matrix of order 3, stored in lower storage mode, and \(B \) and \(C \) are 3 by 3 square matrices.

Call Statement and Input

\[
\text{SIDE UPLO M N ALPHA A LDA B LDB BETA C LDC}
\]
\[
\text{CALL SSYMM('R', 'L', 3, 3, -1.0, A, 3, B, 3, 1.0, C, 3)}
\]

\[
A = \begin{bmatrix}
1.0 & . & . \\
2.0 & 10.0 & . \\
1.0 & 11.0 & 4.0
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
1.0 & -3.0 & 2.0 \\
2.0 & 4.0 & 0.0 \\
1.0 & -1.0 & -1.0
\end{bmatrix}
\]

\[
C = \begin{bmatrix}
1.0 & 5.0 & -9.0 \\
-3.0 & 10.0 & -2.0 \\
-2.0 & 8.0 & 0.0
\end{bmatrix}
\]

Output

\[
C = \begin{bmatrix}
39.0 & -54.0 & 30.0 \\
-33.0 & 33.0 & -12.0 \\
. & . & .
\end{bmatrix}
\]

Example 5: This example shows the computation \(C \leftarrow \alpha BA + \beta C \), where \(A \) is a complex symmetric matrix of order 3, stored in upper storage mode, and \(B \) and \(C \) are 2 by 3 rectangular matrices.

Call Statement and Input

\[
\text{SIDE UPLO M N ALPHA A LDA B LDB BETA C LDC}
\]
\[
\text{CALL CSYMM('R', 'U', 2, 3, ALPHA, A, 4, B, 3, BETA, C, 5)}
\]

\[
\text{ALPHA} = (2.0, 3.0)
\]
\[
\text{BETA} = (1.0, 6.0)
\]

Output

\[
C = \begin{bmatrix}
4.0 & 11.0 & 15.0 \\
-13.0 & -34.0 & -48.0 \\
0.0 & 27.0 & 14.0
\end{bmatrix}
\]
\[
A = \begin{bmatrix}
(1.0, 5.0) & (-3.0, 2.0) & (1.0, 6.0) \\
. & (4.0, 5.0) & (-1.0, 4.0) \\
. & . & (2.0, 5.0)
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
(1.0, 1.0) & (-3.0, 2.0) & (3.0, 3.0) \\
(2.0, 6.0) & (4.0, 5.0) & (-1.0, 4.0)
\end{bmatrix}
\]

\[
C = \begin{bmatrix}
(13.0, 6.0) & (-18.0, 6.0) & (10.0, 7.0) \\
(-11.0, 8.0) & (11.0, 1.0) & (-4.0, 2.0)
\end{bmatrix}
\]

Output

\[
C = \begin{bmatrix}
(-96.0, 72.0) & (-141.0, -226.0) & (-112.0, 38.0) \\
(-230.0, -269.0) & (-133.0, -23.0) & (-272.0, -198.0)
\end{bmatrix}
\]

Example 6: This example shows the computation \(C \leftarrow \alpha BA + \beta C \), where \(A \) is a complex Hermitian matrix of order 3, stored in lower storage mode, and \(B \) and \(C \) are 3 by 3 square matrices.

Note: The imaginary parts of the diagonal elements of a complex Hermitian matrix are assumed to be zero, so you do not have to set these values.

Call Statement and Input

```
SIDE UPLO M N ALPHA A LDA B LDB BETA C LDC
| | ||  |  |||| |  ||
CALL CHEMM( 'R', 'L', 2, 3, ALPHA, A, 4, B, 3, BETA, C, 5 )
```

\[
ALPHA = (2.0, 3.0)
\]

\[
BETA = (1.0, 6.0)
\]

\[
A = \begin{bmatrix}
(1.0, .) & . & . \\
(3.0, 2.0) & (4.0, .) & . \\
(-1.0, 6.0) & (1.0, 4.0) & (2.0, .)
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
(1.0, 1.0) & (-3.0, 2.0) & (3.0, 3.0) \\
(2.0, 6.0) & (4.0, 5.0) & (-1.0, 4.0)
\end{bmatrix}
\]
SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM

\[
C = \begin{bmatrix}
(13.0, 6.0) & (-18.0, 6.0) & (10.0, 7.0) \\
(-11.0, 8.0) & (11.0, 1.0) & (-4.0, 2.0)
\end{bmatrix}
\]

\[
Output
C = \begin{bmatrix}
(-137.0, 17.0) & (-158.0, -102.0) & (-39.0, 141.0) \\
(-154.0, -77.0) & (-63.0, 186.0) & (159.0, 104.0)
\end{bmatrix}
\]
STRMM, DTRMM, CTRMM, and ZTRMM—Triangular Matrix-Matrix Product

STRMM and DTRMM compute one of the following matrix-matrix products, using the scalar α, rectangular matrix B, and triangular matrix A or its transpose:

1. $B \leftarrow \alpha AB$
2. $B \leftarrow \alpha A^TB$
3. $B \leftarrow \alpha BA$
4. $B \leftarrow \alpha BA^T$

CTRMM and ZTRMM compute one of the following matrix-matrix products, using the scalar α, rectangular matrix B, and triangular matrix A, its transpose, or its conjugate transpose:

1. $B \leftarrow \alpha AB$
2. $B \leftarrow \alpha A^TB$
3. $B \leftarrow \alpha BA$
4. $B \leftarrow \alpha BA^T$
5. $B \leftarrow \alpha A^H B$
6. $B \leftarrow \alpha BA^H$

Table 78. Data Types

<table>
<thead>
<tr>
<th>A, B, α</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>STRMM</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DTRMM</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>CTRMM</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>ZTRMM</td>
</tr>
</tbody>
</table>

Syntax

Fortran: CALL STRMM | DTRMM | CTRMM | ZTRMM (side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb);

C and C++:

```
strmm | dtrmm | ctrmm | ztrmm (side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb);
```

On Entry

side

indicates whether the triangular matrix A is located to the left or right of rectangular matrix B in the equation used for this computation, where:

If $side = 'L'$, A is to the left of B in the equation, resulting in either equation 1, 2, or 5.

If $side = 'R'$, A is to the right of B in the equation, resulting in either equation 3, 4, or 6.

Specified as: a single character. It must be 'L' or 'R'.

uplo

indicates whether matrix A is an upper or lower triangular matrix, where:

If $uplo = 'U'$, A is an upper triangular matrix.

If $uplo = 'L'$, A is a lower triangular matrix.

Specified as: a single character. It must be 'U' or 'L'.

transa

indicates the form of matrix A to use in the computation, where:

If $transa = 'N'$, A is used in the computation, resulting in either equation 1 or 3.
If \(\text{transa} = 'T' \), \(A^T \) is used in the computation, resulting in either equation 2 or 4.

If \(\text{transa} = 'C' \), \(A^H \) is used in the computation, resulting in either equation 5 or 6.

Specified as: a single character. It must be 'N', 'T', or 'C'.

\(\text{diag} \)
indicates the characteristics of the diagonal of matrix \(A \), where:

- If \(\text{diag} = 'U' \), \(A \) is a unit triangular matrix.
- If \(\text{diag} = 'N' \), \(A \) is not a unit triangular matrix.

Specified as: a single character. It must be 'U' or 'N'.

\(m \)
is the number of rows in rectangular matrix \(B \), and:

- If \(\text{side} = 'L' \), \(m \) is the order of triangular matrix \(A \).
- Specified as: a fullword integer, where:
 - If \(\text{side} = 'L' \), \(0 \leq m \leq \text{lda} \) and \(m \leq \text{ldb} \).
 - If \(\text{side} = 'R' \), \(0 \leq m \leq \text{ldb} \).

\(n \)
is the number of columns in rectangular matrix \(B \), and:

- If \(\text{side} = 'R' \), \(n \) is the order of triangular matrix \(A \).
- Specified as: a fullword integer; \(n \geq 0 \) and:
 - If \(\text{side} = 'R' \), \(n \leq \text{lda} \).

\(\alpha \)
is the scalar \(\alpha \). Specified as: a number of the data type indicated in Table 78 on page 426.

\(a \)
is the triangular matrix \(A \), of which only the upper or lower triangular portion is used, where:

- If \(\text{side} = 'L' \), \(A \) is order \(m \).
- If \(\text{side} = 'R' \), \(A \) is order \(n \).

\textbf{Note:} No data should be moved to form \(A^T \) or \(A^H \); that is, the matrix \(A \) should always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type indicated in Table 78 on page 426, where:

- If \(\text{side} = 'L' \), its size must be \(\text{lda} \) by (at least) \(m \).
- If \(\text{side} = 'R' \), it size must be \(\text{lda} \) by (at least) \(n \).

\(\text{lda} \)
is the leading dimension of the array specified for \(a \). Specified as: a fullword integer; \(\text{lda} > 0 \) and:

- If \(\text{side} = 'L' \), \(\text{lda} \geq m \).
- If \(\text{side} = 'R' \), \(\text{lda} \geq n \).

\(b \)
is the \(m \) by \(n \) rectangular matrix \(B \). Specified as: an \(\text{ldb} \) by (at least) \(n \) array, containing numbers of the data type indicated in Table 78 on page 426.
STRMM, DTRMM, CTRMM, and ZTRMM

Stride

\(\text{ldb} \)

is the leading dimension of the array specified for \(b \). Specified as: a fullword integer; \(\text{ldb} > 0 \) and \(\text{ldb} \geq m \).

On Return

\(b \)

is the \(m \) by \(n \) matrix \(B \), containing the results of the computation. Returned as: an \(\text{ldb} \) by (at least) \(n \) array, containing numbers of the data type indicated in Table 78 on page 426.

Notes

1. These subroutines accept lowercase letters for the \(\text{side} \), \(\text{uplo} \), \(\text{transa} \), and \(\text{diag} \) arguments.
2. For STRMM and DTRMM, if you specify \'C\' for the \(\text{transa} \) argument, it is interpreted as though you specified \'T\'.
3. Matrices \(A \) and \(B \) must have no common elements; otherwise, results are unpredictable.
4. ESSL assumes certain values in your array for parts of a triangular matrix. As a result, you do not have to set these values. For unit triangular matrices, the elements of the diagonal are assumed to be 1.0 for real matrices and (1.0, 0.0) for complex matrices. When using upper- or lower-triangular storage, the unreferenced elements in the lower and upper triangular part, respectively, are assumed to be zero.
5. For a description of triangular matrices and how they are stored, see “Triangular Matrix” on page 72.

Function:

These subroutines can perform the following matrix-matrix product computations, using the triangular matrix \(A \), its transpose, or its conjugate transpose, where \(A \) can be either upper- or lower-triangular:

1. \(B \leftarrow \alpha AB \)
2. \(B \leftarrow \alpha A^T B \)
3. \(B \leftarrow \alpha A^H B \) (for CTRMM and ZTRMM only)

 where:

 \(\alpha \) is a scalar.

 \(A \) is a triangular matrix of order \(m \).

 \(B \) is an \(m \) by \(n \) rectangular matrix.
4. \(B \leftarrow \alpha BA \)
5. \(B \leftarrow \alpha BA^T \)
6. \(B \leftarrow \alpha BA^H \) (for CTRMM and ZTRMM only)

 where:

 \(\alpha \) is a scalar.

 \(A \) is a triangular matrix of order \(n \).

 \(B \) is an \(m \) by \(n \) rectangular matrix.

See references [32] and [38]. If \(n \) or \(m \) is 0, no computation is performed.

Error Conditions
Resource Errors: Unable to allocate internal work area.

Computational Errors: None

Input-Argument Errors
1. \(m < 0 \)
2. \(n < 0 \)
3. \(\text{lda, ldb} \leq 0 \)
4. \(\text{side} \neq 'L' \) or 'R'
5. \(\text{uplo} \neq 'L' \) or 'U'
6. \(\text{transa} \neq 'T', 'N', \) or 'C'
7. \(\text{diag} \neq 'N' \) or 'U'
8. \(\text{side} = 'L' \) and \(m > \text{lda} \)
9. \(m > \text{ldb} \)
10. \(\text{side} = 'R' \) and \(n > \text{lda} \)

Example 1: This example shows the computation \(B \leftarrow \alpha AB \), where \(A \) is a 5 by 5 upper triangular matrix that is not unit triangular, and \(B \) is a 5 by 3 rectangular matrix.

Call Statement and Input

```
SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
| | | | | | | | | |
CALL STRMM( 'L', 'U', 'N', 'N', 5, 3, 1.0, A, 7, B, 6 )
```

\[
A = \begin{bmatrix}
3.0 & -1.0 & 2.0 & 2.0 & 1.0 \\
. & -2.0 & 4.0 & -1.0 & 3.0 \\
. & . & -3.0 & 0.0 & 2.0 \\
. & . & . & 4.0 & -2.0 \\
. & . & . & . & 1.0 \\
. & . & . & . & . \\
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
2.0 & 3.0 & 1.0 \\
5.0 & 5.0 & 4.0 \\
0.0 & 1.0 & 2.0 \\
3.0 & 1.0 & -3.0 \\
-1.0 & 2.0 & 1.0 \\
. & . & . \\
\end{bmatrix}
\]

Output

\[
B = \begin{bmatrix}
6.0 & 10.0 & -2.0 \\
-16.0 & -1.0 & 6.0 \\
-2.0 & 1.0 & -4.0 \\
14.0 & 0.0 & -14.0 \\
-1.0 & 2.0 & 1.0 \\
. & . & . \\
\end{bmatrix}
\]
Example 2: This example shows the computation $B \leftarrow \alpha A^T B$, where A is a 5 by 5 upper triangular matrix that is not unit triangular, and B is a 5 by 4 rectangular matrix.

Call Statement and Input

```
SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
|   |   |   |   |   |   |   |
CALL STRMM( 'L' , 'U' , 'T' , 'N' , 5 , 4 , 1.0 , A , 7 , B , 6 )
```

```
A =

\[
\begin{bmatrix}
-1.0 & -4.0 & -2.0 & 2.0 & 3.0 \\
-2.0 & 2.0 & 2.0 & 2.0 & 2.0 \\
-3.0 & -1.0 & 4.0 & 4.0 & 4.0 \\
1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
\end{bmatrix}
\]
```

```
B =

\[
\begin{bmatrix}
1.0 & 2.0 & 3.0 & 4.0 & 5.0 \\
3.0 & 3.0 & -1.0 & 2.0 & 3.0 \\
-2.0 & -1.0 & 0.0 & 1.0 & 2.0 \\
4.0 & 4.0 & -3.0 & -3.0 & -3.0 \\
2.0 & 2.0 & 2.0 & 2.0 & 2.0 \\
\end{bmatrix}
\]
```

Output

```
B =

\[
\begin{bmatrix}
-1.0 & -2.0 & -3.0 & -4.0 & -5.0 \\
2.0 & 14.0 & -8.0 & -12.0 & -16.0 \\
10.0 & 5.0 & 8.0 & 12.0 & 16.0 \\
14.0 & 15.0 & 10.0 & 12.0 & 16.0 \\
-3.0 & 4.0 & 3.0 & 16.0 & 19.0 \\
\end{bmatrix}
\]
```

Example 3: This example shows the computation $B \leftarrow \alpha BA$, where A is a 5 by 5 lower triangular matrix that is not unit triangular, and B is a 3 by 5 rectangular matrix.

Call Statement and Input

```
SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
|   |   |   |   |   |   |   |
CALL STRMM( 'R' , 'L' , 'N' , 'N' , 3 , 5 , 1.0 , A , 7 , B , 4 )
```

```
A =

\[
\begin{bmatrix}
2.0 & . & . & . & . \\
2.0 & 3.0 & . & . & . \\
2.0 & 1.0 & 1.0 & . & . \\
0.0 & 3.0 & 0.0 & -2.0 & . \\
2.0 & 4.0 & -1.0 & 2.0 & -1.0 \\
\end{bmatrix}
\]
```
Example 4: This example shows the computation $B \leftarrow \alpha BA$, where A is a 6 by 6 upper triangular matrix that is unit triangular, and B is a 1 by 6 rectangular matrix.

Note: Because matrix A is unit triangular, the diagonal elements are not referenced. ESSL assumes a value of 1.0 for the diagonal elements.

Call Statement and Input

```
SIDE UPLO TRANS A DIAG M N ALPHA A LDA B LDB
| | | | | | | | | |
CALL STRMM( 'R' , 'U' , 'N' , 'U' , 1 , 6 , 1.:z"ro"ot , A , 7 , B , 2 )
```

```
A =
\[
\begin{bmatrix}
  2.0 & -3.0 & 1.0 & 2.0 & 4.0 \\
  . & 0.0 & 1.0 & 1.0 & -2.0 \\
  . & . & 4.0 & -1.0 & 1.0 \\
  . & . & . & 0.0 & -1.0 \\
  . & . & . & . & 2.0 \\
  . & . & . & . & .
\end{bmatrix}
\]
```

```
B =
\[
\begin{bmatrix}
  1.0 & 2.0 & 1.0 & 3.0 & -1.0 & -2.0 \\
  . & . & . & . & . & .
\end{bmatrix}
\]
```

Output

```
B =
\[
\begin{bmatrix}
  1.0 & 4.0 & -2.0 & 10.0 & 2.0 & -6.0 \\
  . & . & . & . & . & .
\end{bmatrix}
\]
```

Example 5: This example shows the computation $B \leftarrow \alpha A^H B$, where A is a 5 by 5 upper triangular matrix that is not unit triangular, and B is a 5 by 1 rectangular matrix.

Call Statement and Input

```
SIDE UPLO TRANS A DIAG M N ALPHA A LDA B LDB
| | | | | | | | | |
CALL CTRMM( 'L' , 'U' , 'C' , 'N' , 5 , 1 , ALPHA , A , 6 , B , 6 )
```

```
ALPHA = (1.0, 0.0)
```

```
A =
\[
\begin{bmatrix}
  . & 2.0 & 1.0 & 4.0 & -3.0 \\
  . & . & 0.0 & 1.0 & 1.0 \\
  . & . & . & 4.0 & -1.0 \\
  . & . & . & 0.0 & -1.0 \\
  . & . & . & . & 2.0 \\
  . & . & . & . & .
\end{bmatrix}
\]
```

```
B =
\[
\begin{bmatrix}
  1.0 & 2.0 & 1.0 & 3.0 & -1.0 & -2.0 \\
  . & . & . & . & . & .
\end{bmatrix}
\]
```

Output

```
B =
\[
\begin{bmatrix}
  1.0 & 4.0 & -2.0 & 10.0 & 2.0 & -6.0 \\
  . & . & . & . & . & .
\end{bmatrix}
\]
```
STRMM, DTRMM, CTRMM, and ZTRMM

\[
A = \begin{bmatrix}
(-4.0, 1.0) & (4.0, -3.0) & (-1.0, 3.0) & (0.0, 0.0) & (-1.0, 0.0) \\
(-2.0, 0.0) & (-3.0, -1.0) & (-2.0, -1.0) & (4.0, 3.0) \\
(-5.0, 3.0) & (-3.0, -3.0) & (-5.0, -5.0) \\
(4.0, -4.0) & (2.0, 0.0) \\
(2.0, -1.0) \\
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
(3.0, 4.0) \\
(-4.0, 2.0) \\
(-5.0, 0.0) \\
(1.0, 3.0) \\
(3.0, 1.0) \\
\end{bmatrix}
\]

Output

\[
B = \begin{bmatrix}
(-8.0, -19.0) \\
(8.0, 21.0) \\
(44.0, -8.0) \\
(13.0, -7.0) \\
(19.0, 2.0) \\
\end{bmatrix}
\]
SSYRK (Symmetric SYnthesis REal K), DSYRK (Symmetric SYnthesis DOuble PRECISION K), CSYRK (Symmetric SYnthesis COMPLEX K), ZSYRK (Symmetric SYnthesis Z dual INTEGER K), CHERK (Complex Hybrid EXPERIMENTAL K), and ZHERK (Complex Hybrid EXPERIMENTAL Z dual INTEGER K) - Rank-K Update of a Real or Complex Symmetric or a Complex Hermitian Matrix

These subroutines compute one of the following rank-k updates, where matrix C is stored in either upper or lower storage mode. SSYRK, DSYRK, CSYRK, and ZSYRK use the scalars \(\alpha \) and \(\beta \), real or complex matrix \(A \) or its transpose, and real or complex symmetric matrix \(C \) to compute:

1. \(C \leftarrow \alpha AA^\top + \beta C \)
2. \(C \leftarrow \alpha A^\top A + \beta C \)

CHERK and ZHERK use the scalars \(\alpha \) and \(\beta \), complex matrix \(A \) or its complex conjugate transpose, and complex Hermitian matrix \(C \) to compute:

3. \(C \leftarrow \alpha AA^H + \beta C \)
4. \(C \leftarrow \alpha A^H A + \beta C \)

Table 79. Data Types

<table>
<thead>
<tr>
<th>(A, C)</th>
<th>(\alpha, \beta)</th>
<th>Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>Short-precision real</td>
<td>SSYRK</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>Long-precision real</td>
<td>DSYRK</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>Short-precision complex</td>
<td>CSYRK</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>Long-precision complex</td>
<td>ZSYRK</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>Short-precision real</td>
<td>CHERK</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>Long-precision real</td>
<td>ZHERK</td>
</tr>
</tbody>
</table>

Syntax

Fortran

`CALL SSYRK | DSYRK | CSYRK | ZSYRK | CHERK | ZHERK (uplo, trans, n, k, alpha, a, lda, beta, c, ldc);`

C and C++

`syrk | dsyrk | csyrk | zsyrk | cherk | zherk (uplo, trans, n, k, alpha, a, lda, beta, c, ldc);`

PL/I

`CALL SSYRK | DSYRK | CSYRK | ZSYRK | CHERK | ZHERK (uplo, trans, n, k, alpha, a, lda, beta, c, ldc);`

On Entry

uplo

indicates the storage mode used for matrix \(C \), where:

- If \(uplo = 'U' \), \(C \) is stored in upper storage mode.
- If \(uplo = 'L' \), \(C \) is stored in lower storage mode.

Specified as: a single character. It must be 'U' or 'L'.

trans

indicates the form of matrix \(A \) to use in the computation, where:

- If \(trans = 'N' \), \(A \) is used, resulting in equation 1 or 3.
- If \(trans = 'T' \), \(A^\top \) is used, resulting in equation 2.
- If \(trans = 'C' \), \(A^H \) is used, resulting in equation 4.

Specified as: a single character, where:
For SSYRK and DSYRK, it must be 'N', 'T', or 'C'.
For CSYRK and ZSYRK, it must be 'N' or 'T'.
For CHERK and ZHERK, it must be 'N' or 'C'.

\(n \) is the order of matrix \(C \). Specified as: a fullword integer; \(0 \leq n \leq \text{ldc} \) and:

If \(\text{trans} = 'N' \), then \(n \leq \text{lda} \).

\(k \) has the following meaning, where:

If \(\text{trans} = 'N' \), it is the number of columns in matrix \(A \).
If \(\text{trans} = 'T' \) or 'C', it is the number of rows in matrix \(A \).
Specified as: a fullword integer; \(k \geq 0 \) and:

If \(\text{trans} = 'T' \) or 'C', then \(k \leq \text{lda} \).

\(\alpha \) is the scalar \(\alpha \). Specified as: a number of the data type indicated in Table 79 on page 433.

\(A \) is the rectangular matrix \(A \), where:

If \(\text{trans} = 'N' \), \(A \) is \(n \) by \(k \).
If \(\text{trans} = 'T' \) or 'C', \(A \) is \(k \) by \(n \).

Note: No data should be moved to form \(A^T \) or \(A^H \); that is, the matrix \(A \) should always be stored in its untransposed form.

Specified as: a two-dimensional array, containing numbers of the data type indicated in Table 79 on page 433, where:

If \(\text{trans} = 'N' \), its size must be \(\text{lda} \) by (at least) \(k \).
If \(\text{trans} = 'T' \) or 'C', its size must be \(\text{lda} \) by (at least) \(n \).

\(\text{lda} \) is the leading dimension of the array specified for \(A \). Specified as: a fullword integer; \(\text{lda} > 0 \) and:

If \(\text{trans} = 'N' \), \(\text{lda} \geq n \).
If \(\text{trans} = 'T' \) or 'C', \(\text{lda} \geq k \).

\(\beta \) is the scalar \(\beta \). Specified as: a number of the data type indicated in Table 79 on page 433.

\(C \) is matrix \(C \) of order \(n \), which is real symmetric, complex symmetric, or complex Hermitian, where:

If \(\text{uplo} = 'U' \), \(C \) is stored in upper storage mode.
If \(\text{uplo} = 'L' \), \(C \) is stored in lower storage mode.
Specified as: an \(\text{ldc} \) by (at least) \(n \) array, containing numbers of the data type indicated in Table 79 on page 433.

\(\text{ldc} \) is the leading dimension of the array specified for \(C \). Specified as: a fullword integer; \(\text{ldc} > 0 \) and \(\text{ldc} \geq n \).

On Return
is matrix C of order n, which is real symmetric, complex symmetric, or complex Hermitian, containing the results of the computation, where:

If $uplo = 'U'$, C is stored in upper storage mode.

If $uplo = 'L'$, C is stored in lower storage mode.

Returned as: an ldc by (at least) n array, containing numbers of the data type indicated in Table 79 on page 433.

Notes

1. These subroutines accept lowercase letters for the $uplo$ and $trans$ arguments.

2. For SSYRK and DSYRK, if you specify 'C' for the $trans$ argument, it is interpreted as though you specified 'T'.

3. Matrices A and C must have no common elements; otherwise, results are unpredictable.

4. The imaginary parts of the diagonal elements of a complex Hermitian matrix A are assumed to be zero, so you do not have to set these values. On output, they are set to zero, except when β is one and α or k is zero, in which case no computation is performed.

5. For a description of how symmetric matrices are stored in upper and lower storage mode, see "Symmetric Matrix" on page 63. For a description of how complex Hermitian matrices are stored in upper and lower storage mode, see "Complex Hermitian Matrix" on page 68.

Function: These subroutines can perform the following rank-k updates. For SSYRK and DSYRK, matrix C is real symmetric. For CSYRK and ZSYRK, matrix C is complex symmetric. They perform:

1. $C \leftarrow \alpha AA^T + \beta C$

2. $C \leftarrow \alpha A^T A + \beta C$

For CHERK and ZHERK, matrix C is complex Hermitian. They perform:

3. $C \leftarrow \alpha AA^H + \beta C$

4. $C \leftarrow \alpha A^H A + \beta C$

where:

α and β are scalars.

A is a rectangular matrix, which is n by k for equations 1 and 3, and is k by n for equations 2 and 4.

C is a matrix of order n of the type indicated above, stored in upper or lower storage mode.

See references [32] and [38]. In the following two cases, no computation is performed:

- n is 0.
- β is one, and α is zero or k is zero.

Assuming the above conditions do not exist, if β is not one, and α is zero or k is zero, then βC is returned.

Error Conditions
Resource Errors: Unable to allocate internal work area.

Computational Errors: None

Input-Argument Errors
1. lda, ldc ≤ 0
2. ldc < n
3. k, n < 0
4. uplo ≠ 'U' or 'L'
5. trans ≠ 'N', 'T', or 'C' for SSYRK and DSYRK
6. trans ≠ 'N' or 'T' for CSYRK and ZSYRK
7. trans ≠ 'N' or 'C' for CHERK and ZHERK
8. trans = 'N' and lda < n
9. trans = 'T' or 'C' and lda < k

Example 1: This example shows the computation \(C \leftarrow \alpha A A^T + \beta C \), where \(A \) is an 8 by 2 real rectangular matrix, and \(C \) is a real symmetric matrix of order 8, stored in upper storage mode.

Call Statement and Input

```
UPLO TRANS N K ALPHA A LDA BETA C LDC
| | | | | | | | | |
CALL SSYRK( 'U', 'N', 8, 2, 1.0, A, 9, 1.0, C, 10 )
```

\[
\begin{bmatrix}
0.0 & 8.0 \\
1.0 & 9.0 \\
2.0 & 10.0 \\
3.0 & 11.0 \\
\end{bmatrix}
\]

\[
A = \begin{bmatrix}
4.0 & 12.0 \\
5.0 & 13.0 \\
6.0 & 14.0 \\
7.0 & 15.0 \\
. & . \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.0 & 1.0 & 3.0 & 6.0 & 10.0 & 15.0 & 21.0 & 28.0 \\
. & 2.0 & 4.0 & 7.0 & 11.0 & 16.0 & 22.0 & 29.0 \\
. & . & 5.0 & 8.0 & 12.0 & 17.0 & 23.0 & 30.0 \\
. & . & . & 9.0 & 13.0 & 18.0 & 24.0 & 31.0 \\
. & . & . & . & 14.0 & 19.0 & 25.0 & 32.0 \\
. & . & . & . & . & 20.0 & 26.0 & 33.0 \\
. & . & . & . & . & . & 27.0 & 34.0 \\
. & . & . & . & . & . & . & 35.0 \\
. & . & . & . & . & . & . & . \\
\end{bmatrix}
\]

Output
Example 2: This example shows the computation $C \leftarrow \alpha A^T A + \beta C$, where A is a 3 by 8 real rectangular matrix, and C is a real symmetric matrix of order 8, stored in lower storage mode.

Call Statement and Input

```
CALL SSYRK( 'L', 'T', 8, 3, 1.0, A, 4, 1.0, C, 8 )
```

$$A = \begin{bmatrix}
0.0 & 3.0 & 6.0 & 9.0 & 12.0 & 15.0 & 18.0 & 21.0 \\
1.0 & 4.0 & 7.0 & 10.0 & 13.0 & 16.0 & 19.0 & 22.0 \\
2.0 & 5.0 & 8.0 & 11.0 & 14.0 & 17.0 & 20.0 & 23.0
\end{bmatrix}$$

$$C = \begin{bmatrix}
0.0 & . & . & . & . & . & . & . \\
1.0 & 8.0 & . & . & . & . & . & . \\
2.0 & 9.0 & 15.0 & . & . & . & . & . \\
3.0 & 10.0 & 16.0 & 21.0 & . & . & . & . \\
4.0 & 11.0 & 17.0 & 22.0 & 26.0 & . & . & . \\
5.0 & 12.0 & 18.0 & 23.0 & 27.0 & 30.0 & . & . \\
6.0 & 13.0 & 19.0 & 24.0 & 28.0 & 31.0 & 33.0 & . \\
7.0 & 14.0 & 20.0 & 25.0 & 29.0 & 32.0 & 34.0 & 35.0
\end{bmatrix}$$

Output

$$C = \begin{bmatrix}
5.0 & . & . & . & . & . & . & . \\
15.0 & 58.0 & . & . & . & . & . & . \\
25.0 & 95.0 & 164.0 & . & . & . & . & . \\
35.0 & 132.0 & 228.0 & 323.0 & . & . & . & . \\
45.0 & 169.0 & 292.0 & 414.0 & 535.0 & . & . & . \\
55.0 & 206.0 & 356.0 & 505.0 & 653.0 & 800.0 & . & . \\
65.0 & 243.0 & 420.0 & 596.0 & 771.0 & 945.0 & 1118.0 & . \\
75.0 & 280.0 & 484.0 & 687.0 & 889.0 & 1090.0 & 1290.0 & 1489.0
\end{bmatrix}$$

Example 3: This example shows the computation $C \leftarrow \alpha A A^T + \beta C$, where A is a 3 by 5 complex rectangular matrix, and C is a complex symmetric matrix of order 3, stored in upper storage mode.

Call Statement and Input
SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and ZHERK

SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and ZHERK

UPLO TRANS N K ALPHA A LDA BETA C LDC
 | | | | | | | | | |
CALL CSYRK('U' , 'N' , 3 , 5 , ALPHA , A , 3 , BETA , C , 4)
ALPHA = (1.0, 1.0)
BETA = (1.0, 1.0)

\[
A = \begin{bmatrix}
(2.0, 0.0) & (3.0, 2.0) & (4.0, 1.0) & (1.0, 7.0) & (0.0, 0.0) \\
(3.0, 3.0) & (8.0, 0.0) & (2.0, 5.0) & (2.0, 4.0) & (1.0, 2.0) \\
(1.0, 3.0) & (2.0, 1.0) & (6.0, 0.0) & (3.0, 2.0) & (2.0, 2.0)
\end{bmatrix}
\]

\[
C = \begin{bmatrix}
(2.0, 1.0) & (1.0, 9.0) & (4.0, 5.0) \\
. & (3.0, 1.0) & (6.0, 7.0) \\
. & . & (8.0, 1.0) \\
. & . & .
\end{bmatrix}
\]

Output

\[
C = \begin{bmatrix}
(-57.0, 13.0) & (-63.0, 79.0) & (-24.0, 70.0) \\
. & (-28.0, 90.0) & (-55.0, 103.0) \\
. & . & (13.0, 75.0) \\
. & . & .
\end{bmatrix}
\]

Example 4: This example shows the computation \(C \leftarrow \alpha A^H A + \beta C \), where \(A \) is a 5 by 3 complex rectangular matrix, and \(C \) is a complex Hermitian matrix of order 3, stored in lower storage mode.

Note: The imaginary parts of the diagonal elements of a complex Hermitian matrix are assumed to be zero, so you do not have to set these values. On output, they are set to zero.

Call Statement and Input

Call Statement and Input

\[
\begin{bmatrix}
(2.0, 0.0) & (3.0, 2.0) & (4.0, 1.0) \\
(3.0, 3.0) & (8.0, 0.0) & (2.0, 5.0) \\
(1.0, 3.0) & (2.0, 1.0) & (6.0, 0.0)
\end{bmatrix}
\]

\[
A = \begin{bmatrix}
(2.0, 1.0) & (1.0, 9.0) & (4.0, 5.0) \\
. & (3.0, 1.0) & (6.0, 7.0) \\
. & . & (8.0, 1.0) \\
. & . & .
\end{bmatrix}
\]

Output

\[
C = \begin{bmatrix}
(-57.0, 13.0) & (-63.0, 79.0) & (-24.0, 70.0) \\
. & (-28.0, 90.0) & (-55.0, 103.0) \\
. & . & (13.0, 75.0) \\
. & . & .
\end{bmatrix}
\]
$$C = \begin{bmatrix}
(138.0, 0.0) & . & . \\
(65.0, 80.0) & (165.0, 0.0) & . \\
(134.0, 46.0) & (88.0, -88.0) & (199.0, 0.0) \\
. & . & .
\end{bmatrix}$$
SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K—Rank-2K Update of a Real or Complex Symmetric or a Complex Hermitian Matrix

These subroutines compute one of the following rank-2k updates, where matrix \(C \) is stored in upper or lower storage mode. SSYR2K, DSYR2K, CSYR2K, and ZSYR2K use the scalars \(\alpha \) and \(\beta \), real or complex matrices \(A \) and \(B \) or their transposes, and real or complex symmetric matrix \(C \) to compute:

1. \(C \leftarrow \alpha AB^T + \alpha BA^T + \beta C \)
2. \(C \leftarrow \alpha A^T B + \alpha B^T A + \beta C \)

CHER2K and ZHER2K use the scalars \(\alpha \) and \(\beta \), complex matrices \(A \) and \(B \) or their complex conjugate transposes, and complex Hermitian matrix \(C \) to compute:

3. \(C \leftarrow \alpha AB^H + \overline{\alpha} B^H A^H + \beta C \)
4. \(C \leftarrow \alpha A^H B + \overline{\alpha} B^H A + \beta C \)

<table>
<thead>
<tr>
<th>Table 80. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A, B, C, \alpha)</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
<tr>
<td>Short-precision complex</td>
</tr>
<tr>
<td>Long-precision complex</td>
</tr>
<tr>
<td>Short-precision complex</td>
</tr>
<tr>
<td>Long-precision complex</td>
</tr>
</tbody>
</table>

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL SSYR2K (\mid) DSYR2K (\mid) CSYR2K (\mid) ZSYR2K (\mid) CHER2K (\mid) ZHER2K (uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>ssyr2k (\mid) dsyr2k (\mid) csyr2k (\mid) zsyrv2k (\mid) cher2k (\mid) zher2k (uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SSYR2K (\mid) DSYR2K (\mid) CSYR2K (\mid) ZSYR2K (\mid) CHER2K (\mid) ZHER2K (uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc);</td>
</tr>
</tbody>
</table>

On Entry

\(\text{uplo} \)

indicates the storage mode used for matrix \(C \), where:

- If \(\text{uplo} = 'U' \), \(C \) is stored in upper storage mode.
- If \(\text{uplo} = 'L' \), \(C \) is stored in lower storage mode.

Specified as: a single character. It must be 'U' or 'L'.

\(\text{trans} \)

indicates the form of matrices \(A \) and \(B \) to use in the computation, where:

- If \(\text{trans} = 'N' \), \(A \) and \(B \) are used, resulting in equation 1 or 3.
If \(\text{trans} = 'T'\), \(A^T\) and \(B^T\) are used, resulting in equation 2.
If \(\text{trans} = 'C'\), \(A^H\) and \(B^H\) are used, resulting in equation 4.
Specified as: a single character, where:
For SSYR2K and DSYR2K, it must be 'N', 'T', or 'C'.
For CSYR2K and ZSYR2K, it must be 'N' or 'T'.
For CHER2K and ZHER2K, it must be 'N' or 'C'.

\(n\) is the order of matrix \(C\). Specified as: a fullword integer; \(0 \leq n \leq \text{ldc}\) and:
If \(\text{trans} = 'N'\), then \(n \leq \text{lda}\) and \(n \leq \text{ldb}\).

\(k\) has the following meaning, where:
If \(\text{trans} = 'N'\), it is the number of columns in matrices \(A\) and \(B\).
If \(\text{trans} = 'T'\) or 'C', it is the number of rows in matrices \(A\) and \(B\).
Specified as: a fullword integer; \(k \geq 0\) and:
If \(\text{trans} = 'T'\) or 'C', then \(k \leq \text{lda}\) and \(k \leq \text{ldb}\).

\(\alpha\) is the scalar \(\alpha\). Specified as: a number of the data type indicated in Table 80 on page 440.

\(a\) is the rectangular matrix \(A\), where:
If \(\text{trans} = 'N'\), \(A\) is \(n\) by \(k\).
If \(\text{trans} = 'T'\) or 'C', \(A\) is \(k\) by \(n\).

Note: No data should be moved to form \(A^T\) or \(A^H\); that is, the matrix \(A\) should always be stored in its untransposed form.
Specified as: a two-dimensional array, containing numbers of the data type indicated in Table 80 on page 440, where:
If \(\text{trans} = 'N'\), its size must be \(\text{lda}\) by (at least) \(k\).
If \(\text{trans} = 'T'\) or 'C', its size must be \(\text{lda}\) by (at least) \(n\).

\(\text{lda}\) is the leading dimension of the array specified for \(a\). Specified as: a fullword integer; \(\text{lda} > 0\) and:
If \(\text{trans} = 'N'\), \(\text{lda} \geq n\).
If \(\text{trans} = 'T'\) or 'C', \(\text{lda} \geq k\).

\(b\) is the rectangular matrix \(B\), where:
If \(\text{trans} = 'N'\), \(B\) is \(n\) by \(k\).
If \(\text{trans} = 'T'\) or 'C', \(B\) is \(k\) by \(n\).

Note: No data should be moved to form \(B^T\) or \(B^H\); that is, the matrix \(B\) should always be stored in its untransposed form.
Specified as: a two-dimensional array, containing numbers of the data type indicated in Table 80 on page 440, where:
If \(\text{trans} = 'N'\), its size must be \(\text{ldb}\) by (at least) \(k\).
If trans = 'T' or 'C', its size must be ldb by (at least) n.

ldb
is the leading dimension of the array specified for b. Specified as: a fullword integer; ldb > 0 and:

If trans = 'N', ldb ≥ n.
If trans = 'T' or 'C', ldb ≥ k.

beta
is the scalar β. Specified as: a number of the data type indicated in Table 80 on page 440.

c
is matrix C of order n, which is real symmetric, complex symmetric, or complex Hermitian, where:

If uplo = 'U', C is stored in upper storage mode.
If uplo = 'L', C is stored in lower storage mode.

Specified as: an ldc by (at least) n array, containing numbers of the data type indicated in Table 80 on page 440.

ldc
is the leading dimension of the array specified for c. Specified as: a fullword integer; ldc > 0 and ldc ≥ n.

On Return

c
is matrix C of order n, which is real symmetric, complex symmetric, or complex Hermitian, containing the results of the computation, where:

If uplo = 'U', C is stored in upper storage mode.
If uplo = 'L', C is stored in lower storage mode.

Returned as: an ldc by (at least) n array, containing numbers of the data type indicated in Table 80 on page 440.

Notes

1. These subroutines accept lowercase letters for the uplo and trans arguments.
2. For SSYR2K and DSYR2K, if you specify 'C' for the trans argument, it is interpreted as though you specified 'T'.
3. Matrices A and B must have no common elements with matrix C; otherwise, results are unpredictable.
4. The imaginary parts of the diagonal elements of a complex Hermitian matrix A are assumed to be zero, so you do not have to set these values. On output, they are set to zero, except when β is one and α or k is zero, in which case no computation is performed.
5. For a description of how symmetric matrices are stored in upper and lower storage mode, see “Symmetric Matrix” on page 63. For a description of how complex Hermitian matrices are stored in upper and lower storage mode, see “Complex Hermitian Matrix” on page 68.

Function: These subroutines can perform the following rank-2k updates. For SSYR2K and DSYR2K, matrix C is real symmetric. For CSYR2K and ZSYR2K, matrix C is complex symmetric. They perform:
1. \(C \leftarrow \alpha AB^T + \alpha BA^T + \beta C \)
2. \(C \leftarrow \alpha A^TB + \alpha B^TA + \beta C \)

For CHER2K and ZHER2K, matrix \(C \) is complex Hermitian. They perform:

3. \(C \leftarrow \alpha AB^H + \alpha BA^H + \beta C \)
4. \(C \leftarrow \alpha A^HB + \alpha B^HA + \beta C \)

where:

- \(\alpha \) and \(\beta \) are scalars.
- \(A \) and \(B \) are rectangular matrices, which are \(n \) by \(k \) for equations 1 and 3, and are \(k \) by \(n \) for equations 2 and 4.
- \(C \) is a matrix of order \(n \) of the type indicated above, stored in upper or lower storage mode.

See references [32], [38], and [72]. In the following two cases, no computation is performed:

- \(n \) is 0.
- \(\beta \) is one, and \(\alpha \) is zero or \(k \) is zero.

Assuming the above conditions do not exist, if \(\beta \) is not one, and \(\alpha \) is zero or \(k \) is zero, then \(\beta C \) is returned.

Error Conditions

Resource Errors: Unable to allocate internal work area.

Computational Errors: None

Input-Argument Errors

1. \(lda, ldb, ldc \leq 0 \)
2. \(ldc < n \)
3. \(k, n < 0 \)
4. \(uplo \neq 'U' \) or \('L' \)
5. \(trans \neq 'N' \), \('T' \), or \('C' \) for SSYR2K and DSYR2K
6. \(trans \neq 'N' \) or \('T' \) for CSYR2K and ZSYR2K
7. \(trans \neq 'N' \) or \('C' \) for CHER2K and ZHER2K
8. \(trans = 'N' \) and \(lda < n \)
9. \(trans = 'T' \) or \('C' \) and \(lda < k \)
10. \(trans = 'N' \) and \(ldb < n \)
11. \(trans = 'T' \) or \('C' \) and \(ldb < k \)

Example 1: This example shows the computation \(C \leftarrow \alpha AB^T + \alpha BA^T + \beta C \), where \(A \) and \(B \) are 8 by 2 real rectangular matrices, and \(C \) is a real symmetric matrix of order 8, stored in upper storage mode.

Call Statement and Input

```
UPLO TRANS N K ALPHA A LDA B LDB BETA C LDC
| | | | | | | | | |
CALL SSYR2K( 'U', 'N', 8, 2, 1.0, A, 9, B, 8, 1.0, C, 10 )
```
SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K

\[A = \begin{bmatrix}
0.0 & 8.0 \\
1.0 & 9.0 \\
2.0 & 10.0 \\
3.0 & 11.0 \\
4.0 & 12.0 \\
5.0 & 13.0 \\
6.0 & 14.0 \\
7.0 & 15.0 \\
. & .
\end{bmatrix} \]

\[B = \begin{bmatrix}
15.0 & 7.0 \\
14.0 & 6.0 \\
13.0 & 5.0 \\
12.0 & 4.0 \\
11.0 & 3.0 \\
10.0 & 2.0 \\
9.0 & 1.0 \\
8.0 & 0.0
\end{bmatrix} \]

\[C = \begin{bmatrix}
0.0 & 1.0 & 3.0 & 6.0 & 10.0 & 15.0 & 21.0 & 28.0 \\
. & 2.0 & 4.0 & 7.0 & 11.0 & 16.0 & 22.0 & 29.0 \\
. & . & 5.0 & 8.0 & 12.0 & 17.0 & 23.0 & 30.0 \\
. & . & . & 9.0 & 13.0 & 18.0 & 24.0 & 31.0 \\
. & . & . & . & 14.0 & 19.0 & 25.0 & 32.0 \\
. & . & . & . & . & 20.0 & 26.0 & 33.0 \\
. & . & . & . & . & . & 27.0 & 34.0 \\
. & . & . & . & . & . & . & 35.0 \\
. & . & . & . & . & . & . & . \\
. & . & . & . & . & . & . & . \\
\end{bmatrix} \]

Output

\[C = \begin{bmatrix}
112.0 & 127.0 & 143.0 & 160.0 & 178.0 & 197.0 & 217.0 & 238.0 \\
. & 138.0 & 150.0 & 163.0 & 177.0 & 192.0 & 208.0 & 225.0 \\
. & . & 157.0 & 166.0 & 176.0 & 187.0 & 199.0 & 212.0 \\
. & . & . & 169.0 & 175.0 & 182.0 & 190.0 & 199.0 \\
. & . & . & . & 174.0 & 177.0 & 181.0 & 186.0 \\
. & . & . & . & . & 172.0 & 172.0 & 173.0 \\
. & . & . & . & . & . & 163.0 & 160.0 \\
. & . & . & . & . & . & . & 147.0 \\
. & . & . & . & . & . & . & . \\
. & . & . & . & . & . & . & . \\
\end{bmatrix} \]

Example 2: This example shows the computation \(C \leftarrow \alpha A^T B + \alpha B^T A + \beta C \), where \(A \) and \(B \) are 3 by 8 real rectangular matrices, and \(C \) is a real symmetric matrix of order 8, stored in lower storage mode.

Call Statement and Input

```fortran
CALL SSYR2K( 'L', 'T', 8, 3, 1.0, A, 4, B, 5, 1.0, C, 8 )
```
Example 3:

This example shows the computation \(\mathbf{C} \leftarrow \alpha \mathbf{A}\mathbf{B}^\top + \alpha \mathbf{B}\mathbf{A}^\top + \beta \mathbf{C} \), where \(\mathbf{A} \) and \(\mathbf{B} \) are 3 by 5 complex rectangular matrices, and \(\mathbf{C} \) is a complex symmetric matrix of order 3, stored in lower storage mode.

Call Statement and Input

\[
\begin{align*}
\text{CALL CSYR2K('L', 'N', 3, 5, ALPHA, A, 3, B, 3, BETA, C, 4)}
\end{align*}
\]

ALPHA = (1.0, 1.0)

BETA = (1.0, 1.0)

\[
\begin{align*}
\mathbf{A} &= \begin{bmatrix}
0.0 & 3.0 & 6.0 & 9.0 & 12.0 & 15.0 & 18.0 & 21.0 \\
1.0 & 4.0 & 7.0 & 10.0 & 13.0 & 16.0 & 19.0 & 22.0 \\
2.0 & 5.0 & 8.0 & 11.0 & 14.0 & 17.0 & 20.0 & 23.0 \\
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\mathbf{B} &= \begin{bmatrix}
1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 8.0 \\
2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 8.0 & 9.0 \\
3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 8.0 & 9.0 & 10.0 \\
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\mathbf{C} &= \begin{bmatrix}
0.0 & . & . & . & . & . & . & . \\
1.0 & 8.0 & . & . & . & . & . & . \\
2.0 & 9.0 & 15.0 & . & . & . & . & . \\
3.0 & 10.0 & 16.0 & 21.0 & . & . & . & . \\
4.0 & 11.0 & 17.0 & 22.0 & 26.0 & . & . & . \\
5.0 & 12.0 & 18.0 & 23.0 & 27.0 & 30.0 & . & . \\
6.0 & 13.0 & 19.0 & 24.0 & 28.0 & 31.0 & 33.0 & . \\
7.0 & 14.0 & 20.0 & 25.0 & 29.0 & 32.0 & 34.0 & 35.0 \\
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\text{Output}
\mathbf{C} &= \begin{bmatrix}
16.0 & . & . & . & . & . & . & . \\
38.0 & 84.0 & . & . & . & . & . & . \\
60.0 & 124.0 & 187.0 & . & . & . & . & . \\
82.0 & 164.0 & 245.0 & 325.0 & . & . & . & . \\
104.0 & 204.0 & 303.0 & 401.0 & 498.0 & . & . & . \\
126.0 & 244.0 & 361.0 & 477.0 & 592.0 & 706.0 & . & . \\
148.0 & 284.0 & 419.0 & 553.0 & 686.0 & 818.0 & 949.0 & . \\
170.0 & 324.0 & 477.0 & 629.0 & 780.0 & 930.0 & 1079.0 & 1227.0 \\
\end{bmatrix}
\end{align*}
\]
Example 4: This example shows the computation:

\[
C \leftarrow \alpha A^H B + \overline{\alpha} B^H A + \beta C
\]

where \(A\) and \(B\) are 5 by 3 complex rectangular matrices, and \(C\) is a complex Hermitian matrix of order 3, stored in upper storage mode.

Note: The imaginary parts of the diagonal elements of a complex Hermitian matrix are assumed to be zero, so you do not have to set these values. On output, they are set to zero.

Call Statement and Input

\[
\begin{align*}
\text{UPLO} & \quad \text{TRANS} & \quad N & \quad K & \quad \text{ALPHA} & \quad A & \quad \text{LDA} & \quad B & \quad \text{LDB} & \quad \text{BETA} & \quad C & \quad \text{LDC} \\
\text{CALL} \ CHER2K(\ 'U' , \ 'C' , \ 3 , \ 5 , \ \text{ALPHA} , \ A , \ 5 , \ B , \ 5 , \ 1.0 , \ C , \ 4)
\end{align*}
\]

\[
\text{ALPHA} = (1.0, 1.0)
\]

\[
\begin{align*}
A & = \\
& = \begin{bmatrix}
(2.0, 0.0) & (3.0, 2.0) & (4.0, 1.0) \\
(3.0, 3.0) & (8.0, 0.0) & (2.0, 5.0) \\
(1.0, 3.0) & (2.0, 1.0) & (6.0, 0.0) \\
(3.0, 3.0) & (8.0, 0.0) & (2.0, 5.0) \\
(1.0, 9.0) & (3.0, 0.0) & (6.0, 7.0)
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
B & = \\
& = \begin{bmatrix}
(4.0, 5.0) & (6.0, 7.0) & (8.0, 0.0) \\
(1.0, 9.0) & (3.0, 0.0) & (6.0, 7.0) \\
(3.0, 3.0) & (8.0, 0.0) & (2.0, 5.0) \\
(1.0, 3.0) & (2.0, 1.0) & (6.0, 0.0) \\
(2.0, 0.0) & (3.0, 2.0) & (4.0, 1.0)
\end{bmatrix}
\end{align*}
\]
SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K

\[
C = \begin{bmatrix}
(6.0, .) & (3.0, 4.0) & (9.0, 1.0) \\
. & (10.0, .) & (12.0, 2.0) \\
. & . & (3.0, .)
\end{bmatrix}
\]

Output

\[
C = \begin{bmatrix}
(102.0, 0.0) & (56.0, -143.0) & (244.0, -96.0) \\
. & (174.0, 0.0) & (238.0, 78.0) \\
. & . & (363.0, 0.0)
\end{bmatrix}
\]
SGETMI, DGETMI, CGETMI, and ZGETMI—General Matrix Transpose (In-Place)

These subroutines transpose an \(n\) by \(n\) matrix \(A\) in place—that is, in matrix \(A\):

\[
A \leftarrow A^T
\]

Syntax

<table>
<thead>
<tr>
<th>Language</th>
<th>Call Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>CALL SGETMI</td>
</tr>
<tr>
<td>C and C++</td>
<td>sgetmi</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SGETMI</td>
</tr>
</tbody>
</table>

On Entry

- \(a\) is the matrix \(A\) having \(n\) rows and \(n\) columns. Specified as: an \(lda\) by (at least) \(n\) array, containing numbers of the data type indicated in Table 81.
- \(lda\) is the leading dimension of the array specified for \(a\). Specified as: a fullword integer; \(lda > 0\) and \(lda \geq n\).
- \(n\) is the number of rows and columns in matrix \(A\). Specified as: a fullword integer; \(n \geq 0\).

On Return

- \(a\) is the \(n\) by \(n\) matrix \(A^T\), containing the results of the matrix transpose operation. Returned as: an \(lda\) by (at least) \(n\) array, containing numbers of the data type indicated in Table 81.

Notes

1. To achieve optimal performance in these subroutines, specify an even value for \(lda\). An odd value may degrade performance.
2. To achieve optimal performance in CGETMI, align the array specified for \(a\) on a doubleword boundary.

Function:

Matrix \(A\) is transposed in place; that is, the \(n\) rows and \(n\) columns in matrix \(A\) are exchanged. For matrix \(A\) with elements \(a_{ij}\), where \(i, j = 1, n\), the in-place transpose is expressed as \(a_{ji} = a_{ij}\) for \(i, j = 1, n\).

For the following input matrix \(A\):
SGETMI, DGETMI, CGETMI, and ZGETMI

The in-place matrix transpose operation $A \leftarrow A^T$ is expressed as:

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

If n is 0, no computation is performed.

Error Conditions

Computational Errors: None

Input-Argument Errors

1. $n < 0$ or $n > lda$
2. $lda \leq 0$

Example: This example shows an in-place matrix transpose of matrix A having 5 rows and 5 columns.

Call Statement and Input

$$A \quad LDA \quad N$$

CALL SGETMI(A(2,3) , 10 , 5)

$$A = \begin{bmatrix} \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & 1.0 & 6.0 & 11.0 & 16.0 & 21.0 \\ \cdot & 2.0 & 7.0 & 12.0 & 17.0 & 22.0 \\ \cdot & 3.0 & 8.0 & 13.0 & 18.0 & 23.0 \\ \cdot & 4.0 & 9.0 & 14.0 & 19.0 & 24.0 \\ \cdot & 5.0 & 10.0 & 15.0 & 20.0 & 25.0 \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \end{bmatrix}$$

Output
SGETMI, DGETMI, CGETMI, and ZGETMI

\[
A = \begin{bmatrix}
\cdot & \cdot & 1.0 & 2.0 & 3.0 & 4.0 & 5.0 \\
\cdot & 6.0 & 7.0 & 8.0 & 9.0 & 10.0 \\
\cdot & 11.0 & 12.0 & 13.0 & 14.0 & 15.0 \\
\cdot & 16.0 & 17.0 & 18.0 & 19.0 & 20.0 \\
\cdot & 21.0 & 22.0 & 23.0 & 24.0 & 25.0 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\end{bmatrix}
\]
SGETMO, DGETMO, CGETMO, and ZGETMO—General Matrix Transpose (Out-of-Place)

These subroutines transpose an \(m \) by \(n \) matrix \(A \) out of place, returning the result in matrix \(B \):

\[
B \leftarrow A^T
\]

Table 82. Data Types

<table>
<thead>
<tr>
<th>(A, B)</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>SGETMO</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DGETMO</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>CGETMO</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>ZGETMO</td>
</tr>
</tbody>
</table>

Syntax

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>CALL SGETMO</td>
</tr>
<tr>
<td>C and C++</td>
<td>sgetmo</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SGETMO</td>
</tr>
</tbody>
</table>

On Entry

\(a \)

is the matrix \(A \) having \(m \) rows and \(n \) columns. Specified as: an \(lda \) by (at least) \(n \) array, containing numbers of the data type indicated in Table 82.

\(lda \)

is the leading dimension of the array specified for \(a \). Specified as: a fullword integer; \(lda > 0 \) and \(lda \geq m \).

\(m \)

is the number of rows in matrix \(A \) and the number of columns in matrix \(B \). Specified as: a fullword integer; \(m \geq 0 \).

\(n \)

is the number of columns in matrix \(A \) and the number of rows in matrix \(B \). Specified as: a fullword integer; \(n \geq 0 \).

\(b \)

See “On Return.”

\(ldb \)

is the leading dimension of the array specified for \(b \). Specified as: a fullword integer; \(ldb > 0 \) and \(ldb \geq n \).

On Return

\(b \)

is the matrix \(B \) having \(n \) rows and \(m \) columns, containing the results of the matrix transpose operation, \(A^T \). Returned as: an \(ldb \) by (at least) \(m \) array, containing numbers of the data type indicated in Table 82.

Notes

1. The matrix \(B \) must have no common elements with matrix \(A \); otherwise, results are unpredictable. See “Concepts” on page 53.
2. To achieve optimal performance in CGETMO, align the arrays specified for \(a \) and \(b \) on doubleword boundaries.

Function: Matrix \(A \) is transposed out of place; that is, the \(m \) rows and \(n \) columns in matrix \(A \) are stored in \(n \) rows and \(m \) columns of matrix \(B \). For matrix \(A \) with elements \(a_{ij} \), where \(i = 1, m \) and \(j = 1, n \), the out-of-place transpose is expressed as \(b_{ji} = a_{ij} \) for \(i = 1, m \) and \(j = 1, n \).

For the following input matrix \(A \):

\[
A = \begin{bmatrix}
 a_{11} & \cdots & a_{1n} \\
 \cdot & \cdots & \cdot \\
 \cdot & \cdots & \cdot \\
 a_{m1} & \cdots & a_{mn}
\end{bmatrix}
\]

the out-of-place matrix transpose operation \(B \leftarrow A^T \) is expressed as:

\[
\begin{bmatrix}
 b_{11} & \cdots & b_{1m} \\
 \cdot & \cdots & \cdot \\
 \cdot & \cdots & \cdot \\
 b_{n1} & \cdots & b_{nm}
\end{bmatrix}
\leftarrow
\begin{bmatrix}
 a_{11} & \cdots & a_{m1} \\
 \cdot & \cdots & \cdot \\
 \cdot & \cdots & \cdot \\
 a_{1n} & \cdots & a_{mn}
\end{bmatrix}
\]

If \(m \) or \(n \) is 0, no computation is performed.

Error Conditions

Computational Errors: None

Input-Argument Errors

1. \(m < 0 \) or \(m > \text{lda} \)
2. \(n < 0 \) or \(n > \text{ldb} \)
3. \(\text{lda} \leq 0 \)
4. \(\text{ldb} \leq 0 \)

Example 1: This example shows an out-of-place matrix transpose of matrix \(A \), having 5 rows and 4 columns, with the result going into matrix \(B \).

Call Statement and Input

\[
\begin{array}{cccccc}
A & \text{LDA} & M & N & B & \text{LDB} \\
\hline
\end{array}
\]

CALL SGETMO(A(2,3) , 10 , 5 , 4 , B(2,2) , 6)
SGETMO, DGETMO, CGETMO, and ZGETMO

\[
A = \begin{bmatrix}
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & 1.0 & 6.0 & 11.0 & 16.0 \\
\cdot & 2.0 & 7.0 & 12.0 & 17.0 \\
\cdot & 3.0 & 8.0 & 13.0 & 18.0 \\
\cdot & 4.0 & 9.0 & 14.0 & 19.0 \\
\cdot & 5.0 & 10.0 & 15.0 & 20.0 \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\end{bmatrix}
\]

Output

\[
B = \begin{bmatrix}
\cdot & 1.0 & 2.0 & 3.0 & 4.0 & 5.0 \\
\cdot & 6.0 & 7.0 & 8.0 & 9.0 & 10.0 \\
\cdot & 11.0 & 12.0 & 13.0 & 14.0 & 15.0 \\
\cdot & 16.0 & 17.0 & 18.0 & 19.0 & 20.0 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\end{bmatrix}
\]

Example 2: This example uses the same input matrix \(A \) as in Example 1 to show that transposes can be achieved in the same array as long as the input and output data do not overlap. On output, the input data is not overwritten in the array.

Call Statement and Input

\[
\text{CALL SGETMO(A(2,3) , 1:z"ro"ot , 5 , 4 , A(7,1) , 1:z"ro"ot)}
\]

\[
A = \begin{bmatrix}
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & 1.0 & 6.0 & 11.0 & 16.0 \\
\cdot & 2.0 & 7.0 & 12.0 & 17.0 \\
\cdot & 3.0 & 8.0 & 13.0 & 18.0 \\
\cdot & 4.0 & 9.0 & 14.0 & 19.0 \\
\cdot & 5.0 & 10.0 & 15.0 & 20.0 \\
1.0 & 2.0 & 3.0 & 4.0 & 5.0 \\
6.0 & 7.0 & 8.0 & 9.0 & 10.0 \\
11.0 & 12.0 & 13.0 & 14.0 & 15.0 \\
16.0 & 17.0 & 18.0 & 19.0 & 20.0 \\
\end{bmatrix}
\]
SGETMO, DGETMO, CGETMO, and ZGETMO
Chapter 10. Linear Algebraic Equations

The linear algebraic equation subroutines, provided in four areas, are described in this chapter.

Overview of the Linear Algebraic Equation Subroutines

This section describes the subroutines in each of the four linear algebraic equation areas:

- Dense linear algebraic equations (Table 83)
- Banded linear algebraic equations (Table 84)
- Sparse linear algebraic equations (Table 85)
- Linear least squares (Table 86)

Note: Some of the linear algebraic equations were designed in accordance with the Level 2 BLAS, Level 3 BLAS, and LAPACK de facto standard. If these subprograms do not comply with the standard as approved, IBM will consider updating them to do so. If IBM updates these subprograms, the updates could require modifications of the calling application program. For details on the Level 2 and 3 BLAS, see references [32] and [34]. For details on the LAPACK routines, see reference [8].

Dense Linear Algebraic Equation Subroutines

The dense linear algebraic equation subroutines provide solutions to linear systems of equations for both real and complex general matrices and their transposes, positive definite real symmetric and complex Hermitian matrices, real symmetric indefinite matrices and triangular matrices. Some of these subroutines correspond to the Level 2 BLAS, Level 3 BLAS, and LAPACK routines described in references [32], [34], and [8].

<table>
<thead>
<tr>
<th>Table 83 (Page 1 of 2). List of Dense Linear Algebraic Equation Subroutines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descriptive Name</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>General Matrix Factorization</td>
</tr>
<tr>
<td>General Matrix, Its Transpose, or Its Conjugate Transpose Solve</td>
</tr>
<tr>
<td>General Matrix, Its Transpose, or Its Conjugate Transpose Multiple Right-Hand Side Solve</td>
</tr>
<tr>
<td>General Matrix Factorization, Condition Number Reciprocal, and Determinant</td>
</tr>
</tbody>
</table>
Table 83 (Page 2 of 2). List of Dense Linear Algebraic Equation Subroutines

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subroutine</th>
<th>Long-Precision Subroutine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Definite Real Symmetric or Complex Hermitian Matrix Factorization</td>
<td>SPPF</td>
<td>DPPF</td>
<td>491</td>
</tr>
<tr>
<td></td>
<td>SPOF</td>
<td>DPOF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CPOF</td>
<td>ZPOF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DPPFP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive Definite Real Symmetric Matrix Solve</td>
<td>SPPS</td>
<td>DPPS</td>
<td>499</td>
</tr>
<tr>
<td>Positive Definite Real Symmetric or Complex Hermitian Matrix Multiple Right-Hand Side Solve</td>
<td>SPOSM</td>
<td>DPOSM</td>
<td>502</td>
</tr>
<tr>
<td></td>
<td>CPOSM</td>
<td>ZPOSM</td>
<td></td>
</tr>
<tr>
<td>Positive Definite Real Symmetric Matrix Factorization, Condition Number Reciprocal, and Determinant</td>
<td>SPPFCD</td>
<td>DPPFCD</td>
<td>507</td>
</tr>
<tr>
<td></td>
<td>SPOFCD</td>
<td>DPOFCD</td>
<td></td>
</tr>
<tr>
<td>Symmetric Indefinite Matrix Factorization and Multiple Right-Hand Side Solve</td>
<td>DBSSV</td>
<td></td>
<td>514</td>
</tr>
<tr>
<td>Symmetric Indefinite Matrix Factorization</td>
<td>DBSTRF</td>
<td></td>
<td>520</td>
</tr>
<tr>
<td>Symmetric Indefinite Matrix Multiple Right-Hand Side Solve</td>
<td>DBSTRS</td>
<td></td>
<td>525</td>
</tr>
<tr>
<td>General Matrix Inverse, Condition Number Reciprocal, and Determinant</td>
<td>SGEICD</td>
<td>DGEICD</td>
<td>529</td>
</tr>
<tr>
<td>Positive Definite Real Symmetric Matrix Inverse, Condition Number Reciprocal, and Determinant</td>
<td>SPPICD</td>
<td>DPPICD</td>
<td>534</td>
</tr>
<tr>
<td></td>
<td>SPOICD</td>
<td>DPOICD</td>
<td></td>
</tr>
<tr>
<td>Solution of a Triangular System of Equations with a Single Right-Hand Side</td>
<td>STRSV•</td>
<td>DTRSV•</td>
<td>541</td>
</tr>
<tr>
<td></td>
<td>CTRSV•</td>
<td>ZTRSV•</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STPSV•</td>
<td>DTPSV•</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTPSV•</td>
<td>ZTPSV•</td>
<td></td>
</tr>
<tr>
<td>Solution of Triangular Systems of Equations with Multiple Right-Hand Sides</td>
<td>STRSM•</td>
<td>DTRSM•</td>
<td>547</td>
</tr>
<tr>
<td></td>
<td>CTRSM•</td>
<td>ZTRSM•</td>
<td></td>
</tr>
<tr>
<td>Triangular Matrix Inverse</td>
<td>STRI</td>
<td>DTRI</td>
<td>555</td>
</tr>
<tr>
<td></td>
<td>STPI</td>
<td>DTPI</td>
<td></td>
</tr>
</tbody>
</table>

* Level 2 BLAS

* Level 3 BLAS

† LAPACK

‡ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new programs. Documentation for this subroutine is no longer provided.

Banded Linear Algebraic Equation Subroutines

The banded linear algebraic equation subroutines provide solutions to linear systems of equations for real general band matrices, real positive definite symmetric band matrices, real or complex general tridiagonal matrices, real positive definite symmetric tridiagonal matrices, and real or complex triangular band matrices.

Table 84 (Page 1 of 2). List of Banded Linear Algebraic Equation Subroutines

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subroutine</th>
<th>Long-Precision Subroutine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Band Matrix Factorization</td>
<td>SGBF</td>
<td>DGBF</td>
<td>561</td>
</tr>
</tbody>
</table>
Table 84 (Page 2 of 2). List of Banded Linear Algebraic Equation Subroutines

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subroutine</th>
<th>Long-Precision Subroutine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Band Matrix Solve</td>
<td>SGBS</td>
<td>DGBS</td>
<td>565</td>
</tr>
<tr>
<td>Positive Definite Symmetric Band Matrix Factorization</td>
<td>SPBF SPBCHF</td>
<td>DPBF DPBCHF</td>
<td>568</td>
</tr>
<tr>
<td>Positive Definite Symmetric Band Matrix Solve</td>
<td>SPBS SPBCHS</td>
<td>DPBS DPBCHS</td>
<td>572</td>
</tr>
<tr>
<td>General Tridiagonal Matrix Factorization</td>
<td>SGTF</td>
<td>DGTF</td>
<td>575</td>
</tr>
<tr>
<td>General Tridiagonal Matrix Solve</td>
<td>SGTS</td>
<td>DGTS</td>
<td>578</td>
</tr>
<tr>
<td>General Tridiagonal Matrix Combined Factorization and Solve with No Pivoting</td>
<td>SGTNP CGTNP</td>
<td>DGTNP ZGTNP</td>
<td>580</td>
</tr>
<tr>
<td>General Tridiagonal Matrix Factorization with No Pivoting</td>
<td>SGTNPF CGTNPF</td>
<td>DGTNPF ZGTNPF</td>
<td>583</td>
</tr>
<tr>
<td>General Tridiagonal Matrix Solve with No Pivoting</td>
<td>SGTNPS CGTNPS</td>
<td>DGTNPS ZGTNPS</td>
<td>586</td>
</tr>
<tr>
<td>Positive Definite Symmetric Tridiagonal Matrix Factorization</td>
<td>SPTF</td>
<td>DPTF</td>
<td>589</td>
</tr>
<tr>
<td>Positive Definite Symmetric Tridiagonal Matrix Solve</td>
<td>SPTS</td>
<td>DPTS</td>
<td>591</td>
</tr>
<tr>
<td>Triangular Band Equation Solve</td>
<td>STBSV* CTBSV*</td>
<td>DTBSV* ZTBSV*</td>
<td>593</td>
</tr>
</tbody>
</table>

Level 2 BLAS

Sparse Linear Algebraic Equation Subroutines

The sparse linear algebraic equation subroutines provide direct and iterative solutions to linear systems of equations both for general sparse matrices and their transposes and for sparse symmetric matrices.

Table 85 (Page 1 of 2). List of Sparse Linear Algebraic Equation Subroutines

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Long-Precision Subroutine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Sparse Matrix Factorization Using Storage by Indices, Rows, or Columns</td>
<td>DGSF</td>
<td>600</td>
</tr>
<tr>
<td>General Sparse Matrix or Its Transpose Solve Using Storage by Indices, Rows, or Columns</td>
<td>DGSS</td>
<td>606</td>
</tr>
<tr>
<td>General Sparse Matrix or Its Transpose Factorization, Determinant, and Solve Using Skyline Storage Mode</td>
<td>DGKFS</td>
<td>610</td>
</tr>
<tr>
<td>Symmetric Sparse Matrix Factorization, Determinant, and Solve Using Skyline Storage Mode</td>
<td>DSKFS</td>
<td>629</td>
</tr>
<tr>
<td>Iterative Linear System Solver for a General or Symmetric Sparse Matrix Stored by Rows</td>
<td>DSRIS</td>
<td>648</td>
</tr>
<tr>
<td>Sparse Positive Definite or Negative Definite Symmetric Matrix Iterative Solve Using Compressed-Matrix Storage Mode</td>
<td>DSMCG§</td>
<td>659</td>
</tr>
<tr>
<td>Sparse Positive Definite or Negative Definite Symmetric Matrix Iterative Solve Using Compressed-Diagonal Storage Mode</td>
<td>DSDCG</td>
<td>667</td>
</tr>
</tbody>
</table>
Table 85 (Page 2 of 2). List of Sparse Linear Algebraic Equation Subroutines

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Long-Precision Subroutine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Sparse Matrix Iterative Solve Using Compressed-Matrix Storage Mode</td>
<td>DSMGCG§</td>
<td>675</td>
</tr>
<tr>
<td>General Sparse Matrix Iterative Solve Using Compressed-Diagonal Storage Mode</td>
<td>DSDGCG</td>
<td>682</td>
</tr>
</tbody>
</table>

§ These subroutines are provided only for migration from earlier releases of ESSL and are not intended for use in new programs. Use DSRIS instead.

Linear Least Squares Subroutines

The linear least squares subroutines provide least squares solutions to linear systems of equations for real general matrices. Two methods are provided: one that uses the singular value decomposition and another that uses a QR decomposition with column pivoting.

Table 86. List of Linear Least Squares Subroutines

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subroutine</th>
<th>Long-Precision Subroutine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singular Value Decomposition for a General Matrix</td>
<td>SGESVF</td>
<td>DGESVF</td>
<td>690</td>
</tr>
<tr>
<td>Linear Least Squares Solution for a General Matrix Using the Singular Value Decomposition</td>
<td>SGESVS</td>
<td>DGESVS</td>
<td>698</td>
</tr>
<tr>
<td>General Matrix QR Factorization</td>
<td></td>
<td></td>
<td>703</td>
</tr>
<tr>
<td>Linear Least Squares Solution for a General Matrix Using a QR Decomposition with Column Pivoting</td>
<td>SGELLS</td>
<td>DGELLS</td>
<td>708</td>
</tr>
</tbody>
</table>

Dense and Banded Linear Algebraic Equation Considerations

This section provides some key points about using the dense and banded linear algebraic equation subroutines.

Use Considerations

1. To solve a system of equations, you need to use both the factorization and solve subroutines for the type of matrix you have. Each factorization subroutine should be followed in your program by the corresponding solve subroutine. The output from the factorization subroutine should be used as input to the solve subroutine.

2. To solve a system of equations with one or more right-hand sides, follow the call to the factorization subroutine with one or more calls to a solve subroutine or one call to a multiple solve subroutine.

3. The ESSL naming conventions for the dense and banded linear algebraic equation subroutines are similar to those used in the LAPACK documentation. (LAPACK, as well as its documentation, is available from the sources listed in reference [8].) The following ESSL subroutines correspond to the LAPACK subroutines: SGETRF, DGETRF, CGETRF, ZGETRF, SGETRS, DGETRS, CGETRS, and ZGETRS.
Performance and Accuracy Considerations

1. Except in a few instances, the _GTNP subroutines provide better performance than the _GTNPF and _GTNPS subroutines. For details, see the subroutine descriptions.

2. The general subroutines (dense and banded) use partial pivoting for accuracy and fast performance.

3. The short-precision subroutines provide increased accuracy by accumulating intermediate results in long precision. Occasionally, for performance reasons, these intermediate results are stored.

4. There are ESSL-specific rules that apply to the results of computations on the workstation processors using the ANSI/IEEE standards. For details, see “What Data Type Standards Are Used by ESSL, and What Exceptions Should You Know About?” on page 43.

Sparse Matrix Direct Solver Considerations

This section provides some key points about using the sparse matrix direct solver subroutines.

Use Considerations

1. To solve a sparse system of equations by a direct method, you must use both the factorization and solve subroutines. The factorization subroutine should be followed in your program by the corresponding solve subroutine; that is, the output from the factorization subroutine should be used as input to the solve subroutine.

2. To solve a system of equations with one or more right-hand sides, follow the call to the factorization subroutine with one or more calls to the solve subroutine.

3. The amount of storage required for the arrays depends on the sparsity pattern of the matrix. The requirement that $l na > 2nz$ on entry to DGSF does not guarantee a successful run of the program. Some programs may be terminated because of the large number of fill-ins generated upon factorization. Fill-ins generated in a program depend on the structure of each matrix. If a large number of fill-ins is anticipated when factoring a matrix, the value of $l na$ should be large enough to accommodate your problem.

Performance and Accuracy Considerations

1. To make the subroutine more efficient, an input matrix comprised of all nonzero elements is preferable. See the syntax description of each subroutine for details.

2. DGSF optionally checks the validity of the indices and pointers of the input matrix. Use of this option is suggested; however, it may affect performance. For details, see the syntax description for DGSF.

3. In DGSS, if there are multiple sparse right-hand sides to be solved, you should take advantage of the sparsity by selecting a proper value for $jopt$ (such as $jopt = 10$ or 11). If there is only one right-hand side to be solved, it is suggested that you do not exploit the sparsity.
4. In DGSF, the value you enter for the lower bound of all elements in the matrix (RPARM(1)) affects the accuracy of the result. Specifying a larger number allows you to gain some performance; however, you may lose some accuracy in the solution.

5. In DGSF, the threshold pivot tolerance (RPARM(2)) is used to select pivots. A value that is close to 0.0 approaches no pivoting. A value close to 1.0 approaches partial pivoting. A value of 0.1 is considered to be a good compromise between numerical stability and sparsity.

6. If the ESSL subroutine performs storage compressions, you receive an attention message. When this occurs, the performance of this subroutine is affected. You can improve the performance by increasing the value specified for Ina.

7. There are ESSL-specific rules that apply to the results of computations on the workstation processors using the ANSI/IEEE standards. For details, see “What Data Type Standards Are Used by ESSL, and What Exceptions Should You Know About?” on page 43.

Sparse Matrix Skyline Solver Considerations

This section provides some key points about using the sparse matrix skyline solver subroutines.

Use Considerations

1. To solve a system of equations with one or more right-hand sides, where the matrix is stored in skyline storage mode, you can use either of the following methods. The factored output matrix is the same for both of these methods.

 - Call the skyline subroutine with the combined factor-and-solve option.
 - Call the skyline subroutine with the factor-only option, followed in your program by a call to the same subroutine with the solve-only option. The factored output matrix resulting from the factorization should be used as input to the same subroutine to do the solve. You can solve for the right-hand sides in a single call or in individual calls.

 You also have the option of doing a partial factorization, where the subroutine assumes that the initial part of the input matrix is already factored. It then factors the remaining rows and columns. If you want, you can factor a very large matrix progressively by using this option.

2. Forward elimination can be done with or without scaling the right-hand side by the diagonal matrix elements. To perform the computation without scaling, call DGKFS with the normal solve-only option, and define the upper triangular skyline matrix (AU) as a diagonal. To perform the computation with scaling, call DGKFS with the transpose solve-only, option and define the lower triangular skyline matrix (AL) as a diagonal.

3. Back substitution can be done with or without scaling the right-hand side by the diagonal matrix elements. To perform the computation without scaling, call DGKFS with the transpose solve-only option, and define the upper triangular skyline matrix (AU) as a diagonal. To perform the computation with scaling, call DGKFS with the normal solve-only option, and define the lower triangular skyline matrix (AL) as a diagonal.
Performance and Accuracy Considerations

1. For optimal performance, use diagonal-out skyline storage mode for both your input and output matrices. If you specify profile-in skyline storage mode for your input matrix, and either you do not plan to use the factored output or you plan to do a solve only, it is more efficient to specify diagonal-out skyline storage mode for your output matrix. These rules apply to all the computations.

2. In some cases, elapsed time may be reduced significantly by using the combined factor-and-solve option to solve for all right-hand sides at once, in conjunction with the factorization, rather than doing the factorization and solve separately.

3. If you do a solve only, and you solve for more than one right-hand side, it is most efficient to call the skyline subroutine once with all right-hand sides, rather than once for each right-hand side.

4. The skyline subroutines allow some control over processing of the pivot (diagonal) elements of the matrix during the factorization phase. Pivot processing is controlled by \(IPARM(10) \) through \(IPARM(15) \) and \(RPARM(10) \) through \(RPARM(15) \). If a pivot occurs within a range that is designated to be fixed \((IPARM(0) = 1, IPARM(10) = 1, \text{and the appropriate element IPARM(11) through IPARM(15)} = 1)\), it is replaced with the corresponding element of \(RPARM(11) \) through \(RPARM(15) \). Should this pivot fix-up occur, you receive an attention message. This message indicates that the matrix being factored may be unstable (singular or not definite). The results produced in this situation may be inaccurate, and you should review them carefully.

Sparse Matrix Iterative Solver Considerations

This section provides some key points about using the sparse matrix iterative solver subroutines.

Use Considerations

If you need to solve linear systems with different right-hand sides but with the same matrix using the preconditioned algorithms, you can reuse the incomplete factorization computed during the first call to the subroutine.

Performance and Accuracy Considerations

1. The DSMCG and DSMCGCG subroutines are provided for migration purposes from earlier releases of ESSL. You get better performance and a wider choice of algorithms if you use the DSRIS subroutine.

2. To select the sparse matrix subroutine that provides the best performance, you must consider the sparsity pattern of the matrix. From this, you can determine the most efficient storage mode for your sparse matrix. ESSL provides a number of versions of the sparse matrix iterative solve subroutines. They operate on sparse matrices stored in row-wise, diagonal, and compressed-matrix storage modes. These storage modes are described in “Sparse Matrix” on page 90.

Storage-by-rows is generally applicable. You should use this storage mode unless your matrices are already set up in one of the other storage modes. If, however, your matrix has a regular sparsity pattern—that is, where the nonzero elements are concentrated along a few diagonals—you may want to use
compressed-diagonal storage mode. This can save some storage space. Compressed-matrix storage mode is provided for migration purposes from earlier releases of ESSL and is not intended for use. (You get better performance and a wider choice of algorithms if you use the DSRIS subroutine, which uses storage-by-rows.)

3. The performance achieved in the sparse matrix iterative solver subroutines depends on the value specified for the relative accuracy \(\varepsilon \). For details, see Notes for each subroutine.

4. You can select the iterative algorithm you want to use to solve your linear system. The methods include conjugate gradient (CG), conjugate gradient squared (CGS), generalized minimum residual (GMRES), more smoothly converging variant of the CGS method (Bi-CGSTAB), or transpose-free quasi-minimal residual method (TFQMR).

5. For a general sparse or positive definite symmetric matrix, the iterative algorithm may fail to converge for one of the following reasons:
 - The value of \(\varepsilon \) is too small, asking for too much precision.
 - The maximum number of iterations is too small, allowing too few iterations for the algorithm to converge.
 - The matrix is not positive real; that is, the symmetric part, \((\mathbf{A} + \mathbf{A}^T)/2\), is not positive definite.
 - The matrix is ill-conditioned, which may cause overflows during the computation.

6. These algorithms have a tendency to generate underflows that may hurt overall performance. The system default is to mask underflow, which improves the performance of these subroutines.

Linear Least Squares Considerations

This section provides some key points about using the linear least squares subroutines.

Use Considerations

If you want to use a singular value decomposition method to compute the minimal norm linear least squares solution of \(\mathbf{A} \mathbf{x} = \mathbf{b} \), calls to SGESVF or DGESVF should be followed by calls to SGESVS or DGESVS, respectively.

Performance and Accuracy Considerations

1. Least squares solutions obtained by using a singular value decomposition require more storage and run time than those obtained using a QR decomposition with column pivoting. The singular value decomposition method, however, is a more reliable way to handle rank deficiency.

2. The short-precision subroutines provide increased accuracy by accumulating intermediate results in long precision. Occasionally, for performance reasons, these intermediate results are stored.

3. The accuracy of the resulting singular values and singular vectors varies between the short- and long-precision versions of each subroutine. The degree of difference depends on the size and conditioning of the matrix computation.
4. There are ESSL-specific rules that apply to the results of computations on the workstation processors using the ANSI/IEEE standards. For details, see “What Data Type Standards Are Used by ESSL, and What Exceptions Should You Know About?” on page 43.
Dense Linear Algebraic Equation Subroutines

This section contains the dense linear algebraic equation subroutine descriptions.
SGEF, DGEF, CGEF, and ZGEF—General Matrix Factorization

This subroutine factors a square general matrix \(A \) using Gaussian elimination with partial pivoting. To solve the system of equations with one or more right-hand sides, follow the call to these subroutines with one or more calls to SGES/SGESM, DGES/DGESM, CGES/CGESM, or ZGES/ZGESM, respectively. To compute the inverse of matrix \(A \), follow the call to these subroutines with a call to SGEICD or DGEICD, respectively.

Table 87. Data Types

<table>
<thead>
<tr>
<th>(A)</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>SGEF</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DGEF</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>CGEF</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>ZGEF</td>
</tr>
</tbody>
</table>

Note: The output from these factorization subroutines should be used only as input to the following subroutines for performing a solve or inverse: SGES/SGESM/SGEICD, DGES/DGESM/DGEICD, CGES/CGESM, and ZGES/ZGESM, respectively.

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL SGEF</th>
<th>DGEF</th>
<th>CGEF</th>
<th>ZGEF (a, lda, n, ipvt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>sgef</td>
<td>dgef</td>
<td>cgef</td>
<td>zgef (a, lda, n, ipvt);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SGEF</td>
<td>DGEF</td>
<td>CGEF</td>
<td>ZGEF (a, lda, n, ipvt);</td>
</tr>
</tbody>
</table>

On Entry

- \(a \) is the \(n \) by \(n \) general matrix \(A \) to be factored. Specified as: an \(lda \) by (at least) \(n \) array, containing numbers of the data type indicated in Table 87.
- \(lda \) is the leading dimension of the array specified for \(a \). Specified as: a fullword integer; \(lda > 0 \) and \(lda \geq n \).
- \(n \) is the order of matrix \(A \). Specified as: a fullword integer; \(0 \leq n \leq lda \).
- \(ipvt \)
 - See “On Return.”

On Return

- \(a \) is the \(n \) by \(n \) transformed matrix \(A \), containing the results of the factorization. See “Function” on page 466. Returned as: an \(lda \) by (at least) \(n \) array, containing numbers of the data type indicated in Table 87.
- \(ipvt \)
 - is the integer vector \(ipvt \) of length \(n \), containing the pivot indices. Returned as: a one-dimensional array of (at least) length \(n \), containing fullword integers.
Notes
1. Calling SGEFCD or DGEFCD with \(iopt = 0 \) is equivalent to calling SGEF or DGEF.
2. On both input and output, matrix \(A \) conforms to LAPACK format.

Function: The matrix \(A \) is factored using Gaussian elimination with partial pivoting (\(ipvt \)) to compute the \(LU \) factorization of \(A \), where \(A = PLU \):
- \(L \) is a unit lower triangular matrix.
- \(U \) is an upper triangular matrix.
- \(P \) is the permutation matrix.

On output, the transformed matrix \(A \) contains \(U \) in the upper triangle and \(L \) in the strict lower triangle where \(ipvt \) contains the pivots representing permutation \(P \), such that \(A = PLU \).

If \(n \) is 0, no computation is performed. See references \([36]\) and \([38]\).

Error Conditions

Resource Errors: Unable to allocate internal work area.

Computational Errors: Matrix \(A \) is singular.
- One or more columns of \(L \) and the corresponding diagonal of \(U \) contain all zeros (all columns of \(L \) are checked). The first column, \(i \), of \(L \) with a corresponding \(U = 0 \) diagonal element is identified in the computational error message.
- The return code is set to 1.
- \(i \) can be determined at run time by use of the ESSL error-handling facilities. To obtain this information, you must use ERRSET to change the number of allowable errors for error code 2103 in the ESSL error option table; otherwise, the default value causes your program to terminate when this error occurs. For details, see “What Can You Do about ESSL Computational Errors?” on page 46.

Input-Argument Errors
1. \(lda \leq 0 \)
2. \(n < 0 \)
3. \(n > lda \)

Example 1: This example shows a factorization of a real general matrix \(A \) of order 9.

Call Statement and Input

\[
A \hspace{0.5em} lda \hspace{0.5em} n \hspace{0.5em} ipvt
\]
\[
\]
\[
\]
\[
\]
CALL SGEF(A , 9 , 9 , IPVT)
Example 2: This example shows a factorization of a complex general matrix \(A \) of order 4.

Call Statement and Input

```plaintext
CALL CGEF( A, 4, 4, IPVT )
```

Output

\[
A = \begin{bmatrix}
4.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 5.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
0.0000 & 0.0000 & 6.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
0.0000 & 0.0000 & 0.0000 & 7.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 8.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 9.0000 & 1.0000 & 1.0000 & 1.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 10.0000 & 11.0000 & 12.0000 \\
0.2500 & 0.1500 & 0.1000 & 0.0714 & 0.0536 & -0.0694 & -0.0306 & 0.1806 & 0.3111 \\
0.2500 & 0.1500 & 0.1000 & 0.0714 & -0.0714 & -0.0556 & -0.0194 & 0.9385 & -0.0031
\end{bmatrix}
\]

IPVT = (3, 4, 5, 6, 7, 8, 9, 8, 9)
SGES, DGES, CGES, and ZGES—General Matrix, Its Transpose, or Its Conjugate Transpose Solve

These subroutines solve the system $Ax = b$ for x, where A is a general matrix and x and b are vectors. Using the `iopt` argument, they can also solve the real system $A^\top x = b$ or the complex system $A^H x = b$ for x. These subroutines use the results of the factorization of matrix A, produced by a preceding call to SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, or ZGEF, respectively.

<table>
<thead>
<tr>
<th>A, b, x</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>SGES</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DGES</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>CGES</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>ZGES</td>
</tr>
</tbody>
</table>

Note: The input to these solve subroutines must be the output from the factorization subroutines SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, and ZGEF, respectively.

Syntax

Fortran

```fortran
CALL SGES | DGES | CGES | ZGES (a, lda, n, ipvt, bx, iopt)
```

C and C++

```c
sges | dges | cges | zges (a, lda, n, ipvt, bx, iopt);
```

PL/I

```pli
CALL SGES | DGES | CGES | ZGES (a, lda, n, ipvt, bx, iopt);
```

On Entry

- a is the factorization of matrix A, produced by a preceding call to SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, or ZGEF, respectively. Specified as: an lda by (at least) n array, containing numbers of the data type indicated in Table 88.
- lda is the leading dimension of the array specified for a. Specified as: a fullword integer; $lda > 0$ and $lda \geq n$.
- n is the order of matrix A. Specified as: a fullword integer; $0 \leq n \leq lda$.
- $ipvt$ is the integer vector $ipvt$ of length n, containing the pivot indices produced by a preceding call to SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, or ZGEF, respectively. Specified as: a one-dimensional array of (at least) length n, containing fullword integers.
- bx is the vector b of length n, containing the right-hand side of the system. Specified as: a one-dimensional array of (at least) length n, containing numbers of the data type indicated in Table 88.
- $iopt$ determines the type of computation to be performed, where:

 - If $iopt = 0$, A is used in the computation.
If \(iopt = 1 \), \(A^T \) is used in SGES and DGES. \(A^H \) is used in CGES and ZGES.

Note: No data should be moved to form \(A^T \) or \(A^H \); that is, the matrix \(A \) should always be stored in its untransposed form.

Specified as: a fullword integer; \(iopt = 0 \) or \(1 \).

On Return

\(bx \)

is the solution vector \(x \) of length \(n \), containing the results of the computation.

Returned as: a one-dimensional array, containing numbers of the data type indicated in Table 88 on page 468.

Notes

1. The scalar data specified for input arguments \(lda \) and \(n \) for these subroutines must be the same as the corresponding input arguments specified for SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, and ZGEF, respectively.
2. The array data specified for input arguments \(a \) and \(ipvt \) for these subroutines must be the same as the corresponding output arguments for SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, and ZGEF, respectively.
3. The vectors and matrices used in this computation must have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.

Function: The system \(Ax = b \) is solved for \(x \), where \(A \) is a general matrix and \(x \) and \(b \) are vectors. Using the \(iopt \) argument, this subroutine can also solve the real system \(A^T x = b \) or the complex system \(A^H x = b \) for \(x \). These subroutines use the results of the factorization of matrix \(A \), produced by a preceding call to SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, or ZGEF, respectively. For a description of how \(A \) is factored, see “SGEF, DGEF, CGEF, and ZGEF—General Matrix Factorization” on page 465.

If \(n \) is 0, no computation is performed. See references [36] and [38].

Error Conditions

Computational Errors: None

Note: If the factorization performed by SGEF, DGEF, CGEF, ZGEF, SGEFCD, DGEFCD, or DGEFP failed because a pivot element is zero, the results returned by this subroutine are unpredictable, and there may be a divide-by-zero program exception message.

Input-Argument Errors

1. \(lda \leq 0 \)
2. \(n < 0 \)
3. \(n > lda \)
4. \(iopt \neq 0 \) or \(1 \)

Example 1

Part 1: This part of the example shows how to solve the system \(Ax = b \), where matrix \(A \) is the same matrix factored in the “Example 1” on page 466 for SGEF and DGEF.
Call Statement and Input

\[
\begin{array}{cccccc}
\text{A} & \text{LDA} & \text{N} & \text{IPVT} & \text{BX} & \text{IOPT} \\
\end{array}
\]

\[
\begin{array}{c}
\text{CALL SGES(A , 9 , 9 , IPVT , BX , 0)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{IPVT} = (3, 4, 5, 6, 7, 8, 9, 8, 9) \\
\text{BX} = (4.0, 5.0, 9.0, 10.0, 11.0, 12.0, 12.0, 33.0) \\
\text{A} = \text{(same as output } A \text{ in “Example 1” on page 466)} \\
\end{array}
\]

Output

\[
\begin{array}{c}
\text{BX} = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) \\
\end{array}
\]

Part 2: This part of the example shows how to solve the system $A^T x = b$, where matrix A is the input matrix factored in “Example 1” on page 466 for SGEF and DGEF. Most of the input is the same in Part 2 as in Part 1.

Call Statement and Input

\[
\begin{array}{cccccc}
\text{A} & \text{LDA} & \text{N} & \text{IPVT} & \text{BX} & \text{IOPT} \\
\end{array}
\]

\[
\begin{array}{c}
\text{CALL SGES(A , 9 , 9 , IPVT , BX , 1)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{IPVT} = (3, 4, 5, 6, 7, 8, 9, 8, 9) \\
\text{BX} = (6.0, 8.0, 10.0, 12.0, 13.0, 14.0, 15.0, 15.0) \\
\text{A} = \text{(same as output } A \text{ in “Example 1” on page 466)} \\
\end{array}
\]

Output

\[
\begin{array}{c}
\text{BX} = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) \\
\end{array}
\]

Example 2

Part 1: This part of the example shows how to solve the system $A x = b$, where matrix A is the same matrix factored in the “Example 2” on page 467 for CGEF and ZGEF.

Call Statement and Input

\[
\begin{array}{cccccc}
\text{A} & \text{LDA} & \text{N} & \text{IPVT} & \text{BX} & \text{IOPT} \\
\end{array}
\]

\[
\begin{array}{c}
\text{CALL CGES(A , 4 , 4 , IPVT , BX , 0)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{IPVT} = (4, 4, 3, 4) \\
\text{BX} = ((-10.0, 85.0), (-6.0, 61.0), (10.0, 38.0), (58.0, 168.0)) \\
\text{A} = \text{(same as output } A \text{ in “Example 1” on page 466)} \\
\end{array}
\]

Output

\[
\begin{array}{c}
\text{BX} = ((9.0, 0.0), (5.0, 1.0), (1.0, 6.0), (3.0, 4.0)) \\
\end{array}
\]

Part 2: This part of the example shows how to solve the system $A^H x = b$, where matrix A is the input matrix factored in “Example 2” on page 467 for CGEF and ZGEF. Most of the input is the same in Part 2 as in Part 1.
CALL CGES(A, 4, 4, IPVT, BX, 1)

IPVT = (4, 4, 3, 4)
BX = ((71.0, 12.0), (61.0, -70.0), (123.0, -34.0),
 (68.0, 7.0))
A = (same as output A in “Example 1” on page 466)

Output
BX = ((9.0, 0.0), (5.0, 1.0), (1.0, 6.0), (3.0, 4.0))
SGESM, DGESM, CGESM, and ZGESM—General Matrix, Its Transpose, or Its Conjugate Transpose Multiple Right-Hand Side Solve

These subroutines solve the following systems of equations for multiple right-hand sides, where A, X, and B are general matrices. SGESM and DGESM solve one of the following:

1. $AX = B$
2. $A^T X = B$

CGESM and ZGESM solve one of the following:

1. $AX = B$
2. $A^T X = B$
3. $A^H X = B$

These subroutines use the results of the factorization of matrix A, produced by a preceding call to SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, or ZGEF, respectively.

<table>
<thead>
<tr>
<th>Table 89. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B, X</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
<tr>
<td>Short-precision complex</td>
</tr>
<tr>
<td>Long-precision complex</td>
</tr>
</tbody>
</table>

Note: The input to these solve subroutines must be the output from the factorization subroutines SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, and ZGEF, respectively.

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL SGESM</th>
<th>DGESM</th>
<th>CGESM</th>
<th>ZGESM (trans, a, lda, n, ipvt, b, ldb, nrhs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>sgesm</td>
<td>dgesm</td>
<td>cgesm</td>
<td>zgesm (trans, a, lda, n, ipvt, b, ldb, nrhs);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SGESM</td>
<td>DGESM</td>
<td>CGESM</td>
<td>ZGESM (trans, a, lda, n, ipvt, b, ldb, nrhs);</td>
</tr>
</tbody>
</table>

On Entry

trans

indicates the form of matrix A to use in the computation, where:

- If $transa = 'N'$, A is used in the computation, resulting in equation 1.
- If $transa = 'T'$, A^T is used in the computation, resulting in equation 2.
- If $transa = 'C'$, A^H is used in the computation, resulting in equation 3.

Specified as: a single character. It must be 'N', 'T', or 'C'.

a

is the factorization of matrix A, produced by a preceding call to SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, or ZGEF, respectively.
SGESM, DGESM, CGESM, and ZGESM

Specified as: an \textit{lda} by (at least) \textit{n} array, containing numbers of the data type indicated in Table 89.

\textit{lda}

is the leading dimension of the array specified for \textit{a}. Specified as: a fullword integer; \textit{lda} > 0 and \textit{lda} \geq \textit{n}.

\textit{n}

is the order of matrix \textit{A}. Specified as: a fullword integer; 0 \leq \textit{n} \leq \textit{lda}.

\textit{ipvt}

is the integer vector \textit{ipvt} of length \textit{n}, containing the pivot indices produced by a preceding call to SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, or ZGEF, respectively. Specified as: a one-dimensional array of (at least) length \textit{n}, containing fullword integers.

\textit{b}

is the matrix \textit{B}, containing the \textit{nrhs} right-hand sides of the system. The right-hand sides, each of length \textit{n}, reside in the columns of matrix \textit{B}. Specified as: an \textit{ldb} by (at least) \textit{nrhs} array, containing numbers of the data type indicated in Table 89 on page 472.

\textit{ldb}

is the leading dimension of the array specified for \textit{b}. Specified as: a fullword integer; \textit{ldb} > 0 and \textit{ldb} \geq \textit{n}.

\textit{nrhs}

is the number of right-hand sides in the system to be solved. Specified as: a fullword integer; \textit{nrhs} \geq 0.

On Return

\textit{b}

is the matrix \textit{B}, containing the \textit{nrhs} solutions to the system in the columns of \textit{B}. Specified as: an \textit{ldb} by (at least) \textit{nrhs} array, containing numbers of the data type indicated in Table 89 on page 472.

Notes

1. For SGESM and DGESM, if you specify 'C' for the \textit{trans} argument, it is interpreted as though you specified 'T'.

2. The scalar data specified for input arguments \textit{lda} and \textit{n} for these subroutines must be the same as the corresponding input arguments specified for SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, and ZGEF, respectively.

3. The array data specified for input arguments \textit{a} and \textit{ipvt} for these subroutines must be the same as the corresponding output arguments for SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, and ZGEF, respectively.

4. The vectors and matrices used in this computation must have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.

Function:

One of the following systems of equations is solved for multiple right-hand sides:

1. \begin{align*}
\text{AX} &= \text{B} \\
\text{A}^\text{T}X &= \text{B}
\end{align*}

2. \begin{align*}
\text{A}^\text{H}X &= \text{B} & \text{(only for CGESM and ZGESM)}
\end{align*}

where \textit{A}, \textit{B}, and \textit{X} are general matrices. These subroutines use the results of the factorization of matrix \textit{A}, produced by a preceding call to SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, or ZGEF, respectively. For a description of how \textit{A}
is factored, see “SGEF, DGEF, CGEF, and ZGEF—General Matrix Factorization” on page 465.

If \(n \) or \(nrhs \) is 0, no computation is performed. See references [36] and [38].

Error Conditions

Computational Errors: None

Note: If the factorization performed by SGEF, DGEF, CGEF, ZGEF, SGEFCD, DGEFCD, or DGEFP failed because a pivot element is zero, the results returned by this subroutine are unpredictable, and there may be a divide-by-zero program exception message.

Input-Argument Errors

1. \(\text{trans} \neq 'N', 'T', \text{or} 'C' \)
2. \(\text{lda}, \text{ldb} \leq 0 \)
3. \(n < 0 \)
4. \(n > \text{lda}, \text{ldb} \)
5. \(nrhs < 0 \)

Example 1

Part 1: This part of the example shows how to solve the system \(AX = B \) for two right-hand sides, where matrix \(A \) is the same matrix factored in the “Example 1” on page 466 for SGEF and DGEF.

Call Statement and Input

```
TRANS A LDA N IPVT B LDB NRHS
|   | | | | | | |
CALL SGESM( 'N' , A , 9 , 9 , IPVT , B , 9 , 2 )
```

IPVT = (3, 4, 5, 6, 7, 8, 9, 8, 9)

\(A \) = (same as output \(A \) in “Example 1” on page 466)

\[
\begin{bmatrix}
4.0 & 10.0 \\
5.0 & 15.0 \\
9.0 & 24.0 \\
10.0 & 35.0 \\
\end{bmatrix}
\]

\(B \) =

\[
\begin{bmatrix}
11.0 & 48.0 \\
12.0 & 63.0 \\
12.0 & 70.0 \\
12.0 & 78.0 \\
33.0 & 266.0 \\
\end{bmatrix}
\]

Output
Part 1: This part of the example shows how to solve the system $AX = B$ for two right-hand sides, where matrix A is the same matrix factored in the “Example 2” on page 467 for CGEF and ZGEF.

Call Statement and Input

\[
\begin{align*}
\text{TRANS} & \quad \text{A} & \quad \text{LDA} \quad \text{N} & \quad \text{IPVT} \quad \text{B} & \quad \text{LDB} \quad \text{NRHS} \\
\text{CALL} \quad \text{SGESM}(\ 'T' , \ A , \ 9 , \ 9 , \ IPVT , \ B , \ 9 , \ 2)
\end{align*}
\]

Output

\[
\begin{align*}
\text{B} & = \\
\begin{bmatrix}
1.0 & 1.0 \\
1.0 & 2.0 \\
1.0 & 3.0 \\
1.0 & 4.0
\end{bmatrix}
\end{align*}
\]

Example 2

Part 1: This part of the example shows how to solve the system $AX = B$ for two right-hand sides, where matrix A is the same matrix factored in the “Example 2” on page 467 for CGEF and ZGEF.

Call Statement and Input
Part 2: This part of the example shows how to solve the system $A^T X = B$ for two right-hand sides, where matrix A is the input matrix factored in “Example 2” on page 467 for CGEF and ZGEF.

Call Statement and Input

```plaintext
TRANS A LDA N IPVT B LDB NRHS
|   |   |   |   |   |   |
CALL CGESM( 'T' , A , 4 , 4 , IPVT , B , 4 , 2 )
```

IPVT = (4, 4, 3, 4)

A = (same as output A in “Example 2” on page 467)

$$
B = \begin{bmatrix}
(-10.0, 85.0) & (-11.0, 53.0) \\
(-6.0, 61.0) & (-6.0, 54.0) \\
(10.0, 38.0) & (2.0, 40.0) \\
(58.0, 168.0) & (15.0, 105.0)
\end{bmatrix}
$$

Output

$$
B = \begin{bmatrix}
(9.0, 0.0) & (1.0, 1.0) \\
(5.0, 1.0) & (2.0, 2.0) \\
(1.0, 6.0) & (3.0, 3.0) \\
(3.0, 4.0) & (4.0, 4.0)
\end{bmatrix}
$$

Part 3: This part of the example shows how to solve the system $A^H X = B$ for two right-hand sides, where matrix A is the input matrix factored in “Example 2” on page 467 for CGEF and ZGEF.

Call Statement and Input

```plaintext
TRANS A LDA N IPVT B LDB NRHS
|   |   |   |   |   |   |
CALL CGESM( 'N' , A , 4 , 4 , IPVT , B , 4 , 2 )
```

IPVT = (4, 4, 3, 4)

A = (same as output A in “Example 2” on page 467)

$$
B = \begin{bmatrix}
(-10.0, 85.0) & (-11.0, 53.0) \\
(-6.0, 61.0) & (-6.0, 54.0) \\
(10.0, 38.0) & (2.0, 40.0) \\
(58.0, 168.0) & (15.0, 105.0)
\end{bmatrix}
$$

Output

$$
B = \begin{bmatrix}
(9.0, 0.0) & (1.0, 1.0) \\
(5.0, 1.0) & (2.0, 2.0) \\
(1.0, 6.0) & (3.0, 3.0) \\
(3.0, 4.0) & (4.0, 4.0)
\end{bmatrix}
$$
TRANS A LDA N IPVT B LDB NRHS
| | | | | | |
CALL CGESM('C', A, 4, 4, IPVT, B, 4, 2)

IPVT = (4, 4, 3, 4)
A = (same as output A in “Example 2” on page 467)

\[
B = \begin{bmatrix}
(58.0, -3.0) & (45.0, 20.0) \\
(68.0, -31.0) & (83.0, -20.0) \\
(89.0, -22.0) & (98.0, 1.0) \\
(53.0, 15.0) & (45.0, 25.0)
\end{bmatrix}
\]

Output

\[
B = \begin{bmatrix}
(1.0, 4.0) & (4.0, 5.0) \\
(2.0, 3.0) & (3.0, 4.0) \\
(3.0, 2.0) & (2.0, 3.0) \\
(4.0, 1.0) & (1.0, 2.0)
\end{bmatrix}
\]
SGETRF, DGETRF, CGETRF and ZGETRF—General Matrix Factorization

These subroutines factor general matrix \(A \) using Gaussian elimination with partial pivoting. To solve the system of equations with one or more right-hand sides, follow the call to these subroutines with one or more calls to SGETRS, DGETRS, CGETRS, or ZGETRS, respectively. To compute the inverse of matrix \(A \), follow the call to these subroutines with a call to SGEICD or DGEICD, respectively.

Note: The output from these factorization subroutines should be used only as input to the following subroutines for performing a solve or inverse: SGETRS, DGETRS, CGETRS, ZGETRS, SGEICD or DGEICD respectively.

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL SGETRF</th>
<th>DGETRF</th>
<th>CGETRF</th>
<th>ZGETRF (m, n, a, lda, ipvt, info)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>sgetrf</td>
<td>dgetrf</td>
<td>cgetrf</td>
<td>zgetrf (m, n, a, lda, ipvt, info);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SGETRF</td>
<td>DGETRF</td>
<td>CGETRF</td>
<td>ZGETRF (m, n, a, lda, ipvt, info);</td>
</tr>
</tbody>
</table>

On Entry

- \(m \)
 - the number of rows in general matrix \(A \) used in the computation. Specified as: a fullword integer; \(0 \leq m \leq lda \).
- \(n \)
 - the number of columns in general matrix \(A \) used in the computation. Specified as: a fullword integer; \(n \geq 0 \).
- \(a \)
 - is the \(m \) by \(n \) general matrix \(A \) to be factored. Specified as: an \(lda \) by (at least) \(n \) array, containing numbers of the data type indicated in Table 90.
- \(lda \)
 - is the leading dimension of matrix \(A \). Specified as: a fullword integer; \(lda > 0 \) and \(lda \geq m \).
- \(ipvt \)
 - See “On Return.”
- \(info \)
 - See “On Return.”

On Return

- \(a \)
 - is the \(m \) by \(n \) transformed matrix \(A \), containing the results of the factorization. See “Function” on page 479. Returned as: an \(lda \) by (at least) \(n \) array, containing numbers of the data type indicated in Table 90.
ipvt

is the integer vector ipvt of length min(m,n), containing the pivot indices. Returned as: a one-dimensional array of (at least) length min(m,n), containing fullword integers, where 1 ≤ ipvt(i) ≤ m.

info

has the following meaning:

If info = 0, the factorization of general matrix A completed successfully.

If info > 0, info is set equal to the first i, where U_i is singular and its inverse could not be computed.

Specified as: a fullword integer; info ≥ 0.

Notes

1. In your C program, argument info must be passed by reference.
2. The matrix A and vector ipvt must have no common elements; otherwise results are unpredictable.
3. The way these subroutines handle singularity differs from LAPACK. These subroutines use the info argument to provide information about the singularity of A, like LAPACK, but also provide an error message.
4. On both input and output, matrix A conforms to LAPACK format.

Function: The matrix A is factored using Gaussian elimination with partial pivoting (ipvt) to compute the LU factorization of A, where (A = PLU):

- L is a unit lower triangular matrix.
- U is an upper triangular matrix.
- P is the permutation matrix.

On output, the transformed matrix A contains U in the upper triangle (if m ≥ n) or upper trapezoid (if m < n) and L in the strict lower triangle (if m ≤ n) or lower trapezoid (if m > n). ipvt contains the pivots representing permutation P, such that A = PLU.

If m or n is 0, no computation is performed and the subroutine returns after doing some parameter checking. See references [36] and [62].

Error Conditions

Resource Errors: Unable to allocate internal work area.

Computational Errors: Matrix A is singular.

- The first column, i, of L with a corresponding U_i = 0 diagonal element is identified in the computational error message.
- The computational error message may occur multiple times with processing continuing after each error, because the default for the number of allowable errors for error code 2146 is set to be unlimited in the ESSL error option table.

Input-Argument Errors

1. m < 0
2. n < 0
3. m > lda
4. lda ≤ 0
Example 1: This example shows a factorization of a real general matrix \(A \) of order 9.

Call Statement and Input

```plaintext
CALL DGETRF( 9 , 9 , A, 9 , IPVT, INFO )
```

\[
\begin{bmatrix}
1.0 & 1.2 & 1.4 & 1.6 & 1.8 & 2.0 & 2.2 & 2.4 & 2.6 \\
1.2 & 1.0 & 1.2 & 1.4 & 1.6 & 1.8 & 2.0 & 2.2 & 2.4 \\
1.4 & 1.2 & 1.0 & 1.2 & 1.4 & 1.6 & 2.0 & 2.2 & 2.4 \\
1.6 & 1.4 & 1.2 & 1.0 & 1.2 & 1.4 & 1.6 & 2.0 & 2.4 \\
\end{bmatrix}
\]

\[A = \begin{bmatrix}
1.8 & 1.6 & 1.4 & 1.2 & 1.0 & 1.2 & 1.4 & 1.6 & 1.8 \\
2.0 & 1.8 & 1.6 & 1.4 & 1.2 & 1.0 & 1.2 & 1.4 & 1.6 \\
2.2 & 2.0 & 1.8 & 1.6 & 1.4 & 1.2 & 1.0 & 1.2 & 1.4 \\
2.4 & 2.2 & 2.0 & 1.8 & 1.6 & 1.4 & 1.2 & 1.0 & 1.2 \\
2.6 & 2.4 & 2.2 & 2.0 & 1.8 & 1.6 & 1.4 & 1.2 & 1.0 \\
\end{bmatrix}\]

Output

\[
\begin{bmatrix}
2.6 & 2.4 & 2.2 & 2.0 & 1.8 & 1.6 & 1.4 & 1.2 & 1.0 \\
0.4 & 0.3 & 0.6 & 0.8 & 1.1 & 1.4 & 1.7 & 1.9 & 2.2 \\
0.5 & -0.4 & 0.4 & 0.8 & 1.2 & 1.6 & 2.0 & 2.4 & 2.8 \\
0.5 & -0.3 & 0.0 & 0.4 & 0.8 & 1.2 & 1.6 & 2.0 & 2.4 \\
0.6 & -0.3 & 0.0 & 0.0 & 0.4 & 0.8 & 1.2 & 1.6 & 2.0 \\
0.7 & -0.2 & 0.0 & 0.0 & 0.0 & 0.0 & 0.4 & 0.8 & 1.2 \\
0.8 & -0.2 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.4 \\
0.9 & -0.1 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.4 \\
\end{bmatrix}
\]

\[A = \begin{bmatrix}
0.4 & 0.3 & 0.6 & 0.8 & 1.1 & 1.4 & 1.7 & 1.9 & 2.2 \\
0.5 & -0.4 & 0.4 & 0.8 & 1.2 & 1.6 & 2.0 & 2.4 & 2.8 \\
0.5 & -0.3 & 0.0 & 0.4 & 0.8 & 1.2 & 1.6 & 2.0 & 2.4 \\
0.6 & -0.3 & 0.0 & 0.0 & 0.4 & 0.8 & 1.2 & 1.6 & 2.0 \\
0.7 & -0.2 & 0.0 & 0.0 & 0.0 & 0.0 & 0.4 & 0.8 & 1.2 \\
0.8 & -0.2 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.4 \\
0.9 & -0.1 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.4 \\
\end{bmatrix}\]

\[\text{IPVT} = (9, 9, 9, 9, 9, 9, 9, 9, 9) \]
\[\text{INFO} = 0 \]

Example 2: This example shows a factorization of a complex general matrix \(A \) of order 9.

Call Statement and Input

```plaintext
CALL ZGETRF( 9 , 9 , A, 9 , IPVT, INFO )
```

\[
\begin{bmatrix}
(2.0, 1.0) & (2.4,-1.0) & (2.8,-1.0) & (3.2,-1.0) & (3.6,-1.0) & (4.0,-1.0) & (4.4,-1.0) & (4.8,-1.0) & (5.2,-1.0) \\
(2.4, 1.0) & (2.0, 1.0) & (2.4,-1.0) & (2.8,-1.0) & (3.2,-1.0) & (3.6,-1.0) & (4.0,-1.0) & (4.4,-1.0) & (4.8,-1.0) \\
(2.8, 1.0) & (2.4, 1.0) & (2.0, 1.0) & (2.4,-1.0) & (2.8,-1.0) & (3.2,-1.0) & (3.6,-1.0) & (4.0,-1.0) & (4.4,-1.0) \\
(3.2, 1.0) & (2.8, 1.0) & (2.4, 1.0) & (2.0, 1.0) & (2.4,-1.0) & (2.8,-1.0) & (3.2,-1.0) & (3.6,-1.0) & (4.0,-1.0) \\
(3.6, 1.0) & (3.2, 1.0) & (2.8, 1.0) & (2.4, 1.0) & (2.0, 1.0) & (2.4,-1.0) & (2.8,-1.0) & (3.2,-1.0) & (3.6,-1.0) \\
(4.0, 1.0) & (3.6, 1.0) & (3.2, 1.0) & (2.8, 1.0) & (2.4, 1.0) & (2.0, 1.0) & (2.4,-1.0) & (2.8,-1.0) & (3.2,-1.0) \\
(4.4, 1.0) & (4.0, 1.0) & (3.6, 1.0) & (3.2, 1.0) & (2.8, 1.0) & (2.4, 1.0) & (2.0, 1.0) & (2.4,-1.0) & (2.8,-1.0) \\
(4.8, 1.0) & (4.4, 1.0) & (4.0, 1.0) & (3.6, 1.0) & (3.2, 1.0) & (2.8, 1.0) & (2.4, 1.0) & (2.0, 1.0) & (2.4,-1.0) \\
(5.2, 1.0) & (4.8, 1.0) & (4.4, 1.0) & (4.0, 1.0) & (3.6, 1.0) & (3.2, 1.0) & (2.8, 1.0) & (2.4, 1.0) & (2.0, 1.0) \\
\end{bmatrix}
\]

Output
SGETRF, DGETRF, CGETRF and ZGETRF

\[
A = \begin{bmatrix}
(5.2, 1.0) & (4.8, 1.0) & (4.4, 1.0) & (4.0, 1.0) & (3.6, 1.0) & (3.2, 1.0) & (2.8, 1.0) & (2.4, 1.0) & (2.0, 1.0) \\
(0.4, 0.1) & (0.6, -2.0) & (1.1, -1.9) & (1.7, -1.9) & (2.3, -1.8) & (2.8, -1.8) & (3.4, -1.7) & (3.9, -1.7) & (4.5, -1.6) \\
(0.5, 0.1) & (0.0, -0.1) & (0.6, -1.9) & (1.2, -1.8) & (1.8, -1.7) & (2.5, -1.6) & (3.1, -1.5) & (3.7, -1.4) & (4.3, -1.3) \\
(0.6, 0.1) & (0.0, -0.1) & (-0.1, -0.1) & (0.7, -1.9) & (1.3, -1.7) & (2.0, -1.6) & (2.7, -1.5) & (3.4, -1.4) & (4.0, -1.2) \\
(0.6, 0.1) & (0.0, -0.1) & (-0.1, -0.1) & (-0.1, 0.0) & (0.7, -1.9) & (1.5, -1.7) & (2.2, -1.6) & (2.9, -1.5) & (3.7, -1.3) \\
(0.7, 0.1) & (0.0, -0.1) & (0.0, 0.0) & (-0.1, 0.0) & (-0.1, 0.0) & (0.8, -1.9) & (1.6, -1.8) & (2.4, -1.6) & (3.2, -1.5) \\
(0.8, 0.0) & (0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) & (0.8, -1.9) & (1.7, -1.8) & (2.5, -1.8) \\
(0.9, 0.0) & (0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) & (0.8, -2.0) & (1.7, -1.9) \\
(0.9, 0.0) & (0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) & (0.8, -2.0) \\
\end{bmatrix}
\]

\[
\text{IPVT} = (9, 9, 9, 9, 9, 9, 9, 9, 9) \\
\text{INFO} = 0
\]
SGETRS, DGETRS, CGETRS, and ZGETRS—General Matrix
Multiple Right-Hand Side Solve

SGETRS and DGETRS solve one of the following systems of equations for multiple right-hand sides:
1. \(AX = B \)
2. \(A^T X = B \)

CGETRS and ZGETRS solve one of the following systems of equations for multiple right-hand sides:
1. \(AX = B \)
2. \(A^T X = B \)
3. \(A^H X = B \)

In the formulas above:
- \(A \) represents the general matrix \(A \) containing the \(LU \) factorization.
- \(B \) represents the general matrix \(B \) containing the right-hand sides in its columns.
- \(X \) represents the general matrix \(B \) containing the solution vectors in its columns.

These subroutines use the results of the factorization of matrix \(A \), produced by a preceding call to SGETRF, DGETRF, CGETRF, or ZGETRF, respectively.

<table>
<thead>
<tr>
<th>Table 91. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A, B)</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
<tr>
<td>Short-precision complex</td>
</tr>
<tr>
<td>Long-precision complex</td>
</tr>
</tbody>
</table>

Note: The input to these solve subroutines must be the output from the factorization subroutines SGETRF, DGETRF, CGETRF and ZGETRF, respectively.

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL SGETRS</th>
<th>DGETRS</th>
<th>CGETRS</th>
<th>ZGETRS ((transa, n, nrhs, a, lda, ipvt, bx, ldb, info))</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>sgetrs</td>
<td>dgetrs</td>
<td>cgetrs</td>
<td>zgetrs ((transa, n, nrhs, a, lda, ipvt, bx, ldb, info);)</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SGETRS</td>
<td>DGETRS</td>
<td>CGETRS</td>
<td>ZGETRS ((transa, n, nrhs, a, lda, ipvt, bx, ldb, info);)</td>
</tr>
</tbody>
</table>

On Entry

\(transa \)

indicates the form of matrix \(A \) to use in the computation, where:
- If \(transa = 'N' \), \(A \) is used in the computation, resulting in solution 1.
- If \(transa = 'T' \), \(A^T \) is used in the computation, resulting in solution 2.
- If \(transa = 'C' \), \(A^H \) is used in the computation, resulting in solution 3.
Specified as: a single character; \textit{transa} = 'N', 'T', or 'C'.

\(n \) is the order of factored matrix \(A \) and the number of rows in matrix \(B \). Specified as: a fullword integer; \(n \geq 0 \).

\(\text{nrhs} \) is the number of right-hand sides—that is, the number of columns in matrix \(B \) used in the computation. Specified as: a fullword integer; \(\text{nrhs} \geq 0 \).

\(a \) is the factorization of matrix \(A \), produced by a preceding call to \texttt{SGETRF}, \texttt{DGETRF}, \texttt{CGETRF}, or \texttt{ZGETRF}, respectively. Specified as: an \(\text{lda} \) by (at least) \(n \) array, containing numbers of the data type indicated in Table 91 on page 482.

\(\text{lda} \) is the leading dimension of the array specified for \(a \). Specified as: a fullword integer; \(\text{lda} > 0 \) and \(\text{lda} \geq n \).

\(\text{ipvt} \) is the integer vector \(\text{ipvt} \) of length \(n \), containing the pivot indices produced by a preceding call to \texttt{SGETRF}, \texttt{DGETRF}, \texttt{CGETRF}, or \texttt{ZGETRF}, respectively. Specified as: a one-dimensional array of (at least) length \(n \), containing fullword integers, where \(1 \leq \text{ipvt}(i) \leq n \).

\(\text{bx} \) is the general matrix \(B \) containing the right-hand side of the system. Specified as: an \(\text{ldb} \) by (at least) \(\text{nrhs} \) array, containing numbers of the data type indicated in Table 91 on page 482.

\(\text{ldb} \) is the leading dimension of the array specified for \(b \). Specified as: a fullword integer; \(\text{ldb} > 0 \) and \(\text{ldb} \geq n \).

\(\text{info} \) has the following meaning:

- If \(\text{info} = 0 \), the solve of general matrix \(A \) completed successfully.

\section*{Notes}

1. In your C program, argument \(\text{info} \) must be passed by reference.

2. These subroutines accept lower case letters for the \textit{transa} argument.

3. For \texttt{SGETRS} and \texttt{DGETRS}, if you specify 'C' for the \textit{transa} argument, it is interpreted as though you specified 'T'.

4. The scalar data specified for input argument \(n \) must be the same for both _GETRF and _GETRS. In addition, the scalar data specified for input argument \(m \) in _GETRF \textbf{must be the same} as input argument \(n \) in both _GETRF and _GETRS.

If, however, you do not plan to call _GETRS after calling _GETRF, then input arguments \(m \) and \(n \) in _GETRF do not need to be equal.
5. The array data specified for input arguments a and ipvt for these subroutines must be the same as the corresponding output arguments for SGETRF, DGETRF, CGETRF, and ZGETRF, respectively.

6. The matrices and vector used in this computation must have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.

7. On both input and output, matrices A and B conform to LAPACK format.

Function: One of the following systems of equations is solved for multiple right-hand sides:

1. \(AX = B \)
2. \(A^T X = B \)
3. \(A^H X = B \) (only for CGETRS and ZGETRS)

where \(A, B, \) and \(X \) are general matrices. These subroutines use the results of the factorization of matrix \(A \), produced by a preceding call to SGETRF, DGETRF, CGETRF or ZGETRF, respectively. For details on the factorization, see “SGETRF, DGETRF, CGETRF and ZGETRF—General Matrix Factorization” on page 478.

If \(n = 0 \) or \(nrhs = 0 \), no computation is performed and the subroutine returns after doing some parameter checking. See references [36] and [62].

Error Conditions

Computational Errors: None

Note: If the factorization performed by SGETRF, DGETRF, CGETRF or ZGETRF failed because a pivot element is zero, the results returned by this subroutine are unpredictable, and there may be a divide-by-zero program exception message.

Input-Argument Errors

1. \(transa \neq 'N', 'T', \) or 'C'
2. \(n < 0 \)
3. \(nrhs < 0 \)
4. \(n > lda \)
5. \(n > ldb \)
6. \(lda \leq 0 \)
7. \(ldb \leq 0 \)

Example 1: This example shows how to solve the system \(AX = B \), where matrix \(A \) is the same matrix factored in the “Example 1” on page 480 for DGETRF.

Call Statement and Input

```
TRANSA N NRHS A LDA IPIV BX LDB INFO
| | | | | | | | |
CALL DGETRS('N', 9, 5, A, 9, IPIV, B, 9, INFO)
```

IPVT = (9, 9, 9, 9, 9, 9, 9, 9, 9)
A = (same as output A in “Example 1” on page 480)
Example 2: This example shows how to solve the system \(AX = b \), where matrix \(A \) is the same matrix factored in the “Example 2” on page 480 for ZGETRF.

Call Statement and Input

\[
\begin{align*}
\text{TRANS} & = 'N' \\
N & = 9 \\
NRHS & = 5 \\
A & = (\text{same as output } A \text{ in “Example 2” on page 480}) \\
LDA & = 9 \\
IPIV & = (9, 9, 9, 9, 9, 9, 9, 9, 9) \\
B & = (129.0, 115.0) \\
LDB & = 9 \\
INFO & = 0
\end{align*}
\]

\[
\begin{align*}
\text{CALL ZGETRS('N' , 9 , 5 , A , 9 , IPIV, B , 9 , INFO)}
\end{align*}
\]
SGETRS, DGETRS, CGETRS, and ZGETRS

\[
\begin{bmatrix}
(1.0,1.0) & (1.0,2.0) & (1.0,3.0) & (1.0,4.0) & (1.0,5.0) \\
(2.0,1.0) & (2.0,2.0) & (2.0,3.0) & (2.0,4.0) & (2.0,5.0) \\
(3.0,1.0) & (3.0,2.0) & (3.0,3.0) & (3.0,4.0) & (3.0,5.0) \\
(4.0,1.0) & (4.0,2.0) & (4.0,3.0) & (4.0,4.0) & (4.0,5.0) \\
(5.0,1.0) & (5.0,2.0) & (5.0,3.0) & (5.0,4.0) & (5.0,5.0) \\
(6.0,1.0) & (6.0,2.0) & (6.0,3.0) & (6.0,4.0) & (6.0,5.0) \\
(7.0,1.0) & (7.0,2.0) & (7.0,3.0) & (7.0,4.0) & (7.0,5.0) \\
(8.0,1.0) & (8.0,2.0) & (8.0,3.0) & (8.0,4.0) & (8.0,5.0) \\
(9.0,1.0) & (9.0,2.0) & (9.0,3.0) & (9.0,4.0) & (9.0,5.0)
\end{bmatrix}
\]

\[B = \begin{bmatrix}
(1.0,1.0) & (1.0,2.0) & (1.0,3.0) & (1.0,4.0) & (1.0,5.0) \\
(2.0,1.0) & (2.0,2.0) & (2.0,3.0) & (2.0,4.0) & (2.0,5.0) \\
(3.0,1.0) & (3.0,2.0) & (3.0,3.0) & (3.0,4.0) & (3.0,5.0) \\
(4.0,1.0) & (4.0,2.0) & (4.0,3.0) & (4.0,4.0) & (4.0,5.0) \\
(5.0,1.0) & (5.0,2.0) & (5.0,3.0) & (5.0,4.0) & (5.0,5.0) \\
(6.0,1.0) & (6.0,2.0) & (6.0,3.0) & (6.0,4.0) & (6.0,5.0) \\
(7.0,1.0) & (7.0,2.0) & (7.0,3.0) & (7.0,4.0) & (7.0,5.0) \\
(8.0,1.0) & (8.0,2.0) & (8.0,3.0) & (8.0,4.0) & (8.0,5.0) \\
(9.0,1.0) & (9.0,2.0) & (9.0,3.0) & (9.0,4.0) & (9.0,5.0)
\end{bmatrix}\]

\[\text{INFO} = 0 \]
SGEFCD and DGEFCD—General Matrix Factorization, Condition Number Reciprocal, and Determinant

These subroutines factor general matrix \(A \) using Gaussian elimination. An estimate of the reciprocal of the condition number and the determinant of matrix \(A \) can also be computed. To solve a system of equations with one or more right-hand sides, follow the call to these subroutines with one or more calls to SGES/SGESM or DGES/DGESM, respectively. To compute the inverse of matrix \(A \), follow the call to these subroutines with a call to SGEICD and DGEICD, respectively.

Table 92. Data Types

<table>
<thead>
<tr>
<th>(A, \ aux, \ rcond, \ det)</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>SGEFCD</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DGEFCD</td>
</tr>
</tbody>
</table>

Note: The output from these factorization subroutines should be used only as input to the following subroutines for performing a solve or inverse: SGES/SGESM/SGEICD and DGES/DGESM/DGEICD, respectively.

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL SGEFCD</th>
<th>DGEFCD (a, lda, n, ipvt, iopt, rcond, det, aux, naux)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>sgefcd</td>
<td>dgefcd (a, lda, n, ipvt, iopt, rcond, det, aux, naux);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SGEFCD</td>
<td>DGEFCD (a, lda, n, ipvt, iopt, rcond, det, aux, naux);</td>
</tr>
</tbody>
</table>

On Entry

\(a \)

is a general matrix \(A \) of order \(n \), whose factorization, reciprocal of condition number, and determinant are computed. Specified as: an \(lda \) by (at least) \(n \) array, containing numbers of the data type indicated in Table 92.

\(lda \)

is the leading dimension of the array specified for \(a \). Specified as: a fullword integer; \(lda > 0 \) and \(lda \geq n \).

\(n \)

is the order of matrix \(A \). Specified as: a fullword integer; \(0 \leq n \leq lda \).

\(ipvt \)

See “On Return” on page 488.

\(iopt \)

indicates the type of computation to be performed, where:

If \(iopt = 0 \), the matrix is factored.

If \(iopt = 1 \), the matrix is factored, and the reciprocal of the condition number is computed.

If \(iopt = 2 \), the matrix is factored, and the determinant is computed.

If \(iopt = 3 \), the matrix is factored, and the reciprocal of the condition number and the determinant are computed.

Specified as: a fullword integer; \(iopt = 0, 1, 2, \text{ or } 3 \).

\(rcond \)

See “On Return” on page 488.
SGEFCD and DGEFCD

\textit{det}

See “On Return” on page 488.

\textit{aux}

has the following meaning:

If \(\text{naux} = 0 \) and error 2015 is unrecoverable, \(\text{aux} \) is ignored.

Otherwise, it is a storage work area used by this subroutine. Its size is specified by \(\text{naux} \).

Specified as: an area of storage, containing numbers of the data type indicated in Table 92 on page 487.

\textit{naux}

is the size of the work area specified by \(\text{aux} \)—that is, the number of elements in \(\text{aux} \). Specified as: a fullword integer, where:

If \(\text{naux} = 0 \) and error 2015 is unrecoverable, SGEFCD and DGEFCD dynamically allocate the work area used by the subroutine. The work area is deallocated before control is returned to the calling program.

Otherwise, \(\text{naux} \geq n \).

\textbf{On Return}

\textit{a}

is the transformed matrix \(\text{A} \) of order \(n \), containing the results of the factorization. See “Function” on page 489. Returned as: an \(\text{lda} \) by (at least) \(n \) array, containing numbers of the data type indicated in Table 92 on page 487.

\textit{ipvt}

is the integer vector \(\text{ipvt} \) of length \(n \), containing the pivot indices. Returned as: a one-dimensional array of (at least) length \(n \), containing fullword integers.

\textit{rcond}

is an estimate of the reciprocal of the condition number, \(rcond \), of matrix \(\text{A} \). Returned as: a number of the data type indicated in Table 92 on page 487; \(rcond \geq 0 \).

\textit{det}

is the vector \(\text{det} \), containing the two components, \(\text{det}_1 \) and \(\text{det}_2 \), of the determinant of matrix \(\text{A} \). The determinant is:

\[\text{det}_1 \left(10^{\text{det}_2}\right) \]

where \(1 \leq \text{det}_1 < 10 \). Returned as: an array of length 2, containing numbers of the data type indicated in Table 92 on page 487.

\textbf{Notes}

1. In your C program, argument \(\text{rcond} \) must be passed by reference.

2. When \(\text{iopt} = 0 \), these subroutines provide the same function as a call to SGEF or DGEF, respectively.

3. You have the option of having the minimum required value for \(\text{naux} \) dynamically returned to your program. For details, see “Using Auxiliary Storage in ESSL” on page 30.

4. On both input and output, matrix \(\text{A} \) conforms to LAPACK format.
Function: Matrix A is factored using Gaussian elimination with partial pivoting (ipvt) to compute the LU factorization of A, where $A = PLU$:

- L is a unit lower triangular matrix.
- U is an upper triangular matrix.
- P is the permutation matrix.

On output, the transformed matrix A contains U in the upper triangle and L in the strict lower triangle where ipvt contains the pivots representing permutation P, such that $A = PLU$.

An estimate of the reciprocal of the condition number, $rcond$, and the determinant, det, can also be computed by this subroutine. The estimate of the condition number uses an enhanced version of the algorithm described in references [69] and [70].

If n is 0, no computation is performed. See reference [36].

These subroutines call SGEF and DGEF, respectively, to perform the factorization. ipvt is an output vector of SGEF and DGEF. It is returned for use by SGES/SGESM and DGES/DGESM, the solve subroutines.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, $naux = 0$, and unable to allocate work area.

Computational Errors: Matrix A is singular.

- If your program is not terminated by SGEF and DGEF, then SGEFCD and DGEFCD, respectively, return 0 for $rcond$ and det.
- One or more columns of L and the corresponding diagonal of U contain all zeros (all columns of L are checked). The first column, i, of L with a corresponding $U = 0$ diagonal element is identified in the computational error message, issued by SGEF or DGEF, respectively.
- i can be determined at run time by using the ESSL error-handling facilities. To obtain this information, you must use ERRSET to change the number of allowable errors for error code 2103 in the ESSL error option table; otherwise, the default value causes your program to be terminated by SGEF or DGEF, respectively, when this error occurs. If your program is not terminated by SGEF or DGEF, respectively, the return code is set to 2. For details, see “What Can You Do about ESSL Computational Errors?” on page 46.

Input-Argument Errors

1. $lda \leq 0$
2. $n < 0$
3. $n > lda$
4. $iopt \neq 0, 1, 2, or 3$
5. Error 2015 is recoverable or $naux=0$, and $naux$ is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.

Example: This example shows a factorization of matrix A of order 9. The input is the same as used in SGEF and DGEF. See “Example 1” on page 466. The reciprocal of the condition number and the determinant of matrix A are also
computed. The values used to estimate the reciprocal of the condition number in this example are obtained with the following values:

\[
\|A\|_1 = \max(6.0, 8.0, 10.0, 12.0, 13.0, 14.0, 15.0, 15.0, 15.0) = 15.0
\]

Estimate of \(\|A^{-1}\|_1 = 1091.87\)

This estimate is equal to the actual \(rcond\) of \(5.436 \times 10^{-5}\), which is computed by SGEICD and DGEICD. (See “Example 1” on page 532.) On output, the value in \(\text{det}, |A|\), is equal to 336.

Call Statement and Input

\[
\begin{align*}
\text{CALL DGEFCD(} A, 9, 9, \text{ IPVT, 3, RCOND, DET, AUX, 9) } \\
A &= (\text{same as input } A \text{ in “Example 1” on page 466})
\end{align*}
\]

Output

\[
\begin{align*}
A &= (\text{same as output } A \text{ in “Example 1” on page 466}) \\
\text{IPVT} &= (3, 4, 5, 6, 7, 8, 9, 8, 9) \\
\text{RCOND} &= 0.00005436 \\
\text{DET} &= (3.36, 2.00)
\end{align*}
\]
SPPF, DPPF, SPOF, DPOF, CPOF, and ZPOF—Positive Definite Real Symmetric or Complex Hermitian Matrix Factorization

The SPPF and DPPF subroutines factor positive definite symmetric matrix A, stored in lower-packed storage mode, using Gaussian elimination (LDL^T) or the Cholesky factorization method. To solve a system of equations with one or more right-hand sides, follow the call to these subroutines with one or more calls to SPPS or DPPS, respectively. To find the inverse of matrix A, follow the call to these subroutines, performing Cholesky factorization, with a call to SPPICD or DPPICD, respectively.

The SPOF, DPOF, CPOF, and ZPOF subroutines factor matrix A stored in upper or lower storage mode, where:

- For SPOF and DPOF, A is a positive definite symmetric matrix.
- For CPOF and ZPOF, A is a positive definite complex Hermitian matrix.

Matrix A is factored using Cholesky factorization, (LL^T or UU^T for SPOF and DPOF and LL^H or UU^H for CPOF and ZPOF). To solve the system of equations with one or more right-hand sides, follow the call to these subroutines with a call to SPOSM, DPOSM, CPOSM, or ZPOSM. To find the inverse of matrix A, follow the call to SPOF or DPOF with a call to SPOICD or DPOICD.

Table 93. Data Types

<table>
<thead>
<tr>
<th>A</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>SPPF and SPOF</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DPPF and DPOF</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>CPOF</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>ZPOF</td>
</tr>
</tbody>
</table>

Note: The output from SPPF and DPPF should be used only as input to the following subroutines for performing a solve or inverse: SPPS/SPPICD and DPPS/DPPICD, respectively. The output from SPOF, DPOF, CPOF, and ZPOF should be used only as input to the following subroutines for performing a solve or inverse: SPOSM/SPOICD, DPOSM/DPOICD, CPOSM, and ZPOSM, respectively.

Syntax

Fortran

```fortran
CALL SPPF | DPPF (ap, n, iopt)
CALL SPOF | DPOF | CPOF | ZPOF (uplo, a, lda, n)
```

C and C++

```c
spf | dpf (ap, n, iopt);
sopf | dpof | copf | zpf (uplo, a, lda, n);
```

PL/I

```pli
CALL SPPF | DPPF (ap, n, iopt);
CALL SPOF | DPOF | CPOF | ZPOF (uplo, a, lda, n);
```

On Entry
SPPF, DPPF, SPOF, DPOF, CPOF, and ZPOF

uplo
indicates whether matrix A is stored in upper or lower storage mode, where:

- If $uplo = 'U'$, A is stored in upper storage mode.
- If $uplo = 'L'$, A is stored in lower storage mode.

Specified as: a single character. It must be 'U' or 'L'.

ap
is array, referred to as AP, in which matrix A, to be factored, is stored in lower-packed storage mode.

Specified as: a one-dimensional array, containing numbers of the data type indicated in Table 93 on page 491. See Notes.

- If $iopt = 0$, the array must have at least $n(n+1)/2+n$ elements.
- If $iopt = 1$, the array must have at least $n(n+1)/2$ elements.

a
is the positive definite matrix A, to be factored.

Specified as: an lda by (at least) n array, containing numbers of the data type indicated in Table 93 on page 491.

lda
is the leading dimension of the array specified for a.

Specified as: a fullword integer; $lda > 0$ and $lda = n$.

n
is the order n of matrix A.

Specified as: a fullword integer; $n >= 0$.

iopt
determines the type of computation to be performed, where:

- If $iopt = 0$, the matrix is factored using the LDL^T method.
- If $iopt = 1$, the matrix is factored using Cholesky factorization.

Specified as: a fullword integer; $iopt = 0$ or 1.

On Return

ap
is the transformed matrix A of order n, containing the results of the factorization. See “Notes” and “Function” on page 493.

Returned as: a one-dimensional array, containing numbers of the data type indicated in Table 93 on page 491.

- If $iopt = 0$, the array contains $n(n+1)/2+n$ elements.
- If $iopt = 1$, the array contains $n(n+1)/2$ elements.

a
is the transformed matrix A of order n, containing the results of the factorization. See “Function” on page 493.

Returned as: a two-dimensional array, containing numbers of the data type indicated in Table 93 on page 491.

Notes

1. All subroutines accept lowercase letters for the $uplo$ argument.
2. In the input and output arrays specified for ap, the first $n(n+1)/2$ elements are
matrix elements. The additional n locations, required in the array when \(iopt = 0 \), are used for working storage by this subroutine and should not be altered between calls to the factorization and solve subroutines.

3. On input, the imaginary parts of the diagonal elements of the complex Hermitian matrix A are assumed to be zero, so you do not have to set these values. On output, they are set to zero.

4. SPPF and DPPF in many cases utilize new algorithms based on recursive packed storage format. As a result, on output, the array specified for AP may be stored in this new format rather than the conventional lower packed format. (See references [52], [66], and [67]).

The array specified for AP should not be altered between calls to the factorization and solve subroutines; otherwise unpredictable results may occur.

5. For a description of the storage modes used for the matrices, see:
 - For positive definite symmetric matrices, see “Positive Definite or Negative Definite Symmetric Matrix” on page 67.
 - For positive definite complex Hermitian matrices, see “Positive Definite or Negative Definite Complex Hermitian Matrix” on page 69.

Function: The functions for these subroutines are described in the sections below.

For SPPF and DPPF: If \(iopt = 0 \), the positive definite symmetric matrix A, stored in lower-packed storage mode, is factored using Gaussian elimination, where A is expressed as:

$$ A = LDL^T $$

where:

L is a unit lower triangular matrix.
L^T is the transpose of matrix L.
D is a diagonal matrix.

If \(iopt = 1 \), the positive definite symmetric matrix A is factored using Cholesky factorization, where A is expressed as:

$$ A = LL^T $$

where L is a lower triangular matrix.

If n is 0, no computation is performed. See references [36] and [38].

For SPOF, DPOF, CPOF, and ZPOF: The positive definite matrix A, stored in upper or lower storage mode, is factored using Cholesky factorization, where A is expressed as:

- For SPOF and DPOF: $A = LL^T$ or $A = U^TU$
- For CPOF and ZPOF: $A = LL^H$ or $A = U^HU$

where:

L is a lower triangular matrix.
L^T is the transpose of matrix L.
L^H is the conjugate transpose of matrix L.
U is an upper triangular matrix.
U^T is the transpose of matrix U.
U^H is the conjugate transpose of matrix U.

If n is 0, no computation is performed. See references [8], [70], and [36].

Error Conditions

Resource Errors: Unable to allocate internal work area.

Computational Errors

1. Matrix A is not positive definite (for SPPF and DPPF when $iopt = 0$).
 - Processing continues to the end of the matrix.
 - One or more elements of D contain values less than or equal to 0; all elements of D are checked. The index i of the last nonpositive element encountered is identified in the computational error message.
 - The return code is set to 1.
 - i can be determined at run time by use of the ESSL error-handling facilities. To obtain this information, you must use ERRSET to change the number of allowable errors for error code 2104 in the ESSL error option table; otherwise, the default value causes your program to terminate when this error occurs. For details, see “What Can You Do about ESSL Computational Errors?” on page 46.

2. Matrix A is not positive definite (for SPPF and DPPF when $iopt = 1$ and for SPOF, DPOF, CPOF, and ZPOF).
 - Processing stops at the first occurrence of a nonpositive definite diagonal element.
 - The order i of the first minor encountered having a nonpositive determinant is identified in the computational error message.
 - The return code is set to 1.
 - i can be determined at run time by use of the ESSL error-handling facilities. To obtain this information, you must use ERRSET to change the number of allowable errors for error code 2115 in the ESSL error option table; otherwise, the default value causes your program to terminate when this error occurs. For details, see “What Can You Do about ESSL Computational Errors?” on page 46.

Input-Argument Errors

1. $n < 0$
2. $iopt \neq 0$ or 1
3. $uplo \neq 'U'$ or 'L'
4. $lda \leq 0$
5. $n > lda$

Example 1: This example shows a factorization of positive definite symmetric matrix A of order 9, stored in lower-packed storage mode, where on input matrix A is:

494 Engineering and Scientific Subroutine Library Version 3 Guide and Reference
On output, all elements of this matrix A are 1.0.

Note: The AP arrays are formatted in a triangular arrangement for readability; however, they are stored in lower-packed storage mode.

Call Statement and Input

```
AP N IOPT
```

```
CALL SPPF( AP, 9, 0 )
```

```
AP = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
     2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0,
     3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0,
     4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0,
     5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0,
     6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0,
     7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0,
     8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0,
     9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0, 9.0,
     ., ., ., ., ., ., ., ., . )
```

Output

```
AP = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
     1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
     1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
     1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
     1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
     1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
     1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
     1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
     1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
```

Example 2: This example shows a factorization of the same positive definite symmetric matrix A of order 9 used in Example 1, stored in lower-packed storage mode.

Note: The AP arrays are formatted in a triangular arrangement for readability; however, they are stored in lower-packed storage mode.

Call Statement and Input

```
AP N IOPT
```

```
CALL SPPF( AP, 9, 1 )
```
SPPF, DPPF, SPOF, DPOF, CPOF, and ZPOF

\[AP = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 5.0, 5.0, 5.0, 5.0, 6.0, 6.0, 6.0, 7.0, 7.0, 7.0, 8.0, 8.0, 9.0) \]

Output

\[AP = (1.0, 1.0) \]

Example 3: This example shows a factorization of the same positive definite symmetric matrix \(A \) of order 9 used in Example 1, but stored in lower storage mode.

Call Statement and Input

\[
\text{CALL SPOF('L', A, 9, 9)}
\]

\[
\begin{bmatrix}
1.0 & . & . & . & . & . & . & . & . \\
1.0 & 2.0 & . & . & . & . & . & . & . \\
1.0 & 2.0 & 3.0 & . & . & . & . & . & . \\
1.0 & 2.0 & 3.0 & 4.0 & . & . & . & . & . \\
1.0 & 2.0 & 3.0 & 4.0 & 5.0 & . & . & . & . \\
1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & . & . & . \\
1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & . & . \\
1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 8.0 & . \\
1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 8.0 & 9.0 \\
\end{bmatrix}
\]

Output

\[
\begin{bmatrix}
1.0 & . & . & . & . & . & . & . & . \\
1.0 & 1.0 & . & . & . & . & . & . & . \\
1.0 & 1.0 & 1.0 & . & . & . & . & . & . \\
1.0 & 1.0 & 1.0 & 1.0 & . & . & . & . & . \\
1.0 & 1.0 & 1.0 & 1.0 & 1.0 & . & . & . & . \\
1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & . & . & . \\
1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & . & . \\
1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & . \\
1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
\end{bmatrix}
\]
Example 4: This example shows a factorization of the same positive definite symmetric matrix A of order 9 used in Example 1, but stored in upper storage mode.

Call Statement and Input

```
CALL SPOF( 'U' , A , 9 , 9 )
```

```
A =
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
. 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
. . 3.0 3.0 3.0 3.0 3.0 3.0 3.0
. . . 4.0 4.0 4.0 4.0 4.0 4.0
```

Output

```
A =
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
. . 1.0 1.0 1.0 1.0 1.0 1.0 1.0
. . . 1.0 1.0 1.0 1.0 1.0 1.0
```

Example 5: This example shows a factorization of positive definite complex Hermitian matrix A of order 3, stored in lower storage mode, where on input matrix A is:

```
A =
25.0  0.0  0.0
-5.0  -5.0  0.0
10.0  5.0  0.0
```

Note: On input, the imaginary parts of the diagonal elements of the complex Hermitian matrix A are assumed to be zero, so you do not have to set these values. On output, they are set to zero.

Call Statement and Input

```
CALL CPOF( 'L' , A , 3 , 3 )
```

```
A =
(25.0, ) . .
(-5.0, 5.0) (51.0, ) .
(10.0, -5.0) (4.0, 6.0) (71.0, )
```
Output

\[
A = \begin{bmatrix}
(5.0, 0.0) & . & . \\
(-1.0, 1.0) & (7.0, 0.0) & . \\
(2.0, -1.0) & (1.0, 1.0) & (8.0, 0.0)
\end{bmatrix}
\]

Example 6: This example shows a factorization of positive definite complex Hermitian matrix \(A \) of order 3, stored in upper storage mode, where on input matrix \(A \) is:

\[
\begin{bmatrix}
(9.0, 0.0) & (3.0, 3.0) & (3.0, -3.0) \\
(3.0, -3.0) & (18.0, 0.0) & (8.0, -6.0) \\
(3.0, 3.0) & (8.0, 6.0) & (43.0, 0.0)
\end{bmatrix}
\]

Note: On input, the imaginary parts of the diagonal elements of the complex Hermitian matrix \(A \) are assumed to be zero, so you do not have to set these values. On output, they are set to zero.

Call Statement and Input

```
CALL CPOF( 'U' , A , 3 , 3 )
```

Output

\[
A = \begin{bmatrix}
(3.0, 0.0) & (1.0, 1.0) & (1.0, -1.0) \\
. & (4.0, 0.0) & (2.0, -1.0) \\
. & . & (6.0, 0.0)
\end{bmatrix}
\]
SPPS and DPPS—Positive Definite Real Symmetric Matrix Solve

These subroutines solve the system $Ax = b$ for x, where A is a positive definite symmetric matrix, and x and b are vectors. The subroutines use the results of the factorization of matrix A, produced by a preceding call to SPPF/SPPFCD or DPPF/DPPFP/DPPFCD, respectively.

Table 94. Data Types

<table>
<thead>
<tr>
<th>A, b, x</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>SPPS</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DPPS</td>
</tr>
</tbody>
</table>

Note: The input to these solve subroutines must be the output from the factorization subroutines SPPF/SPPFCD and DPPF/DPPFP/DPPFCD, respectively.

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL SPPS I DPPS (ap, n, bx, iopt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>spps I dpps (ap, n, bx, iopt);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SPPS I DPPS (ap, n, bx, iopt);</td>
</tr>
</tbody>
</table>

On Entry

ap

is the factorization of matrix A, produced by a preceding call to SPPF/SPPFCD or DPPF/DPPFP/DPPFCD, respectively. Specified as: a one-dimensional array, containing numbers of the data type indicated in Table 94, where:

If $iopt = 0$, the array must contain $n(n+1)/2+n$ elements.

If $iopt = 1$, the array must contain $n(n+1)/2$ elements.

n

is the order of matrix A used in the factorization, and the lengths of vectors b and x. Specified as: a fullword integer; $n \geq 0$.

bx

is the vector b of length n, containing the right-hand side of the system. Specified as: a one-dimensional array of (at least) length n, containing numbers of the data type indicated in Table 94.

$iopt$

indicates the type of factorization that was performed on matrix A, where:

If $iopt = 0$, the matrix was factored using the LDL^T method.

If $iopt = 1$, the matrix was factored using Cholesky factorization.

Specified as: a fullword integer; $iopt = 0$ or 1.

On Return

bx

is the solution vector x of length n, containing the results of the computation. Specified as: a one-dimensional array, containing numbers of the data type indicated in Table 94.
Notes

1. The array data specified for input argument \(ap \) for these subroutines must be the same as the corresponding output argument for SPPF/SPPFCD and DPPF/DPPFP/DPPFCD, respectively.

2. The scalar data specified for input argument \(n \) for these subroutines must be the same as that specified for SPPF/SPPFCD and DPPF/DPPFP/DPPFCD, respectively.

3. When you call these subroutines after calling SPPF or DPPF, the value of input argument \(iopt \) must be the same as that specified for SPPF and DPPF.

4. When you call these subroutines after calling SPPFCD or DPPFCD, the value of input argument \(iopt \) must be 0.

5. When you call these subroutines after calling DPPFP, the value of input argument \(iopt \) must be 1.

6. In the input array specified for \(ap \), the first \(n(n+1)/2 \) elements are matrix elements. The additional \(n \) locations, required in the array when \(iopt = 0 \), are used for working storage by this subroutine and should not be altered between calls to the factorization and solve subroutines.

7. The vectors and matrices used in this computation must have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.

8. For a description of how a positive definite symmetric matrix is stored in lower-packed storage mode in an array, see “Symmetric Matrix” on page 63.

Function: The system \(Ax = b \) is solved for \(x \), where \(A \) is a positive definite symmetric matrix, stored in lower-packed storage mode in array \(AP \), and \(x \) and \(b \) are vectors. These subroutines use the results of the factorization of matrix \(A \), produced by a preceding call to SPPF/SPPFCD or DPPF/DPPFP/DPPFCD, respectively.

If \(n \) is 0, no computation is performed. See references [36] and [38].

Error Conditions

Computational Errors: None

Note: If a call to SPPF, DPPF, SPPFCD, DPPFCD, or DPPFP resulted in a nonpositive definite matrix, error 2104 or 2115, SPPS or DPPS results may be unpredictable or numerically unstable.

Input-Argument Errors

1. \(n < 0 \)
2. \(iopt \neq 0 \) or 1

Example 1: This example shows how to solve the system \(Ax = b \), where matrix \(A \) is the same matrix factored in the “Example 1” on page 494 for SPPF and DPPF.

Call Statement and Input

\[
\begin{array}{cccc}
\text{AP} & \text{N} & \text{BX} & \text{IOPT} \\
\end{array}
\]

\[
\begin{array}{c}
\text{CALL SPPS (AP , 9 , BX , 0)}
\end{array}
\]
AP = (same as output AP in “Example 1” on page 494 for SPPF and DPPF)

BX = (9.0, 17.0, 24.0, 30.0, 35.0, 39.0, 42.0, 44.0, 45.0)

Output

BX = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

Example 2: This example shows how to solve the same system as in Example 1, where matrix *A* is the same matrix factored in the “Example 2” on page 495 for SPPF and DPPF.

Call Statement and Input

```
CALL SPPS( AP , 9 , BX , 1 )
```

AP = (same as output AP in “Example 2” on page 495 for SPPF and DPPF)

BX = (9.0, 17.0, 24.0, 30.0, 35.0, 39.0, 42.0, 44.0, 45.0)

Output

BX = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
SPOSM, DPOSM, CPOSM, and ZPOSM—Positive Definite Real Symmetric or Complex Hermitian Matrix Multiple Right-Hand Side Solve

These subroutines solve the system $AX = B$ for X, using multiple right-hand sides, where X and B are general matrices and:

- For SPOSM and DPOSM, A is a positive definite symmetric matrix.
- For CPOSM and ZPOSM, A is a positive definite complex Hermitian matrix.

These subroutines use the results of the factorization of matrix A, produced by a preceding call to SPOF/SPOFCD, DPOF/DPOFCD, CPOF, or ZPOF, respectively.

Table 95. Data Types

<table>
<thead>
<tr>
<th>A, B, X</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>SPOSM</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DPOSM</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>CPOSM</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>ZPOSM</td>
</tr>
</tbody>
</table>

Note: The input to these solve subroutines must be the output from the factorization subroutines SPOF/SPOFCD, DPOF/DPOFCD, CPOF, and ZPOF, respectively.

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL SPOSM I DPOSM I CPOSM I ZPOSM (uplo, a, lda, n, b, ldb, nrhs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>spsosm</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SPOSM I DPOSM I CPOSM I ZPOSM (uplo, a, lda, n, b, ldb, nrhs);</td>
</tr>
</tbody>
</table>

On Entry

$uplo$

- indicates whether the original matrix A is stored in upper or lower storage mode, where:
 - If $uplo = 'U'$, A is stored in upper storage mode.
 - If $uplo = 'L'$, A is stored in lower storage mode.
- Specified as: a single character. It must be 'U' or 'L'.

a

- is the factorization of positive definite matrix A, produced by a preceding call to SPOF/SPOFCD, DPOF/DPOFCD, CPOF, or ZPOF, respectively. Specified as: an lda by (at least) n array, containing numbers of the data type indicated in Table 95.

lda

- is the leading dimension of the array specified for a. Specified as: a fullword integer; $lda > 0$ and $lda \geq n$.

n

- is the order of matrix A. Specified as: a fullword integer; $0 \leq n \leq lda$.
is the matrix B, containing the $nrhs$ right-hand sides of the system. The
right-hand sides, each of length n, reside in the columns of matrix B. Specified
as: an ldb by (at least) $nrhs$ array, containing numbers of the data type
indicated in Table 95.

ldb
is the leading dimension of the array specified for b. Specified as: a fullword
integer; $ldb > 0$ and $ldb \geq n$.

$nrhs$
is the number of right-hand sides in the system to be solved. Specified as: a
fullword integer; $nrhs \geq 0$.

On Return

is the matrix B, containing the $nrhs$ solutions to the system in the columns of B.
Specified as: an ldb by (at least) $nrhs$ array, containing numbers of the data
type indicated in Table 95 on page 502.

Notes
1. All subroutines accept lowercase letters for the $uplo$ argument.
2. The scalar data specified for input arguments $uplo$, lda, and n for these
subroutines must be the same as the corresponding input arguments specified
for SPOF/SPOFCD, DPOF/DPOFCD, CPOF, and ZPOF, respectively.
3. The array data specified for input argument a for these subroutines must be the
same as the corresponding output arguments for SPOF/SPOFCD,
DPOF/DPOFCD, CPOF, and ZPOF, respectively.
4. The vectors and matrices used in this computation must have no common
elements; otherwise, results are unpredictable. See “Concepts” on page 53.
5. For a description of how the matrices are stored:
 • For positive definite symmetric matrices, see “Positive Definite or Negative
 Definite Symmetric Matrix” on page 67.
 • For positive definite complex Hermitian matrices, see “Positive Definite or
 Negative Definite Complex Hermitian Matrix” on page 69.

Function: The system $AX = B$ is solved for X, using multiple right-hand sides,
where X and B are general matrices, and A is a positive definite symmetric matrix
for SPOSM and DPOSM and a positive definite complex Hermitian matrix for
CPOSM and ZPOSM. These subroutines use the results of the factorization of
matrix A, produced by a preceding call to SPOF/SPOFCD, DPOF/DPOFCD, CPOF,
or ZPOF, respectively. For a description of how A is factored, see “SPPF, DPPF,
SPOF, DPOF, CPOF, and ZPOF—Positive Definite Real Symmetric or Complex
Hermitian Factorization” on page 491.

If n or $nrhs$ is 0, no computation is performed. See references [8] and [36].

Error Conditions

Computational Errors: None

Note: If the factorization performed by SPOF, DPOF, CPOF, ZPOF, SPOFCD, or
DPOFCD failed because matrix A was not positive definite, the results
SPOSM, DPOSM, CPOSM, and ZPOSM

returned by this subroutine are unpredictable, and there may be a divide-by-zero program exception message.

Input-Argument Errors

1. \textit{uplo} ≠ 'U' or 'L'
2. \textit{lda}, \textit{ldb} ≤ 0
3. \textit{n} < 0
4. \textit{n} > \textit{lda}
5. \textit{n} > \textit{ldb}
6. \textit{nrhs} < 0

Example 1: This example shows how to solve the system \(AX = B \) for two right-hand sides, where matrix \(A \) is the same matrix factored in the “Example 3” on page 496 for SPOF.

Call Statement and Input

\[
\begin{array}{cccccc}
\text{UPLO} & \text{A} & \text{LDA} & \text{N} & \text{B} & \text{LDB} & \text{NRHS} \\
\text{CALL } & \text{SPOSM('L', A, 9, 9, B, 9, 2)} \\
\end{array}
\]

\(A \) = (same as output \(A \) in “Example 3” on page 496)

\[
\begin{bmatrix}
9.0 & 45.0 \\
17.0 & 89.0 \\
24.0 & 131.0 \\
30.0 & 170.0 \\
\end{bmatrix}
\]

\(B \) =

\[
\begin{bmatrix}
35.0 & 205.0 \\
39.0 & 235.0 \\
42.0 & 259.0 \\
44.0 & 276.0 \\
45.0 & 285.0 \\
\end{bmatrix}
\]

Output

\[
\begin{bmatrix}
1.0 & 1.0 \\
1.0 & 2.0 \\
1.0 & 3.0 \\
1.0 & 4.0 \\
\end{bmatrix}
\]

Example 2: This example shows how to solve the system \(A^T X = B \) for two right-hand sides, where matrix \(A \) is the input matrix factored in “Example 4” on page 497 for SPOF.

Call Statement and Input

\[
\begin{array}{cccccc}
\text{UPLO} & \text{A} & \text{LDA} & \text{N} & \text{B} & \text{LDB} & \text{NRHS} \\
\text{CALL } & \text{SPOSM('U', A, 9, 9, B, 9, 2)} \\
\end{array}
\]

\(B \) =

\[
\begin{bmatrix}
1.0 & 5.0 \\
1.0 & 6.0 \\
1.0 & 7.0 \\
1.0 & 8.0 \\
1.0 & 9.0 \\
\end{bmatrix}
\]
A = (same as output A in “Example 4” on page 497)

\[
A = \begin{bmatrix}
9.0 & 45.0 \\
17.0 & 89.0 \\
24.0 & 131.0 \\
30.0 & 170.0
\end{bmatrix}
\]

B = \begin{bmatrix}
35.0 & 205.0 \\
39.0 & 235.0 \\
42.0 & 259.0 \\
44.0 & 276.0 \\
45.0 & 285.0
\end{bmatrix}

Output

\[
B = \begin{bmatrix}
1.0 & 1.0 \\
1.0 & 2.0 \\
1.0 & 3.0 \\
1.0 & 4.0
\end{bmatrix}
\]

Example 3: This example shows how to solve the system \(AX = B \) for two right-hand sides, where matrix \(A \) is the same matrix factored in the “Example 5” on page 497 for CPOF.

Call Statement and Input

\[
\text{CALL CPOSM('L', A, 3, 3, B, 3, 2)}
\]

A = (same as output A in “Example 5” on page 497)

\[
B = \begin{bmatrix}
(60.0, -55.0) & (70.0, 10.0) \\
(34.0, 58.0) & (-51.0, 110.0) \\
(13.0, -152.0) & (75.0, 63.0)
\end{bmatrix}
\]

Output

\[
B = \begin{bmatrix}
(2.0, -1.0) & (2.0, 0.0) \\
(1.0, 1.0) & (-1.0, 2.0) \\
(0.0, -2.0) & (1.0, 1.0)
\end{bmatrix}
\]

Example 4: This example shows how to solve the system \(AX = B \) for two right-hand sides, where matrix \(A \) is the input matrix factored in “Example 6” on page 498 for CPOF.
Call Statement and Input

```
          CALL CPOSM( 'U' , A , 3 , 3 , B , 3 , 2 )
```

A = (same as output A in “Example 6” on page 498)

\[
A = \begin{bmatrix}
(33.0, -18.0) & (15.0, -3.0) \\
(45.0, -45.0) & (8.0, -2.0) \\
(152.0, 1.0) & (43.0, -29.0)
\end{bmatrix}
\]

Output

\[
B = \begin{bmatrix}
(2.0, -1.0) & (2.0, 0.0) \\
(1.0, -1.0) & (0.0, 1.0) \\
(3.0, 0.0) & (1.0, -1.0)
\end{bmatrix}
\]
SPPFCD, DPPFCD, SPOFCD, and DPOFCD—Positive Definite
Real Symmetric Matrix Factorization, Condition Number
Reciprocal, and Determinant

The SPPFCD and DPPFCD subroutines factor positive definite symmetric matrix A, stored in lower-packed storage mode, using Gaussian elimination (LDL^T). The reciprocal of the condition number and the determinant of matrix A can also be computed. To solve the system of equations with one or more right-hand sides, follow the call to these subroutines with one or more calls to SPPS or DPPS, respectively.

The SPOFCD and DPOFCD subroutines factor positive definite symmetric matrix A, stored in upper or lower storage mode, using Cholesky factorization (LL^T or UU^T). The reciprocal of the condition number and the determinant of matrix A can also be computed. To solve the system of equations with one or more right-hand sides, follow the call to these subroutines with a call to SPOSM or DPOSM, respectively. To find the inverse of matrix A, follow the call to these subroutines with a call to SPOICD or DPOICD, respectively.

Syntax

<table>
<thead>
<tr>
<th>Data Types</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, aux, rcond, det</td>
<td>SPPFCD and SPOFCD</td>
</tr>
<tr>
<td>Short-precision real</td>
<td></td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DPPFCD and DPOFCD</td>
</tr>
</tbody>
</table>

Note: The output factorization from SPPFCD and DPPFCD should be used only as input to the solve subroutines SPPS and DPPS, respectively. The output from SPOFCD and DPOFCD should be used only as input to the following subroutines for performing a solve or inverse: SPOSM/SPOICD and DPOSM/DPOICD, respectively.

On Entry

$uplo$

indicates whether matrix A is stored in upper or lower storage mode, where:

- If $uplo$ = 'U', A is stored in upper storage mode.
- If $uplo$ = 'L', A is stored in lower storage mode.

Specified as: a single character. It must be 'U' or 'L'.
SPPFCD, DPPFCD, SPOFCD, and DPOFCD

\(ap \)

is the array, referred to as \(AP \), in which the matrix \(A \), to be factored, is stored in lower-packed storage mode. Specified as: a one-dimensional array of (at least) length \(n(n+1)/2+n \), containing numbers of the data type indicated in Table 96.

\(a \)

is the positive definite symmetric matrix \(A \), to be factored. Specified as: an \(lda \) by (at least) \(n \) array, containing numbers of the data type indicated in Table 96 on page 507.

\(lda \)

is the leading dimension of the array specified for \(a \). Specified as: a fullword integer; \(lda > 0 \) and \(lda \geq n \).

\(n \)

is the order \(n \) of matrix \(A \). Specified as: a fullword integer, where:

For SPPFCD and DPPFCD, \(n \geq 0 \).

For SPOFCD and DPOFCD, \(0 \leq n \leq lda \).

\(iopt \)

indicates the type of computation to be performed, where:

If \(iopt = 0 \), the matrix is factored.

If \(iopt = 1 \), the matrix is factored, and the reciprocal of the condition number is computed.

If \(iopt = 2 \), the matrix is factored, and the determinant is computed.

If \(iopt = 3 \), the matrix is factored and the reciprocal of the condition number and the determinant are computed.

Specified as: a fullword integer; \(iopt = 0, 1, 2, \) or \(3 \).

\(rcond \)

See “On Return.”

\(det \)

See “On Return.”

\(aux \)

has the following meaning:

If \(naux = 0 \) and error 2015 is unrecoverable, \(aux \) is ignored.

Otherwise, is the storage work area used by these subroutines. Its size is specified by \(naux \). Specified as: an area of storage, containing numbers of the data type indicated in Table 96 on page 507.

\(naux \)

is the size of the work area specified by \(aux \)—that is, the number of elements in \(aux \). Specified as: a fullword integer, where:

If \(naux = 0 \) and error 2015 is unrecoverable, SPPFCD, DPPFCD, SPOFCD, and DPOFCD dynamically allocate the work area used by the subroutine. The work area is deallocated before control is returned to the calling program.

Otherwise, \(naux \geq n \).

On Return

\(ap \)

is the transformed matrix \(A \) of order \(n \), containing the results of the factorization. See “Function” on page 509. Returned as: a one-dimensional array of (at least) length \(n(n+1)/2+n \), containing numbers of the data type indicated in Table 96 on page 507.
is the transformed matrix A of order n, containing the results of the factorization. See “Function” on page 509. Returned as: a two-dimensional array, containing numbers of the data type indicated in Table 96 on page 507.

$rcond$

is the estimate of the reciprocal of the condition number, $rcond$, of matrix A. Returned as: a number of the data type indicated in Table 96 on page 507; $rcond \geq 0$.

det

is the vector det, containing the two components det_1 and det_2 of the determinant of matrix A. The determinant is:

$$det_1 \left(10^{det_2} \right)$$

where $1 \leq det_1 < 10$. Returned as: an array of length 2, containing numbers of the data type indicated in Table 96 on page 507.

Notes

1. All subroutines accept lowercase letters for the $uplo$ argument.

2. In your C program, argument $rcond$ must be passed by reference.

3. When $iopt = 0$, SPPFCD and DPPFCD provide the same function as a call to SPPF or DPPF, respectively. When $iopt = 0$, SPOFCD and DPOFCD provide the same function as a call to SPOF or DPOF, respectively.

4. SPPFCD and DPPFCD in many cases utilize new algorithms based on recursive packed storage format. As a result, on output, the array specified for AP may be stored in this new format rather than the conventional lower packed format. (See references [52], [66], and [67]).

The array specified for AP should not be altered between calls to the factorization and solve subroutines; otherwise unpredictable results may occur.

5. See “Notes” on page 500 for information on specifying a value for $iopt$ in the SPPS and DPPS subroutines after calling SPPFCD and DPPFCD, respectively.

6. In the input and output arrays specified for ap, the first $n(n+1)/2$ elements are matrix elements. The additional n locations in the array are used for working storage by this subroutine and should not be altered between calls to the factorization and solve subroutines.

7. For a description of how a positive definite symmetric matrix is stored in lower-packed storage mode in an array, see “Symmetric Matrix” on page 63. For a description of how a positive definite symmetric matrix is stored in upper or lower storage mode, see “Positive Definite or Negative Definite Symmetric Matrix” on page 67.

8. You have the option of having the minimum required value for $naux$ dynamically returned to your program. For details, see “Using Auxiliary Storage in ESSL” on page 30.

Function: The functions for these subroutines are described in the sections below.
SPPFCD, DPPFCD, SPOFCD, and DPOFCD

For SPPFCD and DPPFCD: The positive definite symmetric matrix \(A \), stored in lower-packed storage mode, is factored using Gaussian elimination, where \(A \) is expressed as:

\[
A = LDL^T
\]

where:

- \(L \) is a unit lower triangular matrix.
- \(L^T \) is the transpose of matrix \(L \).
- \(D \) is a diagonal matrix.

An estimate of the reciprocal of the condition number, \(rcond \), and the determinant, \(det \), can also be computed by this subroutine. The estimate of the condition number uses an enhanced version of the algorithm described in references [69] and [70].

If \(n \) is 0, no computation is performed. See references [36] and [38].

These subroutines call SPPF and DPPF, respectively, to perform the factorization using Gaussian elimination \((LDL)^T\). If you want to use the Cholesky factorization method, you must call SPPF and DPPF directly.

For SPOFCD and DPOFCD: The positive definite symmetric matrix \(A \), stored in upper or lower storage mode, is factored using Cholesky factorization, where \(A \) is expressed as:

\[
A = LL^T \text{ or } A = U^T U
\]

where:

- \(L \) is a lower triangular matrix.
- \(L^T \) is the transpose of matrix \(L \).
- \(U \) is an upper triangular matrix.
- \(U^T \) is the transpose of matrix \(U \).

If specified, the estimate of the reciprocal of the condition number and the determinant can also be computed. The estimate of the condition number uses an enhanced version of the algorithm described in references [69] and [70].

If \(n \) is 0, no computation is performed. See references [8] and [36].

Error Conditions

Resource Errors: Error 2015 is unrecoverable, \(naux = 0 \), and unable to allocate work area.

Computational Errors

1. Matrix \(A \) is not positive definite (for SPPFCD and DPPFCD).
 - If matrix \(A \) is singular (at least one of the diagonal elements are 0), then \(rcond \) and \(det \), if you requested them, are set to 0.
 - If matrix \(A \) is nonsingular and nonpositive definite (none of the diagonal elements are 0 and at least one diagonal element is negative), then \(rcond \) and \(det \), if you requested them, are computed.
 - One or more elements of \(D \) contain values less than or equal to 0; all elements of \(D \) are checked. The index \(i \) of the last nonpositive element...
encountered is identified in the computational error message, issued by SPPF or DPPF, respectively.

- i can be determined at run time by using the ESSL error-handling facilities. To obtain this information, you must use ERRSET to change the number of allowable errors for error code 2104 in the ESSL error option table; otherwise, the default value causes your program to be terminated by SPPF or DPPF, respectively, when this error occurs. If your program is not terminated by SPPF or DPPF, respectively, the return code is set to 2. For details, see “What Can You Do about ESSL Computational Errors?” on page 46.

2. Matrix A is not positive definite (for SPOFCD and DPOFCD).

- If matrix A is singular (at least one of the diagonal elements are 0), then $rcond$ and det, if you requested them, are set to 0.
- If matrix A is nonsingular and nonpositive definite (none of the diagonal elements are 0 and at least one diagonal element is negative), then $rcond$ and det, if you requested them, are computed.
- Processing stops at the first occurrence of a nonpositive definite diagonal element.
- The order i of the first minor encountered having a nonpositive determinant is identified in the computational error message.
- i can be determined at run time by using the ESSL error-handling facilities. To obtain this information, you must use ERRSET to change the number of allowable errors for error code 2115 in the ESSL error option table; otherwise, the default value causes your program to be terminated by SPPF or DPPF, respectively, when this error occurs. If your program is not terminated by SPPF or DPPF, respectively, the return code is set to 2. For details, see “What Can You Do about ESSL Computational Errors?” on page 46.

Input-Argument Errors

1. $uplo \neq 'U'$ or 'L'
2. $lda \leq 0$
3. $lda < n$
4. $n < 0$
5. $iopt \neq 0, 1, 2, or 3$
6. Error 2015 is recoverable or $naux \neq 0$, and $naux$ is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.

Example 1: This example computes the factorization, reciprocal of the condition number, and determinant of matrix A. The input is the same as used in “Example 1” on page 494 for SPPF.

The values used to estimate the reciprocal of the condition number are obtained with the following values:

\[
\|A\|_1 = \max(9.0, 17.0, 24.0, 30.0, 35.0, 39.0, 42.0, 44.0, 45.0) = 45.0
\]

Estimate of $\|A\| = 4.0$

On output, the value in det, $|A|$, is equal to 1.

Call Statement and Input
SPPFCD, DPPFCD, SPOFCD, and DPOFCD

\[
\begin{array}{cccccccc}
AP & N & IOPT & RCOND & DET & AUX & NAUX \\
\mid & \mid & \mid & \mid & \mid & \mid & \mid \\
\end{array}
\]

CALL DPPFCD(\(AP\), \(9\), \(3\), RCOND, DET, AUX, \(9\))

\(AP\) = (same as input \(AP\) in “Example 1” on page 494)

Output

\(AP\) = (same as output \(AP\) in “Example 1” on page 494)

RCOND = 0.0055555

DET = (1.0, 0.0)

Example 2: This example computes the factorization, reciprocal of the condition number, and determinant of matrix \(A\). The input is the same as used in “Example 3” on page 496 for SPOF.

The values used to estimate the reciprocal of the condition number are obtained with the following values:

\[\|A\|_1 = \max(9.0, 17.0, 24.0, 30.0, 35.0, 39.0, 42.0, 44.0, 45.0) = 45.0\]

Estimate of \(\|A\| = 4.0\)

On output, the value in \(\text{det}, \|A\|\), is equal to 1.

Call Statement and Input

\[
\begin{array}{cccccccc}
\text{UPLO} & A & \text{LDA} & N & IOPT & RCOND & DET & AUX & NAUX \\
\mid & \mid \\
\end{array}
\]

CALL SPOFCD(\(\text{L}'\), \(A\), \(9\), \(9\), \(3\), RCOND, DET, AUX, \(9\))

\(A\) = (same as input \(A\) in “Example 3” on page 496)

Output

\(A\) = (same as output \(A\) in “Example 3” on page 496)

RCOND = 0.0055555

DET = (1.0, 0.0)

Example 3: This example computes the factorization, reciprocal of the condition number, and determinant of matrix \(A\). The input is the same as used in “Example 4” on page 497 for SPOF.

The values used to estimate the reciprocal of the condition number are obtained with the following values:

\[\|A\|_1 = \max(9.0, 17.0, 24.0, 30.0, 35.0, 39.0, 42.0, 44.0, 45.0) = 45.0\]

Estimate of \(\|A\| = 4.0\)

On output, the value in \(\text{det}, \|A\|\), is equal to 1.

Call Statement and Input

\[
\begin{array}{cccccccc}
\text{UPLO} & A & \text{LDA} & N & IOPT & RCOND & DET & AUX & NAUX \\
\mid & \mid \\
\end{array}
\]

CALL SPOFCD(\(\text{U}'\), \(A\), \(9\), \(9\), \(3\), RCOND, DET, AUX, \(9\))

\(A\) = (same as input \(A\) in “Example 4” on page 497)
Output

\[
\begin{align*}
A &= \text{(same as output } A \text{ in “Example 4” on page 497)} \\
RCOND &= 0.0055555 \\
DET &= (1.0, 0.0)
\end{align*}
\]
DBSSV—Symmetric Indefinite Matrix Factorization and Multiple Right-Hand Side Solve

The DBSSV subroutine solves a system of linear equations \(AX = B \) for \(X \), where \(A \) is a real symmetric indefinite matrix, and \(X \) and \(B \) are real general matrices.

The matrix \(A \), stored in upper- or lower-packed storage mode, is factored using the Bunch-Kaufman diagonal pivoting method, where \(A \) is expressed as:

\[
A = UDU^T \quad \text{or} \quad A = LDL^T
\]

where:

- \(U \) is a product of permutation and unit upper triangular matrices.
- \(L \) is a product of permutation and unit lower triangular matrices.
- \(D \) is a symmetric block diagonal matrix, consisting of \(1 \times 1 \) and \(2 \times 2 \) diagonal blocks.

Table 97. Data Types

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(A, B)</td>
<td>(ipvt)</td>
<td>Subroutine</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>Integer</td>
<td>DBSSV</td>
</tr>
</tbody>
</table>

Syntax

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>CALL DBSSV (uplo, n, nrhs, ap, ipvt, b, ldb, nsinfo)</td>
</tr>
<tr>
<td>C and C++</td>
<td>dbssv (uplo, n, nrhs, ap, ipvt, b, ldb, nsinfo);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL DBSSV (uplo, n, nrhs, ap, ipvt, b, ldb, nsinfo);</td>
</tr>
</tbody>
</table>

On Entry

uplo
- indicates whether matrix \(A \) is stored in upper- or lower-packed storage mode, where:
 - If \(uplo = 'U' \), \(A \) is stored in upper-packed storage mode.
 - If \(uplo = 'L' \), \(A \) is stored in lower-packed storage mode.

\(n \)
- is the order \(n \) of matrix \(A \) and the number of rows of matrix \(B \).

nrhs
- is the number of right-hand sides; i.e., the number of columns of matrix \(B \).

ap
- is array, referred to as \(AP \), in which matrix \(A \), to be factored, is stored in upper- or lower-packed storage mode.

ipvt
- See “On Return” on page 515.
b
is the matrix B, containing the $nrhs$ right-hand sides of the system. The right-hand sides, each of length n, reside in the columns of matrix B.

Specified as: an ldb by (at least) $nrhs$ array, containing numbers of the data type indicated in Table 97 on page 514.

ldb
is the leading dimension of the array specified for B.

Specified as: a fullword integer; $ldb > 0$ and $ldb \geq n$.

$nsinfo$
is the number of elements in array, AP.

If $n \leq nco$, $nsinfo = n(n + 1) / 2$

Where:

\[nco = \sqrt{2.0(ics)}\]

ics is the size in doublewords of the data cache. The data cache size can be obtained by utilizing the following C language code fragment:

```c
#include <sys/systemcfg.h>
int ics;
  .
  .
ics=_system_configuration.dcache_size/8;
```

Otherwise, to determine a sufficient amount of storage, use the following processor-independent formula:

\[n0 = 100\]

\[ns = (n + n0) (n + n0 + 1) / 2 + n(n0)\]

For $uplo = 'L'$,

$nsinfo \geq ns$

For $uplo = 'U'$,

\[n1 = (n + 1) / 2\]

\[nt = n((n + 1) / 2)\]

\[nt1 = n1(n1 + 1)\]

\[ns1 = nt + nt1\]

\[nsinfo \geq \max(ns, ns1)\]

To determine the minimal amount of storage see "Notes" on page 516.

Specified as: a fullword integer; $nsinfo > 0$.

On Return

ap
is the transformed matrix A of order n, containing the results of the factorization.

If $nsinfo \geq 0$ and $n > nco$, additional information that can be used to obtain a minimum $nsinfo$ is stored in $AP(1)$. See "Notes" on page 516 and "Function" on page 516.

Returned as: a one-dimensional array, containing numbers of the data type indicated in Table 97 on page 514.
ipvt is an integer vector of length n, containing the pivot information necessary to construct the factored form of A.

Returned as: a one-dimensional array of (at least) length n, containing numbers of the data type indicated in Table 97 on page 514.

b is the matrix B, containing the $nrhs$ solutions to the system in the columns of B.

Returned as: an ldb by (at least) $nrhs$ array, containing numbers of the data type indicated in Table 97 on page 514.

$nsinfo$ indicates the result of the computation.

- If $nsinfo = 0$, the subroutine completed successfully.
- If $nsinfo > 0$, factorization was unsuccessful and array B was not updated. $nsinfo$ is set to i where d_{ii} is exactly zero.
- If $nsinfo < 0$, factorization did not take place and the arrays, AP and B, remain unchanged. $Insinfo$ is the minimal storage required for factorization to take place. Error message 2200 is issued and execution terminates, unless you have used ERRSET to make error code 2200 recoverable. See “What Can You Do about ESSL Input-Argument Errors?” on page 45.

Specified as: a fullword integer.

Notes

1. This subroutine accepts lowercase letters for the $uplo$ argument.
2. In your C program, argument $nsinfo$ must be passed by reference.
3. In the input array specified for ap, the first $n(n+1)/2$ elements are matrix elements. The additional locations, required in the array, are used for working storage.
4. The vectors and matrices used in this computation must have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.
5. On return, if $nsinfo \geq 0$ and $n > nco$, ap contains additional information in $AP(1)$ that can be used to obtain the minimal required $nsinfo$. This information can be accessed using the following code fragment:

 REAL*8 AP(NSINFO)
 INTEGER API(2)
 EQUIVALENCE(API, AP)
 .
 .
 NSINFOMIN = API(2)

6. For a description of how a symmetric matrix is stored in upper- or lower-packed storage mode in an array, see “Symmetric Matrix” on page 63.

Function: The system $AX = B$ is solved for X, where A is a real symmetric indefinite matrix, and X and B are real general matrices.

The matrix A, stored in upper- or lower-packed storage mode, is factored using the Bunch-Kaufman diagonal pivoting method, where A is expressed as: $A = UDU^t$ or
\(A = LDL^T \)

where:

- \(U \) is a product of permutation and unit upper triangular matrices.
- \(L \) is a product of permutation and unit lower triangular matrices.
- \(D \) is a symmetric block diagonal matrix, consisting of \(1 \times 1 \) and \(2 \times 2 \) diagonal blocks.

If \(n \) or \(nrhs \) is 0, no computation is performed and the subroutine returns after doing some parameter checking.

See references [8] and [65].

Error Conditions

Resource Errors: None.

Computational Errors: Matrix \(A \) is singular.

- The factorization completed but the block diagonal matrix \(D \) is exactly singular. \(nsinfo \) is set to \(i \), where \(d_{ii} \) is exactly zero. This diagonal element is identified in the computational error message.
- The computational error message may occur multiple times with processing continuing after each error, because the default for the number of allowable errors for error code 2147 is set to be unlimited in the ESSL error option table. For details, see “What Can You Do about ESSL Computational Errors?” on page 46.

Input-Argument Errors

1. \(uplo \neq 'U' \) or \('L' \)
2. \(n < 0 \)
3. \(n > ldb \)
4. \(ldb \leq 0 \)
5. \(nrhs < 0 \)
6. \(nsinfo < (minimum \ value) \)
 - For the minimum value, see the \(nsinfo \) argument description.
 - Return code 1 is returned if error 2200 is recoverable.

Example 1: This example shows how to solve the system \(AX = B \), for three right-hand sides, where matrix \(A \) is a real symmetric indefinite matrix of order 8, stored in lower-packed storage mode, and \(X \) and \(B \) are real general matrices.

On input, matrix \(A \) is:

\[
A = \begin{bmatrix}
3.0 & 5.0 & -2.0 & 2.0 & 3.0 & -5.0 & -2.0 & -3.0 \\
5.0 & 3.0 & 2.0 & -2.0 & 5.0 & -3.0 & 2.0 & -5.0 \\
-2.0 & 2.0 & 0.0 & 0.0 & -2.0 & 2.0 & 0.0 & 6.0 \\
2.0 & -2.0 & 0.0 & 8.0 & -6.0 & -10.0 & -8.0 & -14.0 \\
3.0 & 5.0 & -2.0 & -6.0 & 12.0 & 6.0 & 8.0 & 6.0 \\
-5.0 & -3.0 & 2.0 & -10.0 & 6.0 & 16.0 & 8.0 & 20.0 \\
-2.0 & 2.0 & 0.0 & -8.0 & 8.0 & 8.0 & 6.0 & 18.0 \\
-3.0 & -5.0 & 6.0 & -14.0 & 6.0 & 20.0 & 18.0 & 34.0
\end{bmatrix}
\]
Note: The AP array is formatted in a triangular arrangement for readability; however, it is stored in lower-packed storage mode.

Call Statement and Input

```
CALL DBSSV ( 'L', 8, 3, AP, IPVT, B, 8, 36 )
```

AP = (3.0, 5.0, -2.0, 2.0, 3.0, -5.0, -2.0, -3.0,
 3.0, 2.0, -2.0, 5.0, -3.0, 2.0, -5.0,
 0.0, 0.0, -2.0, 2.0, 0.0, 6.0,
 8.0, -6.0, -10.0, -8.0, -14.0,
 12.0, 6.0, 8.0, 6.0,
 16.0, 8.0, 20.0,
 6.0, 18.0,
 34.0)

```
         1.0  -38.0  47.0
         7.0  -10.0  73.0
        6.0   52.0   2.0
B =    -30.0 -228.0  -42.0
         32.0  183.0  105.0
        34.0  297.0    9.0
        32.0  244.0    4.0
        62.0  497.0   61.0
```

Output

```
         1.0  1.0  8.0
      1.0  2.0  7.0
     1.0  3.0  6.0
B =    1.0  4.0  5.0
     1.0  5.0  4.0
    1.0  6.0  3.0
    1.0  7.0  2.0
   1.0  8.0  1.0
```

```
ninfo = 0
```

Note: ap and ipvt are stored in an internal format.

Example 2: This example shows how to solve the system \(AX = B \), for three right-hand sides, where matrix \(A \) is a real symmetric indefinite matrix of order 8, stored in upper-packed storage mode, and \(X \) and \(B \) are real general matrices.

On input, matrix \(A \) is:
Note: The AP array is formatted in a triangular arrangement for readability; however, it is stored in upper-packed storage mode.

Call Statement and Input

```
CALL DBSSV ( 'U', 8, 3, AP, IPVT, B, 8, 36 )
```

\[
\begin{bmatrix}
34.0 & 18.0 & 17.0 & 6.0 & -14.0 & 6.0 & -5.0 & -3.0 \\
18.0 & 6.0 & 6.0 & 8.0 & -8.0 & 0.0 & 2.0 & -2.0 \\
17.0 & 6.0 & 9.0 & 9.0 & -8.0 & 0.0 & 2.0 & -2.0 \\
6.0 & 8.0 & 9.0 & 12.0 & -6.0 & -2.0 & 5.0 & 3.0 \\
-14.0 & -8.0 & -8.0 & -6.0 & 8.0 & 0.0 & -2.0 & 2.0 \\
6.0 & 0.0 & 0.0 & -2.0 & 0.0 & 0.0 & 2.0 & -2.0 \\
-5.0 & 2.0 & 2.0 & 5.0 & -2.0 & 2.0 & 3.0 & 5.0 \\
-3.0 & -2.0 & -2.0 & 3.0 & 2.0 & -2.0 & 5.0 & 3.0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
59.0 & 52.0 & 479.0 \\
30.0 & 38.0 & 232.0 \\
33.0 & 50.0 & 247.0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
59.0 & 52.0 & 479.0 \\
30.0 & 38.0 & 232.0 \\
33.0 & 50.0 & 247.0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1.0 & 1.0 & 8.0 \\
1.0 & 2.0 & 7.0 \\
1.0 & 3.0 & 6.0 \\
1.0 & 4.0 & 5.0 \\
1.0 & 5.0 & 4.0 \\
1.0 & 6.0 & 3.0 \\
1.0 & 7.0 & 2.0 \\
1.0 & 8.0 & 1.0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1.0 & 1.0 & 8.0 \\
1.0 & 2.0 & 7.0 \\
1.0 & 3.0 & 6.0 \\
1.0 & 4.0 & 5.0 \\
1.0 & 5.0 & 4.0 \\
1.0 & 6.0 & 3.0 \\
1.0 & 7.0 & 2.0 \\
1.0 & 8.0 & 1.0 \\
\end{bmatrix}
\]

Note: \(ap \) and \(ipvt \) are stored in an internal format.
DBSTRF—Symmetric Indefinite Matrix Factorization

DBSTRF factors a real symmetric indefinite matrix \(A \). The matrix \(A \), stored in upper- or lower-packed storage mode, is factored using the Bunch-Kaufman diagonal pivoting method, where \(A \) is expressed as:

\[
A = UDU^T \quad \text{or} \quad A = LDL^T
\]

where:

- \(U \) is a product of permutation and unit upper triangular matrices.
- \(L \) is a product of permutation and unit lower triangular matrices.
- \(D \) is a symmetric block diagonal matrix, consisting of \(1 \times 1 \) and \(2 \times 2 \) diagonal blocks.

To solve a system of equations with one or more right-hand sides, follow the call to this subroutine with one or more calls to DBSTRS.

Table 98. Data Types

<table>
<thead>
<tr>
<th>(A)</th>
<th>(ipvt)</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-precision real</td>
<td>Integer</td>
<td>DBSTRF</td>
</tr>
</tbody>
</table>

Note: The output from DBSTRF should be used only as input to DBSTRS, for performing a solve.

Syntax

<table>
<thead>
<tr>
<th>Language</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>CALL DBSTRF (uplo, n, ap, ipvt, nsinfo)</td>
</tr>
<tr>
<td>C and C++</td>
<td>dbstrf (uplo, n, ap, ipvt, nsinfo);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL DBSTRF (uplo, n, ap, ipvt, nsinfo);</td>
</tr>
</tbody>
</table>

On Entry

- \(uplo \)
 - indicates whether matrix \(A \) is stored in upper- or lower-packed storage mode, where:
 - If \(uplo = 'U' \), \(A \) is stored in upper-packed storage mode.
 - If \(uplo = 'L' \), \(A \) is stored in lower-packed storage mode.
 - Specified as: a single character. It must be 'U' or 'L'.

- \(n \)
 - is the order \(n \) of matrix \(A \).
 - Specified as: a fullword integer; \(n \geq 0 \).

- \(ap \)
 - is array, referred to as \(AP \), in which matrix \(A \), to be factored, is stored in upper- or lower-packed storage mode.
 - Specified as: a one-dimensional array of length \(nsinfo \), containing numbers of the data type indicated in Table 98. See “Notes” on page 522.

- \(ipvt \)
 - See “On Return” on page 521.
\(n_{\text{info}} \)

is the number of elements in array, \(AP \).

If \(n \leq n_{\text{co}} \), \(n_{\text{info}} = n(n + 1) / 2 \)

Where:

\[n_{\text{co}} = \sqrt{2.0(i_{\text{cs}})} \]

\(i_{\text{cs}} \) is the size in doublewords of the data cache. The data cache size can be obtained by utilizing the following C language code fragment:

```c
#include <sys/systemcfg.h>
int ics;
... ics=_system_configuration.dcache_size/8;
```

Otherwise, to determine a sufficient amount of storage, use the following processor-independent formula:

\[n_{0} = 100 \]
\[n_{s} = (n + n_{0})(n + n_{0} + 1) / 2 + n(n_{0}) \]

For \(\text{uplo} = 'L' \),
\[n_{\text{info}} \geq n_{s} \]

For \(\text{uplo} = 'U' \),
\[n_{1} = (n + 1) / 2 \]
\[n_{t} = n((n + 1) / 2) \]
\[n_{t1} = n_{1}(n_{1} + 1) \]
\[n_{s1} = n_{t} + n_{t1} \]
\[n_{\text{info}} \geq \max(n_{s}, n_{s1}) \]

To determine the minimal amount of storage see “Notes” on page 522.

Specified as: a fullword integer; \(n_{\text{info}} > 0 \).

On Return

\(ap \)

is the transformed matrix \(A \) of order \(n \), containing the results of the factorization.

If \(n_{\text{info}} \geq 0 \) and \(n > n_{\text{co}} \), additional information that can be used to obtain a minimum \(n_{\text{info}} \) is stored in \(AP(1) \). See “Notes” on page 522 and “Function” on page 522.

Returned as: a one-dimensional array, containing numbers of the data type indicated in Table 98 on page 520.

\(ipvt \)

is an integer vector of length \(n \), containing the pivot information necessary to construct the factored form of \(A \).

Returned as: a one-dimensional array of (at least) length \(n \), containing numbers of the data type indicated in Table 98 on page 520.

\(n_{\text{info}} \)

indicates the result of the computation.

- If \(n_{\text{info}} = 0 \), the factorization completed successfully.
If \(nsinfo > 0 \), factorization was unsuccessful and \(nsinfo \) is set to \(i \) where \(d_{ii} \) is exactly zero.

If \(nsinfo < 0 \) factorization did not take place and the array \(AP \) remains unchanged. \(nsinfo \) is the minimal storage required for factorization to take place. Error message 2200 is issued and execution terminates, unless you have used ERRSET to make error code 2200 recoverable. See “What Can You Do about ESSL Input-Argument Errors?” on page 45.

Specified as: a fullword integer.

Notes
1. This subroutine accepts lowercase letters for the \(uplo \) argument.
2. In your C program, argument \(nsinfo \) must be passed by reference.
3. In the input array specified for \(ap \), the first \(n(n+1)/2 \) elements are matrix elements. The additional locations, required in the array, are used for working storage.
4. The array specified for \(ap \) should not be altered between calls to the factorization and solve subroutines; otherwise, unpredictable results may occur.
5. On return, if \(nsinfo \geq 0 \) and \(n > nco \), \(ap \) contains additional information in \(AP(1) \) that can be used to obtain the minimal required \(nsinfo \). This information can be accessed using the following code fragment:

\[
\begin{align*}
\text{REAL}*8 & \quad AP(NSINFO) \\
\text{INTEGER} & \quad API(2) \\
\text{EQUIVALENCE} & \quad (API, AP)
\end{align*}
\]

\[
\text{NSINFOMIN} = API(2)
\]

6. For a description of how a symmetric matrix is stored in upper- or lower-packed storage mode in an array, see “Symmetric Matrix” on page 63.

Function: A real symmetric indefinite matrix \(A \), stored in upper- or lower-packed storage mode, is factored using the Bunch-Kaufman diagonal pivoting method, where \(A \) is expressed as:

\[
A = UDU^T \quad \text{or} \quad A = LDL^T
\]

where:

- \(U \) is a product of permutation and unit upper triangular matrices.
- \(L \) is a product of permutation and unit lower triangular matrices.
- \(D \) is a symmetric block diagonal matrix, consisting of \(1 \times 1 \) and \(2 \times 2 \) diagonal blocks.

If \(n \) is 0, no computation is performed and the subroutine returns after doing some parameter checking.

See references [8] and [65].

Error Conditions
Resource Errors: None.

Computational Errors: Matrix A is singular.

- The factorization completed but the block diagonal matrix D is exactly singular. nsinfo is set to i, where d_i is exactly zero. This diagonal element is identified in the computational error message.
- The computational error message may occur multiple times with processing continuing after each error, because the default for the number of allowable errors for error code 2147 is set to be unlimited in the ESSL error option table. For details, see “What Can You Do about ESSL Computational Errors?” on page 46.

Input-Argument Errors
1. uplo ≠ 'U' or 'L'
2. n < 0
3. nsinfo < (minimum value).
 - For the minimum value, see the nsinfo argument description.
 - Return code 1 is returned if error 2200 is recoverable.

Example 1: This example shows a factorization of a symmetric indefinite matrix A of order 8, stored in lower-packed storage mode, where on input matrix A is:

\[
\begin{bmatrix}
3.0 & 5.0 & -2.0 & 2.0 & 3.0 & -5.0 & -2.0 & -3.0 \\
5.0 & 3.0 & 2.0 & -2.0 & 5.0 & -3.0 & 2.0 & -5.0 \\
-2.0 & 2.0 & 0.0 & 0.0 & -2.0 & 2.0 & 0.0 & 6.0 \\
2.0 & -2.0 & 0.0 & 8.0 & -6.0 & -10.0 & -8.0 & -14.0 \\
3.0 & 5.0 & -2.0 & -6.0 & 12.0 & 6.0 & 8.0 & 6.0 \\
-5.0 & -3.0 & 2.0 & -10.0 & 6.0 & 16.0 & 8.0 & 20.0 \\
-2.0 & 2.0 & 0.0 & -8.0 & 8.0 & 8.0 & 6.0 & 18.0 \\
-3.0 & -5.0 & 6.0 & -14.0 & 6.0 & 20.0 & 18.0 & 34.0
\end{bmatrix}
\]

Note: The AP array is formatted in a triangular arrangement for readability; however, it is stored in lower-packed storage mode.

Call Statement and Input
\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{UPLO} & \text{N} & \text{AP} & \text{IPVT} & \text{NSINFO} \\
\hline
\text{CALL DBSTRF ('L', 8, AP, IPVT, 36)} \\
\text{AP = (3.0, 5.0, -2.0, 2.0, 5.0, -3.0, 2.0, -5.0,} \\
\text{ 3.0, 2.0, -2.0, 5.0, -3.0, 2.0, -5.0,} \\
\text{ 0.0, 0.0, -2.0, 2.0, 0.0, 6.0,} \\
\text{ 8.0, -6.0, -10.0, -8.0, -14.0,} \\
\text{ 12.0, 6.0, 8.0, 6.0,} \\
\text{ 16.0, 8.0, 20.0,} \\
\text{ 6.0, 18.0,} \\
\text{ 34.0)} \\
\hline
\end{array}
\]

Output: nsinfo = 0

Note: ap and ipvt are stored in an internal format and must be passed unchanged to the solve subroutine.
Example 2: This example shows a factorization of a symmetric indefinite matrix \(A \) of order 8, stored in upper-packed storage mode, where on input matrix \(A \) is:

\[
\begin{bmatrix}
34.0 & 18.0 & 17.0 & 6.0 & -14.0 & 6.0 & -5.0 & -3.0 \\
18.0 & 6.0 & 6.0 & 8.0 & -8.0 & 0.0 & 2.0 & -2.0 \\
17.0 & 6.0 & 9.0 & 9.0 & -8.0 & 0.0 & 2.0 & -2.0 \\
6.0 & 8.0 & 9.0 & 12.0 & -6.0 & -2.0 & 5.0 & 3.0 \\
-14.0 & -8.0 & -8.0 & -6.0 & 8.0 & 0.0 & -2.0 & 2.0 \\
6.0 & 0.0 & 0.0 & -2.0 & 0.0 & 0.0 & 2.0 & -2.0 \\
-5.0 & 2.0 & 2.0 & 5.0 & -2.0 & 2.0 & 3.0 & 5.0 \\
-3.0 & -2.0 & -2.0 & 3.0 & 2.0 & -2.0 & 5.0 & 3.0
\end{bmatrix}
\]

Note: The \(AP \) array is formatted in a triangular arrangement for readability; however, it is stored in upper-packed storage mode.

Call Statement and Input

\[
\text{CALL DBSTRF} \left('U', 8, AP, IPVT, 36 \right)
\]

\[
\begin{align*}
AP &= (34.0, \\
18.0, & 6.0, \\
17.0, & 6.0, & 9.0, \\
6.0, & 8.0, & 9.0, & 12.0, \\
-14.0, & -8.0, & -8.0, & -6.0, & 8.0, \\
6.0, & 0.0, & 0.0, & -2.0, & 0.0, & 0.0, \\
-5.0, & 2.0, & 2.0, & 5.0, & -2.0, & 2.0, & 3.0, \\
-3.0, & -2.0, & -2.0, & 3.0, & 2.0, & -2.0, & 5.0, & 3.0
\end{align*}
\]

Output: \(\text{nsinfo} = 0 \)

Note: \(ap \) and \(ipvt \) are stored in an internal format and must be passed unchanged to the solve subroutine.
The DBSTRS subroutine solves a system of linear equations $AX = B$ for X, where A is a real symmetric indefinite matrix, and X and B are real general matrices. This subroutine uses the results of the factorization of matrix A, produced by a preceding call to DBSTRF.

Syntax

Fortran

```fortran
CALL DBSTRS (uplo, n, nrhs, ap, ipvt, b, ldb, info)
```

C and C++

```c
dbstrs (uplo, n, nrhs, ap, ipvt, b, ldb, info);
```

PL/I

```pli
CALL DBSTRS (uplo, n, nrhs, ap, ipvt, b, ldb, info);
```

On Entry

- **uplo** indicates whether original matrix A is stored in upper- or lower-packed storage mode, where:
 - If $uplo = 'U'$, A is stored in upper-packed storage mode.
 - If $uplo = 'L'$, A is stored in lower-packed storage mode.

- **n** is the order n of factored matrix A and the number of rows of matrix B.

- **nrhs** is the number of right-hand sides; i.e., the number of columns of matrix B.

- **ap** is the factored matrix A produced by a preceding call to DBSTRF.

- **ipvt** is an integer vector of length n, containing the pivot information necessary to construct the factored form of A, produced by a preceding call to DBSTRF.

- **b** is the matrix B, containing the $nrhs$ right-hand sides of the system. The right-hand sides, each of length n, reside in the columns of matrix B.

Note:

The input to this solve subroutine must be the output from the factorization subroutine DBSTRF.

Table 99. Data Types

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B</td>
<td>ipvt</td>
<td>Subroutine</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>Integer</td>
<td>DBSTRS</td>
</tr>
</tbody>
</table>

Chapter 10. Linear Algebraic Equations 525
Specified as: an \(ldb \) by (at least) \(nrhs \) array, containing numbers of the data type indicated in Table 99.

\(ldb \)

is the leading dimension of the array specified for \(B \).

Specified as: a fullword integer; \(ldb > 0 \) and \(ldb \geq n \).

\(info \)

See On Return.

On Return

\(b \)

is the matrix \(B \), containing the \(nrhs \) solutions to the system in the columns of \(B \).

Returned as: an \(ldb \) by (at least) \(nrhs \) array, containing numbers of the data type indicated in Table 99 on page 525.

\(info \)

indicates the result of the computation.

- If \(info = 0 \), the subroutine completed successfully.

Returned as: a fullword integer.

Notes

1. This subroutine accepts lowercase letters for the \(uplo \) argument.
2. In your C program, argument \(info \) must be passed by reference.
3. The array data specified for input arguments \(ap \) and \(ipvt \) for this subroutine must be the same as the corresponding output arguments for DBSTRF.
4. The scalar data specified for input arguments \(uplo \) and \(n \) must be the same as that specified for DBSTRF.
5. The vectors and matrices used in this computation must have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.
6. For a description of how a symmetric matrix is stored in upper- or lower-packed storage mode in an array, see “Symmetric Matrix” on page 63.
7. To solve \(AX = B \) for \(X \), where \(B \) and \(X \) are \(n \) by \(nrhs \) matrices, precede the call to DBSTRS with a call to DBSTRF.

Function: The system \(AX = B \) is solved for \(X \), where \(A \) is a real symmetric indefinite matrix, and \(X \) and \(B \) are real general matrices. This subroutine uses the results of the factorization of matrix \(A \), produced by a preceding call to DBSTRF.

If \(n \) or \(nrhs \) is 0, no computation is performed and the subroutine returns after doing some parameter checking.

See references [8] and [65].

Error Conditions

Resource Errors: None.
Computational Errors: None.

Note: If the factorization performed by DBSTRF failed because matrix A is singular, the results returned by this subroutine are unpredictable, and there may be a divide-by-zero program exception message.

Input-Argument Errors
1. $\text{uplo} \neq 'U' \text{ or } 'L'$
2. $n < 0$
3. $\text{nrhs} < 0$
4. $n > \text{ldb}$
5. $\text{ldb} \leq 0$

Example 1: This example shows how to solve the system $AX = B$, for three right-hand sides, where matrix A is the same matrix factored in the “Example 1” on page 523 for DBSTRF.

Call Statement and Input

\[
\text{CALL DBSTRS} ('L', 8, 3, \text{AP}, \text{IPVT}, B, 8, \text{INFO})
\]

A_P = (for this subroutine must be the same as the corresponding output argument for DBSTRF. See “Example 1” on page 523 for DBSTRF.)

$\text{IPVT} = (for this subroutine must be the same as the corresponding output argument for DBSTRF. See “Example 1” on page 523 for DBSTRF.)$

\[
B = \begin{bmatrix}
1.0 & -38.0 & 47.0 \\
7.0 & -10.0 & 73.0 \\
6.0 & 52.0 & 2.0 \\
-30.0 & -228.0 & -42.0 \\
32.0 & 183.0 & 105.0 \\
34.0 & 297.0 & 9.0 \\
32.0 & 244.0 & 44.0 \\
62.0 & 497.0 & 61.0
\end{bmatrix}
\]

Output

\[
B = \begin{bmatrix}
1.0 & 1.0 & 8.0 \\
1.0 & 2.0 & 7.0 \\
1.0 & 3.0 & 6.0 \\
1.0 & 4.0 & 5.0 \\
1.0 & 5.0 & 4.0 \\
1.0 & 6.0 & 3.0 \\
1.0 & 7.0 & 2.0 \\
1.0 & 8.0 & 1.0
\end{bmatrix}
\]

\[\text{info} = 0\]
Example 2: This example shows how to solve the system $AX = B$, for three right-hand sides, where matrix A is the same matrix factored in the “Example 2” on page 524 for DBSTRF.

Call Statement and Input

```
CALL DBSTRS ( 'U', 8, 3, AP, IPVT, B, 8, INFO )
```

$AP = \begin{bmatrix} 59.0 & 52.0 & 479.0 \\ 30.0 & 38.0 & 232.0 \\ 33.0 & 50.0 & 247.0 \end{bmatrix}$

$B = \begin{bmatrix} -28.0 & -36.0 & -216.0 \\ 4.0 & -4.0 & 40.0 \\ 12.0 & 88.0 & 20.0 \\ 4.0 & 56.0 & -20.0 \end{bmatrix}$

Output

```
\begin{bmatrix} 1.0 & 1.0 & 8.0 \\ 1.0 & 2.0 & 7.0 \\ 1.0 & 3.0 & 6.0 \end{bmatrix}
```

info = 0
SGEICD and DGEICD—General Matrix Inverse, Condition Number Reciprocal, and Determinant

These subroutines find the inverse, the reciprocal of the condition number, and the determinant of matrix A.

<table>
<thead>
<tr>
<th>Table 100. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, aux, rcond, det</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
<tr>
<td>Subroutine</td>
</tr>
<tr>
<td>SGEICD</td>
</tr>
<tr>
<td>DGEICD</td>
</tr>
</tbody>
</table>

Note: If you call these subroutines with $iopt = 0$, 1, 2, or 3 the input must be the output from the factorization subroutines SGEF/SGEFCD/SGETRF or DGEF/DGEFCD/DGEPF/DGETRF, respectively.

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL SGEICD I DGEICD (a, lda, n, iopt, rcond, det, aux, naux)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>sgeicd</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SGEICD I DGEICD (a, lda, n, iopt, rcond, det, aux, naux);</td>
</tr>
</tbody>
</table>

On Entry

- **a**
 - has the following meaning, where:
 - If $iopt = 0$, 1, 2, or 3, it is matrix A of order n, whose inverse, reciprocal of condition number, and determinant are computed.
 - If $iopt = 4$, it is the transformed matrix A of order n, resulting from the factorization performed in a previous call to SGEF/SGEFCD or DGEF/DGEFCD/DGEPF, respectively, whose inverse is computed.
 - Specified as: an lda by (at least) n array, containing numbers of the data type indicated in Table 100.

- **lda**
 - is the leading dimension of the array specified for a. Specified as: a fullword integer; $lda > 0$ and $lda \geq n$.

- **n**
 - is the order of matrix A. Specified as: a fullword integer; $0 \leq n \leq lda$.

- **iopt**
 - indicates the type of computation to be performed, where:
 - If $iopt = 0$, the inverse is computed for matrix A.
 - If $iopt = 1$, the inverse and the reciprocal of the condition number are computed for matrix A.
 - If $iopt = 2$, the inverse and the determinant are computed for matrix A.
 - If $iopt = 3$, the inverse, the reciprocal of the condition number, and the determinant are computed for matrix A.
 - If $iopt = 4$, the inverse is computed using the factored matrix A.
 - Specified as: a fullword integer; $iopt = 0, 1, 2, 3, 4$.
SGEICD and DGEICD

\[\text{rcond} \]
See “On Return” on page 530.

\[\text{det} \]
See “On Return.”

\[\text{aux} \]
has the following meaning, and its size is specified by \(\text{naux} \):

If \(\text{iopt} = 0, 1, 2, \text{or} 3 \), then if \(\text{naux} = 0 \) and error 2015 is unrecoverable, \(\text{aux} \) is ignored. Otherwise, it is the storage work area used by this subroutine.

If \(\text{iopt} = 4 \), \(\text{aux} \) has the following meaning:

- For SGEICD, the first \(n \) locations in \(\text{aux} \) must contain the \(\text{ipvt} \) integer vector of length \(n \), resulting from a previous call to SGEF, SGETRF, or SGEFCD.
- For DGEICD, the first \(\lceil n/2 \rceil \) locations in \(\text{aux} \) must contain the \(\text{ipvt} \) integer vector of length \(n \), resulting from a previous call to DGEF, DGETRF, DGEFCD, or DGEFP.

Specified as: an area of storage, containing numbers of the data type indicated in Table 100 on page 529.

\[\text{naux} \]
is the size of the work area specified by \(\text{aux} \)—that is, the number of elements in \(\text{aux} \). Specified as: a fullword integer, where:

If \(\text{iopt} \neq 4 \), then if \(\text{naux} = 0 \) and error 2015 is unrecoverable, SGEICD and DGEICD dynamically allocate the work area used by the subroutine. The work area is deallocated before control is returned to the calling program.

Otherwise \(\text{naux} \) must have the following value:

For the RS/6000 POWER, POWER3, or PowerPC processors, \(\text{naux} \geq 100n \).

For the RS/6000 POWER2 processors, \(\text{naux} \geq 200n \).

Note: \(\text{naux} \) values specified for releases prior to ESSL Version 2 Release 2 will still work, but you may not achieve optimal performance.

On Return

\[\text{a} \]
is the resulting inverse of matrix \(\text{A} \) of order \(n \). Returned as: an \(\text{lda} \) by (at least) \(n \) array, containing numbers of the data type indicated in Table 100 on page 529.

\[\text{rcond} \]
is the reciprocal of the condition number, \(\text{rcond} \), of matrix \(\text{A} \). Returned as: a real number of the data type indicated in Table 100 on page 529; \(\text{rcond} \geq 0 \).

\[\text{det} \]
is the vector \(\text{det} \), containing the two components \(\text{det}_1 \) and \(\text{det}_2 \) of the determinant of matrix \(\text{A} \). The determinant is:

\[\text{det}_1 \left(10^{\text{det}_2} \right) \]

where \(1 \leq \text{det}_1 < 10 \). Returned as: an array of length 2, containing numbers of the data type indicated in Table 100 on page 529.
Notes

1. In your C program, argument \textit{rcond} must be passed by reference.

2. If \textit{iop} = 4, the following input arguments for SGEICD and DGEICD must be set to the same values in the previous call to SGEF/SGEFCD or DGEF/DGEOFCD/DGEFP, respectively:

<table>
<thead>
<tr>
<th>For _GEF_</th>
<th>For _GEICD</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{n} and \textit{lda}</td>
<td>\textit{n} and \textit{lda}</td>
</tr>
<tr>
<td>Output arguments \textit{a} and \textit{ipvt}</td>
<td>Input arguments \textit{a} and \textit{aux}</td>
</tr>
</tbody>
</table>

3. You have the option of having the value for \textit{naux} dynamically returned to your program. For details, see “Using Auxiliary Storage in ESSL” on page 30.

Function: The inverse, the reciprocal of the condition number, and the determinant of a general square matrix \(A \) are computed using partial pivoting to preserve accuracy, where:

- \(A^{-1} \) is the inverse of matrix \(A \), where \(AA^{-1} = A^{-1}A = I \), and \(I \) is the identity matrix.
- \(1/(\|A\|_1)(\|A^{-1}\|_1) \) is the reciprocal of the condition number, where \(\|A\|_1 \) is the one-norm of matrix \(A \).
- \(|A| \) is the determinant of matrix \(A \), where \(|A| \) is expressed as:

\[
\text{det}_1\left(10^{\text{det}_2}\right)
\]

The \textit{iop} argument is used to determine the combination of output items produced by this subroutine: the inverse, the reciprocal of the condition number, and the determinant.

If \(n \) is 0, no computation is performed. See references [36], [38], and [44].

Error Conditions

Resource Errors: If \textit{iop} = 0, 1, 2, or 3, then error 2015 is unrecoverable, \(naux = 0 \), and unable to allocate work area.

Computational Errors: Matrix \(A \) is singular or nearly singular.

- The index \(i \) of the first pivot element having a value equal to 0, is identified in the computational error message.
- These subroutines return 0 for \textit{rcond} and \textit{det}, if you requested them.
- The return code is set to 2.
- \(i \) can be determined at runtime by use of the ESSL error-handling facilities. To obtain this information, you must use ERRSET to change the number of allowable errors for error code 2105 in the ESSL error option table; otherwise, the default value causes your program to terminate when this error occurs. For details, see “What Can You Do about ESSL Computational Errors?” on page 46.
Input-Argument Errors

1. $lda \leq 0$
2. $n < 0$
3. $n > lda$
4. $iopt \neq 0, 1, 2, 3, \text{ or } 4$
5. Error 2015 is recoverable or $naux \neq 0$, and $naux$ is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.

Example 1: This example computes the inverse, the reciprocal of the condition number, and the determinant of matrix A. The values used to compute the reciprocal of the condition number in this example are obtained with the following values:

$$
\|A\|_1 = \max(6.0, 8.0, 10.0, 12.0, 13.0, 14.0, 15.0, 15.0, 15.0) = 15.0 \\
\|A^{-1}\|_1 = 1226.33
$$

On output, the value in $\text{det, } |A|$, is equal to 336.

Call Statement and Input

```plaintext
CALL DGEICD( A, 9, 9, 3, RCOND, DET, AUX, 293 )
```

\[
A = \begin{bmatrix}
1.0 & 1.0 & 1.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
1.0 & 1.0 & 1.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
4.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 5.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 6.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 7.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 8.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 9.0 & 1.0 & 1.0 & 1.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 10.0 & 11.0 & 12.0
\end{bmatrix}
\]

Output

\[
A = \begin{bmatrix}
0.333 & -0.667 & 0.333 & 0.000 & 0.000 & 0.000 & 0.042 & -0.042 & 0.000 \\
56.833 & -52.167 & -1.167 & -0.500 & -0.500 & -0.357 & 6.836 & -0.479 & -0.500 \\
-55.167 & 51.833 & 0.833 & 0.500 & 0.500 & 0.214 & -6.735 & 0.521 & 0.500 \\
-1.000 & 1.000 & 0.000 & 0.000 & 0.000 & 0.143 & -0.143 & 0.000 & 0.000 \\
-1.000 & 1.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
-1.000 & 1.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
-226.000 & 206.000 & 5.000 & 3.000 & 2.000 & 1.429 & -27.179 & 1.750 & 2.000 \\
560.000 & -520.000 & -10.000 & -6.000 & -4.000 & -2.857 & 67.857 & -5.000 & -5.000 \\
-325.000 & 305.000 & 5.000 & 3.000 & 2.000 & 1.429 & -39.554 & 3.125 & 3.000
\end{bmatrix}
\]

\[
\text{RCOND} = 0.00005436 \\
\text{DET} = (3.36, 2.00)
\]
Example 2: This example computes the inverse of matrix A, where $iopt = 4$ and matrix A is the transformed matrix factored in “Example 1” on page 466 by SGEF. The input contents of AUX, shown here, is the same as the output contents of IPVT in that example.

Call Statement and Input

```
  A  LDA  N  IOPT  RCOND  DET  AUX  NAUX
```

```
  CALL SGEICD( A , 9 , 9 , 4 , RCOND , DET , AUX , 300 )
```

A = (same as output A in “Example 1” on page 466)

$AUX = (3, 4, 5, 6, 7, 8, 9, 8, 9)$

Output

$$
\begin{pmatrix}
0.333 & -0.667 & 0.333 & 0.000 & 0.000 & 0.000 & 0.042 & -0.042 & 0.000 \\
56.833 & -52.167 & -1.167 & -0.500 & -0.500 & -0.357 & 6.836 & -0.479 & -0.500 \\
-55.167 & 51.833 & 0.833 & 0.500 & 0.500 & 0.214 & -6.735 & 0.521 & 0.500 \\
-1.000 & 1.000 & 0.000 & 0.000 & 0.000 & 0.143 & -0.143 & 0.000 & 0.000 \\
-1.000 & 1.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
-1.000 & 1.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.125 & 0.125 & 0.000 \\
-226.000 & 206.000 & 5.000 & 3.000 & 2.000 & 1.429 & -27.179 & 1.750 & 2.000 \\
560.000 & -520.000 & -10.000 & -6.000 & -4.000 & -2.857 & 67.857 & -5.000 & -5.000 \\
-325.000 & 305.000 & 5.000 & 3.000 & 2.000 & 1.429 & -39.554 & 3.125 & 3.000
\end{pmatrix}
$$
SPPICD, DPPICD, SPOICD, and DPOICD—Positive Definite Real Symmetric Matrix Inverse, Condition Number Reciprocal, and Determinant

These subroutines find the inverse, the reciprocal of the condition number, and the determinant of positive definite symmetric matrix A using Cholesky factorization, where:

- For SPPICD and DPPICD, A is stored in lower-packed storage mode.
- For SPOICD and DPOICD, A is stored in upper or lower storage mode.

<table>
<thead>
<tr>
<th>A, aux, rcond, det</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>SPPICD and SPOICD</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DPPICD and DPOICD</td>
</tr>
</tbody>
</table>

Note: If you call these subroutines with $iopt = 4$, the input must be the output from the factorization subroutines SPPF, DPPF, SPOF/SPOFCD, or DPOF/DPOFCD, respectively, where Cholesky factorization was performed.

Syntax

Fortran

```fortran
CALL SPPICD | DPPICD (ap, n, iopt, rcond, det, aux, naux)
CALL SPOICD | DPOICD (uplo, a, lda, n, iopt, rcond, det, aux, naux)
```

C and C++

```c
sppicd | dppicd (ap, n, iopt, rcond, det, aux, naux);
spicd | dopicd (uplo, a, lda, n, iopt, rcond, det, aux, naux);
```

PL/I

```pli
CALL SPPICD | DPPICD (ap, n, iopt, rcond, det, aux, naux);
CALL SPOICD | DPOICD (uplo, a, lda, n, iopt, rcond, det, aux, naux);
```

On Entry

uplo

indicates whether matrix A is stored in upper or lower storage mode, where:

- If $uplo = 'U'$, A is stored in upper storage mode.
- If $uplo = 'L'$, A is stored in lower storage mode.

Specified as: a single character. It must be 'U' or 'L'.

ap

is the array, referred to as AP, where:

- If $iopt = 0$, 1, 2, or 3, then AP contains the positive definite real symmetric matrix A, whose inverse, condition number reciprocal, and determinant are computed, where matrix A is stored in lower-packed storage mode.
- If $iopt = 4$, then AP contains the transformed matrix A of order n, resulting from the Cholesky factorization performed in a previous call to SPPF or DPPF, respectively, whose inverse is computed.

Specified as: a one-dimensional array of (at least) length $n(n+1)/2$, containing numbers of the data type indicated in Table 101.
has the following meaning, where:

If \(iopt = 0, 1, 2, \) or \(3 \), it is the positive definite real symmetric matrix \(A \), whose inverse, condition number reciprocal, and determinant are computed, where matrix \(A \) is stored in upper or lower storage mode.

If \(iopt = 4 \), it is the transformed matrix \(A \) of order \(n \), containing results of the factorization from a previous call to SPOF/SPOFCD or DPOF/DPOFCD, respectively, whose inverse is computed.

Specified as: an \(n \) by (at least) \(n \) array, containing numbers of the data type indicated in Table 101 on page 534.

\(lda \)

is the leading dimension of the array specified for \(a \). Specified as: a fullword integer; \(lda > 0 \) and \(lda \geq n \).

\(n \)

is the order \(n \) of matrix \(A \). Specified as: a fullword integer; \(n \geq 0 \).

\(iopt \)

indicates the type of computation to be performed, where:

If \(iopt = 0 \), the inverse is computed for matrix \(A \).

If \(iopt = 1 \), the inverse and the reciprocal of the condition number are computed for matrix \(A \).

If \(iopt = 2 \), the inverse and the determinant are computed for matrix \(A \).

If \(iopt = 3 \), the inverse, the reciprocal of the condition number, and the determinant are computed for matrix \(A \).

If \(iopt = 4 \), the inverse is computed for the (Cholesky) factored matrix \(A \).

Specified as: a fullword integer; \(iopt = 0, 1, 2, 3, \) or \(4 \).

\(rcond \)

See “On Return.”

\(det \)

See “On Return.”

\(aux \)

has the following meaning:

If \(naux = 0 \) and error 2015 is unrecoverable, \(aux \) is ignored.

Otherwise, it is the storage work area used by this subroutine. Its size is specified by \(naux \). Specified as: an area of storage, containing numbers of the data type indicated in Table 101 on page 534.

\(naux \)

is the size of the work area specified by \(aux \)—that is, the number of elements in \(aux \). Specified as: a fullword integer, where:

If \(naux = 0 \) and error 2015 is unrecoverable, SPPICD, DPPICD, SPOICD, AND DPOICD dynamically allocate the work area used by the subroutine. The work area is deallocated before control is returned to the calling program.

Otherwise, \(naux \geq n \).

On Return

\(ap \)

is the resulting array, referred to as \(AP \), containing the inverse of the matrix in lower-packed storage mode. Returned as: a one-dimensional array of (at least)
SPPICD, DPPICD, SPOICD, and DPOICD

length \(n(n+1)/2 \), containing numbers of the data type indicated in Table 101 on page 534.

\(a \) is the transformed matrix \(A \) of order \(n \), containing the inverse of the matrix in upper or lower storage mode. Returned as: a two-dimensional array, containing numbers of the data type indicated in Table 101 on page 534.

\(rcond \) is the reciprocal of the condition number, \(rcond \), of matrix \(A \). Returned as: a real number of the data type indicated in Table 101 on page 534; \(rcond \geq 0 \).

\(det \) is the vector \(\text{det} \), containing the two components \(\text{det}_1 \) and \(\text{det}_2 \) of the determinant of matrix \(A \). The determinant is:

\[
\text{det}_1 \left(10^{\text{det}_2}\right)
\]

where \(1 \leq \text{det}_1 < 10 \). Returned as: an array of length 2, containing numbers of the data type indicated in Table 101 on page 534.

Notes

1. For these subroutines, when you specify \(iopt = 4 \), you must do the following:
 - For SPPICD and DPPICD, use Cholesky factorization in the previous call to SPPF and DPPF, respectively.
 - For SPOICD and DPOICD, specify the same storage mode for matrix \(A \) that was specified in the previous call to SPOF/SPOFCD and DPOF/DPOFCD, respectively.
 - The scalar data specified for input arguments \(\text{uplo} \), \(\text{lda} \), and \(n \) for these subroutines must be the same as the corresponding input arguments specified for SPOF/SPOFCD and DPOF/DPOFCD, respectively.

2. All subroutines accept lowercase letters for the \(\text{uplo} \) argument.

3. In your C program, argument \(rcond \) must be passed by reference.

4. SPPICD and DPPICD in many cases utilize new algorithms based on recursive packed storage format. (See references [52], [66], and [67]).

5. For a description of how a positive definite symmetric matrix is stored in lower-packed storage mode in an array, see “Symmetric Matrix” on page 63. For a description of how a positive definite symmetric matrix is stored in upper or lower storage mode, see “Positive Definite or Negative Definite Symmetric Matrix” on page 67.

6. You have the option of having the minimum required value for \(\text{naux} \) dynamically returned to your program. For details, see “Using Auxiliary Storage in ESSL” on page 30.

Function: These subroutines find the inverse, the reciprocal of the condition number, and the determinant of positive definite symmetric matrix \(A \) using Cholesky factorization, where:

- \(A^{-1} \) is the inverse of matrix \(A \), where \(AA^{-1} = A^{-1}A = I \), and \(I \) is the identity matrix.
SPPICD, DPPICD, SPOICD, and DPOICD

- $1/(\|A\|_1 (\|A^{-1}\|_1))$ is the reciprocal of the condition number, where $\|A\|_1$ is the one-norm of matrix A.
- $|A|$ is the determinant of matrix A, where $|A|$ is expressed as:

$$det_1 \left(10^{det_2} \right)$$

The $iopt$ argument is used to determine the combination of output items produced by this subroutine: the inverse, the reciprocal of the condition number, and the determinant.

If n is 0, no computation is performed. See references [36], [38], and [44].

Error Conditions

Resource Errors

- Error 2015 is unrecoverable, $naux = 0$, and unable to allocate work area.
- Unable to allocate internal work area.

Computational Errors: Matrix A is not positive definite.

- These subroutines do not perform the inverse, determinant, and reciprocal of the condition number computations.
- For $iopt = 1, 2, \text{or} 3$, the leading minor of order i has a nonpositive determinant. The order i is identified in the computational error message, issued by SPPF, DPPF, SPOF, or DPOF, respectively.

For $iopt = 4$ for SPPICD and DPPICD, if the Cholesky factorization performed by SPPF or DPPF, respectively, failed due to a nonpositive definite matrix A, the results are unpredictable, and a computational error message may be issued.

For $iopt = 4$ for SPOICD and DPOICD, if the factorization performed by SPOF/SPOFCD or DPOF/DPOFCD, respectively, failed due to a nonpositive definite matrix A, the results are unpredictable, and a computational error message may be issued.

- i can be determined at run time by using the ESSL error-handling facilities. To obtain this information, you must use ERRSET to change the number of allowable errors for error code 2115 in the ESSL error option table; otherwise, the default value causes your program to be terminated by SPPF, DPPF, SPOF, or DPOF, respectively, when this error occurs. If your program is not terminated by SPPF, DPPF, SPOF, or DPOF, respectively, the return code is set to 2. For details, see “What Can You Do about ESSL Computational Errors?” on page 46.

Input-Argument Errors

1. $uplo \neq \text{'U'}$ or \text{'L'}$
2. n < 0$
3. $lda \leq 0$
4. $lda < n$
5. $iopt \neq 0, 1, 2, 3, \text{or} 4$
6. Error 2015 is recoverable or $naux=0$, and $naux$ is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.
Example 1: This example uses SPPICD to compute the inverse, reciprocal of the condition number, and determinant of matrix A. Where A is:

\[
\begin{bmatrix}
1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
1.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 \\
1.0 & 2.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
1.0 & 2.0 & 3.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 \\
1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 \\
1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 6.0 & 6.0 & 6.0 \\
1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 7.0 & 7.0 \\
1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 8.0 & 8.0 \\
1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 6.0 & 7.0 & 8.0 & 9.0 \\
\end{bmatrix}
\]

The values used to compute the reciprocal of the condition number in this example are obtained with the following values:

\[
\|A\|_1 = \max(9.0, 17.0, 24.0, 30.0, 35.0, 39.0, 42.0, 44.0, 45.0) = 45.0 \\
\|A^{-1}\|_1 = 4.0
\]

On output, the value in $\det |A|$, is equal to 1, and $RCOND = 1/180$.

Note: The AP arrays are formatted in a triangular arrangement for readability; however, they are stored in lower-packed storage mode.

Call Statement and Input

\[
\begin{align*}
\text{AP} & = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 6.0, 6.0, 6.0, 6.0, 7.0, 7.0, 7.0, 8.0, 8.0, 9.0) \\
\text{CALL} & \ SPPICD(\ AP, 9, 3, \text{RCOND}, \text{DET}, \text{AUX}, 9) \\
\text{Output} & \ AP = (2.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, -1.0, 1.0) \\
\text{RCOND} & = 0.005556 \\
\text{DET} & = (1.0, 0.0)
\end{align*}
\]

Example 2: This example uses SPPICD to compute the inverse of matrix A, where $iopt = 4$, and matrix A is the transformed matrix factored in “Example 1” on page 494 by SPPF.
Note: The AP arrays are formatted in a triangular arrangement for readability; however, they are stored in lower-packed storage mode.

Call Statement and Input

\[
\begin{array}{cccccccc}
AP & N & IOPT & RCOND & DET & AUX & NAUX \\
\hline
& & & & & & \\
\end{array}
\]

\[
\text{CALL SPPICD}(AP, 9, 4, RCOND, DET, AUX, 9)
\]

\[
AP = \text{(same as output AP in "Example 2" on page 495 for SPPF)}
\]

Output

\[
\begin{bmatrix}
2.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, \ldots, 1.0
\end{bmatrix}
\]

Example 3: This example uses SPOICD to compute the inverse, reciprocal of the condition number, and determinant of the same matrix \(A\) used in Example 1; however, matrix \(A\) is stored in upper storage mode in this example.

The values used to compute the reciprocal of the condition number in this example are obtained with the following values:

\[
\|A\|_1 = \max(9.0, 17.0, 24.0, 30.0, 35.0, 39.0, 42.0, 44.0, 45.0) = 45.0 \\
\|A^{-1}\|_1 = 4.0
\]

On output, the value in \(\text{det, }|A|\), is equal to 1, and \(\text{RCOND} = 1/180\).

Call Statement and Input

\[
\begin{array}{cccccccccccc}
UPLO & A & LDA & N & IOPT & RCOND & DET & AUX & NAUX \\
\hline
& & & & & & & & \\
\end{array}
\]

\[
\text{CALL SPOICD}(\ 'U', \ A, 9, 9, 3, RCOND, DET, AUX, 9)
\]

\[
A = \begin{bmatrix}
1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
. & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 \\
. & . & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
. & . & . & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 & 4.0 \\
. & . & . & . & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 \\
. & . & . & . & . & 6.0 & 6.0 & 6.0 & 6.0 & 6.0 \\
. & . & . & . & . & . & 7.0 & 7.0 & 7.0 & 7.0 \\
. & . & . & . & . & . & . & 8.0 & 8.0 & 8.0 \\
. & . & . & . & . & . & . & . & 9.0
\end{bmatrix}
\]

Output
SPPICD, DPPICD, SPOICD, and DPOICD

Example 4: This example uses SPOICD to compute the inverse of matrix \(A \), where \(iopt = 4 \), and matrix \(A \) is the transformed matrix factored in “Example 1” on page 494 by SPOF.

Call Statement and Input

```
UPLO A LDA N I OPT RCOND DET AUX NAUX
| | | | | | |
CALL SPOICD( 'U' , A , 9 , 9 , 4 , RCOND , DET , AUX , 9 )
```

\[
A = \begin{bmatrix}
2.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
.2.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
. . & 2.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
. . & . & 2.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
. & 2.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
. & . & 2.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
. & . & . & 2.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
. & . & . & . & 2.0 & -1.0 & 0.0 & 0.0 & 0.0 \\
. & . & . & . & . & 2.0 & -1.0 & 0.0 & 0.0 \\
. & . & . & . & . & . & 2.0 & -1.0 & 0.0 \\
. & . & . & . & . & . & . & 2.0 & -1.0 \\
. & . & . & . & . & . & . & . & 1.0 \\
\end{bmatrix}
\]

\(RCOND = 0.005555556 \)
\(DET = (1.0, 0.0) \)

Output

```
A = (same as output A in “Example 4” on page 497 for SPOF)
```

```
\[
A = \begin{bmatrix}
2.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
.2.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
. . & 2.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
. . & . & 2.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
. . . . . & 2.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
. . . . . . & . & 2.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
. . . . . . . & . & . & 2.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
. . . . . . . . & . & . & . & 2.0 & -1.0 & 0.0 & 0.0 & 0.0 \\
. . . . . . . . . & . & . & . & . & 2.0 & -1.0 & 0.0 & 0.0 \\
. . . . . . . . . . & . & . & . & . & . & 2.0 & -1.0 & 0.0 \\
. . . . . . . . . . . & . & . & . & . & . & . & 2.0 & -1.0 \\
. . . . . . . . . . . . & . & . & . & . & . & . & . & 1.0 \\
\end{bmatrix}
\]
```
STRSV, DTRSV, CTRSV, ZTRSV, STPSV, DTPSV, CTPSV, and
ZTPSV—Solution of a Triangular System of Equations
with a Single Right-Hand Side

STRSV, DTRSV, STPSV, and DTPSV perform one of the following solves for a
triangular system of equations with a single right-hand side, using the vector \(x \) and
triangular matrix \(A \) or its transpose:

<table>
<thead>
<tr>
<th>Solution</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (x \leftarrow A^{-1}x)</td>
<td>(Ax = b)</td>
</tr>
<tr>
<td>2. (x \leftarrow A^{-T}x)</td>
<td>(A^T x = b)</td>
</tr>
</tbody>
</table>

CTRSV, ZTRSV, CTPSV, and ZTPSV perform one of the following solves for a
triangular system of equations with a single right-hand side, using the vector \(x \) and
and triangular matrix \(A \), its transpose, or its conjugate transpose:

<table>
<thead>
<tr>
<th>Solution</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (x \leftarrow A^{-1}x)</td>
<td>(Ax = b)</td>
</tr>
<tr>
<td>2. (x \leftarrow A^{-T}x)</td>
<td>(A^T x = b)</td>
</tr>
<tr>
<td>3. (x \leftarrow A^{-H}x)</td>
<td>(A^H x = b)</td>
</tr>
</tbody>
</table>

Matrix \(A \) can be either upper or lower triangular, where:

- For the _TRSV subroutines, it is stored in upper- or lower-triangular storage
mode, respectively.
- For the _TPSV subroutines, it is stored in upper- or lower-triangular-packed
storage mode, respectively.

Note: The term \(b \) used in the systems of equations listed above represents the
right-hand side of the system. It is important to note that in these
subroutines the right-hand side of the equation is actually provided in the
input-output argument \(x \).

<table>
<thead>
<tr>
<th>Table 102. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A, x)</td>
</tr>
<tr>
<td>Subroutine</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
<tr>
<td>Short-precision complex</td>
</tr>
<tr>
<td>Long-precision complex</td>
</tr>
</tbody>
</table>

Syntax

Fortran

CALL STRSV | DTRSV | CTRSV | ZTRSV (uplo, transa, diag, n, a, lda, x, incx)
CALL STPSV | DTPSV | CTPSV | ZTPSV (uplo, transa, diag, n, ap, x, incx)

C and C++

strsv | dtrsv | ctrsv | ztrsv (uplo, transa, diag, n, a, lda, x, incx);
stpsv | dtpsv | ctpsv | ztpsv (uplo, transa, diag, n, ap, x, incx);

PL/I

CALL STRSV | DTRSV | CTRSV | ZTRSV (uplo, transa, diag, n, a, lda, x, incx);
CALL STPSV | DTPSV | CTPSV | ZTPSV (uplo, transa, diag, n, ap, x, incx);

On Entry
uplo indicates whether matrix A is an upper or lower triangular matrix, where:
If $uplo = 'U'$, A is an upper triangular matrix.
If $uplo = 'L'$, A is a lower triangular matrix.
Specified as: a single character. It must be 'U' or 'L'.

transa indicates the form of matrix A used in the system of equations, where:
If $transa = 'N'$, A is used, resulting in solution 1.
If $transa = 'T'$, A^T is used, resulting in solution 2.
If $transa = 'C'$, A^H is used, resulting in solution 3.
Specified as: a single character. It must be 'N', 'T', or 'C'.

diag indicates the characteristics of the diagonal of matrix A, where:
If $diag = 'U'$, A is a unit triangular matrix.
If $diag = 'N'$, A is not a unit triangular matrix.
Specified as: a single character. It must be 'U' or 'N'.

n is the order of triangular matrix A. Specified as: a fullword integer; $n \geq 0$ and $n \leq lda$.

a is the upper or lower triangular matrix A of order n, stored in upper- or lower-triangular storage mode, respectively. Specified as: an lda by (at least) n array, containing numbers of the data type indicated in Table 102 on page 541.

lda is the leading dimension of the array specified for a. Specified as: a fullword integer; $lda > 0$ and $lda \geq n$.

ap is the upper or lower triangular matrix A of order n, stored in upper- or lower-triangular-packed storage mode, respectively. Specified as: a one-dimensional array of (at least) length $n(n+1)/2$, containing numbers of the data type indicated in Table 102 on page 541.

x is the vector x of length n, containing the right-hand side of the triangular system to be solved. Specified as: a one-dimensional array of (at least) length $1+(n-1)|incx|$, containing numbers of the data type indicated in Table 102 on page 541.

$incx$ is the stride for vector x. Specified as: a fullword integer; $incx > 0$ or $incx < 0$.

On Return

x is the solution vector x of length n, containing the results of the computation. Returned as: a one-dimensional array, containing numbers of the data type indicated in Table 102 on page 541.
Notes

1. These subroutines accept lowercase letters for the uplo, transa, and diag arguments.

2. For STRSV, DTRSV, STPSV, and DTPSV, if you specify 'C' for the transa argument, it is interpreted as though you specified 'T'.

3. Matrix A and vector x must have no common elements; otherwise, results are unpredictable.

4. ESSL assumes certain values in your array for parts of a triangular matrix. As a result, you do not have to set these values. For unit diagonal matrices, the elements of the diagonal are assumed to be 1.0 for real matrices and (1.0, 0.0) for complex matrices. When using upper- or lower-triangular storage, the unreferenced elements in the lower and upper triangular part, respectively, are assumed to be zero.

5. For a description of triangular matrices and how they are stored in upper- and lower-triangular storage mode and in upper- and lower-triangular-packed storage mode, see “Triangular Matrix” on page 72.

Function: These subroutines solve a triangular system of equations with a single right-hand side. The solution x may be any of the following, where triangular matrix A, its transpose, or its conjugate transpose is used, and where A can be either upper- or lower-triangular:

1. \(x \leftarrow A^{-1}x \)
2. \(x \leftarrow A^T x \)
3. \(x \leftarrow A^H x \) (only for CTRSV, ZTRSV, CTPSV, and ZTPSV)

where:

- \(x \) is a vector of length \(n \).
- \(A \) is an upper or lower triangular matrix of order \(n \). For _TRSV, it is stored in upper- or lower-triangular storage mode, respectively. For _TPSV, it is stored in upper- or lower-triangular-packed storage mode, respectively.

If \(n \) is 0, no computation is performed. See references [32], [36], and [38].

Error Conditions

Computational Errors: None

Input-Argument Errors

1. uplo ≠ 'L' or 'U'
2. transa ≠ 'T', 'N', or 'C'
3. diag ≠ 'N' or 'U'
4. \(n < 0 \)
5. lda ≤ 0
6. lda < n
7. incx = 0

Example 1: This example shows the solution \(x \leftarrow A^{-1}x \). Matrix A is a real 4 by 4 lower unit triangular matrix, stored in lower-triangular storage mode. Vector x is a vector of length 4.
Note: Because matrix \(A \) is unit triangular, the diagonal elements are not referenced. ESSL assumes a value of 1.0 for the diagonal elements.

Call Statement and Input

\[
\begin{align*}
\text{UPLO TRANS A DIAG N A LDA X INCX} \\
\text{CALL STRSV('L' , 'N' , 'U' , 4 , A , 4 , X , 1)}
\end{align*}
\]

\[
A = \begin{bmatrix}
. & . & . \\
1.0 & . & . \\
2.0 & 3.0 & . \\
3.0 & 4.0 & 3.0 \\
\end{bmatrix}
\]

\[
X = (1.0, 3.0, 11.0, 24.0)
\]

Output

\[
X = (1.0, 2.0, 3.0, 4.0)
\]

Example 2: This example shows the solution \(x \leftarrow A^{-T}x \). Matrix \(A \) is a real 4 by 4 upper nonunit triangular matrix, stored in upper-triangular storage mode. Vector \(x \) is a vector of length 4.

Call Statement and Input

\[
\begin{align*}
\text{UPLO TRANS A DIAG N A LDA X INCX} \\
\text{CALL STRSV('U' , 'T' , 'N' , 4 , A , 4 , X , 1)}
\end{align*}
\]

\[
A = \begin{bmatrix}
1.0 & 2.0 & 3.0 & 2.0 \\
. & 2.0 & 2.0 & 5.0 \\
. & . & 3.0 & 3.0 \\
. & . & . & 1.0 \\
\end{bmatrix}
\]

\[
X = (5.0, 18.0, 32.0, 41.0)
\]

Output

\[
X = (5.0, 4.0, 3.0, 2.0)
\]

Example 3: This example shows the solution \(x \leftarrow A^{-H}x \). Matrix \(A \) is a complex 4 by 4 upper unit triangular matrix, stored in upper-triangular storage mode. Vector \(x \) is a vector of length 4.

Note: Because matrix \(A \) is unit triangular, the diagonal elements are not referenced. ESSL assumes a value of (1.0, 0.0) for the diagonal elements.

Call Statement and Input
Example 4: This example shows the solution $x \leftarrow A^{-1}x$. Matrix A is a real 4 by 4 lower unit triangular matrix, stored in lower-triangular-packed storage mode. Vector x is a vector of length 4. Matrix A is:

\[
\begin{bmatrix}
1.0 & . & . & . \\
1.0 & 1.0 & . & . \\
2.0 & 3.0 & 1.0 & . \\
3.0 & 4.0 & 3.0 & 1.0
\end{bmatrix}
\]

Note: Because matrix A is unit triangular, the diagonal elements are not referenced. ESSL assumes a value of 1.0 for the diagonal elements.

Call Statement and Input

```
CALL STPSV( 'L' , 'N' , 'U' , 4 , AP , X , 1 )
```

$AP = (. , 1.0, 2.0, 3.0, . , 3.0, 4.0, . , 3.0, .)$

$X = (1.0, 3.0, 11.0, 24.0)$

Output

$X = (1.0, 2.0, 3.0, 4.0)$

Example 5: This example shows the solution $x \leftarrow A^{-T}x$. Matrix A is a real 4 by 4 upper nonunit triangular matrix, stored in upper-triangular-packed storage mode. Vector x is a vector of length 4. Matrix A is:

\[
\begin{bmatrix}
1.0 & 2.0 & 3.0 & 2.0 \\
. & 2.0 & 2.0 & 5.0 \\
. & . & 3.0 & 3.0 \\
. & . & . & 1.0
\end{bmatrix}
\]

Call Statement and Input

```
CALL STPSV( 'U' , 'C' , 'U' , 4 , A , 4 , X , 1 )
```

$A =
\begin{bmatrix}
(5.0, 2.0) & (3.0, 3.0) & (2.0, 2.0) \\
. & (2.0, 2.0) & (5.0, 5.0) \\
. & . & (3.0, 3.0) \\
. & . & . & .
\end{bmatrix}$

$X = ((5.0, 5.0), (24.0, 4.0), (49.0, 3.0), (80.0, 2.0))$

Output

$X = ((5.0, 5.0), (4.0, 4.0), (3.0, 3.0), (2.0, 2.0))$

Example 6: This example shows the solution \(x \leftarrow A^{-1}x \). Matrix \(A \) is a complex 4 by 4 upper unit triangular matrix, stored in upper-triangular-packed storage mode. Vector \(x \) is a vector of length 4. Matrix \(A \) is:

\[
\begin{bmatrix}
(1.0, 0.0) & (2.0, 2.0) & (3.0, 3.0) & (2.0, 2.0) \\
. & (1.0, 0.0) & (2.0, 2.0) & (5.0, 5.0) \\
. & . & (1.0, 0.0) & (3.0, 3.0) \\
. & . & . & (1.0, 0.0)
\end{bmatrix}
\]

Note: Because matrix \(A \) is unit triangular, the diagonal elements are not referenced. ESSL assumes a value of (1.0, 0.0) for the diagonal elements.
STRSM, DTRSM, CTRSM, and ZTRSM—Solution of Triangular Systems of Equations with Multiple Right-Hand Sides

STRSM and DTRSM perform one of the following solves for a triangular system of equations with multiple right-hand sides, using scalar α, rectangular matrix B, and triangular matrix A or its transpose:

<table>
<thead>
<tr>
<th>Solution</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $B \leftarrow \alpha(A^{-1})B$</td>
<td>$AX = \alpha B$</td>
</tr>
<tr>
<td>2. $B \leftarrow \alpha(A^{-T})B$</td>
<td>$A^TX = \alpha B$</td>
</tr>
<tr>
<td>3. $B \leftarrow \alpha B(A^{-1})$</td>
<td>$XA = \alpha B$</td>
</tr>
<tr>
<td>4. $B \leftarrow \alpha B(A^{-T})$</td>
<td>$XAT = \alpha B$</td>
</tr>
</tbody>
</table>

CTRSM and ZTRSM perform one of the following solves for a triangular system of equations with multiple right-hand sides, using scalar α, rectangular matrix B, and triangular matrix A, its transpose, or its conjugate transpose:

<table>
<thead>
<tr>
<th>Solution</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $B \leftarrow \alpha(A^{-1})B$</td>
<td>$AX = \alpha B$</td>
</tr>
<tr>
<td>2. $B \leftarrow \alpha(A^{-T})B$</td>
<td>$A^TX = \alpha B$</td>
</tr>
<tr>
<td>3. $B \leftarrow \alpha B(A^{-1})$</td>
<td>$XA = \alpha B$</td>
</tr>
<tr>
<td>4. $B \leftarrow \alpha B(A^{-T})$</td>
<td>$XAT = \alpha B$</td>
</tr>
<tr>
<td>5. $B \leftarrow \alpha(A^{-H})B$</td>
<td>$A^HX = \alpha B$</td>
</tr>
<tr>
<td>6. $B \leftarrow \alpha B(A^{-H})$</td>
<td>$XAH = \alpha B$</td>
</tr>
</tbody>
</table>

Note: The term X used in the systems of equations listed above represents the output solution matrix. It is important to note that in these subroutines the solution matrix is actually returned in the input-output argument b.

<table>
<thead>
<tr>
<th>Table 103. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B, α</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
<tr>
<td>Short-precision complex</td>
</tr>
<tr>
<td>Long-precision complex</td>
</tr>
</tbody>
</table>

Syntax

Fortran

CALL STRSM | DTRSM | CTRSM | ZTRSM (side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb);

C and C++

strsm | dtrsm | ctrsm | ztrsm (side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb);

PL/I

CALL STRSM | DTRSM | CTRSM | ZTRSM (side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb);

On Entry

side

indicates whether the triangular matrix A is located to the left or right of rectangular matrix B in the system of equations, where:

If $side = 'L'$, A is to the left of B, resulting in solution 1, 2, or 5.

If $side = 'R'$, A is to the right of B, resulting in solution 3, 4, or 6.
Specified as: a single character. It must be 'L' or 'R'.

`uplo`
indicates whether matrix A is an upper or lower triangular matrix, where:
If $uplo = 'U'$, A is an upper triangular matrix.
If $uplo = 'L'$, A is a lower triangular matrix.
Specified as: a single character. It must be 'U' or 'L'.

`transa`
indicates the form of matrix A used in the system of equations, where:
If $transa = 'N'$, A is used, resulting in solution 1 or 3.
If $transa = 'T'$, A^T is used, resulting in solution 2 or 4.
If $transa = 'C'$, A^H is used, resulting in solution 5 or 6.
Specified as: a single character. It must be 'N', 'T', or 'C'.

`diag`
indicates the characteristics of the diagonal of matrix A, where:
If $diag = 'U'$, A is a unit triangular matrix.
If $diag = 'N'$, A is not a unit triangular matrix.
Specified as: a single character. It must be 'U' or 'N'.

m
is the number of rows in rectangular matrix B, and:
If $side = 'L'$, m is the order of triangular matrix A.
Specified as: a fullword integer, where:
If $side = 'L'$, $0 \leq m \leq lda$ and $m \leq ldb$.
If $side = 'R'$, $0 \leq m \leq ldb$.

n
is the number of columns in rectangular matrix B, and:
If $side = 'R'$, n is the order of triangular matrix A.
Specified as: a fullword integer; $n \geq 0$, and:
If $side = 'R'$, $n \leq lda$.

α
is the scalar α. Specified as: a number of the data type indicated in Table 103 on page 547.

a
is the triangular matrix A, of which only the upper or lower triangular portion is used, where:
If $side = 'L'$, A is order m.
If $side = 'R'$, A is order n.
Specified as: a two-dimensional array, containing numbers of the data type indicated in Table 103 on page 547, where:
If $side = 'L'$, its size must be lda by (at least) m.
If $side = 'R'$, it size must be lda by (at least) n.

lda
is the leading dimension of the array specified for a. Specified as: a fullword integer; $lda > 0$, and:
If \(\text{side} = 'L' \), \(\text{lda} \geq m \).

If \(\text{side} = 'R' \), \(\text{lda} \geq n \).

\(b \) is the \(m \) by \(n \) rectangular matrix \(B \), which contains the right-hand sides of the triangular system to be solved. Specified as: an \(\text{ldb} \) by (at least) \(n \) array, containing numbers of the data type indicated in Table 103 on page 547.

\(\text{ldb} \) is the leading dimension of the array specified for \(b \). Specified as: a fullword integer; \(\text{ldb} > 0 \) and \(\text{ldb} \geq m \).

On Return

\(b \) is the \(m \) by \(n \) matrix \(B \), containing the results of the computation.

Returned as: an \(\text{ldb} \) by (at least) \(n \) array, containing numbers of the data type indicated in Table 103 on page 547.

Notes

1. These subroutines accept lowercase letters for the \(\text{transa} \), \(\text{side} \), \(\text{diag} \), and \(\text{uplo} \) arguments.

2. For STRSM and DTRSM, if you specify \('C' \) for the \(\text{transa} \) argument, it is interpreted as though you specified \('T' \).

3. Matrices \(A \) and \(B \) must have no common elements or results are unpredictable.

4. If matrix \(A \) is upper triangular \((\text{uplo} = 'U') \), these subroutines refer to only the upper triangular portion of the matrix. If matrix \(A \) is lower triangular, \((\text{uplo} = 'L') \), these subroutines refer to only the lower triangular portion of the matrix. The unreferenced elements are assumed to be zero.

5. The elements of the diagonal of a unit triangular matrix are always one, so you do not need to set these values. The ESSL subroutines always assume that the values in these positions are 1.0 for STRSM and DTRSM and \((1.0, 0.0)\) for CTRSM and ZTRSM.

6. For a description of triangular matrices and how they are stored, see “Triangular Matrix” on page 72.

Function: These subroutines solve a triangular system of equations with multiple right-hand sides. The solution \(B \) may be any of the following, where \(A \) is a triangular matrix and \(B \) is a rectangular matrix:

1. \(B \leftarrow \alpha(A^{-1})B \)
2. \(B \leftarrow \alpha(A^{-T})B \)
3. \(B \leftarrow \alpha B(A^{-1}) \)
4. \(B \leftarrow \alpha B(A^{-T}) \)
5. \(B \leftarrow \alpha(A^{H})B \) (only for CTRSM and ZTRSM)
6. \(B \leftarrow \alpha B(A^{H}) \) (only for CTRSM and ZTRSM)

where:

\(\alpha \) is a scalar.

\(B \) is an \(m \) by \(n \) rectangular matrix.

\(A \) is an upper or lower triangular matrix, where:

If \(\text{side} = 'L' \), it has order \(m \), and equation 1, 2, or 5 is performed.

If \(\text{side} = 'R' \), it has order \(n \), and equation 3, 4, or 6 is performed.
If \(n \) or \(m \) is 0, no computation is performed. See references [32] and [36].

Error Conditions

Resource Errors: Unable to allocate internal work area.

Computational Errors: None

Note: If the triangular matrix \(A \) is singular, the results returned by this subroutine are unpredictable, and there may be a divide-by-zero program exception message.

Input-Argument Errors

1. \(m < 0 \)
2. \(n < 0 \)
3. \(\text{lda}, \text{ldb} \leq 0 \)
4. \(\text{side} \neq 'L' \) or \('R' \)
5. \(\text{uplo} \neq 'L' \) or \('U' \)
6. \(\text{transa} \neq 'T', 'N', \) or \('C' \)
7. \(\text{diag} \neq 'N' \) or \('U' \)
8. \(\text{side} = 'L' \) and \(m > \text{lda} \)
9. \(\text{m} > \text{ldb} \)
10. \(\text{side} = 'R' \) and \(n > \text{lda} \)

Example 1: This example shows the solution \(B \leftarrow \alpha (A^{-1})B \), where \(A \) is a real 5 by 5 upper triangular matrix that is not unit triangular, and \(B \) is a real 5 by 3 rectangular matrix.

Call Statement and Input

```
SIDE   UPLO   TRANSA   DIAG M   N   ALPHA A  LDA  B  LDB
|   |   | | ||  |  ||||
CALL STRSM( 'L' , 'U' , 'N' , 'N' , 5 , 3 , 1.:z"ro"ot , A , 7 , B , 6 )
```

\[
A = \begin{bmatrix}
3.0 & -1.0 & 2.0 & 2.0 & 1.0 \\
. & -2.0 & 4.0 & -1.0 & 3.0 \\
. & . & -3.0 & 0.0 & 2.0 \\
. & . & . & 4.0 & -2.0 \\
. & . & . & . & . \\
. & . & . & . & .
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
6.0 & 10.0 & -2.0 \\
-16.0 & -1.0 & 6.0 \\
-2.0 & 1.0 & -4.0 \\
14.0 & 0.0 & -14.0 \\
-1.0 & 2.0 & 1.0 \\
. & . & .
\end{bmatrix}
\]

Output
Example 2: This example shows the solution $B \leftarrow \alpha (A^T)B$, where A is a real 5 by 5 upper triangular matrix that is not unit triangular, and B is a real 5 by 4 rectangular matrix.

Call Statement and Input

```
CALL STRSM('L', 'U', 'T', 'N', 5, 4, 1.0, A, 7, B, 6)
```

Output

```
  1.0  2.0  3.0  4.0
-2.0 -1.0  0.0  1.0
  3.0  4.0 -3.0 -3.0
  2.0  2.0  2.0  2.0
```

Example 3: This example shows the solution $B \leftarrow \alpha B(A^{-1})$, where A is a real 5 by 5 lower triangular matrix that is not unit triangular, and B is a real 3 by 5 rectangular matrix.

Call Statement and Input

```
CALL STRSM('R', 'L', 'N', 'N', 3, 5, 1.0, A, 7, B, 4)
```
Example 4: This example shows the solution $B \leftarrow \alpha B(A^{-1})$, where A is a real 6 by 6 upper triangular matrix that is unit triangular, and B is a real 1 by 6 rectangular matrix.

Note: Because matrix A is unit triangular, the diagonal elements are not referenced. ESSL assumes a value of 1.0 for the diagonal element.

Call Statement and Input

```
SIDE UPLO TRANS A DIAG M N ALPHA A LDA B LDB
      | | | | | | | | | | | | | | | | |
CALL STRSM( 'R', 'U', 'N', 'U', 1, 6, 1., A, 7, B, 2 )
```

```
2.0 . . . .
2.0 3.0 . . .
2.0 1.0 1.0 . .
A = 0.0 3.0 0.0 -2.0 .
2.0 4.0 -1.0 2.0 -1.0
. . . . . .
. . . . . .
```

```
10.0 4.0 0.0 0.0 1.0
B = 10.0 14.0 -4.0 6.0 -3.0
-8.0 2.0 -5.0 4.0 -2.0
. . . . . .
```

Output

```
3.0 4.0 -1.0 -1.0 -1.0
B = 2.0 1.0 -1.0 0.0 3.0
-2.0 -1.0 -3.0 0.0 2.0
. . . . . .
```

```
1.0 4.0 -2.0 10.0 2.0 -6.0
B = . . . . . .
```

Output

```
1.0 2.0 1.0 3.0 -1.0 -2.0
B = . . . . . .
```
Example 5: This example shows the solution $B \leftarrow \alpha A^{-1}$, where A is a complex 5 by 5 lower triangular matrix that is not unit triangular, and B is a complex 3 by 5 rectangular matrix.

Call Statement and Input

```
SIDE UPLO TRANS A DIAG M N ALPHA A LDA B LDB
| | | | | | | | |
CALL CTRSM( 'R', 'L', 'N', 'N', 3, 5, ALPHA, A, 7, B, 4 )
```

$ALPHA = (1.0, 0.0)$

$A = \begin{bmatrix}
(2.0, -3.0) & . & . & . & . \\
(2.0, -4.0) & (3.0, -1.0) & . & . & . \\
(2.0, 2.0) & (1.0, 2.0) & (1.0, 1.0) & . & . \\
(0.0, 0.0) & (3.0, -1.0) & (0.0, -1.0) & (-2.0, 1.0) & . \\
(2.0, 2.0) & (4.0, 0.0) & (-1.0, 2.0) & (2.0, -4.0) & (-1.0, -4.0) \\
. & . & . & . & . \\
. & . & . & . & . \\
. & . & . & . & . \\
. & . & . & . & . \\
. & . & . & . & . \\
. & . & . & . & . \\n\end{bmatrix}$

$B = \begin{bmatrix}
(22.0, -41.0) & (7.0, -26.0) & (9.0, 0.0) & (-15.0, -3.0) & (-15.0, 8.0) \\
(29.0, -18.0) & (24.0, -10.0) & (9.0, 6.0) & (-12.0, -24.0) & (-19.0, -8.0) \\
(-15.0, 2.0) & (-3.0, -21.0) & (-2.0, 4.0) & (-4.0, -12.0) & (-10.0, -6.0) \\
. & . & . & . & . \\
. & . & . & . & . \\
. & . & . & . & . \\
. & . & . & . & . \\
. & . & . & . & . \\
\end{bmatrix}$

Output

$B = \begin{bmatrix}
(3.0, 0.0) & (4.0, 0.0) & (-1.0, -2.0) & (-1.0, -1.0) & (-1.0, -4.0) \\
(2.0, -1.0) & (1.0, 2.0) & (-1.0, -3.0) & (0.0, 2.0) & (3.0, -4.0) \\
(-2.0, 1.0) & (-1.0, -3.0) & (-3.0, 1.0) & (0.0, 0.0) & (2.0, -2.0) \\
. & . & . & . & . \\
. & . & . & . & . \\
. & . & . & . & . \\
. & . & . & . & . \\
. & . & . & . & . \\
\end{bmatrix}$

Example 6: This example shows the solution $B \leftarrow \alpha A^H B$, where A is a complex 5 by 5 upper triangular matrix that is not unit triangular, and B is a complex 5 by 1 rectangular matrix.

Call Statement and Input

```
SIDE UPLO TRANS A DIAG M N ALPHA A LDA B LDB
| | | | | | | | |
CALL CTRSM( 'L', 'U', 'C', 'N', 5, 1, ALPHA, A, 6, B, 6 )
```

$ALPHA = (1.0, 0.0)$

$A = \begin{bmatrix}
(-4.0, 1.0) & (4.0, -3.0) & (-1.0, 3.0) & (0.0, 0.0) & (-1.0, 0.0) \\
. & (-2.0, 0.0) & (-3.0, -1.0) & (-2.0, -1.0) & (4.0, 3.0) \\
. & . & (-5.0, 3.0) & (-3.0, -3.0) & (-5.0, -5.0) \\
. & . & . & (4.0, -4.0) & (2.0, 0.0) \\
. & . & . & . & (2.0, -1.0) \\
. & . & . & . & . \\
\end{bmatrix}$
STRSM, DTRSM, CTRSM, and ZTRSM

\[
B = \begin{bmatrix}
(-8.0, -19.0) \\
(8.0, 21.0) \\
(44.0, -8.0) \\
(13.0, -7.0) \\
(19.0, 2.0)
\end{bmatrix}
\]

Output

\[
B = \begin{bmatrix}
(3.0, 4.0) \\
(-4.0, 2.0) \\
(-5.0, 0.0) \\
(1.0, 3.0) \\
(3.0, 1.0)
\end{bmatrix}
\]
STRI, DTRI, STPI, and DTPI—Triangular Matrix Inverse

These subroutines find the inverse of triangular matrix A:

$$A \leftarrow A^{-1}$$

Matrix A can be either upper or lower triangular, where:

- For the _TRI subroutines, it is stored in upper- or lower-triangular storage mode, respectively.
- For the _TPI subroutines, it is stored in upper- or lower-triangular-packed storage mode, respectively.

Syntax

Table 104. Data Types

<table>
<thead>
<tr>
<th>A</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>STRI and STPI</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DTRI and DTPI</td>
</tr>
</tbody>
</table>

Fortran

```
CALL STRI | DTRI (uplo, diag, a, lda, n)
CALL STPI | DTPI (uplo, diag, ap, n)
```

C and C++

```
stri | dtri (uplo, diag, a, lda, n);
stpi | dtpi (uplo, diag, ap, n);
```

PL/I

```
CALL STRI | DTRI (uplo, diag, a, lda, n);
CALL STPI | DTPI (uplo, diag, ap, n);
```

On Entry

uplo

indicates whether matrix A is an upper or lower triangular matrix, where:

- If $uplo = 'U'$, A is an upper triangular matrix.
- If $uplo = 'L'$, A is a lower triangular matrix.

Specified as: a single character. It must be 'U' or 'L'.

diag

indicates the characteristics of the diagonal of matrix A, where:

- If $diag = 'U'$, A is a unit triangular matrix.
- If $diag = 'N'$, A is not a unit triangular matrix.

Specified as: a single character. It must be 'U' or 'N'.

a

is the upper or lower triangular matrix A of order n, stored in upper- or lower-triangular storage mode, respectively. Specified as: an lda by (at least) n array, containing numbers of the data type indicated in Table 104.

lda

is the leading dimension of the arrays specified for a. Specified as: a fullword integer; $lda > 0$ and $lda \geq n$.

Chapter 10. Linear Algebraic Equations 555
ap
is the upper or lower triangular matrix A of order n, stored in upper- or lower-triangular-packed storage mode, respectively. Specified as: a one-dimensional array of (at least) length \(n(n+1)/2\), containing numbers of the data type indicated in Table 104.

\(n\)
is the order of matrix A. Specified as: a fullword integer; \(n \geq 0\), where:

On Return

\(a\)
is the inverse of the upper or lower triangular matrix A of order n, stored in upper- or lower-triangular storage mode, respectively. Returned as: an lda by (at least) \(n\) array, containing numbers of the data type indicated in Table 104 on page 555.

\(ap\)
is the inverse of the upper or lower triangular matrix A of order n, stored in upper- or lower-triangular-packed storage mode, respectively. Returned as: a one-dimensional array of (at least) length \(n(n+1)/2\), containing numbers of the data type indicated in Table 104 on page 555.

Notes

1. These subroutines accept lowercase letters for the uplo and diag arguments.
2. If matrix A is upper triangular (uplo = 'U'), these subroutines refer to only the upper triangular portion of the matrix. If matrix A is lower triangular, (uplo = 'L'), these subroutines refer to only the lower triangular portion of the matrix. The unreferenced elements are assumed to be zero.
3. The elements of the diagonal of a unit triangular matrix are always one, so you do not need to set these values.
4. For a description of triangular matrices and how they are stored in upper- and lower-triangular storage mode and in upper- and lower-triangular-packed storage mode, see “Triangular Matrix” on page 72.

Function: These subroutines find the inverse of triangular matrix A, where A is either upper or lower triangular:

\[A \leftarrow A^{-1} \]

where:

- A is the triangular matrix of order n.
- \(A^{-1}\) the inverse of the triangular matrix of order n.

If \(n\) is 0, no computation is performed. See references [8] and [36].

Error Conditions

Resource Errors: Unable to allocate internal work area.

Computational Errors: Matrix A is singular.
- One or more of the diagonal elements of matrix A are zero. The first column, \(i\), of matrix A, in which a zero diagonal element is found, is identified in the computational error message.
- The return code is set to 1.
• \(i \) can be determined at run time by use of the ESSL error-handling facilities. To obtain this information, you must use ERRSET to change the number of allowable errors for error code 2145 in the ESSL error option table; otherwise, the default value causes your program to terminate when this error occurs. For details, see “What Can You Do about ESSL Computational Errors?” on page 46.

Input-Argument Errors

1. \(uplo \neq 'U' \) or \('L' \)
2. \(diag \neq 'U' \) or \('N' \)
3. \(n < 0 \)
4. \(lda \leq 0 \)
5. \(lda < n \)

Example 1: This example shows how the inverse of matrix \(A \) is computed, where \(A \) is a 5 by 5 upper triangular matrix that is not unit triangular and is stored in upper-triangular storage mode. Matrix \(A \) is:

\[
\begin{bmatrix}
1.00 & 3.00 & 4.00 & 5.00 & 6.00 \\
0.00 & 2.00 & 8.00 & 9.00 & 1.00 \\
0.00 & 0.00 & 4.00 & 8.00 & 4.00 \\
0.00 & 0.00 & 0.00 & -2.00 & 6.00 \\
0.00 & 0.00 & 0.00 & 0.00 & -1.00 \\
\end{bmatrix}
\]

and where the following inverse matrix is computed. Matrix \(A^{-1} \) is:

\[
\begin{bmatrix}
1.00 & -1.50 & 2.00 & 3.75 & 35.00 \\
0.00 & 0.50 & -1.00 & -1.75 & -14.00 \\
0.00 & 0.00 & 0.25 & 1.00 & 7.00 \\
0.00 & 0.00 & 0.00 & -0.50 & -3.00 \\
0.00 & 0.00 & 0.00 & 0.00 & -1.00 \\
\end{bmatrix}
\]

Call Statement and Input

\[
\begin{array}{cccc}
\text{UPLO} & \text{DIAG} & A & \text{LDA} & \text{N} \\
\hline
'U' & 'N' & A & 5 & 5 \\
\end{array}
\]

\[
\text{CALL STRI('U' , 'N' , A , 5 , 5)}
\]

\[
A = \begin{bmatrix}
1.00 & 3.00 & 4.00 & 5.00 & 6.00 \\
. & 2.00 & 8.00 & 9.00 & 1.00 \\
. & . & 4.00 & 8.00 & 4.00 \\
. & . & . & -2.00 & 6.00 \\
. & . & . & . & -1.00 \\
\end{bmatrix}
\]

Output

\[
A = \begin{bmatrix}
1.00 & -1.50 & 2.00 & 3.75 & 35.00 \\
. & 0.50 & -1.00 & -1.75 & -14.00 \\
. & . & 0.25 & 1.00 & 7.00 \\
. & . & . & -0.50 & -3.00 \\
. & . & . & . & -1.00 \\
\end{bmatrix}
\]
Example 2: This example shows how the inverse of matrix A is computed, where A is a 5 by 5 lower triangular matrix that is unit triangular and is stored in lower-triangular storage mode. Matrix A is:

$$
\begin{bmatrix}
1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
3.0 & 1.0 & 0.0 & 0.0 & 0.0 \\
4.0 & 8.0 & 1.0 & 0.0 & 0.0 \\
5.0 & 9.0 & 8.0 & 1.0 & 0.0 \\
6.0 & 1.0 & 4.0 & 6.0 & 1.0 \\
\end{bmatrix}
$$

and where the following inverse matrix is computed. Matrix A^{-1} is:

$$
\begin{bmatrix}
1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
-3.0 & 1.0 & 0.0 & 0.0 & 0.0 \\
20.0 & -8.0 & 1.0 & 0.0 & 0.0 \\
-138.0 & 55.0 & -8.0 & 1.0 & 0.0 \\
745.0 & -299.0 & 44.0 & -6.0 & 1.0 \\
\end{bmatrix}
$$

Note: Because matrix A is unit triangular, the diagonal elements are not referenced. ESSL assumes a value of 1.0 for the diagonal elements.

Call Statement and Input

```
CALL STRI( 'L' , 'U' , A , 5 , 5)
```

Output

```
\begin{bmatrix}
. & . & . & . & . \\
3.0 & . & . & . & . \\
4.0 & 8.0 & . & . & . \\
5.0 & 9.0 & 8.0 & . & . \\
6.0 & 1.0 & 4.0 & 6.0 & . \\
\end{bmatrix}
```

Example 3: This example shows how the inverse of matrix A is computed, where A is the same matrix shown in Example 1 and is stored in upper-triangular-packed storage mode. The inverse matrix computed here is the same as the inverse matrix shown in Example 1 and is stored in upper-triangular-packed storage mode.

Call Statement and Input

```
CALL STPI( 'U' , 'N' , AP , 5)
```

Output

```
\begin{bmatrix}
. & . & . & . & . \\
-3.0 & . & . & . & . \\
20.0 & -8.0 & . & . & . \\
-138.0 & 55.0 & -8.0 & . & . \\
745.0 & -299.0 & 44.0 & -6.0 & . \\
\end{bmatrix}
```
Example 4: This example shows how the inverse of matrix A is computed, where A is the same matrix shown in Example 2 and is stored in lower-triangular-packed storage mode. The inverse matrix computed here is the same as the inverse matrix shown in Example 2 and is stored in lower-triangular-packed storage mode.

Note: Because matrix A is unit triangular, the diagonal elements are not referenced. ESSL assumes a value of 1.0 for the diagonal elements.
Banded Linear Algebraic Equation Subroutines

This section contains the banded linear algebraic equation subroutine descriptions.
SGBF and DGBF—General Band Matrix Factorization

These subroutines factor general band matrix A, stored in general-band storage mode, using Gaussian elimination. To solve the system of equations with one or more right-hand sides, follow the call to these subroutines with one or more calls to SGBS or DGBS, respectively.

<table>
<thead>
<tr>
<th>Table 105. Data Types</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>SGBF</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DGBF</td>
</tr>
</tbody>
</table>

Note: The output from these factorization subroutines should be used only as input to the solve subroutines SGBS and DGBS, respectively.

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL SGBF I DGBF (agb, lda, n, ml, mu, ipvt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>sgbf I dgbf (agb, lda, n, ml, mu, ipvt);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SGBF I DGBF (agb, lda, n, ml, mu, ipvt);</td>
</tr>
</tbody>
</table>

On Entry

agb

is the general band matrix A of order n, stored in general-band storage mode, to be factored. It has an upper band width mu and a lower band width ml. Specified as: an lda by (at least) n array, containing numbers of the data type indicated in Table 105, where $lda \geq 2ml+mu+16$.

lda

is the leading dimension of the array specified for agb. Specified as: a fullword integer; $lda > 0$ and $lda \geq 2ml+mu+16$.

n

is the order of the matrix A. Specified as: a fullword integer; $n > ml$ and $n > mu$.

ml

is the lower band width ml of the matrix A. Specified as: a fullword integer; $0 \leq ml < n$.

mu

is the upper band width mu of the matrix A. Specified as: a fullword integer; $0 \leq mu < n$.

$ipvt$

See “On Return.”

On Return

agb

is the transformed matrix A of order n, containing the results of the factorization. See “Function” on page 562. Returned as: an lda by (at least) n array, containing numbers of the data type indicated in Table 105.

$ipvt$

is the integer vector $ipvt$ of length n, containing the pivot information necessary to construct matrix L from the information contained in the output array agb.
Returned as: a one-dimensional array of (at least) length \(n \), containing fullword integers.

Notes

1. \(ipvt \) is not a permutation vector in the strict sense. It is used to record column interchanges in \(L \) due to partial pivoting and to improve performance.

2. The entire \(lda \) by \(n \) array specified for \(agb \) must remain unchanged between calls to the factorization and solve subroutines.

3. This subroutine can be used for tridiagonal matrices \((ml = mu = 1)\); however, the tridiagonal subroutines SGTF/DGTF and SGTS/DGTS are faster.

4. For a description of how a general band matrix is stored in general-band storage mode in an array, see “General Band Matrix” on page 75.

Function: The general band matrix \(A \), stored in general-band storage mode, is factored using Gaussian elimination with partial pivoting to compute the \(LU \) factorization of \(A \), where:

- \(ipvt \) is a vector containing the pivoting information.
- \(L \) is a unit lower triangular band matrix.
- \(U \) is an upper triangular band matrix.

The transformed matrix \(A \) contains \(U \) in packed format, along with the multipliers necessary to construct, with the help of \(ipvt \), a matrix \(L \), such that \(A = LU \). This factorization can then be used by SGBS or DGBS, respectively, to solve the system of equations. See reference [38].

Error Conditions

Resource Errors: Unable to allocate internal work area.

Computational Errors: Matrix \(A \) is singular.

- One or more columns of \(L \) and the corresponding diagonal of \(U \) contain all zeros (all columns of \(L \) are checked). The last column, \(i \), of \(L \) with a corresponding \(U = 0 \) diagonal element is identified in the computational error message.
- The return code is set to 1.
- \(i \) can be determined at run time by use of the ESSL error-handling facilities. To obtain this information, you must use ERRSET to change the number of allowable errors for error code 2103 in the ESSL error option table; otherwise, the default value causes your program to terminate when this error occurs. For details, see “What Can You Do about ESSL Computational Errors?” on page 46.

Input-Argument Errors

1. \(lda \leq 0 \)
2. \(ml < 0 \)
3. \(ml \geq n \)
4. \(mu < 0 \)
5. \(mu \geq n \)
6. \(lda < 2ml+mu+16 \)
Example: This example shows a factorization of a general band matrix A of order 9, with a lower band width of 2 and an upper band width of 3. On input matrix A is:

$$
\begin{bmatrix}
1.0 & 1.0 & 1.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
4.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 5.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 6.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 7.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 8.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 9.0 & 1.0 & 1.0 & 1.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 10.0 & 11.0 & 12.0
\end{bmatrix}
$$

Matrix A is stored in general-band storage mode in the two-dimensional array AGB of size LDA by N, where $LDA = 2ml+mu+16 = 23$. The array AGB is declared as $AGB(1:23,1:9)$.

Note: Matrix A is the same matrix used in the examples in subroutines SGEF and DGEF (see “Example 1” on page 466) and SGEFC and DGEFC (see “Example” on page 489).

Call Statement and Input

```
CALL SGBF( AGB , 23 , 9 , 2 , 3 , IPVT )
```

Output

```
AGB  =

\begin{bmatrix}
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
0.0000 & 0.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
0.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
4.0000 & 5.0000 & 6.0000 & 7.0000 & 8.0000 & 9.0000 & 10.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000
\end{bmatrix}
```
AGB =

\[
\begin{bmatrix}
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
0.0000 & 0.0000 & 0.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
0.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 12.0000 & 1.0000 \\
0.2500 & 0.2000 & 0.1600 & 0.1400 & 0.1250 & 0.1100 & 0.1000 & 5.5380 & 0.3111 \\
0.0000 & 0.1500 & 0.0000 & 0.0714 & 0.0000 & -0.0556 & -0.0306 & 0.9385 & 0.0000 \\
0.2500 & 0.1500 & 0.1000 & 0.0714 & -0.0714 & -0.0694 & -0.0194 & 0.0000 & 0.0000 \\
0.2500 & 0.0000 & 0.1000 & 0.0000 & 0.0536 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
\end{bmatrix}
\]

\[
\text{IPVT} = (2, -65534, -131070, -196606, -262142, -327678, -327678, -327680, -327680)
\]
SGBS and DGBS—General Band Matrix Solve

These subroutines solve the system $A\mathbf{x} = \mathbf{b}$ for \mathbf{x}, where A is a general band matrix, and \mathbf{x} and \mathbf{b} are vectors. They use the results of the factorization of matrix A, produced by a preceding call to SGBF or DGBF, respectively.

<table>
<thead>
<tr>
<th>A, b, x</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>SGBS</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DGBS</td>
</tr>
</tbody>
</table>

Note: The input to these solve subroutines must be the output from the factorization subroutines SGBF and DGBF, respectively.

Syntax

Fortran

```fortran
CALL SGBS | DGBS (agb, lda, n, ml, mu, ipvt, bx)
```

C and C++

```c
sgbs | dgbs (agb, lda, n, ml, mu, ipvt, bx);
```

PL/I

```pli
CALL SGBS | DGBS (agb, lda, n, ml, mu, ipvt, bx);
```

On Entry

- agb
 - is the factorization of general band matrix A, produced by a preceding call to SGBF or DGBF. Specified as: an lda by (at least) n array, containing numbers of the data type indicated in Table 106, where $lda \geq 2ml+mu+16$.

- lda
 - is the leading dimension of the array specified for agb. Specified as: a fullword integer; $lda > 0$ and $lda \geq 2ml+mu+16$.

- n
 - is the order of the matrix A. Specified as: a fullword integer; $n > ml$ and $n > mu$.

- ml
 - is the lower band width ml of the matrix A. Specified as: a fullword integer; $0 \leq ml < n$.

- mu
 - is the upper band width mu of the matrix A. Specified as: a fullword integer; $0 \leq mu < n$.

- $ipvt$
 - is the integer vector $ipvt$ of length n, produced by a preceding call to SGBF or DGBF. It contains the pivot information necessary to construct matrix L from the information contained in the array specified for agb.

 Specified as: a one-dimensional array of (at least) length n, containing fullword integers.

- bx
 - is the vector b of length n, containing the right-hand side of the system.

 Specified as: a one-dimensional array of (at least) length n, containing numbers of the data type indicated in Table 106.

On Return
Notes

1. The scalar data specified for input arguments *lda*, *n*, *ml*, and *mu* for these subroutines must be the same as that specified for SGBF and DGBF, respectively.

2. The array data specified for input arguments *agb* and *ipvt* for these subroutines must be the same as the corresponding output arguments for SGBF and DGBF, respectively.

3. The entire *lda* by *n* array specified for *agb* must remain unchanged between calls to the factorization and solve subroutines.

4. The vectors and matrices used in this computation must have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.

5. This subroutine can be used for tridiagonal matrices (*ml = mu = 1*); however, the tridiagonal subroutines, SGTF/DGTF and SGTS/DGTS, are faster.

6. For a description of how a general band matrix is stored in general-band storage mode in an array, see “General Band Matrix” on page 75.

Function: The real system \(Ax = b \) is solved for \(x \), where \(A \) is a real general band matrix, stored in general-band storage mode, and \(x \) and \(b \) are vectors. These subroutines use the results of the factorization of matrix \(A \), produced by a preceding call to SGBF or DGBF, respectively. The transformed matrix \(A \), used by this computation, consists of the upper triangular matrix \(U \) and the multipliers necessary to construct \(L \) using *ipvt*, as defined in “Function” on page 562. See reference [38].

Error Conditions

Computational Errors

Note: If the factorization performed by SGBF or DGBF failed due to a singular matrix argument, the results returned by this subroutine are unpredictable, and there may be a divide-by-zero program exception message.

Input-Argument Errors

1. \(lda \leq 0 \)
2. \(ml < 0 \)
3. \(ml \geq n \)
4. \(mu < 0 \)
5. \(mu \geq n \)
6. \(lda < 2ml+mu+16 \)

Example: This example shows how to solve the system \(Ax = b \), where general band matrix \(A \) is the same matrix factored in “Example” on page 563 for SGBF and DGBF. The input for *AGB* and *IPVT* in this example is the same as the output for that example.
CALL SGBS(AGB, 23, 9, 2, 3, IPVT, BX)

IPVT = (2, -65534, -131070, -196606, -262142, -327678, -327678, -32768, -32768)

BX = (4.0000, 5.0000, 9.0000, 10.0000, 11.0000, 12.0000, 12.0000, 12.0000, 33.0000)

AGB = (same as output AGB in "Example" on page 563)

Output

BX = (1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 0.9999, 1.0001)
SPBF, DPBF, SPBCHF, and DPBCHF—Positive Definite Symmetric Band Matrix Factorization

These subroutines factor positive definite symmetric band matrix \(A \), stored in lower-band-packed storage mode, using:

- Gaussian elimination for SPBF and DPBF
- Cholesky factorization for SPBCHF and DPBCHF

To solve the system of equations with one or more right-hand sides, follow the call to these subroutines with one or more calls to SPBS, DPBS, SPBCHS, or DPBCHS, respectively.

Notes:

1. The output from these factorization subroutines should be used only as input to the solve subroutines SPBS, DPBS, SPBCHS, and DPBCHS, respectively.

2. For optimal performance:
 - For wide band widths, use _PBCHF.
 - For narrow band widths, use either _PBF or _PBCHF.
 - For very narrow band widths:
 - Use either SPBF or SPBCHF.
 - Use DPBF.

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL SPBF</th>
<th>DPBF</th>
<th>SPBCHF</th>
<th>DPBCHF (apb, lda, n, m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>spbf</td>
<td>dpbf</td>
<td>spbchf</td>
<td>dpbchf (apb, lda, n, m);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SPBF</td>
<td>DPBF</td>
<td>SPBCHF</td>
<td>DPBCHF (apb, lda, n, m);</td>
</tr>
</tbody>
</table>

On Entry

- \(apb \) is the positive definite symmetric band matrix \(A \) of order \(n \), stored in lower-band-packed storage mode, to be factored. It has a half band width of \(m \). Specified as: an \(lda \) by (at least) \(n \) array, containing numbers of the data type indicated in Table 107. See “Notes” on page 569.
- \(lda \) is the leading dimension of the array specified for \(apb \). Specified as: a fullword integer; \(lda > 0 \) and \(lda > m \).
- \(n \) is the order \(n \) of matrix \(A \). Specified as: a fullword integer; \(n > m \).
- \(m \) is the half band width of the matrix \(A \). Specified as: a fullword integer; \(0 \leq m < n \).
Function:
The positive definite symmetric band matrix A, stored in lower-band-packed storage mode, is factored using Gaussian elimination in SPBF and DPBF and Cholesky factorization in SPBCHF and DPBCHF. The transformed matrix A contains the results of the factorization in packed format. This factorization can then be used by SPBS, DPBS, SPBCHS, and DPBCHS, respectively, to solve the system of equations.

For performance reasons, divides are done in a way that reduces the effective exponent range for which DPBF works properly, when processing narrow band widths; therefore, you may want to scale your problem.

Error Conditions

Resource Errors: Unable to allocate internal work area.

Computational Errors

1. Matrix A is not positive definite (for SPBF and DPBF).
 - One or more elements of D contain values less than or equal to 0; all elements of D are checked. The index i of the last nonpositive element encountered is identified in the computational error message.
 - The return code is set to 1.
 - i can be determined at run time by use of the ESSL error-handling facilities. To obtain this information, you must use ERRSET to change the number of allowable errors for error code 2104 in the ESSL error option table; otherwise, the default value causes your program to terminate when this error occurs. For details, see Chapter 4 on page 109.

2. Matrix A is not positive definite (for SPBCHF and DPBCHF).
 - The leading minor of order i has a nonpositive determinant. The order i is identified in the computational error message.
 - The return code is set to 1.
 - i can be determined at run time by use of the ESSL error-handling facilities. To obtain this information, you must use ERRSET to change the number of allowable errors for error code 2115 in the ESSL error option table; otherwise, the default value causes your program to terminate when this error occurs. For details, see Chapter 4 on page 109.
Input-Argument Errors

1. $lda \leq 0$
2. $m < 0$
3. $m \geq n$
4. $m \geq lda$

Example 1: This example shows a factorization of a real positive definite symmetric band matrix A of order 9, using Gaussian elimination, where on input, matrix A is:

$$
\begin{bmatrix}
1.0 & 1.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
1.0 & 2.0 & 2.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
1.0 & 2.0 & 3.0 & 2.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 1.0 & 2.0 & 3.0 & 2.0 & 1.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 1.0 & 2.0 & 3.0 & 2.0 & 1.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 1.0 & 2.0 & 3.0 & 2.0 & 1.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 2.0 & 3.0 & 2.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 2.0 & 3.0 & 0.0 \\
\end{bmatrix}
$$

and on output, matrix A is:

$$
\begin{bmatrix}
1.0 & 1.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
1.0 & 1.0 & 1.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 1.0 & 1.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 1.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 0.0 & 0.0 & 0.0 \\
\end{bmatrix}
$$

where array location $APB(2,9)$ is set to 0.0.

Call Statement and Input

```
APB  LDA  N  M
```

```
CALL SPBF( APB , 3 , 9 , 2 )
```

Output

$$
\begin{bmatrix}
1.0 & 2.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
1.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 0.0 \\
1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0 \\
\end{bmatrix}
$$
Example 2: This example shows a Cholesky factorization of the same matrix used in Example 1.

Call Statement and Input

```
APB  LDA  N  M
    |    |    |    |
CALL SPBCHF( APB , 3 , 9 , 2 )
```

\[\text{APB} = \text{(same as input APB in Example 1)} \]

Output

\[
\text{APB} = \begin{bmatrix}
1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & . & . \\
1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & . & . \\
\end{bmatrix}
\]
SPBS, DPBS, SPBCHS, and DPBCHS—Positive Definite Symmetric Band Matrix Solve

These subroutines solve the system \(Ax = b \) for \(x \), where \(A \) is a positive definite symmetric band matrix, and \(x \) and \(b \) are vectors. They use the results of the factorization of matrix \(A \), produced by a preceding call to SPBF, DPBF, SPBCHF, and DPBCHF, respectively, where:

- Gaussian elimination was used by SPBF and DPBF.
- Cholesky factorization was used by SPBCHF and DPBCHF.

Table 108. Data Types

<table>
<thead>
<tr>
<th></th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A, b, x)</td>
<td></td>
</tr>
<tr>
<td>Short-precision real</td>
<td>SPBS and SPBCHS</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DPBS and DPBCHS</td>
</tr>
</tbody>
</table>

Notes:

1. The input to these solve subroutines must be the output from the factorization subroutines SPBF, DPBF, SPBCHF, and DPBCHF, respectively.

2. For performance tradeoffs, see “SPBF, DPBF, SPBCHF, and DPBCHF—Positive Definite Symmetric Band Matrix Factorization” on page 568.

Syntax

<table>
<thead>
<tr>
<th>Language</th>
<th>Call Routine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>CALL SPBS</td>
</tr>
<tr>
<td>C and C++</td>
<td>spbs</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SPBS</td>
</tr>
</tbody>
</table>

On Entry

- \(apb \)
 - is the factorization of matrix \(A \), produced by a preceding call to SPBF or DPBF. Specified as: an \(lda \) by (at least) \(n \) array, containing numbers of the data type indicated in Table 108. See “Notes” on page 573.
- \(lda \)
 - is the leading dimension of the array specified for \(apb \). Specified as: a fullword integer; \(lda > 0 \) and \(lda > m \).
- \(n \)
 - is the order \(n \) of matrix \(A \). Specified as: a fullword integer; \(n > m \).
- \(m \)
 - is the half band width of the matrix \(A \). Specified as: a fullword integer; \(0 \leq m < n \).
- \(bx \)
 - is the vector \(b \) of length \(n \), containing the right-hand side of the system. Specified as: a one-dimensional array of (at least) length \(n \), containing numbers of the data type indicated in Table 108.

On Return
is the solution vector \(x \) of length \(n \), containing the results of the computation. Returned as: a one-dimensional array, containing numbers of the data type indicated in Table 108.

Notes

1. The scalar data specified for input arguments \(lda, n, \) and \(m \) for these subroutines must be the same as that specified for SPBF, DPBF, SPBCHF, and DPBCHF, respectively.
2. The array data specified for input argument \(apb \) for these subroutines must be the same as the corresponding output argument for SPBF, DPBF, SPBCHF, and DPBCHF, respectively.
3. These subroutines can be used for tridiagonal matrices \((m = 1) \); however, the tridiagonal subroutines, SPTF/DPTF and SPTS/DPTS, are faster.
4. The vectors and matrices used in this computation must have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.
5. For a description of how a positive definite symmetric band matrix is stored in lower-band-packed storage mode in an array, see “Positive Definite Symmetric Band Matrix” on page 83.

Function: The system \(Ax = b \) is solved for \(x \), where \(A \) is a positive definite symmetric band matrix, stored in lower-band-packed storage mode, and \(x \) and \(b \) are vectors. These subroutines use the results of the factorization of matrix \(A \), produced by a preceding call to SPBF, DPBF, SPBCHF, or DPBCHF, respectively.

Error Conditions

Computational Errors: None

Note: If the factorization subroutine resulted in a nonpositive definite matrix, error 2104 for SPBF and DPBF or error 2115 for SPBCHF and DPBCHF, results of these subroutines may be unpredictable.

Input-Argument Errors

1. \(lda \leq 0 \)
2. \(m < 0 \)
3. \(m \geq n \)
4. \(m \geq lda \)

Example 1: This example shows how to solve the system \(Ax = b \), where matrix \(A \) is the same matrix factored in the “Example 1” on page 570 for SPBF and DPBF, using Gaussian elimination.

Call Statement and Input

```
APB  LDA  N  M  BX
     |     |     |     |     
CALL SPBS( APB , 3 , 9 , 2 , BX )
```

\(APB = \) (same as output \(APB \) in “Example 1” on page 570)
\(BX = \) (3.0, 6.0, 9.0, 9.0, 9.0, 9.0, 9.0, 8.0, 6.0)

Output
SPBS, DPBS, SPBCHS, and DPBCHS

\[
BX = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
\]

This example shows how to solve the system \(Ax = b\), where matrix \(A\) is the same matrix factored in the “Example 2” on page 571 for SPBCHF and DPBCHF, using Cholesky factorization.

Call Statement and Input

\[
\begin{array}{cccccc}
APB & LDA & N & M & BX \\
\hline
| | | | |
\end{array}
\]

CALL SPBCHS(APB , 3 , 9 , 2 , BX)

\[
\begin{align*}
APB & = \text{ (same as output } APB \text{ in "Example 2" on page 571) } \\
BX & = (3.0, 6.0, 9.0, 9.0, 9.0, 9.0, 9.0, 8.0, 6.0)
\end{align*}
\]

Output

\[
BX = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
\]
SGTF and DGTF—General Tridiagonal Matrix Factorization

These subroutines compute the standard Gaussian factorization with partial pivoting for tridiagonal matrix A, stored in tridiagonal storage mode. To solve a tridiagonal system with one or more right-hand sides, follow the call to these subroutines with one or more calls to SGTS or DGTS, respectively.

Syntax

Fortran

```
CALL SGTF | DGTF (n, c, d, e, f, ipvt)
```

C and C++

```
sgtf | dgtf (n, c, d, e, f, ipvt);
```

PL/I

```
CALL SGTF | DGTF (n, c, d, e, f, ipvt);
```

On Entry

- n is the order n of tridiagonal matrix A. Specified as: a fullword integer; $n \geq 0$.
- c is the vector c, containing the lower subdiagonal of matrix A in positions 2 through n in an array, referred to as C. Specified as: a one-dimensional array of (at least) length n, containing numbers of the data type indicated in Table 109.
- d is the vector d, containing the main diagonal of matrix A, in positions 1 through n in an array, referred to as D. Specified as: a one-dimensional array of (at least) length n, containing numbers of the data type indicated in Table 109.
- e is the vector e, containing the upper subdiagonal of matrix A, in positions 1 through $n-1$ in an array, referred to as E. Specified as: a one-dimensional array of (at least) length n, containing numbers of the data type indicated in Table 109.
- f See “On Return.”
- $ipvt$ See “On Return.”

On Return

- c is the vector c, containing part of the factorization of matrix A in positions 1 through n in an array, referred to as C. Returned as: a one-dimensional array of (at least) length n, containing numbers of the data type indicated in Table 109.
is the vector d, containing part of the factorization of matrix A in an array, referred to as D. Returned as: a one-dimensional array of (at least) length n, containing numbers of the data type indicated in Table 109.

e is the vector e, containing part of the factorization of the matrix A in positions 1 through n in an array, referred to as E. Returned as: a one-dimensional array of (at least) length n, containing numbers of the data type indicated in Table 109 on page 575.

f is the vector f, containing part of the factorization of matrix A in the first n positions in an array, referred to as F. Returned as: a one-dimensional array of (at least) length n, containing numbers of the data type indicated in Table 109 on page 575.

$ipvt$ is the integer vector $ipvt$ of length n, containing the pivot information. Returned as: a one-dimensional array of (at least) length n, containing fullword integers.

Notes

1. For a description of how tridiagonal matrices are stored, see “General Tridiagonal Matrix” on page 88.

2. $ipvt$ is not a permutation vector in the strict sense. It is used to record column interchanges in the tridiagonal matrix due to partial pivoting.

3. The factorization matrix A is stored in nonstandard format.

Function: The standard Gaussian elimination with partial pivoting of tridiagonal matrix A is computed. The factorization is returned by overwriting input arrays C, D, and E, and by writing into output array F, along with pivot information in vector $ipvt$. This factorization can then be used by SGTS or DGTS, respectively, to solve tridiagonal systems of linear equations. See references [43], [54], [55], and [90]. If n is 0, no computation is performed.

Error Conditions

Computational Errors: Matrix A is singular or nearly singular.

- A pivot element has a value that cannot be reciprocated or is equal to 0. The index i of the element is identified in the computational error message.
- The return code is set to 1.
- i can be determined at run time by use of the ESSL error-handling facilities. To obtain this information, you must use ERRSET to change the number of allowable errors for error code 2105 in the ESSL error option table; otherwise, the default value causes your program to terminate when this error occurs. For details, see “What Can You Do about ESSL Computational Errors?” on page 46.

Input-Argument Errors: $n < 0$

Example: This example shows how to factor the following tridiagonal matrix A of order 4:
Call Statement and Input

\[
\begin{bmatrix}
2.0 & 2.0 & 0.0 & 0.0 \\
1.0 & 3.0 & 2.0 & 0.0 \\
0.0 & 1.0 & 3.0 & 2.0 \\
0.0 & 0.0 & 1.0 & 3.0
\end{bmatrix}
\]

N C D E F IPVT

| | | | | |
| N | C | D | E | F | IPVT |

CALL DGTF(4, C, D, E, F, IPVT)

C = (., 1.0, 1.0, 1.0)
D = (2.0, 3.0, 3.0, 3.0)
E = (2.0, 2.0, 2.0, .)

Output

C = (., -0.5, -0.5, -0.5)
D = (-0.5, -0.5, -0.5, -0.5)
E = (2.0, 2.0, 2.0, .)
IPVT = (X'00', X'00', X'00', X'00')

Notes

1. F is stored in an internal format and is passed unchanged to the solve subroutine.

2. A “.” means you do not have to store a value in that position in the array. However, these storage positions are required and may be overwritten during the computation.
SGTS and DGTS—General Tridiagonal Matrix Solve

These subroutines solve a tridiagonal system of linear equations using the factorization of tridiagonal matrix \(A \), stored in tridiagonal storage mode, produced by SGTF or DGTF, respectively.

Table 110. Data Types

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c, d, e, f, b, x)</td>
<td>SGTS</td>
</tr>
<tr>
<td>Short-precision real</td>
<td>SGTS</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DGTS</td>
</tr>
</tbody>
</table>

Note: The input to these solve subroutines must be the output from the factorization subroutines SGTF and DGTF, respectively.

Syntax

<table>
<thead>
<tr>
<th>Language</th>
<th>Call</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>CALL SGTS</td>
<td>(n, c, d, e, f, ipvt, bx)</td>
</tr>
<tr>
<td>C and C++</td>
<td>sgts</td>
<td>(n, c, d, e, f, ipvt, bx);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SGTS</td>
<td>(n, c, d, e, f, ipvt, bx);</td>
</tr>
</tbody>
</table>

On Entry

\(n \)

is the order \(n \) of tridiagonal matrix \(A \). Specified as: a fullword integer; \(n \geq 0 \).

\(c \)

is the vector \(c \), containing part of the factorization of matrix \(A \) from SGTF or DGTF, respectively, in an array, referred to as \(c \). Specified as: a one-dimensional array of (at least) length \(n \), containing numbers of the data type indicated in Table 110.

\(d \)

is the vector \(d \), containing part of the factorization of matrix \(A \) from SGTF or DGTF, respectively, in an array, referred to as \(d \). Specified as: a one-dimensional array of (at least) length \(n \), containing numbers of the data type indicated in Table 110.

\(e \)

is the vector \(e \), containing part of the factorization of matrix \(A \) from SGTF or DGTF, respectively, in an array, referred to as \(e \). Specified as: a one-dimensional array of (at least) length \(n \), containing numbers of the data type indicated in Table 110.

\(f \)

is the vector \(f \), containing part of the factorization of matrix \(A \) from SGTF or DGTF, respectively, in an array, referred to as \(f \). Specified as: a one-dimensional array of (at least) length \(n \), containing numbers of the data type indicated in Table 110.

\(ipvt \)

is the integer vector \(ipvt \) of length \(n \), containing the pivot information, produced by a preceding call to SGTF and DGTF, respectively. Specified as: a one-dimensional array of (at least) length \(n \), containing fullword integers.

\(bx \)

is the vector \(b \) of length \(n \), containing the right-hand side of the system in the first \(n \) positions in an array, referred to as \(bx \). Specified as: a one-dimensional
array of (at least) length \(n+1 \), containing numbers of the data type indicated in Table 110. For details on specifying the length, see “Notes” on page 579.

On Return

\(bx \)

\(bx \) is the solution vector \(x \) (at least) of length \(n \), containing the solution of the tridiagonal system in the first \(n \) positions in an array, referred to as \(BX \). Returned as: a one-dimensional array, of (at least) length \(n+1 \), containing numbers of the data type indicated in Table 110 on page 578. For details about the length, see “Notes.”

Notes

1. For a description of how tridiagonal matrices are stored, see “General Tridiagonal Matrix” on page 88.

2. Array \(BX \) can have a length of \(n \) if memory location \(BX(n+1) \) is addressable—that is, not in read-protected storage. If it is in read-protected storage, array \(BX \) must have a length of \(n+1 \). In both cases, the vector \(b \) (on input) and vector \(x \) (on output) reside in positions 1 through \(n \) in array \(BX \). Array location \(BX(n+1) \) is not altered by these subroutines.

Function: Given the factorization produced by SGTF or DGTF, respectively, these subroutines use the standard forward elimination and back substitution to solve the tridiagonal system \(Ax = b \), where \(A \) is a general tridiagonal matrix. See references [43], [54], [55], and [90].

Error Conditions

Computational Errors: None

Input-Argument Errors: \(n < 0 \)

Example: This example solves the tridiagonal system \(Ax = b \), where matrix \(A \) is the same matrix factored in “Example” on page 576 for SGTF and DGTF, and where:

\[
\begin{align*}
\mathbf{b} &= (4.0, 6.0, 6.0, 4.0) \\
\mathbf{x} &= (1.0, 1.0, 1.0, 1.0)
\end{align*}
\]

Call Statement and Input

\[
\begin{array}{cccccccc}
N & C & D & E & F & IPVT & BX \\
\mid & \mid & \mid & \mid & \mid & \mid & \mid \\
\hline \\
\text{CALL DGTS(4 , C , D , E , F , IPVT , BX)}
\end{array}
\]

\[
\begin{array}{c}
C = \text{(same as output C in “Example” on page 576)} \\
D = \text{(same as output D in “Example” on page 576)} \\
E = \text{(same as output E in “Example” on page 576)} \\
F = \text{(same as output F in “Example” on page 576)} \\
IPVT = \text{(same as output IPVT in “Example” on page 576)} \\
BX = \text{(4.0, 6.0, 6.0, 4.0, .)}
\end{array}
\]

Output

\[
\begin{array}{c}
BX = (1.0, 1.0, 1.0, 1.0, .)
\end{array}
\]
SGTNP, DGTNP, CGTNP, and ZGTNP

SGTNP, DGTNP, CGTNP, and ZGTNP—General Tridiagonal Matrix Combined Factorization and Solve with No Pivoting

These subroutines solve the tridiagonal system $Ax = b$ using Gaussian elimination, where tridiagonal matrix A is stored in tridiagonal storage mode.

Table 111. Data Types

<table>
<thead>
<tr>
<th>c, d, e, b, x</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>SGTNP</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DGTNP</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>CGTNP</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>ZGTNP</td>
</tr>
</tbody>
</table>

Note: In general, these subroutines provide better performance than the _GTNPF and _GTNPS subroutines; however, in the following instances, you get better performance by using _GTNPF and _GTNPS:

- For small n
- When performing a single factorization followed by multiple solves

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL SGTNP</th>
<th>DGTNP</th>
<th>CGTNP</th>
<th>ZGTNP (n, c, d, e, bx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>sgtnp</td>
<td>dgtnp</td>
<td>cgtnp</td>
<td>zgtnp (n, c, d, e, bx);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SGTNP</td>
<td>DGTNP</td>
<td>CGTNP</td>
<td>ZGTNP (n, c, d, e, bx);</td>
</tr>
</tbody>
</table>

On Entry

- n is the order n of tridiagonal matrix A. Specified as: a fullword integer; $n \geq 0$.
- c is the vector c, containing the lower subdiagonal of matrix A in positions 2 through n in an array, referred to as C. Specified as: a one-dimensional array of (at least) length n, containing numbers of the data type indicated in Table 111. On output, C is overwritten; that is, the original input is not preserved.
- d is the vector d, containing the main diagonal of matrix A in positions 1 through n in an array, referred to as D. Specified as: a one-dimensional array of (at least) length n, containing numbers of the data type indicated in Table 111. On output, D is overwritten; that is, the original input is not preserved.
- e is the vector e, containing the upper subdiagonal of matrix A in positions 1 through n–1 in an array, referred to as E. Specified as: a one-dimensional array of (at least) length n, containing numbers of the data type indicated in Table 111. On output, E is overwritten; that is, the original input is not preserved.
- bx is the vector b, containing the right-hand side of the system in the first n positions in an array, referred to as BX. Specified as: a one-dimensional array of (at least) length n, containing numbers of the data type indicated in Table 111.
On Return

bx

is the solution vector \(x \) of length \(n \), containing the solution of the tridiagonal system in the first \(n \) positions in an array, referred to as \(BX \). Returned as: a one-dimensional array, containing numbers of the data type indicated in Table 111 on page 580.

Note: For a description of how tridiagonal matrices are stored, see “General Tridiagonal Matrix” on page 88.

Function: The solution of the tridiagonal system \(Ax = b \) is computed by Gaussian elimination.

No pivoting is done. Therefore, these subroutines should not be used when pivoting is necessary to maintain the numerical accuracy of the solution. Overflow may occur if small main diagonal elements are generated. Underflow or accuracy loss may occur if large main diagonal elements are generated.

For performance reasons, complex divides are done without scaling. Computing the inverse in this way restricts the range of numbers for which the ZGTNP subroutine works properly.

For performance reasons, divides are done in a way that reduces the effective exponent range for which DGTNP and ZGTNP work properly; therefore, you may want to scale your problem, such that the diagonal elements are close to 1.0 for DGTNP and (1.0, 0.0) for ZGTNP.

Error Conditions

Computational Errors: None

Input-Argument Errors: \(n < 0 \)

Example 1: This example shows a factorization of the real tridiagonal matrix \(A \), of order 4:

\[
\begin{bmatrix}
7.0 & 4.0 & 0.0 & 0.0 \\
1.0 & 8.0 & 5.0 & 0.8 \\
0.0 & 2.0 & 9.0 & 6.0 \\
0.0 & 0.0 & 3.0 & 10.0
\end{bmatrix}
\]

It then finds the solution of the tridiagonal system \(Ax = b \), where \(b \) is:

\[(11.0, 14.0, 17.0, 13.0)\]

and \(x \) is:

\[(1.0, 1.0, 1.0, 1.0)\]

On output, arrays C, D, and E are overwritten.

Call Statement and Input
SGTNP, DGTPN, CGTPN, and ZGTPN

```
N C D E BX
| | | | |
CALL DGTPNP( 4 , C , D , E , BX )

C = ( . , 1.0, 2.0, 3.0)
D = (7.0, 8.0, 9.0, 10.0)
E = (4.0, 5.0, 6.0, . )
BX = (11.0, 14.0, 17.0, 13.0)
```

Example 2: This example shows a factorization of the complex tridiagonal matrix \(A \), of order 4:

\[
\begin{bmatrix}
(7.0, 7.0) & (4.0, 4.0) & (0.0, 0.0) & (0.0, 0.0) \\
(1.0, 1.0) & (8.0, 8.0) & (5.0, 5.0) & (0.0, 0.0) \\
(0.0, 0.0) & (2.0, 2.0) & (9.0, 9.0) & (6.0, 6.0) \\
(0.0, 0.0) & (0.0, 0.0) & (3.0, 3.0) & (10.0, 10.0)
\end{bmatrix}
\]

It then finds the solution of the tridiagonal system \(Ax = b \), where \(b \) is:

\((-11.0, 19.0), (-14.0, 50.0), (-17.0, 93.0), (-13.0, 85.0)\)

and \(x \) is:

\((1.0, -1.0), (2.0, -2.0), (3.0, -3.0), (4.0, -4.0)\)

On output, arrays C, D, and E are overwritten.

Call Statement and Input
```
N C D E BX
| | | | |
CALL ZGTPNP( 4 , C , D , E , BX )

C = ( . , (1.0, 1.0), (2.0, 2.0), (3.0, 3.0))
D = ((7.0, 7.0), (8.0, 8.0), (9.0, 9.0), (10.0, 10.0))
E = ((4.0, 4.0), (5.0, 5.0), (6.0, 6.0), . )
BX = ((-11.0, 19.0), (-14.0, 50.0), (-17.0, 93.0), (-13.0, 85.0))
```

Output
```
BX = ((0.0, 1.0), (1.0, 2.0), (2.0, 3.0), (3.0, 4.0))
```
SGTNPF, DGTPNF, CGTNPF, and ZGTNPF—General
Tridiagonal Matrix Factorization with No Pivoting

These subroutines factor tridiagonal matrix \(A \), stored in tridiagonal storage mode, using Gaussian elimination. To solve a tridiagonal system of linear equations with one or more right-hand sides, follow the call to these subroutines with one or more calls to SGTNPS, DGTNPS, CGTNPS, or ZGTNPS, respectively.

<table>
<thead>
<tr>
<th>Table 112. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>c, d, e</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
<tr>
<td>Short-precision complex</td>
</tr>
<tr>
<td>Long-precision complex</td>
</tr>
</tbody>
</table>

Notes:
1. The output from these factorization subroutines should be used only as input to the solve subroutines SGTNPS, DGTNPS, CGTNPS, and ZGTNPS, respectively.
2. In general, the _GTNP subroutines provide better performance than the _GTNPF and _GTNPS subroutines; however, in the following instances, you get better performance by using _GTNPF and _GTNPS:
 - For small \(n \)
 - When performing a single factorization followed by multiple solves

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL SGTNPF</th>
<th>DGTPNF</th>
<th>CGTNPF</th>
<th>ZGTNPF (n, c, d, e, iopt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>sgtnpf</td>
<td>dgtnpf</td>
<td>cgtnpf</td>
<td>zgtnpf (n, c, d, e, iopt);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SGTNPF</td>
<td>DGTPNF</td>
<td>CGTNPF</td>
<td>ZGTNPF (n, c, d, e, iopt);</td>
</tr>
</tbody>
</table>

On Entry

\(n \)

is the order \(n \) of tridiagonal matrix \(A \). Specified as: a fullword integer; \(n \geq 0 \).

\(c \)

is the vector \(c \), containing the lower subdiagonal of matrix \(A \) in positions 2 through \(n \) in an array, referred to as \(C \). Specified as: a one-dimensional array, of (at least) length \(n \), containing numbers of the data type indicated in Table 112.

\(d \)

is the vector \(d \), containing the main diagonal of matrix \(A \) in positions 1 through \(n \) in an array, referred to as \(D \). Specified as: a one-dimensional array, of (at least) length \(n \), containing numbers of the data type indicated in Table 112.

\(e \)

is the vector \(e \), containing the upper subdiagonal of matrix \(A \) in positions 1 through \(n-1 \) in an array, referred to as \(E \). Specified as: a one-dimensional array, of (at least) length \(n \), containing numbers of the data type indicated in Table 112.
SGTNPF, DGTNPF, CGTNPF, and ZGTNPF

\[\text{iopt} \]
indicates the type of computation to be performed, where:

If \(\text{iopt} = 0 \) or \(1 \), Gaussian elimination is used to factor the matrix.

Specified as: a fullword integer; \(\text{iopt} = 0 \) or \(1 \).

On Return

\[c \]
is the vector \(c \), containing part of the factorization of matrix \(A \) in positions 1 through \(n \) in an array, referred to as \(C \). Returned as: a one-dimensional array of (at least) length \(n \), containing numbers of the data type indicated in Table 112 on page 583.

\[d \]
is the vector \(d \), containing part of the factorization of matrix \(A \) in an array, referred to as \(D \). Returned as: a one-dimensional array of (at least) length \(n \), containing numbers of the data type indicated in Table 112 on page 583.

\[e \]
is the vector \(e \), containing part of the factorization of matrix \(A \) in positions 1 through \(n \) in an array, referred to as \(E \). Returned as: a one-dimensional array of (at least) length \(n \), containing numbers of the data type indicated in Table 112 on page 583. It has the same length as \(E \) on entry.

Note: For a description of how tridiagonal matrices are stored, see “General Tridiagonal Matrix” on page 88.

Function: The factorization of a diagonally-dominant tridiagonal matrix \(A \) is computed using Gaussian elimination. This factorization can then be used by SGTNPS, DGTNPS, CGTNPS, or ZGTNPS respectively, to solve the tridiagonal systems of linear equations. See reference [77].

No pivoting is done by these subroutines. Therefore, these subroutines should not be used when pivoting is necessary to maintain the numerical accuracy of the solution. Overflow may occur if small main diagonal elements are generated. Underflow or accuracy loss may occur if large main diagonal elements are generated.

For performance reasons, complex divides are done without scaling. Computing the inverse in this way restricts the range of numbers for which ZGTNPF works properly.

For performance reasons, divides are done in a way that reduces the effective exponent range for which DGTPNF and ZGTNPF work properly; therefore, you may want to scale your problem, such that the diagonal elements are close to \(1.0 \) for DGTPNF and \((1.0, 0.0) \) for ZGTNPF.

Error Conditions

Computational Errors: None

Input-Argument Errors

1. \(n < 0 \)
2. \(\text{iopt} \neq 0 \) or \(1 \)
Example 1: This example shows a factorization of the tridiagonal matrix A, of order 4:

\[
\begin{bmatrix}
1.0 & 1.0 & 0.0 & 0.0 \\
1.0 & 2.0 & 1.0 & 0.0 \\
0.0 & 1.0 & 3.0 & 1.0 \\
0.0 & 0.0 & 1.0 & 1.0 \\
\end{bmatrix}
\]

Call Statement and Input

\[
\begin{array}{cccccc}
\text{N} & \text{C} & \text{D} & \text{E} & \text{IOPT} \\
\hline
4 & | & | & | & | \\
\end{array}
\]

CALL DGNTNPF(4 , C , D , E , 0)

\[
\begin{align*}
\text{C} &= (\ . \ , 1.0, 1.0, 1.0) \\
\text{D} &= (1.0, 2.0, 3.0, 1.0) \\
\text{E} &= (1.0, 1.0, 1.0, .)
\end{align*}
\]

Output

\[
\begin{align*}
\text{C} &= (\ . \ , -1.0, -1.0, 1.0) \\
\text{D} &= (-1.0, -1.0, -1.0, -1.0) \\
\text{E} &= (1.0, 1.0, -1.0, .)
\end{align*}
\]

Example 2: This example shows a factorization of the tridiagonal matrix A, of order 4:

\[
\begin{bmatrix}
(7.0, 7.0) & (4.0, 4.0) & (0.0, 0.0) & (0.0, 0.0) \\
(1.0, 1.0) & (8.0, 8.0) & (5.0, 5.0) & (0.0, 0.0) \\
(0.0, 0.0) & (2.0, 2.0) & (9.0, 9.0) & (6.0, 6.0) \\
(0.0, 0.0) & (0.0, 0.0) & (3.0, 3.0) & (10.0, 10.0) \\
\end{bmatrix}
\]

Call Statement and Input

\[
\begin{array}{cccccc}
\text{N} & \text{C} & \text{D} & \text{E} & \text{IOPT} \\
\hline
4 & | & | & | & | \\
\end{array}
\]

CALL ZGTNPF(4 , C , D , E , 0)

\[
\begin{align*}
\text{C} &= (\ . \ , (1.0, 1.0), (2.0, 2.0), (3.0, 3.0)) \\
\text{D} &= ((7.0, 7.0), (8.0, 8.0), (9.0, 9.0), (10.0, 10.0)) \\
\text{E} &= ((4.0, 4.0), (5.0, 5.0), (6.0, 6.0), .)
\end{align*}
\]

Output

\[
\begin{align*}
\text{C} &= (\ . \ , (-0.142, 0.0), (-0.269, 0.0), (3.0, 3.0)) \\
\text{D} &= ((-0.0714, 0.0714), (-0.0673, 0.0673), (-0.0854, 0.0854), (-0.05, 0.05)) \\
\text{E} &= ((4.0, 4.0), (5.0, 5.0), (-0.6, 0.0), .)
\end{align*}
\]

Notes

1. A “.” means you do not have to store a value in that position in the array. However, these storage positions are required and may be overwritten during the computation.
SGTNPS, DGTNPS, CGTNPS, and ZGTNPS

SGTNPS, DGTNPS, CGTNPS, and ZGTNPS—General Tridiagonal Matrix Solve with No Pivoting

These subroutines solve a tridiagonal system of equations using the factorization of matrix \(A \), stored in tridiagonal storage mode, produced by SGTNPF, DGTNPF, CGTNPF, or ZGTNPF, respectively.

Syntax

<table>
<thead>
<tr>
<th>Table 113. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>c, d, e, b, x</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
<tr>
<td>Short-precision complex</td>
</tr>
<tr>
<td>Long-precision complex</td>
</tr>
</tbody>
</table>

Note: The input to these solve subroutines must be the output from the factorization subroutines SGTNPF, DGTNPF, CGTNPF, and ZGTNPF, respectively.

Fortran

```fortran
CALL SGTNPS | DGTNPS | CGTNPS | ZGTNPS (n, c, d, e, bx)
```

C and C++

```c
sgtnps | dgtnps | cgtnps | zgtnps (n, c, d, e, bx);
```

PL/I

```pli
CALL SGTNPS | DGTNPS | CGTNPS | ZGTNPS (n, c, d, e, bx);
```

On Entry

- \(n \)
 - is the order \(n \) of tridiagonal matrix \(A \). Specified as: a fullword integer; \(n \geq 0 \).
- \(c \)
 - is the vector \(c \), containing part of the factorization of matrix \(A \) from SGTNPF, DGTNPF, CGTNPF, and ZGTNPF, respectively, in an array, referred to as \(C \). Specified as: a one-dimensional array of (at least) length \(n \), containing numbers of the data type indicated in Table 113.
- \(d \)
 - is the vector \(d \), containing part of the factorization of matrix \(A \) from SGTNPF, DGTNPF, CGTNPF, and ZGTNPF, respectively, in an array, referred to as \(D \). Specified as: a one-dimensional array of (at least) length \(n \), containing numbers of the data type indicated in Table 113.
- \(e \)
 - is the vector \(e \), containing part of the factorization of matrix \(A \) from SGTNPF, DGTNPF, CGTNPF, and ZGTNPF, respectively, in an array, referred to as \(E \). Specified as: a one-dimensional array of (at least) length \(n \), containing numbers of the data type indicated in Table 113.
- \(bx \)
 - is the vector \(b \), containing the right-hand side of the system in the first \(n \) positions in an array, referred to as \(BX \). Specified as: a one-dimensional array of (at least) length \(n \), containing numbers of the data type indicated in Table 113.

On Return
bx
is the solution vector x of length n, containing the solution of the tridiagonal system in the first n positions in an array, referred to as BX. Returned as: a one-dimensional array of (at least) length n, containing numbers of the data type indicated in Table 113.

Note: For a description of how tridiagonal matrices are stored, see “General Tridiagonal Matrix” on page 88.

Function: The solution of tridiagonal system $Ax = b$ is computed using the factorization produced by SGTNPF, DGTNPF, CGTNPF, or ZGTNPF, respectively. The factorization is based on Gaussian elimination. See reference [77].

Error Conditions

Computational Errors: None

Input-Argument Errors: $n < 0$

Example 1: This example finds the solution of tridiagonal system $Ax = b$, where matrix A is the same matrix factored in “Example 1” on page 585 for SGTNPF and DGTNPF. b is:

$$(2.0, 4.0, 5.0, 2.0)$$

and x is:

$$(1.0, 1.0, 1.0, 1.0)$$

Call Statement and Input

```
N C D E BX
   |   |   |   |
CALL DGTNPS( 4, C, D, E, BX )
```

- $C = (\text{same as output } C \text{ in “Example 1” on page 585})$
- $D = (\text{same as output } D \text{ in “Example 1” on page 585})$
- $E = (\text{same as output } E \text{ in “Example 1” on page 585})$
- $BX = (2.0, 4.0, 5.0, 2.0)$

Output

$BX = (1.0, 1.0, 1.0, 1.0)$

Example 2: This example finds the solution of tridiagonal system $Ax = b$, where matrix A is the same matrix factored in “Example 2” on page 585 for CGTNPF and ZGTNPF. b is:

$$((-11.0,19.0), (-14.0,50.0), (-17.0,93.0), (-13.0,85.0))$$

and x is:

$$((0.0,1.0), (1.0,2.0), (2.0,3.0), (3.0,4.0))$$

Call Statement and Input
SGTNPS, DGTNPS, CGTNPS, and ZGTNPS

\[
\begin{array}{cccccc}
N & C & D & E & BX \\
\hline
\end{array}
\]

CALL ZGTNPS(4, C, D, E, BX)

\[
\begin{align*}
C &= \text{(same as output C in “Example 2” on page 585)} \\
D &= \text{(same as output D in “Example 2” on page 585)} \\
E &= \text{(same as output E in “Example 2” on page 585)} \\
BX &= ((-11.0, 19.0), (-14.0, 50.0), (-17.0, 93.0), (-13.0, 8))
\end{align*}
\]

Output

\[
\begin{align*}
BX &= ((0.0, 1.0), (1.0, 2.0), (2.0, 3.0), (3.0, 4.0))
\end{align*}
\]
SPTF and DPTF—Positive Definite Symmetric Tridiagonal Matrix Factorization

These subroutines factor symmetric tridiagonal matrix A, stored in symmetric-tridiagonal storage mode, using Gaussian elimination. To solve a tridiagonal system of linear equations with one or more right-hand sides, follow the call to these subroutines with one or more calls to SPTS or DPTS, respectively.

Note: The output from these factorization subroutines should be used only as input to the solve subroutines SPTS and DPTS, respectively.

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL SPTF</th>
<th>DPTF (n, c, d, $iopt$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>sptf</td>
<td>dptf (n, c, d, $iopt$);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SPTF</td>
<td>DPTF (n, c, d, $iopt$);</td>
</tr>
</tbody>
</table>

On Entry

- n is the order n of tridiagonal matrix A. Specified as: a fullword integer; $n \geq 0$.
- c is the vector c, containing the off-diagonal of matrix A in positions 2 through n in an array, referred to as C. Specified as: a one-dimensional array, of (at least) length n, containing numbers of the data type indicated in Table 114.
- d is the vector d, containing the main diagonal of matrix A in positions 1 through n in an array referred to as D. Specified as: a one-dimensional array of (at least) length n, containing numbers of the data type indicated in Table 114.
- $iopt$ indicates the type of computation to be performed, where:
 - If $iopt = 0$ or 1, Gaussian elimination is used to factor the matrix.

Specified as: a fullword integer; $iopt = 0$ or 1.

On Return

- c is the vector c, containing part of the factorization of matrix A in an array, referred to as C. Returned as: a one-dimensional array of (at least) length n, containing numbers of the data type indicated in Table 114.
- d is the vector d, containing part of the factorization of matrix A in positions 1 through n in an array, referred to as D. Returned as: a one-dimensional array of (at least) length n, containing numbers of the data type indicated in Table 114. It has the same length as D on entry.
Note: For a description of how positive definite symmetric tridiagonal matrices are stored, see “Positive Definite Symmetric Tridiagonal Matrix” on page 90.

Function: The factorization of positive definite symmetric tridiagonal matrix A is computed using Gaussian elimination. This factorization can then be used by SPTS or DPTS, respectively, to solve the tridiagonal systems of linear equations. See reference [77].

No pivoting is done. Therefore, these subroutines should not be used when pivoting is necessary to maintain the numerical accuracy of the solution. Overflow may occur if small pivots are generated.

For performance reasons, divides are done in a way that reduces the effective exponent range for which DPTF works properly; therefore, you may want to scale your problem, such that the diagonal elements are close to 1.0 for DPTF.

Error Conditions

Computational Errors: None

Note: There is no test for positive definiteness in these subroutines.

Input-Argument Errors

1. $n < 0$
2. $iopt
eq 0$ or 1

Example: This example shows a factorization of the tridiagonal matrix A, of order 4:

\[
\begin{pmatrix}
1.0 & 1.0 & 0.0 & 0.0 \\
1.0 & 2.0 & 1.0 & 0.0 \\
0.0 & 1.0 & 3.0 & 1.0 \\
0.0 & 0.0 & 1.0 & 1.0 \\
\end{pmatrix}
\]

Call Statement and Input

\[
\begin{array}{|c|c|c|c|}
\hline
N & C & D & IOPT \\
\hline
\end{array}
\]

CALL DPTF(4 , C , D , 0)

C = (. , 1.0, 1.0, 1.0)
D = (1.0, 2.0, 3.0, 1.0)

Output

C = (. , -1.0, -1.0, -1.0)
D = (-1.0, -1.0, -1.0, -1.0)

Notes

1. A “.” means you do not have to store a value in that position in the array. However, these storage positions are required and may be overwritten during the computation.
SPTS and DPTS—Positive Definite Symmetric Tridiagonal Matrix Solve

These subroutines solve a positive definite symmetric tridiagonal system of equations using the factorization of matrix \(A \), stored in symmetric-tridiagonal storage mode, produced by SPTF and DPTF, respectively.

<table>
<thead>
<tr>
<th>Table 115. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c, d, b, x)</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
</tbody>
</table>

Note: The input to these solve subroutines must be the output from the factorization subroutines SPTF and DPTF, respectively.

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL SPTS</th>
<th>DPTS (n, c, d, bx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>spts</td>
<td>dpts (n, c, d, bx);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SPTS</td>
<td>DPTS (n, c, d, bx);</td>
</tr>
</tbody>
</table>

On Entry

- \(n \)

 is the order \(n \) of tridiagonal matrix \(A \). Specified as: a fullword integer; \(n \geq 0 \).
- \(c \)

 is the vector \(c \), containing part of the factorization of matrix \(A \) from SPTF or DPTF, respectively, in an array, referred to as \(C \). Specified as: a one-dimensional array of (at least) length \(n \), containing numbers of the data type indicated in Table 115.
- \(d \)

 is the vector \(d \), containing part of the factorization of matrix \(A \) from SPTF or DPTF, respectively, in an array, referred to as \(D \). Specified as: a one-dimensional array of (at least) length \(n \), containing numbers of the data type indicated in Table 115.
- \(bx \)

 is the vector \(b \), containing the right-hand side of the system in the first \(n \) positions in an array, referred to as \(BX \). Specified as: a one-dimensional array of (at least) length \(n \), containing numbers of the data type indicated in Table 115.

On Return

- \(bx \)

 is the solution vector \(x \) of length \(n \), containing the solution of the tridiagonal system in the first \(n \) positions in an array, referred to as \(BX \). Returned as: a one-dimensional array of (at least) length \(n \), containing numbers of the data type indicated in Table 115.

Note: For a description of how tridiagonal matrices are stored, see “Positive Definite or Negative Definite Symmetric Matrix” on page 67.
Function: The solution of positive definite symmetric tridiagonal system \(Ax = b \) is computed using the factorization produced by SPTF or DPTF, respectively. The factorization is based on Gaussian elimination. See reference [77].

Error Conditions

Computational Errors: None

Input-Argument Errors: \(n < 0 \)

Example: This example finds the solution of tridiagonal system \(Ax = b \), where matrix \(A \) is the same matrix factored in “Example” on page 590 for SPTF and DPTF. \(b \) is:

\[
(2.0, 4.0, 5.0, 2.0)
\]

and \(x \) is:

\[
(1.0, 1.0, 1.0, 1.0)
\]

Call Statement and Input

\[
\begin{align*}
\text{CALL DPTS(} & 4, C, D, BX) \\
C &= (. , -1.0, -1.0, -1.0) \\
D &= (+1.0, -1.0, -1.0, -1.0) \\
BX &= (2.0, 4.0, 5.0, 2.0)
\end{align*}
\]

Output

\[
BX = (1.0, 1.0, 1.0, 1.0)
\]
STBSV, DTBSV, CTBSV, and ZTBSV—Triangular Band Equation Solve

STBSV and DTBSV solve one of the following triangular banded systems of equations with a single right-hand side, using the vector \(x \) and triangular band matrix \(A \) or its transpose:

<table>
<thead>
<tr>
<th>Solution</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (x \leftarrow A^{-1}x)</td>
<td>(Ax = b)</td>
</tr>
<tr>
<td>2. (x \leftarrow A^{-T}x)</td>
<td>(A^T x = b)</td>
</tr>
</tbody>
</table>

CTBSV and ZTBSV solve one of the following triangular banded systems of equations with a single right-hand side, using the vector \(x \) and triangular band matrix \(A \), its transpose, or its conjugate transpose:

<table>
<thead>
<tr>
<th>Solution</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (x \leftarrow A^{-1}x)</td>
<td>(Ax = b)</td>
</tr>
<tr>
<td>2. (x \leftarrow A^{-T}x)</td>
<td>(A^T x = b)</td>
</tr>
<tr>
<td>3. (x \leftarrow A^{-H}x)</td>
<td>(A^H x = b)</td>
</tr>
</tbody>
</table>

Matrix \(A \) can be either upper or lower triangular and is stored in upper- or lower-triangular-band-packed storage mode, respectively.

<table>
<thead>
<tr>
<th>Table 116. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A, x) & Subprogram</td>
</tr>
<tr>
<td>Short-precision real & STBSV</td>
</tr>
<tr>
<td>Long-precision real & DTBSV</td>
</tr>
<tr>
<td>Short-precision complex & CTBSV</td>
</tr>
<tr>
<td>Long-precision complex & ZTBSV</td>
</tr>
</tbody>
</table>

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL STBSV I DTBSV I CTBSV I ZTBSV (uplo, trans, diag, n, k, a, lda, x, incx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>stbsv I dtbsv I ctbsv I ztbsv (uplo, trans, diag, n, k, a, lda, x, incx);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL STBSV I DTBSV I CTBSV I ZTBSV (uplo, trans, diag, n, k, a, lda, x, incx);</td>
</tr>
</tbody>
</table>

On Entry

uplo

indicates whether matrix \(A \) is an upper or lower triangular band matrix, where:

- If \(uplo = 'U' \), \(A \) is an upper triangular matrix.
- If \(uplo = 'L' \), \(A \) is a lower triangular matrix.

Specified as: a single character. It must be 'U' or 'L'.

trans

indicates the form of matrix \(A \) used in the system of equations, where:

- If \(trans = 'N' \), \(A \) is used, resulting in solution 1.
- If \(trans = 'T' \), \(A^T \) is used, resulting in solution 2.
- If \(trans = 'C' \), \(A^H \) is used, resulting in solution 3.
Specified as: a single character. It must be 'N', 'T', or 'C'.

diag
indicates the characteristics of the diagonal of matrix A, where:
If diag = 'U', A is a unit triangular matrix.
If diag = 'N', A is not a unit triangular matrix.

Specified as: a single character. It must be 'U' or 'N'.

n
is the order of triangular band matrix A. Specified as: a fullword integer; n ≥ 0.
k
is the upper or lower band width k of the matrix A. Specified as: a fullword integer; k ≥ 0.
a
is the upper or lower triangular band matrix A of order n, stored in upper- or lower-triangular-band-packed storage mode, respectively. Specified as: an lda by (at least) n array, containing numbers of the data type indicated in Table 116 on page 593.
lda
is the leading dimension of the array specified for a. Specified as: a fullword integer; lda > 0 and lda ≥ k+1.
x
is the vector x of length n, containing the right-hand side of the triangular system to be solved. Specified as: a one-dimensional array of (at least) length 1+(n−1)|incx|, containing numbers of the data type indicated in Table 116 on page 593.
incx
is the stride for vector x. Specified as: a fullword integer; incx > 0 or incx < 0.

On Return

x
is the solution vector x of length n, containing the results of the computation. Returned as: a one-dimensional array, containing numbers of the data type indicated in Table 116 on page 593.

Notes

1. These subroutines accept lowercase letters for the uplo, trans, and diag arguments.
2. For STBSV and DTBSV, if you specify 'C' for the trans argument, it is interpreted as though you specified 'T'.
3. Matrix A and vector x must have no common elements; otherwise, results are unpredictable.
4. For unit triangular matrices, the elements of the diagonal are assumed to be 1.0 for real matrices and (1.0, 0.0) for complex matrices, and you do not need to set these values in the array.
5. For both upper and lower triangular band matrices, if you specify k ≥ n, ESSL assumes, for purposes of the computation only, that the upper or lower band width of matrix A is n−1; that is, it processes matrix A of order n, as though it is a (nonbanded) triangular matrix. However, ESSL uses the original value for k for the purposes of finding the locations of element a11 and all other elements in the array specified for A, as described in “Triangular Band
Matrix" on page 84. For an illustration of this technique, see “Example 3” on page 597.

6. For a description of triangular band matrices and how they are stored in upper- and lower-triangular-band-packed storage mode, see “Triangular Band Matrix” on page 84.

7. If you are using a lower triangular band matrix, it may save your program some time if you use this alternate approach instead of using lower-triangular-band-packed storage mode. Leave matrix A in full-matrix storage mode when you pass it to ESSL and specify the lda argument to be $lda+1$, which is the leading dimension of matrix A plus 1. ESSL then processes the matrix elements in the same way as though you had set them up in lower-triangular-band-packed storage mode.

Function: These subroutines solve a triangular banded system of equations with a single right-hand side. The solution, x, may be any of the following, where triangular band matrix A, its transpose, or its conjugate transpose is used, and where A can be either upper- or lower-triangular:

1. $x \leftarrow A^{-1}x$
2. $x \leftarrow A^{-T}x$
3. $x \leftarrow A^{-H}x$ (for CTBSV and ZTBSV only)

where:

- x is a vector of length n.
- A is an upper or lower triangular band matrix of order n, stored in upper- or lower-triangular-band-packed storage mode, respectively.

See references [34], [46], and [38]. If n is 0, no computation is performed.

Error Conditions

Computational Errors: None

Input-Argument Errors

1. $n < 0$
2. $k < 0$
3. $lda \leq 0$
4. $lda < k+1$
5. $incx = 0$
6. $uplo \neq 'L'$ or 'U'
7. $trans \neq 'T'$, 'N', or 'C'
8. $diag \neq 'N'$ or 'U'

Example 1: This example shows the solution $x \leftarrow A^{-1}x$. Matrix A is a real 9 by 9 upper triangular band matrix with an upper band width of 2 that is not unit triangular, stored in upper-triangular-band-packed storage mode. Vector x is a vector of length 9, where matrix A is:
STBSV, DTBSV, CTBSV, and ZTBSV

\[
\begin{bmatrix}
1.0 & 1.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 4.0 & 2.0 & 3.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 4.0 & 1.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 4.0 & 2.0 & 2.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 3.0 & 1.0 & 1.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 3.0 & 2.0 & 2.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 3.0 & 1.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 2.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0
\end{bmatrix}
\]

Call Statement and Input

\[
\begin{array}{cccccccc}
\text{UPLO} & \text{TRANS} & \text{DIAG} & N & K & A & LDA & X & \text{INCX} \\
\hline
\text{CALL} & \text{STBSV}(& 'U', & 'N', & 'N', & 9, & 2, & A, & 3, \text{X, 1}) & \\
\end{array}
\]

A =

\[
\begin{bmatrix}
. & . & 1.0 & 3.0 & 1.0 & 2.0 & 1.0 & 2.0 & 0.0 \\
1.0 & 2.0 & 1.0 & 2.0 & 1.0 & 2.0 & 1.0 & 2.0 & 0.0 \\
1.0 & 4.0 & 4.0 & 4.0 & 3.0 & 3.0 & 3.0 & 2.0 & 1.0
\end{bmatrix}
\]

X = (2.0, 7.0, 1.0, 8.0, 2.0, 8.0, 1.0, 8.0, 3.0)

Output

X = (1.0, 1.0, 0.0, 1.0, 0.0, 2.0, 0.0, 1.0, 3.0)

Example 2: This example shows the solution \(x \leftarrow A^{-1}x \), solving the same system as in Example 1. Matrix \(A \) is a real 9 by 9 lower triangular band matrix with a lower band width of 2 that is not unit triangular, stored in lower-triangular-band-packed storage mode. Vector \(x \) is a vector of length 9 where matrix \(A \) is:

\[
\begin{bmatrix}
1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
1.0 & 4.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
1.0 & 2.0 & 4.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 3.0 & 1.0 & 4.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 1.0 & 2.0 & 3.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 2.0 & 1.0 & 3.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 2.0 & 3.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 1.0 & 2.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 1.0 & 0.0
\end{bmatrix}
\]

Call Statement and Input

\[
\begin{array}{cccccccc}
\text{UPLO} & \text{TRANS} & \text{DIAG} & N & K & A & LDA & X & \text{INCX} \\
\hline
\text{CALL} & \text{STBSV}(& 'L', & 'T', & 'N', & 9, & 2, & A, & 3, \text{X, 1}) & \\
\end{array}
\]

A =

\[
\begin{bmatrix}
1.0 & 4.0 & 4.0 & 3.0 & 3.0 & 3.0 & 2.0 & 1.0 & 0.0 \\
1.0 & 2.0 & 1.0 & 2.0 & 1.0 & 2.0 & 1.0 & 2.0 & . \\
1.0 & 3.0 & 1.0 & 2.0 & 1.0 & 2.0 & 0.0 & . & .
\end{bmatrix}
\]

X = (same as input X in Example 1)
Output

\[X = (\text{same as output } X \text{ in Example 1}) \]

Example 3: This example shows the solution \(x \leftarrow A^{-T}x \), where \(k > n \). Matrix \(A \) is a real 4 by 4 upper triangular band matrix with an upper band width of 3, even though \(k \) is specified as 5. It is not unit triangular and is stored in upper-triangular-band-packed storage mode. Vector \(x \) is a vector of length 4 where matrix \(A \) is:

\[
\begin{bmatrix}
1.0 & 2.0 & 3.0 & 2.0 \\
0.0 & 2.0 & 2.0 & 5.0 \\
0.0 & 0.0 & 3.0 & 3.0 \\
0.0 & 0.0 & 0.0 & 1.0 \\
\end{bmatrix}
\]

Call Statement and Input

\[
\begin{array}{cccccccc}
\text{UPLO} & \text{TRANS} & \text{DIAG} & \text{N} & \text{K} & \text{A} & \text{LDA} & \text{INCX} \\
U & T & N & 4 & 5 & A & 6 & 1 \\
\end{array}
\]

\[
\text{CALL STBSV('U', 'T', 'N', 4, 5, A, 6, X, 1)}
\]

\[
A = \begin{bmatrix}
. & . & . & . \\
. & . & 2.0 \\
. & 3.0 & 5.0 \\
1.0 & 2.0 & 3.0 & 1.0 \\
\end{bmatrix}
\]

\[X = (5.0, 18.0, 32.0, 41.0)\]

Output

\[X = (5.0, 4.0, 3.0, 2.0)\]

Example 4: This example shows the solution \(x \leftarrow A^{-T}x \). Matrix \(A \) is a complex 7 by 7 lower triangular band matrix with a lower band width of 3 that is not unit triangular, stored in lower-triangular-band-packed storage mode. Vector \(x \) is a vector of length 7. Matrix \(A \) is:

\[
\begin{bmatrix}
(1.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) \\
(1.0, 2.0) & (2.0, 1.0) & (0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) \\
(1.0, 3.0) & (2.0, 2.0) & (3.0, 1.0) & (0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) \\
(1.0, 4.0) & (2.0, 3.0) & (3.0, 2.0) & (4.0, 1.0) & (0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) \\
(0.0, 0.0) & (2.0, 4.0) & (3.0, 3.0) & (4.0, 2.0) & (2.0, 1.0) & (0.0, 0.0) & (0.0, 0.0) \\
(0.0, 0.0) & (0.0, 0.0) & (3.0, 3.0) & (4.0, 3.0) & (5.0, 1.0) & (3.0, 1.0) & (0.0, 0.0) \\
(0.0, 0.0) & (0.0, 0.0) & (0.0, 0.0) & (4.0, 4.0) & (5.0, 2.0) & (6.0, 1.0) & (2.0, 1.0) \\
\end{bmatrix}
\]

Call Statement and Input

\[
\begin{array}{cccccccc}
\text{UPLO} & \text{TRANS} & \text{DIAG} & \text{N} & \text{K} & \text{A} & \text{LDA} & \text{INCX} \\
L & T & N & 7 & 3 & A & 4 & 1 \\
\end{array}
\]

\[
\text{CALL CTBSV('L', 'T', 'N', 7, 3, A, 4, X, 1)}
\]
STBSV, DTBSV, CTBSV, and ZTBSV

\[
A = \begin{bmatrix}
(1.0, 0.0) & (2.0, 1.0) & (3.0, 1.0) & (4.0, 1.0) & (2.0, 1.0) & (3.0, 1.0) & (2.0, 1.0) \\
(1.0, 2.0) & (2.0, 2.0) & (3.0, 3.0) & (4.0, 2.0) & (5.0, 1.0) & (6.0, 1.0) & . \\
(1.0, 3.0) & (2.0, 3.0) & (3.0, 3.0) & (4.0, 3.0) & (5.0, 2.0) & . & . \\
(1.0, 4.0) & (2.0, 4.0) & (3.0, 3.0) & (4.0, 4.0) & . & . & .
\end{bmatrix}
\]

\[
X = ((2.0, 2.0), (7.0, 1.0), (1.0, 1.0), (8.0, 1.0), \\
 (2.0, 0.0), (8.0, 1.0), (1.0, 2.0))
\]

Output

\[
X = ((-12.048, -13.136), (6.304, -1.472), (-1.880, 1.040), \\
 (2.600, -1.800), (-2.160, 1.880), (0.800, -1.400), \\
 (0.800, 0.600))
\]
Sparse Linear Algebraic Equation Subroutines

This section contains the sparse linear algebraic equation subroutine descriptions.
DGSF—General Sparse Matrix Factorization Using Storage by Indices, Rows, or Columns

This subroutine factors sparse matrix A by Gaussian elimination, using a modified Markowitz count with threshold pivoting. The sparse matrix can be stored by indices, rows, or columns. To solve the system of equations, follow the call to this subroutine with a call to DGSS.

Syntax

<table>
<thead>
<tr>
<th>Language</th>
<th>Call to DGSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>CALL DGSF (iopt, n, nz, a, ia, ja, lna, iparm, rparm, oparm, aux, naux)</td>
</tr>
<tr>
<td>C and C++</td>
<td>dgsf (iopt, n, nz, a, ia, ja, lna, iparm, rparm, oparm, aux, naux);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL DGSF (iopt, n, nz, a, ia, ja, lna, iparm, rparm, oparm, aux, naux);</td>
</tr>
</tbody>
</table>

On Entry

- **iopt** indicates the storage technique used for sparse matrix A, where:
 - If $iopt = 0$, it is stored by indices.
 - If $iopt = 1$, it is stored by rows.
 - If $iopt = 2$, it is stored by columns.

- **n** is the order n of sparse matrix A. Specified as: a fullword integer; $n \geq 0$.

- **nz** is the number of elements in sparse matrix A, stored in an array, referred to as A. Specified as: a fullword integer; $nz > 0$.

- **a** is the sparse matrix A, to be factored, stored in an array, referred to as A. Specified as: an array of length lna, containing long-precision real numbers.

- **ia** is the array, referred to as IA, where:
 - If $iopt = 0$, it contains the row numbers that correspond to the elements in array A.
 - If $iopt = 1$, it contains the row pointers.
 - If $iopt = 2$, it contains the row numbers that correspond to the elements in array A.

 Specified as: an array of length lna, containing fullword integers; $IA(i) \geq 1$. See “Sparse Matrix” on page 90 for more information on storage techniques.

- **ja** is the array, referred to as JA, where:
 - If $iopt = 0$, it contains the column numbers that correspond to the elements in array A.
 - If $iopt = 1$, it contains the column numbers that correspond to the elements in array A.
 - If $iopt = 2$, it contains the column pointers.

 Specified as: an array of length lna, containing fullword integers; $JA(i) \geq 1$. See “Sparse Matrix” on page 90 for more information on storage techniques.
Ina

is the length of the arrays specified for a, ia, and ja. Specified as: a fullword integer; Ina > 2nz. If you do not specify a sufficient amount, it results in an error. See “Error Conditions” on page 603.

The size of Ina depends on the structure of the input matrix. The requirement that Ina > 2nz does not guarantee a successful run of the program. If the input matrix is expected to have many fill-ins, Ina should be set larger. Larger Ina may result in a performance improvement.

For details on how Ina relates to storage compressions, see “Performance and Accuracy Considerations” on page 459.

Iparm

is an array of parameters, IPARM(i), where:

- IPARM(1) determines whether the default values for iparm and rparm are used by this subroutine.

 If IPARM(1) = 0, the following default values are used:

 IPARM(2) = 10
 IPARM(3) = 1
 IPARM(4) = 0
 RPARM(1) = 10^{-12}
 RPARM(2) = 0.1

 If IPARM(1) = 1, the default values are not used.

- IPARM(2) determines the number of minimal Markowitz counts that are examined to determine a pivot. (See reference [101].)

- IPARM(3) has the following meaning, where:

 If IPARM(3) = 0, this subroutine checks the values in arrays IA and JA.

 If IPARM(3) = 1, this subroutine assumes that the input values are correct in arrays IA and JA.

- IPARM(4) has the following meaning, where:

 If IPARM(4) = 0, this computation is not performed.

 If IPARM(4) = 1, this subroutine computes:

 The absolute value of the smallest pivot element
 The absolute value of the largest element in U.

 These values are stored in OPARM(2) and OPARM(3), respectively.

- IPARM(5) is reserved.

Specified as: an array of (at least) length 5, containing fullword integers, where the iparm values must be:

IPARM(1) = 0 or 1
IPARM(2) ≥ 1
IPARM(3) = 0 or 1
IPARM(4) = 0 or 1

Rparm

is an array of parameters, RPARM(i), where:

- RPARM(1) contains the lower bound of the absolute value of all elements in
the matrix. If a pivot element is less than this number, the matrix is reported as singular. Any computed element whose absolute value is less than this number is set to 0.

- RPARM(2) is the threshold pivot tolerance used to control the choice of pivots.
- RPARM(3) is reserved.
- RPARM(4) is reserved.
- RPARM(5) is reserved.

Specified as: a one-dimensional array of (at least) length 5, containing long-precision real numbers, where the rparm values must be:

- \(RPARM(1) \geq 0.0 \)
- \(0.0 \leq RPARM(2) \leq 1.0 \)

For additional information about rparm, see “Performance and Accuracy Considerations” on page 459.

oparm

See “On Return.”

aux

is the storage work area used by this subroutine. Its size is specified by naux.

Specified as: an area of storage, containing long-precision real numbers.

naux

is the size of the work area specified by aux—that is, the number of elements in aux. Specified as: a fullword integer; \(naux \geq 10n+100 \).

On Return

a

is the transformed array, referred to as A, containing the factored matrix \(A \), required as input to DGSS. Returned as: a one-dimensional array of length lna, containing long-precision real numbers.

ia

is the transformed array, referred to as IA, required as input to DGSS. Returned as: a one-dimensional array of length lna, containing fullword integers.

ja

is the transformed array, referred to as JA, required as input to DGSS. Returned as: a one-dimensional array of length lna, containing fullword integers.

oparm

is an array of parameters, OPARM(\(i \)), where:

- OPARM(1) is the amount of fill-ins for the sparse processing portion of the algorithm.
- OPARM(2) contains the absolute value of the smallest pivot element of the matrix. This value is computed and set only if IPARM(4) = 1.
- OPARM(3) contains the absolute value of the largest element encountered in \(U \) after the factorization. This value is computed and set only if IPARM(4) = 1.
- OPARM(4) is reserved.
- OPARM(5) is reserved.
Returned as: a one-dimensional array of length 5, containing long-precision real numbers.

\(aux \)

is the storage work area used by this subroutine. It contains the information required as input for DGSS. Specified as: an area of storage, containing long-precision real numbers.

Notes

1. For a description of the three storage techniques used by this subroutine for sparse matrices, see “Sparse Matrix” on page 90.

2. You have the option of having the minimum required value for \(naux \) dynamically returned to your program. For details, see “Using Auxiliary Storage in ESSL” on page 30.

Function: The matrix \(A \) is factored by Gaussian elimination, using a modified Markowitz count with threshold pivoting to compute the sparse LU factorization of \(A \):

\[
LU = PAQ
\]

where:

- \(A \) is a general sparse matrix of order \(n \), stored by indices, columns, or rows in arrays \(A, IA, \) and \(JA \).
- \(L \) is a unit lower triangular matrix.
- \(U \) is an upper triangular matrix.
- \(P \) is a permutation matrix.
- \(Q \) is a permutation matrix.

To solve the system of equations, follow the call to this subroutine with a call to DGSS. If \(n \) is 0, no computation is performed. See references [10], [47], and [93].

Error Conditions

Computational Errors

1. If this subroutine has to perform storage compressions, an attention message is issued. When this occurs, the performance of this subroutine is affected. The performance can be improved by increasing the value specified for \(Ina \).

2. The following errors with their corresponding return codes can occur in this subroutine. Where a value of \(i \) is indicated, it can be determined at run time by use of the ESSL error-handling facilities. To obtain this information, you must use ERRSET to change the number of allowable errors for that particular error code in the ESSL error option table; otherwise, the default value causes your program to terminate when the error occurs. For details, see “What Can You Do about ESSL Computational Errors?” on page 46.

 - For error 2117, return code 2 indicates that the pivot element in a column, \(i \), is smaller than the value specified in \(RPARM(1) \).
 - For error 2118, return code 3 indicates that pivot element in a row, \(i \), is smaller than the value specified in \(RPARM(1) \).
 - For error 2120, return code 4 indicates that a row, \(i \), is found empty on factorization. The matrix is singular.
 - For error 2121, return code 5 indicates that a column is found empty on factorization. The matrix is singular.
For error 2119, return code 6 indicates that the storage space indicated by \(lna \) is insufficient.

For error 2122, return code 7 indicates that no pivot element was found in the active submatrix.

Input-Argument Errors

1. \(iopt \neq 0, 1, \text{ or } 2 \)
2. \(n < 0 \)
3. \(nz \leq 0 \)
4. \(lna \leq 2nz \)
5. \(IPARM(1) \neq 0 \text{ or } 1 \)
6. \(IPARM(2) \leq 0 \)
7. \(IPARM(3) \neq 0 \text{ or } 1 \)
8. \(IPARM(4) \neq 0 \text{ or } 1 \)
9. \(RPARM(1) < 0.0 \)
10. \(RPARM(2) < 0.0 \text{ or } RPARM(2) > 1.0 \)
11. \(iopt = 1 \text{ and } ia(i) \geq ia(i+1), i = 1, n \)
12. \(iopt = 2 \text{ and } ja(i) \geq ja(i+1), i = 1, n \)
13. \(iopt = 0 \text{ or } 1 \text{ and } ja(i) < 1 \text{ or } ja(i) > n, i = 1, nz \)
14. \(iopt = 0 \text{ or } 1 \text{ and } ia(i) < 1 \text{ or } ia(i) > n, i = 1, nz \)
15. There are duplicate indices in a row or column of the input matrix.
16. The matrix is singular if a row or column of the input matrix is empty.
17. \(naux \) is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.

Example: This example factors 5 by 5 sparse matrix \(A \), which is stored by indices in arrays \(A \), \(IA \), and \(JA \). The three storage techniques are shown in this example, and the output is the same regardless of the storage technique used. The matrix is factored using Gaussian elimination with threshold pivoting. Matrix \(A \) is:

\[
\begin{bmatrix}
2.0 & 0.0 & 4.0 & 0.0 & 0.0 \\
1.0 & 1.0 & 0.0 & 0.0 & 3.0 \\
0.0 & 0.0 & 3.0 & 4.0 & 0.0 \\
2.0 & 2.0 & 0.0 & 1.0 & 5.0 \\
0.0 & 0.0 & 1.0 & 1.0 & 0.0
\end{bmatrix}
\]

Note: In this example, only nonzero elements are used as input to the matrix.

Call Statement and Input (Storage-By-Indices)

\[
\begin{array}{ccccccccccc}
\text{IOPT} & \text{N} & \text{NZ} & \text{A} & \text{IA} & \text{JA} & \text{LNA} & \text{IPARM} & \text{RPARM} & \text{OPARM} & \text{AUX} & \text{NAUX} \\
\hline
0 & 5 & 13 & A & IA & JA & 27 & IPARM & RPARM & OPARM & AUX & NAUX \\
\end{array}
\]

\[
\begin{align*}
\text{CALL DGSF} & (0, 5, 13, A, IA, JA, 27, IPARM, RPARM, OPARM, AUX, 150) \\
A & = (2.0, 1.0, 1.0, 3.0, 4.0, 1.0, 5.0, 2.0, 2.0, 1.0, 1.0, 4.0, 3.0, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots) \\
\text{IA} & = (1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 1, 2, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots) \\
\text{JA} & = (1, 1, 2, 3, 3, 4, 4, 4, 5, 5, 1, 2, 3, 4, 3, 5, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots) \\
\text{IPARM} & = (1, 3, 1, 1) \\
\text{RPARM} & = (1.D-12, 0.100)
\end{align*}
\]

Call Statement and Input (Storage-By-Rows)
DGSF

IOPT N NZ A IA JA LNA IPARM RPARM OPARM AUX NAUX
|
| | | | | |
|
|
|
|
|
CALL DGSF(1 , 5, 13, A, IA, JA, 27 , IPARM, RPARM, OPARM, AUX, 15)
A

IA
JA
IPARM
RPARM

= (2., 4., 1., 1., 3., 3.,
1., 1., . , . , . , . , . ,
. , .)
= (1, 3, 6, 8, 12, 14, . , . , .
. , . , . , . , .)
= (1, 3, 1, 2, 5, 3, 4, 1, 2, 4,
. , . , . , . , . , . , . , .
= (1, 3, 1, 1)
= (1.D-12, .1D)

4., 2., 2., 1., 5.,
. , . , . , . , . , . , . ,
, . , . , . , . , . , . ,
5, 3, 4, . , . , . , . ,
, . , .)

Call Statement and Input (Storage-By-Columns)
IOPT N NZ A IA JA LNA IPARM RPARM OPARM AUX NAUX
|
| | | | | |
|
|
|
|
|
CALL DGSF(2 , 5, 13, A, IA, JA, 27 , IPARM, RPARM, OPARM, AUX, 15)
A

IA
JA
IPARM
RPARM

= (2., 1., 2., 1., 2., 4.,
3., 5., . , . , . , . , . ,
. , .)
= (1, 2, 4, 2, 4, 1, 3, 5, 3, 4,
. , . , . , . , . , . , . , .
= (1, 4, 6, 9, 12, 14, . , . , .
. , . , . , . , .)
= (1, 3, , 1)
= (1.D-12, .1D)

3., 1., 4., 1., 1.,
. , . , . , . , . , . , . ,
5, 2, 4, . , . , . , . ,
, . , .)
, . , . , . , . , . , . ,

Output
A

IA
JA
OPARM

= (.5, . , .3, 1., . , 1., . , 3., .
1., . , . , . , . , . , . , . , -1.7,
4., -3., -4.)
= (, , , , , , , , , , , , ,
. , . , . , 2, 1, 1, 3, 3, 5, 5)
= (1, , 5, 2, , 4, , 2, , , , 3, 4,
. , . , . , 4, 2, 4, 4, 1, 3, 1)
= (1., .333333, 3.)

, . , . , 1.,
-.5, -1., -1.,
. , . , . , . ,
. , . , . , . ,

Chapter 10. Linear Algebraic Equations

605


DGSS—General Sparse Matrix or Its Transpose Solve
Using Storage by Indices, Rows, or Columns

This subroutine solves either of the following systems:

\[Ax = b \]
\[A^T x = b \]

where \(A \) is a sparse matrix, \(A^T \) is the transpose of sparse matrix \(A \), and \(x \) and \(b \) are vectors. DGSS uses the results of the factorization of matrix \(A \), produced by a preceding call to DGSF.

Note: The input to this solve subroutine must be the output from the factorization subroutine, DGSF.

Syntax

<table>
<thead>
<tr>
<th>Language</th>
<th>Call Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>CALL DGSS (jopt, n, a, ia, ja, ina, bx, aux, naux)</td>
</tr>
<tr>
<td>C and C++</td>
<td>dgss (jopt, n, a, ia, ja, ina, bx, aux, naux);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL DGSS (jopt, n, a, ia, ja, ina, bx, aux, naux);</td>
</tr>
</tbody>
</table>

On Entry

- **jopt**
 - indicates the type of computation to be performed, where:
 - If \(jopt = 0 \), \(Ax = b \) is solved, where the right-hand side is not sparse.
 - If \(jopt = 1 \), \(A^T x = b \) is solved, where the right-hand side is not sparse.
 - If \(jopt = 10 \), \(Ax = b \) is solved, where the right-hand side is sparse.
 - If \(jopt = 11 \), \(A^T x = b \) is solved, where the right-hand side is sparse.
 - Specified as: a fullword integer; \(jopt = 0, 1, 10, \) or \(11 \).

- **n**
 - is the order \(n \) of sparse matrix \(A \). Specified as: a fullword integer; \(n \geq 0 \).

- **a**
 - is the factorization of sparse matrix \(A \), stored in array \(A \), produced by a preceding call to DGSF. Specified as: an array of length \(ina \), containing long-precision real numbers.

- **ia**
 - is the array, referred to as \(IA \), produced by a preceding call to DGSF. Specified as: an array of length \(ina \), containing fullword integers.

- **ja**
 - is the array, referred to as \(JA \), produced by a preceding call to DGSF. Specified as: an array of length \(ina \), containing fullword integers.

- **lna**
 - is the length of the arrays \(A \), \(IA \), and \(JA \). In DGSS, \(ina \) must be identical to the value specified in DGSF; otherwise, results are unpredictable. Specified as: a fullword integer; \(ina > 0 \).

- **bx**
 - is the vector \(b \) of length \(n \), containing the right-hand side of the system. Specified as: a one-dimensional array of (at least) length \(n \), containing long-precision real numbers.
aux
is the storage work area passed to this subroutine by a preceding call to
DGSF. Its size is specified by naux. Specified as: an area of storage,
containing long-precision real numbers.

naux
is the size of the work area specified by aux—that is, the number of elements
in aux. Specified as: a fullword integer; \(\text{naux} \geq 10n+100 \).

On Return

ia
is the transformed array, referred to as IA, which can be used as input in
subsequent calls to this subroutine. This may result in a performance increase.
Specified as: an array of length lna, containing fullword integers.

bx
is the solution vector \(x \) of length \(n \), containing the results of the computation.
Specified as: a one-dimensional array, containing long-precision real numbers.

Notes
1. The input arguments \(n, lna, \) and \(naux \), must be the same as those specified for
 DGSF. Whereas, the input arguments \(a, ia, ja, \) and \(aux \) must be those
 produced on output by DGSF. Otherwise, results are unpredictable.
2. You have the option of having the minimum required value for \(naux \)
dynamically returned to your program. For details, see “Using Auxiliary Storage
 in ESSL” on page 30.

Function: The system \(AX = b \) is solved for \(x \), where \(A \) is a sparse matrix and \(x \)
and \(b \) are vectors. Depending on the value specified for the \(jopt \) argument, DGSS
can also solve the system \(A^T x = b \), where \(A^T \) is the transpose of sparse matrix \(A \).

If the value specified for the \(jopt \) argument is 0 or 10, the following equation is
solved:
\[
AX = b
\]

If the value specified for the \(jopt \) argument is 1 or 11, the following equation is
solved:
\[
A^T x = b
\]

DGSS uses the results of the factorization of matrix \(A \), produced by a preceding
call to DGSF. The transformed matrix \(A \) consists of the upper triangular matrix \(U \)
and the lower triangular matrix \(L \).

See references [10], [47], and [93].

Error Conditions

Computational Errors: None

Input-Argument Errors
1. \(jopt \neq 0, 1, 10, \) or 11
2. \(n < 0 \)
3. \(lna \leq 0 \)
4. naux is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.

Example 1: This example shows how to solve the system $Ax = b$, where matrix A is a 5 by 5 sparse matrix. The right-hand side is not sparse.

Note: The input for this subroutine is the same as the output from DGSF, except for BX.

Matrix A is:

$$
\begin{bmatrix}
2.0 & 0.0 & 4.0 & 0.0 & 0.0 \\
1.0 & 1.0 & 0.0 & 0.0 & 3.0 \\
0.0 & 0.0 & 3.0 & 4.0 & 0.0 \\
2.0 & 2.0 & 0.0 & 1.0 & 5.0 \\
0.0 & 0.0 & 1.0 & 1.0 & 0.0
\end{bmatrix}
$$

Call Statement and Input

```
  JOPT N A IA JA LNA BX AUX NAUX
  CALL DGSS( 0 , 5 , A , IA , JA , 27 , BX , AUX , 150 )
```

$A = (0.5, . , 0.3, 1.0, . , 1.0, . , 3.0, . , . , . , 1.0, 1.0, . , . , . , . , . , . , . , . , -1.7, -0.5, -1.0, -1.0, 4.0, -3.0, -4.0)$

$IA = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . , . , . , . , . , . , . , . , 2, 1, 1, 3, 3, 5, 5)$

$JA = (1, 0, 5, 2, 0, 4, 0, 2, 0, 0, 0, 3, 4, . , . , . , . , . , . , . , 4, 2, 4, 4, 1, 3, 1)$

$BX = (1.0, 1.0, 1.0, 1.0, 1.0)$

Output

$IA = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . , . , . , . , . , . , . , . , 2, 1, 1, 3, 3, 5, 5)$

$BX = (-5.500000, 9.500000, 3.000000, -2.000000, -1.000000)$

Example 2: This example shows how to solve the system $A^T x = b$, using the same matrix A used in Example 1. The input is also the same as in Example 1, except for the $jopt$ argument. The right-hand side is not sparse.

Call Statement and Input

```
  JOPT N A IA JA LNA BX AUX NAUX
  CALL DGSS( 1 , 5 , A , IA , JA , 27 , BX , AUX , 150 )
```

$BX = (1.0, 1.0, 1.0, 1.0, 1.0)$

Output

$IA = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . , . , . , . , . , . , . , . , 2, 1, 1, 3, 3, 5, 5)$

$BX = (0.000000, -3.000000, -2.000000, 2.000000, 7.000000)$

Example 3: This example shows how to solve the system $Ax = b$, using the same matrix A as in Examples 1 and 2. The input is also the same as in Examples 1 and 2, except for the $jopt$ and bx arguments. The right-hand side is sparse.
Call Statement and Input

\[
\begin{array}{c|cccccccc|cccc}
\text{JOPT} & N & A & IA & JA & LNA & BX & AUX & NAUX \\
\end{array}
\]

CALL DGSS(10 , 5 , A , IA , JA , 27 , BX , AUX , 150)

\[
BX = (0.0, 0.0, 0.0, 1.0, 0.0)
\]

Output

\[
IA = (1, 4, 2, 5, 3, 5, 2, 0)
\]

\[
BX = (0.000000, 3.000000, 0.000000, 0.000000, -1.000000)
\]

Example 4: This example shows how to solve the system \(A^T x = b\), using the same matrix \(A\) as in Examples 1, 2, and 3. The input is also the same as in Examples 1, 2, and 3, except for the \(jopt\) argument. The right-hand side is sparse.

Call Statement and Input

\[
\begin{array}{c|cccccccc|cccc}
\text{JOPT} & N & A & IA & JA & LNA & BX & AUX & NAUX \\
\end{array}
\]

CALL DGSS(11 , 5 , A , IA , JA , 27 , BX , AUX , 150)

\[
BX = (0.0, 0.0, 0.0, 1.0, 0.0)
\]

Output

\[
IA = (1, 4, 2, 5, 3, 5, 2, 0)
\]

\[
BX = (0.000000, 0.000000, 1.000000, 0.000000, -3.000000)
\]
DGKFS—General Sparse Matrix or Its Transpose
Factorization, Determinant, and Solve Using Skyline Storage Mode

This subroutine can perform either or both of the following functions for general sparse matrix \(A \), stored in skyline storage mode, and for vectors \(x \) and \(b \):

- Factor \(A \) and, optionally, compute the determinant of \(A \).
- Solve the system \(Ax = b \) or \(A^T x = b \) using the results of the factorization of matrix \(A \), produced on this call or a preceding call to this subroutine.

You also have the choice of using profile-in or diagonal-out skyline storage mode for \(A \) on input or output.

Note: The input to the solve performed by this subroutine must be the output from the factorization performed by this subroutine.

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL DGKFS (n, au, nu, idu, al, nl, idl, iparm, rparm, aux, naux, bx, ldbx, mbx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>dgkfs (n, au, nu, idu, al, nl, idl, iparm, rparm, aux, naux, bx, ldbx, mbx);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL DGKFS (n, au, nu, idu, al, nl, idl, iparm, rparm, aux, naux, bx, ldbx, mbx);</td>
</tr>
</tbody>
</table>

On Entry

\(n \)
is the order of general sparse matrix \(A \). Specified as: a fullword integer; \(n \geq 0 \).

\(au \)
is the array, referred to as \(AU \), containing one of three forms of the upper triangular part of general sparse matrix \(A \), depending on the type of computation performed, where:

- If you are doing a factor and solve or a factor only, and if \(\text{IPARM}(3) = 0 \), then \(AU \) contains the unfactored upper triangle of general sparse matrix \(A \).
- If you are doing a factor only, and if \(\text{IPARM}(3) > 0 \), then \(AU \) contains the partially factored upper triangle of general sparse matrix \(A \). The first \(\text{IPARM}(3) \) columns in the upper triangle of \(A \) are already factored. The remaining columns are factored in this computation.
- If you are doing a solve only, then \(AU \) contains the factored upper triangle of general sparse matrix \(A \), produced by a preceding call to this subroutine.

In each case:

If \(\text{IPARM}(4) = 0 \), diagonal-out skyline storage mode is used for \(A \).

If \(\text{IPARM}(4) = 1 \), profile-in skyline storage mode is used for \(A \).

Specified as: a one-dimensional array of (at least) length \(nu \), containing long-precision real numbers.

\(nu \)
is the length of array \(AU \). Specified as: a fullword integer; \(nu \geq 0 \) and \(nu \geq (\text{IDU}(n+1))-1 \).

\(idu \)
is the array, referred to as \(IDU \), containing the relative positions of the diagonal elements of matrix \(A \) (in one of its three forms) in array \(AU \). Specified as: a one-dimensional array of (at least) length \(n+1 \), containing fullword integers.
is the array, referred to as AL, containing one of three forms of the lower triangular part of general sparse matrix A, depending on the type of computation performed, where:

- If you are doing a **factor and solve** or a **factor only**, and if \(\text{IPARM}(3) = 0 \), then AL contains the unfactored lower triangle of general sparse matrix A.
- If you are doing a **factor only**, and if \(\text{IPARM}(3) > 0 \), then AL contains the partially factored lower triangle of general sparse matrix A. The first \(\text{IPARM}(3) \) rows in the lower triangle of A are already factored. The remaining rows are factored in this computation.
- If you are doing a **solve only**, then AL contains the factored lower triangle of general sparse matrix A, produced by a preceding call to this subroutine.

Note: In all these cases, entries in AL for diagonal elements of A are not assumed to have meaningful values.

In each case:

If \(\text{IPARM}(4) = 0 \), diagonal-out skyline storage mode is used for A.

If \(\text{IPARM}(4) = 1 \), profile-in skyline storage mode is used for A.

Specified as: a one-dimensional array of (at least) length \(nl \), containing long-precision real numbers.

\(nl \)

is the length of array AL. Specified as: a fullword integer; \(nl \geq 0 \) and \(nl \geq (\text{IDL}(n+1)-1) \).

\(idl \)

is the array, referred to as IDL, containing the relative positions of the diagonal elements of matrix A (in one of its three forms) in array AL. Specified as: a one-dimensional array of (at least) length \(n+1 \), containing fullword integers.

\(iparm \)

is an array of parameters, \(\text{IPARM}(i) \), where:

- \(\text{IPARM}(1) \) indicates whether certain default values for iparm and rparm are used by this subroutine, where:

 If \(\text{IPARM}(1) = 0 \), the following default values are used. For restrictions, see “Notes” on page 617.

 - \(\text{IPARM}(2) = 0 \)
 - \(\text{IPARM}(3) = 0 \)
 - \(\text{IPARM}(4) = 0 \)
 - \(\text{IPARM}(5) = 0 \)
 - \(\text{IPARM}(10) = 0 \)
 - \(\text{IPARM}(11) = -1 \)
 - \(\text{IPARM}(12) = -1 \)
 - \(\text{IPARM}(13) = -1 \)
 - \(\text{IPARM}(14) = -1 \)
 - \(\text{IPARM}(15) = 0 \)
 - \(\text{RPARM}(10) = 10^{-12} \)

 If \(\text{IPARM}(1) = 1 \), the default values are not used.

- \(\text{IPARM}(2) \) indicates the type of computation performed by this subroutine. The following table gives the \(\text{IPARM}(2) \) values for each variation:
- IPARM(3) indicates whether a full or partial factorization is performed on matrix A, where:

 If IPARM(3) = 0, and:

 If you are doing a factor and solve or a factor only, then a full factorization is performed for matrix A on rows and columns 1 through n.

 If you are doing a solve only, this argument has no effect on the computation, but must be set to 0.

If IPARM(3) > 0, and you are doing a factor only, then a partial factorization is performed on matrix A. Rows 1 through IPARM(3) of columns 1 through IPARM(3) in matrix A must be in factored form from a preceding call to this subroutine. The factorization is performed on rows IPARM(3)+1 through n and columns IPARM(3)+1 through n. For an illustration, see “Notes” on page 617.

- IPARM(4) indicates the input storage mode used for matrix A. This determines the arrangement of data in arrays AU, IDU, AL, and IDL on input, where:

 If IPARM(4) = 0, diagonal-out skyline storage mode is used.

 If IPARM(4) = 1, profile-in skyline storage mode is used.

- IPARM(5) indicates the output storage mode used for matrix A. This determines the arrangement of data in arrays AU, IDU, AL, and IDL on output, where:

 If IPARM(5) = 0, diagonal-out skyline storage mode is used.

 If IPARM(5) = 1, profile-in skyline storage mode is used.

- IPARM(6) through IPARM(9) are reserved.

- IPARM(10) has the following meaning, where:

 If you are doing a factor and solve or a factor only, then IPARM(10) indicates whether certain default values for iparm and rparm are used by this subroutine, where:

 If IPARM(10) = 0, the following default values are used. For restrictions, see “Notes” on page 617.

 $IPARM(11) = -1$
 $IPARM(12) = -1$
 $IPARM(13) = -1$
 $IPARM(14) = -1$
 $IPARM(15) = 0$
 $RPARM(10) = 10^{-12}$

 If IPARM(10) = 1, the default values are not used.
If you are doing a solve only, this argument is not used.

- IPARM(11) through IPARM(15) have the following meaning, where:

If you are doing a factor and solve or a factor only, then IPARM(11) through IPARM(15) control the type of processing to apply to pivot elements occurring in regions 1 through 5, respectively. The pivot elements are u_{ik} for $k = 1, n$ when doing a full factorization, and they are $k = IPARM(3) + 1, n$ when doing a partial factorization. The region in which a pivot element falls depends on the sign and magnitude of the pivot element. The regions are determined by RPARM(1:Iparm). For a description of the regions and associated pivot values, see “Notes” on page 617. For each region i for $i = 1, 5$, where the pivot occurs in region i, the processing applied to the pivot element is determined by IPARM(10+i), where:

- If IPARM(10+i) = -1, the pivot element is trapped and computational error 2126 is generated. See “Error Conditions” on page 619.
- If IPARM(10+i) = 0, for $i = 1, 2, 4, 5$, processing continues normally.

Note: A value of 0 is not permitted for region 3, because if processing continues, a divide-by-zero exception occurs.

- If IPARM(10+i) = 1, the pivot element is replaced with the value in RPARM(10+i), and processing continues normally.

If you are doing a solve only, these arguments are not used.

- IPARM(16) through IPARM(25), see “On Return” on page 615.

Specified as: a one-dimensional array of (at least) length 25, containing fullword integers, where:

- IPARM(1) = 0 or 1
- IPARM(2) = 0, 1, 2, 10, 11, 100, 102, or 110
- If IPARM(2) = 0, 2, 10, 100, 102, or 110, then IPARM(3) = 0
- If IPARM(2) = 1 or 11, then $0 \leq IPARM(3) \leq n$
- IPARM(4), IPARM(5) = 0 or 1
- If IPARM(2) = 0, 1, 10, 11, 100, or 110, then:
 - IPARM(10) = 0 or 1
 - IPARM(11), IPARM(12) = -1, 0, or 1
 - IPARM(13) = -1 or 1
 - IPARM(14), IPARM(15) = -1, 0, or 1

rparm is an array of parameters, RPARM(1:Iparm), where:

- RPARM(1) through RPARM(9) are reserved.
- RPARM(10) has the following meaning, where:

If you are doing a factor and solve or a factor only, RPARM(10) is the tolerance value for small pivots. This sets the bounds for the pivot regions, where pivots are processed according to the options you specify for the five regions in IPARM(11) through IPARM(15), respectively. The suggested value is $10^{-15} \leq IPARM(10) \leq 1$.

If you are doing a solve only, this argument is not used.

- RPARM(11) through RPARM(15) have the following meaning, where:
If you are doing a factor and solve or a factor only, RPARM(11) through RPARM(15) are the fix-up values to use for the pivots in regions 1 through 5, respectively. For each RPARM(10+i) for i = 1,5, where the pivot occurs in region i:

- If IPARM(10+i) = 1, the pivot is replaced with RPARM(10+i), where |RPARM(10+i)| should be a sufficiently large nonzero value to avoid overflow when calculating the reciprocal of the pivot. The suggested value is $10^{-15} \leq |RPARM(10+i)| \leq 1$.
- If IPARM(10+i) ≠ 1, RPARM(10+i) is not used.

If you are doing a solve only, these arguments are not used.

- RPARM(16) through RPARM(25), see “On Return” on page 615.

Specified as: a one-dimensional array of (at least) length 25, containing long-precision real numbers, where if IPARM(2) = 0, 1, 10, 11, 100, or 110, then:

- RPARM(10) ≥ 0.0
- RPARM(11) through RPARM(15) $\neq 0.0$

aux has the following meaning:

- If naux = 0 and error 2015 is unrecoverable, aux is ignored.
- Otherwise, it is the storage work area used by this subroutine. Its size is specified by naux.

Specified as: an area of storage, containing long-precision real numbers.

naux is the size of the work area specified by aux—that is, the number of elements in aux. Specified as: a fullword integer, where:

- If naux = 0 and error 2015 is unrecoverable, DGKFS dynamically allocates the work area used by this subroutine. The work area is deallocated before control is returned to the calling program.
- Otherwise,
- If you are doing a factor only, use naux $\geq 5n$.
- If you are doing a factor and solve or a solve only, use naux $\geq 5n+4mbx$.

bx has the following meaning, where:

- If you are doing a factor and solve or a solve only, bx is the array, containing the mbx right-hand side vectors b of the system $Ax = b$ or $A^T x = b$. Each vector b is length n and is stored in the corresponding column of the array.
- If you are doing a factor only, this argument is not used in the computation.

Specified as: an ldbx by (at least) mbx array, containing long-precision real numbers.

ldbx has the following meaning, where:

- If you are doing a factor and solve or a solve only, ldbx is the leading dimension of the array specified for bx.

If you are doing a factor only, this argument is not used in the computation.
Specified as: a fullword integer; $ldbx \geq n$ and:

- If $mbx \neq 0$, then $ldbx > 0$.
- If $mbx = 0$, then $ldbx \geq 0$.

mbx

has the following meaning, where:

- If you are doing a factor and solve or a solve only, mbx is the number of right-hand side vectors, b, in the array specified for bx.
- If you are doing a factor only, this argument is not used in the computation.

Specified as: a fullword integer; $mbx \geq 0$.

On Return

au

is the array, referred to as AU, containing the upper triangular part of the LU factored form of general sparse matrix A, where:

- If IPARM(5) = 0, diagonal-out skyline storage mode is used for A.
- If IPARM(5) = 1, profile-in skyline storage mode is used for A.

(If $mbx = 0$ and you are doing a solve only, then au is unchanged on output.) Returned as: a one-dimensional array of (at least) length nu, containing long-precision real numbers.

idu

is the array, referred to as IDU, containing the relative positions of the diagonal elements of the factored output matrix A in array AU. (If $mbx = 0$ and you are doing a solve only, then idu is unchanged on output.) Returned as: a one-dimensional array of (at least) length $n+1$, containing fullword integers.

al

is the array, referred to as AL, containing the lower triangular part of the LU factored form of general sparse matrix A, where:

- If IPARM(5) = 0, diagonal-out skyline storage mode is used for A.
- If IPARM(5) = 1, profile-in skyline storage mode is used for A.

Note: You should assume that entries in AL for diagonal elements of A do not have meaningful values.

(If $mbx = 0$ and you are doing a solve only, then al is unchanged on output.) Returned as: a one-dimensional array of (at least) length nl, containing long-precision real numbers.

idl

is the array, referred to as IDL, containing the relative positions of the diagonal elements of the factored output matrix A in array AL. (If $mbx = 0$ and you are doing a solve only, then idl is unchanged on output.) Returned as: a one-dimensional array of (at least) length $n+1$, containing fullword integers.

$iparm$

is an array of parameters, $IPARM(\cdot)$, where:

- $IPARM(1)$ through $IPARM(15)$ are unchanged.
- $IPARM(16)$ has the following meaning, where:

 If you are doing a factor and solve or a factor only, and:

 - If $IPARM(16) = -1$, your factorization did not complete successfully, resulting in computational error 2126.
If IPARM(16) > 0, it is the row number \(k \), in which the maximum absolute value of the ratio \(a_{kk} / u_{kk} \) occurred, where:

- If IPARM(3) = 0, \(k \) can be any of the rows, 1 through \(n \), in the full factorization.
- If IPARM(3) > 0, \(k \) can be any of the rows, IPARM(3)+1 through \(n \), in the partial factorization.

If you are doing a solve only, this argument is not used in the computation and is unchanged.

- IPARM(17) through IPARM(20) are reserved.
- IPARM(21) through IPARM(25) have the following meaning, where:

If you are doing a factor and solve or a factor only. IPARM(21) through IPARM(25) have the following meanings for each region \(i \) for \(i = 1, 5 \), respectively:

- If IPARM(20+i) = -1, your factorization did not complete successfully, resulting in computational error 2126.
- If IPARM(20+i) ≥ 0, it is the number of pivots in region \(i \) for the columns that were factored in matrix \(A \), where:
 - If IPARM(3) = 0, columns 1 through \(n \) were factored in the full factorization.
 - If IPARM(3) > 0, columns IPARM(3)+1 through \(n \) were factored in the partial factorization.

If you are doing a solve only, these arguments are not used in the computation and are unchanged.

Returned as: a one-dimensional array of (at least) length 25, containing fullword integers.

\(rparm \)
is an array of parameters, RPARM(\(i \)), where:

- RPARM(1) through RPARM(15) are unchanged.
- RPARM(16) has the following meaning, where:

If you are doing a factor and solve or a factor only, and:

- If RPARM(16) = 0.0, your factorization did not complete successfully, resulting in computational error 2126.
- If \(|{\text{RPARM(16)}}| > 0.0 \), it is the ratio for row \(k \), \(a_{kk} / u_{kk} \), having the maximum absolute value. Row \(k \) is indicated in IPARM(16), and:
 - If IPARM(3) = 0, the ratio corresponds to one of the rows, 1 through \(n \), in the full factorization.
 - If IPARM(3) > 0, the ratio corresponds to one of the rows, IPARM(3)+1 through \(n \), in the partial factorization.

If you are doing a solve only, this argument is not used in the computation and is unchanged.

- RPARM(17) and RPARM(18) have the following meaning, where:

If you are computing the determinant of matrix \(A \), then RPARM(17) is the mantissa, \(\text{detbas} \), and RPARM(18) is the power of 10, \(\text{detpwr} \), used to
express the value of the determinant: $\detbas(10^{\text{detpwr}})$, where $1 \leq \detbas < 10$. Also:

If $\text{IPARM}(3) = 0$, the determinant is computed for columns 1 through n in the full factorization.

If $\text{IPARM}(3) > 0$, the determinant is computed for columns $\text{IPARM}(3)+1$ through n in the partial factorization.

If you are not computing the determinant of matrix A, these arguments are not used in the computation and are unchanged.

- $\text{RPARM}(19)$ through $\text{RPARM}(25)$ are reserved.

Returned as: a one-dimensional array of (at least) length 25, containing long-precision real numbers.

bx

has the following meaning, where:

If you are doing a factor and solve or a solve only, bx is the array, containing the mbx solution vectors x of the system $Ax = b$ or $A^T x = b$. Each vector x is length n and is stored in the corresponding column of the array. (If $mbx = 0$, then bx is unchanged on output.)

If you are doing a factor only, this argument is not used in the computation and is unchanged.

Returned as: an $ldbx$ by (at least) mbx array, containing long-precision real numbers.

Notes

1. If you set either $\text{IPARM}(1) = 0$ or $\text{IPARM}(10) = 0$, indicating you want to use the default values for $\text{IPARM}(11)$ through $\text{IPARM}(15)$ and $\text{RPARM}(10)$, then:

 - Matrix A must be positive definite.
 - No pivots are fixed, using $\text{RPARM}(11)$ through $\text{RPARM}(15)$ values.
 - No small pivots are tolerated; that is, the value should be $|\text{pivot}| > \text{RPARM}(10)$.

2. Many of the input and output parameters for iparm and rparm are defined for the five pivot regions handled by this subroutine. The limits of the regions are based on $\text{RPARM}(10)$, as shown in Figure 11. The pivot values in each region are:

 Region 1: $\text{pivot} < - \text{RPARM}(10)$
 Region 2: $- \text{RPARM}(10) \leq \text{pivot} < 0$
 Region 3: $\text{pivot} = 0$
 Region 4: $0 < \text{pivot} \leq \text{RPARM}(10)$
 Region 5: $\text{pivot} > \text{RPARM}(10)$

\[\begin{array}{cccc}
\text{Pivot}
\text{Values:} & \hspace{1cm} \text{RPARM}(10) & 0 & \text{RPARM}(10) \\
\text{Regions:} & ... & 1 &) & 2 &) & 3 &) & 4 &) & 5 & ... \end{array}\]

Figure 11. Five Pivot Regions
3. The IPARM(4) and IPARM(5) arguments allow you to specify the same or different skyline storage modes for your input and output arrays for matrix \(A \). This allows you to change storage modes as needed. However, if you are concerned with performance, you should use diagonal-out skyline storage mode for both input and output, if possible, because there is less overhead.

For a description of how sparse matrices are stored in skyline storage mode, see “Profile-In Skyline Storage Mode” on page 101 and “Diagonal-Out Skyline Storage Mode” on page 99.

4. Following is an illustration of the portion of matrix \(A \) factored in the partial factorization when IPARM(3) > 0. In this case, the subroutine assumes that rows and columns 1 through IPARM(3) are already factored and that rows and columns IPARM(3)+1 through \(n \) are to be factored in this computation.

\[
\begin{bmatrix}
 a_{11} & \cdots & a_{1j} & a_{1,j+1} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots & \ddots & \ddots & \vdots \\
 \vdots & \ddots & \vdots & \ddots & \ddots & \vdots \\
 a_{j1} & \cdots & a_{jj} & \cdots & \cdots & \cdots \\
 a_{j+1,1} & \cdots & \cdots & \cdots & \cdots & \cdots \\
 \vdots & \ddots & \ddots & \ddots & \ddots & \cdots \\
 a_{n1} & \cdots & \cdots & \cdots & \cdots & a_{nn}
\end{bmatrix}
\]

where \(j = \text{IPARM}(3) \)

You use the partial factorization function when, for design or storage reasons, you must factor the matrix \(A \) in stages. When doing a partial factorization, you must use the same skyline storage mode for all parts of the matrix as it is progressively factored.

5. Your various arrays must have no common elements; otherwise, results are unpredictable.

6. You have the option of having the minimum required value for \(\text{naux} \) dynamically returned to your program. For details, see “Using Auxiliary Storage in ESSL” on page 30.

Function: This subroutine can factor, compute the determinant of, and solve general sparse matrix \(A \), stored in skyline storage mode. For all computations, input matrix \(A \) can be stored in either diagonal-out or profile-in skyline storage mode. Output matrix \(A \) can also be stored in either of these modes and can be different from the mode used for input.

Matrix \(A \) is factored into the following form using specified pivot processing:

\[A = LU \]

where:

- \(U \) is an upper triangular matrix.
- \(L \) is a lower triangular matrix.
The transformed matrix \(A \), factored into its \(LU \) form, is stored in packed format in arrays \(AU \) and \(AL \). The inverse of the diagonal of matrix \(U \) is stored in the corresponding elements of array \(AU \). The off-diagonal elements of the upper triangular matrix \(U \) are stored in the corresponding off-diagonal elements of array \(AU \). The off-diagonal elements of the lower triangular matrix \(L \) are stored in the corresponding off-diagonal elements of array \(AL \). (The diagonal elements stored in array \(AL \) do not have meaningful values.)

The partial factorization of matrix \(A \), which you can do when you specify the factor-only option, assumes that the first \(IPARM(3) \) rows and columns are already factored in the input matrix. It factors the remaining \(n-IPARM(3) \) rows and columns in matrix \(A \). (See “Notes” on page 617 for an illustration.) It updates only the elements in arrays \(AU \) and \(AL \) corresponding to the part of matrix \(A \) that is factored.

The determinant can be computed with any of the factorization computations. With a full factorization, you get the determinant for the whole matrix. With a partial factorization, you get the determinant for only that part of the matrix factored in this computation.

The system \(Ax = b \) or \(A^T x = b \), having multiple right-hand sides, is solved for \(x \), using the transformed matrix \(A \) produced by this call or a subsequent call to this subroutine.

See references [9], [12], [25], [47], and [71]. If \(n \) is 0, no computation is performed. If \(mbx \) is 0, no solve is performed.

Error Conditions

Resource Errors

- Error 2015 is unrecoverable, \(naux = 0 \), and unable to allocate work area.
- Unable to allocate internal work area.

Computational Errors

1. If a pivot occurs in region \(i \) for \(i = 1,5 \) and \(IPARM(10+i) = 1 \), the pivot value is replaced with \(RPARM(10+i) \), an attention message is issued, and processing continues.
2. Unacceptable pivot values occurred in the factorization of matrix \(A \).
 - One or more diagonal elements of \(U \) contains unacceptable pivots and no valid fixup is applicable. The row number \(i \) of the first unacceptable pivot element is identified in the computational error message.
 - The return code is set to 2.
 - \(i \) can be determined at run time by use of the ESSL error-handling facilities. To obtain this information, you must use ERRSET to change the number of allowable errors for error code 2126 in the ESSL error option table; otherwise, the default value causes your program to terminate when this error occurs. For details, see “What Can You Do about ESSL Computational Errors?” on page 46.

Input-Argument Errors

1. \(n < 0 \)
2. \(nu < 0 \)
3. \(IDU(n+1) > nu+1 \)
4. \(IDU(i+1) \leq IDU(i) \) for \(i = 1, n \)
5. $\text{IDU}(i+1) > \text{IDU}(i)+i$ and $\text{IPARM}(4) = 0$ for $i = 1, n$
6. $\text{IDU}(i) > \text{IDU}(i-1)+i$ and $\text{IPARM}(4) = 1$ for $i = 2, n$
7. $nl < 0$
8. $\text{IDL}(n+1) > nl+1$
9. $\text{IDL}(i+1) \leq \text{IDL}(i)$ for $i = 1, n$
10. $\text{IDL}(i+1) > \text{IDL}(i)+i$ and $\text{IPARM}(4) = 0$ for $i = 1, n$
11. $\text{IDL}(i) > \text{IDL}(i-1)+i$ and $\text{IPARM}(4) = 1$ for $i = 2, n$
12. $\text{IPARM}(1) \neq 0$ or 1
13. $\text{IPARM}(2) \neq 0, 1, 2, 10, 11, 100, 102, \text{or } 110$
14. $\text{IPARM}(3) < 0$
15. $\text{IPARM}(3) > n$
16. $\text{IPARM}(3) > 0$ and $\text{IPARM}(2) \neq 1$ or 11
17. $\text{IPARM}(4), \text{IPARM}(5) \neq 0$ or 1
18. $\text{IPARM}(2) = 0, 1, 10, 11, 100, \text{or } 110$ and:

 $\text{IPARM}(10) \neq 0$ or 1

 $\text{IPARM}(11), \text{IPARM}(12) \neq -1, 0, \text{or } 1$

 $\text{IPARM}(13) \neq -1$ or 1

 $\text{IPARM}(14), \text{IPARM}(15) \neq -1, 0, \text{or } 1$

 $\text{RPARM}(10) < 0.0$

 $\text{RPARM}(10+i) = 0.0$ and $\text{IPARM}(10+i) = 1$ for $i = 1, 5$
19. $\text{IPARM}(2) = 0, 2, 10, 100, 102, \text{or } 110$ and:

 $\text{ldbx} \leq 0$ and $\text{mbx} \neq 0$ and $n \neq 0$

 $\text{ldbx} < 0$ and $\text{mbx} = 0$

 $\text{ldbx} < n$ and $\text{mbx} \neq 0$

 $\text{mbx} < 0$
20. Error 2015 is recoverable or $\text{naux} \neq 0$, and naux is too small—that is, less than
 the minimum required value. Return code 1 is returned if error 2015 is recoverable.

Example 1: This example shows how to factor a 9 by 9 general sparse matrix A
and solve the system $Ax = b$ with three right-hand sides. The default values are
used for IPARM and RPARM. Input matrix A, shown here, is stored in diagonal-out
skyline storage mode. Matrix A is:

$$
\begin{bmatrix}
2.0 & 2.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
2.0 & 4.0 & 4.0 & 2.0 & 2.0 & 0.0 & 0.0 & 0.0 & 2.0 \\
2.0 & 4.0 & 6.0 & 4.0 & 4.0 & 0.0 & 2.0 & 0.0 & 4.0 \\
2.0 & 4.0 & 6.0 & 6.0 & 6.0 & 2.0 & 4.0 & 0.0 & 6.0 \\
0.0 & 0.0 & 0.0 & 2.0 & 4.0 & 4.0 & 4.0 & 2.0 & 4.0 \\
0.0 & 2.0 & 4.0 & 6.0 & 8.0 & 6.0 & 8.0 & 4.0 & 10.0 \\
0.0 & 0.0 & 0.0 & 2.0 & 4.0 & 6.0 & 8.0 & 6.0 & 8.0 \\
0.0 & 0.0 & 0.0 & 2.0 & 4.0 & 6.0 & 8.0 & 8.0 & 10.0 \\
2.0 & 4.0 & 6.0 & 6.0 & 8.0 & 6.0 & 10.0 & 8.0 & 16.0
\end{bmatrix}
$$

Output matrix A, shown here, is in LU factored form with U^{-1} on the diagonal, and
is stored in diagonal-out skyline storage mode. Matrix B is:
DGKFS

┌
|
|
|
|
|
|
|
|
|
└

.5
1.
1.
1.
.
.
.
.
1.

2.
.5
1.
1.
.
1.
.
.
1.

2.
2.
.5
1.
.
1.
.
.
1.

.
2.
2.
.5
1.
1.
1.
1.
1.

.
2.
2.
2.
.5
1.
1.
1.
1.

.
.
.
2.
2.
.5
1.
1.
1.

.
.
2.
2.
2.
2.
.5
1.
1.

.
.
.
.
2.
2.
2.
.5
1.

.
2.
2.
2.
2.
2.
2.
2.
.5

┐
|
|
|
|
|
|
|
|
|
┘

Call Statement and Input
N AU NU IDU AL NL IDL IPARM RPARM AUX NAUX BX LDBX MBX
| | |
| | |
|
|
|
|
|
|
|
|
CALL DGKFS(9 , AU, 33, IDU, AL, 35, IDL, IPARM, RPARM, AUX, 57 , BX , 12 , 3)
AU

= (2., 4., 2., 6., 4., 2., 6., 4., 2., 4., 6.,
4., 2., 6., 4., 2., 8., 8., 4., 4., 2., 8.,
6., 4., 2., 16., 1., 8., 1., 4., 6., 4., 2.)
= (1, 2, 4, 7, 1, 14, 17, 22, 26, 34)
= (., ., 2., ., 4., 2., ., 6., 4., 2., .,
2., ., 8., 6., 4., 2., ., 6., 4., 2., .,
8., 6., 4., 2., ., 8., 1., 6., 8., 6., 6.,
4., 2.)
= (1, 2, 4, 7, 11, 13, 18, 22, 27, 36)
= (, . , . , . , . , . , . , . , . , . , . , . , . , . ,
. , . , . , . , . , . , . , . , . , . , .)

IDU
AL

IDL
IPARM

=(not relevant)

RPARM

BX

┌
|
|
|
|
|
= |
|
|
|
|
|
|
└

6. 12.
16. 32.
26. 52.
36. 72.
2. 4.
48. 96.
34. 68.
38. 76.
66. 132.
.
.
.
.
.
.

18.
48.
78.
18.
6.
144.
12.
114.
198.
.
.
.

┐
|
|
|
|
|
|
|
|
|
|
|
|
┘

Output
AU
2.,

IDU
AL

= (.5, .5, 2., .5, 2., 2., .5, 2., 2., .5,
2., 2., .5,
2., 2., 2.,
=(same as input)
= (., ., 1.,
1., ., 1.,
1., 1., 1.,

2., 2., .5, 2., 2., 2., 2., .5,
.5, 2., 2., 2., 2., 2., 2., 2.)
., 1., 1., ., 1., 1., 1., .,
1., 1., 1., ., 1., 1., 1., .,
1., ., 1., 1., 1., 1., 1., 1.,
Chapter 10. Linear Algebraic Equations

621


DGKFS

IDL
IPARM
RPARM

BX

1., 1.)
=(same as input)
= (, . , . , .
. , 9, . , .
= (. , . , . ,
. , 8., . ,
┌
|
|
|
|
|
= |
|
|
|
|
|
|
└

1.
1.
1.
1.
1.
1.
1.
1.
1.
.
.
.

2.
2.
2.
2.
2.
2.
2.
2.
2.
.
.
.

,
,
.
.

3.
3.
3.
3.
3.
3.
3.
3.
3.
.
.
.

.
.
,
,

,
,
.
.

.
.
,
,

,
,
.
.

. , .
, ,
, . ,
, . ,

, . ,
, ,
. , .
. , .

. , . , . , . , . ,
9)
, . , . , . , . , . ,
, . , .)

┐
|
|
|
|
|
|
|
|
|
|
|
|
┘

Example 2: This example shows how to factor the 9 by 9 general sparse matrix A
from Example 1, solve the system ATx = b with three right-hand sides, and
compute the determinant of A. The default values for pivot processing are used for
IPARM. Input matrix A is stored in profile-in skyline storage mode. Output matrix A is
in LU factored form with U−1 on the diagonal, and is stored in diagonal-out skyline
storage mode. It is the same as output matrix A in Example 1.
Call Statement and Input
N AU NU IDU AL NL IDL IPARM RPARM AUX NAUX BX LDBX MBX
| | |
| | |
|
|
|
| |
|
| |
CALL DGKFS(9, AU, 33, IDU, AL, 35, IDL, IPARM, RPARM, AUX, 57 , BX , 12 , 3)
AU

IDU
AL

IDL
IPARM

RPARM

622

= (2., 2., 4., 2., 4., 6., 2., 4., 6., 2., 4.,
6., 4., 2., 4., 6., 2., 4., 4., 8., 8., 2.,
4., 6., 8., 2., 4., 6., 4., 1., 8., 1., 16.)
= (1, 3, 6, 9, 13, 16, 21, 25, 33, 34)
= (., 2., ., 2., 4., ., 2., 4., 6., ., 2.,
., 2., 4., 6., 8., ., 2., 4., 6., ., 2.,
4., 6., 8., ., 2., 4., 6., 6., 8., 6., 1.,
8., .)
= (1, 3, 6, 1, 12, 17, 21, 26, 35, 36)
= (1, 11, , 1, , . , . , . , . , , . , . , . , . , . ,
. , . , . , . , . , . , . , . , . , .)
=(not relevant)

Engineering and Scientific Subroutine Library Version 3 Guide and Reference


This example shows how to factor a 9 by 9 negative-definite general sparse matrix \(A \), solve the system \(Ax = b \) with three right-hand sides, and compute the determinant of \(A \). (Default values for pivot processing are not used for \(\text{IPARM} \) because \(A \) is negative-definite.) Input matrix \(A \), shown here, is stored in diagonal-out skyline storage mode:

\[
\begin{bmatrix}
-2.0 & -2.0 & -2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
-2.0 & -4.0 & -4.0 & -2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
-2.0 & -4.0 & -6.0 & -4.0 & -6.0 & -2.0 & -4.0 & 0.0 & 0.0 \\
-2.0 & -4.0 & -6.0 & -6.0 & -6.0 & -6.0 & -6.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & -2.0 & -4.0 & -4.0 & -4.0 & -2.0 & -4.0 \\
0.0 & 0.0 & 0.0 & -2.0 & -4.0 & -6.0 & -8.0 & -8.0 & -10.0 \\
0.0 & 0.0 & 0.0 & -2.0 & -4.0 & -6.0 & -8.0 & -8.0 & -8.0 \\
-2.0 & -4.0 & -6.0 & -6.0 & -8.0 & -8.0 & -10.0 & -8.0 & -8.0 \\
-2.0 & -4.0 & -6.0 & -8.0 & -8.0 & -10.0 & -8.0 & -8.0 & -16.0 \\\n\end{bmatrix}
\]

Output matrix \(A \), shown here, is in \(LU \) factored form with \(U^{-1} \) on the diagonal, and is stored in diagonal-out skyline storage mode. Matrix \(A \) is:
Call Statement and Input

\[
\begin{bmatrix}
-0.5 & -2.0 & -2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
1.0 & -0.5 & -2.0 & -2.0 & 0.0 & 0.0 & 0.0 & -2.0 \\
1.0 & 1.0 & -0.5 & -2.0 & -2.0 & 0.0 & 0.0 & -2.0 \\
1.0 & 1.0 & 1.0 & 1.0 & -0.5 & -2.0 & -2.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 1.0 & -0.5 & -2.0 & -2.0 & -2.0 \\
0.0 & 1.0 & 1.0 & 1.0 & 1.0 & -0.5 & -2.0 & -2.0 \\
0.0 & 0.0 & 0.0 & 1.0 & 1.0 & 1.0 & -0.5 & -2.0 \\
1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & -0.5 \\
\end{bmatrix}
\]

\[
\begin{align*}
\text{AU} & = (-2.0, -4.0, -2.0, -6.0, -4.0, -2.0, -6.0, -4.0, -2.0, \\
& \quad -4.0, -6.0, -4.0, -2.0, -6.0, -4.0, -2.0, -8.0, -8.0, \\
& \quad -4.0, -4.0, -2.0, -8.0, -6.0, -4.0, -2.0, -16.0, -10.0, \\
& \quad -8.0, -10.0, -4.0, -6.0, -4.0, -2.0) \\
\text{IDU} & = (1, 2, 4, 7, 10, 14, 17, 22, 26, 34) \\
\text{AL} & = (0.0, 0.0, -2.0, 0.0, -4.0, -2.0, 0.0, -6.0, -4.0, -2.0, \\
& \quad 0.0, -2.0, 0.0, -8.0, -6.0, -4.0, -2.0, 0.0, -6.0, -4.0, \\
& \quad -2.0, 0.0, -8.0, -6.0, -4.0, -2.0, 0.0, -8.0, -10.0, \\
& \quad -6.0, -8.0, -6.0, -6.0, -4.0, -2.0) \\
\text{IDL} & = (1, 2, 4, 7, 11, 13, 18, 22, 27, 36) \\
\text{IPARM} & = (1, 10, 0, 0, 0, \ldots, \ldots, 1, 0, -1, -1, -1, \ldots, \\
& \quad \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots) \\
\text{RPARM} & = (\ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, 10^{-15}, \ldots, \\
& \quad \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots) \\
\text{BX} & = (\text{same as input BX in Example 1}) \\
\end{align*}
\]

Output

\[
\begin{align*}
\text{AU} & = (-0.5, -0.5, -2.0, -0.5, -2.0, -0.5, -2.0, -0.5, -2.0, -2.0, \\
& \quad -0.5, -2.0, -2.0, -2.0, -0.5, -2.0, -2.0, -0.5, -2.0, -2.0, \\
& \quad -2.0, -2.0, -2.0, -0.5, -2.0, -2.0, -0.5, -2.0, -2.0, -2.0, \\
& \quad -2.0, -2.0, -2.0, -2.0, -2.0) \\
\text{IDU} & = (\text{same as input}) \\
\text{AL} & = (0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 0.0, \\
& \quad 1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, \\
& \quad 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) \\
\text{IDL} & = (\text{same as input}) \\
\text{IPARM} & = (1, 10, 0, 0, 0, \ldots, \ldots, 1, 0, -1, -1, -1, 9, \\
& \quad \ldots, \ldots, \ldots, \ldots, 9, 0, 0, 0, 0) \\
\text{RPARM} & = (\ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, 10^{-15}, \ldots, \\
& \quad \ldots, \ldots, 8.0, -5.12, 2.0, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots) \\
\end{align*}
\]
Example 4: This example shows how to factor the first six rows and columns, referred to as matrix A_1, of the 9 by 9 general sparse matrix A from Example 1 and compute the determinant of A_1. Input matrix A_1, shown here, is stored in diagonal-out skyline storage mode. Input matrix A_1 is:

$$
\begin{bmatrix}
-1.00 & -2.00 & -3.00 \\
-1.00 & -2.00 & -3.00 \\
-1.00 & -2.00 & -3.00 \\
-1.00 & -2.00 & -3.00 \\
-1.00 & -2.00 & -3.00 \\
\end{bmatrix}
$$

Output matrix A_1, shown here, is in LU factored form with U^{-1} on the diagonal, and is stored in diagonal-out skyline storage mode. Output matrix A_1 is:

$$
\begin{bmatrix}
0.5 & 2.0 & 2.0 & 0.0 & 0.0 & 0.0 \\
1.0 & 0.5 & 2.0 & 2.0 & 2.0 & 0.0 \\
1.0 & 1.0 & 0.5 & 2.0 & 2.0 & 0.0 \\
1.0 & 1.0 & 1.0 & 0.5 & 2.0 & 2.0 \\
0.0 & 0.0 & 0.0 & 1.0 & 0.5 & 2.0 \\
0.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.5 \\
\end{bmatrix}
$$

Call Statement and Input

```fortran
CALL DGKFS( 6, AU, 33, IDU, AL, 35, IDL, IPARM, RPARM, AUX, 45, BX, LDBX, MBX )
```

- $AU =$ (same as input AU in Example 1)
- $IDU =$ (1, 2, 4, 7, 10, 14, 17)
- $AL =$ (same as input AL in Example 1)
- $IDL =$ (1, 2, 4, 7, 11, 13, 18)
- $IPARM =$ (1, 11, 0, 0, 0, 1, 2, 6, 7, 11, 13, 18)
- $RPARM =$ (not relevant)
- $BX =$ (not relevant)
- $LDBX =$ (not relevant)
- $MBX =$ (not relevant)
Example 5: This example shows how to do a partial factorization of the 9 by 9 general sparse matrix \(A \) from Example 1, where the first six rows and columns were factored in Example 4. It factors the remaining three rows and columns and computes the determinant of that part of the matrix. The input matrix, referred to as \(A_2 \), shown here, is made up of the output factored matrix \(A_1 \) plus the three remaining unfactored rows and columns of matrix \(A \). Matrix \(A_2 \) is:

\[
\begin{bmatrix}
0.5 & 2.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
1.0 & 0.5 & 2.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 2.0 \\
1.0 & 1.0 & 0.5 & 2.0 & 2.0 & 0.0 & 2.0 & 0.0 & 4.0 \\
1.0 & 1.0 & 1.0 & 0.5 & 2.0 & 2.0 & 4.0 & 0.0 & 6.0 \\
0.0 & 0.0 & 0.0 & 1.0 & 0.5 & 2.0 & 4.0 & 2.0 & 4.0 \\
0.0 & 1.0 & 1.0 & 1.0 & 0.5 & 2.0 & 4.0 & 2.0 & 4.0 \\
0.0 & 0.0 & 0.0 & 2.0 & 4.0 & 6.0 & 8.0 & 6.0 & 8.0 \\
0.0 & 0.0 & 0.0 & 2.0 & 4.0 & 6.0 & 8.0 & 8.0 & 10.0 \\
2.0 & 4.0 & 6.0 & 6.0 & 8.0 & 6.0 & 10.0 & 8.0 & 16.0
\end{bmatrix}
\]

Both parts of input matrix \(A_2 \) are stored in diagonal-out skyline storage mode.

Output matrix \(A_2 \) is the same as output matrix \(A \) in Example 1 and is stored in diagonal-out skyline storage mode.

Call Statement and Input

\[
\begin{align*}
\text{CALL DGKFS}(& 9, \text{AU}, 33, \text{IDU}, \text{AL}, 35, \text{IDL}, \text{IPARM}, \text{RPARM}, \text{AUX}, 45, \text{BX}, \text{LDBX}, \text{MBX})
\end{align*}
\]

\[
\begin{align*}
\text{AU} &= \text{(same as output } \text{AU} \text{ in Example 4)} \\
\text{IDU} &= \text{(same as input } \text{IDU} \text{ in Example 1)} \\
\text{AL} &= \text{(same as output } \text{AL} \text{ in Example 4)} \\
\text{IDL} &= \text{(same as input } \text{IDL} \text{ in Example 1)} \\
\text{IPARM} &= (1, 11, 6, 0, 0, \ldots, 0, 0, \ldots, 0, 0, \ldots)
\end{align*}
\]
Example 6: This example shows how to solve the system $Ax = b$ with one right-hand side for a general sparse matrix A. Input matrix A, used here, is the same as factored output matrix A from Example 1, stored in profile-in skyline storage mode. Here, output matrix A is unchanged on output and is stored in profile-in skyline storage mode.

Call Statement and Input

```
CALL DGKFS( 9, AU, 33, IDU, AL, 35, IDL, IPARM, RPARM, AUX, 49 , BX , 9 , 1 )
```

Output

```plaintext
AU = (same as input)
IDU = (same as input)
AL = (same as input)
IDL = (same as input)
IPARM = (same as input)
RPARM = (not relevant)
BX = (not relevant)
LDBX = (not relevant)
MBX = (not relevant)
```
\begin{itemize}
 \item RPARM = (not relevant)
 \item BX = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0)
\end{itemize}
DSKFS—Symmetric Sparse Matrix Factorization, Determinant, and Solve Using Skyline Storage Mode

This subroutine can perform either or both of the following functions for symmetric sparse matrix A, stored in skyline storage mode, and for vectors x and b:

- Factor A and, optionally, compute the determinant of A.
- Solve the system $Ax = b$ using the results of the factorization of matrix A, produced on this call or a preceding call to this subroutine.

You have the choice of using either Gaussian elimination or Cholesky decomposition. You also have the choice of using profile-in or diagonal-out skyline storage mode for A on input or output.

Note: The input to the solve performed by this subroutine must be the output from the factorization performed by this subroutine.

Syntax

<table>
<thead>
<tr>
<th>Language</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>CALL DSKFS (n, a, na, idia, iparm, rparm, aux, naux, bx, ldbx, mbx)</td>
</tr>
<tr>
<td>C and C++</td>
<td>dskfs (n, a, na, idia, iparm, rparm, aux, naux, bx, ldbx, mbx);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL DSKFS (n, a, na, idia, iparm, rparm, aux, naux, bx, ldbx, mbx);</td>
</tr>
</tbody>
</table>

On Entry

n

is the order of symmetric sparse matrix A. Specified as: a fullword integer; $n \geq 0$.

a

is the array, referred to as A, containing one of three forms of the upper triangular part of symmetric sparse matrix A, depending on the type of computation performed, where:

- If you are doing a **factor and solve** or a **factor only**, and if IPARM(3) = 0, then A contains the unfactored upper triangle of symmetric sparse matrix A.
- If you are doing a **factor only**, and if IPARM(3) > 0, then A contains the partially factored upper triangle of symmetric sparse matrix A. The first IPARM(3) columns in the upper triangle of A are already factored. The remaining columns are factored in this computation.
- If you are doing a **solve only**, then A contains the factored upper triangle of sparse matrix A, produced by a preceding call to this subroutine.

In each case:

- If IPARM(4) = 0, diagonal-out skyline storage mode is used for A.
- If IPARM(4) = 1, profile-in skyline storage mode is used for A.

Specified as: a one-dimensional array of (at least) length na, containing long-precision real numbers.

na

is the length of array A. Specified as: a fullword integer; $na \geq 0$ and $na \geq (IDIA(n+1)-1)$.

Chapter 10. Linear Algebraic Equations 629
idiag

is the array, referred to as IDIAG, containing the relative positions of the
diagonal elements of matrix A (in one of its three forms) in array A. Specified
as: a one-dimensional array of (at least) length n+1, containing fullword
integers.

iparm

is an array of parameters, IPARM(i), where:

- IPARM(1) indicates whether certain default values for iparm and rparm are
 used by this subroutine, where:

 If IPARM(1) = 0, the following default values are used. For restrictions, see
 “Notes” on page 636.

 IPARM(2) = 0
 IPARM(3) = 0
 IPARM(4) = 0
 IPARM(5) = 0
 IPARM(10) = 0
 IPARM(11) = -1
 IPARM(12) = -1
 IPARM(13) = -1
 IPARM(14) = -1
 IPARM(15) = 0
 RPARM(10) = 10^{-12}

 If IPARM(1) = 1, the default values are not used.

- IPARM(2) indicates the type of computation performed by this subroutine.
The following table gives the IPARM(2) values for each variation:

<table>
<thead>
<tr>
<th>Type of Computation</th>
<th>Gaussian Elimination $Ax = b$</th>
<th>Gaussian Elimination $Ax = b$ and Determinant(A)</th>
<th>Cholesky Decomposition $Ax = b$</th>
<th>Cholesky Decomposition $Ax = b$ and Determinant(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor and Solve</td>
<td>0</td>
<td>10</td>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td>Factor Only</td>
<td>1</td>
<td>N/A</td>
<td>101</td>
<td>111</td>
</tr>
<tr>
<td>Solve Only</td>
<td>2</td>
<td>102</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

- IPARM(3) indicates whether a full or partial factorization is performed on
 matrix A, where:

 If IPARM(3) = 0, and:

 If you are doing a factor and solve or a factor only, then a full
 factorization is performed for matrix A on rows and columns 1 through
 n.

 If you are doing a solve only, this argument has no effect on the
 computation, but must be set to 0.

 If IPARM(3) > 0, and you are doing a factor only, then a partial
 factorization is performed on matrix A. Rows 1 through IPARM(3) of
 columns 1 through IPARM(3) in matrix A must be in factored form from a
 preceding call to this subroutine. The factorization is performed on rows
IPARM(3)+1 through n and columns IPARM(3)+1 through n. For an illustration, see “Notes” on page 636.

- IPARM(4) indicates the input storage mode used for matrix A. This determines the arrangement of data in arrays A and IDIAG on input, where:
 - If IPARM(4) = 0, diagonal-out skyline storage mode is used.
 - If IPARM(4) = 1, profile-in skyline storage mode is used.

- IPARM(5) indicates the output storage mode used for matrix A. This determines the arrangement of data in arrays A and IDAIG on output, where:
 - If IPARM(5) = 0, diagonal-out skyline storage mode is used.
 - If IPARM(5) = 1, profile-in skyline storage mode is used.

- IPARM(6) through IPARM(9) are reserved.

- IPARM(10) has the following meaning, where:
 - If you are doing a factor and solve or a factor only, then IPARM(10) indicates whether certain default values for iparm and rparm are used by this subroutine, where:
 - If IPARM(10) = 0, the following default values are used. For restrictions, see “Notes” on page 636.
 - IPARM(11) = −1
 - IPARM(12) = −1
 - IPARM(13) = −1
 - IPARM(14) = −1
 - IPARM(15) = 0
 - RPARM(10) = 10^{−12}
 - If IPARM(10) = 1, the default values are not used.

If you are doing a solve only, this argument is not used.

- IPARM(11) through IPARM(15) have the following meaning, where:
 - If you are doing a factor and solve or a factor only, then IPARM(11) through IPARM(15) control the type of processing to apply to pivot elements occurring in regions 1 through 5, respectively. The pivot elements are d_{kk} for Gaussian elimination and r_{kk} for Cholesky decomposition for $k = 1, n$ when doing a full factorization, and they are $k = IPARM(3)+1, n$ when doing a partial factorization. The region in which a pivot element falls depends on the sign and magnitude of the pivot element. The regions are determined by RPARM(10). For a description of the regions and associated pivot values, see “Notes” on page 636. For each region i for $i = 1, 5$, where the pivot occurs in region i, the processing applied to the pivot element is determined by IPARM(10+i), where:
 - If IPARM(10+i) = −1, the pivot element is trapped and computational error 2126 is generated. See “Error Conditions” on page 638.
 - If IPARM(10+i) = 0, processing continues normally.

 Note: A value of 0 is not permitted for region 3, because if processing continues, a divide-by-zero exception occurs. In addition, if you are doing a Cholesky decomposition, a value of 0 is not permitted in regions 1 and 2, because a square root exception occurs.
If IPARM(10+i) = 1, the pivot element is replaced with the value in RPARM(10+i), and processing continues normally.

If you are doing a **solve only**, these arguments are not used.

- **IPARM(16)** through **IPARM(25)**, see “On Return” on page 634.

Specified as: a one-dimensional array of (at least) length 25, containing fullword integers, where:

- IPARM(1) = 0 or 1
- IPARM(2) = 0, 1, 2, 10, 11, 100, 101, 102, 110, or 111
- If IPARM(2) = 0, 2, 10, 100, 102, or 110, then IPARM(3) = 0
- If IPARM(2) = 1, 11, 101, or 111, then 0 ≤ IPARM(3) ≤ n
- IPARM(4), IPARM(5) = 0 or 1
- If IPARM(2) = 0, 1, 10, or 11, then:
 - IPARM(10) = 0 or 1
 - IPARM(11), IPARM(12) = -1, 0, or 1
 - IPARM(13) = -1 or 1
 - IPARM(14), IPARM(15) = -1, 0, or 1

If IPARM(2) = 100, 101, 110, or 111, then:

- IPARM(10) = 0 or 1
- IPARM(11), IPARM(12), IPARM(13) = -1 or 1
- IPARM(14), IPARM(15) = -1, 0, or 1

Rparm

is an array of parameters, RPARM(i), where:

- RPARM(1) through RPARM(9) are reserved.
- RPARM(10) has the following meaning, where:
 - If you are doing a **factor and solve** or a **factor only**, RPARM(10) is the tolerance value for small pivots. This sets the bounds for the pivot regions, where pivots are processed according to the options you specify for the five regions in IPARM(11) through IPARM(15), respectively. The suggested value is $10^{-15} \leq \text{IPARM}(10) \leq 1$.
 - If you are doing a **solve only**, this argument is not used.
- RPARM(11) through RPARM(15) have the following meaning, where:
 - If you are doing a **factor and solve** or a **factor only**, RPARM(11) through RPARM(15) are the fix-up values to use for the pivots in regions 1 through 5, respectively. For each RPARM(10+i) for $i = 1,5$, where the pivot occurs in region i.
 - If IPARM(10+i) = 1, the pivot is replaced with RPARM(10+i), where $|\text{IPARM}(10+i)|$ should be a sufficiently large nonzero value to avoid overflow when calculating the reciprocal of the pivot. For Gaussian elimination, the suggested value is $10^{-15} \leq |\text{IPARM}(10+i)| \leq 1$. For Cholesky decomposition, the value must be $\text{RPARM}(10+i) > 0$.
 - If IPARM(10+i) ≠ 1, RPARM(10+i) is not used.
 - If you are doing a **solve only**, these arguments are not used.
- RPARM(16) through RPARM(25), see “On Return” on page 634.
Specified as: a one-dimensional array of (at least) length 25, containing long-precision real numbers, where if IPARM(2) = 0, 1, 10, 11, 100, 101, 110, or 111, then:

\[
\text{RPARM(10)} \geq 0.0
\]

If IPARM(2) = 0, 1, 10, or 11, then RPARM(11) through RPARM(15) \neq 0.0

If IPARM(2) = 100, 101, 110, or 111, then RPARM(11) through RPARM(15) > 0.0

\[\text{aux}\]

has the following meaning:

If \(n_{aux} = 0\) and error 2015 is unrecoverable, \(aux\) is ignored.

Otherwise, it is the storage work area used by this subroutine. Its size is specified by \(n_{aux}\).

Specified as: an area of storage, containing long-precision real numbers.

\[n_{aux}\]

is the size of the work area specified by \(aux\)—that is, the number of elements in \(aux\). Specified as: a fullword integer, where:

If \(n_{aux} = 0\) and error 2015 is unrecoverable, DSKFS dynamically allocates the work area used by this subroutine. The work area is deallocated before control is returned to the calling program.

Otherwise, If you are doing a factor only, you can use \(n_{aux} \geq n\); however, for optimal performance, use \(n_{aux} \geq 3n\).

If you are doing a factor and solve or a solve only, use \(n_{aux} \geq 3n+4mbx\).

For further details on error handling and the special factor-only case, see “Notes” on page 636.

\[bx\]

has the following meaning, where:

If you are doing a factor and solve or a solve only, \(bx\) is the array, containing the \(mbx\) right-hand side vectors \(b\) of the system \(Ax = b\). Each vector \(b\) is length \(n\) and is stored in the corresponding column of the array.

If you are doing a factor only, this argument is not used in the computation.

Specified as: an \(ldbx\) by (at least) \(mbx\) array, containing long-precision real numbers.

\[ldbx\]

has the following meaning, where:

If you are doing a factor and solve or a solve only, \(ldbx\) is the leading dimension of the array specified for \(bx\).

If you are doing a factor only, this argument is not used in the computation.

Specified as: a fullword integer; \(ldbx \geq n\) and:

If \(mbx \neq 0\), then \(ldbx > 0\).

If \(mbx = 0\), then \(ldbx \geq 0\).

\[mbx\]

des has the following meaning, where:

If you are doing a factor and solve or a solve only, \(mbx\) is the number of right-hand side vectors, \(b\), in the array specified for \(bx\).
If you are doing a **factor only**, this argument is not used in the computation. Specified as: a fullword integer; \(mbx \geq 0 \).

On Return

\(a \)

is the array, referred to as \(A \), containing the upper triangular part of symmetric sparse matrix \(A \) in \(LDL^T \) or \(R^T R \) factored form, where:

If IPARM(5) = 0, diagonal-out skyline storage mode is used for \(A \).

If IPARM(5) = 1, profile-in skyline storage mode is used for \(A \).

(If \(mbx = 0 \) and you are doing a solve only, then \(a \) is unchanged on output.)

Returned as: a one-dimensional array of (at least) length \(na \), containing long-precision real numbers.

\(idia \)

is the array, referred to as IDIAG, containing the relative positions of the diagonal elements of the factored output matrix \(A \) in array \(A \). (If \(mbx = 0 \) and you are doing a solve only, then \(idia \) is unchanged on output.)

Returned as: a one-dimensional array of (at least) length \(n+1 \), containing fullword integers.

\(ipa \)

is an array of parameters, IPARM(i), where:

- IPARM(1) through IPARM(15) are unchanged.
- IPARM(16) has the following meaning, where:

 If you are doing a **factor and solve** or a **factor only**, and:

 - If IPARM(16) = -1, your factorization did not complete successfully, resulting in computational error 2126.
 - If IPARM(16) > 0, it is the row number \(k \), in which the maximum absolute value of the ratio \(a_{kk}/d_{kk} \) for Gaussian elimination and \(a_{kk}/r_{kk} \) for Cholesky decomposition occurred, where:
 - If IPARM(3) = 0, \(k \) can be any of the rows, 1 through \(n \), in the full factorization.
 - If IPARM(3) > 0, \(k \) can be any of the rows, IPARM(3)+1 through \(n \), in the partial factorization.

 If you are doing a **solve only**, this argument is not used in the computation and is unchanged.

- IPARM(17) through IPARM(20) are reserved.
- IPARM(21) through IPARM(25) have the following meaning, where:

 If you are doing a **factor and solve** or a **factor only**, IPARM(21) through IPARM(25) have the following meanings for each region \(i \) for \(i = 1,5 \), respectively:

 - If IPARM(20+i) = -1, your factorization did not complete successfully, resulting in computational error 2126.
 - If IPARM(20+i) ≥ 0, it is the number of pivots in region \(i \) for the columns that were factored in matrix \(A \), where:
 - If IPARM(3) = 0, columns 1 through \(n \) were factored in the full factorization.
If IPARM(3) > 0, columns IPARM(3)+1 through n were factored in the partial factorization.

If you are doing a solve only, these arguments are not used in the computation and are unchanged.

Returned as: a one-dimensional array of (at least) length 25, containing fullword integers.

rparm
is an array of parameters, RPARM(i), where:

- RPARM(1) through RPARM(15) are unchanged.
- RPARM(16) has the following meaning, where:

 If you are doing a factor and solve or a factor only, and:

 If RPARM(16) = 0.0, your factorization did not complete successfully, resulting in computational error 2126.
 If |RPARM(16)| > 0.0, it is the ratio for row k, \(a_{kk}/d_{kk} \) for Gaussian elimination and \(a_{kk}/r_{kk} \) for Cholesky decomposition, having the maximum absolute value. Row k is indicated in IPARM(16), and:

 If IPARM(3) = 0, the ratio corresponds to one of the rows, 1 through n, in the full factorization.
 If IPARM(3) > 0, the ratio corresponds to one of the rows, IPARM(3)+1 through n, in the partial factorization.

If you are doing a solve only, this argument is not used in the computation and is unchanged.

- RPARM(17) and RPARM(18) have the following meaning, where:

 If you are computing the determinant of matrix A, then RPARM(17) is the mantissa, \(\text{detbas} \), and RPARM(18) is the power of 10, \(\text{detpwr} \), used to express the value of the determinant: \(\text{detbas}(10^{\text{detpwr}}) \), where

 \(1 \leq \text{detbas} < 10 \). Also:

 If IPARM(3) = 0, the determinant is computed for columns 1 through n in the full factorization.
 If IPARM(3) > 0, the determinant is computed for columns IPARM(3)+1 through n in the partial factorization.

If you are not computing the determinant of matrix A, these arguments are not used in the computation and are unchanged.

- RPARM(19) through RPARM(25) are reserved.

Returned as: a one-dimensional array of (at least) length 25, containing long-precision real numbers.

bx
has the following meaning, where:

If you are doing a factor and solve or a solve only, bx is the array, containing the mbx solution vectors x of the system \(Ax = b \). Each vector x is length n and is stored in the corresponding column of the array. (If mbx = 0, then bx is unchanged on output.)
If you are doing a **factor only**, this argument is not used in the computation and is unchanged.

Returned as: an *ldbx* by (at least) *mbx* array, containing long-precision real numbers.

Notes

1. When doing a **solve only**, you should specify the same factorization method in *IPARM(2)*, Gaussian elimination or Cholesky decomposition, that you specified for your factorization on a previous call to this subroutine.

2. If you set either *IPARM(1) = 0* or *IPARM(10) = 0*, indicating you want to use the default values for *IPARM(11)* through *IPARM(15)* and *RPARM(10)*, then:
 - Matrix \(A \) must be positive definite.
 - No pivots are fixed, using *RPARM(11)* through *RPARM(15)* values.
 - No small pivots are tolerated; that is, the value should be \(|pivot| > RPARM(10)\).

3. Many of the input and output parameters for *iparm* and *rparm* are defined for the five pivot regions handled by this subroutine. The limits of the regions are based on *RPARM(10)*, as shown in Figure 12. The pivot values in each region are:
 - Region 1: \(pivot < -RPARM(10) \)
 - Region 2: \(-RPARM(10) \leq pivot < 0 \)
 - Region 3: \(pivot = 0 \)
 - Region 4: \(0 < pivot \leq RPARM(10) \)
 - Region 5: \(pivot > RPARM(10) \)

4. The *IPARM(4)* and *IPARM(5)* arguments allow you to specify the same or different skyline storage modes for your input and output arrays for matrix \(A \).
 - This allows you to change storage modes as needed. However, if you are concerned with performance, you should use diagonal-out skyline storage mode for both input and output, if possible, because there is less overhead.

 For a description of how sparse matrices are stored in skyline storage mode, see “Profile-In Skyline Storage Mode” on page 101 and “Diagonal-Out Skyline Storage Mode” on page 99. Those descriptions use different array and variable names from the ones used here. To relate the two sets, use the following table:

<table>
<thead>
<tr>
<th>Name Here</th>
<th>Name in the Storage Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(AU)</td>
</tr>
<tr>
<td>(na)</td>
<td>(nu)</td>
</tr>
<tr>
<td>(IDIAG)</td>
<td>(IDU)</td>
</tr>
</tbody>
</table>
5. Following is an illustration of the portion of matrix A factored in the partial factorization when $\text{IPARM}(3) > 0$. In this case, the subroutine assumes that rows and columns 1 through $\text{IPARM}(3)$ are already factored and that rows and columns $\text{IPARM}(3)+1$ through n are to be factored in this computation.

$$
\begin{bmatrix}
\text{← factored} & \text{→← to be factored} \\
\uparrow & \\
\begin{array}{cccccc}
a_{11} & \ldots & a_{1j} & a_{1,j+1} & \ldots & a_{1n} \\
. & \ldots & . & . & \ldots & . \\
. & \ldots & . & . & \ldots & . \\
. & \ldots & a_{jj} & . & \ldots & . \\
. & \ldots & . & a_{1,j+1} & \ldots & . \\
. & \ldots & . & . & \ldots & a_{nn} \\
\end{array}
\end{bmatrix}
$$

where $j = \text{IPARM}(3)$

You use the partial factorization function when, for design or storage reasons, you must factor the matrix A in stages. When doing a partial factorization, you must use the same skyline storage mode for all parts of the matrix as it is progressively factored.

6. Your various arrays must have no common elements; otherwise, results are unpredictable.

7. You have the option of having the minimum required value for naux dynamically returned to your program. For details, see “Using Auxiliary Storage in ESSL” on page 30.

Function: This subroutine can factor, compute the determinant of, and solve symmetric sparse matrix A, stored in skyline storage mode. It can use either Gaussian elimination or Cholesky decomposition. For all computations, input matrix A can be stored in either diagonal-out or profile-in skyline storage mode. Output matrix A can also be stored in either of these modes and can be different from the mode used for input.

For Gaussian elimination, matrix A is factored into the following form using specified pivot processing:

$$A = LDL^T$$

where:

- D is a diagonal matrix.
- L is a lower triangular matrix.

The transformed matrix A, factored into its LDL^T form, is stored in packed format in array A, such that the inverse of the diagonal matrix D is stored in the corresponding elements of array A. The off-diagonal elements of the unit upper triangular matrix L^T are stored in the corresponding off-diagonal elements of array A.

Chapter 10. Linear Algebraic Equations
637
For Cholesky decomposition, matrix A is factored into the following form using specified pivot processing:

$$A = R^T R$$

where R is an upper triangular matrix

The transformed matrix A, factored into its $R^T R$ form, is stored in packed format in array A, such that the inverse of the diagonal elements of the upper triangular matrix R is stored in the corresponding elements of array A. The off-diagonal elements of matrix R are stored in the corresponding off-diagonal elements of array A.

The partial factorization of matrix A, which you can do when you specify the factor-only option, assumes that the first $\text{IPARM}(3)$ rows and columns are already factored in the input matrix. It factors the remaining $n-\text{IPARM}(3)$ rows and columns in matrix A. (See “Notes” on page 636 for an illustration.) It updates only the elements in array A corresponding to the part of matrix A that is factored.

The determinant can be computed with any of the factorization computations. With a full factorization, you get the determinant for the whole matrix. With a partial factorization, you get the determinant for only that part of the matrix factored in this computation.

The system $Ax = b$, having multiple right-hand sides, is solved for x using the transformed matrix A produced by this call or a subsequent call to this subroutine.

See references [9], [12], [25], [47], [71]. If n is 0, no computation is performed. If mbx is 0, no solve is performed.

Error Conditions

Resource Errors
- Error 2015 is unrecoverable, $naux = 0$, and unable to allocate work area.
- Unable to allocate internal work area.

Computational Errors

1. If a pivot occurs in region i for $i = 1,5$ and $\text{IPARM}(10+i) = 1$, the pivot value is replaced with $\text{RPARAM}(10+i)$, an attention message is issued, and processing continues.

2. Unacceptable pivot values occurred in the factorization of matrix A.
 - One or more diagonal elements of D or R contains unacceptable pivots and no valid fixup is applicable. The row number i of the first unacceptable pivot element is identified in the computational error message.
 - The return code is set to 2.
 - i can be determined at run time by use of the ESSL error-handling facilities. To obtain this information, you must use ERRSET to change the number of allowable errors for error code 2126 in the ESSL error option table; otherwise, the default value causes your program to terminate when this error occurs. For details, see “What Can You Do about ESSL Computational Errors?” on page 46.
Input-Argument Errors

1. \(n < 0 \)
2. \(na < 0 \)
3. \(\text{IDIAG}(n+1) > na+1 \)
4. \(\text{IDIAG}(i+1) \leq \text{IDIAG}(i) \) for \(i = 1, n \)
5. \(\text{IDIAG}(i+1) > \text{IDIAG}(i)+/i \) and \(\text{IPARM}(4) = 0 \) for \(i = 1, n \)
6. \(\text{IDIAG}(i) > \text{IDIAG}(i-1)+/i \) and \(\text{IPARM}(4) = 1 \) for \(i = 2, n \)
7. \(\text{IPARM}(1) \neq 0 \) or 1
8. \(\text{IPARM}(2) \neq 0, 1, 2, 10, 11, 100, 101, 102, 110, \) or 111
9. \(\text{IPARM}(3) < 0 \)
10. \(\text{IPARM}(3) > 0 \) and \(\text{IPARM}(2) \neq 1, 11, 101, \) or 111
11. \(\text{IPARM}(4), \text{IPARM}(5) \neq 0 \) or 1
12. \(\text{IPARM}(2) = 0, 1, 10, \) or 11 and:
 \(\text{IPARM}(10) \neq 0 \) or 1
 \(\text{IPARM}(11), \text{IPARM}(12) \neq -1, 0, \) or 1
 \(\text{IPARM}(13) \neq -1 \) or 1
 \(\text{IPARM}(14), \text{IPARM}(15) \neq -1, 0, \) or 1
 \(\text{RPARM}(10) < 0.0 \)
 \(\text{RPARM}(10+i) = 0.0 \) and \(\text{IPARM}(10+i) = 1 \) for \(i = 1,5 \)
13. \(\text{IPARM}(2) = 100, 101, 110, \) or 111 and:
 \(\text{IPARM}(10) \neq 0 \) or 1
 \(\text{IPARM}(11), \text{IPARM}(12), \text{IPARM}(13) \neq -1 \) or 1
 \(\text{IPARM}(14), \text{IPARM}(15) \neq -1, 0, \) or 1
 \(\text{RPARM}(10) < 0.0 \)
 \(\text{RPARM}(10+i) \leq 0.0 \) and \(\text{IPARM}(10+i) = 1 \) for \(i = 1,5 \)
14. \(\text{IPARM}(2) = 0, 2, 10, 100, 102, \) or 110 and:
 \(\text{ldbx} \leq 0 \) and \(\text{mbx} \neq 0 \) and \(n = 0 \)
 \(\text{ldbx} < 0 \) and \(\text{mbx} = 0 \)
 \(\text{ldbx} < n \) and \(\text{mbx} \neq 0 \)
 \(\text{mbx} < 0 \)
15. Error 2015 is recoverable or \(naux \neq 0 \), and \(naux \) is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.

Example 1: This example shows how to factor a 9 by 9 symmetric sparse matrix \(A \) and solve the system \(Ax = b \) with three right-hand sides. It uses Gaussian elimination. The default values are used for \(\text{IPARM} \) and \(\text{RPARM} \). Input matrix \(A \), shown here, is stored in diagonal-out skyline storage mode. Matrix \(A \) is:

\[
\begin{bmatrix}
1.0 & 1.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
1.0 & 2.0 & 2.0 & 2.0 & 1.0 & 1.0 & 0.0 & 1.0 & 0.0 \\
1.0 & 2.0 & 3.0 & 3.0 & 2.0 & 2.0 & 0.0 & 2.0 & 0.0 \\
1.0 & 2.0 & 3.0 & 4.0 & 3.0 & 3.0 & 0.0 & 3.0 & 0.0 \\
0.0 & 1.0 & 2.0 & 3.0 & 4.0 & 4.0 & 1.0 & 4.0 & 0.0 \\
0.0 & 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 2.0 & 5.0 & 1.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 2.0 & 3.0 & 3.0 & 2.0 \\
0.0 & 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 3.0 & 7.0 & 3.8 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 2.0 & 3.0 & 4.0 \\
\end{bmatrix}
\]

Output matrix \(A \), shown here, is in \(LDL^T \) factored form with \(D^{-1} \) on the diagonal, and is stored in diagonal-out skyline storage mode. Matrix \(A \) is:
Call Statement and Input

\[
\begin{bmatrix}
1.0 & 1.0 & 1.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0 & 1.0 & 0.0 & 1.0 \\
1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0 & 1.0 & 0.0 & 1.0 \\
1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0 & 1.0 & 0.0 & 1.0 \\
0.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
0.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
0.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
4.00 & 8.00 & 12.00 \\
10.00 & 20.00 & 30.00 \\
15.00 & 30.00 & 45.00 \\
19.00 & 38.00 & 57.00 \\
19.00 & 38.00 & 57.00 \\
23.00 & 46.00 & 69.00 \\
11.00 & 22.00 & 33.00 \\
28.00 & 56.00 & 84.00 \\
10.00 & 20.00 & 30.00 \\
\end{bmatrix}
\]

Output

\[
A = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, \\
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, \\
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, \\
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) \\
\]

IDIAK = (same as input)

IPARM = (0, ..., 8, ..., 0, 0, 0, 9)

RPARM = (..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., ...)
Example 2: This example shows how to factor the 9 by 9 symmetric sparse matrix \(A \) from Example 1, solve the system \(Ax = b \) with three right-hand sides, and compute the determinant of \(A \). It uses Gaussian elimination. The default values for pivot processing are used for \(\text{IPARM} \). Input matrix \(A \) is stored in profile-in skyline storage mode. Output matrix \(A \) is in \(LDL^T \) factored form with \(D^{-1} \) on the diagonal, and is stored in diagonal-out skyline storage mode. It is the same as output matrix \(A \) in Example 1.

Call Statement and Input

\[
\begin{array}{cccccccccccc}
N & A & NA & IDIAG & IPARM & RPARM & AUX & NAUX & BX & LDBX & MBX \\
\mid & | & | & | & | & | & | & | & | & | \\
CALL DSKFS (9, A, 33, IDIAG, IPARM, RPARM, AUX, 39, BX, 12, 3) \\
\end{array}
\]

\(A = \begin{bmatrix}
1.0 & 2.0 & 3.0 \\
1.0 & 2.0 & 3.0 \\
1.0 & 2.0 & 3.0 \\
1.0 & 2.0 & 3.0 \\
1.0 & 2.0 & 3.0 \\
\end{bmatrix} \)

\(BX = \begin{bmatrix}
1.0 & 2.0 & 3.0 \\
1.0 & 2.0 & 3.0 \\
1.0 & 2.0 & 3.0 \\
1.0 & 2.0 & 3.0 \\
\end{bmatrix} \)

\(\text{IDIAG} = (1, 3, 6, 1:z\text{ro}oot, 14, 19, 22, 29, 33, 34) \)

\(\text{IPARM} = (1, 1:z\text{ro}oot, :z\text{ro}oot, 1, :z\text{ro}oot, . , . , . , . , :z\text{ro}oot, . , . , . , . , . , . , . , . , . , .) \)

\(\text{RPARM} = \text{(not relevant)} \)

\[
\begin{bmatrix}
4.00 & 8.00 & 12.00 \\
10.00 & 20.00 & 30.00 \\
15.00 & 30.00 & 45.00 \\
19.00 & 38.00 & 57.00 \\
19.00 & 38.00 & 57.00 \\
\end{bmatrix} \]

\(BX = \begin{bmatrix}
23.00 & 46.00 & 69.00 \\
11.00 & 22.00 & 33.00 \\
28.00 & 56.00 & 84.00 \\
10.00 & 20.00 & 30.00 \\
\end{bmatrix} \)

Output

\(A = \text{(same as output } A \text{ in Example 1)} \)

\(\text{IDIAG} = \text{(same as input } \text{IDIAG} \text{ in Example 1)} \)

\(\text{IPARM} = (1, 10, 0, 1, 0, , , , , , 0, , , , , , , , , , 8, \ldots) \)
Example 3: This example shows how to factor a 9 by 9 negative-definite symmetric sparse matrix \(A\), solve the system \(Ax = b\) with three right-hand sides, and compute the determinant of \(A\). It uses Gaussian elimination. (Default values for pivot processing are not used for \(IPARM\) because \(A\) is negative-definite.) Input matrix \(A\), shown here, is stored in diagonal-out skyline storage mode. Matrix \(A\) is:

\[
\begin{pmatrix}
-1.0 & -1.0 & -1.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
-1.0 & -2.0 & -2.0 & -2.0 & -1.0 & 0.0 & -1.0 & 0.0 & 0.0 \\
-1.0 & -2.0 & -3.0 & -3.0 & -2.0 & 0.0 & -2.0 & 0.0 & 0.0 \\
-1.0 & -2.0 & -3.0 & -4.0 & -3.0 & -3.0 & 0.0 & -3.0 & 0.0 \\
0.0 & -1.0 & -2.0 & -3.0 & -4.0 & -4.0 & -4.0 & -1.0 & -4.0 \\
0.0 & -1.0 & -2.0 & -3.0 & -4.0 & -5.0 & -2.0 & -5.0 & -1.0 \\
0.0 & 0.0 & 0.0 & 0.0 & -1.0 & -2.0 & -3.0 & -3.0 & -2.0 \\
0.0 & -1.0 & -2.0 & -3.0 & -4.0 & -5.0 & -3.0 & -7.0 & -3.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -1.0 & -2.0 & -3.0 & -4.0
\end{pmatrix}
\]

Output matrix \(A\), shown here, is in \(LDL^T\) factored form with \(D^{-1}\) on the diagonal, and is stored in diagonal-out skyline storage mode. Matrix \(A\) is:

\[
\begin{pmatrix}
-1.0 & 1.0 & 1.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
1.0 & -1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0 & 0.0 \\
1.0 & 1.0 & -1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0 & 0.0 \\
1.0 & 1.0 & 1.0 & -1.0 & 1.0 & 1.0 & 1.0 & 0.0 & 0.0 \\
0.0 & 1.0 & 1.0 & 1.0 & -1.0 & 1.0 & 1.0 & 1.0 & 0.0 \\
0.0 & 1.0 & 1.0 & 1.0 & 1.0 & -1.0 & 1.0 & 1.0 & 1.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 1.0 & -1.0 & 1.0 & 1.0 \\
0.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & -1.0 & 1.0 & 1.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 1.0 & 1.0 & -1.0
\end{pmatrix}
\]

Call Statement and Input

\[
\begin{align*}
& N \quad A \quad NA \quad IDIAG \quad IPARM \quad RPARM \quad AUX \quad NAUX \quad BX \quad LDBX \quad MBX \\
& \quad | \quad |
\end{align*}
\]

\[
\text{CALL DSKFS}(9, A, 33, IDIAG, IPARM, RPARM, AUX, 39, BX, 12, 3)
\]

\[
A = (-1.0, -2.0, -1.0, -3.0, -2.0, -1.0, -4.0, -3.0, -2.0, \\
-1.0, -4.0, -3.0, -2.0, -1.0, -5.0, -4.0, -3.0, -2.0, \\
-1.0, -3.0, -2.0, -1.0, -7.0, -3.0, -5.0, -4.0, -3.0, \\
-2.0, -1.0, -4.0, -3.0, -2.0, -1.0)
\]

\[
\text{IDIAG} = (1, 2, 4, 7, 11, 15, 20, 23, 30, 34)
\]

\[
\text{IPARM} = (1, 10, 0, 0, 0, \ldots, 1, 0, -1, -1, -1, -1, \ldots, \\
\ldots, \ldots, \ldots, \ldots)
\]

\[
\text{RPARM} = (\ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, 10^{-15}, \ldots, \\
\ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots)
\]

\[
\text{BX} = \text{(same as input BX in Example 1)}
\]
Output:

\[
A = (-1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0,
1.0, 1.0,
-1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, -1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
)
\]

\[
\text{IDIAG} = \text{(same as input)}
\]

\[
\text{IPARM} = (1, 1.0, 0, 0, . . . , 1, 0, -1, -1, -1, 1.0, . . . , 9, 0, 0, 0, 0)
\]

\[
\]

\[
\begin{bmatrix}
-1.00 & -2.00 & -3.00 \\
-1.00 & -2.00 & -3.00 \\
-1.00 & -2.00 & -3.00 \\
-1.00 & -2.00 & -3.00 \\
-1.00 & -2.00 & -3.00 \\
\end{bmatrix}
\]

\[
\text{BX} = \begin{bmatrix}
-1.00 & -2.00 & -3.00 \\
-1.00 & -2.00 & -3.00 \\
-1.00 & -2.00 & -3.00 \\
\cdots & \cdots & \cdots
\end{bmatrix}
\]

Example 4: This example shows how to factor the first six rows and columns, referred to as matrix \(A_1 \), of the 9 by 9 symmetric sparse matrix \(A \) from Example 1 and compute the determinant of \(A_1 \). It uses Gaussian elimination. Input matrix \(A_1 \), shown here, is stored in diagonal-out skyline storage mode. Input matrix \(A_1 \) is:

\[
\begin{bmatrix}
1.0 & 1.0 & 1.0 & 1.0 & 0.0 & 0.0 \\
1.0 & 2.0 & 2.0 & 2.0 & 1.0 & 1.0 \\
1.0 & 2.0 & 3.0 & 3.0 & 2.0 & 2.0 \\
1.0 & 2.0 & 3.0 & 4.0 & 3.0 & 3.0 \\
0.0 & 1.0 & 2.0 & 3.0 & 4.0 & 4.0 \\
0.0 & 1.0 & 2.0 & 3.0 & 4.0 & 5.0
\end{bmatrix}
\]

Output matrix \(A_1 \), shown here, is in \(LDL^T \) factored form with \(D^{-1} \) on the diagonal, and is stored in diagonal-out skyline storage mode. Output matrix \(A_1 \) is:

\[
\begin{bmatrix}
1.0 & 1.0 & 1.0 & 1.0 & 0.0 & 0.0 \\
1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
0.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
0.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0
\end{bmatrix}
\]

Call Statement and Input
Example 5: This example shows how to do a partial factorization of the 9 by 9 symmetric sparse matrix \(A \) from Example 1, where the first six rows and columns were factored in Example 4. It factors the remaining three rows and columns and computes the determinant of that part of the matrix. It uses Gaussian elimination. The input matrix, referred to as \(A_2 \), shown here, is made up of the output factored matrix \(A_1 \) plus the three remaining unfactored rows and columns of matrix \(A \). Matrix \(A_2 \) is:

\[
\begin{bmatrix}
1.0 & 1.0 & 1.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.0 & 1.0 & 0.0 & 0.0 \\
1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 2.0 & 0.0 & 0.0 & 0.0 \\
1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 3.0 & 2.0 & 0.0 & 0.0 \\
0.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 4.0 & 0.0 & 0.0 \\
0.0 & 1.0 & 1.0 & 1.0 & 1.0 & 2.0 & 5.0 & 1.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 2.0 & 3.0 & 3.0 & 2.0 & 0.0 \\
0.0 & 1.0 & 2.0 & 3.0 & 4.0 & 5.0 & 3.0 & 7.0 & 3.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 2.0 & 3.0 & 4.0 & 0.0 \\
\end{bmatrix}
\]

Both parts of input matrix \(A_2 \) are stored in diagonal-out skyline storage mode.

Output matrix \(A_2 \) is the same as output matrix \(A \) in Example 1 and is stored in diagonal-out skyline storage mode.

Call Statement and Input
Example 6: This example shows how to solve the system $Ax = b$ with one right-hand side for a symmetric sparse matrix A. Input matrix A, used here, is the same as factored output matrix A from Example 1, stored in profile-in skyline storage mode. It specifies Gaussian elimination, as used in Example 1. Here, output matrix A is unchanged on output and is stored in profile-in skyline storage mode.

Call Statement and Input

```
CALL DSKFS (9, A, 33, IDIAG, IPARM, RPARM, AUX, 31, BX, 9, 1 )
```

```
A     = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
       1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
       1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
       1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IDIAG = (1, 3, 6, 10, 14, 19, 22, 29, 33, 34)
IPARM = (1, 2, 0, 1, 1, , , , , , , , , , , , , , , ,)
RPARM = (not relevant)
BX     = (10.0, 38.0, 64.0, 87.0, 103.0, 133.0, 80.0, 174.0, 80.0)
```

Output

```
A     = (same as input)
IDIAG = (same as input)
IPARM = (same as input)
```
Example 7: This example shows how to factor a 9 by 9 symmetric sparse matrix \(A \) and solve the system \(Ax = b \) with four right-hand sides. It uses Cholesky decomposition. Input matrix \(A \), shown here, is stored in profile-in skyline storage mode. Matrix \(A \) is:

\[
\begin{bmatrix}
1.0 & 1.0 & 1.0 & 0.0 & 1.0 & 0.0 & 0.0 & 1.0 & 1.0 \\
1.0 & 5.0 & 3.0 & 0.0 & 3.0 & 0.0 & 0.0 & 0.0 & 3.0 \\
1.0 & 3.0 & 11.0 & 3.0 & 5.0 & 3.0 & 3.0 & 0.0 & 5.0 \\
0.0 & 0.0 & 3.0 & 17.0 & 5.0 & 5.0 & 5.0 & 0.0 & 5.0 \\
1.0 & 3.0 & 5.0 & 5.0 & 29.0 & 7.0 & 7.0 & 0.0 & 9.0 \\
0.0 & 0.0 & 3.0 & 5.0 & 7.0 & 9.0 & 9.0 & 6.0 & 9.0 \\
0.0 & 0.0 & 3.0 & 5.0 & 7.0 & 9.0 & 53.0 & 8.0 & 11.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 6.0 & 8.0 & 66.0 & 10.0 \\
1.0 & 3.0 & 5.0 & 5.0 & 9.0 & 9.0 & 11.0 & 10.0 & 89.0 \\
\end{bmatrix}
\]

Output matrix \(A \), shown here, is in \(RT \) factored form with the inverse of the diagonal of \(R \) on the diagonal, and is stored in profile-in skyline storage mode. Matrix \(A \) is:

\[
\begin{bmatrix}
1.0 & 1.0 & 1.0 & 0.0 & 1.0 & 0.0 & 0.0 & 1.0 & 1.0 \\
1.0 & .5 & 1.0 & 0.0 & 1.0 & 0.0 & 0.0 & 0.0 & 1.0 \\
1.0 & 1.0 & .333 & 1.0 & 1.0 & 1.0 & 0.0 & 0.0 & 1.0 \\
0.0 & 0.0 & 1.0 & .25 & 1.0 & 1.0 & 0.0 & 0.0 & 1.0 \\
1.0 & 1.0 & 1.0 & 1.0 & .2 & 1.0 & 1.0 & 0.0 & 1.0 \\
0.0 & 0.0 & 1.0 & 1.0 & 1.0 & .167 & 1.0 & 1.0 & 1.0 \\
0.0 & 0.0 & 1.0 & 1.0 & 1.0 & .143 & 1.0 & 1.0 & 1.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 1.0 & 1.0 & .125 \\
1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & .111 \\
\end{bmatrix}
\]

Call Statement and Input

\[
\begin{array}{llllllllllllllllll}
N & A & NA & IDIAG & IPARM & RPARM & AUX & NAUX & BX & LDBX & MBX \\
\hline
| | | | | | | | | | | |
\end{array}
\]

\[
\text{CALL DSKFS}(9, A, 34, IDIAG, IPARM, RPARM, AUX, 43, BX, 10, 4)
\]

\[
A = (1.0, 1.0, 5.0, 1.0, 3.0, 11.0, 3.0, 17.0, 1.0, 3.0, 5.0, 5.0, 29.0, 3.0, 5.0, 7.0, 39.0, 3.0, 5.0, 7.0, 9.0, 53.0, 6.0, 8.0, 66.0, 1.0, 3.0, 5.0, 5.0, 9.0, 9.0, 11.0, 10.0, 89.0)
\]

\[
\text{IDIAG} = (1, 3, 6, 8, 13, 17, 22, 25, 34, 35)
\]

\[
\text{IPARM} = (1, 110, 0, 1, 1, \ldots, \ldots, 0, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots, \ldots)
\]

\[
\text{RPARM} = \text{(not relevant)}
\]
Output

\[
A = \begin{pmatrix}
1.0 & 1.0 & .5 & 1.0 & 1.0 & .333 & 1.0 & .25 & 1.0 & 1.0, \\
1.0 & .2 & 1.0 & 1.0 & 1.0 & .167 & 1.0 & 1.0 & 1.0 & 1.0 \cdot .143, \\
1.0 & 1.0 & .125 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0, \\
.111)
\end{pmatrix}
\]

\[
\text{IDIAG} = \text{(same as input)}
\]

\[
\text{IPARM} = (1, 110, 0, 1, 1, \ldots, 0, 0, 0, 0, 9)
\]

\[
\text{RPARM} = (\ldots, \ldots, \ldots, \ldots, 1.32, 11.0, \ldots, \ldots, \ldots, \ldots, \ldots)
\]

\[
\text{BX} = \begin{pmatrix}
1.0 & 2.0 & 3.0 & 4.0, \\
1.0 & 2.0 & 3.0 & 4.0, \\
1.0 & 2.0 & 3.0 & 4.0, \\
1.0 & 2.0 & 3.0 & 4.0, \\
1.0 & 2.0 & 3.0 & 4.0, \\
1.0 & 2.0 & 3.0 & 4.0, \\
\ldots, \ldots, \ldots, \ldots)
\end{pmatrix}
\]
DSRIS—Iterative Linear System Solver for a General or Symmetric Sparse Matrix Stored by Rows

This subroutine solves a general or symmetric sparse linear system of equations, using an iterative algorithm, with or without preconditioning. The methods include conjugate gradient (CG), conjugate gradient squared (CGS), generalized minimum residual (GMRES), more smoothly converging variant of the CGS method (Bi-CGSTAB), or transpose-free quasi-minimal residual method (TFQMR). The preconditioners include an incomplete LU factorization, an incomplete Cholesky factorization (for positive definite symmetric matrices), diagonal scaling, or symmetric successive over-relaxation (SSOR) with two possible choices for the diagonal matrix: one uses the absolute values sum of the input matrix, and the other uses the diagonal obtained from the LU factorization. The sparse matrix is stored using storage-by-rows for general matrices and upper- or lower-storage-by-rows for symmetric matrices. Matrix A and vectors x and b are used:

$$Ax = b$$

where A, x, and b contain long-precision real numbers.

Syntax

<table>
<thead>
<tr>
<th>Language</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>CALL DSRIS (stor, init, n, ar, ja, ia, b, x, iparm, rparm, aux1, naux1, aux2, naux2)</td>
</tr>
<tr>
<td>C and C++</td>
<td>dsris (stor, init, n, ar, ja, ia, b, x, iparm, rparm, aux1, naux1, aux2, naux2);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL DSRIS (stor, init, n, ar, ja, ia, b, x, iparm, rparm, aux1, naux1, aux2, naux2);</td>
</tr>
</tbody>
</table>

On Entry

stor
- indicates the form of sparse matrix A and the storage mode used, where:
 - If $stor = 'G'$, A is a general sparse matrix, stored using storage-by-rows.
 - If $stor = 'U'$, A is a symmetric sparse matrix, stored using upper-storage-by-rows.
 - If $stor = 'L'$, A is a symmetric sparse matrix, stored using lower-storage-by-rows.

Specify as: a single character. It must be 'G', 'U', or 'L'.

init
- indicates the type of computation to be performed, where:
 - If $init = 'I'$, the preconditioning matrix is computed, the internal representation of the sparse matrix is generated, and the iteration procedure is performed. The coefficient matrix and preconditioner in internal format are saved in aux1.
 - If $init = 'S'$, the iteration procedure is performed using the coefficient matrix and the preconditioner in internal format, stored in aux1, created in a preceding call to this subroutine with $init = 'I'$. You use this option to solve the same matrix for different right-hand sides, b, optimizing your performance. As long as you do not change the coefficient matrix and preconditioner in aux1, any number of calls can be made with $init = 'S'$.

Specify as: a single character. It must be 'I' or 'S'.

648 Engineering and Scientific Subroutine Library Version 3 Guide and Reference
is the order of the linear system $Ax = b$ and the number of rows and columns in sparse matrix A. Specified as: a fullword integer; $n \geq 0$.

ar

is the sparse matrix A of order n, stored by rows in an array, referred to as AR. The $stor$ argument indicates the storage variation used for storing matrix A. Specified as: a one-dimensional array, containing long-precision real numbers. The number of elements in this array can be determined by subtracting 1 from the value in IA($n+1$).

ja

is the array, referred to as JA, containing the column numbers of each nonzero element in sparse matrix A. Specified as: a one-dimensional array, containing fullword integers; $1 \leq (JA$ elements) $\leq n$. The number of elements in this array can be determined by subtracting 1 from the value in IA($n+1$).

ia

is the row pointer array, referred to as IA, containing the starting positions of each row of matrix A in array AR and one position past the end of array AR. Specified as: a one-dimensional array of (at least) length $n+1$, containing fullword integers; IA($i+1$) \geq IA(i) for $i = 1, n+1$.

b

is the vector b of length n, containing the right-hand side of the matrix problem. Specified as: a one-dimensional array of (at least) length n, containing long-precision real numbers.

x

is the vector x of length n, containing your initial guess of the solution of the linear system. Specified as: a one-dimensional array of (at least) length n, containing long-precision real numbers. The elements can have any value, and if no guess is available, the value can be zero.

$iparm$

is an array of parameters, IPARM(i), where:

- IPARM(1) controls the number of iterations.

 If IPARM(1) $>$ 0, IPARM(1) is the maximum number of iterations allowed.

 If IPARM(1) $=$ 0, the following default values are used:

 \[
 \begin{align*}
 &\text{IPARM}(1) = 300 \\
 &\text{IPARM}(2) = 4 \\
 &\text{IPARM}(4) = 4 \\
 &\text{IPARM}(5) = 1 \\
 &\text{RPARM}(1) = 10^{-6} \\
 &\text{RPARM}(2) = 1
 \end{align*}
 \]

- IPARM(2) is the flag used to select the iterative procedure used in this subroutine.

 If IPARM(2) $=$ 1, the conjugate gradient (CG) method is used. Note that this algorithm should only be used with positive definite symmetric matrices.

 If IPARM(2) $=$ 2, the conjugate gradient squared (CGS) method is used.

 If IPARM(2) $=$ 3, the generalized minimum residual (GMRES) method, restarted after k steps, is used.

 If IPARM(2) $=$ 4, the more smoothly converging variant of the CGS method (Bi-CGSTAB) is used.
If IPARM(2) = 5, the transpose-free quasi-minimal residual method (TFQMR) is used.

- **IPARM(3)** has the following meaning, where:
 - If IPARM(2) ≠ 3, then IPARM(3) is not used.
 - If IPARM(2) = 3, then IPARM(3) = k, where k is the number of steps after which the generalized minimum residual method is restarted. A value for k in the range of 5 to 10 is suitable for most problems.

- **IPARM(4)** is the flag that determines the type of preconditioning.
 - If IPARM(4) = 1, the system is not preconditioned.
 - If IPARM(4) = 2, the system is preconditioned by a diagonal matrix.
 - If IPARM(4) = 3, the system is preconditioned by SSOR splitting with the diagonal given by the absolute values sum of the input matrix.
 - If IPARM(4) = 4, the system is preconditioned by an incomplete LU factorization.
 - If IPARM(4) = 5, the system is preconditioned by SSOR splitting with the diagonal given by the incomplete LU factorization.

Note: The multithreaded version of DSRIS only runs on multiple threads when IPARM(4) = 1 or 2.

- **IPARM(5)** is the flag used to select the stopping criterion used in the computation, where the following items are used in the definitions of the stopping criteria below:
 - ε is the desired relative accuracy and is stored in RPARM(1).
 - x_j is the solution found at the j-th iteration.
 - r_j and r_0 are the preconditioned residuals obtained at iterations j and 0, respectively. (The residual at iteration j is given by b - Ax_j.)

 If IPARM(5) = 1, the iterative method is stopped when:
 \[
 \frac{\|r_j\|_2}{\|x_j\|_2} < \varepsilon
 \]

 Note: IPARM(5) = 1 is the default value assumed by ESSL if you do not specify one of the values described here; therefore, if you do not update your program to set an IPARM(5) value, you, by default, use the above stopping criterion.

 If IPARM(5) = 2, the iterative method is stopped when:
 \[
 \frac{\|r_j\|_2}{\|r_0\|_2} < \varepsilon
 \]

 If IPARM(5) = 3, the iterative method is stopped when:
 \[
 \frac{\|x_j - x_{j-1}\|_2}{\|x_j\|_2} < \varepsilon
 \]

 Note: Stopping criterion 3 performs poorly with the TFQMR method; therefore, if you specify TFQMR (IPARM(2) = 5), you should not specify stopping criterion 3.

- **IPARM(6)**, see “On Return” on page 652.

Specified as: an array of (at least) length 6, containing fullword integers, where:

- IPARM(1) ≥ 0
IPARM(2) = 1, 2, 3, 4, or 5
If IPARM(2) = 3, then IPARM(3) > 0
IPARM(4) = 1, 2, 3, 4, or 5
IPARM(5) = 1, 2, or 3 (Other values default to stopping criterion 1.)

rparm
is an array of parameters, RPARAM(\(i\)), where:

- RPARAM(1) is the relative accuracy \(\epsilon\) used in the stopping criterion. See “Notes” on page 653.
- RPARAM(2), see “On Return” on page 652.
- RPARAM(3) has the following meaning, where:
 - If IPARM(4) \(\neq 3\), then RPARAM(3) is not used.
 - If IPARM(4) = 3, then RPARAM(3) is the acceleration parameter used in SSOR. (A value in the range 0.5 to 2.0 is suitable for most problems.)

Specified as: a one-dimensional array of (at least) length 3, containing long-precision real numbers, where:

- RPARAM(1) \(\geq 0\)
- If IPARM(4) = 3, RPARAM(3) > 0

aux1
is working storage for this subroutine, where:

- If init = 'I', the working storage is computed. It can contain any values.
- If init = 'S', the working storage is used in solving the linear system. It contains the coefficient matrix and preconditioner in internal format, computed in an earlier call to this subroutine.

Specified as: an area of storage, containing aux1 long-precision real numbers.

naux1
is the number of doublewords in the working storage specified in aux1.

Specified as: a fullword integer, where:

In these formulas \(nw\) has the following value:

- If stor = 'G', then \(nw = IA(n+1)−1+n\).
- If stor = 'U' or 'L', then \(nw = 2(IA(n+1)−1)\).

If IPARM(4) = 1, use \(naux1 = (3/2)nw+(7/2)n+40\).
If IPARM(4) = 2, use \(naux1 = (3/2)nw+(9/2)n+40\).
If IPARM(4) = 3, 4, or 5, then:
 - If IPARM(2) \(\neq 1\), use \(naux1 = 3nw+10n+60\).
 - If IPARM(2) = 1, use \(naux1 = 3nw+(21/2)n+60\).

Note: If you receive an attention message, you have not specified sufficient auxiliary storage to achieve optimal performance, but it is enough to perform the computation. To obtain optimal performance, you need to use the amount given by the attention message.

aux2

has the following meaning:

- If aux2 = 0 and error 2015 is unrecoverable, aux2 is ignored.
- Otherwise, it is working storage used by this subroutine that is available for use by the calling program between calls to this subroutine.

Specified as: an area of storage, containing aux2 long-precision real numbers.
DSRIS

naux2

is the number of doublewords in the working storage specified in aux2.

Specified as: a fullword integer, where:

If *naux2* = 0 and error 2015 is unrecoverable, DSRIS dynamically allocates the work area used by this subroutine. The work area is deallocated before control is returned to the calling program.

Otherwise,

- If IPARM(2) = 1, use *naux2* ≥ 4n.
- If IPARM(2) = 2, use *naux2* ≥ 7n.
- If IPARM(2) = 3, use *naux2* ≥ (k+2)n+k(k+4)+1, where k = IPARM(3).
- If IPARM(2) = 4, use *naux2* ≥ 7n.
- If IPARM(2) = 5, use *naux2* ≥ 9n.

On Return

ar

is the sparse matrix *A* of order *n*, stored by rows in an array, referred to as AR. The *stor* argument indicates the storage variation used for storing matrix *A*. The order of the elements in each row of *A* in AR may be changed on output.

Returned as: a one-dimensional array, containing long-precision real numbers. The number of elements in this array can be determined by subtracting 1 from the value in $IA(n+1)$.

ja

is the array, referred to as JA, containing the column numbers of each nonzero element in sparse matrix *A*. These elements correspond to the arrangement of the contents of AR on output.

Returned as: a one-dimensional array, containing fullword integers; $1 \leq (JA$ elements) $\leq n$. The number of elements in this array can be determined by subtracting 1 from the value in $IA(n+1)$.

x

is the vector *x* of length *n*, containing the solution of the system $Ax = b$.

Returned as: a one-dimensional array of (at least) length *n*, containing long-precision real numbers.

iparm

is an array of parameters, IPARM(i), where:

- IPARM(1) through IPARM(5) are unchanged.
- IPARM(6) contains the number of iterations performed by this subroutine.

Returned as: a one-dimensional array of length 6, containing fullword integers.

rpam

is an array of parameters, RPARM(i), where:

- RPARM(1) is unchanged.
- RPARM(2) contains the estimate of the error of the solution. If the process converged, $RPARM(2) \leq \epsilon$.
- RPARM(3) is unchanged.

Returned as: a one-dimensional array of length 3, containing long-precision real numbers.

aux1

is working storage for this subroutine, containing the coefficient matrix and preconditioner in internal format, ready to be passed in a subsequent invocation.
of this subroutine. Returned as: an area of storage, containing \textit{naux1} long-precision real numbers.

\textbf{Notes}

1. If you want to solve the same sparse linear system of equations multiple times using a different algorithm with the same preconditioner and using a different right-hand side each time, you get the best performance by using the following technique. Call DSRIS the first time with \textit{init} = ‘I’. This solves the system, and then stores the coefficient matrix and preconditioner in internal format in \textit{aux1}. On the subsequent invocations of DSRIS with different right-hand sides, specify \textit{init} = ‘S’. This indicates to DSRIS to use the contents of \textit{aux1}, saving the time to convert your coefficient matrix and preconditioner to internal format. If you use this technique, you should not modify the contents of \textit{aux1} between calls to DSRIS.

In some cases, you can specify a different algorithm in \textit{IPARM(2)} when making calls with \textit{init} = ‘S’. (See “Example 2” on page 656.) However, DSRIS sometimes needs different information in \textit{aux1} for different algorithms. When this occurs, DSRIS issues an attention message, continues processing the computation, and then resets the contents of \textit{aux1}. Your performance is not improved in this case, which is functionally equivalent to calling DSRIS with \textit{init} = ‘I’.

2. If you use the CG method with \textit{init} = ‘I’, you must use the CG method when you specify \textit{init} = ‘S’. However, if you use a different method with \textit{init} = ‘I’, you can use any other method, except CG, when you specify \textit{init} = ‘S’.

3. These subroutines accept lowercase letters for the \textit{stor} and \textit{init} arguments.

4. Matrix \textit{A}, vector \textit{x}, and vector \textit{b} must have no common elements; otherwise, results are unpredictable.

5. In this subroutine, a value of \textit{RPARM(1)} = 0 is permitted to force the solver to evaluate exactly \textit{IPARM(1)} iterations. The algorithm computes a sequence of approximate solution vectors \textit{x} that converge to the solution. The iterative procedure is stopped when the selected stopping criterion is satisfied or when more than the maximum number of iterations (in \textit{IPARM(1)}) is reached.

For the stopping criteria specified in \textit{IPARM(5)}, the relative accuracy \(\epsilon\) (in \textit{RPARM(1)}) must be specified reasonably (10\(^{-4}\) to 10\(^{-8}\)). If you specify a larger \(\epsilon\), the algorithm takes fewer iterations to converge to a solution. If you specify a smaller \(\epsilon\), the algorithm requires more iterations and computer time, but converges to a more precise solution. If the value you specify is unreasonably small, the algorithm may fail to converge within the number of iterations it is allowed to perform.

6. For a description of how sparse matrices are stored by rows, see “Storage-by-Rows” on page 97.

7. You have the option of having the minimum required value for \textit{naux} dynamically returned to your program. For details, see “Using Auxiliary Storage in ESSL” on page 30.

\textbf{Function:} The linear system:

\[Ax = b \]
is solved using one of the following methods: conjugate gradient (CG), conjugate gradient squared (CGS), generalized minimum residual (GMRES), more smoothly converging variant of the CGS method (Bi-CGSTAB), or transpose-free quasi-minimal residual method (TFQMR), where:

- A is a sparse matrix of order n. The matrix is stored in arrays AR, IA, and JA. If it is general, it is stored by rows. If it is symmetric, it can be stored using upper- or lower-storage-by-rows.
- x is a vector of length n.
- b is a vector of length n.

One of the following preconditioners is used:

- an incomplete LU factorization
- an incomplete Cholesky factorization (for positive definite symmetric matrices)
- diagonal scaling
- symmetric successive over-relaxation (SSOR) with two possible choices for the diagonal matrix:
 - the absolute values sum of the input matrix
 - the diagonal obtained from the LU factorization

See references [36], [56], [82], [86], [89], and [95].

When you call this subroutine to solve a system for the first time, you specify $init = 'I'$. After that, you can solve the same system any number of times by calling this subroutine each time with $init = 'S'$. These subsequent calls use the coefficient matrix and preconditioner, stored in internal format in $aux1$. You optimize performance by doing this, because certain portions of the computation have already been performed.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, $naux2 = 0$, and unable to allocate work area.

Computational Errors: The following errors, with their corresponding return codes, can occur in this subroutine. For details on error handling, see “What Can You Do about ESSL Computational Errors?” on page 46.

- For error 2110, return code 1 indicates that the subroutine exceeded $IPARM(1)$ iterations without converging. Vector x contains the approximate solution computed at the last iteration.
- For error 2130, return code 2 indicates that the incomplete LU factorization of A could not be completed, because one pivot was 0.
- For error 2124, the subroutine has been called with $init = 'S'$, but the data contained in $aux1$ was computed for a different algorithm. An attention message is issued. Processing continues, and the contents of $aux1$ are reset correctly.
- For error 2134, return code 3 indicates that the data contained in $aux1$ is not consistent with the input sparse matrix. The subroutine has been called with $init = 'S'$, and $aux1$ contains an incomplete factorization and internal data storage for the input matrix A that was computed by a previous call to the subroutine when $init = 'I'$. This error indicates that $aux1$ has been modified since the last call to the subroutine, or that the input matrix is not the same as
the one that was factored. If the default action has been overridden, the subroutine can be called again with the same parameters, with the exception of IPARM(4) = 1 or 4.

- For error 2131, return code 4 indicates that the matrix is singular, because all elements in one row of the matrix contain zero.
- For error 2129, return code 5 indicates that the matrix is not positive definite.
- For error 2128, return code 8 indicates an internal ESSL error. Please contact your IBM Representative.

Input-Argument Errors

1. \(n < 0 \)
2. \(\text{stor} \neq \text{'G', 'U', or 'L'} \)
3. \(\text{init} \neq \text{'I' or 'S'} \)
4. \(\text{IA}(n+1) < 1 \)
5. \(\text{IA}(i+1) - \text{IA}(i) < 0 \), for any \(i = 1, n \)
6. \(\text{IPARM}(1) < 0 \)
7. \(\text{IPARM}(2) \neq 1, 2, 3, 4, \text{ or } 5 \)
8. \(\text{IPARM}(3) \leq 0 \) and \(\text{IPARM}(2) = 3 \)
9. \(\text{IPARM}(4) \neq 1, 2, 3, 4, \text{ or } 5 \)
10. \(\text{RPARM}(1) < 0 \)
11. \(\text{RPARM}(3) \leq 0 \) and \(\text{IPARM}(4) = 3 \)
12. \(\text{naux1} \) is too small—that is, less than the minimum required value. Return code 6 is returned if error 2015 is recoverable.
13. Error 2015 is recoverable or \(\text{naux2} = 0 \), and \(\text{naux2} \) is too small—that is, less than the minimum required value. Return code 7 is returned for \(\text{naux2} \) if error 2015 is recoverable.

Example 1: This example finds the solution of the linear system \(Ax = b \) for the sparse matrix \(A \), which is stored by rows in arrays \(AR, IA, \) and \(JA \). The system is solved using the Bi-CGSTAB algorithm. The iteration is stopped when the norm of the residual is less than the given threshold specified in \(\text{RPARM}(1) \). The algorithm is allowed to perform 20 iterations. The process converges after 9 iterations. Matrix \(A \) is:

\[
\begin{bmatrix}
2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 2.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 1.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
1.0 & 0.0 & 0.0 & 2.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 1.0 & 2.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 2.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 2.0 & -1.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 2.0 & -1.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 2.0 & -1.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 2.0 & -1.0 \\
\end{bmatrix}
\]

Call Statement and Input

```
STOR INIT N AR JA IA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | |
CALL DSRIS( 'G', 'I', 9, AR, JA, IA, B, X, IPARM, RPARM, AUX1, 98, AUX2, 63 )
```
Example 2: This example finds the solution of the linear system $Ax = b$ for the same sparse matrix A used in Example 1. It also uses the same right-hand side in b and the same initial guesses in x. However, the system is solved using a different algorithm, conjugate gradient squared (CGS). Because INIT is 'S', the best performance is achieved. The iteration is stopped when the norm of the residual is less than the given threshold specified in RPARM(1). The algorithm is allowed to perform 20 iterations. The process converges after 9 iterations.

Call Statement and Input

```
STOR INIT N AR JA IA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
```

```call
CALL DSRIS( 'G' , 'S' , 9 , AR , JA , IA , B , X , IPARM , RPARM , AUX1 , 98 , AUX2 , 63 )
```

Example 3: This example finds the solution of the linear system $Ax = b$ for the sparse matrix A, which is stored by rows in arrays AR, IA, and JA. The system is solved using the two-term conjugate gradient method (CG), preconditioned by
incomplete LU factorization. The iteration is stopped when the norm of the residual is less than the given threshold specified in RPARM(1). The algorithm is allowed to perform 20 iterations. The process converges after 1 iteration. Matrix A is:

$$
\begin{bmatrix}
2.0 & 0.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 2.0 & 0.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
-1.0 & 0.0 & 2.0 & 0.0 & -1.0 & 0.0 & 0.0 & 0.0 \\
0.0 & -1.0 & 0.0 & 2.0 & 0.0 & -1.0 & 0.0 & 0.0 \\
0.0 & 0.0 & -1.0 & 0.0 & 2.0 & 0.0 & -1.0 & 0.0 \\
0.0 & 0.0 & 0.0 & -1.0 & 0.0 & 2.0 & 0.0 & -1.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -1.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -1.0 & 0.0 \\
\end{bmatrix}
$$

Call Statement Input

```plaintext
STOR INIT N AR JA IA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
CALL DSRIS( 'G' , 'I' , 9 , AR , JA , IA , B , X , IPARM , RPARM , AUX1 , 223 , AUX2 , 36 )
```

AR = $(2.0, -1.0, 2.0, -1.0, 2.0, -1.0, 2.0, -1.0, 2.0, -1.0, 2.0, -1.0, 2.0, -1.0, 2.0, -1.0, 2.0, -1.0, 2.0, -1.0, 2.0)$

JA = $(1, 3, 2, 4, 1, 3, 5, 2, 4, 6, 3, 5, 7, 4, 6, 8, 5, 7, 9, 6, 8, 7, 9)$

IA = $(1, 3, 5, 8, 11, 14, 17, 20, 22, 24)$

B = $(1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0)$

X = $(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)$

IPARM(1) = 20

IPARM(2) = 1

IPARM(3) = 0

IPARM(4) = 4

IPARM(5) = 1

RPARM(1) = 1.D-7

RPARM(3) = 1.0

Output

X = $(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)$

IPARM(6) = 1

RPARM(2) = 0.160-15

Example 4: This example finds the solution of the linear system $Ax = b$ for the same sparse matrix A used in Example 3. However, matrix A is stored using upper-storage-by-rows in arrays AR, IA, and JA. The system is solved using the generalized minimum residual (GMRES), restarted after 5 steps and preconditioned with SSOR splitting. The iteration is stopped when the norm of the residual is less than the given threshold specified in RPARM(1). The algorithm is allowed to perform 20 iterations. The process converges after 12 iterations.

Call Statement Input

```plaintext
STOR INIT N AR JA IA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
CALL DSRIS( 'U' , 'I' , 9 , AR , JA , IA , B , X , IPARM , RPARM , AUX1 , 219 , AUX2 , 109 )
```
AR = (2.0, -1.0, 2.0, -1.0, 2.0, -1.0, 2.0, -1.0, 2.0, -1.0, 2.0, -1.0, 2.0, -1.0, 2.0, -1.0, 2.0, -1.0, 2.0, -1.0, 2.0, -1.0, 2.0)
JA = (1, 3, 2, 4, 3, 5, 4, 6, 5, 7, 6, 8, 7, 9, 8, 9)
IA = (1, 3, 5, 7, 9, 11, 13, 15, 16, 17)
B = (1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0)
X = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
IPARM(1) = 20
IPARM(2) = 3
IPARM(3) = 5
IPARM(4) = 3
IPARM(5) = 1
RPARM(1) = 1.0D-7
RPARM(3) = 2.0

Output
X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(6) = 12
RPARM(2) = 0.33D-7
DSMCG—Sparse Positive Definite or Negative Definite Symmetric Matrix Iterative Solve Using Compressed-Matrix Storage Mode

This subroutine solves a symmetric, positive definite or negative definite linear system, using the conjugate gradient method, with or without preconditioning by an incomplete Cholesky factorization, for a sparse matrix stored in compressed-matrix storage mode. Matrix A and vectors x and b are used:

$$Ax = b$$

where A, x, and b contain long-precision real numbers.

Notes:

1. These subroutines are provided only for migration purposes. You get better performance and a wider choice of algorithms if you use the DSRIS subroutine.

2. If your sparse matrix is stored by rows, as defined in “Storage-by-Rows” on page 97, you should first use the utility subroutine DSRSM to convert your sparse matrix to compressed-matrix storage mode. See “DSRSM—Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode” on page 1001.

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL DSMCG (m, nz, ac, ka, lda, b, x, iparm, rparm, aux1, aux2, naux1, naux2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>dsmcg (m, nz, ac, ka, lda, b, x, iparm, rparm, aux1, naux1, naux2);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL DSMCG (m, nz, ac, ka, lda, b, x, iparm, rparm, aux1, naux1, naux2);</td>
</tr>
</tbody>
</table>

On Entry

m

is the order of the linear system $Ax = b$ and the number of rows in sparse matrix A. Specified as: a fullword integer; $m \geq 0$.

nz

is the maximum number of nonzero elements in each row of sparse matrix A. Specified as: a fullword integer; $nz \geq 0$.

ac

is the array, referred to as AC, containing the values of the nonzero elements of the sparse matrix, stored in compressed-matrix storage mode. Specified as: an lda by (at least) nz array, containing long-precision real numbers.

ka

is the array, referred to as KA, containing the column numbers of the matrix A elements stored in the corresponding positions in array AC. Specified as: an lda by (at least) nz array, containing fullword integers, where $1 \leq (\text{elements of } KA) \leq m$.

lda

is the leading dimension of the arrays specified for ac and ka. Specified as: a fullword integer; $lda > 0$ and $lda \geq m$.

b

is the vector b of length m, containing the right-hand side of the matrix problem. Specified as: a one-dimensional array of (at least) length m, containing long-precision real numbers.
\(x \)
is the vector \(x \) of length \(m \), containing your initial guess of the solution of the linear system. Specified as: a one-dimensional array of (at least) length \(m \), containing long-precision real numbers. The elements can have any value, and if no guess is available, the value can be zero.

\(iparm \)
is an array of parameters, \(IPARM(i) \), where:

- \(IPARM(1) \) controls the number of iterations.

 If \(IPARM(1) > 0 \), \(IPARM(1) \) is the maximum number of iterations allowed.

 If \(IPARM(1) = 0 \), the following default values are used:

 \[
 \begin{align*}
 IPARM(1) & = 300 \\
 IPARM(2) & = 1 \\
 IPARM(3) & = 0 \\
 RPARM(1) & = 10^{-6}
 \end{align*}
 \]

- \(IPARM(2) \) is the flag used to select the stopping criterion.

 If \(IPARM(2) = 0 \), the conjugate gradient iterative procedure is stopped when:

 \[
 \| r \|_2 / \| x \|_2 < \varepsilon
 \]

 where \(r = b - Ax \) is the residual, and \(\varepsilon \) is the desired relative accuracy. \(\varepsilon \) is stored in \(RPARM(1) \).

 If \(IPARM(2) = 1 \), the conjugate gradient iterative procedure is stopped when:

 \[
 \| r \|_2 / \lambda \| x \|_2 < \varepsilon
 \]

 where \(\lambda \) is an estimate to the minimum eigenvalue of the iteration matrix. \(\lambda \) is computed adaptively by this program and, on output, is stored in \(RPARM(2) \).

 If \(IPARM(2) = 2 \), the conjugate gradient iterative procedure is stopped when:

 \[
 \| r \|_2 / \lambda \| x \|_2 < \varepsilon
 \]

 where \(\lambda \) is a predetermined estimate to the minimum eigenvalue of the iteration matrix. This eigenvalue estimate, on input, is stored in \(RPARM(2) \) and may be obtained by an earlier call to this subroutine with the same matrix.

- \(IPARM(3) \) is the flag that determines whether the system is to be solved using the conjugate gradient method, preconditioned by an incomplete Cholesky factorization with no fill-in.

 If \(IPARM(3) = 0 \), the system is not preconditioned.

 If \(IPARM(3) = 10 \), the system is preconditioned by an incomplete Cholesky factorization.

 If \(IPARM(3) = -10 \), the system is preconditioned by an incomplete Cholesky factorization, where the factorization matrix was computed in an earlier call to this subroutine and is stored in \(aux2 \).
• IPARM(4), see “On Return” on page 661.

Specified as: an array of (at least) length 4, containing fullword integers, where:

\[
\begin{align*}
\text{IPARM}(1) & \geq 0 \\
\text{IPARM}(2) & = 0, 1, \text{ or } 2 \\
\text{IPARM}(3) & = 0, 10, \text{ or } -10
\end{align*}
\]

rparm

is an array of parameters, RPARM(\(i\)), where \(\varepsilon\) is stored in RPARM(1), and \(\lambda\) is stored in RPARM(2).

RPARM(1) > 0, is the relative accuracy \(\varepsilon\) used in the stopping criterion.

RPARM(2) > 0, is the estimate of the smallest eigenvalue, \(\lambda\), of the iteration matrix. It is only used when \(\text{IPARM}(2) = 2\).

RPARM(3), see “On Return.”

Specified as: a one-dimensional array of (at least) length 3, containing long-precision real numbers.

aux1

has the following meaning:

If \(\text{naux1} = 0\) and error 2015 is unrecoverable, aux1 is ignored.

Otherwise, it is a storage work area used by this subroutine, which is available for use by the calling program between calls to this subroutine. Its size is specified by aux1.

Specified as: an area of storage, containing long-precision real numbers.

naux1

is the size of the work area specified by aux1—that is, the number of elements in aux1. Specified as: a fullword integer, where:

If \(\text{naux1} = 0\) and error 2015 is unrecoverable, DSMCG dynamically allocates the work area used by this subroutine. The work area is deallocated before control is returned to the calling program.

Otherwise, naux1 must have at least the following value, where:

If \(\text{IPARM}(2) = 0\) or 2, use \(\text{naux1} \geq 3m\).

If \(\text{IPARM}(2) = 1\) and \(\text{IPARM}(1) \neq 0\), use \(\text{naux1} \geq 3m + 2(\text{IPARM}(1))\).

If \(\text{IPARM}(2) = 1\) and \(\text{IPARM}(1) = 0\), use \(\text{naux1} \geq 3m + 600\).

aux2

is a storage work area used by this subroutine. If \(\text{IPARM}(3) = -10\), aux2 must contain the incomplete Cholesky factorization of matrix \(A\), computed in an earlier call to DSMCG. The size of aux2 is specified by naux2. Specified as: an area of storage, containing long-precision real numbers.

naux2

is the size of the work area specified by aux2—that is, the number of elements in aux2. Specified as: a fullword integer. When \(\text{IPARM}(3) = 10\) or \(-10\), naux2 must have at least the following value: \(\text{naux2} \geq m(nz-1)1.5+2(m+6)\).

On Return

\(x\)

is the vector \(x\) of length \(m\), containing the solution of the system \(Ax = b\).

Returned as: a one-dimensional array of (at least) length \(m\), containing long-precision real numbers.
iparm
is an array of parameters, IPARM(i), where:
IPARM(1) is unchanged.
IPARM(2) is unchanged.
IPARM(3) is unchanged.
IPARM(4) contains the number of iterations performed by this subroutine.
Returned as: a one-dimensional array of length 4, containing fullword integers.

rparm
is an array of parameters, RPARM(i), where:
RPARM(1) is unchanged.
RPARM(2) is unchanged if IPARM(2) = 0 or 2. If IPARM(2) = 1, RPARM(2) contains \(\lambda \), an estimate of the smallest eigenvalue of the iteration matrix.
RPARM(3) contains the estimate of the error of the solution. If the process converged, RPARM(3) \leq \varepsilon.
Returned as: a one-dimensional array of length 3, containing long-precision real numbers; \(\lambda > 0 \).

aux2
is the storage work area used by this subroutine.
If IPARM(3) = 10, aux2 contains the incomplete Cholesky factorization of matrix \(A \).
If IPARM(3) = -10, aux2 is unchanged.
See “Notes” for additional information on aux2. Returned as: an area of storage, containing long-precision real numbers.

Notes
1. When IPARM(3) = -10, this subroutine uses the incomplete Cholesky factorization in aux2, computed in an earlier call to this subroutine. When IPARM(3) = 10, this subroutine computes the incomplete Cholesky factorization and stores it in aux2.

2. If you solve the same sparse linear system of equations several times with different right-hand sides using the preconditioned algorithm, specify IPARM(3) = 10 on the first invocation. The incomplete factorization is stored in aux2. You may save computing time on subsequent calls by setting IPARM(3) = -10. In this way, the algorithm reutilizes the incomplete factorization that was computed the first time. Therefore, you should not modify the contents of aux2 between calls.

3. Matrix \(A \) must have no common elements with vectors \(x \) and \(b \); otherwise, results are unpredictable.

4. In the iterative solvers for sparse matrices, the relative accuracy \(\varepsilon \) (RPARM(1)) must be specified “reasonably” (10^{-4} to 10^{-8}). The algorithm computes a sequence of approximate solution vectors \(x \) that converge to the solution. The iterative procedure is stopped when the norm of the residual is sufficiently small—that is, when:

\[
\frac{\|b - Ax\|_2}{\lambda \|x\|_2} < \varepsilon
\]
where λ is an estimate of the minimum eigenvalue of the iteration matrix, which is either estimated adaptively or given by the user. As a result, if you specify a larger ε, the algorithm takes fewer iterations to converge to a solution. If you specify a smaller ε, the algorithm requires more iterations and computer time, but converges to a more precise solution. If the value you specify is unreasonably small, the algorithm may fail to converge within the number of iterations it is allowed to perform.

5. For a description of how sparse matrices are stored in compressed-matrix storage mode, see “Compressed-Matrix Storage Mode” on page 91.

6. On output, array AC and vector b are not bitwise identical to what they were on input, because the matrix A and the right-hand side are scaled before starting the iterative process and are unscaled before returning control to the user. In addition, arrays AC and KA may be rearranged on output, but still contain a mathematically equivalent mapping of the elements in matrix A.

7. You have the option of having the minimum required value for $naux$ dynamically returned to your program. For details, see “Using Auxiliary Storage in ESSL” on page 30.

Function: The sparse positive definite or negative definite linear system:

$$Ax = b$$

is solved, where:

- A is a symmetric, positive definite or negative definite sparse matrix of order m, stored in compressed-matrix storage mode in AC and KA.
- x is a vector of length m.
- b is a vector of length m.

The system is solved using the two-term conjugate gradient method, with or without preconditioning by an incomplete Cholesky factorization. In both cases, the matrix is scaled by the square root of the diagonal.

See references [62] and [68]. [36].

If your program uses a sparse matrix stored by rows and you want to use this subroutine, first convert your sparse matrix to compressed-matrix storage mode by using the subroutine DSRSM described on page 1001.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, $naux1 = 0$, and unable to allocate work area.

Computational Errors: The following errors, with their corresponding return codes, can occur in this subroutine. Where a value of i is indicated, it can be determined at run time by use of the ESSL error-handling facilities. To obtain this information, you must use ERRSET to change the number of allowable errors for that particular error code in the ESSL error option table; otherwise, the default value causes your program to terminate when the error occurs. For details, see “What Can You Do about ESSL Computational Errors?” on page 46.

- For error 2110, return code 1 indicates that the subroutine exceeded IPARM(1) iterations without converging. Vector x contains the approximate solution computed at the last iteration.
For error 2111, return code 2 indicates that \textit{aux2} contains an incorrect factorization. The subroutine has been called with \textit{IPARM}(3) = -10, and \textit{aux2} contains an incomplete factorization of the input matrix \textit{A} that was computed by a previous call to the subroutine when \textit{IPARM}(3) = 10. This error indicates that \textit{aux2} has been modified since the last call to the subroutine, or that the input matrix is not the same as the one that was factored. If the default action has been overridden, the subroutine can be called again with the same parameters, with the exception of \textit{IPARM}(3) = 0 or 10.

For error 2109, return code 3 indicates that the inner product (\textit{y},\textit{Ay}) is negative in the iterative procedure after iteration \textit{i}. This should not occur, because the input matrix is assumed to be positive or negative definite. Vector \textit{x} contains the results of the last iteration. The value \textit{i} is identified in the computational error message.

For error 2108, return code 4 indicates that the matrix is not positive definite. \textit{AC} is partially modified and does not represent the same matrix as on entry.

\textit{Input-Argument Errors}

1. \textit{m} < 0
2. \textit{lda} < 1
3. \textit{lda} < \textit{m}
4. \textit{nz} < 0
5. \textit{nz} = 0 and \textit{m} > 0
6. \textit{IPARM}(1) < 0
7. \textit{IPARM}(2) \neq 0, 1, or 2
8. \textit{IPARM}(3) \neq 0, 10, or -10
9. \textit{RPARM}(1) < 0
10. \textit{RPARM}(2) < 0
11. Error 2015 is recoverable or \textit{naux1} \neq 0, and \textit{naux1} is too small—that is, less than the minimum required value. Return code 5 is returned if error 2015 is recoverable.
12. \textit{naux2} is too small—that is, less than the minimum required value. Return code 5 is returned if error 2015 is recoverable.

\textbf{Example 1:} This example finds the solution of the linear system \(\textbf{Ax} = \textbf{b}\) for the sparse matrix \(\textbf{A}\), which is stored in compressed-matrix storage mode in arrays \(\text{AC}\) and \(\text{KA}\). The system is solved using the conjugate gradient method. Matrix \(\textbf{A}\) is:

\[
\begin{bmatrix}
2.0 & 0.0 & 0.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 2.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & -1.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
-1.0 & 0.0 & 0.0 & 2.0 & -1.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & -1.0 & 2.0 & -1.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -1.0 & 2.0 & -1.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -1.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 2.0
\end{bmatrix}
\]

\textbf{Note:} For input matrix \(\text{KA}\), (.) indicates any value between 1 and 9.

\textit{Call Statement and Input}

\begin{verbatim}
M NZ AC KA LDA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
\end{verbatim}

\begin{verbatim}
CALL DSMCG(9 , 3 , AC, KA, 9 , B , X, IPARM, RPARM, AUX1, 27 , AUX2, 0)
\end{verbatim}
IPARM(1) = 20
IPARM(2) = 0
IPARM(3) = 0
RPARM(1) = 1.D-7

\[
\begin{bmatrix}
2.0 & -1.0 & 0.0 \\
2.0 & -1.0 & 0.0 \\
-1.0 & 2.0 & 0.0 \\
-1.0 & 2.0 & -1.0 \\
-1.0 & 2.0 & -1.0 \\
-1.0 & 2.0 & 0.0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 4 & . \\
2 & 3 & . \\
2 & 3 & . \\
1 & 4 & 5 \\
4 & 5 & 6 \\
5 & 6 & 7 \\
6 & 7 & 8 \\
7 & 8 & 9 \\
8 & 9 & . \\
\end{bmatrix}
\]

\[
B = (1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0)
\]

\[
X = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
\]

Output

\[
X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
\]

IPARM(4) = 5
RPARM(2) = 0
RPARM(3) = 0.351D-15

Example 2: This example finds the solution of the linear system \(Ax = b \) for the same sparse matrix \(A \) as in Example 1, which is stored in compressed-matrix storage mode in arrays \(AC \) and \(KA \). The system is solved using the conjugate gradient method, preconditioned with an incomplete Cholesky factorization. The smallest eigenvalue of the iteration matrix is computed and used in stopping the computation.

Note: For input matrix \(KA \), (.) indicates any value between 1 and 9.

Call Statement and Input

```
M NZ AC KA LDA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | |
CALL DSMCG( 9 , 3 , AC, KA, 9 , B , X, IPARM, RPARM, AUX1, 67 , AUX2, 74 )
```

IPARM(1) = 20
IPARM(2) = 1
IPARM(3) = 10
RPARM(1) = 1.D-7

\(AC \) = (same as input AC in Example 1)

\(KA \) = (same as input KA in Example 1)
\[B = (1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0) \]
\[X = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) \]

Output

\[X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) \]
\[\text{IPARM(4)} = 1 \]
\[\text{RPARM(2)} = 1 \]
\[\text{RPARM(3)} = 0.100 \times 10^{-15} \]
DSDCG—Sparse Positive Definite or Negative Definite
Symmetric Matrix Iterative Solve Using Compressed-Diagonal
Storage Mode

This subroutine solves a symmetric, positive definite or negative definite linear
system, using the two-term conjugate gradient method, with or without
preconditioning by an incomplete Cholesky factorization, for a sparse matrix stored
in compressed-diagonal storage mode. Matrix A and vectors x and b are used:

$$Ax = b$$

where A, x, and b contain long-precision real numbers.

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL DSDCG (iopt, m, nd, ad, lda, la, b, x, iparm, rparm, aux1, aux2, aux3, aux4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>dsdcg (iopt, m, nd, ad, lda, la, b, x, iparm, rparm, aux1, aux2, aux3, aux4);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL DSDCG (iopt, m, nd, ad, lda, la, b, x, iparm, rparm, aux1, aux2, aux3, aux4);</td>
</tr>
</tbody>
</table>

On Entry

- **iopt**
 - indicates the type of storage used, where:
 - If $iopt = 0$, all the nonzero diagonals of the sparse matrix are stored in
 compressed-diagonal storage mode.
 - If $iopt = 1$, the sparse matrix, stored in compressed-diagonal storage mode, is
 symmetric. Only the main diagonal and one of each pair of identical diagonals
 are stored in array A.0.
 - Specified as: a fullword integer; $iopt = 0$ or 1.

- **m**
 - is the order of the linear system $Ax = b$ and the number of rows in sparse
 matrix A. Specified as: a fullword integer; $m \geq 0$.

- **nd**
 - is the number of nonzero diagonals stored in the columns of array A, the
 number of columns in the array A, and the number of elements in array LA.
 Specified as: a fullword integer; it must have the following value, where:
 - If $m > 0$, then $nd > 0$.
 - If $m = 0$, then $nd \geq 0$.

- **ad**
 - is the array, referred to as A, containing the values of the nonzero elements of
 the sparse matrix stored in compressed-diagonal storage mode. If $iopt = 1$, the
 main diagonal and one of each pair of identical diagonals is stored in this array.
 Specified as: an lda by (at least) nd array, containing long-precision real
 numbers.

- **lda**
 - is the leading dimension of the array specified for ad. Specified as: a fullword
 integer; $lda > 0$ and $lda \geq m$.

- **la**
 - is the array, referred to as LA, containing the diagonal numbers k for the
 diagonals stored in each corresponding column in array A. For an explanation
of how diagonal numbers are assigned, see “Compressed-Diagonal Storage Mode” on page 92.

Specified as: a one-dimensional array of (at least) length nd, containing fullword integers, where $1 - m \leq \text{(elements of LA)} \leq m - 1$.

b

is the vector b of length m, containing the right-hand side of the matrix problem. Specified as: a one-dimensional array of (at least) length m, containing long-precision real numbers.

x

is the vector x of length m, containing your initial guess of the solution of the linear system. Specified as: a one-dimensional array of (at least) length m, containing long-precision real numbers. The elements can have any value, and if no guess is available, the value can be zero.

$iparm$

is an array of parameters, $IPARM(i)$, where:

- $IPARM(1)$ controls the number of iterations.

 If $IPARM(1) > 0$, $IPARM(1)$ is the maximum number of iterations allowed.

 If $IPARM(1) = 0$, the following default values are used:

 $IPARM(1) = 300$
 $IPARM(2) = 1$
 $IPARM(3) = 0$
 $RPARM(1) = 10^{-6}$

- $IPARM(2)$ is the flag used to select the stopping criterion.

 If $IPARM(2) = 0$, the conjugate gradient iterative procedure is stopped when:

 $$\|r\|_2 / \|x\|_2 < \varepsilon$$

 where $r = b - Ax$ is the residual and ε is the desired relative accuracy. ε is stored in $RPARM(1)$.

 If $IPARM(2) = 1$, the conjugate gradient iterative procedure is stopped when:

 $$\|r\|_2 / \lambda \|x\|_2 < \varepsilon$$

 where λ is an estimate to the minimum eigenvalue of the iteration matrix. λ is computed adaptively by this program and, on output, is stored in $RPARM(2)$.

 If $IPARM(2) = 2$, the conjugate gradient iterative procedure is stopped when:

 $$\|r\|_2 / \lambda \|x\|_2 < \varepsilon$$

 where λ is a predetermined estimate to the minimum eigenvalue of the iteration matrix. This eigenvalue estimate, on input, is stored in $RPARM(2)$ and may be obtained by an earlier call to this subroutine with the same matrix.
- **IPARM(3)** is the flag that determines whether the system is to be solved using the conjugate gradient method, preconditioned by an incomplete Cholesky factorization with no fill-in.

 If **IPARM(3)** = 0, the system is not preconditioned.

 If **IPARM(3)** = 10, the system is preconditioned by an incomplete Cholesky factorization.

 If **IPARM(3)** = –10, the system is preconditioned by an incomplete Cholesky factorization, where the factorization matrix was computed in an earlier call to this subroutine and is stored in **aux2**.

- **IPARM(4)**, see “On Return” on page 670.

 Specified as: an array of (at least) length 4, containing fullword integers, where:

<table>
<thead>
<tr>
<th>IPARM(1)</th>
<th>IPARM(2)</th>
<th>IPARM(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0, 1, or 2</td>
<td>0, 10, or –10</td>
</tr>
</tbody>
</table>

 rparm

 is an array of parameters, **RPARM(i)**, where \(\epsilon \) is stored in **RPARM(1)**, and \(\lambda \) is stored in **RPARM(2)**.

 RPARM(1) > 0, is the relative accuracy \(\epsilon \) used in the stopping criterion.

 RPARM(2) > 0, is the estimate of the smallest eigenvalue, \(\lambda \), of the iteration matrix. It is only used when **IPARM(2)** = 2.

 RPARM(3), see “On Return” on page 670.

 Specified as: a one-dimensional array of (at least) length 3, containing long-precision real numbers.

 aux1

 has the following meaning:

 If **naux1** = 0 and error 2015 is unrecoverable, **aux1** is ignored.

 Otherwise, it is a storage work area used by this subroutine, which is available for use by the calling program between calls to this subroutine. Its size is specified by **naux1**.

 Specified as: an area of storage, containing long-precision real numbers.

 naux1

 is the size of the work area specified by **aux1**—that is, the number of elements in **aux1**.

 Specified as: a fullword integer, where:

 If **naux** = 0 and error 2015 is unrecoverable, DSDCG dynamically allocates the work area used by this subroutine. The work area is deallocated before control is returned to the calling program.

 Otherwise, it must have at least the following value, where:

 If **IPARM(2)** = 0 or 2, use **naux1** ≥ 3m.

 If **IPARM(2)** = 1 and **IPARM(1)** ≠ 0, use **naux1** ≥ 3m+2(IPARM(1)).

 If **IPARM(2)** = 1 and **IPARM(1)** = 0, use **naux1** ≥ 3m+600.

 aux2

 is the storage work area used by this subroutine. If **IPARM(3)** = –10, **aux2** must contain the incomplete Cholesky factorization of matrix \(A \), computed in an
earlier call to DSDCG. Its size is specified by \textit{naux2}. Specified as: an area of storage, containing long-precision real numbers.

\textit{naux2}

is the size of the work area specified by \textit{aux2}—that is, the number of elements in \textit{aux2}. Specified as: a fullword integer. When \text{IPARM}(3) = 10 or \text{-}10, \textit{naux2} must have at least the following value, where:

\begin{itemize}
 \item If \textit{ioph} = 0, use \textit{naux2} \geq m(1.5nd+2)1.5+2(m+6).
 \item If \textit{ioph} = 1, use \textit{naux2} \geq m(3nd+2)+8.
\end{itemize}

\textbf{On Return}

\textbf{\textit{x}}

is the vector \textit{x} of length \textit{m}, containing the solution of the system \(Ax = b\). Returned as: a one-dimensional array, containing long-precision real numbers.

\textbf{\textit{iparm}}

As an array of parameters, \text{IPARM}(\textit{i}), where:

\text{IPARM}(1) is unchanged.
\text{IPARM}(2) is unchanged.
\text{IPARM}(3) is unchanged.
\text{IPARM}(4) contains the number of iterations performed by this subroutine.

Returned as: a one-dimensional array of length 4, containing fullword integers.

\textbf{\textit{rparm}}

is an array of parameters, \text{RPARM}(\textit{i}), where:

\text{RPARM}(1) is unchanged.
\text{RPARM}(2) is unchanged if \text{IPARM}(2) = 0 or 2. If \text{IPARM}(2) = 1, \text{RPARM}(2) contains \(\lambda\), an estimate of the smallest eigenvalue of the iteration matrix.
\text{RPARM}(3) contains the estimate of the error of the solution. If the process converged, \text{RPARM}(3) \leq \epsilon.

Returned as: a one-dimensional array of length 3, containing long-precision real numbers; \(\lambda > 0\).

\textbf{\textit{aux2}}

is the storage work area used by this subroutine.

If \text{IPARM}(3) = 10, \textit{aux2} contains the incomplete Cholesky factorization of matrix \textit{A}.

If \text{IPARM}(3) = -10, \textit{aux2} is unchanged.

See “Notes” for additional information on \textit{aux2}. Returned as: an area of storage, containing long-precision real numbers.

\textbf{Notes}

1. When \text{IPARM}(3) = -10, this subroutine uses the incomplete Cholesky factorization in \textit{aux2}, computed in an earlier call to this subroutine. When \text{IPARM}(3) = 10, this subroutine computes the incomplete Cholesky factorization and stores it in \textit{aux2}.

2. If you solve the same sparse linear system of equations several times with different right-hand sides using the preconditioned algorithm, specify \text{IPARM}(3) = 10 on the first invocation. The incomplete factorization is stored in \textit{aux2}. You may save computing time on subsequent calls by setting
IPARM(3) = -10. In this way, the algorithm reutilizes the incomplete factorization that was computed the first time. Therefore, you should not modify the contents of aux2 between calls.

3. Matrix \(\mathbf{A} \) must have no common elements with vectors \(\mathbf{x} \) and \(\mathbf{b} \); otherwise, results are unpredictable.

4. In the iterative solvers for sparse matrices, the relative accuracy \(\varepsilon \) (RPARM(1)) must be specified “reasonably” (10\(^{-4} \) to 10\(^{-8} \)). The algorithm computes a sequence of approximate solution vectors \(\mathbf{x} \) that converge to the solution. The iterative procedure is stopped when the norm of the residual is sufficiently small—that is, when:

\[
\frac{\| \mathbf{b} - \mathbf{A} \mathbf{x} \|_2}{\| \mathbf{A} \mathbf{x} \|_2} < \varepsilon
\]

where \(\lambda \) is an estimate of the minimum eigenvalue of the iteration matrix, which is either estimated adaptively or given by the user. As a result, if you specify a larger \(\varepsilon \), the algorithm takes fewer iterations to converge to a solution. If you specify a smaller \(\varepsilon \), the algorithm requires more iterations and computer time, but converges to a more precise solution. If the value you specify is unreasonably small, the algorithm may fail to converge within the number of iterations it is allowed to perform.

5. For a description of how sparse matrices are stored in compressed-matrix storage mode, see “Compressed-Matrix Storage Mode” on page 91.

6. On output, array \(\mathbf{AD} \) and vector \(\mathbf{b} \) are not bitwise identical to what they were on input, because the matrix \(\mathbf{A} \) and the right-hand side are scaled before starting the iterative process and are unscaled before returning control to the user. In addition, arrays \(\mathbf{AD} \) and \(\mathbf{LA} \) may be rearranged on output, but still contain a mathematically equivalent mapping of the elements in matrix \(\mathbf{A} \).

7. You have the option of having the minimum required value for \(\text{naux} \) dynamically returned to your program. For details, see “Using Auxiliary Storage in ESSL” on page 30.

Function: The sparse positive definite or negative definite linear system:

\[
\mathbf{A} \mathbf{x} = \mathbf{b}
\]

is solved, where:

- \(\mathbf{A} \) is a symmetric, positive definite or negative definite sparse matrix of order \(m \), stored in compressed-diagonal storage mode in arrays \(\mathbf{AD} \) and \(\mathbf{LA} \).
- \(\mathbf{x} \) is a vector of length \(m \).
- \(\mathbf{b} \) is a vector of length \(m \).

The system is solved using the two-term conjugate gradient method, with or without preconditioning by an incomplete Cholesky factorization. In both cases, the matrix is scaled by the square root of the diagonal.

See references [62] and [68]. [36].

Error Conditions

Resource Errors: Error 2015 is unrecoverable, \(\text{naux1} = 0 \), and unable to allocate work area.
Computational Errors: The following errors, with their corresponding return codes, can occur in this subroutine. Where a value of i is indicated, it can be determined at run time by use of the ESSL error-handling facilities. To obtain this information, you must use ERRSET to change the number of allowable errors for that particular error code in the ESSL error option table; otherwise, the default value causes your program to terminate when the error occurs. For details, see “What Can You Do about ESSL Computational Errors?” on page 46.

- For error 2110, return code 1 indicates that the subroutine exceeded IPARM(1) iterations without converging. Vector x contains the approximate solution computed at the last iteration.
- For error 2111, return code 2 indicates that aux2 contains an incorrect factorization. The subroutine has been called with IPARM(3) = -10, and aux2 contains an incomplete factorization of the input matrix A that was computed by a previous call to the subroutine when IPARM(3) = 10. This error indicates that aux2 has been modified since the last call to the subroutine, or that the input matrix is not the same as the one that was factored. If the default action has been overridden, the subroutine can be called again with the same parameters, with the exception of IPARM(3) = 0 or 10.
- For error 2109, return code 3 indicates that the inner product (y, Ay) is negative in the iterative procedure after iteration i. This should not occur, because the input matrix is assumed to be positive or negative definite. Vector x contains the results of the last iteration. The value i is identified in the computational error message.
- For error 2108, return code 4 indicates that the matrix is not positive definite. AC is partially modified and does not represent the same matrix as on entry.

Input-Argument Errors

1. $iopt \neq 0$ or 1
2. $m < 0$
3. $lda < 1$
4. $lda < m$
5. $nd < 0$
6. $nd = 0$ and $m > 0$
7. $|\lambda(i)| > m-1$ for $i = 1, nd$
8. IPARM(1) < 0
9. IPARM(2) $\neq 0, 1, or 2$
10. IPARM(3) $\neq 0, 10, or -10$
11. RPARM(1) < 0
12. RPARM(2) < 0
13. Error 2015 is recoverable or naux1 = 0, and naux1 is too small—that is, less than the minimum required value. Return code 5 is returned if error 2015 is recoverable.
14. naux2 is too small—that is, less than the minimum required value. Return code 5 is returned if error 2015 is recoverable.

Example 1: This example finds the solution of the linear system $Ax = b$ for sparse matrix A, which is stored in compressed-diagonal storage mode in arrays AD and LA. The system is solved using the two-term conjugate gradient method. In this example, $IOPT = 0$. Matrix A is:
Example 2: This example finds the solution of the linear system \(Ax = b \) for the same sparse matrix \(A \) as in Example 1, which is stored in compressed-diagonal storage mode in arrays \(AD \) and \(LA \). The system is solved using the two-term conjugate gradient method. In this example, \(IOPT = 1 \), indicating that the matrix is symmetric, and only the main diagonal and one of each pair of identical diagonals are stored in array \(AD \).

Call Statement and Input

```fortran
CALL DSDCG( 1 , 9 , 2 , AD , 9 , LA , B , X , IPARM , RPARM , AUX1 , 283 , AUX2 , 8 )
```

Output

\[
X = \begin{pmatrix}
1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0
\end{pmatrix}
\]

\(IPARM(4) = 5 \)

\(RPARM(2) = 0 \)

\(RPARM(3) = 0.46D-16 \)
IPARM(1) = 20
IPARM(2) = 0
IPARM(3) = 10
RPARM(1) = 1.0D-7

\[
\begin{bmatrix}
2.0 & 0.0 \\
2.0 & 0.0 \\
2.0 & -1.0 \\
2.0 & -1.0 \\
\end{bmatrix}
\]

\(AD = \begin{bmatrix}
2.0 & -1.0 \\
2.0 & -1.0 \\
2.0 & -1.0 \\
2.0 & -1.0 \\
\end{bmatrix}\)

LA = (0, -2)
B = (1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0)
X = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

Output
X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(4) = 1
RPARM(2) = 0
RPARM(3) = 0.89D-16
DSMGCG—General Sparse Matrix Iterative Solve Using Compressed-Matrix Storage Mode

This subroutine solves a general sparse linear system of equations using an iterative algorithm, conjugate gradient squared or generalized minimum residual, with or without preconditioning by an incomplete LU factorization. The subroutine is suitable for positive real matrices—that is, when the symmetric part of the matrix, \((A+A^T)/2\), is positive definite. The sparse matrix is stored in compressed-matrix storage mode. Matrix \(A\) and vectors \(x\) and \(b\) are used:

\[
Ax = b
\]

where \(A\), \(x\), and \(b\) contain long-precision real numbers.

Notes:

1. These subroutines are provided only for migration purposes. You get better performance and a wider choice of algorithms if you use the DSRIS subroutine.

2. If your sparse matrix is stored by rows, as defined in “Storage-by-Rows” on page 97, you should first use the utility subroutine DSRSM to convert your sparse matrix to compressed-matrix storage mode. See “DSRSM—Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode” on page 1001.

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL DSMGCG (m, nz, ac, ka, lda, b, x, iparm, rparm, aux1, aux2, naux1, aux2, naux2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>dsmgcg (m, nz, ac, ka, lda, b, x, iparm, rparm, aux1, naux1, aux2, naux2);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL DSMGCG (m, nz, ac, ka, lda, b, x, iparm, rparm, aux1, naux1, aux2, naux2);</td>
</tr>
</tbody>
</table>

On Entry

\(m\)

is the order of the linear system \(Ax = b\) and the number of rows in sparse matrix \(A\). Specified as: a fullword integer; \(m \geq 0\).

\(nz\)

is the maximum number of nonzero elements in each row of sparse matrix \(A\). Specified as: a fullword integer; \(nz \geq 0\).

\(ac\)

is the array, referred to as \(AC\), containing the values of the nonzero elements of the sparse matrix, stored in compressed-matrix storage mode. Specified as: an \(lda\) by (at least) \(nz\) array, containing long-precision real numbers.

\(ka\)

is the array, referred to as \(KA\), containing the column numbers of the matrix \(A\) elements stored in the corresponding positions in array \(AC\). Specified as: an \(lda\) by (at least) \(nz\) array, containing fullword integers, where \(1 \leq\) (elements of \(KA\)) \(\leq m\).

\(lda\)

is the leading dimension of the arrays specified for \(ac\) and \(ka\). Specified as: a fullword integer; \(lda > 0\) and \(lda \geq m\).

\(b\)

is the vector \(b\) of length \(m\), containing the right-hand side of the matrix problem. Specified as: a one-dimensional array of (at least) length \(m\), containing long-precision real numbers.
DSMGCG

\(x \)

is the vector \(x \) of length \(m \), containing your initial guess of the solution of the linear system. Specified as: a one-dimensional array of (at least) length \(m \), containing long-precision real numbers. The elements can have any value, and if no guess is available, the value can be zero.

iparm

is an array of parameters, IPARM(\(i \)), where:

- **IPARM(1)** controls the number of iterations.
 - If **IPARM(1)** > 0, **IPARM(1)** is the maximum number of iterations allowed.
 - If **IPARM(1)** = 0, the following default values are used:
 - **IPARM(1)** = 300
 - **IPARM(2)** = 0
 - **IPARM(3)** = 10
 - **RPARM(1)** = 10\(^{-6}\)

- **IPARM(2)** is the flag used to select the iterative procedure used in this subroutine.
 - If **IPARM(2)** = 0, the conjugate gradient squared method is used.
 - If **IPARM(2)** = \(k \), the generalized minimum residual method, restarted after \(k \) steps, is used. Note that the size of the work area \(aux1 \) becomes larger as \(k \) increases. A value for \(k \) in the range of 5 to 10 is suitable for most problems.

- **IPARM(3)** is the flag that determines whether the system is to be preconditioned by an incomplete LU factorization with no fill-in.
 - If **IPARM(3)** = 0, the system is not preconditioned.
 - If **IPARM(3)** = 10, the system is preconditioned by an incomplete LU factorization.
 - If **IPARM(3)** = \(-10 \), the system is preconditioned by an incomplete LU factorization, where the factorization matrix was computed in an earlier call to this subroutine and is stored in \(aux2 \).

- **IPARM(4)**, see “On Return” on page 677.

Specified as: an array of (at least) length 4, containing fullword integers, where:

- **IPARM(1)** ≥ 0
- **IPARM(2)** ≥ 0
- **IPARM(3)** = 0, 10, or \(-10 \)

rparm

is an array of parameters, RPARM(\(i \)), where:

- **RPARM(1)** > 0, is the relative accuracy \(\varepsilon \) used in the stopping criterion. The iterative procedure is stopped when:
 \[
 \frac{||b-Ax||_2}{||x||_2} < \varepsilon
 \]

- **RPARM(2)** is reserved.

- **RPARM(3)**, see “On Return” on page 677.

Specified as: a one-dimensional array of (at least) length 3, containing long-precision real numbers.
aux1

has the following meaning:

If \(naux1 = 0 \) and error 2015 is unrecoverable, \(aux1 \) is ignored.

Otherwise, it is a storage work area used by this subroutine, which is available for use by the calling program between calls to this subroutine. Its size is specified by \(naux1 \).

Specified as: an area of storage, containing long-precision real numbers.

\(naux1 \)

is the size of the work area specified by \(aux1 \)—that is, the number of elements in \(aux1 \). Specified as: a fullword integer, where:

If \(naux1 = 0 \) and error 2015 is unrecoverable, DSMGCG dynamically allocates the work area used by this subroutine. The work area is deallocated before control is returned to the calling program.

Otherwise, it must have at least the following value, where:

- If \(IPARM(2) = 0 \), use \(naux1 \geq 7m \).
- If \(IPARM(2) > 0 \), use \(naux1 \geq (k+2)m+k(k+4)+1 \), where \(k = IPARM(2) \).

\(aux2 \)

is the storage work area used by this subroutine. If \(IPARM(3) = 10 \), \(aux2 \) must contain the incomplete LU factorization of matrix \(A \), computed in an earlier call to DSMGCG. The size of \(aux2 \) is specified by \(naux2 \).

Specified as: an area of storage, containing long-precision real numbers.

\(naux2 \)

is the size of the work area specified by \(aux2 \)—that is, the number of elements in \(aux2 \). Specified as: a fullword integer. When \(IPARM(3) = 10 \), \(naux2 \) must have at least the following value: \(naux2 \geq 3+2m+1.5nz(m) \).

On Return

\(x \)

is the vector \(x \) of length \(m \), containing the solution of the system \(Ax = b \).

Returned as: a one-dimensional array of (at least) length \(m \), containing long-precision real numbers.

\(iparm \)

is an array of parameters, \(IPARM(_i) \), where:

- \(IPARM(1) \) is unchanged.
- \(IPARM(2) \) is unchanged.
- \(IPARM(3) \) is unchanged.
- \(IPARM(4) \) contains the number of iterations performed by this subroutine.

Returned as: a one-dimensional array of length 4, containing fullword integers.

\(rparm \)

is an array of parameters, \(RPARM(_i) \), where:

- \(RPARM(1) \) is unchanged.
- \(RPARM(2) \) is reserved.
- \(RPARM(3) \) contains the estimate of the error of the solution. If the process converged, \(RPARM(3) \leq RPARM(1) \).
Returned as: a one-dimensional array of length 3, containing long-precision real numbers.

\textit{aux2}

is the storage work area used by this subroutine.

If \text{IPARM}(3) = 10, \textit{aux2} contains the incomplete LU factorization of matrix \textit{A}.

If \text{IPARM}(3) = -10, \textit{aux2} is unchanged.

See “Notes” for additional information on \textit{aux2}. Returned as: an area of storage, containing long-precision real numbers.

\textbf{Notes}

1. When \text{IPARM}(3) = -10, this subroutine uses the incomplete LU factorization in \textit{aux2}, computed in an earlier call to this subroutine. When \text{IPARM}(3) = 10, this subroutine computes the incomplete LU factorization and stores it in \textit{aux2}.

2. If you solve the same sparse linear system of equations several times with different right-hand sides using the preconditioned algorithm, specify \text{IPARM}(2) = 10 on the first invocation. The incomplete factorization is stored in \textit{aux2}. You may save computing time on subsequent calls by setting \text{IPARM}(3) equal to -10. In this way, the algorithm reutilizes the incomplete factorization that was computed the first time. Therefore, you should not modify the contents of \textit{aux2} between calls.

3. Matrix \textit{A} must have no common elements with vectors \textit{x} and \textit{b}; otherwise, results are unpredictable.

4. In the iterative solvers for sparse matrices, the relative accuracy ε \textit{(RPARM(1))} must be specified “reasonably” (10$^{-4}$ to 10$^{-8}$). The algorithm computes a sequence of approximate solution vectors \textit{x} that converge to the solution. The iterative procedure is stopped when the norm of the residual is sufficiently small—that is, when:

$$\|\textit{b-Ax}\|_2 / \|\textit{x}\|_2 < \varepsilon$$

As a result, if you specify a larger ε, the algorithm takes fewer iterations to converge to a solution. If you specify a smaller ε, the algorithm requires more iterations and computer time, but converges to a more precise solution. If the value you specify is unreasonably small, the algorithm may fail to converge within the number of iterations it is allowed to perform.

5. For a description of how sparse matrices are stored in compressed-matrix storage mode, see “Compressed-Matrix Storage Mode” on page 91.

6. On output, array \textit{AC} is not bitwise identical to what it was on input because the matrix \textit{A} is scaled before starting the iterative process and is unscaled before returning control to the user.

7. You have the option of having the minimum required value for \textit{naux} dynamically returned to your program. For details, see “Using Auxiliary Storage in ESSL” on page 30.

\textbf{Function:} The linear system:

$$\textit{Ax} = \textit{b}$$
DSMGCG is solved using either the conjugate gradient squared method or the generalized minimum residual method, with or without preconditioning by an incomplete LU factorization, where:

- A is a sparse matrix of order m, stored in compressed-matrix storage mode in arrays AC and KA.
- x is a vector of length m.
- b is a vector of length m.

See references [86] and [88]. [36].

If your program uses a sparse matrix stored by rows and you want to use this subroutine, first convert your sparse matrix to compressed-matrix storage mode by using the subroutine DSRSRM described on page 1001.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, $naux1 = 0$, and unable to allocate work area.

Computational Errors: The following errors, with their corresponding return codes, can occur in this subroutine. For details on error handling, see “What Can You Do about ESSL Computational Errors?” on page 46.

- For error 2110, return code 1 indicates that the subroutine exceeded IPARM(1) iterations without converging. Vector x contains the approximate solution computed at the last iteration.
- For error 2111, return code 2 indicates that $aux2$ contains an incorrect factorization. The subroutine has been called with IPARM(3) = -10, and $aux2$ contains an incomplete factorization of the input matrix A that was computed by a previous call to the subroutine when IPARM(3) = 10. This error indicates that $aux2$ has been modified since the last call to the subroutine, or that the input matrix is not the same as the one that was factored. If the default action has been overridden, the subroutine can be called again with the same parameters, with the exception of IPARM(3) = 0 or 10.
- For error 2112, return code 3 indicates that the incomplete LU factorization of A could not be completed, because one pivot was 0.
- For error 2116, return code 4 indicates that the matrix is singular, because all elements in one row of the matrix contain 0. Array AC is partially modified and does not represent the same matrix as on entry.

Input-Argument Errors

1. $m < 0$
2. $lda < 1$
3. $lda < m$
4. $nz < 0$
5. $nz = 0$ and $m > 0$
6. IPARM(1) < 0
7. IPARM(2) < 0
8. IPARM(3) ≠ 0, 10, or -10
9. RPARM(1) < 0
10. RPARM(2) < 0
11. Error 2015 is recoverable or $naux1≠0$, and $naux1$ is too small—that is, less than the minimum required value. Return code 5 is returned if error 2015 is recoverable.
12. \textit{naux2} is too small—that is, less than the minimum required value. Return code 5 is returned if error 2015 is recoverable.

\textbf{Example 1:} This example finds the solution of the linear system \(Ax = b\) for the sparse matrix \(A\), which is stored in compressed-matrix storage mode in arrays \(AC\) and \(KA\). The system is solved using the conjugate gradient squared method. Matrix \(A\) is:

\[
\begin{pmatrix}
2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 2.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 1.0 & 2.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
1.0 & 0.0 & 0.0 & 2.0 & -1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 1.0 & 2.0 & -1.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 2.0 & -1.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 2.0 & -1.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 2.0 & 0.0 \\
\end{pmatrix}
\]

\textbf{Note:} For input matrix \(KA\), (.) indicates any value between 1 and 9.

\textbf{Call Statement and Input}

\begin{verbatim}
M NZ AC KA LDA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | |
CALL DSMGCG(9 , 3 , AC , KA , 9 , B , X , IPARM , RPARM , AUX1 , 63 , AUX2 , 0)
\end{verbatim}

\[
\begin{align*}
\text{IPARM(1)} & = 20 \\
\text{IPARM(2)} & = 0 \\
\text{IPARM(3)} & = 0 \\
\text{RPARM(1)} & = 1.0D-7 \\
\end{align*}
\]

\[
\begin{pmatrix}
2.0 & 0.0 & 0.0 \\
2.0 & -1.0 & 0.0 \\
1.0 & 2.0 & 0.0 \\
1.0 & 2.0 & -1.0 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
1. & . \\
2 & 3. \\
2 & 3. \\
1 & 4 & 5 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
4 & 5 & 6 \\
5 & 6 & 7 \\
6 & 7 & 8 \\
7 & 8 & 9 \\
8 & 9 & . \\
\end{pmatrix}
\]

\[
\begin{align*}
\text{B} & = (2.0, 1.0, 3.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0) \\
\text{X} & = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
\end{align*}
\]
Output

\[X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) \]

\[IPARM(4) = 9 \]

\[RPARM(3) = 0.150D-19 \]

Example 2: This example finds the solution of the linear system \(Ax = b \) for the same sparse matrix \(A \) as in Example 1, which is stored in compressed-matrix storage mode in arrays \(AC \) and \(KA \). The system is solved using the generalized minimum residual method, restarted after 5 steps and preconditioned with an incomplete LU factorization. Most of the input is the same as in Example 1.

Note: For input matrix \(KA \), (.) indicates any value between 1 and 9.

Call Statement and Input

\[
\begin{array}{cccccccccccc}
M & NZ & AC & KA & LDA & B & X & IPARM & RPARM & AUX1 & NAUX1 & AUX2 & NAUX2 \\
| | | | | | | | | | | | | |
\end{array}
\]

\[
\text{CALL DSMGCG(9 , 3 , AC , KA , 9 , B , X , IPARM , RPARM , AUX1 , 109 , AUX2 , 46)}
\]

\[
\begin{align*}
IPARM(1) &= 20 \\
IPARM(2) &= 5 \\
IPARM(3) &= 10 \\
RPARM(1) &= 1.0D-7 \\
AC &= \text{(same as input AC in Example 1)} \\
KA &= \text{(same as input KA in Example 1)} \\
B &= (2.0, 1.0, 3.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0) \\
X &= (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
\end{align*}
\]

Output

\[X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) \]

\[IPARM(4) = 2 \]

\[RPARM(3) = 0.290D-15 \]
DSDGCG—General Sparse Matrix Iterative Solve Using Compressed-Diagonal Storage Mode

This subroutine solves a general sparse linear system of equations using an iterative algorithm, conjugate gradient squared or generalized minimum residual, with or without preconditioning by an incomplete LU factorization. The subroutine is suitable for positive real matrices—that is, when the symmetric part of the matrix, \((A + A^T)/2\), is positive definite. The sparse matrix is stored in compressed-diagonal storage mode. Matrix \(A\) and vectors \(x\) and \(b\) are used:

\[Ax = b \]

where \(A\), \(x\), and \(b\) contain long-precision real numbers.

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL DSDGCG (m, nd, ad, lda, la, b, x, iparm, rparm, aux1, naux1, aux2, naux2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>dsgcgc (m, nd, ad, lda, la, b, x, iparm, rparm, aux1, naux1, aux2, naux2);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL DSDGCG (m, nd, ad, lda, la, b, x, iparm, rparm, aux1, naux1, aux2, naux2);</td>
</tr>
</tbody>
</table>

On Entry

- \(m\) is the order of the linear system \(Ax = b\) and the number of rows in sparse matrix \(A\). Specified as: a fullword integer; \(m \geq 0\).
- \(nd\) is the number of nonzero diagonals stored in the columns of array \(AD\), the number of columns in array \(AD\), and the number of elements in array \(LA\). Specified as: a fullword integer; it must have the following value, where:
 - If \(m > 0\), then \(nd > 0\).
 - If \(m = 0\), then \(nd \geq 0\).
- \(ad\) is the array, referred to as \(AD\), containing the values of the nonzero elements of the sparse matrix, stored in compressed-matrix storage mode. Specified as: an \(lda\) by (at least) \(nd\) array, containing long-precision real numbers.
- \(lda\) is the leading dimension of the arrays specified for \(ad\). Specified as: a fullword integer; \(lda > 0\) and \(lda \geq m\).
- \(la\) is the array, referred to as \(LA\), containing the diagonal numbers \(k\) for the diagonals stored in each corresponding column in array \(AD\). For an explanation of how diagonal numbers are stored, see “Compressed-Diagonal Storage Mode” on page 92. Specified as: a one-dimensional array of (at least) length \(nd\), containing fullword integers, where \(1 \leq m \leq (\text{elements of } LA) \leq (m-1)\).
- \(b\) is the vector \(b\) of length \(m\), containing the right-hand side of the matrix problem. Specified as: a one-dimensional array of (at least) length \(m\), containing long-precision real numbers.
- \(x\) is the vector \(x\) of length \(m\), containing your initial guess of the solution of the linear system. Specified as: a one-dimensional array of (at least) length \(m\), containing long-precision real numbers.
containing long-precision real numbers. The elements can have any value, and if no guess is available, the value can be zero.

\textit{iparm}

is an array of parameters, IPARM(\textit{i}), where:

- \textbf{IPARM(1)} controls the number of iterations.
 - If IPARM(1) > 0, IPARM(1) is the maximum number of iterations allowed.
 - If IPARM(1) = 0, the following default values are used:
 \begin{align*}
 \text{IPARM}(1) &= 300 \\
 \text{IPARM}(2) &= 0 \\
 \text{IPARM}(3) &= 10 \\
 \text{RPARM}(1) &= 10^{-6}
 \end{align*}

- \textbf{IPARM(2)} is the flag used to select the iterative procedure used in this subroutine.
 - If IPARM(2) = 0, the conjugate gradient squared method is used.
 - If IPARM(2) = \textit{k}, the generalized minimum residual method, restarted after \textit{k} steps, is used. Note that the size of the work area \textit{aux1} becomes larger as \textit{k} increases. A value for \textit{k} in the range of 5 to 10 is suitable for most problems.

- \textbf{IPARM(3)} is the flag that determines whether the system is to be preconditioned by an incomplete LU factorization with no fill-in.
 - If IPARM(3) = 0, the system is not preconditioned.
 - If IPARM(3) = 10, the system is preconditioned by an incomplete LU factorization.
 - If IPARM(3) = −10, the system is preconditioned by an incomplete LU factorization, where the factorization matrix was computed in an earlier call to this subroutine and is stored in \textit{aux2}.

- \textbf{IPARM(4)}, see “On Return” on page 684.

Specified as: an array of (at least) length 4, containing fullword integers, where:

\begin{align*}
\text{IPARM}(1) &\geq 0 \\
\text{IPARM}(2) &\geq 0 \\
\text{IPARM}(3) &= 0, 10, \text{ or } -10
\end{align*}

\textit{rparm}

is an array of parameters, RPARM(\textit{i}), where:

- If RPARM(1) > 0, is the relative accuracy \(\varepsilon \) used in the stopping criterion. The iterative procedure is stopped when:
 \[\frac{\| \mathbf{b} - A \mathbf{x} \|_2}{\| \mathbf{x} \|_2} < \varepsilon \]

RPARM(2) is reserved.

RPARM(3), see “On Return” on page 684.

Specified as: a one-dimensional array of (at least) length 3, containing long-precision real numbers.

\textit{aux1}

has the following meaning:

- If \textit{naux1} = 0 and error 2015 is unrecoverable, \textit{aux1} is ignored.
Otherwise, it is a storage work area used by this subroutine, which is available for use by the calling program between calls to this subroutine. Its size is specified by \(naux1 \).

Specified as: an area of storage, containing long-precision real numbers.

\(naux1 \)
is the size of the work area specified by \(aux1 \)—that is, the number of elements in \(aux1 \). Specified as: a fullword integer, where:

If \(naux1 = 0 \) and error 2015 is unrecoverable, DSDGCG dynamically allocates the work area used by this subroutine. The work area is deallocated before control is returned to the calling program.

Otherwise, \(naux1 > 0 \) and must have at least the following value, where:

If \(IPARM(2) = 0 \), use \(naux1 \geq 7m \).

If \(IPARM(2) > 0 \), use \(naux1 \geq (k+2)m+k(k+4)+1 \), where \(k = PARM(2) \).

\(aux2 \)
is a storage work area used by this subroutine. If \(IPARM(3) = -10 \), \(aux2 \) must contain the incomplete LU factorization of matrix \(A \), computed in an earlier call to DSDGCG. The size of \(aux2 \) is specified by \(naux2 \).

Specified as: an area of storage, containing long-precision real numbers.

\(naux2 \)
is the size of the work area specified by \(aux2 \)—that is, the number of elements in \(aux2 \). Specified as: a fullword integer. When \(IPARM(3) = 10 \) or \(-10 \), \(naux2 \) must have at least the following value: \(naux2 \geq 3+2m+1.5nd(m) \).

On Return

\(x \)
is the vector \(x \) of length \(m \), containing the solution of the system \(Ax = b \).

Returned as: a one-dimensional array of (at least) length \(m \), containing long-precision real numbers.

\(iparm \)
is an array of parameters, \(IPARM(i) \), where:

\(IPARM(1) \) is unchanged.

\(IPARM(2) \) is unchanged.

\(IPARM(3) \) is unchanged.

\(IPARM(4) \) contains the number of iterations performed by this subroutine.

Returned as: a one-dimensional array of length 4, containing fullword integers.

\(rparm \)
is an array of parameters, \(RPARM(i) \), where:

\(RPARM(1) \) is unchanged.

\(RPARM(2) \) is reserved.

\(RPARM(3) \) contains the estimate of the error of the solution. If the process converged, \(RPARM(3) \leq RPARM(1) \).

Returned as: a one-dimensional array of length 3, containing long-precision real numbers.

\(aux2 \)
is the storage work area used by this subroutine.

If \(IPARM(3) = 10 \), \(aux2 \) contains the incomplete LU factorization of matrix \(A \).
If IPARM(3) = –10, aux2 is unchanged.

See “Notes” for additional information on aux2. Returned as: an area of storage, containing long-precision real numbers.

Notes

1. When IPARM(3) = –10, this subroutine uses the incomplete LU factorization in aux2, computed in an earlier call to this subroutine. When IPARM(3) = 10, this subroutine computes the incomplete LU factorization and stores it in aux2.

2. If you solve the same sparse linear system of equations several times with different right-hand sides, using the preconditioned algorithm, specify IPARM(3) = 10 on the first invocation. The incomplete factorization is stored in aux2. You may save computing time on subsequent calls by setting IPARM(3) = –10. In this way, the algorithm reutilizes the incomplete factorization that was computed the first time. Therefore, you should not modify the contents of aux2 between calls.

3. Matrix A must have no common elements with vectors x and b; otherwise, results are unpredictable.

4. In the iterative solvers for sparse matrices, the relative accuracy ε (RPARM(1)) must be specified “reasonably” (10\(^{-4}\) to 10\(^{-8}\)). The algorithm computes a sequence of approximate solution vectors x that converge to the solution. The iterative procedure is stopped when the norm of the residual is sufficiently small—that is, when:

\[
\frac{\|b-Ax\|_2}{\|x\|_2} < \varepsilon
\]

As a result, if you specify a larger ε, the algorithm takes fewer iterations to converge to a solution. If you specify a smaller ε, the algorithm requires more iterations and computer time, but converges to a more precise solution. If the value you specify is unreasonably small, the algorithm may fail to converge within the number of iterations it is allowed to perform.

5. For a description of how sparse matrices are stored in compressed-diagonal storage mode, see “Compressed-Diagonal Storage Mode” on page 92.

6. On output, array A0 is not bitwise identical to what it was on input, because matrix A is scaled before starting the iterative process and is unscaled before returning control to the user.

7. You have the option of having the minimum required value for naux dynamically returned to your program. For details, see “Using Auxiliary Storage in ESSL” on page 30.

Function: The linear system:

\[Ax = b \]

is solved using either the conjugate gradient squared method or the generalized minimum residual method, with or without preconditioning by an incomplete LU factorization, where:

- A is a sparse matrix of order m, stored in compressed-diagonal storage mode in arrays A0 and LA.
- x is a vector of length m.
- b is a vector of length m.
Error Conditions

Resource Errors: Error 2015 is unrecoverable, \(naux1 = 0 \), and unable to allocate work area.

Computational Errors: The following errors, with their corresponding return codes, can occur in this subroutine. For details on error handling, see “What Can You Do about ESSL Computational Errors?” on page 46.

- For error 2110, return code 1 indicates that the subroutine exceeded \(IPARM(1) \) iterations without converging. Vector \(x \) contains the approximate solution computed at the last iteration.
- For error 2111, return code 2 indicates that \(aux2 \) contains an incorrect factorization. The subroutine has been called with \(IPARM(3) = -10 \), and \(aux2 \) contains an incomplete factorization of the input matrix \(A \) that was computed by a previous call to the subroutine when \(IPARM(3) = 10 \). This error indicates that \(aux2 \) has been modified since the last call to the subroutine, or that the input matrix is not the same as the one that was factored. If the default action has been overridden, the subroutine can be called again with the same parameters, with the exception of \(IPARM(3) = 0 \) or 10.
- For error 2112, return code 3 indicates that the incomplete LU factorization of \(A \) could not be completed, because one pivot was 0.
- For error 2116, return code 4 indicates that the matrix is singular, because all elements in one row of the matrix contain 0. Array \(AC \) is partially modified and does not represent the same matrix as on entry.

Input-Argument Errors

1. \(m < 0 \)
2. \(lda < 1 \)
3. \(lda < m \)
4. \(nd < 0 \)
5. \(nd = 0 \) and \(m > 0 \)
6. \(IPARM(1) < 0 \)
7. \(IPARM(2) < 0 \)
8. \(IPARM(3) \neq 0, 10, \text{ or } -10 \)
9. \(RPARM(1) < 1.D0 \)
10. Error 2015 is recoverable or \(naux1\neq0 \), and \(naux1 \) is too small—that is, less than the minimum required value. Return code 5 is returned if error 2015 is recoverable.
11. \(naux2 \) is too small—that is, less than the minimum required value. Return code 5 is returned if error 2015 is recoverable.

Example 1: This example finds the solution of the linear system \(Ax = b \) for the sparse matrix \(A \), which is stored in compressed-diagonal storage mode in arrays \(AD \) and \(LA \). The system is solved using the conjugate gradient squared method. Matrix \(A \) is:
Example 2: This example finds the solution of the linear system \(\mathbf{Ax} = \mathbf{b} \) for the same sparse matrix \(\mathbf{A} \) as in Example 1, which is stored in compressed-diagonal storage mode in arrays \(\mathbf{AD} \) and \(\mathbf{LA} \). The system is solved using the generalized minimum residual method, restarted after 5 steps and preconditioned with an incomplete LU factorization. Most of the input is the same as in Example 1.

Call Statement and Input

```fortran
CALL DSDGCG( 9, 3, AD, 9, LA, B, X, IPARM, RPARAM, AUX1, 63, AUX2, 0 )
```

```fortran
IPARM(1) = 20
IPARM(2) = 0
IPARM(3) = 0
IPARM(4) = 8
RPARM(1) = 1.D-7
```

AD

\[
\begin{pmatrix}
2.0 & -1.0 & 0.0 \\
2.0 & -1.0 & 0.0 \\
2.0 & -1.0 & 0.0 \\
2.0 & -1.0 & 0.0 \\
\end{pmatrix}
\]

LA

\[(0, 2, -4)\]

B

\[(1, 1, 1, 1, 2, 2, 2, 3, 3)\]

X

\[(0, 0, 0, 0, 0, 0, 0, 0, 0)\]

Output

\n\n```fortran
X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
```

### Example 2

\[ \mathbf{AX} = \mathbf{b} \]
IPARM(1) = 20
IPARM(2) = 5
IPARM(3) = 10
RPARM(1) = 1.0D-7
AD = (same as input AD in Example 1)
LA = (same as input LA in Example 1)
B = (1, 1, 1, 2, 2, 2, 3, 3)
X = (0, 0, 0, 0, 0, 0, 0, 0)

Output
X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(4) = 6
RPARM(3) = 0.250D-15
Linear Least Squares Subroutines

This section contains the linear least squares subroutine descriptions.
SGESVF and DGESVF—Singular Value Decomposition for a General Matrix

These subroutines compute the singular value decomposition of general matrix \( A \) in preparation for solving linear least squares problems. To compute the minimal norm linear least squares solution of \( AX = B \), follow the call to these subroutines with a call to SGESVS or DGESVS, respectively.

<table>
<thead>
<tr>
<th>Table 117. Data Types</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>( A, B, s, aux )</td>
<td></td>
</tr>
<tr>
<td>Short-precision real</td>
<td>SGESVF</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DGESVF</td>
</tr>
</tbody>
</table>

**Syntax**

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL SGESVF I DGESVF (iopt, a, lda, b, ldb, nb, s, m, n, aux, naux)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>sgesvl dgesvl (iopt, a, lda, b, ldb, nb, s, m, n, aux, naux);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SGESVF I DGESVF (iopt, a, lda, b, ldb, nb, s, m, n, aux, naux);</td>
</tr>
</tbody>
</table>

**On Entry**

\( iopt \)

indicates the type of computation to be performed, where:

- If \( iopt = 0 \) or 10, singular values are computed.
- If \( iopt = 1 \) or 11, singular values and \( V \) are computed.
- If \( iopt = 2 \) or 12, singular values, \( V \), and \( U^T B \) are computed.

Specified as: a fullword integer; \( iopt = 0, 1, 2, 10, 11, \) or 12.

- If \( iopt < 10 \), singular values are unordered.
- If \( iopt \geq 10 \), singular values are sorted in descending order and, if applicable, the columns of \( V \) and the rows of \( U^T B \) are swapped to correspond to the sorted singular values.

\( a \)

is the \( m \) by \( n \) general matrix \( A \), whose singular value decomposition is to be computed. Specified as: an \( lda \) by (at least) \( n \) array, containing numbers of the data type indicated in Table 117.

\( lda \)

is the leading dimension of the array specified for \( a \). Specified as: a fullword integer; \( lda > 0 \) and \( lda \geq \max(m, n) \).

\( b \)

has the following meaning, where:

- If \( iopt = 0, 1, 10, \) or 11, this argument is not used in the computation.
- If \( iopt = 2 \) or 12, it is the \( m \) by \( nb \) matrix \( B \).

Specified as: an \( ldb \) by (at least) \( nb \) array, containing numbers of the data type indicated in Table 117.

If this subroutine is followed by a call to SGESVS or DGESVS, \( B \) should contain the right-hand side of the linear least squares problem, \( AX = B \). (The \( nb \) column vectors of \( B \) contain right-hand sides for \( nb \) distinct linear least
squares problems.) However, if the matrix $U'$ is desired on output, $B$ should be equal to the identity matrix of order $m$.

$l$ has the following meaning, where:

If $iopt = 0, 1, 10, or 11$, this argument is not used in the computation.
If $iopt = 2 or 12$, it is the leading dimension of the array specified for $b$.
Specified as: a fullword integer. It must have the following values, where:
If $iopt = 0, 1, 10, or 11$, $ldb > 0$.
If $iopt = 2 or 12$, $ldb > 0$ and $ldb \geq \max(m, n)$.

$nb$ has the following meaning, where:

If $iopt = 0, 1, 10, or 11$, this argument is not used in the computation.
If $iopt = 2 or 12$, it is the number of columns in matrix $B$.
Specified as: a fullword integer; if $iopt = 2 or 12$, $nb > 0$.

$s$
See “On Return.”

$m$

is the number of rows in matrices $A$ and $B$. Specified as: a fullword integer; $m \geq 0$.

$n$

is the number of columns in matrix $A$ and the number of elements in vector $s$.
Specified as: a fullword integer; $n \geq 0$.

$aux$

has the following meaning:

If $naux = 0$ and error 2015 is unrecoverable, $aux$ is ignored.
Otherwise, it is the storage work area used by this subroutine. Its size is specified by $naux$.
Specified as: an area of storage, containing numbers of the data type indicated in Table 117 on page 690.

$naux$

is the size of the work area specified by $aux$—that is, the number of elements in $aux$. Specified as: a fullword integer, where:

If $naux = 0$ and error 2015 is unrecoverable, SGESVF and DGESVF dynamically allocate the work area used by the subroutine. The work area is deallocated before control is returned to the calling program.
Otherwise, It must have the following value, where:
If $iopt = 0 or 10$, $naux \geq n+\max(m, n)$.
If $iopt = 1 or 11$, $naux \geq 2n+\max(m, n)$.
If $iopt = 2 or 12$, $naux \geq 2n+\max(m, n, nb)$.

On Return

$a$

has the following meaning, where:

If $iopt = 0, or 10$, $A$ is overwritten; that is, the original input is not preserved.
If $iopt = 1, 2, 11,$ or $12$, $A$ contains the real orthogonal matrix $V$, of order $n$, in its first $n$ rows and $n$ columns. If $iopt = 11$ or $12$, the columns of $V$ are swapped to correspond to the sorted singular values. If $m > n$, rows $n+1, n+2, \ldots, m$ of array $A$ are overwritten; that is, the original input is not preserved.

Returned as: an $lda$ by (at least) $n$ array, containing numbers of the data type indicated in Table 117 on page 690.

$b$ has the following meaning, where:

If $iopt = 0, 1, 10,$ or $11$, $B$ is not used in the computation.

If $iopt = 2$ or $12$, $B$ is overwritten by the $n$ by $nb$ matrix $U^TB$.

If $iopt = 12$, the rows of $U^TB$ are swapped to correspond to the sorted singular values. If $m > n$, rows $n+1, n+2, \ldots, m$ of array $B$ are overwritten; that is, the original input is not preserved.

Returned as: an $ldb$ by (at least) $nb$ array, containing numbers of the data type indicated in Table 117 on page 690.

$s$ is a the vector $s$ of length $n$, containing the singular values of matrix $A$. Returned as: a one-dimensional array of (at least) length $n$, containing numbers of the data type indicated in Table 117 on page 690; $s_i \geq 0$, where:

If $iopt < 10$, the singular values are unordered in $s$.

If $iopt \geq 10$, the singular values are sorted in descending order in $s$; that is, $s_1 \geq s_2 \geq \ldots \geq s_n \geq 0$. If applicable, the columns of $V$ and the rows of $U^TB$ are swapped to correspond to the sorted singular values.

Notes

1. The following items must have no common elements; otherwise, results are unpredictable: matrices $A$ and $B$, vector $s$, and the data area specified for $aux$.

2. When you specify $iopt = 0, 1, 10,$ or $11$, you must also specify:
   - A dummy argument for $b$
   - A positive value for $ldb$

   See “Example” on page 576.

3. You have the option of having the minimum required value for $naux$ dynamically returned to your program. For details, see “Using Auxiliary Storage in ESSL” on page 30.

Function: The singular value decomposition of a real general matrix is computed as follows:

$$A = U \Sigma V^T$$

where:

$$U^T U = V^T V = V V^T = I$$

$A$ is an $m$ by $n$ real general matrix.

$V$ is a real general orthogonal matrix of order $n$. On output, $V$ overwrites the first $n$ rows and $n$ columns of $A$.

$U^TB$ is an $n$ by $nb$ real general matrix. On output, $U^TB$ overwrites the first $n$ rows and $nb$ columns of $B$.

$\Sigma$ is an $n$ by $n$ real diagonal matrix. The diagonal elements of $\Sigma$ are the singular values of $A$, returned in the vector $s$. 
If \( m \) or \( n \) is equal to 0, no computation is performed.

One of the following algorithms is used:

1. Golub-Reinsch Algorithm (See pages 134 to 151 in reference [99].)
   a. Reduce the real general matrix \( A \) to bidiagonal form using Householder transformations.
   b. Iteratively reduce the bidiagonal form to diagonal form using a variant of the QR algorithm.

2. Chan Algorithm (See reference [13].)
   a. Compute the QR decomposition of matrix \( A \) using Householder transformations; that is, \( A = QR \).
   b. Apply the Golub-Reinsch Algorithm to the matrix \( R \).

   If \( R = XWY^T \) is the singular value decomposition of \( R \), the singular value decomposition of matrix \( A \) is given by:

\[
A = Q \begin{bmatrix} X^T \\ 0 \end{bmatrix} W Y^T
\]

where:

\[
U = Q \begin{bmatrix} X \\ 0 \end{bmatrix}
\]

\[
\Sigma = W
\]

\[
V = Y
\]

Also, see references [13], [58], [78], and pages 134 to 151 in reference [99]. These algorithms have a tendency to generate underflows that may hurt overall performance. The system default is to mask underflow, which improves the performance of these subroutines.

**Error Conditions**

*Resource Errors:* Error 2015 is unrecoverable, \( naux = 0 \), and unable to allocate work area.

*Computational Errors:* Singular value \( i \) failed to converge after \( x \) iterations.

- The singular values \( s_j, j = n, n-1, \ldots, i+1 \) are correct. If \( iopt < 10 \), they are unordered. Otherwise, they are ordered.
- \( a \) has been modified.
- If \( iopt = 2 \) or 12, then \( b \) has been modified.
- The return code is set to 1.
- \( i \) and \( x \) can be determined at run time by use of the ESSL error-handling facilities. To obtain this information, you must use ERRSET to change the number of allowable errors for error code 2107 in the ESSL error option table;
otherwise, the default value causes your program to terminate when this error occurs. See “What Can You Do about ESSL Computational Errors?” on page 46.

**Input-Argument Errors**
1. iopt ≠ 0, 1, 2, 10, 11, or 12
2. lda ≤ 0
3. max(m, n) > lda
4. ldb ≤ 0 and iopt = 2, 12
5. max(m, n) > ldb and iopt = 2, 12
6. nb ≤ 0 and iopt = 2, 12
7. m < 0
8. n < 0
9. Error 2015 is recoverable or naux=0, and naux is too small—that is, less than the minimum required value. Return code 2 is returned if error 2015 is recoverable.

**Example 1:** This example shows how to find only the singular values, s, of a real long-precision general matrix A, where:

- M is greater than N.
- NAUX is greater than or equal to N+max(M, N) = 7.
- LDB has been set to 1 to avoid a Fortran error message.
- DUMMY is a placeholder for argument b, which is not used in the computation.
- The singular values are returned in S.
- On output, matrix A is overwritten; that is, the original input is not preserved.

**Call Statement and Input**

```
CALL DGESVF(:z'ro'ot , A , 4 , DUMMY , 1 , :z'ro'ot , S , 4 , 3 , AUX , 7)
```

```
A = [1.0 2.0 3.0]
 [4.0 5.0 6.0]
 [7.0 8.0 9.0]
 [10.0 11.0 12.0]
```

**Output**

S = (25.462, 1.291, 0.000)

**Example 2:** This example computes the singular values, s, of a real long-precision general matrix A and the matrix V, where:

- M is equal to N.
- NAUX is greater than or equal to 2N+max(M, N) = 9.
- LDB has been set to 1 to avoid a Fortran error message.
- DUMMY is a placeholder for argument b, which is not used in the computation.
- The singular values are returned in S.
- The matrix V is returned in A.

**Call Statement and Input**
Example 3: This example computes the singular values, \( s \), and computes matrices \( V \) and \( U^T B \) in preparation for solving the underdetermined system \( AX = B \), where:

- \( M \) is less than \( N \).
- \( \text{NAUX} \) is greater than or equal to \( 2N + \max(M, N, NB) = 9 \).
- The singular values are returned in \( S \).
- The matrix \( V \) is returned in \( A \).
- The matrix \( U^T B \) is returned in \( B \).

Call Statement and Input

\[
\begin{array}{cccccccc}
\text{IOPT} & A & \text{LDA} & B & \text{LDB} & \text{NB} & S & M & \text{N} & \text{AUX} & \text{NAUX} \\
\hline
1 & A & 3 & \text{DUMMY} & 1 & 0 & S & 3 & 3 & \text{AUX} & 9 \\
\end{array}
\]

\[
\begin{bmatrix}
2.0 & 1.0 & 1.0 \\
4.0 & 1.0 & 0.0 \\
-2.0 & 2.0 & 1.0 \\
\end{bmatrix}
\]

Output

\[
\begin{bmatrix}
-0.994 & 0.105 & -0.041 \\
-0.112 & -0.870 & 0.480 \\
-0.015 & -0.482 & -0.876 \\
\end{bmatrix}
\]

\[
S = (4.922, 2.724, 0.597)
\]

Call Statement and Input

\[
\begin{array}{cccccccc}
\text{IOPT} & A & \text{LDA} & B & \text{LDB} & \text{NB} & S & M & \text{N} & \text{AUX} & \text{NAUX} \\
\hline
2 & A & 3 & B & 3 & 1 & S & 2 & 3 & \text{AUX} & 9 \\
\end{array}
\]

\[
\begin{bmatrix}
1.0 & 2.0 & 2.0 \\
2.0 & 4.0 & 5.0 \\
. & . & . \\
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
1.0 \\
4.0 \\
. \\
\end{bmatrix}
\]

Output
Example 4: This example computes the singular values, \( s \), and matrices \( V \) and \( U^T B \) in preparation for solving the overdetermined system \( AX = B \), where:

- \( M \) is greater than \( N \).
- \( \text{NAUX} \) is greater than or equal to \( 2N + \max(M, N, \text{NB}) = 7 \).
- The singular values are returned in \( S \).
- The matrix \( V \) is returned in \( A \).
- The matrix \( U^T B \) is returned in \( B \).

Call Statement and Input

\begin{verbatim}
CALL DGESVF( 2 , A , 3 , B , 3 , 2 , S , 3 , 2 , AUX , 7 )
\end{verbatim}

\[
A = \begin{bmatrix}
1.0 & 4.0 \\
2.0 & 5.0 \\
3.0 & 6.0 \\
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
7.0 & 10.0 \\
8.0 & 11.0 \\
9.0 & 12.0 \\
\end{bmatrix}
\]

Output

\[
A = \begin{bmatrix}
0.922 & -0.386 \\
-0.386 & 0.922 \\
\cdot & \cdot \\
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
-1.310 & -2.321 \\
-13.867 & -18.963 \\
\cdot & \cdot \\
\end{bmatrix}
\]

\( X = (0.773, 9.508) \)
Example 5: This example computes the singular values, $s$, and matrices $V$ and $U^T B$ in preparation for solving the overdetermined system $AX = B$. The singular values are sorted in descending order, and the columns of $V$ and the rows of $U^T B$ are swapped to correspond to the sorted singular values.

- $M$ is greater than $N$.
- $NAUX$ is greater than or equal to $2N + \max(M, N, NB) = 7$.
- The singular values are returned in $S$.
- The matrix $V$ is returned in $A$.
- The matrix $U^T B$ is returned in $B$.

Call Statement and Input

```
CALL DGESVF(12 , A , 3 , B , 3 , 2 , S , 3 , 2 , AUX , 7)
```

$A =$

\[
\begin{bmatrix}
1.0 & 4.0 \\
2.0 & 5.0 \\
3.0 & 6.0
\end{bmatrix}
\]

$B =$

\[
\begin{bmatrix}
7.0 & 10.0 \\
8.0 & 11.0 \\
9.0 & 12.0
\end{bmatrix}
\]

Output

$A =$

\[
\begin{bmatrix}
-0.386 & 0.922 \\
-0.922 & -0.386 \\
. & .
\end{bmatrix}
\]

$B =$

\[
\begin{bmatrix}
-13.867 & -18.963 \\
-1.310 & -2.321 \\
. & .
\end{bmatrix}
\]

$S =$ (9.508, 0.773)
SGESVS and DGESVS—Linear Least Squares Solution for a General Matrix Using the Singular Value Decomposition

These subroutines compute the minimal norm linear least squares solution of $AX = B$, where $A$ is a general matrix, using the singular value decomposition computed by SGESVF or DGESVF.

### Syntax

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V$, $UB$, $X$, $s$, $\tau$</td>
<td>SGEVS, DGEVS</td>
</tr>
</tbody>
</table>

#### On Entry

- $v$ is the orthogonal matrix $V$ of order $n$ in the singular value decomposition of matrix $A$. It is produced by a preceding call to SGESVF or DGESVF, where it corresponds to output argument $a$.
  - Specified as: an $ldv$ by (at least) $n$ array, containing numbers of the data type indicated in Table 118.
- $ldv$ is the leading dimension of the array specified for $v$. Specified as: a fullword integer; $ldv > 0$ and $ldv \geq n$.
- $ub$ is an $n$ by $nb$ matrix, containing $U^T B$. It is produced by a preceding call to SGESVF or DGESVF, where it corresponds to output argument $b$. On output, $U^T B$ is overwritten; that is, the original input is not preserved.
  - Specified as: an $ldub$ by (at least) $nb$ array, containing numbers of the data type indicated in Table 118.
- $ldub$ is the leading dimension of the array specified for $ub$. Specified as: a fullword integer; $ldub > 0$ and $ldub \geq n$.
- $nb$ is the number of columns in matrices $X$ and $U^T B$. Specified as: a fullword integer; $nb > 0$.
- $s$ is the vector $s$ of length $n$, containing the singular values of matrix $A$. It is produced by a preceding call to SGESVF or DGESVF, where it corresponds to output argument $s$.
  - Specified as: a one-dimensional array of (at least) length $n$, containing numbers of the data type indicated in Table 118; $s_i \geq 0$.
- $x$ See “On Return” on page 699.
SGESVS and DGESVS

ldx
is the leading dimension of the array specified for x. Specified as: a fullword integer; \( ldx > 0 \) and \( ldx \geq n \).

m
is the number of rows in matrix A. Specified as: a fullword integer; \( m \geq 0 \).

n
is the number of columns in matrix A, the order of matrix V, the number of elements in vector s, the number of rows in matrix UB, and the number of rows in matrix X. Specified as: a fullword integer; \( n \geq 0 \).

tau
is the error tolerance \( \tau \). Any singular values in vector s that are less than \( \tau \) are treated as zeros when computing matrix X. Specified as: a number of the data type indicated in Table 118 on page 698; \( \tau \geq 0 \). For more information on the values for \( \tau \), see “Notes.”

On Return

x
is an \( n \) by \( nb \) matrix, containing the minimal norm linear least solutions of \( AX = B \). The \( nb \) column vectors of X contain minimal norm solution vectors for \( nb \) distinct linear least squares problems.

Returned as: an \( ldx \) by (at least) \( nb \) array, containing numbers of the data type indicated in Table 118 on page 698.

Notes

1. V, X, s, and UB can have no common elements; otherwise the results are unpredictable.

2. In problems involving experimental data, \( \tau \) should reflect the absolute accuracy of the matrix elements:

\[
\tau \geq \max( |\Delta_{ij}| )
\]

where \( \Delta_{ij} \) are the errors in \( a_{ij} \). In problems where the matrix elements are known exactly or are only affected by roundoff errors:

\[
\left[ \tau \geq \varepsilon \left( \sqrt{mn} \right) \right] \max(s_j) \quad \text{for } j = (1, \ldots, n)
\]

where:

- \( \varepsilon \) is equal to 0.11920E−06 for SGESVS and 0.22204D−15 for DGESVS.
- \( s \) is a vector containing the singular values of matrix A.

For more information, see references [13 ], [58 ], [78 ], and pages 134 to 151 in reference [99].

Function: The minimal norm linear least squares solution of \( AX = B \), where A is a real general matrix, is computed using the singular value decomposition, produced by a preceding call to SGESVF or DGESVF. From SGESVF or DGESVF, the singular value decomposition of A is given by the following:

\[
A = USC^{-1}
\]
The linear least squares of solution $X$, for $AX = B$, is given by the following formula:

$$X = V\Sigma^+U^T B$$

where:

$\Sigma^+$ is the diagonal matrix with elements $\sigma_j^+$, where:

$$\sigma_j^+ = \begin{cases} 
1.0 / \sigma_j & \text{if } \sigma_j \geq \tau \text{ and } \sigma_j \neq 0 \\
0 & \text{for all other cases}
\end{cases}$$

If $m$ or $n$ is equal to 0, no computation is performed. See references [13], [58], [78], and pages 134 to 151 in reference [99]. These algorithms have a tendency to generate underflows that may hurt overall performance. The system default is to mask underflow, which improves the performance of these subroutines.

**Error Conditions**

**Computational Errors**: None

**Input-Argument Errors**

1. $ldv \leq 0$
2. $n > ldv$
3. $ldub \leq 0$
4. $n > ldub$
5. $ldx \leq 0$
6. $n > ldx$
7. $nb \leq 0$
8. $m < 0$
9. $n < 0$
10. $\tau < 0$

**Example 1**: This example finds the linear least squares solution for the underdetermined system $AX = B$, using the singular value decomposition computed by DGESVF. Matrix $A$ is:

$$\begin{bmatrix}
1.0 & 2.0 & 2.0 \\
2.0 & 4.0 & 5.0
\end{bmatrix}$$

and matrix $B$ is:

$$\begin{bmatrix}
1.0 \\
4.0
\end{bmatrix}$$

On output, matrix $U^T B$ is overwritten.

**Note**: This example corresponds to Example 3 of DGESVF on page 695.

**Call Statement and Input**
Example 2: This example finds the linear least squares solution for the overdetermined system $AX = B$, using the singular value decomposition computed by DGESVF. Matrix $A$ is:

$$
\begin{bmatrix}
1.0 & 4.0 \\
2.0 & 5.0 \\
3.0 & 6.0 \\
\end{bmatrix}
$$

and where $B$ is:

$$
\begin{bmatrix}
7.0 & 10.0 \\
8.0 & 11.0 \\
9.0 & 12.0 \\
\end{bmatrix}
$$

On output, matrix $U^T B$ is overwritten.

Note: This example corresponds to Example 4 of DGESVF on page 696.
SGESVS and DGESVS

\[
V = \begin{bmatrix}
  0.922 & -0.386 \\
  -0.386 & -0.922 \\
  . & .
\end{bmatrix}
\]

\[
UB = \begin{bmatrix}
  -1.310 & -2.321 \\
  -13.867 & -18.963 \\
  . & .
\end{bmatrix}
\]

\[S = (0.773, 9.508)\]
\[TAU = 0.5171D-14\]

Output

\[
X = \begin{bmatrix}
  -1.000 & -2.000 \\
  2.000 & 3.000
\end{bmatrix}
\]
DGEQRF—General Matrix QR Factorization

This subroutine computes the QR factorization of a real general matrix

\[ A = QR \]

where:

- \( Q \) is an orthogonal matrix.
- For \( m \geq n \), \( R \) is an upper triangular matrix.
- For \( m < n \), \( R \) is an upper trapezoidal matrix.

**Syntax**

<table>
<thead>
<tr>
<th>Data Types</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, τ, work</td>
<td>Long-precision real</td>
</tr>
</tbody>
</table>

**On Entry**

- \( m \)
  - is the number of rows in matrix \( A \) used in the computation.
  - Specified as: a fullword integer; \( m \geq 0 \).
- \( n \)
  - is the number of columns in matrix \( A \) used in the computation.
  - Specified as: a fullword integer; \( n \geq 0 \).
- \( a \)
  - is the \( m \) by \( n \) general matrix \( A \) whose QR factorization is to be computed.
  - Specified as: an lda by (at least) \( n \) array, containing numbers of the data type indicated in Table 119.
- \( lda \)
  - is the leading dimension of the array specified for \( a \).
  - Specified as: a fullword integer; \( lda > 0 \) and \( lda \geq m \).
- \( \tau \)
  - See On Return.
- \( \text{work} \)
  - has the following meaning:
    - If \( lwork = 0 \), \( \text{work} \) is ignored.
    - If \( lwork \neq 0 \), \( \text{work} \) is the work area used by this subroutine, where:
      - If \( lwork \neq -1 \), its size is (at least) of length \( lwork \).
      - If \( lwork = -1 \), its size is (at least) of length 1.
  - Specified as: an area of storage containing numbers of data type indicated in Table 119.
**DGEQRF**

- **lwork**
  - is the number of elements in array WORK.
  - Specified as: a fullword integer; where:
    - If \( lwork = 0 \), DGEQRF dynamically allocates the work area used by this subroutine. The work area is deallocated before control is returned to the calling program. This option is an extension to the LAPACK standard.
    - If \( lwork = -1 \), DGEQRF performs a work area query and returns the optimal size of work in \( \text{work}_1 \). No computation is performed and the subroutine returns after error checking is complete.
    - Otherwise, it must be:
      \[
      lwork \geq \max(1, n)
      \]

  - **info**
    - See On Return.

**On Return**

- **a**
  - is the updated general matrix \( A \), containing the results of the computation.
  - The elements on and above the diagonal of the array contain the \( \min(m, n) \times n \) upper trapezoidal matrix \( R \) (\( R \) is upper triangular if \( m \geq n \)). The elements below the diagonal with \( \tau \) represent the orthogonal matrix \( Q \) as a product of \( \min(m, n) \) elementary reflectors.
  - Returned as: an \( lda \) by (at least) \( n \) array, containing numbers of the data type indicated in Table 119 on page 703.

- **tau**
  - is the vector \( \tau \), of length \( \min(m, n) \), containing the scalar factors of the elementary reflectors.
  - Returned as: a one-dimensional array of (at least) length \( \min(m, n) \), containing numbers of the data type indicated in Table 119 on page 703.

- **work**
  - is the work area used by this subroutine if \( lwork \neq 0 \), where:
    - If \( lwork \neq 0 \) and \( lwork \neq -1 \), its size is (at least) of length \( lwork \).
    - If \( lwork = -1 \), its size is (at least) of length 1.
  - Returned as: an area of storage, where:
    - If \( lwork \geq 1 \) or \( lwork = -1 \), then \( \text{work}_1 \) is set to the optimal \( lwork \) value and contains numbers of the data type indicated in Table 119 on page 703. Except for \( \text{work}_1 \), the contents of work are overwritten on return.
    - **info** indicates that a successful computation occurred.
  - Returned as: a fullword integer; \( info = 0 \).

**Notes and Coding Rules**

1. In your C program, argument \( info \) must be passed by reference.
2. The vectors and matrices used in the computation must have no common elements; otherwise, results are unpredictable.
3. For best performance specify \( lwork = 0 \).
**Function:** Compute the QR factorization of a real general matrix \( A \)

\[ A = QR \]

where:

The orthogonal matrix \( Q \) is represented as a product of elementary reflectors:

\[ Q = H_1 H_2 \ldots H_k \]

where:

\[ k = \min(m, n) \]

For each \( i \):

\[ H_i = I - \tau_i v_i v_i^T \]

\( \tau \) is a real scalar, stored on return in \( \tau_i \).

\( v \) is a real vector with \( v_{1:i-1} = 0, v_i = 1 \).

\( v_{i+1:n} \) is stored on return in \( A_{i+1:m,i} \).

\( I \) is the identity matrix.

For \( m \geq n \), \( R \) is an upper triangular matrix.

For \( m < n \), \( R \) is an upper trapezoidal matrix.

If \( m = 0 \) or \( n = 0 \), no computation is performed and the subroutine returns after doing some parameter checking.

See references [52, 8, 65, 50, 51].

**Error Conditions**

**Resource Errors:** \( lwork = 0 \) and unable to allocate work space.

**Computational Errors:** None.

**Input-Argument Errors**

1. \( m < 0 \)
2. \( n < 0 \)
3. \( lda \leq 0 \)
4. \( lda < m \)
5. \( lwork \neq 0, lwork \neq -1, \) and \( lwork < \max(1, n) \)

**Example 1:** This example shows the QR factorization of a general matrix \( A \) of size \( 6 \times 2 \).

**Note:** Because \( lwork = 0 \), DGEQRF dynamically allocates the work area used by this subroutine.

**Call Statements and Input**

\[
\begin{array}{cccccccc}
M & N & A & LDA & TAU & WORK & LWORK & INFO \\
\end{array}
\]

CALL DGEQRF ( 6 , 2 , A , 6 , TAU , WORK , 0 , INFO )

General matrix \( A \) of size \( 6 \times 2 \):
Output:

General matrix $A$ of size $6 \times 2$:

$$A = \begin{bmatrix}
4.00000 & 2.00000 \\
2.00000 & -1.00000 \\
2.00000 & -1.00000 \\
2.00000 & -1.00000 \\
.00000 & 1.50000 \\
2.00000 & -1.00000 \\
\end{bmatrix}$$

Vector $\tau$ of length 2:

$$\tau = \begin{bmatrix}
1.00000 \\
1.40000 \\
\end{bmatrix}$$

The value of $info$ is 0.

**Example 2:** This example shows the QR factorization of a general matrix $A$ of size $4 \times 5$.

**Note:** Because $lwork = 0$, DGEQRF dynamically allocates the work area used by this subroutine.

**Call Statements and Input**

```
M N A LDA TAU WORK LWORK INFO
```

CALL DGEQRF ( 4 , 5 , A , 4 , TAU , WORK , 0 , INFO)

General matrix $A$ of size $4 \times 5$:

$$A = \begin{bmatrix}
.50000 & .50000 & 1.207107 & .00000 & 1.707107 \\
.50000 & -1.50000 & -.50000 & 2.414214 & .707107 \\
.50000 & .50000 & .207107 & .00000 & .292893 \\
.50000 & -1.50000 & -.50000 & -.414214 & -.707107 \\
\end{bmatrix}$$

**Output:**

General matrix $A$ of size $4 \times 5$: 

A = \[
\begin{bmatrix}
-1.000000 & 1.000000 & -1.207107 & -1.000000 & -1.000000 \\
0.333333 & 2.000000 & 1.207107 & -1.000000 & 1.000000 \\
0.333333 & -0.200000 & 0.707107 & -0.000000 & 1.000000 \\
0.333333 & 0.400000 & 0.071068 & -2.000000 & -1.000000 \\
\end{bmatrix}
\]

Vector $\tau$ of length 4:

TAU = \[
\begin{bmatrix}
1.500000 & 1.666667 & 1.989949 & 0.000000 \\
\end{bmatrix}
\]

The value of $info$ is 0.
SGELLS and DGELLS

SGELLS and DGELLS—Linear Least Squares Solution for a General Matrix Using a QR Decomposition with Column Pivoting

These subroutines compute the minimal norm linear least squares solution of \( AX = B \), using a QR decomposition with column pivoting.

### Table 120. Data Types

<table>
<thead>
<tr>
<th>A, B, X, m, ( \tau ), aux</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>SGELLS</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DGELLS</td>
</tr>
</tbody>
</table>

### Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL SGELLS</th>
<th>DGELLS (iopt, a, lda, b, ldb, x, ldx, rn, tau, m, n, nb, k, aux, naux)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>sgells</td>
<td>dgells (iopt, a, lda, b, ldb, x, ldx, m, tau, m, n, nb, k, aux, naux);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SGELLS</td>
<td>DGELLS (iopt, a, lda, b, ldb, x, ldx, m, tau, m, n, nb, k, aux, naux);</td>
</tr>
</tbody>
</table>

### On Entry

**iopt**
- Indicates the type of computation to be performed, where:
  - If \( iopt = 0 \), \( X \) is computed.
  - If \( iopt = 1 \), \( X \) and the Euclidean Norm of the residual vectors are computed.
- Specified as: a fullword integer; \( iopt = 0 \) or 1.

**a**
- Is the \( m \) by \( n \) coefficient matrix \( A \). On output, \( A \) is overwritten; that is, the original input is not preserved. Specified as: an \( lda \) by (at least) \( n \) array, containing numbers of the data type indicated in Table 120.

**lda**
- Is the leading dimension of the array specified for \( a \). Specified as: a fullword integer; \( lda > 0 \) and \( lda \geq m \).

**b**
- Is the \( m \) by \( nb \) matrix \( B \), containing the right-hand sides of the linear systems. The \( nb \) column vectors of \( B \) contain right-hand sides for \( nb \) distinct linear least squares problems. On output, \( B \) is overwritten; that is, the original input is not preserved.
- Specified as: an \( ldb \) by (at least) \( nb \) array, containing numbers of the data type indicated in Table 120.

**ldb**
- Is the leading dimension of the array specified for \( b \). Specified as: a fullword integer; \( ldb > 0 \) and \( ldb \geq m \).

**x**
- See “On Return” on page 709.

**ldx**
- Is the leading dimension of the array specified for \( x \). Specified as: a fullword integer; \( ldx > 0 \) and \( ldx \geq n \).

**rn**
- See “On Return” on page 709.
**tau**

is the tolerance \( \tau \), used to determine the subset of the columns of \( A \) used in the solution. Specified as: a number of the data type indicated in Table 120; \( \tau \geq 0 \). For more information on how to select a value for \( \tau \), see “Notes” on page 710.

**m**

is the number of rows in matrices \( A \) and \( B \). Specified as: a fullword integer; \( m \geq 0 \).

**n**

is the number of columns in matrix \( A \) and the number of rows in matrix \( X \). Specified as: a fullword integer; \( n \geq 0 \).

**nb**

is the number of columns in matrices \( B \) and \( X \) and the number of elements in vector \( rn \). Specified as: a fullword integer; \( nb > 0 \).

**k**

See “On Return.”

**aux**

has the following meaning:

If \( naux = 0 \) and error 2015 is unrecoverable, \( aux \) is ignored.

Otherwise, it is the storage work area used by this subroutine. Its size is specified by \( naux \).

Specified as: an area of storage, containing numbers of the data type indicated in Table 120 on page 708. On output, the contents of \( aux \) are overwritten.

**naux**

is the size of the work area specified by \( aux \)—that is, the number of elements in \( aux \). Specified as: a fullword integer, where:

If \( naux = 0 \) and error 2015 is unrecoverable, SGELLS and DGELLS dynamically allocate the work area used by the subroutine. The work area is deallocated before control is returned to the calling program.

Otherwise, It must have the following values:

\[ naux \geq 3n + \max(n, nb) \] for SGELLS

\[ naux \geq \lceil 2.5n \rceil + \max(n, nb) \] for DGELLS

**On Return**

\( x \)

is the solution matrix \( X \), with \( n \) rows and \( nb \) columns, where:

If \( k \neq 0 \), the \( nb \) column vectors of \( X \) contain minimal norm least squares solutions for \( nb \) distinct linear least squares problems. The elements in each solution vector correspond to the original columns of \( A \).

If \( k = 0 \), the \( nb \) column vectors of \( X \) are set to 0.

Returned as: an \( ldx \) by (at least) \( nb \) array, containing numbers of the data type indicated in Table 120 on page 708.

**m**

is the vector \( rm \) of length \( nb \), where:

If \( iopt = 0 \) or \( k = 0 \), \( rm \) is not used in the computation.

If \( iopt = 1 \), \( m \) is the Euclidean Norm of the residual vector for the linear least squares problem defined by the \( i \)-th column vector of \( B \).
SGELLS and DGELLS

Returned as: a one-dimensional array of (at least) \( nb \), containing numbers of the data type indicated in Table 120 on page 708.

\( k \)

is the number of columns of matrix \( A \) used in the solution. Returned as: a fullword integer; \( k = \) (the number of diagonal elements of matrix \( R \) exceeding \( \tau \) in magnitude).

Notes

1. In your C program, argument \( k \) must be passed by reference.

2. If \( \text{ldb} \geq \max(m, n) \), matrix \( X \) and matrix \( B \) can be the same; otherwise, matrix \( X \) and matrix \( B \) can have no common elements, or the results are unpredictable.

3. The following items must have no common elements; otherwise, results are unpredictable:
   - Matrices \( A \) and \( X \), vector \( rn \), and the data area specified for \( aux \)
   - Matrices \( A \) and \( B \), vector \( rn \), and the data area specified for \( aux \).

4. If the relative uncertainty in the matrix \( B \) is \( \rho \), then:
   \[ \tau \geq \frac{\rho}{\| A \|_F} \]

See references [44 ], [62 ], and [78 ] for additional guidance on determining suitable values for \( \tau \).

5. When you specify \( iopt = 0 \), you must also specify a dummy argument for \( m \).
   For more details, see “Example 1” on page 711.

6. You have the option of having the minimum required value for \( naux \) dynamically returned to your program. For details, see “Using Auxiliary Storage in ESSL” on page 30.

Function: The minimal norm linear least squares solution of \( AX = B \) is computed using a QR decomposition with column pivoting, where:

- \( A \) is an \( m \) by \( n \) real general matrix.
- \( B \) is an \( m \) by \( nb \) real general matrix.
- \( X \) is an \( n \) by \( nb \) real general matrix.

Optionally, the Euclidean Norms of the residual vectors can be computed.

Following are the steps involved in finding the minimal norm linear least squares solution of \( AX = B \). \( A \) is decomposed, using Householder transformations and column pivoting, into the following form:

\[ AP = QR \]

where:

- \( P \) is a permutation matrix.
- \( Q \) is an orthogonal matrix.
- \( R \) is an upper triangular matrix.

\( k \) is the first index, where:

\[ |r_{k+1,k+1}| \leq \tau \]

If \( k = n \), the minimal norm linear least squares solution is obtained by solving \( RX = Q^T B \) and reordering \( X \) to correspond to the original columns of \( A \).
If \( k < n \), \( R \) has the following form:

\[
R = \begin{bmatrix}
R_{11} & R_{12} \\
0 & 0
\end{bmatrix}
\]

To find the minimal norm linear least squares solution, it is necessary to zero the submatrix \( R_{12} \) using Householder transformations. See references [44], [62], and [78]. If \( m \) or \( n \) is equal to 0, no computation is performed. These algorithms have a tendency to generate underflows that may hurt overall performance. The system default is to mask underflow, which improves the performance of these subroutines.

**Error Conditions**

*Resource Errors:* Error 2015 is unrecoverable, \( naux = 0 \), and unable to allocate work area.

*Computational Errors:* None

*Input-Argument Errors*

1. \( iopt \neq 0 \) or 1
2. \( lda \leq 0 \)
3. \( m > lda \)
4. \( ldb \leq 0 \)
5. \( m > ldb \)
6. \( ldx \leq 0 \)
7. \( n > ldx \)
8. \( m < 0 \)
9. \( n < 0 \)
10. \( nb \leq 0 \)
11. \( \tau < 0 \)
12. Error 2015 is recoverable or \( naux = 0 \), and \( naux \) is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.

**Example 1:** This example solves the underdetermined system \( AX = B \). On output, \( A \) and \( B \) are overwritten. \( \text{DUMMY} \) is used as a placeholder for argument \( m \), which is not used in the computation.

**Call Statement and Input**

\[
\begin{array}{cccccccccccc}
\text{IOPT} & \text{A} & \text{LDA} & \text{B} & \text{LDB} & \text{X} & \text{LDX} & \text{RN} & \text{TAU} & \text{M} & \text{N} & \text{NB} & \text{K} & \text{AUX} & \text{NAUX} \\
\text{----} & \text{---} & \text{---}
\end{array}
\]

CALL DGELLS( 0, A, 2, B, 2, X, 3, DUMMY, TAU, 2, 3, 1, K, AUX, 11 )
SGELLS and DGELLS

\[ A = \begin{bmatrix} 1.0 & 2.0 & 2.0 \\ 2.0 & 4.0 & 5.0 \end{bmatrix} \]

\[ B = \begin{bmatrix} 1.0 \\ 4.0 \end{bmatrix} \]

\[ TAU = 0.0 \]

Output

\[ X = \begin{bmatrix} -0.600 \\ -1.200 \\ 2.000 \end{bmatrix} \]

\[ K = 2 \]

Example 2: This example solves the overdetermined system \( AX = B \). On output, \( A \) and \( B \) are overwritten. \texttt{DUMMY} is used as a placeholder for argument \( rn \), which is not used in the computation.

Call Statement and Input

\[ \text{IOPT A LDA B LDB X LDX RN TAU M N NB K AUX NAUX} \]

\[ \text{CALL DGELLS( 0 , A , 3 , B , 3 , X , 2 , DUMMY , TAU , 3 , 2 , 2 , K , AUX , 7 )} \]

\[ A = \begin{bmatrix} 1.0 & 4.0 \\ 2.0 & 5.0 \\ 3.0 & 6.0 \end{bmatrix} \]

\[ B = \begin{bmatrix} 7.0 & 10.0 \\ 8.0 & 11.0 \\ 9.0 & 12.0 \end{bmatrix} \]

\[ TAU = 0.0 \]

Output

\[ X = \begin{bmatrix} -1.000 & -2.000 \\ 2.000 & 3.000 \end{bmatrix} \]

\[ K = 2 \]

Example 3: This example solves the overdetermined system \( AX = B \) and computes the Euclidean Norms of the residual vectors. On output, \( A \) and \( B \) are overwritten.
Call Statement and Input

\[
\begin{array}{cccccccccccc}
\text{IOPT} & A & \text{LDA} & B & \text{LDB} & X & \text{LDX} & \text{RN} & \text{TAU} & M & N & \text{NB} & K & \text{AUX} & \text{NAUX} \\
\end{array}
\]

CALL DGELLS( 1 , A , 3 , B , 3 , X , 2 , RN , TAU , 3 , 2 , 2 , K , AUX , 7 )

\[
\begin{bmatrix}
1.1 & -4.3 \\
2.0 & -5.0 \\
3.0 & -6.0
\end{bmatrix}
\]

\[
\begin{bmatrix}
-7.0 & 10.0 \\
-8.0 & 11.0 \\
-9.0 & 12.0
\end{bmatrix}
\]

TAU = 0.0

Output

\[
\begin{bmatrix}
0.543 & -1.360 \\
1.785 & -2.699
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.196 \\
0.275
\end{bmatrix}
\]

K = 2
Chapter 11. Eigensystem Analysis

The eigensystem analysis subroutines are described in this chapter.

Overview of the Eigensystem Analysis Subroutines

The eigensystem analysis subroutines provide solutions to the algebraic eigensystem analysis problem \( A \mathbf{z} = \mathbf{w} \mathbf{z} \) and the generalized eigensystem analysis problem \( A \mathbf{z} = \mathbf{w} B \mathbf{z} \) (Table 121). Many of the eigensystem analysis subroutines use the algorithms presented in Linear Algebra by Wilkinson and Reinsch [99] or use adaptations of EISPACK routines, as described in the EISPACK Guide Lecture Notes in Computer Science in reference [87] or in the EISPACK Guide Extension Lecture Notes in Computer Science in reference [58]. (EISPACK is available from the sources listed in reference [49].)

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subroutine</th>
<th>Long-Precision Subroutine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eigenvalues and, Optionally, All or Selected Eigenvectors of a General Matrix</td>
<td>SGEEV</td>
<td>DGEEV</td>
<td>718</td>
</tr>
<tr>
<td></td>
<td>CGEEV</td>
<td>ZGEEV</td>
<td></td>
</tr>
<tr>
<td>Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric Matrix or a Complex Hermitian Matrix</td>
<td>SSPEV</td>
<td>DSPEV</td>
<td>729</td>
</tr>
<tr>
<td></td>
<td>CHPEV</td>
<td>ZHPEV</td>
<td></td>
</tr>
<tr>
<td>Extreme Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric Matrix or a Complex Hermitian Matrix</td>
<td>SSPSV</td>
<td>DSPSV</td>
<td>738</td>
</tr>
<tr>
<td></td>
<td>CHPSV</td>
<td>ZHPSV</td>
<td></td>
</tr>
<tr>
<td>Eigenvalues and, Optionally, the Eigenvectors of a Generalized Real Eigensystem, ( A \mathbf{z} = \mathbf{w} B \mathbf{z} ), where ( A ) and ( B ) Are Real General Matrices</td>
<td>SGEGV</td>
<td>DGEGV</td>
<td>746</td>
</tr>
<tr>
<td>Eigenvalues and, Optionally, the Eigenvectors of a Generalized Real Symmetric Eigensystem, ( A \mathbf{z} = \mathbf{w} B \mathbf{z} ), where ( A ) Is Real Symmetric and ( B ) Is Real Symmetric Positive Definite</td>
<td>SSYGV</td>
<td>DSYGV</td>
<td>752</td>
</tr>
</tbody>
</table>

Performance and Accuracy Considerations

1. The accuracy of the resulting eigenvalues and eigenvectors varies between the short- and long-precision versions of each subroutine. The degree of difference depends on the size and conditioning of the matrix computation. Some of the subroutines have examples illustrating this difference.

2. The short precision subroutines provide increased accuracy by accumulating intermediate results in long precision. Occasionally, for performance reasons, these intermediate results are stored.

3. If you want to compute 10% or fewer eigenvalues only, or you want to compute 30% or fewer eigenvalues and eigenvectors, you get better performance if you use _SPSV and _HPSV instead of _SPEV and _HPEV, respectively. For all other uses, you should use _SPEV and _HPEV.

4. There are some ESSL-specific rules that apply to the results of computations on the workstation processors using the ANSI/IEEE standards. For details, see
“What Data Type Standards Are Used by ESSL, and What Exceptions Should You Know About?” on page 43.
Eigensystem Analysis Subroutines

This section contains the eigensystem analysis subroutine
SGEEV, DGEEV, CGEEV, and ZGEEV

SGEEV, DGEEV, CGEEV, and ZGEEV—Eigenvalues and, Optionally, All or Selected Eigenvectors of a General Matrix

SGEEV and DGEEV compute the eigenvalues and, optionally, all or selected eigenvectors of real general matrix \( A \). CGEEV and ZGEEV compute the eigenvalues and, optionally, all or selected eigenvectors of complex general matrix \( A \). Eigenvalues are returned in complex vector \( w \), and eigenvectors are returned in complex matrix \( Z \):

\[ Az = wz \]

<table>
<thead>
<tr>
<th>( A )</th>
<th>( w, Z )</th>
<th>( aux )</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>Short-precision complex</td>
<td>Short-precision real</td>
<td>SGEEV</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>Long-precision complex</td>
<td>Long-precision real</td>
<td>DGEEV</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>Short-precision complex</td>
<td>Short-precision real</td>
<td>CGEEV</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>Long-precision complex</td>
<td>Long-precision real</td>
<td>ZGEEV</td>
</tr>
</tbody>
</table>

**Syntax**

**Fortran**

\[
\text{CALL SGEEV | DGEEV | CGEEV | ZGEEV (iopt, a, lda, w, z, ldz, select, n, aux, naux)}
\]

**C and C++**

\[
\text{sgeev | dgeev | cgeev | zgeev (iopt, a, lda, w, z, ldz, select, n, aux, naux)};
\]

**PL/I**

\[
\text{CALL SGEEV | DGEEV | CGEEV | ZGEEV (iopt, a, lda, w, z, ldz, select, n, aux, naux)};
\]

**On Entry**

\( iopt \)

indicates the type of computation to be performed, where:

- If \( iopt = 0 \), eigenvalues only are computed.
- If \( iopt = 1 \), eigenvalues and eigenvectors are computed.
- If \( iopt = 2 \), eigenvalues and eigenvectors corresponding to selected eigenvalues are computed.

Specified as: a fullword integer; \( iopt = 0, 1, \text{ or } 2 \).

\( a \)

is the real or complex general matrix \( A \) of order \( n \), whose eigenvalues and, optionally, eigenvectors are computed. Specified as: an \( lda \) by (at least) \( n \) array, containing numbers of the data type indicated in Table 122. On output, \( A \) is overwritten; that is, the original input is not preserved.

\( lda \)

is the leading dimension of the array specified for \( a \). Specified as: a fullword integer; \( lda > 0 \) and \( lda \geq n \).

\( w \)

See “On Return” on page 719.

\( z \)

See “On Return” on page 719.

\( ldz \)

has the following meaning, where:

- If \( iopt = 0 \), it is not used in the computation.
If \( iopt = 1 \) or \( 2 \), it is the leading dimension of the output array specified for \( z \).

Specified as: a fullword integer. It must have the following values, where:

If \( iopt = 0 \), \( ldz > 0 \).

If \( iopt = 1 \) or \( 2 \), \( ldz > 0 \) and \( ldz \geq n \).

\( select \) has the following meaning, where:

If \( iopt = 0 \) or \( 1 \), it is not used in the computation.

If \( iopt = 2 \), it is the logical vector \( select \) of length \( n \) whose true elements indicate those eigenvalues whose corresponding eigenvectors are to be computed.

Specified as: a one-dimensional array of (at least) length \( n \), containing logical data items. Element values can be true (.TRUE.) or false (.FALSE.).

\( n \) is the order of matrix \( A \). Specified as: a fullword integer; \( n \geq 0 \).

\( aux \) has the following meaning:

If \( naux = 0 \) and error 2015 is unrecoverable, \( aux \) is ignored.

Otherwise, it is a storage work area used by this subroutine. Its size is specified by \( naux \).

Specified as: an area of storage, containing numbers of the data type indicated in Table 122 on page 718. On output, the contents are overwritten.

\( naux \) is the size of the work area specified by \( aux \)—that is, the number of elements in \( aux \). Specified as: a fullword integer, where:

If \( naux = 0 \) and error 2015 is unrecoverable, SGEEV, DGEEV, CGEEV, and ZGEEV dynamically allocate the work area used by the subroutine. The work area is deallocated before control is returned to the calling program.

Otherwise, it must have the following value, where:

For SGEEV and DGEEV:
- If \( iopt = 0 \), \( naux \geq n \).
- If \( iopt = 1 \), \( naux \geq 2n \).
- If \( iopt = 2 \),
  \[ naux \geq n^2+4n \]

For CGEEV and ZGEEV:
- If \( iopt = 0 \), \( naux \geq 2n \).
- If \( iopt = 1 \), \( naux \geq 3n \).
- If \( iopt = 2 \), \( naux \geq 2n^2+5n \).

On Return

\( w \) is the vector \( w \) of length \( n \), containing the eigenvalues of \( A \). The eigenvalues are unordered. For SGEEV and DGEEV, complex conjugate pairs appear consecutively with the eigenvalue having the positive imaginary part first.

Returned as: a one-dimensional array of (at least) length \( n \), containing numbers of the data type indicated in Table 122 on page 718.
SGEEV, DGEEV, CGEEV, and ZGEEV

\( z \)

has the following meaning, where:

If \( iopt = 0 \), it is not used in the computation.

If \( iopt = 1 \), it is the matrix \( Z \) of order \( n \), containing the eigenvectors of matrix \( A \). The eigenvector in column \( i \) of matrix \( Z \) corresponds to the eigenvalue \( w_i \).

If \( iopt = 2 \), it is the \( n \) by \( m \) matrix \( Z \), containing the \( m \) eigenvectors of matrix \( A \), which correspond to the \( m \) selected eigenvalues in \( w_i \), where \( m \) is the number of true elements in the logical vector \( \text{select} \). The eigenvector in column \( i \) of matrix \( Z \) corresponds to the \( i \)-th selected eigenvalue. Any eigenvector that does not converge is set to 0.

Returned as: a two-dimensional array, containing numbers of the data type indicated in Table 122 on page 718, where:

If \( iopt = 1 \), the array must be \( ldz \) by (at least) \( n \).

If \( iopt = 2 \), the array must be \( ldz \) by (at least) \( m \).

**Notes**

1. When you specify \( iopt = 0 \), you must also specify:
   - A positive value for \( ldz \)
   - A dummy argument for \( z \) (see “Example 1” on page 723)
   - A dummy argument for \( \text{select} \).

2. When you specify \( iopt = 1 \), you must also specify a dummy argument for \( \text{select} \).

3. The following items must have no common elements: matrix \( A \), matrix \( Z \), vector \( w \), vector \( \text{select} \), and the data area specified for \( \text{aux} \); otherwise, results are unpredictable. See “Concepts” on page 53.

4. You have the option of having the minimum required value for \( \text{naux} \) dynamically returned to your program. For details, see “Using Auxiliary Storage in ESSL” on page 30.

**Function:** The next two sections describe the methods used to compute the eigenvectors and eigenvalues for either a real general matrix or a complex general matrix. For more information on these methods, see references [39], [43], [45], [63], [87], [97], and [99]. If \( n \) is 0, no computation is performed. The results of the computations using short- and long-precision data can vary in accuracy. See the examples for an illustration of the difference in the results.

These algorithms have a tendency to generate underflows that may hurt overall performance. The system default is to mask underflow, which improves the performance of these subroutines.

**Real General Matrix:** The eigenvalues and, optionally, all or selected eigenvectors of a real general matrix \( A \) are computed as follows.

- For \( iopt = 0 \), the eigenvalues are computed as follows:
  1. Balance the real general matrix \( A \).
  2. Reduce the balanced matrix to a real upper Hessenberg matrix using orthogonal similarity transformations.
  3. Compute the eigenvalues of the real upper Hessenberg matrix using the QR algorithm.
4. The eigenvalues are returned in vector \( w \).

- For \( iopt = 1 \), the eigenvalues and eigenvectors are computed as follows:
  1. Balance the real general matrix \( A \).
  2. Reduce the balanced matrix to a real upper Hessenberg matrix using orthogonal similarity transformations.
  3. Accumulate the orthogonal similarity transformations used in the reduction of the real balanced matrix to upper Hessenberg form.
  4. Compute the eigenvalues of the real upper Hessenberg matrix and the eigenvectors of the corresponding real balanced matrix using the QR algorithm.
  5. Back transform the eigenvectors of the balanced matrix to the eigenvectors of the original matrix.
  6. The eigenvalues are returned in vector \( w \), and the eigenvectors are returned in matrix \( Z \).

- For \( iopt = 2 \), the eigenvalues and selected eigenvectors are computed as follows:
  1. Balance the real general matrix \( A \).
  2. Reduce the balanced matrix to a real upper Hessenberg matrix using orthogonal similarity transformations.
  3. Compute the eigenvalues of the real upper Hessenberg matrix using the QR algorithm.
  4. Compute the eigenvectors of the real upper Hessenberg matrix corresponding to selected eigenvalues, indicated in the logical vector \( \text{select} \), using inverse iteration.
  5. Back transform the eigenvectors of the real upper Hessenberg matrix to the eigenvectors of the balanced matrix.
  6. Back transform the eigenvectors of the balanced matrix to the eigenvectors of the original matrix.
  7. The eigenvalues are returned in vector \( w \), and the eigenvectors are returned in matrix \( Z \).

**Complex General Matrix:** The eigenvalues and, optionally, all or selected eigenvectors of a complex general matrix \( A \) are computed as follows.

- For \( iopt = 0 \), the eigenvalues are computed as follows:
  1. Balance the complex general matrix \( A \).
  2. Reduce the complex balanced matrix to a complex upper Hessenberg matrix using unitary similarity transformations.
  3. Compute the eigenvalues of the complex upper Hessenberg matrix using a QR algorithm with implicit shift.
  4. The eigenvalues are returned in vector \( w \).

- For \( iopt = 1 \), the eigenvalues and eigenvectors are computed as follows:
  1. Balance the complex general matrix \( A \).
  2. Reduce the complex balanced matrix to a complex upper Hessenberg matrix using unitary similarity transformations.
  3. Accumulate the unitary similarity transformations used in the reduction of the complex balanced matrix to complex upper Hessenberg form.
  4. Compute the eigenvalues of the complex upper Hessenberg matrix and the eigenvectors of the complex balanced matrix using a QR algorithm with implicit shift.
5. Back transform the eigenvectors of the complex balanced matrix to the eigenvectors of the original matrix.
6. The eigenvalues are returned in vector \( w \), and the eigenvectors are returned in matrix \( Z \).

- For \( iopt = 2 \), the eigenvalues and selected eigenvectors are computed as follows:
  1. Balance the complex general matrix \( A \).
  2. Reduce the complex balanced matrix to a complex upper Hessenberg matrix using unitary similarity transformations.
  3. Compute the eigenvalues of the complex upper Hessenberg matrix using a QR algorithm with implicit shift.
  4. Compute the eigenvectors of the complex upper Hessenberg matrix corresponding to selected eigenvalues, indicated in the logical vector \( select \), using inverse iteration.
  5. Back transform the eigenvectors of the complex upper Hessenberg matrix to the eigenvectors of the complex balanced matrix.
  6. Back transform the eigenvectors of the complex balanced matrix to the eigenvectors of the original matrix.
  7. The eigenvalues are returned in vector \( w \), and the eigenvectors are returned in matrix \( Z \).

Error Conditions

Resource Errors: Error 2015 is unrecoverable, \( naux = 0 \), and unable to allocate work area.

Computational Errors

1. Eigenvalue \( (i) \) failed to converge after \( (xxx) \) iterations.
   - The eigenvalues \( (w_j, j = n, n-1, ..., i+1) \) are correct.
   - If \( iopt = 1 \), then \( z \) is modified, but no eigenvectors are correct.
   - \( a \) is modified.
   - The return code is set to 1.
   - \( i \) and \( xxx \) can be determined at run time by use of the ESSL error-handling facilities. To obtain this information, you must use \( ERRSET \) to change the number of allowable errors for error code 2101 in the ESSL error option table; otherwise, the default value causes your program to terminate when this error occurs. See “What Can You Do about ESSL Computational Errors?” on page 46.

2. Eigenvector \( (yyy) \) failed to converge after \( (zzz) \) iterations. (The computational error message may occur multiple times with processing continuing after each error, because the number of allowable errors for error code 2102 is set to be unlimited in the ESSL error option table.)
   - All eigenvalues are correct.
   - The eigenvector that failed to converge is set to 0.
   - Any selected eigenvectors for which this message has not been issued are correct.
   - \( a \) is modified.
   - The return code is set to 2.
   - \( yyy \) and \( zzz \) for the last eigenvector that failed to converge can be determined at run time by use of the ESSL error-handling facilities. To obtain this information, you must use \( ERRSET \) to change the number of allowable errors for error 2199 in the ESSL error option table. See “What Can You Do about ESSL Computational Errors?” on page 46.
Input-Argument Errors

1. \( \text{iopt} \neq 0, 1, \) or \( 2 \)
2. \( n < 0 \)
3. \( lda \leq 0 \)
4. \( n > lda \)
5. \( ldz \leq 0 \) and \( \text{iopt} = 0 \)
6. \( n > ldz \) and \( \text{iopt} = 0 \)
7. Error 2015 is recoverable or \( \text{naux} \neq 0 \), and \( \text{naux} \) is too small—that is, less than the minimum required value. Return code 3 is returned if error 2015 is recoverable.

Example 1: This example shows how to find the eigenvalues only of a real short-precision general matrix \( A \) of order 4, where:

- \( \text{NAUX} \) is equal to \( N \).
- \( \text{AUX} \) contains \( N \) elements.
- LDZ is set to avoid an error condition.
- DUMMY1 and DUMMY2 are used as placeholders for arguments \( z \) and \( \text{select} \), which are not used in the computation.
- On output, \( A \) has been overwritten.

Note: This matrix is used in Example 5.5 in referenced text [63].

Call Statement and Input

\[
\begin{array}{cccccccc}
\text{IOPT} & A & \text{LDA} & W & Z & \text{LDZ} & \text{SELECT} & \text{N} & \text{AUX} & \text{NAUX} \\
\hline
0 & A & 4 & W & DUMMY1 & 1 & DUMMY2 & 4 & AUX & 4 \\
\end{array}
\]

\[
A = \begin{bmatrix}
-2.0 & 2.0 & 2.0 & 2.0 \\
-3.0 & 3.0 & 2.0 & 2.0 \\
-2.0 & 0.0 & 4.0 & 2.0 \\
-1.0 & 0.0 & 0.0 & 5.0 \\
\end{bmatrix}
\]

Output

\[
W = \begin{bmatrix}
(0.999999, \ 0.000000) \\
(2.000000, \ 0.000000) \\
(2.999996, \ 0.000000) \\
(3.999999, \ 0.000000) \\
\end{bmatrix}
\]

Example 2: This example shows how to find the eigenvalues and eigenvectors of a real short-precision general matrix \( A \) of order 3, where:

- \( \text{NAUX} \) is equal to \( 2N \).
- \( \text{AUX} \) contains \( 2N \) elements.
- DUMMY is used as a placeholder for argument \( \text{select} \), which is not used in the computation.
- On output, \( A \) has been overwritten.

Note: This matrix is used in Example 5.1 in referenced text [63].

Call Statement and Input
Example 3: This example shows how to find the eigenvalues and eigenvectors of a real short-precision general matrix $A$ of order 3, where:

- $\text{NAUX}$ is equal to $2N$.
- $\text{AUX}$ contains $2N$ elements.
- $\text{DUMMY}$ is used as a placeholder for argument $\text{select}$, which is not used in the computation.
- On output, $A$ has been overwritten.

Note: This matrix is used in Example 5.4 in referenced text [63].
**Example 4:** This example shows how to find the eigenvalues and selected eigenvectors of a real short-precision general matrix $A$ of order 4, where:

- $\text{NAUX}$ is equal to $N^2 + 4N$.
- $\text{AUX}$ contains $\text{NAUX}$ elements.
- The first, third, and fourth eigenvectors are selected and appear in the first, second, and third columns of matrix $Z$, respectively.
- On output, $A$ has been overwritten.

**Note:** This matrix is used in Example 5.5 in referenced text [63].

**Call Statement and Input**

```fortran
CALL SGEEV(2 , A , 4 , W , Z , 4 , SELECT , 4 , AUX , 32)
```

```
A =
 -2.0 2.0 2.0 2.0
 -3.0 3.0 2.0 2.0
 -2.0 0.0 4.0 2.0
 -1.0 0.0 0.0 5.0
```

```
SELECT =
 .TRUE.
 .FALSE.
 .TRUE.
 .TRUE.
```

**Output**

```
W =
 (0.999999, 0.000000)
 (2.000001, 0.000000)
 (2.999996, 0.000000)
 (3.999999, 0.000000)
```

```
Z =
 (1.000000, 0.000000) (-0.674014, 0.000000) (-0.474306, 0.000000)
 (0.750000, 0.000000) (-0.674014, 0.000000) (-0.474306, 0.000000)
 (0.500000, 0.000000) (-0.674013, 0.000000) (-0.474306, 0.000000)
 (0.250000, 0.000000) (-0.337006, 0.000000) (-0.474305, 0.000000)
```

**Example 5:** This example shows how to find the eigenvalues and selected eigenvectors of a real short-precision general matrix $A$ of order 3, where:

- $\text{NAUX}$ is equal to $N^2 + 4N$.
- $\text{AUX}$ contains $\text{NAUX}$ elements.
- The first and second eigenvectors are selected and appear in the first and second columns of matrix $Z$, respectively.
- On output, $A$ has been overwritten.

**Note:** This matrix is used in Example 5.4 in referenced text [63].

**Call Statement and Input**
SGEEV, DGEEV, CGEEV, and ZGEEV

CALL SGEEV( 2 , A , 3 , W , Z , 3 , SELECT , 3 , AUX , 21 )

\[
A = \begin{bmatrix}
8.0 & -1.0 & -5.0 \\
-4.0 & 4.0 & -2.0 \\
18.0 & -5.0 & -7.0 \\
\end{bmatrix}
\]

SELECT = \[
\begin{bmatrix}
\text{.TRUE.} \\
\text{.TRUE.} \\
\text{.FALSE.} \\
\end{bmatrix}
\]

Output

\[
W = \begin{bmatrix}
(1.999999, & 3.999998) \\
(1.999999, & -3.999998) \\
(0.999997, & 0.000000) \\
\end{bmatrix}
\]

\[
Z = \begin{bmatrix}
(0.500000, & 0.000000) & (0.500000, & 0.000000) \\
(0.500000, & 0.500000) & (0.500000, & -0.500000) \\
(0.500000, & -0.500000) & (0.500000, & 0.500000) \\
\end{bmatrix}
\]

Example 6: This example shows how the results of Example 5 would differ if matrix \( A \) was a real long-precision general matrix. On output, \( A \) has been overwritten.

Call Statement and Input

CALL DGEEV( 2 , A , 3 , W , Z , 3 , SELECT , 3 , AUX , 21 )

Output

\[
W = \begin{bmatrix}
(2.000000, & 4.000000) \\
(2.000000, & -4.000000) \\
(1.000000, & 0.000000) \\
\end{bmatrix}
\]

\[
Z = \begin{bmatrix}
(0.500000, & 0.000000) & (0.500000, & 0.000000) \\
(0.500000, & 0.500000) & (0.500000, & -0.500000) \\
(0.500000, & -0.500000) & (0.500000, & 0.500000) \\
\end{bmatrix}
\]

Example 7: This example shows how to find the eigenvalues only of a complex long-precision general matrix \( A \) of order 3, where:

- \( \text{NAUX} \) is equal to 2N.
- \( \text{AUX} \) contains 2N elements.
- \( \text{LDZ} \) is set to avoid an error condition.
• DUMMY1 and DUMMY2 are used as placeholders for arguments z and select, which are not used in the computation.
• On output, A has been overwritten.

**Note:** This matrix is used in Example 6.4 in referenced text [63 ].

**Call Statement and Input**

```
IOPT A LDA W Z LDZ SELECT N AUX NAUX
 | | | | | | | |
CALL ZGEEV(0 , A , 3 , W , DUMMY1 , 1 , DUMMY2 , 3 , AUX , 6)
```

```
A =

\[
\begin{bmatrix}
1.0 & 2.0 \\
43.0 & 44.0 \\
5.0 & 6.0 \\
\end{bmatrix}
\begin{bmatrix}
3.0 & 4.0 \\
13.0 & 14.0 \\
7.0 & 8.0 \\
\end{bmatrix}
\begin{bmatrix}
21.0 & 22.0 \\
15.0 & 16.0 \\
25.0 & 26.0 \\
\end{bmatrix}
\]
```

**Output**

```
\[
\begin{bmatrix}
39.776655 & 42.995668 \\
-7.477530 & 6.880321 \\
6.700876 & -7.875989 \\
\end{bmatrix}
\]
```

**Example 8:** This example shows how to find the eigenvalues and eigenvectors of a complex long-precision general matrix A of order 4, where:
• NAUX is equal to 3N.
• AUX contains 3N elements.
• DUMMY is used as a placeholder for argument select, which is not used in the computation.
• On output, A has been overwritten.

**Note:** This matrix is used in Example 6.5 in referenced text [63 ].

**Call Statement and Input**

```
IOPT A LDA W Z LDZ SELECT N AUX NAUX
 | | | | | | | |
CALL ZGEEV(1 , A , 4 , W , Z , 4 , DUMMY , 4 , AUX , 12)
```

```
A =

\[
\begin{bmatrix}
5.0 & 9.0 \\
3.0 & 3.0 \\
1.0 & 1.0 \\
\end{bmatrix}
\begin{bmatrix}
5.0 & 5.0 \\
6.0 & 10.0 \\
3.0 & 3.0 \\
\end{bmatrix}
\begin{bmatrix}
-6.0 & -6.0 \\
-5.0 & -5.0 \\
-1.0 & 3.0 \\
\end{bmatrix}
\begin{bmatrix}
-7.0 & -7.0 \\
-6.0 & -6.0 \\
-5.0 & -5.0 \\
\end{bmatrix}
\]
```

**Output**

```
\[
\begin{bmatrix}
4.000000 & 8.000000 \\
2.000000 & 6.000000 \\
3.000000 & 7.000000 \\
1.000000 & 5.000000 \\
\end{bmatrix}
\]
```
Example 9: This example shows how to find the eigenvalues and selected eigenvectors of a complex long-precision general matrix $A$ of order 4, where:

- NAUX is equal to $2N^2+5N$.
- AUX contains NAUX elements.
- The first, third, and fourth eigenvectors are selected and appear in the first, second, and third columns of matrix $Z$, respectively.
- On output, $A$ has been overwritten.

Note: This matrix is used in Example 6.5 in referenced text [63].
SSPEV, DSPEV, CHPEV, and ZHPEV—Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric Matrix or a Complex Hermitian Matrix

SSPEV and DSPEV compute the eigenvalues and, optionally, the eigenvectors of real symmetric matrix $A$, stored in lower- or upper-packed storage mode. CHPEV and ZHPEV compute the eigenvalues and, optionally, the eigenvectors of complex Hermitian matrix $A$, stored in lower- or upper-packed storage mode. Eigenvalues are returned in vector $w$, and eigenvectors are returned in matrix $Z$:

$$Az = wz$$

where $A = A^T$ or $A = A^H$.

### Table 123. Data Types

<table>
<thead>
<tr>
<th>$A$, $z$</th>
<th>$w$, $aux$</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>Short-precision real</td>
<td>SSPEV</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>Long-precision real</td>
<td>DSPEV</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>Short-precision real</td>
<td>CHPEV</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>Long-precision real</td>
<td>ZHPEV</td>
</tr>
</tbody>
</table>

**Note:** For compatibility with earlier releases of ESSL, you can use the names SSLEV, DSLEV, CHLEV, and ZHLEV for SSPEV, DSPEV, CHPEV, and ZHPEV, respectively.

### Syntax

**Fortran**

```fortran
CALL SSPEV | DSPEV | CHPEV | ZHPEV (iopt, ap, w, z, ldz, n, aux, naux)
```

**C and C++**

```c
sspev | dspev | chpev | zhpev (iopt, ap, w, z, ldz, n, aux, naux);
```

**PL/I**

```pli
CALL SSPEV | DSPEV | CHPEV | ZHPEV (iopt, ap, w, z, ldz, n, aux, naux);
```

### On Entry

**iopt**

indicates the type of computation to be performed, where:

- If $iopt = 0$ or 20, eigenvalues only are computed.
- If $iopt = 1$ or 21, eigenvalues and eigenvectors are computed.

Specified as: a fullword integer; $iopt = 0$, 1, 20, or 21.

**ap**

is the real symmetric or complex Hermitian matrix $A$ of order $n$, whose eigenvalues and, optionally, eigenvectors are computed. It is stored in an array, referred to as $AP$, where:

- If $iopt = 0$ or 1, it is stored in lower-packed storage mode.
- If $iopt = 20$ or 21, it is stored in upper-packed storage mode.

Specified as: a one-dimensional array of (at least) length $n(n+1)/2$, containing numbers of the data type indicated in Table 123. On output, for SSPEV and DSPEV if $iopt = 0$ or 20, and for CHPEV and ZHPEV, $AP$ is overwritten; that is, the original input is not preserved.
w
See “On Return” on page 730.

z
See “On Return.”

ldz
has the following meaning, where:
If $iopt = 0$ or 20, it is not used in the computation.
If $iopt = 1$ or 21, it is the leading dimension of the output array specified for $z$.
Specified as: a fullword integer. It must have the following value, where:
If $iopt = 0$ or 20, $ldz > 0$.
If $iopt = 1$ or 21, $ldz > 0$ and $ldz \geq n$.

$n$
is the order of matrix $A$. Specified as: a fullword integer; $n \geq 0$.

aux
has the following meaning:
If $naux = 0$ and error 2015 is unrecoverable, $aux$ is ignored.
Otherwise, it is a storage work area used by this subroutine. Its size is specified by $naux$.
Specified as: an area of storage, containing numbers of the data type indicated in Table 123 on page 729. On output, the contents are overwritten.

$naux$
is the size of the work area specified by $aux$—that is, the number of elements in $aux$. Specified as: a fullword integer, where:
If $naux = 0$ and error 2015 is unrecoverable, SSPEV, DSPEV, CHPEV, and ZHPEV dynamically allocate the work area used by the subroutine. The work area is deallocated before control is returned to the calling program.
Otherwise, It must have the following value, where:
For SSPEV and DSPEV:
If $iopt = 0$ or 20, $naux \geq n$.
If $iopt = 1$ or 21, $naux \geq 2n$.
For CHPEV and ZHPEV:
If $iopt = 0$ or 20, $naux \geq 3n$.
If $iopt = 1$ or 21, $naux \geq 4n$.

On Return

$w$
is the vector $w$ of length $n$, containing the eigenvalues of $A$ in ascending order. Returned as: a one-dimensional array of (at least) length $n$, containing numbers of the data type indicated in Table 123 on page 729.

$z$
has the following meaning, where:
If $iopt = 0$ or 20, it is not used in the computation.
If $iopt = 1$ or 21, it is the matrix $Z$ of order $n$, containing the orthonormal eigenvectors of matrix $A$. The eigenvector in column $i$ of matrix $Z$ corresponds to the eigenvalue $w_i$. 
SSPEV, DSPEV, CHPEV, and ZHPEV

Returned as: an idz by (at least) n array, containing numbers of the data type indicated in Table 123 on page 729.

Notes
1. When you specify iopt = 0 or 20, you must specify:
   - A positive value for ldz
   - A dummy argument for z (see “Example 1” on page 733)
2. The following items must have no common elements: matrix A, matrix Z, vector w, and the data area specified for aux; otherwise, results are unpredictable. See “Concepts” on page 53.
3. On input, the imaginary parts of the diagonal elements of the complex Hermitian matrix A are assumed to be zero, so you do not have to set these values.
4. For a description of how real symmetric matrices are stored in lower- or upper-packed storage mode, see “Lower-Packed Storage Mode” on page 64 or “Upper-Packed Storage Mode” on page 65, respectively.
   For a description of how complex Hermitian matrices are stored in lower- or upper-packed storage mode, see “Complex Hermitian Matrix” on page 68.
5. You have the option of having the minimum required value for naux dynamically returned to your program. For details, see “Using Auxiliary Storage in ESSL” on page 30.

Function: The next two sections describe the methods used to compute the eigenvalues and, optionally, the eigenvectors for either a real symmetric matrix or a complex Hermitian matrix. For more information on these methods, see references [39], [43], [63], [87], [97], and [99]. If n is 0, no computation is performed. The results of the computations using short- and long-precision data can vary in accuracy. See “Example 3” on page 734 and “Example 4” on page 735 for an illustration of the difference in results. Eigenvalues computed using equivalent iopt values are mathematically equivalent, but are not guaranteed to be bitwise identical. For example, the results computed using iopt = 0 and iopt = 20 are mathematically equivalent, but are not necessarily bitwise identical.

These algorithms have a tendency to generate underflows that may hurt overall performance. The system default is to mask underflow, which improves the performance of these subroutines.

Real Symmetric Matrix: The eigenvalues and, optionally, the eigenvectors of a real symmetric matrix A are computed as follows:

- For iopt = 0 or 20, the eigenvalues are computed as follows:
  1. Reduce the real symmetric matrix A to a real symmetric tridiagonal matrix using orthogonal similarity transformations.
  2. Compute the eigenvalues of the real symmetric tridiagonal matrix using the implicit QL algorithm.
  3. The eigenvalues are ordered and returned in vector w.
- For iopt = 1 or 21, the eigenvalues and eigenvectors are computed as follows:
  1. Reduce the real symmetric matrix A to a real symmetric tridiagonal matrix using and accumulating orthogonal similarity transformations.
2. Compute the eigenvalues of the real symmetric tridiagonal matrix and the
eigenvectors of the real symmetric matrix using the implicit QL algorithm.
3. The eigenvalues are ordered and returned in vector $w$, and the
corresponding eigenvectors are returned in matrix $Z$.

**Complex Hermitian Matrix:** The eigenvalues and, optionally, the eigenvectors of a
complex Hermitian matrix $A$ are computed as follows:

- For $iopt = 0$ or $20$, the eigenvalues are computed as follows:
  1. Reduce the complex Hermitian matrix $A$ to a real symmetric tridiagonal
     matrix using unitary similarity transformations.
  2. Compute the eigenvalues of the real symmetric tridiagonal matrix using the
     implicit QL algorithm.
  3. The eigenvalues are ordered and returned in vector $w$.

- For $iopt = 1$ or $21$, the eigenvalues and eigenvectors are computed as follows:
  1. Reduce the complex Hermitian matrix $A$ to a real symmetric tridiagonal
     matrix using unitary similarity transformations.
  2. Compute the eigenvalues and eigenvectors of the real symmetric
     tridiagonal matrix using the implicit QL algorithm.
  3. Back transform the eigenvectors of the real symmetric tridiagonal matrix to
     those of the original complex Hermitian matrix.
  4. The eigenvalues are ordered and returned in vector $w$, and the
     corresponding eigenvectors are returned in matrix $Z$.

**Error Conditions**

**Resource Errors:** Error 2015 is unrecoverable, $naux = 0$, and unable to allocate
work area.

**Computational Errors:** Eigenvalue ($i$) failed to converge after ($xxx$) iterations:

- The eigenvalues ($w_j, j = 1, 2, ..., i-1$) are correct, but are unordered.
- If $iopt = 1$ or $21$, then $z$ is modified, but no eigenvectors are correct.
- If $iopt = 0$ or $20$ for SSPEV and DSPEV, $ap$ is modified.
- For CHPEV and ZHPEV, $ap$ is modified.
- The return code is set to 1.
- $i$ and $xxx$ can be determined at run time by use of the ESSL
  error-handling-facilities. To obtain this information, you must use ERRSET to
  change the number of allowable errors for error code 2101 in the ESSL error
  option table; otherwise, the default value causes your program to terminate
  when this error occurs. See “What Can You Do about ESSL Computational
  Errors?” on page 46.

**Input-Argument Errors**

1. $iopt \neq 0, 1, 20,$ or $21$
2. $n < 0$
3. $ldz \leq 0$ and $iopt = 1$ or $21$
4. $n > ldz$ and $iopt = 1$ or $21$
5. Error 2015 is recoverable or $naux=0$, and $naux$ is too small—that is, less than
   the minimum required value. Return code 2 is returned if error 2015 is
   recoverable.
**Example 1:** This example shows how to find the eigenvalues only of a real short-precision symmetric matrix $A$ of order 3, stored in lower-packed storage mode. Matrix $A$ is:

\[
\begin{pmatrix}
1.0 & -1.0 & 0.0 \\
-1.0 & 2.0 & -1.0 \\
0.0 & -1.0 & 1.0 \\
\end{pmatrix}
\]

where:

- NAUX is equal to $N$.
- AUX contains $N$ elements.
- LDZ is set to 1 to avoid an error condition.
- DUMMY is used as a placeholder for argument $z$, which is not used in the computation.
- On output, $AP$ has been overwritten.

**Call Statement and Input**

\[
\text{CALL SSPEV( 0 , AP , W , DUMMY , 1 , 3 , AUX , 3 )}
\]

$AP = (1.0, -1.0, 0.0, 2.0, -1.0, 1.0)$

**Output**

\[
\begin{pmatrix}
0.000000 \\
1.000000 \\
3.000000 \\
\end{pmatrix}
\]

**Example 2:** This example shows how to find the eigenvalues and eigenvectors of a real short-precision symmetric matrix $A$ of order 4, stored in upper-packed storage mode. Matrix $A$ is:

\[
\begin{pmatrix}
5.0 & 4.0 & 1.0 & 1.0 \\
4.0 & 5.0 & 1.0 & 1.0 \\
1.0 & 1.0 & 4.0 & 2.0 \\
1.0 & 1.0 & 2.0 & 4.0 \\
\end{pmatrix}
\]

where:

- NAUX is equal to $2N$.
- AUX contains $2N$ elements.

**Note:** This matrix is used in Example 4.1 in referenced text [63].

**Call Statement and Input**

\[
\text{CALL SSPEV( 21 , AP , W , Z , 4 , 4 , AUX , 8 )}
\]

$AP = (5.0, 4.0, 5.0, 1.0, 1.0, 4.0, 1.0, 1.0, 2.0, 4.0)$
SSPEV, DSPEV, CHPEV, and ZHPEV

Output

\[
W = \begin{bmatrix}
1.000000 \\
2.000000 \\
5.000000 \\
9.999999 \\
\end{bmatrix}
\]

\[
Z = \begin{bmatrix}
0.707107 & 0.000000 & 0.316227 & 0.632455 \\
-0.707107 & 0.000000 & 0.316228 & 0.632455 \\
0.000000 & -0.707106 & -0.632455 & 0.316227 \\
0.000000 & 0.707107 & -0.632455 & 0.316228 \\
\end{bmatrix}
\]

Example 3: This example shows how to find the eigenvalues and eigenvectors of a real short-precision symmetric matrix \( A \), stored in lower-packed storage mode, which has an eigenvalue of multiplicity 2. Matrix \( A \) is:

\[
A = \begin{bmatrix}
6.0 & 4.0 & 4.0 & 1.0 \\
4.0 & 6.0 & 1.0 & 4.0 \\
4.0 & 1.0 & 6.0 & 4.0 \\
1.0 & 4.0 & 4.0 & 6.0 \\
\end{bmatrix}
\]

where:

- \( NAUX \) is equal to \( 2N \).
- \( AUX \) contains \( 2N \) elements.

Note: This matrix is used in Example 4.2 in referenced text [63].

Call Statement and Input

\[
\text{CALL SSPEV}(1, \text{AP}, \text{W}, \text{Z}, 7, 4, \text{AUX}, 8)
\]

\[
\text{AP} = (6.0, 4.0, 4.0, 1.0, 6.0, 1.0, 4.0, 6.0, 4.0, 6.0)
\]

Output

\[
W = \begin{bmatrix}
1.000000 \\
4.999999 \\
5.000000 \\
15.000000 \\
\end{bmatrix}
\]

\[
Z = \begin{bmatrix}
-0.500000 & 0.000000 & 0.707107 & 0.500000 \\
0.500000 & 0.707107 & 0.000000 & 0.500000 \\
0.500000 & -0.707107 & 0.000000 & 0.500000 \\
-0.500000 & 0.000000 & -0.707107 & 0.500000 \\
\end{bmatrix}
\]
**Example 4:** This example shows how the results of Example 3 differ if matrix $A$ is a real long-precision symmetric matrix.

**Call Statement and Input**

```
IOPT AP W Z LDZ N AUS NAUX
| | | | | | |
CALL DSPEV(1 , AP , W , Z , 7 , 4 , AUS , 8)
```

**Output**

$$W = \begin{bmatrix}
-1.000000 \\
5.000000 \\
5.000000 \\
15.000000
\end{bmatrix}$$

$$Z = \begin{bmatrix}
-0.500000 & -0.216773 & -0.673060 & 0.500000 \\
0.500000 & 0.673060 & -0.216773 & 0.500000 \\
0.500000 & -0.673060 & 0.216773 & 0.500000 \\
-0.500000 & 0.216773 & 0.673060 & 0.500000 \\
\end{bmatrix}$$

**Example 5:** This example shows how to find the eigenvalues and eigenvectors of a complex Hermitian matrix $A$ of order 2, stored in lower-packed storage mode. Matrix $A$ is:

$$A = \begin{bmatrix}
(1.0, 0.0) & (0.0, -1.0) \\
(0.0, 1.0) & (1.0, 0.0)
\end{bmatrix}$$

where:
- $\text{NAUX}$ is equal to $4N$.
- $\text{AUX}$ contains $4N$ elements.
- On output, $\text{AP}$ has been overwritten.

**Note:** This matrix is used in Example 6.1 in referenced text [63].

**Call Statement and Input**

```
IOPT AP W Z LDZ N AUS NAUX
| | | | | | |
CALL ZHPEV(1 , AP , W , Z , 2 , 2 , AUS , 8)
```

$$AP = ((1.0, .), (0.0, 1.0), (1.0, .))$$

**Output**

$$W = \begin{bmatrix}
0.000000 \\
2.000000
\end{bmatrix}$$
SSPEV, DSPEV, CHPEV, and ZHPEV

$$Z = \begin{pmatrix} (0.000000, -0.707107) & (0.000000, -0.707107) \\ (-0.707107, 0.000000) & (0.707107, 0.000000) \end{pmatrix}$$

**Example 6:** This example shows how to find the eigenvalues only of a complex Hermitian matrix $A$ of order 4, stored in upper-packed storage mode. Matrix $A$ is:

$$A = \begin{pmatrix} (3.0, 0.0) & (1.0, 0.0) & (0.0, 0.0) & (0.0, 2.0) \\ (1.0, 0.0) & (3.0, 0.0) & (0.0, -2.0) & (0.0, 0.0) \\ (0.0, 0.0) & (0.0, 2.0) & (1.0, 0.0) & (1.0, 0.0) \\ (0.0, -2.0) & (0.0, 0.0) & (1.0, 0.0) & (1.0, 0.0) \end{pmatrix}$$

where:
- $NAUX$ is equal to $3N$.
- $AUX$ contains $3N$ elements.
- $LDZ$ is set to 1 to avoid an error condition.
- $DUMMY$ is used as a placeholder for argument $z$, which is not used in the computation.
- On output, $AP$ has been overwritten.

**Note:** This matrix is used in Example 6.6 in referenced text [63 ].

**Call Statement and Input**

```fortran
CALL ZHPEV(20 , AP , W , DUMMY , 1 , 4 , AUX , 12)
```

$AP$ = $((3.0, .), (1.0, 0.0), (3.0, .), (0.0, 0.0), (0.0, -2.0), (1.0, .), (0.0, 2.0), (0.0, 0.0), (1.0, 0.0), (1.0, .))$

**Output**

$$W = \begin{pmatrix} -0.828427 \\ 0.000000 \\ 4.000000 \\ 4.828427 \end{pmatrix}$$

**Example 7:** This example shows how to find the eigenvalues and eigenvectors of a complex Hermitian matrix $A$ of order 2, stored in lower-packed storage mode. Matrix $A$ is:

$$A = \begin{pmatrix} (1.0, 0.0) & (1.0, -1.0) \\ (1.0, 1.0) & (1.0, 0.0) \end{pmatrix}$$

where:
- $NAUX$ is equal to $4N$.
- $AUX$ contains $4N$ elements.
- On output, $AP$ has been overwritten.

**Note:** This matrix is used in Example 6.2 in referenced text [63 ].
Call Statement and Input

\[
\begin{array}{cccccccc}
\text{IOPT} & \text{AP} & \text{W} & \text{Z} & \text{LDZ} & \text{N} & \text{AUX} & \text{NAUX} \\
\mid & \mid & \mid & \mid & \mid & \mid & & \\
\end{array}
\]

CALL ZHPEV( 1 , AP , W , Z , 2 , 2 , AUX , 8 )

\[\text{AP} = ((1.0, \ ), (1.0, 1.0), (1.0, \ ))\]

Output

\[
\begin{bmatrix}
-0.414214 \\
2.414214
\end{bmatrix}
\]

\[
\begin{bmatrix}
(0.500000, -0.500000) & (0.500000, -0.500000) \\
(-0.707107, 0.000000) & (0.707107, 0.000000)
\end{bmatrix}
\]
SSPSV, DSPSV, CHPSV, and ZHPSV

SSPSV, DSPSV, CHPSV, and ZHPSV—Extreme Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric Matrix or a Complex Hermitian Matrix

SSPSV and DSPSV compute the extreme eigenvalues and, optionally, the eigenvectors of real symmetric matrix $A$, stored in lower- or upper-packed storage mode. CHPSV and ZHPSV compute the extreme eigenvalues and, optionally, the eigenvectors of complex Hermitian matrix $A$, stored in lower- or upper-packed storage mode. The extreme eigenvalues are returned in vector $w$, and the corresponding eigenvectors are returned in matrix $Z$: \[
A z = wz.
\]

where $A = A^T$ or $A = A^H$.

<table>
<thead>
<tr>
<th>Table 124. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A, z$</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
<tr>
<td>Short-precision complex</td>
</tr>
<tr>
<td>Long-precision complex</td>
</tr>
</tbody>
</table>

Note: If you want to compute 10% or fewer eigenvalues only, or you want to compute 30% or fewer eigenvalues and eigenvectors, you get better performance if you use _SSPSV and _ZHPSV instead of _SPEV and _HPEV, respectively. For all other uses, you should use _SPEV and _HPEV.

Syntax

Fortran

| CALL SSPSV | DSPSV | CHPSV | ZHPSV (iopt, ap, w, z, ldz, n, m, aux, naux) |

C and C++

| sspsv | dspsv | chpsv | zhpsv (iopt, ap, w, z, ldz, n, m, aux, naux); |

PL/I

| CALL SSPSV | DSPSV | CHPSV | ZHPSV (iopt, ap, w, z, ldz, n, m, aux, naux); |

On Entry

iopt indicates the type of computation to be performed, where:

If $iopt = 0$ or 20, the $m$ smallest eigenvalues only are computed.

If $iopt = 1$ or 21, the $m$ smallest eigenvalues and the eigenvectors are computed.

If $iopt = 10$ or 30, the $m$ largest eigenvalues only are computed.

If $iopt = 11$ or 31, the $m$ largest eigenvalues and the eigenvectors are computed.

Specified as: a fullword integer; $iopt = 0, 1, 10, 11, 20, 21, 30,$ or 31.

ap is the real symmetric or complex Hermitian matrix $A$ of order $n$, whose $m$ smallest or largest eigenvalues and, optionally, the corresponding eigenvectors are computed. It is stored in an array, referred to as $AP$, where:

If $iopt = 0, 1, 10, or 11$, it is stored in lower-packed storage mode.
If $iopt = 20, 21, 30, \text{ or } 31$, it is stored in upper-packed storage mode.

Specified as: a one-dimensional array of (at least) length $n(n+1)/2$, containing numbers of the data type indicated in Table 124 on page 738. On output, $AP$ is overwritten; that is, the original input is not preserved.

$w$

See “On Return.”

$z$

See “On Return.”

$ldz$

has the following meaning, where:

If $iopt = 0, 10, 20, \text{ or } 30$, it is not used in the computation.

If $iopt = 1, 11, 21, \text{ or } 31$, it is the leading dimension of the output array specified for $z$.

Specified as: a fullword integer. It must have the following value, where:

If $iopt = 0, 10, 20, \text{ or } 30$, $ldz > 0$.

If $iopt = 1, 11, 21, \text{ or } 31$, $ldz > 0$ and $ldz \geq n$.

$n$

is the order of matrix $A$. Specified as: a fullword integer; $n \geq 0$.

$m$

is the number of eigenvalues and, optionally, eigenvectors to be computed.

Specified as: a fullword integer; $0 \leq m \leq n$.

$aux$

has the following meaning:

If $naux = 0$ and error 2015 is unrecoverable, $aux$ is ignored.

Otherwise, it is a storage work area used by this subroutine. Its size is specified by $naux$.

Specified as: an area of storage, containing numbers of the data type indicated in Table 124 on page 738. On output, the contents are overwritten.

$naux$

is the size of the work area specified by $aux$—that is, the number of elements in $aux$. Specified as: a fullword integer, where:

If $naux = 0$ and error 2015 is unrecoverable, SSPSV, DSPSV, CHPSV, and ZHPSV dynamically allocate the work area used by the subroutine. The work area is deallocated before control is returned to the calling program.

Otherwise, It must have the following value, where:

For SSPSV and DSPSV:

If $iopt = 0, 10, 20, \text{ or } 30$, $naux \geq 3n$.

If $iopt = 1, 11, 21, \text{ or } 31$, $naux \geq 9n$.

For CHPSV and ZHPSV:

If $iopt = 0, 10, 20, \text{ or } 30$, $naux \geq 5n$.

If $iopt = 1, 11, 21, \text{ or } 31$, $naux \geq 11n$.

On Return
SSPSV, DSPSV, CHPSV, and ZHPSV

\( w \)

is the vector \( w \) of length \( n \), containing in the first \( m \) positions of either the \( m \) smallest eigenvalues of \( A \) in ascending order or the \( m \) largest eigenvalues of \( A \) in descending order.

Returned as: a one-dimensional array of (at least) length \( n \), containing numbers of the data type indicated in Table 124 on page 738.

\( z \)

has the following meaning, where:

If \( iopt = 0, 10, 20, \) or \( 30 \), it is not used in the computation.

If \( iopt = 1, 11, 21, \) or \( 31 \), it is the \( n \) by \( m \) matrix \( Z \), containing \( m \) orthonormal eigenvectors of matrix \( A \). The eigenvector in column \( i \) of matrix \( Z \) corresponds to the eigenvalue \( \lambda_i \).

Returned as: an \( ldz \) by (at least) \( m \) array, containing numbers of the data type indicated in Table 124 on page 738.

**Notes**

1. When you specify \( iopt = 0, 10, 20, \) or \( 30 \), you must specify:
   - A positive value for \( ldz \)
   - A dummy argument for \( z \) (see “Example 4" on page 744)

2. The following items must have no common elements: matrix \( A \), matrix \( Z \), vector \( w \), and the data area specified for \( aux \); otherwise, results are unpredictable. See “Concepts" on page 53.

3. On input, the imaginary parts of the diagonal elements of the complex Hermitian matrix \( A \) are assumed to be zero, so you do not have to set these values.

4. For a description of how real symmetric matrices are stored in lower- or upper-packed storage mode, see “Lower-Packed Storage Mode" on page 64 or “Upper-Packed Storage Mode" on page 65, respectively.

   For a description of how complex Hermitian matrices are stored in lower- or upper-packed storage mode, see “Complex Hermitian Matrix" on page 68.

5. You have the option of having the minimum required value for \( naux \) dynamically returned to your program. For details, see “Using Auxiliary Storage in ESSL" on page 30.

**Function:** The methods used to compute the extreme eigenvalues and, optionally, the eigenvectors for either a real symmetric matrix or a complex Hermitian matrix are described in the steps below. For more information on these methods, see references [39], [43], [63], [87], [97], and [99]. If \( n \) or \( m \) is 0, no computation is performed. The results of the computations using short- and long-precision data can vary in accuracy. Eigenvalues computed using equivalent \( iopt \) values are mathematically equivalent, but are not guaranteed to be bitwise identical. For example, the results computed using \( iopt = 0 \) and \( iopt = 20 \) are mathematically equivalent, but are not necessarily bitwise identical.

These algorithms have a tendency to generate underflows that may hurt overall performance. The system default is to mask underflow, which improves the performance of these subroutines.
The extreme eigenvalues and, optionally, the eigenvectors of a real symmetric matrix $A$ or complex Hermitian matrix $A$ are computed as follows:

- For $i_{\text{opt}} = 0, 10, 20,$ or $30$, the eigenvalues are computed as follows:
  1. Reduce the real symmetric matrix $A$ (for SSPSV and DSPSV) or complex Hermitian matrix $A$ (for CHPSV and ZHPSV) to a real symmetric tridiagonal matrix using orthogonal similarity transformations (for SSPSV and DSPSV) or unitary similarity transforms (for CHPSV and ZHPSV).
  2. Compute the $m$ smallest eigenvalues or $m$ largest eigenvalues of the real symmetric tridiagonal matrix using a rational variant of the QR method with Newton corrections.
  3. The eigenvalues are returned in vector $w$ in the first $m$ positions, where the $m$ smallest are placed in ascending order, or the $m$ largest are placed in descending order.

- For $i_{\text{opt}} = 1, 11, 21,$ or $31$, the eigenvalues and eigenvectors are computed as follows:
  1. Reduce the real symmetric matrix $A$ (for SSPSV and DSPSV) or complex Hermitian matrix $A$ (for CHPSV and ZHPSV) to a real symmetric tridiagonal matrix using orthogonal similarity transformations (for SSPSV and DSPSV) or unitary similarity transforms (for CHPSV and ZHPSV).
  2. Compute the $m$ smallest eigenvalues or $m$ largest eigenvalues of the real symmetric tridiagonal matrix using a rational variant of the QR method with Newton corrections.
  3. Compute the corresponding eigenvectors of the real symmetric tridiagonal matrix using inverse iteration.
  4. Back transform the eigenvectors of the real symmetric tridiagonal matrix to those of the original matrix.
  5. The eigenvalues are returned in vector $w$ in the first $m$ positions, where the $m$ smallest are placed in ascending order, or the $m$ largest are placed in descending order. The corresponding eigenvectors are returned in matrix $Z$.

**Error Conditions**

**Resource Errors:** Error 2015 is unrecoverable, $n_{aux} = 0$, and unable to allocate work area.

**Computational Errors**

1. Eigenvalue ($i$) failed to converge after ($xxx$) iterations. (The computational error message may occur multiple times with processing continuing after each error, because the number of allowable errors for error code 2114 is set to be unlimited in the ESSL error option table.)
   - The eigenvalue, $w_{i}$, is the best estimate obtained. Any eigenvalues for which this message has not been issued are correct.
   - $ap$ is modified.
   - The return code is set to 1.
   - $i$ and $xxx$ can be determined at run time by use of the ESSL error-handling facilities. To obtain this information, you must use ERRSET to change the number of allowable errors for error code 2199 in the ESSL error option table. See “What Can You Do about ESSL Computational Errors?” on page 46.

2. Eigenvector ($i$) failed to converge after ($xxx$) iterations. (The computational error message may occur multiple times with processing continuing after each error, because the number of allowable errors for error code 2102 is set to be unlimited in the ESSL error option table.)
SSPSV, DSPSV, CHPSV, and ZHPSV

- All eigenvalues are correct.
- The eigenvector that failed to converge is set to zero; however, any selected eigenvectors for which this message is not issued are correct.
- $ap$ is modified.
- The return code is set to 2.
- $i$ and $xxx$ can be determined at run time by use of the ESSL error-handling facilities. To obtain this information, you must use ERRSET to change the number of allowable errors for error 2199 in the ESSL error option table. See "What Can You Do about ESSL Computational Errors?" on page 46.

Input-Argument Errors

1. $i_{opt} \neq 0, 1, 10, 11, 20, 21, 30, \text{ or } 31$
2. $n < 0$
3. $m < 0$
4. $m > n$
5. $ldz \leq 0$ and $i_{opt} = 1, 11, 21, \text{ or } 31$
6. $n > ldz$ and $i_{opt} = 1, 11, 21, \text{ or } 31$
7. Error 2015 is recoverable or $naux \neq 0$, and $naux$ is too small—that is, less than the minimum required value. Return code 3 is returned if error 2015 is recoverable.

Example 1: This example shows how to find the two smallest eigenvalues and corresponding eigenvectors of a real long-precision symmetric matrix $A$ of order 4, stored in upper-packed storage mode. Matrix $A$ is:

$$
\begin{bmatrix}
5.0 & 4.0 & 1.0 & 1.0 \\
4.0 & 5.0 & 1.0 & 1.0 \\
1.0 & 1.0 & 4.0 & 2.0 \\
1.0 & 1.0 & 2.0 & 4.0
\end{bmatrix}
$$

where:
- $NAUX$ is equal to 9$N$.
- $AUX$ contains $9N$ elements.
- On output, $AP$ has been overwritten.

Note: This matrix is used in Example 4.1 in referenced text [63].

Call Statement and Input

```
IOPT AP W Z LDZ N M AUX NAUX
| | | ||| | | |
CALL DSPSV(21 , AP , W , Z , 4 , 4 , 2 , AUX , 36)
```

$AP = (5.0, 4.0, 5.0, 1.0, 1.0, 4.0, 1.0, 1.0, 2.0, 4.0)$

Output

$$
W = \begin{bmatrix}
1.000000 \\
2.000000 \\
. \\
. 
\end{bmatrix}
$$
SSPSV, DSPSV, CHPSV, and ZHPSV

\[
Z = \begin{bmatrix}
-0.707107 & 0.000000 \\
0.707107 & 0.000000 \\
0.000000 & -0.707107 \\
0.000000 & 0.707107 \\
\end{bmatrix}
\]

**Example 2:** This example shows how to find the three largest eigenvalues and corresponding eigenvectors of a real long-precision symmetric matrix \( A \) of order 4, stored in lower-packed storage mode, having an eigenvalue of multiplicity two. Matrix \( A \) is:

\[
\begin{bmatrix}
6.0 & 4.0 & 4.0 & 1.0 \\
4.0 & 6.0 & 1.0 & 4.0 \\
4.0 & 1.0 & 6.0 & 4.0 \\
1.0 & 4.0 & 4.0 & 6.0 \\
\end{bmatrix}
\]

where:

- \( \text{NAUX} \) is equal to \( 9N \).
- \( \text{AUX} \) contains \( 9N \) elements.
- On output, \( AP \) has been overwritten.

**Note:** This matrix is used in Example 4.2 in referenced text [63].

**Call Statement and Input**

\[
\begin{array}{cccccccccccc}
\text{IOPT} & \text{AP} & \text{W} & \text{Z} & \text{LDZ} & \text{N} & \text{M} & \text{AUX} & \text{NAUX} \\
\end{array}
\]

CALL DSPSV( 11 , AP , W , Z , 8 , 4 , 3 , AUX , 36 )

\[
AP = (6.0, 4.0, 4.0, 1.0, 6.0, 1.0, 4.0, 6.0, 4.0, 6.0)
\]

**Output**

\[
\begin{bmatrix}
15.000000 \\
5.000000 \\
5.000000 \\
. \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.500000 & 0.707107 & 0.000000 \\
0.500000 & 0.000000 & -0.707107 \\
0.500000 & 0.000000 & 0.707107 \\
0.500000 & -0.707107 & 0.000000 \\
. & . & . \\
. & . & . \\
. & . & . \\
. & . & . \\
\end{bmatrix}
\]

**Example 3:** This example shows how to find the largest eigenvalue and the corresponding eigenvector of a complex Hermitian matrix \( A \) of order 2, stored in lower-packed storage mode. Matrix \( A \) is:
SSPSV, DSPSV, CHPSV, and ZHPSV

\[
\begin{pmatrix}
(1.0, 0.0) & (0.0, -1.0) \\
(0.0, 1.0) & (1.0, 0.0)
\end{pmatrix}
\]

where:

- NAUX is equal to 11N.
- AUX contains 11N elements.
- On output, AP has been overwritten.

**Note:** This matrix is used in Example 6.1 in referenced text [63].

**Call Statement and Input**

\[
\begin{bmatrix}
11 & AP & W & Z & LDZ & N & M & AUX & NAUX
\end{bmatrix}
\]

\[
\text{CALL ZHPSV}(11, AP, W, Z, 2, 2, 1, AUX, 22)
\]

**Output**

\[
W = \begin{bmatrix}
2.000000 \\
. 
\end{bmatrix}
\]

\[
Z = \begin{bmatrix}
(0.000000, -0.707107) \\
(0.707107, 0.000000)
\end{bmatrix}
\]

**Example 4:** This example shows how to find the two smallest eigenvalues only of a complex Hermitian matrix \( A \) of order 4, stored in upper-packed storage mode.

Matrix \( A \) is:

\[
\begin{pmatrix}
(3.0, 0.0) & (1.0, 0.0) & (0.0, 0.0) & (0.0, 2.0) \\
(1.0, 0.0) & (3.0, 0.0) & (0.0, -2.0) & (0.0, 0.0) \\
(0.0, 0.0) & (0.0, 2.0) & (1.0, 0.0) & (1.0, 0.0) \\
(0.0, -2.0) & (0.0, 0.0) & (1.0, 0.0) & (1.0, 0.0)
\end{pmatrix}
\]

where:

- NAUX is equal to 5N.
- AUX contains 5N elements.
- LDZ is set to 1 to avoid an error condition.
- DUMMY is used as a placeholder for argument \( z \), which is not used in the computation.
- On output, AP has been overwritten.

**Note:** This matrix is used in Example 6.6 in referenced text [63].

**Call Statement and Input**
SSPSV, DSPSV, CHPSV, and ZHPSV

CALL ZHPSV( 20, AP, W, DUMMY, 1, 4, 2, AUX, 20 )

\[
\text{AP} = ((3.,.), (1.,0.0), (3.,.0), (0.,0.,0), (0.,-2.), (1.,.0), (0.,2.0), (0.,0.,0), (1.,0.0), (1.,.0))
\]

\[
\text{Output}
\]

\[
\begin{bmatrix}
-0.828427 \\
0.000000 \\
\cdot \\
\cdot 
\end{bmatrix}
\]
SGEGV and DGEGV—Eigenvalues and, Optionally, the Eigenvectors of a Generalized Real Eigensystem, $Az = wBz$, where $A$ and $B$ Are Real General Matrices

These subroutines compute the eigenvalues and, optionally, the eigenvectors of a generalized real eigensystem, where $A$ and $B$ are real general matrices. Eigenvalues $w$ are based on the two parts returned in vectors $\alpha$ and $\beta$, such that $w_i = \alpha_i / \beta_i$ for $\beta_i \neq 0$, and $w_i = \infty$ for $\beta_i = 0$. Eigenvectors are returned in matrix $Z$:

$$Az = wBz$$

<table>
<thead>
<tr>
<th>Table 125. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A, B, \beta, aux$</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
</tbody>
</table>

**Syntax**

**Fortran**

CALL SGEGV | DGEGV (iopt, a, lda, b, ldb, alpha, beta, z, ldz, n, aux, naux)

**C and C++**

sgegv | dgegv (iopt, a, lda, b, ldb, alpha, beta, z, ldz, n, aux, naux);

**PL/I**

CALL SGEGV | DGEGV (iopt, a, lda, b, ldb, alpha, beta, z, ldz, n, aux, naux);

**On Entry**

iopt
indicates the type of computation to be performed, where:

If $iopt = 0$, eigenvalues only are computed.

If $iopt = 1$, eigenvalues and eigenvectors are computed.

Specified as: a fullword integer; $iopt = 0$ or 1.

$a$

is the real general matrix $A$ of order $n$. Specified as: an $lda$ by (at least) $n$ array, containing numbers of the data type indicated in Table 125. On output, $A$ is overwritten; that is, the original input is not preserved.

$lda$

is the leading dimension of the array specified for $a$. Specified as: a fullword integer; $lda > 0$ and $lda \geq n$.

$b$

is the real general matrix $B$ of order $n$. Specified as: an $ldb$ by (at least) $n$ array, containing numbers of the data type indicated in Table 125. On output, $B$ is overwritten; that is, the original input is not preserved.

$ldb$

is the leading dimension of the array specified for $b$. Specified as: a fullword integer; $ldb > 0$ and $ldb \geq n$.

alpha
See “On Return” on page 747.

beta
See “On Return” on page 747.

z
See “On Return” on page 747.
ldz
has the following meaning, where:
If \( iopt = 0 \), it is not used in the computation.
If \( iopt = 1 \), it is the leading dimension of the output array specified for \( z \).
Specified as: a fullword integer. It must have the following value, where:
If \( iopt = 0 \), \( ldz > 0 \).
If \( iopt = 1 \), \( ldz > 0 \) and \( ldz \geq n \).

\( n \)
is the order of matrices \( A \) and \( B \). Specified as: a fullword integer; \( n \geq 0 \).

aux
has the following meaning:
If \( naux = 0 \) and error 2015 is unrecoverable, \( aux \) is ignored.
Otherwise, it is a storage work area used by this subroutine. Its size is specified by \( naux \).
Specified as: an area of storage, containing numbers of the data type indicated in Table 125 on page 746. On output, the contents are overwritten.

\( naux \)
is the size of the work area specified by \( aux \)—that is, the number of elements in \( aux \). Specified as: a fullword integer, where:
If \( naux = 0 \) and error 2015 is unrecoverable, SGEGV and DGEGV dynamically allocate the work area used by the subroutine. The work area is deallocated before control is returned to the calling program.
Otherwise, \( naux \geq 3n \).

On Return

alpha
is the vector \( \alpha \) of length \( n \), containing the numerators of the eigenvalues of the generalized real eigensystem \( Az = wBz \). Returned as: a one-dimensional array of (at least) length \( n \), containing numbers of the data type indicated in Table 125 on page 746.

beta
is the vector \( \beta \) of length \( n \), containing the denominators of the eigenvalues of the generalized real eigensystem \( Az = wBz \). Returned as: a one-dimensional array of (at least) length \( n \), containing numbers of the data type indicated in Table 125 on page 746.

\( z \)
has the following meaning, where:
If \( iopt = 0 \), it is not used in the computation.
If \( iopt = 1 \), it is the matrix \( Z \) of order \( n \), containing the eigenvectors of the generalized real eigensystem, \( Az = wBz \). The eigenvector in column \( i \) of matrix \( Z \) corresponds to the eigenvalue \( w_i \), computed using the \( \alpha_i \) and \( \beta_i \) values. Each eigenvector is normalized so that the modulus of its largest element is 1.
Returned as: an \( ldz \) by (at least) \( n \) array, containing numbers of the data type indicated in Table 125 on page 746.
Notes

1. When you specify $iopt = 0$, you must specify:
   - A positive value for $ldz$
   - A dummy argument for $z$ (see “Example 1” on page 749)

2. Matrices $A$, $B$, and $Z$, vectors $\alpha$ and $\beta$, and the work area specified for $aux$ must have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.

3. You have the option of having the minimum required value for $naux$ dynamically returned to your program. For details, see “Using Auxiliary Storage in ESSL” on page 30.

Function: The following steps describe the methods used to compute the eigenvalues and, optionally, the eigenvectors of a generalized real eigensystem, $Az = wBz$, where $A$ and $B$ are real general matrices. The methods are based upon Moler and Stewart’s QZ algorithm. You must calculate the resulting eigenvalues $w$ based on the two parts returned in vectors $\alpha$ and $\beta$. Each eigenvalue is calculated as follows:

- For $iopt = 0$, the eigenvalues are computed as follows:
  1. Simultaneously reduce $A$ to upper Hessenberg form and $B$ to upper triangular form using orthogonal transformations.
  2. Reduce $A$ from upper Hessenberg form to quasi-upper triangular form while maintaining the upper triangular form of $B$ using orthogonal transformations.
  3. Compute the eigenvalues of the generalized real eigensystem with $A$ in quasi-upper triangular form and $B$ in upper triangular form using orthogonal transformations.
  4. The numerators and denominators of the eigenvalues are returned in vectors $\alpha$ and $\beta$, respectively.

- For $iopt = 1$, the eigenvalues and eigenvectors are computed as follows:
  1. Simultaneously reduce $A$ to upper Hessenberg form and $B$ to upper triangular form using and accumulating orthogonal transformations.
  2. Reduce $A$ from upper Hessenberg form to quasi-upper triangular form while maintaining the upper triangular form of $B$ using and accumulating orthogonal transformations.
  3. Compute the eigenvalues of the generalized real eigensystem with $A$ in quasi-upper triangular form and $B$ in upper triangular form using and accumulating orthogonal transformations.
  4. Compute the eigenvectors of the generalized real eigensystem with $A$ in quasi-upper triangular form and $B$ in upper triangular form using back substitution.
  5. The numerators and denominators of the eigenvalues are returned in vectors $\alpha$ and $\beta$, respectively, and the eigenvectors are returned in matrix $Z$.

For more information on these methods, see references [39], [43], [58], [83], [63], [62], [87], [97], and [99]. If $n$ is 0, no computation is performed. The results of the computations using short- and long-precision data can vary in accuracy.
These algorithms have a tendency to generate underflows that may hurt overall performance. The system default is to mask underflow, which improves the performance of these subroutines.

**Error Conditions**

*Resource Errors:* Error 2015 is unrecoverable, \( \text{naux} = 0 \), and unable to allocate work area.

*Computational Errors:* Eigenvalue \( i \) failed to converge after \( (xxx) \) iterations:

- The eigenvalues \( (w_j, j = i+1, i+2, ..., n) \) are correct.
- If \( iopt = 1 \), then \( Z \) is modified, but no eigenvectors are correct.
- \( A \) and \( B \) have been modified.
- The return code is set to 1.
- \( i \) and \( xxx \) can be determined at run time by use of the ESSL error-handling facilities. To obtain this information, you must use ERRSET to change the number of allowable errors for error code 2101 in the ESSL error option table; otherwise, the default value causes your program to terminate when this error occurs. See "What Can You Do about ESSL Computational Errors?" on page 46.

**Input-Argument Errors**

1. \( iopt \neq 0 \) or \( 1 \)
2. \( n < 0 \)
3. \( lda \leq 0 \)
4. \( n > lda \)
5. \( ldb \leq 0 \)
6. \( n > ldb \)
7. \( ldz \leq 0 \) and \( iopt = 1 \)
8. \( n > ldz \) and \( iopt = 1 \)
9. Error 2015 is recoverable or \( \text{naux} \neq 0 \), and \( \text{naux} \) is too small—that is, less than the minimum required value. Return code 2 is returned if error 2015 is recoverable.

**Example 1:** This example shows how to find the eigenvalues only of a real generalized eigensystem problem, \( AZ = wBZ \), where:

- \( \text{NAUX} \) is equal to \( 3N \).
- \( \text{AUX} \) contains \( 3N \) elements.
- \( \text{LDZ} \) is set to 1 to avoid an error condition.
- \( \text{DUMMY} \) is used as a placeholder for argument \( z \), which is not used in the computation.
- On output, matrices \( A \) and \( B \) are overwritten.

**Note:** These matrices are from page 257 in referenced text [62].

**Call Statement and Input**

```fortran
CALL DGEGV('ROOT', A, 3, B, 3, ALPHA, BETA, DUMMY, 1, 3, AUX, 9)
```
SGEGV and DGEGV

\[
A = \begin{bmatrix}
10.0 & 1.0 & 2.0 \\
1.0 & 3.0 & -1.0 \\
1.0 & 1.0 & 2.0 \\
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
1.0 & 2.0 & 3.0 \\
4.0 & 5.0 & 6.0 \\
7.0 & 8.0 & 9.0 \\
\end{bmatrix}
\]

Output

\[
\text{ALPHA} = \begin{bmatrix}
(4.778424, 0.000000) \\
(-4.760580, 0.000000) \\
(2.769466, 0.000000) \\
\end{bmatrix}
\]

\[
\text{BETA} = \begin{bmatrix}
0.000000 \\
0.934851 \\
15.446215 \\
\end{bmatrix}
\]

Example 2: This example shows how to find the eigenvalues and eigenvectors of a real generalized eigensystem problem, \(AZ = wBZ\), where:

- NAUX is equal to 3N.
- AUX contains 3N elements.
- On output, matrices A and B are overwritten.

Note: These matrices are from page 263 in referenced text [62].

Call Statement and Input

```
CALL DGEGV(1 , A , 5 , B , 5 , ALPHA , BETA , Z , 5 , 5 , AUX , 15)
```

\[
A = \begin{bmatrix}
2.0 & 3.0 & 4.0 & 5.0 & 6.0 \\
4.0 & 4.0 & 5.0 & 6.0 & 7.0 \\
0.0 & 3.0 & 6.0 & 7.0 & 8.0 \\
0.0 & 0.0 & 2.0 & 8.0 & 9.0 \\
0.0 & 0.0 & 0.0 & 1.0 & 10.0 \\
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
1.0 & -1.0 & -1.0 & -1.0 & -1.0 \\
0.0 & 1.0 & -1.0 & -1.0 & -1.0 \\
0.0 & 0.0 & 1.0 & -1.0 & -1.0 \\
0.0 & 0.0 & 0.0 & 1.0 & -1.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 1.0 \\
\end{bmatrix}
\]

Output
\[
\text{ALPHA} = \begin{bmatrix}
(7.950050, 0.000000) \\
(-0.277338, 0.000000) \\
(2.149669, 0.000000) \\
(6.720718, 0.000000) \\
(10.987556, 0.000000)
\end{bmatrix}
\]

\[
\text{BETA} = \begin{bmatrix}
0.374183 \\
1.480299 \\
1.636872 \\
1.213574 \\
0.908837
\end{bmatrix}
\]

\[
\text{Z} = \begin{bmatrix}
(1.000000, 0.000000) & (-0.483408, 0.000000) & (0.540696, 0.000000) \\
(0.565497, 0.000000) & (1.000000, 0.000000) & (0.684441, 0.000000) \\
(0.180429, 0.000000) & (-0.661372, 0.000000) & (-1.000000, 0.000000) \\
(0.034182, 0.000000) & (0.180646, 0.000000) & (0.363671, 0.000000) \\
(0.003039, 0.000000) & (-0.017732, 0.000000) & (-0.041865, 0.000000)
\end{bmatrix}
\]
SSYGV and DSYGV—Eigenvalues and, Optionally, the Eigenvectors of a Generalized Real Symmetric Eigensystem, \(Az = wBz\), where \(A\) Is Real Symmetric and \(B\) Is Real Symmetric Positive Definite

These subroutines compute the eigenvalues and, optionally, the eigenvectors of a generalized real symmetric eigensystem, where \(A\) is a real symmetric matrix, and \(B\) is a real positive definite symmetric matrix. Both \(A\) and \(B\) are stored in lower storage mode in two-dimensional arrays. Eigenvalues are returned in vector \(w\), and eigenvectors are returned in matrix \(Z\):

\[Az = wBz\]

where \(A = A^T\), \(B = B^T\), and \(x^T B x > 0\).

### Syntax

<table>
<thead>
<tr>
<th>Data Types</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real, (A, B, w, Z, aux)</td>
<td>SSYGV</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DSYGV</td>
</tr>
</tbody>
</table>

**Fortran**

\[
\begin{align*}
\text{CALL SSYGV | DSYGV (iopt, a, lda, b, ldb, w, z, ldz, n, aux, naux)}; \\
\text{ssygv | dsygv (iopt, a, lda, b, ldb, w, z, ldz, n, aux, naux)};
\end{align*}
\]

**PL/I**

\[
\begin{align*}
\text{CALL SSYGV | DSYGV (iopt, a, lda, b, ldb, w, z, ldz, n, aux, naux)};
\end{align*}
\]

**On Entry**

- \(iopt\) indicates the type of computation to be performed, where:
  - If \(iopt = 0\), eigenvalues only are computed.
  - If \(iopt = 1\), eigenvalues and eigenvectors are computed.

- \(a\) is the real symmetric matrix \(A\) of order \(n\). It is stored in lower storage mode. Specified as: a fullword integer; \(iopt = 0 \text{ or } 1\).

- \(lda\) is the leading dimension of the array specified for \(a\). Specified as: a fullword integer; \(lda > 0 \text{ and } lda \geq n\).

- \(b\) is the real positive definite symmetric matrix \(B\) of order \(n\). It is stored in lower storage mode. Specified as: an \(ldb\) by (at least) \(n\) array, containing numbers of the data type indicated in Table 126. On output, the data in the lower triangle of \(B\) is overwritten; that is, the original input is not preserved.

- \(ldb\) is the leading dimension of the array specified for \(b\). Specified as: a fullword integer; \(ldb > 0 \text{ and } ldb \geq n\).
See “On Return” on page 753.

see “On Return.”

**ldz**

has the following meaning, where:

- If *iopt* = 0, it is not used in the computation.
- If *iopt* = 1, it is the leading dimension of the output array specified for *z*.

Specified as: a fullword integer. It must have the following value, where:

- If *iopt* = 0, **ldz** > 0.
- If *iopt* = 1, **ldz** > 0 and **ldz** ≥ **n**.

**n**

is the order of matrices *A* and *B*. Specified as: a fullword integer; **n** ≥ 0.

**aux**

has the following meaning:

- If *naux* = 0 and error 2015 is unrecoverable, **aux** is ignored.
- Otherwise, it is a storage work area used by this subroutine. Its size is specified by *naux*.

Specified as: an area of storage, containing numbers of the data type indicated in Table 126 on page 752. On output, the contents are overwritten.

**naux**

is the size of the work area specified by *aux*—that is, the number of elements in *aux*. Specified as: a fullword integer, where:

- If *naux* = 0 and error 2015 is unrecoverable, SSYGV and DSYGV dynamically allocate the work area used by the subroutine. The work area is deallocated before control is returned to the calling program.
- Otherwise, it must have the following value, where:

- If *iopt* = 0, **naux** ≥ **n**.
- If *iopt* = 1, **naux** ≥ 2**n**.

**On Return**

**w**

is the vector *w* of length **n**, containing the eigenvalues of the generalized real symmetric eigensystem *Az* = *wBz* in ascending order. Returned as: a one-dimensional array of (at least) length **n**, containing numbers of the data type indicated in Table 126 on page 752.

**z**

has the following meaning, where:

- If *iopt* = 0, it is not used in the computation.
- If *iopt* = 1, it is the matrix *Z* of order **n**, containing the eigenvectors of the generalized real symmetric eigensystem, *Az* = *wBz*. The eigenvectors are normalized so that *Z'Z* = *I*. The eigenvector in column *i* of matrix *Z* corresponds to the eigenvalue *w*.

Returned as: an **ldz** by (at least) **n** array, containing numbers of the data type indicated in Table 126 on page 752.
Notes

1. When you specify \( iopt = 0 \), you must specify:
   - A positive value for \( ldz \)
   - A dummy argument for \( z \) (see “Example 1” on page 755)

2. Matrices \( A \) and \( Z \) may coincide. Matrices \( A \) and \( B \), vector \( w \), and the data area specified for \( aux \) must have no common elements; otherwise, results are unpredictable. Matrices \( Z \) and \( B \), vector \( w \), and the data area specified for \( aux \) must also have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.

3. For a description of how real symmetric matrices are stored in lower storage mode, see “Lower Storage Mode” on page 66.

4. You have the option of having the minimum required value for \( naux \) dynamically returned to your program. For details, see “Using Auxiliary Storage in ESSL” on page 30.

Function: The following steps describe the methods used to compute the eigenvalues and, optionally, the eigenvectors of a generalized real symmetric eigensystem, \( Az = wBz \), where \( A \) is a real symmetric matrix, and \( B \) is a real positive definite symmetric matrix. Both \( A \) and \( B \) are stored in lower storage mode in two-dimensional arrays.

1. Compute the Cholesky Decomposition of \( B \):
   \[
   B = LL^T
   \]
   For a description of methods used in this computation, see “SPPF, DPPF, SPOF, DPOF, CPOF, and ZPOF—Positive Definite Real Symmetric or Complex Hermitian Matrix Factorization” on page 491.

2. Compute \( C \):
   \[
   C = L^{-1}AL^{-T}
   \]
   In this computation, \( C \) overwrites \( A \).

3. Solve the real symmetric eigensystems analysis problem, computing the eigenvalues \( w \) and, optionally, the eigenvectors \( Y \):
   \[
   CY = wY
   \]
   where:
   \[
   Y = L^TZ
   \]
   For a description of the methods used for this computation, see “Real Symmetric Matrix” on page 731. In this computation, \( Y \) overwrites \( Z \).

4. If eigenvectors are requested (with \( iopt = 1 \)), transform the eigenvectors \( Y \) into the eigenvectors \( Z \) of the original system, \( Az = wBz \), by solving \( L^TZ = Y \) for \( Z \):
   \[
   Z = L^{-T}Y
   \]
   For more information on these methods, see references [39], [43], [58], [63], [62], [87], [97], and [99]. If \( n \) is 0, no computation is performed. The results of the computations using short- and long-precision data can vary in accuracy.
These algorithms have a tendency to generate underflows that may hurt overall performance. The system default is to mask underflow, which improves the performance of these subroutines.

**Error Conditions**

**Resource Errors:** Error 2015 is unrecoverable, naux = 0, and unable to allocate work area.

**Computational Errors**

1. The \( B \) matrix is not positive definite. The leading minor of order \( i \) has a nonpositive determinant.
   - \( B \) is modified, but no eigenvalues or eigenvectors are correct.
   - The return code is set to 1.
   - \( i \) can be determined at run time by use of the ESSL error-handling facilities. To obtain this information, you must use ERRSET to change the number of allowable errors for error code 2115 in the ESSL error option table; otherwise, the default value causes your program to terminate when this error occurs. See “What Can You Do about ESSL Computational Errors?” on page 46.

2. Eigenvalue \((j)\) failed to converge after \((xxx)\) iterations:
   - The eigenvalues \((w_j, j = 1, 2, ..., i-1)\) are correct, but are unordered.
   - If \( iopt = 1 \), then \( z \) is modified, but no eigenvectors are correct.
   - \( A \) and \( B \) have been modified.
   - The return code is set to 2.
   - \( i \) and \( xxx \) can be determined at run time by use of the ESSL error-handling facilities. To obtain this information, you must use ERRSET to change the number of allowable errors for error code 2101 in the ESSL error option table; otherwise, the default value causes your program to terminate when this error occurs. See “What Can You Do about ESSL Computational Errors?” on page 46.

**Input-Argument Errors**

1. \( iopt \neq 0 \) or \( 1 \)
2. \( n < 0 \)
3. \( lda \leq 0 \)
4. \( n > lda \)
5. \( ldb \leq 0 \)
6. \( n > ldb \)
7. \( ldz \leq 0 \) and \( iopt = 1 \)
8. \( n > ldz \) and \( iopt = 1 \)
9. Error 2015 is recoverable or \( naux \neq 0 \), and \( naux \) is too small—that is, less than the minimum required value. Return code 3 is returned if error 2015 is recoverable.

**Example 1:** This example shows how to find the eigenvalues only of a real symmetric generalized eigensystem problem, \( AZ = wBZ \), where:

- \( NAUX \) is equal to \( N \).
- \( AUX \) contains \( N \) elements.
- \( LDZ \) is set to 1 to avoid an error condition.
- \( DUMMY \) is used as a placeholder for argument \( z \), which is not used in the computation.
- On output, the lower triangle of \( A \) and \( B \) is overwritten.
Note: These matrices are used in Example 8.6.2 in referenced text [62].

Call Statement and Input

```fortran
CALL DSYGV(0 , A , 2 , B , 2 , W , DUMMY , 1 , 2 , AUX , 2)
```

\[
A = \begin{bmatrix}
229.0 \\
163.0 & 116.0
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
81.0 \\
59.0 & 43.0
\end{bmatrix}
\]

Output

\[
W = \begin{bmatrix}
-0.500000 \\
5.000000
\end{bmatrix}
\]

Example 2: This example shows how to find the eigenvalues and eigenvectors of a real symmetric generalized eigensystem problem, \(AZ = wBZ\), where:

- \(NAUX\) is equal to \(2N\).
- \(AUX\) contains \(2N\) elements.
- On output, the lower triangle of \(A\) and \(B\) is overwritten.

Note: These matrices are from page 67 in referenced text [58].

Call Statement and Input

```fortran
CALL DSYGV(1 , A , 3 , B , 3 , W , Z , 3 , N , AUX , 6)
```

\[
A = \begin{bmatrix}
-1.0 & . \\
1.0 & 1.0 \\
-1.0 & -1.0 & 1.0
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
2.0 & . \\
1.0 & 2.0 \\
0.0 & 1.0 & 2.0
\end{bmatrix}
\]

Output

\[
W = \begin{bmatrix}
-1.500000 \\
0.000000 \\
2.000000
\end{bmatrix}
\]
$Z = \begin{bmatrix}
0.866025 & 0.000000 & 0.000000 \\
-0.577350 & -0.408248 & -0.707107 \\
0.288675 & -0.408248 & 0.707107 \\
\end{bmatrix}$
SSYGV and DSYGV
Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations

The signal processing subroutines, provided in three areas, are described in this chapter.

Overview of the Signal Processing Subroutines

This section describes the subroutines in each of the three signal processing areas:

- Fourier transform subroutines (Table 127)
- Convolution and correlation subroutines (Table 128)
- Related-computation subroutines (Table 129)

Fourier Transforms Subroutines

The Fourier transform subroutines perform mixed-radix transforms in one, two, and three dimensions.

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subroutine</th>
<th>Long-Precision Subroutine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex Fourier Transform</td>
<td>SCFT</td>
<td>DCFT</td>
<td>769</td>
</tr>
<tr>
<td>Real-to-Complex Fourier Transform</td>
<td>SRCFT</td>
<td>DRCFT</td>
<td>777</td>
</tr>
<tr>
<td>Complex-to-Real Fourier Transform</td>
<td>SCRFT</td>
<td>DCRFT</td>
<td>785</td>
</tr>
<tr>
<td>Cosine Transform</td>
<td>SCOSF</td>
<td>DCOSF</td>
<td>793</td>
</tr>
<tr>
<td>Sine Transform</td>
<td>SSINF</td>
<td>DSINF</td>
<td>800</td>
</tr>
<tr>
<td>Complex Fourier Transform in Two Dimensions</td>
<td>SCFT2</td>
<td>DCFT2</td>
<td>807</td>
</tr>
<tr>
<td>Real-to-Complex Fourier Transform in Two Dimensions</td>
<td>SRCFT2</td>
<td>DRCFT2</td>
<td>814</td>
</tr>
<tr>
<td>Complex-to-Real Fourier Transform in Two Dimensions</td>
<td>SCRFT2</td>
<td>DCRFT2</td>
<td>821</td>
</tr>
<tr>
<td>Complex Fourier Transform in Three Dimensions</td>
<td>SCFT3</td>
<td>DCFT3</td>
<td>829</td>
</tr>
<tr>
<td>Real-to-Complex Fourier Transform in Three Dimensions</td>
<td>SRCFT3</td>
<td>DRCFT3</td>
<td>835</td>
</tr>
<tr>
<td>Complex-to-Real Fourier Transform in Three Dimensions</td>
<td>SCRFT3</td>
<td>DCRFT3</td>
<td>841</td>
</tr>
</tbody>
</table>

§ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new programs. Documentation for this subroutine is no longer provided.
Convolution and Correlation Subroutines

The convolution and correlation subroutines provide the choice of using Fourier methods or direct methods. The Fourier-method subroutines contain a high-performance mixed-radix capability. There are also several direct-method subroutines that provide decimated output.

Table 128. List of Convolution and Correlation Subroutines

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subroutine</th>
<th>Long-Precision Subroutine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convolution or Correlation of One Sequence with One or More Sequences</td>
<td>SCON§</td>
<td>SCOR§</td>
<td>848</td>
</tr>
<tr>
<td>Convolution or Correlation of One Sequence with Another Sequence Using a Direct Method</td>
<td>SCOND</td>
<td>SCORD</td>
<td>854</td>
</tr>
<tr>
<td>Convolution or Correlation of One Sequence with One or More Sequences Using the Mixed-Radix Fourier Method</td>
<td>SCONF</td>
<td>SCORF</td>
<td>860</td>
</tr>
<tr>
<td>Convolution or Correlation with Decimated Output Using a Direct Method</td>
<td>SDCON</td>
<td>SDCOR</td>
<td>869</td>
</tr>
<tr>
<td>Autocorrelation of One or More Sequences</td>
<td>SACOR§</td>
<td></td>
<td>873</td>
</tr>
<tr>
<td>Autocorrelation of One or More Sequences Using the Mixed-Radix Fourier Method</td>
<td>SACORF</td>
<td></td>
<td>877</td>
</tr>
</tbody>
</table>

§ These subroutines are provided only for migration from earlier releases of ESSL and are not intended for use in new programs.

Related-Computation Subroutines

The related-computation subroutines consist of a group of computations that can be used in general signal processing applications. They are similar to those provided on the IBM 3838 Array Processor; however, the ESSL subroutines generally solve a wider range of problems.

Table 129. List of Related-Computation Subroutines

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subroutine</th>
<th>Long-Precision Subroutine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polynomial Evaluation</td>
<td>SPOLY</td>
<td>DPOLY</td>
<td>883</td>
</tr>
<tr>
<td>I-th Zero Crossing</td>
<td>SIZC</td>
<td>DIZC</td>
<td>886</td>
</tr>
<tr>
<td>Time-Varying Recursive Filter</td>
<td>STREC</td>
<td>DTREC</td>
<td>889</td>
</tr>
<tr>
<td>Quadratic Interpolation</td>
<td>SQINT</td>
<td>DQINT</td>
<td>892</td>
</tr>
<tr>
<td>Wiener-Levinson Filter Coefficients</td>
<td>SWLEV</td>
<td>DWLEV</td>
<td>896</td>
</tr>
</tbody>
</table>
Fourier Transforms, Convolutions, and Correlations Considerations

This section describes some global information applying to the Fourier transform, convolution, and correlation subroutines.

Use Considerations

This section provides some key points about using the Fourier transform, convolution, and correlation subroutines.

Understanding the Terminology and Conventions Used for Your Array Data

These subroutines use the term “sequences,” rather than vectors and matrices, to describe the data that is stored in the arrays. The conventions used for representing sequences are defined in “Sequences” on page xxiv.

Some of the sequences used in these computations use a zero origin rather than a one-origin. For example, $x_j$ can be expressed with $j = 0, 1, ..., n-1$ rather than $j = 1, 2, ..., n$. When using the formulas provided in this book to calculate array sizes or offsets into arrays, you need to be careful that you substitute the correct values. For example, the number of $x_j$ elements in the sequence is $n$, not $n-1$.

Concerns about Lengths of Transforms

The length of the transform you can use in your program depends on the limits of the addressability of your processor.

Determining an Acceptable Length of a Transform

To determine acceptable lengths of the transforms in the Fourier transform subroutines, you have several choices. First, you can use the formula or table of values in “Acceptable Lengths for the Transforms” to choose a value. Second, ESSL's input-argument error recovery provides a means of determining an acceptable length of the transform. It uses the optionally-recoverable error 2030. For details, see “Providing a Correct Transform Length to ESSL” on page 36.

Acceptable Lengths for the Transforms

Use the following formula to determine acceptable transform lengths:

$$ n = (2^h)(3^i)(5^j)(7^k)(11^m) \quad \text{for } n \leq 37748736 $$

where:

- $h = 1, 2, ..., 25$
- $i = 0, 1, 2$
- $j, k, m = 0, 1$

Figure 13 on page 762 lists all the acceptable values for transform lengths in the Fourier transform subroutines.
<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>22</td>
<td>24</td>
<td>28</td>
<td>30</td>
<td>32</td>
<td>36</td>
<td>40</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>48</td>
<td>56</td>
<td>60</td>
<td>64</td>
<td>66</td>
<td>70</td>
<td>72</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>88</td>
<td>90</td>
<td>96</td>
<td>110</td>
<td>112</td>
<td>120</td>
<td>128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>140</td>
<td>144</td>
<td>154</td>
<td>160</td>
<td>168</td>
<td>176</td>
<td>180</td>
<td>192</td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>210</td>
<td>220</td>
<td>224</td>
<td>240</td>
<td>252</td>
<td>256</td>
<td>264</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>288</td>
<td>308</td>
<td>320</td>
<td>330</td>
<td>336</td>
<td>352</td>
<td>360</td>
<td>384</td>
<td>396</td>
<td></td>
</tr>
<tr>
<td>420</td>
<td>440</td>
<td>448</td>
<td>462</td>
<td>480</td>
<td>504</td>
<td>512</td>
<td>528</td>
<td>560</td>
<td></td>
</tr>
<tr>
<td>576</td>
<td>616</td>
<td>630</td>
<td>640</td>
<td>660</td>
<td>672</td>
<td>704</td>
<td>720</td>
<td>768</td>
<td></td>
</tr>
<tr>
<td>770</td>
<td>792</td>
<td>840</td>
<td>880</td>
<td>896</td>
<td>924</td>
<td>960</td>
<td>990</td>
<td>1008</td>
<td></td>
</tr>
<tr>
<td>1024</td>
<td>1056</td>
<td>1120</td>
<td>1152</td>
<td>1232</td>
<td>1260</td>
<td>1280</td>
<td>1320</td>
<td>1344</td>
<td></td>
</tr>
<tr>
<td>1386</td>
<td>1408</td>
<td>1440</td>
<td>1536</td>
<td>1540</td>
<td>1584</td>
<td>1680</td>
<td>1760</td>
<td>1792</td>
<td></td>
</tr>
<tr>
<td>1848</td>
<td>1920</td>
<td>1980</td>
<td>2016</td>
<td>2048</td>
<td>2112</td>
<td>2240</td>
<td>2304</td>
<td>2310</td>
<td></td>
</tr>
<tr>
<td>2464</td>
<td>2520</td>
<td>2560</td>
<td>2640</td>
<td>2688</td>
<td>2772</td>
<td>2816</td>
<td>2880</td>
<td>3072</td>
<td></td>
</tr>
<tr>
<td>3080</td>
<td>3168</td>
<td>3360</td>
<td>3520</td>
<td>3584</td>
<td>3696</td>
<td>3840</td>
<td>3960</td>
<td>4032</td>
<td></td>
</tr>
<tr>
<td>4096</td>
<td>4224</td>
<td>4480</td>
<td>4688</td>
<td>4620</td>
<td>4928</td>
<td>5040</td>
<td>5120</td>
<td>5280</td>
<td></td>
</tr>
<tr>
<td>5376</td>
<td>5544</td>
<td>5632</td>
<td>5760</td>
<td>6144</td>
<td>6160</td>
<td>6336</td>
<td>6720</td>
<td>6930</td>
<td></td>
</tr>
<tr>
<td>7040</td>
<td>7168</td>
<td>7392</td>
<td>7680</td>
<td>7920</td>
<td>8064</td>
<td>8192</td>
<td>8448</td>
<td>8960</td>
<td></td>
</tr>
<tr>
<td>9216</td>
<td>9240</td>
<td>9856</td>
<td>10080</td>
<td>10240</td>
<td>10560</td>
<td>10752</td>
<td>11088</td>
<td>11264</td>
<td></td>
</tr>
<tr>
<td>11520</td>
<td>12288</td>
<td>12320</td>
<td>12672</td>
<td>13440</td>
<td>13860</td>
<td>14080</td>
<td>14336</td>
<td>14784</td>
<td></td>
</tr>
<tr>
<td>15360</td>
<td>15840</td>
<td>16128</td>
<td>16384</td>
<td>16896</td>
<td>17920</td>
<td>18432</td>
<td>18480</td>
<td>19712</td>
<td></td>
</tr>
<tr>
<td>20160</td>
<td>20480</td>
<td>21120</td>
<td>21504</td>
<td>22176</td>
<td>22528</td>
<td>23040</td>
<td>24576</td>
<td>24640</td>
<td></td>
</tr>
<tr>
<td>25344</td>
<td>26880</td>
<td>27272</td>
<td>28160</td>
<td>28672</td>
<td>29568</td>
<td>30720</td>
<td>31680</td>
<td>32560</td>
<td></td>
</tr>
<tr>
<td>32768</td>
<td>33792</td>
<td>35840</td>
<td>36864</td>
<td>39696</td>
<td>39424</td>
<td>40320</td>
<td>40960</td>
<td>42240</td>
<td></td>
</tr>
<tr>
<td>43008</td>
<td>44352</td>
<td>45056</td>
<td>46080</td>
<td>49152</td>
<td>49280</td>
<td>50688</td>
<td>53760</td>
<td>55440</td>
<td></td>
</tr>
<tr>
<td>56320</td>
<td>57344</td>
<td>59136</td>
<td>61440</td>
<td>63360</td>
<td>64512</td>
<td>65536</td>
<td>67584</td>
<td>71680</td>
<td></td>
</tr>
<tr>
<td>73728</td>
<td>73920</td>
<td>78848</td>
<td>80640</td>
<td>81920</td>
<td>84480</td>
<td>86016</td>
<td>88704</td>
<td>90112</td>
<td></td>
</tr>
<tr>
<td>92160</td>
<td>98304</td>
<td>98560</td>
<td>101376</td>
<td>101752</td>
<td>106256</td>
<td>110560</td>
<td>116680</td>
<td>120048</td>
<td></td>
</tr>
<tr>
<td>115200</td>
<td>115200</td>
<td>122880</td>
<td>126720</td>
<td>131072</td>
<td>135168</td>
<td>143360</td>
<td>147840</td>
<td>157968</td>
<td></td>
</tr>
<tr>
<td>161280</td>
<td>163840</td>
<td>168960</td>
<td>172032</td>
<td>177408</td>
<td>180224</td>
<td>184320</td>
<td>196608</td>
<td>207120</td>
<td></td>
</tr>
<tr>
<td>204800</td>
<td>215040</td>
<td>221760</td>
<td>225280</td>
<td>229376</td>
<td>236544</td>
<td>245760</td>
<td>253440</td>
<td>258048</td>
<td></td>
</tr>
<tr>
<td>262144</td>
<td>270336</td>
<td>286720</td>
<td>294912</td>
<td>295680</td>
<td>315392</td>
<td>322560</td>
<td>327680</td>
<td>337920</td>
<td></td>
</tr>
<tr>
<td>344064</td>
<td>354816</td>
<td>360448</td>
<td>368640</td>
<td>393216</td>
<td>394240</td>
<td>405504</td>
<td>430080</td>
<td>443520</td>
<td></td>
</tr>
<tr>
<td>450560</td>
<td>458752</td>
<td>473008</td>
<td>491520</td>
<td>506880</td>
<td>516096</td>
<td>524288</td>
<td>540672</td>
<td>573440</td>
<td></td>
</tr>
<tr>
<td>589824</td>
<td>591360</td>
<td>630784</td>
<td>645120</td>
<td>655360</td>
<td>675840</td>
<td>688128</td>
<td>709632</td>
<td>720896</td>
<td></td>
</tr>
<tr>
<td>737280</td>
<td>786432</td>
<td>848864</td>
<td>861600</td>
<td>887040</td>
<td>901120</td>
<td>915704</td>
<td>945464</td>
<td>945712</td>
<td></td>
</tr>
<tr>
<td>921600</td>
<td>983040</td>
<td>1013760</td>
<td>1032192</td>
<td>1048576</td>
<td>1081344</td>
<td>1108800</td>
<td>1166800</td>
<td>1208704</td>
<td></td>
</tr>
<tr>
<td>1152000</td>
<td>1228800</td>
<td>1267200</td>
<td>1301224</td>
<td>1324576</td>
<td>1351680</td>
<td>1433600</td>
<td>1478400</td>
<td>1579680</td>
<td></td>
</tr>
<tr>
<td>1612800</td>
<td>1638400</td>
<td>1689600</td>
<td>1720320</td>
<td>1774080</td>
<td>1802240</td>
<td>1843200</td>
<td>1966080</td>
<td>2071200</td>
<td></td>
</tr>
<tr>
<td>2048000</td>
<td>2150400</td>
<td>2217600</td>
<td>2252800</td>
<td>2293760</td>
<td>2365440</td>
<td>2457600</td>
<td>2534400</td>
<td>2580480</td>
<td></td>
</tr>
<tr>
<td>2621440</td>
<td>2703360</td>
<td>2867200</td>
<td>2949120</td>
<td>2956800</td>
<td>3153920</td>
<td>3225600</td>
<td>3276800</td>
<td>3379200</td>
<td></td>
</tr>
<tr>
<td>3440640</td>
<td>3548160</td>
<td>3604480</td>
<td>3686400</td>
<td>3932160</td>
<td>3942400</td>
<td>4055040</td>
<td>4300800</td>
<td>4435200</td>
<td></td>
</tr>
<tr>
<td>4505600</td>
<td>4587520</td>
<td>4730080</td>
<td>4915200</td>
<td>5068800</td>
<td>5160960</td>
<td>5242880</td>
<td>5406720</td>
<td>5734400</td>
<td></td>
</tr>
<tr>
<td>5898240</td>
<td>5913600</td>
<td>6307840</td>
<td>6451200</td>
<td>6553600</td>
<td>6758400</td>
<td>6881280</td>
<td>7096320</td>
<td>7208960</td>
<td></td>
</tr>
<tr>
<td>7372800</td>
<td>7864320</td>
<td>8488640</td>
<td>8616000</td>
<td>8870400</td>
<td>9011200</td>
<td>9157040</td>
<td>9454640</td>
<td>9457120</td>
<td></td>
</tr>
<tr>
<td>9216000</td>
<td>9830400</td>
<td>10137600</td>
<td>10321920</td>
<td>10485760</td>
<td>10813440</td>
<td>11088000</td>
<td>11668000</td>
<td>12087040</td>
<td></td>
</tr>
</tbody>
</table>

Figure 13. Table of Acceptable Lengths for the Transforms
Understanding Auxiliary Working Storage Requirements

Auxiliary working storage is required by the Fourier transform subroutines and by the SCONF, SCORF, and SACORF subroutines. This storage is provided through the calling sequence arguments aux, aux1, and aux2. The sizes of these storage areas are specified by the calling sequence arguments naux, naux1, and naux2, respectively.

**AUX1:** The aux1 array is used for storing tables and other parameters when you call a Fourier transform, convolution, or correlation subroutine for initialization with init = 1. The initialized aux1 array is then used on succeeding calls with init = 0, when the computation is actually done. You should not use this array between the initialization and the computation.

**AUX and AUX2:** The aux and aux2 arrays are used for temporary storage during the running of the subroutine and are available for use by your program between calls to the subroutine.

**AUX3:** The aux3 argument is provided for migration purposes only and is ignored.

Initializing Auxiliary Working Storage

In many of those subroutines requiring aux1 auxiliary working storage, two invocations of the subroutines are necessary. The first invocation initializes the working storage in aux1 for the subroutine, and the second performs the computations. (For an explanation of auxiliary working storage, see Understanding Auxiliary Working Storage Requirements.) As a result, the working storage in aux1 should not be used by the calling program between the two calls to the subroutine. However, it can be reused after intervening calls to the subroutine with different arguments.

If you plan to repeat a computation many times using the same set of arguments, you only need to do one initialization of the aux1 array; that is, the initialized aux1 array can be saved and reused as many times as needed for the computation.

If you plan to perform different computations, with different sets of arguments (except for input argument x), you need to do an initialization for each different computation; that is, you initialize the various aux1 arrays for use with the different computations, saving and reusing them until they are not needed any more.

Determining the Amount of Auxiliary Working Storage That You Need

To determine the size of auxiliary storage, you have several choices. First, you can use the formulas provided in each subroutine description. Second, ESSL’s input-argument error recovery provides a means of determining the minimum size you need for auxiliary storage. It uses the optionally-recoverable error 2015. For details, see “Using Auxiliary Storage in ESSL” on page 30. Third, you can have ESSL dynamically allocate aux and aux2. For details, see “Dynamic Allocation of Auxiliary Storage” on page 31.
Performance and Accuracy Considerations

The following sections explain the performance and accuracy considerations for the Fourier transforms, convolution, and correlation subroutines. For further details about performance and accuracy, see Chapter 2 on page 23.

When Running on the Workstation Processors

There are ESSL-specific rules that apply to the results of computations on the workstation processors using the ANSI/IEEE standards. For details, see “What Data Type Standards Are Used by ESSL, and What Exceptions Should You Know About?” on page 43.

Defining Arrays

The stride arguments, inc1h, inc1x, inc1y, inc2x, inc2y, inc3x, and inc3y, provide great flexibility in defining the input and output data arrays. The arrangement of data in storage, however, can have an effect upon cache performance. By using strides, you can have data scattered in storage. Best performance is obtained with data closely spaced in storage and with elements of the sequence in contiguous locations. The optimum values for inc1h, inc1x, and inc1y are 1.

In writing the calling program, you may find it convenient to declare X or Y as a two-dimensional array. For example, you can declare X in a DIMENSION statement as X(INC2X,M).

Fourier Transform Considerations

This section describes some ways to optimize performance in the Fourier transform subroutines.

Setting Up Your Data

Many of the Fourier transform, convolution, and correlation subroutines provide the facility for processing many sequences in one call. For short sequences, for example 1024 elements or less, this facility should be used as much as possible. This provides improved performance compared to processing only one sequence at a time.

If possible, you should use the same array for input and output. In addition, the requirements for the strides of the input and output arrays are explained in the Notes for each subroutine.

For improved performance, small values of inc1x and inc1y should be used, where applicable, preferably inc1x = 1 and inc1y = 1. A stride of 1 means the sequence elements are stored contiguously. Also, if possible, the sequences should be stored close to each other. For all the Fourier transform subroutines except _RCFT and _CRFT, you should use the STRIDE subroutine to determine the optimal stride(s) for your input or output data. Complete instructions on how to use STRIDE for each of these subroutines is included in “STRIDE—Determine the Stride Value for Optimal Performance in Specified Fourier Transform Subroutines” on page 991.

To obtain the best performance in the three-dimensional Fourier transform subroutines, you should use strides, inc2 and inc3, provided by the STRIDE subroutine and declare your three-dimensional data structure as a one-dimensional array. The three-dimensional Fourier transform subroutines assume that inc1 for the
array is 1. Therefore, each element $x_{ijk}$ for $i = 0, 1, ..., n1-1$, $j = 0, 1, ..., n2-1$, and $k = 0, 1, ..., n3-1$ of the three-dimensional data structure of dimensions $n1$ by $n2$ by $n3$ is stored in a one-dimensional array $X(0:L)$ at location $X(l)$, where $l = i+inc2(j)+inc3(k)$. The minimum required value of $L$ is calculated by inserting the maximum values for $i$, $j$, and $k$ in the above equation, giving $L = (n1-1)+inc2(n2-1)+inc3(n3-1)$. The minimum total size of array $X$ is $L+1$. To ensure that this mapping is unique so no two elements $x_{ijk}$ occupy the same array element, $X(l)$, the subroutines have the following restriction: inc2 $\geq$ n1 and inc3 $\geq$ (inc2)(n2). This arrangement of array data in storage leaves some blank space between successive planes of the array $X$. By determining the best size for this space, specifying an optimum inc3 stride, the third dimension of the array does not create conflicts in the 3090 storage hierarchy.

If the inc3 stride value returned by the STRIDE subroutine turns out to be a multiple of inc2, the array $X$ can be declared as a three-dimensional array as $X(inc2,inc3/inc2,n3)$; otherwise, it can be declared as either a one-dimensional array, $X(0:L)$, as described above, or a two-dimensional array $X(0:inc3-1,0:n3-1)$, where $x_{ijk}$ is stored in $X(l,k)$ where $l = i+(inc2)(j)$.

Using the Scale Argument

If you must multiply either the input or the output sequences by a common factor, you can avoid the multiplication by letting the scale argument contain the factor. The subroutines multiply the sine and cosine values by the scale factor during the initialization. Thus, scaling takes no time after the initialization of the Fourier transform calculations.

How the Fourier Transform Subroutines Achieve High Performance

There are two levels of optimization for the fast Fourier transforms (FFTs) in the ESSL library. For sequences with a large power of 2 length, we provide efficient radix-2 and radix-8 transform implementations where cache use is optimized. The cache optimization includes ordering of operations to maximize stride-1 data access and prefetching cache lines.

Similar optimization techniques are used for sequence lengths which are not a power of 2 and mixed-radix FFT’s are performed. Many short sequence FFT’s have sequence size specific optimizations. Some of these optimizations were originally developed for a vector machine and have been adapted for cache based RISC machines (see references [1], [5], and [7]).

The other optimization in the FFT routine is to treat multiple sequences as efficiently as possible. Techniques here include blocking sequences to fit into available CPU cache and transposing sequences to ensure stride-1 access. Whenever possible, the highest performance can be obtained when multiple sequences are transformed in a single call.

Convolution and Correlation Considerations

This section describes some ways to optimize performance in the convolution and correlation subroutines.
Performance Tradeoffs between Subroutines
The subroutines SCON, SCOR, SACOR, SCOND, SCORD, SDCON, SDCOR, DDCON, and DDCOR compute convolutions, correlations, and autocorrelations using essentially the same methods. They make a decision, based on estimated timings, to use one of two methods:

- A direct method that is most efficient when one or both of the input sequences are short
- A direct method that is most efficient when the output sequence is short

Using this approach has the following advantages:

- In most cases, improved performance can be achieved for direct methods because:
  - No initialization is required.
  - No working storage or padding of sequences is necessary.
- In some cases, greater accuracy may be available.
- Negative strides can be used.

In general, using SCONF, SCORF, and SACORF provides the best performance, because the mixed-radix Fourier transform subroutines are used. However, if you can determine from your arguments that a direct method is preferred, you should use SCOND and SCORD instead. These give you better performance for the direct methods, and also give you additional capabilities.

In cases where there is doubt as to the best choice of a subroutine, perform timing experiments.

Special Uses of SCORD
The subroutine SCORD can perform the functions of SCON and SACOR; that is, it can compute convolutions and autocorrelations. To compute a convolution, you must specify a negative stride for h (see Example 4 in SCORD). To compute the autocorrelation, you must specify the two input sequences to be the same (see Example 5 in SCORD).

Special Uses of _DCON and _DCOR
The _DCON and _DCOR subroutines compute convolutions and correlations, respectively, by the direct method with decimated output. Setting the decimation interval id = 1 in SDCON and SDCOR provides the same function as SCOND and SCORD, respectively. Doing the same in DDCON and DDCOR provides long-precision versions of SCOND and SCORD, respectively, which are not otherwise available.

Accuracy When Direct Methods Are Used
The direct methods used by the convolution and correlation subroutines use vector operations to accumulate sums of products. The products are computed and accumulated in long precision. As a result, higher accuracy can be obtained in the final results for some types of data. For example, if input data consists only of integers, and if no intermediate and final numbers become too large (larger than $2^{24} - 1$ for short-precision computations and larger than $2^{56} - 1$ for long-precision computations), the results are exact.
Accuracy When Fourier Methods Are Used
The Fourier methods used by the convolution and correlation subroutines compute Fourier transforms of input data that is multiplied element-by-element in short-precision arithmetic. The inverse Fourier transform is then computed. There are internally generated rounding errors in the Fourier transforms. It has been shown in references [96] and [85] that, in the case of white noise data, the relative root mean square (RMS) error of the Fourier transform is proportional to \( \log_2 n \) with a very small proportionality factor. In general, with random, evenly distributed data, this is better than the RMS error of the direct method. However, one must keep in mind the fact that, while the Fourier method may yield a smaller root mean square error, there can be points with large relative errors. Thus, it can happen that some points, usually at the ends of the output sequence, can be obtained with greater relative accuracy with direct methods.

Convolutions and Correlations by Fourier Methods
The convolution and correlation subroutines that use the Fourier methods determine a sequence length \( n \), whose Fourier transform is computed using ESSL subroutines. In the simple case where \( iy0 = 0 \) for convolution or \( iy0 = -nh+1 \) for correlation, \( n \) is chosen as a value greater than or equal to the following, which is also acceptable to the Fourier transform subroutines:

\[
nt = \min(nh+nx-1, ny) \text{ for convolution and correlation} \\
nt = \min(nx+nx-1, ny) \text{ for autocorrelation}
\]

which is also acceptable to the Fourier subroutines.

Related Computation Considerations
This section describes some key points about using the related-computation subroutines.

Accuracy Considerations
- Many of the subroutines performing short-precision computations provide increased accuracy by accumulating results in long precision. This is noted in the functional description for each subroutine.
- There are ESSL-specific rules that apply to the results of computations on the workstation processors using the ANSI/IEEE standards. For details, see “What Data Type Standards Are Used by ESSL, and What Exceptions Should You Know About?” on page 43.
Fourier Transform Subroutines

This section contains the Fourier transform subroutine descriptions.
SCFT and DCFT—Complex Fourier Transform

These subroutines compute a set of $m$ complex discrete $n$-point Fourier transforms of complex data.

<table>
<thead>
<tr>
<th>Table 130. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>X, Y</strong></td>
</tr>
<tr>
<td>Short-precision complex</td>
</tr>
<tr>
<td>Long-precision complex</td>
</tr>
</tbody>
</table>

**Note:** Two invocations of this subroutine are necessary: one to prepare the working storage for the subroutine, and the other to perform the computations.

**Syntax**

<table>
<thead>
<tr>
<th><strong>Fortran</strong></th>
<th>CALL SCFT</th>
<th>DCFT (init, x, inc1x, inc2x, y, inc1y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>C and C++</strong></td>
<td>scft</td>
<td>dcf (init, x, inc1x, inc2x, y, inc1y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2);</td>
</tr>
<tr>
<td><strong>PL/I</strong></td>
<td>CALL SCFT</td>
<td>DCFT (init, x, inc1x, inc2x, y, inc1y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2);</td>
</tr>
</tbody>
</table>

**On Entry**

*init* is a flag, where:

- If *init* ≠ 0, trigonometric functions and other parameters, depending on arguments other than $x$, are computed and saved in $aux1$. The contents of $x$ and $y$ are not used or changed.
- If *init* = 0, the discrete Fourier transforms of the given sequences are computed. The only arguments that may change after initialization are $x$, $y$, and $aux2$. All scalar arguments must be the same as when the subroutine was called for initialization with *init* ≠ 0.

Specified as: a fullword integer. It can have any value.

*x* is the array $X$, consisting of $m$ sequences of length $n$. Specified as: an array of (at least) length $1+(n-1)inc1x+(m-1)inc2x$, containing numbers of the data type indicated in Table 130.

*inc1x* is the stride between the elements within each sequence in array $X$. Specified as: a fullword integer; $inc1x > 0$.

*inc2x* is the stride between the first elements of the sequences in array $X$. (If $m = 1$, this argument is ignored.) Specified as: a fullword integer; $inc2x > 0$.

*y* is the array $Y$. Specified as: a fullword integer; $inc1y > 0$. See “On Return” on page 771.

*inc1y* is the stride between the elements within each sequence in array $Y$. Specified as: a fullword integer; $inc1y > 0$. 
\[ \text{inc2y} \]

is the stride between the first elements of each sequence in array \( Y \). (If \( m = 1 \), this argument is ignored.) Specified as: a fullword integer; \( \text{inc2y} > 0 \).

\( n \)

is the length of each sequence to be transformed. Specified as: a fullword integer; \( n \leq 37748736 \) and must be one of the values listed in “Acceptable Lengths for the Transforms” on page 761. For all other values specified less than 37748736, you have the option of having the next larger acceptable value returned in this argument, as well as in the optionally-recoverable error 2030. For details, see “Providing a Correct Transform Length to ESSL” on page 36.

\( m \)

is the number of sequences to be transformed. Specified as: a fullword integer; \( m > 0 \).

\( \text{isign} \)

controls the direction of the transform, determining the sign \( I_{\text{sign}} \) of the exponent of \( W_n \), where:

- If \( \text{isign} = \text{positive value} \), \( I_{\text{sign}} = + \) (transforming time to frequency).
- If \( \text{isign} = \text{negative value} \), \( I_{\text{sign}} = - \) (transforming frequency to time).

Specified as: a fullword integer; \( \text{isign} > 0 \) or \( \text{isign} < 0 \).

\( \text{scale} \)

is the scaling constant \( \text{scale} \). See “Function” on page 772 for its usage. Specified as: a number of the data type indicated in Table 130 on page 769, where \( \text{scale} > 0.0 \) or \( \text{scale} < 0.0 \)

\( \text{aux1} \)

is the working storage for this subroutine, where:

- If \( \text{init} \neq 0 \), the working storage is computed.
- If \( \text{init} = 0 \), the working storage is used in the computation of the Fourier transforms.

Specified as: an area of storage, containing \( \text{naux1} \) long-precision real numbers.

\( \text{naux1} \)

is the number of doublewords in the working storage specified in \( \text{aux1} \). Specified as: a fullword integer; \( \text{naux1} > 7 \) and \( \text{naux1} \geq \) (minimum value required for successful processing). To determine a sufficient value, use the processor-independent formulas. For values between 7 and the minimum value, you have the option of having the minimum value returned in this argument. For details, see “Using Auxiliary Storage in ESSL” on page 30.

\( \text{aux2} \)

has the following meaning:

- If \( \text{naux2} = 0 \) and error 2015 is unrecoverable, \( \text{aux2} \) is ignored.
- Otherwise, it is the working storage used by this subroutine, which is available for use by the calling program between calls to this subroutine.

Specified as: an area of storage, containing \( \text{naux2} \) long-precision real numbers. On output, the contents are overwritten.

\( \text{naux2} \)

is the number of doublewords in the working storage specified in \( \text{aux2} \). Specified as: a fullword integer, where:

- If \( \text{naux2} = 0 \) and error 2015 is unrecoverable, SCFT and DCFT dynamically allocate the work area used by the subroutine. The work area is deallocated before control is returned to the calling program.
Otherwise, \( naux2 \geq \) (minimum value required for successful processing). To determine a sufficient value, use the processor-independent formulas. For all other values specified less than the minimum value, you have the option of having the minimum value returned in this argument. For details, see “Using Auxiliary Storage in ESSL” on page 30.

**On Return**

\( y \) has the following meaning, where:

- If \( init \neq 0 \), this argument is not used, and its contents remain unchanged.
- If \( init = 0 \), this is array \( Y \), consisting of the results of the \( m \) discrete Fourier transforms, each of length \( n \).

Returned as: an array of (at least) length \( 1+(n-1)inc1y+(m-1)inc2y \), containing numbers of the data type indicated in Table 130 on page 769. This array must be aligned on a doubleword boundary.

\( aux1 \) is the working storage for this subroutine, where:

- If \( init \neq 0 \), it contains information ready to be passed in a subsequent invocation of this subroutine.
- If \( init = 0 \), its contents are unchanged.

Returned as: the contents are not relevant.

**Notes**

1. \( aux1 \) should not be used by the calling program between calls to this subroutine with \( init \neq 0 \) and \( init = 0 \). However, it can be reused after intervening calls to this subroutine with different arguments.

2. When using the ESSL SMP library, for optimal performance, the number of threads specified should be the same for \( init \neq 0 \) and \( init = 0 \).

3. For optimal performance, the preferred value for \( inc1x \) and \( inc1y \) is 1. This implies that the sequences are stored with stride 1. The preferred value for \( inc2x \) and \( inc2y \) is \( n \). This implies that sequences are stored one after another without any gap.

It is possible to specify sequences in the transposed form—that is, as rows of a two-dimensional array. In this case, \( inc2x \) (or \( inc2y \)) = 1 and \( inc1x \) (or \( inc1y \)) is equal to the leading dimension of the array. One can specify either input, output, or both in the transposed form by specifying appropriate values for the stride parameters. For selecting optimal values of \( inc1x \) and \( inc1y \) for \_CFT, you should use “STRIDE—Determine the Stride Value for Optimal Performance in Specified Fourier Transform Subroutines” on page 991. Example 1 in the STRIDE subroutine description explains how it is used for \_CFT.

If you specify the same array for \( X \) and \( Y \), then \( inc1x \) and \( inc1y \) must be equal, and \( inc2x \) and \( inc2y \) must be equal. In this case, output overwrites input. If \( m = 1 \), the \( inc2x \) and \( inc2y \) values are not used by the subroutine. If you specify different arrays for \( X \) and \( Y \), they must have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.
SCFT and DCFT

NAUX1 Formulas:
If \( n \leq 8192 \), use \( naux1 = 20000 \).
If \( n > 8192 \), use \( naux1 = 20000 + 1.14n \).

NAUX2 Formulas:
If \( n \leq 8192 \), use \( naux2 = 20000 \).
If \( n > 8192 \), use \( naux2 = 20000 + 1.14n \).
For the transposed case, where \( inc2x = 1 \) or \( inc2y = 1 \), and where \( n \geq 252 \),
add the following to the above storage requirements:
\((n+256)(\min(64, m))\).

Processor-Independent Formulas for DCFT for NAUX1 and NAUX2

NAUX1 Formulas:
If \( n \leq 2048 \), use \( naux1 = 20000 \).
If \( n > 2048 \), use \( naux1 = 20000 + 2.28n \).

NAUX2 Formulas:
If \( n \leq 2048 \), use \( naux2 = 20000 \).
If \( n > 2048 \), use \( naux2 = 20000 + 2.28n \).
For the transposed case, where \( inc2x = 1 \) or \( inc2y = 1 \), and where \( n \geq 252 \),
add the following to the above storage requirements:
\((2n+256)(\min(64, m))\).

Function: The set of \( m \) complex discrete \( n \)-point Fourier transforms of complex
data in array \( X \), with results going into array \( Y \), is expressed as follows:

\[
y_{ki} = \text{scale} \sum_{j=0}^{n-1} x_{ji} W_n^{(isign)jk}
\]

for:
\[
k = 0, 1, \ldots, n-1
i = 1, 2, \ldots, m
\]
where:
\[
W_n = e^{-2\pi(\sqrt{-1})/n}
\]
and where:
\[
x_{ji} \text{ are elements of the sequences in array } X.
y_{ki} \text{ are elements of the sequences in array } Y.
isign \text{ is } + \text{ or } - \text{ (determined by argument } isign).\]
\[
scale \text{ is a scalar value.}
\]
For \( scale = 1.0 \) and \( isign \) being positive, you obtain the discrete Fourier transform,
a function of frequency. The inverse Fourier transform is obtained with
\( scale = 1.0/n \) and \( isign \) being negative. See references [1], [3], [4], [19], and [20].
Two invocations of this subroutine are necessary:

1. With \( \text{init} \neq 0 \), the subroutine tests and initializes arguments of the program, setting up the \( \text{aux1} \) working storage.

2. With \( \text{init} = 0 \), the subroutine checks that the initialization arguments in the \( \text{aux1} \) working storage correspond to the present arguments, and if so, performs the calculation of the Fourier transforms.

**Error Conditions**

**Resource Errors:** Error 2015 is unrecoverable, \( \text{naux2} = 0 \), and unable to allocate work area.

**Computational Errors:** None

**Input-Argument Errors**

1. \( n > 37748736 \)
2. \( \text{inc1x, inc2x, inc1y, or inc2y} \leq 0 \)
3. \( m \leq 0 \)
4. \( \text{isign} = 0 \)
5. \( \text{scale} = 0.0 \)
6. The subroutine has not been initialized with the present arguments.
7. The length of the transform in \( n \) is not an allowable value. Return code 1 is returned if error 2030 is recoverable.
8. \( \text{naux1} \leq 7 \)
9. \( \text{naux1} \) is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.
10. Error 2015 is recoverable or \( \text{naux2} \neq 0 \), and \( \text{naux2} \) is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.

**Example 1:** This example shows an input array \( X \) with a set of four short-precision complex sequences:

\[
\exp\left(2\pi(\sqrt{-1})jk/n\right)
\]

for \( j = 0, 1, ..., n-1 \) with \( n = 8 \), and the single frequencies \( k = 0, 1, 2, \) and 3. The arrays are declared as follows:

```plaintext
COMPLEX*8 X(0:1023), Y(0:1023)
REAL*8 AUX1(1693), AUX2(4096)
```

First, initialize \( \text{AUX1} \) using the calling sequence shown below with \( \text{INIT} \neq 0 \). Then use the same calling sequence with \( \text{INIT} = 0 \) to do the calculation.

**Call Statement and Input**

```plaintext
INIT X INC1X INC2X Y INC1Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
```

```plaintext
CALL SCFT(INIT, X, 1, 8, Y, 1, 8, 8, 4, 1, SCALE, AUX1, 1693, AUX2, 4096)
```
**SCFT and DCFT**

**Example 1:**

This example shows an input array $X$ with a set of four sequences equal to the output $Y$ of Example 1. This shows how you can compute the inverse of the transform in Example 1 by using a negative `isign`, giving as output the four sequences listed in the input for Example 1. First, initialize $AUX1$ using the calling sequence shown below with $INIT \neq 0$. Then use the same calling sequence with $INIT = 0$ to do the calculation.

**Call Statement and Input**

```plaintext
INIT X INC1X INC2X Y INC1Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | |
CALL SCFT(INIT, X , 1 , 8 , Y , 1 , 8 , 8 , 4 , -1 , SCALE , AUX1 , 1693 , AUX2 , 4096)
```

| INIT = 1 (for initialization) |
| INIT = 0 (for computation) |
| SCALE = 1.0 |

$X$ contains the following four sequences:

(1.0000, 0.0000) (1.0000, 0.0000) (1.0000, 0.0000) (1.0000, 0.0000)
(1.0000, 0.0000) (0.7071, 0.7071) (0.0000, 1.0000) (-0.7071, 0.7071)
(1.0000, 0.0000) (0.0000, 1.0000) (-1.0000, 0.0000) (0.0000, -1.0000)
(1.0000, 0.0000) (-0.7071, 0.7071) (0.0000, -1.0000) (0.7071, 0.7071)
(1.0000, 0.0000) (-1.0000, 0.0000) (1.0000, 0.0000) (-1.0000, 0.0000)
(1.0000, 0.0000) (-0.7071, -0.7071) (0.0000, 1.0000) (0.7071, -0.7071)
(1.0000, 0.0000) (0.0000, -1.0000) (-1.0000, 0.0000) (0.0000, 1.0000)
(1.0000, 0.0000) (0.7071, -0.7071) (0.0000, -1.0000) (-0.7071, -0.7071)

**Output:** $Y$ contains the following four sequences:

(8.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (8.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (8.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (8.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)

**Example 2:**

This example shows an input array $X$ with a set of four short-precision complex sequences equal to the output of Example 1. This shows how you can compute the inverse of the transform in Example 1 by using a negative `isign`, giving as output the four sequences listed in the input for Example 1. First, initialize $AUX1$ using the calling sequence shown below with $INIT \neq 0$. Then use the same calling sequence with $INIT = 0$ to do the calculation.

**Call Statement and Input**

```plaintext
INIT X INC1X INC2X Y INC1Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | |
CALL SCFT(INIT, X , 1 , 8 , Y , 1 , 8 , 8 , 4 , -1 , SCALE , AUX1 , 1693 , AUX2 , 4096)
```

| INIT = 1 (for initialization) |
| INIT = 0 (for computation) |
| SCALE = 0.125 |

$X$ = (same as output $Y$ in Example 1)

**Output**

$Y$ = (same as input $X$ in Example 1)

**Example 3:**

This example shows an input array $X$ with a set of four short-precision complex sequences

$$e^{2\pi(\sqrt{-1})jk/n}$$
for \( j = 0, 1, \ldots, n-1 \) with \( n = 12 \), and the single frequencies \( k = 0, 1, 2, \) and \( 3 \).

Also, \( 
\begin{align*}
\text{inc1x} &= \text{inc1y} = m \\
\text{inc2x} &= \text{inc2y} = 1
\end{align*}
\)

To show how the input and output arrays can be stored in the transposed form. The arrays are declared as follows:

\[
\begin{align*}
\text{COMPLEX} &+8 \ X (4,0:11), Y(4,0:11) \\
\text{REAL} &+8 \text{ AUX1}(10000), \text{AUX2}(10000)
\end{align*}
\]

First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0. Then use the same calling sequence with INIT = 0 to do the calculation.

### Call Statement and Input

\[
\begin{align*}
\text{INIT} & \quad \text{X} \quad \text{INC1X} \quad \text{INC2X} \quad \text{Y} \quad \text{INC1Y} \quad \text{INC2Y} \quad \text{N} \quad \text{M} \quad \text{ISIGN} \quad \text{SCALE} \\
\text{AUX1} & \quad \text{NAUX1} \quad \text{AUX2} \quad \text{NAUX2}
\end{align*}
\]

First, initialize

\[
\begin{align*}
\text{REAL}:
\end{align*}
\]

Next, use the same calling sequence with \( \text{INIT} = 0 \) to do the calculation.

### Call Statement and Input

\[
\begin{align*}
\text{INIT} & \quad \text{X} \quad \text{INC1X} \quad \text{INC2X} \quad \text{Y} \quad \text{INC1Y} \quad \text{INC2Y} \\
\text{N} & \quad \text{M} \quad \text{ISIGN} \quad \text{SCALE} \quad \text{AUX1} \quad \text{NAUX1} \quad \text{AUX2} \quad \text{NAUX2}
\end{align*}
\]

- \( \text{INIT} = 1 \) (for initialization)
- \( \text{INIT} = 0 \) (for computation)
- \( \text{SCALE} = 1.0 \)

\( X \) contains the following four sequences:

\[
\begin{align*}
(1.0000, 0.0000) & \quad (1.0000, 0.0000) & \quad (1.0000, 0.0000) & \quad (1.0000, 0.0000) \\
(1.0000, 0.0000) & \quad (0.8660, 0.5000) & \quad (0.5000, 0.8660) & \quad (0.0000, 1.0000) \\
(1.0000, 0.0000) & \quad (0.5000, 0.8660) & \quad (-0.5000, 0.8660) & \quad (-1.0000, 0.0000) \\
(1.0000, 0.0000) & \quad (0.0000, 1.0000) & \quad (-0.0000, 0.0000) & \quad (0.0000, -1.0000) \\
(1.0000, 0.0000) & \quad (-0.5000, 0.8660) & \quad (-0.5000, -0.8660) & \quad (1.0000, 0.0000) \\
(1.0000, 0.0000) & \quad (-0.8660, 0.5000) & \quad (0.5000, -0.8660) & \quad (0.0000, 1.0000) \\
(1.0000, 0.0000) & \quad (-1.0000, 0.0000) & \quad (1.0000, 0.0000) & \quad (-0.0000, 0.0000) \\
(1.0000, 0.0000) & \quad (0.0000, -1.0000) & \quad (-1.0000, 0.0000) & \quad (0.0000, 1.0000) \\
(1.0000, 0.0000) & \quad (0.5000, -0.8660) & \quad (-0.5000, -0.8660) & \quad (1.0000, 0.0000) \\
(1.0000, 0.0000) & \quad (0.8660, -0.5000) & \quad (0.5000, -0.8660) & \quad (0.0000, -1.0000)
\end{align*}
\]

### Output

\( Y \) contains the following four sequences:

\[
\begin{align*}
(12.0000, 0.0000) & \quad (0.0000, 0.0000) & \quad (0.0000, 0.0000) & \quad (0.0000, 0.0000) \\
(0.0000, 0.0000) & \quad (12.0000, 0.0000) & \quad (0.0000, 0.0000) & \quad (0.0000, 0.0000) \\
(0.0000, 0.0000) & \quad (0.0000, 0.0000) & \quad (12.0000, 0.0000) & \quad (0.0000, 0.0000) \\
(0.0000, 0.0000) & \quad (0.0000, 0.0000) & \quad (0.0000, 0.0000) & \quad (12.0000, 0.0000) \\
(0.0000, 0.0000) & \quad (0.0000, 0.0000) & \quad (0.0000, 0.0000) & \quad (0.0000, 0.0000) \\
(0.0000, 0.0000) & \quad (0.0000, 0.0000) & \quad (0.0000, 0.0000) & \quad (0.0000, 0.0000) \\
(0.0000, 0.0000) & \quad (0.0000, 0.0000) & \quad (0.0000, 0.0000) & \quad (0.0000, 0.0000) \\
(0.0000, 0.0000) & \quad (0.0000, 0.0000) & \quad (0.0000, 0.0000) & \quad (0.0000, 0.0000) \\
(0.0000, 0.0000) & \quad (0.0000, 0.0000) & \quad (0.0000, 0.0000) & \quad (0.0000, 0.0000) \\
(0.0000, 0.0000) & \quad (0.0000, 0.0000) & \quad (0.0000, 0.0000) & \quad (0.0000, 0.0000) \\
(0.0000, 0.0000) & \quad (0.0000, 0.0000) & \quad (0.0000, 0.0000) & \quad (0.0000, 0.0000)
\end{align*}
\]

**Example 4:** This example shows an input array \( X \) with a set of four input spike sequences exactly equal to the output of Example 3. This shows how you can compute the inverse of the transform in Example 3 by using a negative \( \text{isign} \), giving as output the four sequences listed in the input for Example 3. First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0. Then use the same calling sequence with INIT = 0 to do the calculation.

### Call Statement and Input
Example 5: This example shows how to compute a transform of a single long-precision complex sequence. It uses isign = 1 and scale = 1.0. The arrays are declared as follows:

- COMPLEX*16 X(0:7), Y(0:7)
- REAL*8 AUX1(26), AUX2(12)

The input in X is an impulse at zero, and the output in Y is constant for all frequencies. First, initialize AUX1 using the calling sequence shown below with INIT = 0. Then use the same calling sequence with INIT = 0 to do the calculation.

**Call Statement and Input**

| INIT | X INC1X INC2X Y INC1Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 |
|------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
|      | CALL SCFT(INIT, X, 4, 1, Y, 4, 1, 12, 4, -1, SCALE, AUX1, 10000, AUX2, 10000) |

**INIT**

- 1 (for initialization)
- 0 (for computation)

**SCALE**

- 1.0/12.0

**Output**

= (same as input X in Example 3)

Y  

= (same as output Y in Example 3)
SRCFT and DRCFT—Real-to-Complex Fourier Transform

These subroutines compute a set of \( m \) complex discrete \( n \)-point Fourier transforms of real data.

<table>
<thead>
<tr>
<th>( X, \text{ scale} )</th>
<th>( Y )</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>Short-precision complex</td>
<td>SRCFT</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>Long-precision complex</td>
<td>DRCFT</td>
</tr>
</tbody>
</table>

Note: Two invocations of this subroutine are necessary: one to prepare the working storage for the subroutine, and the other to perform the computations.

Syntax

Fortran

```fortran
CALL SRCFT (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, aux2, aux3, aux4, aux5, aux6)
CALL DRCFT (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, aux2, aux3, aux4, aux5, aux6)
```

C and C++

```c
scft (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, aux2, aux3, aux4, aux5, aux6);
drcft (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, aux2, aux3, aux4, aux5, aux6);
```

PL/I

```pli
CALL SRCFT (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, aux2, aux3, aux4, aux5, aux6);
CALL DRCFT (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, aux2, aux3, aux4, aux5, aux6);
```

On Entry

`init`

is a flag, where:

- If `init ≠ 0`, trigonometric functions and other parameters, depending on arguments other than \( x \), are computed and saved in `aux1`. The contents of \( x \) and \( y \) are not used or changed.
- If `init = 0`, the discrete Fourier transforms of the given sequences are computed. The only arguments that may change after initialization are \( x \), \( y \), and `aux2`. All scalar arguments must be the same as when the subroutine was called for initialization with `init ≠ 0`.

Specified as: a fullword integer. It can have any value.

`x`

is the array \( X \), consisting of \( m \) sequences of length \( n \), which are to be transformed. The sequences are assumed to be stored with stride 1. Specified as: an array of (at least) length \( n+(m-1)inc2x \), containing numbers of the data type indicated in Table 131. See “Notes” on page 779 for more details. (It can be declared as \( x(inc2x,m) \).)

`inc2x`

is the stride between the first elements of the sequences in array \( X \). (If \( m = 1 \), this argument is ignored.) Specified as: a fullword integer; \( inc2x ≥ n \).

`y`

See “On Return” on page 779.

`inc2y`

is the stride between the first elements of the sequences in array \( Y \). (If \( m = 1 \), this argument is ignored.) Specified as: a fullword integer; \( inc2y ≥ (n/2)+1 \).
n is the length of each sequence to be transformed. Specified as: a fullword integer; \( n \leq 37748736 \) and must be one of the values listed in "Acceptable Lengths for the Transforms" on page 761. For all other values specified less than 37748736, you have the option of having the next larger acceptable value returned in this argument. For details, see “Providing a Correct Transform Length to ESSL” on page 36.

m is the number of sequences to be transformed. Specified as: a fullword integer; \( m > 0 \).

isign controls the direction of the transform, determining the sign \( Isign \) of the exponent of \( W_m \), where:

If \( isign = \) positive value, \( Isign = + \) (transforming time to frequency).

If \( isign = \) negative value, \( Isign = - \) (transforming frequency to time).

Specified as: a fullword integer; \( isign > 0 \) or \( isign < 0 \).

scale is the scaling constant \( scale \). See “Function” on page 780 for its usage. Specified as: a number of the data type indicated in Table 131 on page 777, where \( scale > 0.0 \) or \( scale < 0.0 \).

aux1 is the working storage for this subroutine, where:

If \( init \neq 0 \), the working storage is computed.

If \( init = 0 \), the working storage is used in the computation of the Fourier transforms.

Specified as: an area of storage, containing \( naux1 \) long-precision real numbers.

\( naux1 \) is the number of doublewords in the working storage specified in \( aux1 \). Specified as: a fullword integer; \( naux1 > 14 \) and \( naux1 \geq \) (minimum value required for successful processing). To determine a sufficient value, use the processor-independent formulas. For values between 14 and the minimum value, you have the option of having the minimum value returned in this argument. For details, see “Using Auxiliary Storage in ESSL” on page 30.

\( aux2 \) has the following meaning:

If \( naux2 = 0 \) and error 2015 is unrecoverable, \( aux2 \) is ignored.

Otherwise, it is the working storage used by this subroutine, which is available for use by the calling program between calls to this subroutine.

Specified as: an area of storage, containing \( naux2 \) long-precision real numbers. On output, the contents are overwritten.

\( naux2 \) is the number of doublewords in the working storage specified in \( aux2 \). Specified as: a fullword integer, where:

If \( naux2 = 0 \) and error 2015 is unrecoverable, SRCFT and DRCFT dynamically allocate the work area used by the subroutine. The work area is deallocated before control is returned to the calling program.

Otherwise, \( naux2 \geq \) (minimum value required for successful processing). To determine a sufficient value, use the processor-independent formulas. For all other values specified less than the minimum value, you have the option of
having the minimum value returned in this argument. For details, see “Using Auxiliary Storage in ESSL” on page 30.

\( aux3 \)

this argument is provided for migration purposes only and is ignored.

Specified as: an area of storage, containing \( naux3 \) long-precision real numbers.

\( naux3 \)

this argument is provided for migration purposes only and is ignored.

Specified as: a fullword integer.

### On Return

\( y \)

has the following meaning, where:

If \( \text{init} \neq 0 \), this argument is not used, and its contents remain unchanged.

If \( \text{init} = 0 \), this is array \( Y \), consisting of the results of the \( m \) complex discrete Fourier transforms, each of length \( n \). The sequences are stored with the stride 1. Due to complex conjugate symmetry, only the first \( (n/2) + 1 \) elements of each sequence are given in the output—that is, \( y_{ki}, k = 0, 1, \ldots, n/2, i = 1, 2, \ldots, m \).

Returned as: an array of (at least) length \( n/2+1+(m-1)inc2y \), containing numbers of the data type indicated in Table 131 on page 777. This array must be aligned on a doubleword boundary. (It can be declared as \( Y(inc2y,m) \).)

\( aux1 \)

is the working storage for this subroutine, where:

If \( \text{init} \neq 0 \), it contains information ready to be passed in a subsequent invocation of this subroutine.

If \( \text{init} = 0 \), its contents are unchanged.

Returned as: the contents are not relevant.

### Notes

1. \( aux1 \) should not be used by the calling program between calls to this subroutine with \( \text{init} \neq 0 \) and \( \text{init} = 0 \). However, it can be reused after intervening calls to this subroutine with different arguments.

2. When using the ESSL SMP library, for optimal performance, the number of threads specified should be the same for \( \text{init} \neq 0 \) and \( \text{init} = 0 \).

3. In these subroutines, the elements in each sequence in \( x \) and \( y \) are assumed to be stored in contiguous storage locations, using a stride of 1; therefore, \( inc1x \) and \( inc1y \) values are not a part of the argument list. For optimal performance, the \( inc2x \) and \( inc2y \) values should be close to their respective minimum values, which are given below:

\[
\begin{align*}
\text{min}(inc2x) &= n \\
\text{min}(inc2y) &= n/2+1
\end{align*}
\]

If you specify the same array for \( x \) and \( y \), then \( inc2x \) must equal \( 2(inc2y) \). In this case, output overwrites input. If \( m = 1 \), the \( inc2x \) and \( inc2y \) values are not used by the subroutine. If you specify different arrays for \( x \) and \( y \), they must have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.
4. Be sure to align array \( X \) on a doubleword boundary, and specify an even number for \( \text{inc2x} \), if possible.

**Processor-Independent Formulas for SRCFT for NAUX1 and NAUX2**

**NAUX1 Formulas**
- If \( n \leq 16384 \), use \( \text{naux1} = 25000 \).
- If \( n > 16384 \), use \( \text{naux1} = 20000 + 0.82n \).

**NAUX2 Formulas**
- If \( n \leq 16384 \), use \( \text{naux2} = 20000 \).
- If \( n > 16384 \), use \( \text{naux2} = 20000 + 0.57n \).

**Processor-Independent Formulas for DRCFT for NAUX1 and NAUX2**

**NAUX1 Formulas**
- If \( n \leq 4096 \), use \( \text{naux1} = 22000 \).
- If \( n > 4096 \), use \( \text{naux1} = 20000 + 1.64n \).

**NAUX2 Formulas**
- If \( n \leq 4096 \), use \( \text{naux2} = 20000 \).
- If \( n > 4096 \), use \( \text{naux2} = 20000 + 1.14n \).

**Function:** The set of \( m \) complex conjugate even discrete \( n \)-point Fourier transforms of real data in array \( X \), with results going into array \( Y \), is expressed as follows:

\[
y_{ki} = scale \sum_{j=0}^{n-1} x_{ji} W_n^{(isign)jk}
\]

for:
- \( k = 0, 1, ..., n-1 \)
- \( i = 1, 2, ..., m \)

where:

\[
W_n = e^{-2\pi(\sqrt{-1})jk/n}
\]

and where:
- \( x_{ji} \) are elements of the sequences in array \( X \).
- \( y_{ki} \) are elements of the sequences in array \( Y \).
- \( isign \) is + or – (determined by argument \( isign \)).
- \( scale \) is a scalar value.

The output in array \( Y \) is complex. For \( scale = 1.0 \) and \( isign \) being positive, you obtain the discrete Fourier transform, a function of frequency. The inverse Fourier transform is obtained with \( scale = 1.0/n \) and \( isign \) being negative. See references [1], [4], [19], and [20].
SRCFT and DRCFT

Two invocations of this subroutine are necessary:

1. With \( \text{init} \neq 0 \), the subroutine tests and initializes arguments of the program, setting up the \( \text{aux1} \) working storage.

2. With \( \text{init} = 0 \), the subroutine checks that the initialization arguments in the \( \text{aux1} \) working storage correspond to the present arguments, and if so, performs the calculation of the Fourier transforms.

**Error Conditions**

*Resource Errors:* Error 2015 is unrecoverable, \( \text{naux2} = 0 \), and unable to allocate work area.

*Computational Errors:* None

*Input-Argument Errors*

1. \( n > 37748736 \)
2. \( m \leq 0 \)
3. \( \text{inc2x} < n \)
4. \( \text{inc2y} < n/2+1 \)
5. \( \text{isign} = 0 \)
6. \( \text{scale} = 0.0 \)
7. The subroutine has not been initialized with the present arguments.
8. The length of the transform in \( n \) is not an allowable value. Return code 1 is returned if error 2030 is recoverable.
9. \( \text{naux1} \leq 14 \)
10. \( \text{naux1} \) is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.
11. Error 2015 is recoverable or \( \text{naux2}=0 \), and \( \text{naux2} \) is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.

**Example 1:** This example shows an input array \( X \) with a set of \( m \) cosine sequences \( \cos(2\pi jk/n) \), \( j = 0, 1, ... , 15 \) with the single frequencies \( k = 0, 1, 2, 3 \). The Fourier transform of the cosine sequence with frequency \( k = 0 \) or \( n/2 \) has 1.0 in the 0 or \( n/2 \) position, respectively, and zeros elsewhere. For all other \( k \), the Fourier transform has 0.5 in the \( k \) position and zeros elsewhere. The arrays are declared as follows:

```
 REAL*:4 X(0:65535)
 COMPLEX*:8 Y(0:32768)
 REAL*:8 AUX1(41928), AUX2(35344), AUX3(1)
```

First, initialize \( \text{AUX1} \) using the calling sequence shown below with \( \text{INIT} \neq 0 \). Then use the same calling sequence with \( \text{INIT} = 0 \) to do the calculation.

**Call Statement and Input**

```
 INIT X INC2X Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
 | | | | | | | | | | | | | | | | | | |
 CALL SRCFT(INIT, X , 16 , Y , 9 , 16 , 4 , 1 , SCALE, AUX1 , 41928 , AUX2 , 35344 , AUX3 , 0)
```

```
 INIT = 1(for initialization)
 INIT = 0(for computation)
 SCALE = 1.0/16
```
SRCFT and DRCFT

X contains the following four sequences:

1.0000	1.0000	1.0000	1.0000
1.0000	0.9239	0.7071	0.3827
1.0000	0.7071	0.0000	-0.7071
1.0000	0.3827	-0.7071	-0.9239
1.0000	-0.0000	-1.0000	0.0000
1.0000	-0.3827	-0.7071	0.9239
1.0000	-0.7071	0.0000	0.7071
1.0000	-0.9239	0.7071	-0.3827
1.0000	-1.0000	1.0000	-1.0000
1.0000	-0.9239	0.7071	-0.3827
1.0000	-0.7071	0.0000	0.7071
1.0000	-0.3827	-0.7071	0.9239
1.0000	0.0000	-1.0000	0.0000
1.0000	0.3827	-0.7071	-0.9239
1.0000	0.7071	0.0000	-0.7071
1.0000	0.9239	0.7071	0.3827

Output: Y contains the following four sequences:

(1.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.5000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.5000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)

Example 2: This example shows another transform computation with different data using the same initialized array AUX1 as in Example 1. The input is also a set of four cosine sequences $\cos(2\pi jk/n)$, $j = 0, 1, \ldots, 15$ with the single frequencies $k = 8, 9, 10, 11$, thus including the middle frequency $k = 8$. The middle frequency has the value 1.0. For other frequencies, the transform has zeros, except for frequencies $k$ and $n-k$. Only the values for $j = n-k$ are given in the output.

Call Statement and Input

```
INIT X INC2X Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
| | | | | | | | | | | | | |
CALL SRCFT(0, X, 16, Y, 9, 16, 4, 1, SCALE, AUX1, 41928, AUX2, 35344, AUX3, 0)
```

SCALE = 1.0/16

X contains the following four sequences:
Output:  

\[
\begin{bmatrix}
1.0000 & 1.0000 & 1.0000 & 1.0000 \\
-1.0000 & -0.9239 & -0.7071 & -0.3827 \\
1.0000 & 0.7071 & 0.0000 & -0.7071 \\
-1.0000 & -0.3827 & 0.7071 & 0.9239 \\
1.0000 & 0.0000 & -1.0000 & 0.0000 \\
-1.0000 & 0.3827 & 0.7071 & -0.9239 \\
1.0000 & -0.7071 & 0.0000 & 0.7071 \\
-1.0000 & 0.9239 & -0.7071 & 0.3827 \\
1.0000 & -1.0000 & 1.0000 & -1.0000 \\
-1.0000 & 0.9239 & -0.7071 & 0.3827 \\
1.0000 & -0.7071 & 0.0000 & 0.7071 \\
-1.0000 & 0.3827 & 0.7071 & -0.9239 \\
1.0000 & 0.0000 & -1.0000 & 0.0000 \\
-1.0000 & -0.3827 & 0.7071 & 0.9239 \\
1.0000 & 0.7071 & 0.0000 & -0.7071 \\
-1.0000 & -0.9239 & -0.7071 & -0.3827
\end{bmatrix}
\]

Example 3: This example uses the mixed-radix capability. The arrays are declared as follows:

```
REAL*8 X(0:11)
COMPLEX*16 Y(0:6)
REAL*8 AUX1(50),AUX2(50)
```

Arrays \(X\) and \(Y\) are made equivalent by the following statement, making them occupy the same storage:

```
EQUIVALENCE (X,Y)
```

First, initialize \(AUX1\) using the calling sequence shown below with \(INIT \neq 0\). Then use the same calling sequence with \(INIT = 0\) to do the calculation.

**Call Statement and Input**

```
CALL DRCFT(INIT, X, Y, SCALE, AUX1, AUX2)
```

**Output:** \(Y\) contains the following sequence:

\[
\begin{bmatrix}
(0.0000, 0.0000) & (0.0000, 0.0000) & (0.0000, 0.0000) & (0.0000, 0.0000) & (0.0000, 0.0000) \\
(0.0000, 0.0000) & (0.0000, 0.0000) & (0.0000, 0.0000) & (0.0000, 0.0000) & (0.0000, 0.0000) \\
(0.0000, 0.0000) & (0.0000, 0.0000) & (0.0000, 0.0000) & (0.0000, 0.0000) & (0.0000, 0.0000) \\
(0.0000, 0.0000) & (0.0000, 0.0000) & (0.0000, 0.0000) & (0.0000, 0.0000) & (0.0000, 0.0000) \\
(0.0000, 0.0000) & (0.0000, 0.0000) & (0.0000, 0.0000) & (0.0000, 0.0000) & (0.0000, 0.0000) \\
(0.0000, 0.0000) & (0.0000, 0.0000) & (0.0000, 0.0000) & (0.0000, 0.0000) & (0.0000, 0.0000) \\
(1.0000, 0.0000) & (0.0000, 0.0000) & (0.0000, 0.0000) & (0.0000, 0.0000) & (0.0000, 0.0000)
\end{bmatrix}
\]
SRCFT and DRCFT

(12.0000 , 0.0000)
(0.0000 , 0.0000)
(0.0000 , 0.0000)
(0.0000 , 0.0000)
(0.0000 , 0.0000)
(0.0000 , 0.0000)
SCRFT and DCRFT—Complex-to-Real Fourier Transform

These subroutines compute a set of \( m \) real discrete \( n \)-point Fourier transforms of complex conjugate even data.

<table>
<thead>
<tr>
<th>Table 132. Data Types</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>( X ), ( Y ), scale</td>
<td>SCRFT</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>Long-precision real</td>
</tr>
<tr>
<td>SCRFT</td>
<td>DCRFT</td>
</tr>
</tbody>
</table>

Note: Two invocations of this subroutine are necessary: one to prepare the working storage for the subroutine, and the other to perform the computations.

Syntax

**Fortran**

```fortran
CALL SCRFT (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, aux2, aux3, aux3)
CALL DCRFT (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, aux3, aux2, aux2)
```

**C and C++**

```c
scrft (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, aux2, aux3, aux3);
dcrft (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, aux3, aux2, aux2);
```

**PL/I**

```pli
CALL SCRFT (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, aux2, aux3, aux3);
CALL DCRFT (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, aux2, aux3, aux2);
```

**On Entry**

\( init \)

is a flag, where:

- If \( init \neq 0 \), trigonometric functions and other parameters, depending on arguments other than \( x \), are computed and saved in \( aux1 \). The contents of \( x \) and \( y \) are not used or changed.
- If \( init = 0 \), the discrete Fourier transforms of the given sequences are computed. The only arguments that may change after initialization are \( x \), \( y \), and \( aux2 \). All scalar arguments must be the same as when the subroutine was called for initialization with \( init \neq 0 \).

Specified as: a fullword integer. It can have any value.

\( x \)

is the array \( X \), consisting of \( m \) sequences. Due to complex conjugate symmetry, the input consists of only the first \((n/2)+1\) elements of each sequence; that is, \( x_{j}\), \( j = 0, 1, \ldots, n/2, i = 1, 2, \ldots, m \). The sequences are assumed to be stored with stride 1.

Specified as: an array of (at least) length \( n/2+1+(m-1)inc2x \), containing numbers of the data type indicated in Table 132. This array must be aligned on a doubleword boundary. (It can be declared as \( x(inc2x,m) \).)

\( inc2x \)

is the stride between the first elements of the sequences in array \( X \). (If \( m = 1 \), this argument is ignored.) Specified as: a fullword integer; \( inc2x \geq (n/2)+1 \).

\( y \)

See "On Return" on page 787.
inc2y
is the stride between the first elements of the sequences in array Y. (If \( m = 1 \),
this argument is ignored.) Specified as: a fullword integer; \( inc2y \geq n \).

\( n \)
is the length of each sequence to be transformed. Specified as: a fullword
integer; \( n \leq 37748736 \) and must be one of the values listed in “Acceptable
Lengths for the Transforms” on page 761. For all other values specified less
than 37748736, you have the option of having the next larger acceptable value
returned in this argument. For details, see “Providing a Correct Transform
Length to ESSL” on page 36.

\( m \)
is the number of sequences to be transformed. Specified as: a fullword integer;
\( m > 0 \).

isign
controls the direction of the transform, determining the sign \( Isign \) of the
exponent of \( W_n \), where:

If \( isign \) = positive value, \( Isign = + \) (transforming time to frequency).

If \( isign \) = negative value, \( Isign = - \) (transforming frequency to time).

Specified as: a fullword integer; \( isign > 0 \) or \( isign < 0 \).

scale
is the scaling constant \( scale \). See “Function” on page 788 for its usage.
Specified as: a number of the data type indicated in Table 132 on page 785,
where \( scale > 0.0 \) or \( scale < 0.0 \).

aux1
is the working storage for this subroutine, where:

If \( init \neq 0 \), the working storage is computed.

If \( init = 0 \), the working storage is used in the computation of the Fourier
transforms.

Specified as: an area of storage, containing \( naux1 \) long-precision real numbers.

\( naux1 \)
is the number of doublewords in the working storage specified in \( aux1 \).
Specified as: a fullword integer; \( naux1 > 13 \) and \( naux1 \geq 0 \) (minimum value
required for successful processing). To determine a sufficient value, use the
processor-independent formulas. For values between 13 and the minimum
value, you have the option of having the minimum value returned in this
argument. For details, see “Using Auxiliary Storage in ESSL” on page 30.

aux2
has the following meaning:

If \( naux2 = 0 \) and error 2015 is unrecoverable, \( aux2 \) is ignored.

Otherwise, it is the working storage used by this subroutine that is available for
use by the calling program between calls to this subroutine.

Specified as: an area of storage, containing \( naux2 \) long-precision real numbers.
On output, the contents are overwritten.

\( naux2 \)
is the number of doublewords in the working storage specified in \( aux2 \).
Specified as: a fullword integer, where:

If \( naux2 = 0 \) and error 2015 is unrecoverable, SCRFT and DCRFT dynamically
allocate the work area used by the subroutine. The work area is deallocated
before control is returned to the calling program.
Otherwise, \( naux2 \geq \) (minimum value required for successful processing). To determine a sufficient value, use the processor-independent formulas. For all other values specified less than the minimum value, you have the option of having the minimum value returned in this argument. For details, see “Using Auxiliary Storage in ESSL” on page 30.

\( aux3 \)

this argument is provided for migration purposes only and is ignored.

Specified as: an area of storage, containing \( naux3 \) long-precision real numbers.

\( naux3 \)

this argument is provided for migration purposes only and is ignored.

Specified as: a fullword integer.

**On Return**

\( y \)

has the following meaning, where:

If \( init \neq 0 \), this argument is not used, and its contents remain unchanged.

If \( init = 0 \), this is array \( Y \), consisting of the results of the \( m \) discrete Fourier transforms of the complex conjugate even data, each of length \( n \). The sequences are stored with stride 1.

Returned as: an array of (at least) length \( n+(m-1)inc2y \), containing numbers of the data type indicated in Table 132 on page 785. See “Notes” for more details. (It can be declared as \( Y(inc2y,m) \).)

\( aux1 \)

is the working storage for this subroutine, where:

If \( init \neq 0 \), it contains information ready to be passed in a subsequent invocation of this subroutine.

If \( init = 0 \), its contents are unchanged.

Returned as: the contents are not relevant.

**Notes**

1. \( aux1 \) should **not** be used by the calling program between calls to this subroutine with \( init \neq 0 \) and \( init = 0 \). However, it can be reused after intervening calls to this subroutine with different arguments.

2. When using the ESSL SMP library, for optimal performance, the number of threads specified should be the same for \( init \neq 0 \) and \( init = 0 \).

3. The elements in each sequence in \( x \) and \( y \) are assumed to be stored in contiguous storage locations—that is, with a stride of 1. Therefore, \( inc1x \) and \( inc1y \) values are not a part of the argument list. For optimal performance, the \( inc2x \) and \( inc2y \) values should be close to their respective minimum values, which are given below:

\[
\begin{align*}
\min(inc2y) &= n \\
\min(inc2x) &= n/2+1
\end{align*}
\]

If you specify the same array for \( X \) and \( Y \), then \( inc2y \) must equal \( 2(inc2x) \). In this case, output overwrites input. If \( m = 1 \), the \( inc2x \) and \( inc2y \) values are not used by the subroutine. If you specify different arrays for \( X \) and \( Y \), they must...
have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.

4. Be sure to align array Y on a doubleword boundary, and specify an even number for inc2y, if possible.

**Processor-Independent Formulas for SCRFT for NAUX1 and NAUX2**

**NAUX1 Formulas**

If \( n \leq 16384 \), use \( naux1 = 25000 \).

If \( n > 16384 \), use \( naux1 = 20000 + 0.82n \).

**NAUX2 Formulas**

If \( n \leq 16384 \), use \( naux2 = 20000 \).

If \( n > 16384 \), use \( naux2 = 20000 + 0.57n \).

**Processor-Independent Formulas for DCRFT for NAUX1 and NAUX2**

**NAUX1 Formulas**

If \( n \leq 4096 \), use \( naux1 = 22000 \).

If \( n > 4096 \), use \( naux1 = 20000 + 1.64n \).

**NAUX2 Formulas**

If \( n \leq 4096 \), use \( naux2 = 20000 \).

If \( n > 4096 \), use \( naux2 = 20000 + 1.14n \).

**Function:** The set of \( m \) real discrete \( n \)-point Fourier transforms of complex conjugate even data in array \( X \), with results going into array \( Y \), is expressed as follows:

\[
y_{ki} = scale \sum_{j=0}^{n-1} x_{ji} W_n^{(isign)jk}
\]

for:

\( k = 0, 1, \ldots, n-1 \)

\( i = 1, 2, \ldots, m \)

where:

\[
W_n = e^{-2\pi(i-1)/n}
\]

and where:

- \( x_{ji} \) are elements of the sequences in array \( X \).
- \( y_{ki} \) are elements of the sequences in array \( Y \).
- \( isign \) is + or − (determined by argument \( isign \)).
- \( scale \) is a scalar value.

Because of the symmetry, \( Y \) has real data. For \( scale = 1.0 \) and \( isign \) being positive, you obtain the discrete Fourier transform, a function of frequency. The
inverse Fourier transform is obtained with \( \text{scale} = 1.0/n \) and \( \text{isign} \) being negative. See references [1], [4], [19], and [20].

Two invocations of this subroutine are necessary:

1. With \( \text{init} \neq 0 \), the subroutine tests and initializes arguments of the program, setting up the \( \text{aux1} \) working storage.

2. With \( \text{init} = 0 \), the subroutine checks that the initialization arguments in the \( \text{aux1} \) working storage correspond to the present arguments, and if so, performs the calculation of the Fourier transforms.

**Error Conditions**

**Resource Errors:** Error 2015 is unrecoverable, \( \text{naux2} = 0 \), and unable to allocate work area.

**Computational Errors:** None

**Input-Argument Errors**

1. \( n > 37748736 \)
2. \( m \leq 0 \)
3. \( \text{inc2x} < n/2+1 \)
4. \( \text{inc2y} < n \)
5. \( \text{scale} = 0.0 \)
6. \( \text{isign} = 0 \)
7. The subroutine has not been initialized with the present arguments.
8. The length of the transform in \( n \) is not an allowable value. Return code 1 is returned if error 2030 is recoverable.
9. \( \text{naux1} \leq 13 \)
10. \( \text{naux1} \) is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.
11. Error 2015 is recoverable or \( \text{naux2} \neq 0 \), and \( \text{naux2} \) is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.

**Example 1:** This example uses the mixed-radix capability and shows how to compute a single transform. The arrays are declared as follows:

- COMPLEX*8 \( \text{X}(0:6) \)
- REAL*8 \( \text{AUX1}(50), \text{AUX2}(50), \text{AUX3}(1) \)
- REAL*4 \( \text{Y}(0:11) \)

First, initialize \( \text{AUX1} \) using the calling sequence shown below with \( \text{INIT} \neq 0 \). Then use the same calling sequence with \( \text{INIT} = 0 \) to do the calculation.

**Note:** \( \text{X} \) shows the \( n/2+1 = 7 \) elements used in the computation.

**Call Statement and Input**

```
INIT X INC2X Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
| | | | | | | | | | | | | | | |
CALL SCRFT(INIT, X, 0, Y, 0, 12, 1, 1, SCALE, AUX1, 50, AUX2, 50, AUX3, 0)
```
SCRFT and DCRFT

INIT = 1 (for initialization)
INIT = 0 (for computation)
SCALE = 1.0

X contains the following sequence:
(1.0, 0.0)
(0.0, 0.0)
(0.0, 0.0)
(0.0, 0.0)
(0.0, 0.0)
(0.0, 0.0)
(0.0, 0.0)
(0.0, 0.0)

Output
Y = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

Example 2: This example shows another transform computation with different data using the same initialized array AUX1 as in Example 1.

Call Statement and Input

```
INIT X INC2X Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
| | | | | | | | | | | | | |
CALL SCRFT(INIT, X, INC2X, Y, INC2Y, N, M, SCALE, AUX1, NAUX1, AUX2, NAUX2, AUX3, NAUX3)
```

SCALE = 1.0

X contains the following sequence:
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)

Output
Y = (12.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

Example 3: This example shows how to compute many transforms simultaneously. The arrays are declared as follows:

```
COMPLEX*8 X(0:8,2)
REAL*8 AUX1(50), AUX2(16), AUX3(1)
REAL*4 Y(0:15,2)
```

First, initialize AUX1 using the calling sequence shown below with INIT = 0. Then use the same calling sequence with INIT = 0 to do the calculation.

Call Statement and Input

```
INIT X INC2X Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
| | | | | | | | | | | | | |
CALL SCRFT(INIT, X, INC2X, Y, INC2Y, N, M, SCALE, AUX1, NAUX1, AUX2, NAUX2, AUX3, NAUX3)
```
INIT = 1 (for initialization)
INIT = 0 (for computation)
SCALE = 1.0

X contains the following two sequences:

\[(1.0, 0.0) (0.0, 0.0)\]
\[(1.0, 0.0) (0.0, 0.0)\]
\[(1.0, 0.0) (0.0, 0.0)\]
\[(1.0, 0.0) (0.0, 0.0)\]
\[(1.0, 0.0) (0.0, 0.0)\]
\[(1.0, 0.0) (0.0, 0.0)\]
\[(1.0, 0.0) (0.0, 0.0)\]

Output: Y contains the following two sequences:

\[16.0 \quad 1.0\]
\[0.0 \quad -1.0\]
\[0.0 \quad 1.0\]

Example 4: This example shows the same array being used for input and output. The arrays are declared as follows:

```
COMPLEX*16 X(0:8,2)
REAL*8 AUX1(50), AUX2(16)
REAL*8 Y(0:17,2)
```

Arrays X and Y are made equivalent by the following statement, making them occupy the same storage:

```
EQUIVALENCE (X,Y)
```

This requires INC2Y = 2(INC2X). First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0. Then use the same calling sequence with INIT = 0 to do the calculation.

Call Statement and Input

```
INIT X INC2X Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | |
CALL DCRFT(INIT, X , 9 , Y , 18 , 16 , 2 , -1 , SCALE, AUX1 , 50 , AUX2 , 16)
```
SCRFT and DCRFT

INIT = 1 (for initialization)
INIT = 0 (for computation)
SCALE = 0.0625

X contains the following two sequences:
(1.0, 0.0) (1.0, 0.0)
(0.0, 1.0) (0.0, -1.0)
(-1.0, 0.0) (-1.0, 0.0)
(0.0, -1.0) (0.0, 1.0)
(1.0, 0.0) (1.0, 0.0)
(0.0, 1.0) (0.0, -1.0)
(-1.0, 0.0) (-1.0, 0.0)
(0.0, -1.0) (0.0, 1.0)
(1.0, 0.0) (1.0, 0.0)

Output: Y contains the following two sequences:
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 1.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
1.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
SCOSF and DCOSF—Cosine Transform

These subroutines compute a set of \( m \) real even discrete \( n \)-point Fourier transforms of cosine sequences of real even data.

<table>
<thead>
<tr>
<th>Table 133. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>( x, y, \text{scale} )</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
</tbody>
</table>

**Note:** Two invocations of this subroutine are necessary: one to prepare the working storage for the subroutine, and the other to perform the computations.

**Syntax**

| Fortran          | CALL SCOSF | DCOSF (init, x, inc1x, inc2x, y, inc1y, inc2y, n, m, scale, aux1, aux2, aux1, aux2) |
|------------------|------------|
| C and C++        | scosf | dcosf (init, x, inc1x, inc2x, y, inc1y, inc2y, n, m, scale, aux1, aux2, aux1, aux2); |
| PL/I             | CALL SCOSF | DCOSF (init, x, inc1x, inc2x, y, inc1y, inc2y, n, m, scale, aux1, aux2, aux1, aux2); |

**On Entry**

*init*

is a flag, where:

- If \( init \neq 0 \), trigonometric functions and other parameters, depending on arguments other than \( x \), are computed and saved in \( aux1 \). The contents of \( x \) and \( y \) are not used or changed.

- If \( init = 0 \), the discrete Fourier transforms of the given sequences are computed. The only arguments that may change after initialization are \( x \), \( y \), and \( aux2 \). All scalar arguments must be the same as when the subroutine was called for initialization with \( init \neq 0 \).

Specified as: a fullword integer. It can have any value.

*x*

is the array \( X \), consisting of \( m \) sequences of length \( n/2+1 \). Specified as: an array of (at least) length \( 1+(n/2)inc1x+(m-1)inc2x \), containing numbers of the data type indicated in Table 133.

*inc1x*

is the stride between the elements within each sequence in array \( X \). Specified as: a fullword integer; \( inc1x > 0 \).

*inc2x*

is the stride between the first elements of the sequences in array \( X \). (If \( m = 1 \), this argument is ignored.) Specified as: a fullword integer; \( inc2x > 0 \).

*y*

See “On Return” on page 795.

*inc1y*

is the stride between the elements within each sequence in array \( Y \). Specified as: a fullword integer; \( inc1y > 0 \).
inc2y
is the stride between the first elements of the sequences in array Y. (If \( m = 1 \), this argument is ignored.) Specified as: a fullword integer; \( \text{inc2y} > 0 \).

\( n \)
is the transform length. However, due to symmetry, only the first \( n/2+1 \) values are given in the input and output. Specified as: a fullword integer; \( n \leq 37748736 \) and must be one of the values listed in “Acceptable Lengths for the Transforms” on page 761. For all other values specified less than 37748736, you have the option of having the next larger acceptable value returned in this argument. For details, see “Providing a Correct Transform Length to ESSL” on page 36.

\( m \)
is the number of sequences to be transformed. Specified as: a fullword integer; \( m > 0 \).

scale
is the scaling constant \( \text{scale} \). See “Function” on page 796 for its usage. Specified as: a number of the data type indicated in Table 133 on page 793, where \( \text{scale} > 0.0 \) or \( \text{scale} < 0.0 \).

\( \text{aux1} \)
is the working storage for this subroutine, where:

If \( \text{init} \neq 0 \), the working storage is computed.

If \( \text{init} = 0 \), the working storage is used in the computation of the Fourier transforms.

Specified as: an area of storage, containing \( \text{naux1} \) long-precision real numbers.

\( \text{naux1} \)
is the number of doublewords in the working storage specified in \( \text{aux1} \). Specified as: a fullword integer; \( \text{naux1} \geq \) (minimum value required for successful processing). To determine a sufficient value, use the processor-independent formulas. For all other values specified less than the minimum value, you have the option of having the minimum value returned in this argument. For details, see “Using Auxiliary Storage in ESSL” on page 30.

\( \text{aux2} \)
has the following meaning:

If \( \text{naux2} = 0 \) and error 2015 is unrecoverable, \( \text{aux2} \) is ignored.

Otherwise, it is the working storage used by this subroutine, which is available for use by the calling program between calls to this subroutine.

Specified as: an area of storage, containing \( \text{naux2} \) long-precision real numbers. On output, the contents are overwritten.

\( \text{naux2} \)
is the number of doublewords in the working storage specified in \( \text{aux2} \). Specified as: a fullword integer, where:

If \( \text{naux2} = 0 \) and error 2015 is unrecoverable, SCOSF and DCOSF dynamically allocate the work area used by the subroutine. The work area is deallocated before control is returned to the calling program.

Otherwise, \( \text{naux2} \geq \) (minimum value required for successful processing). To determine a sufficient value, use the processor-independent formulas. For all other values specified less than the minimum value, you have the option of having the minimum value returned in this argument. For details, see “Using Auxiliary Storage in ESSL” on page 30.
On Return

\( y \)

has the following meaning, where:

If \( \text{init} \neq 0 \), this argument is not used, and its contents remain unchanged.

If \( \text{init} = 0 \), this is array \( Y \), consisting of the results of the \( m \) discrete Fourier transforms, where each Fourier transform is real and of length \( n \). However, due to symmetry, only the first \( n/2+1 \) values are given in the output—that is, \( y_{ki} \) for \( k = 0, 1, \ldots, n/2 \) for each \( i = 1, 2, \ldots, m \).

Returned as: an array of (at least) length \( 1+(n/2)\text{inc1y}+(m-1)\text{inc2y} \), containing numbers of the data type indicated in Table 133 on page 793.

\( \text{aux1} \)

is the working storage for this subroutine, where:

If \( \text{init} \neq 0 \), it contains information ready to be passed in a subsequent invocation of this subroutine.

If \( \text{init} = 0 \), its contents are unchanged.

Returned as: the contents are not relevant.

Notes

1. \( \text{aux1} \) should not be used by the calling program between calls to this subroutine with \( \text{init} \neq 0 \) and \( \text{init} = 0 \). However, it can be reused after intervening calls to this subroutine with different arguments.

2. When using the ESSL SMP library, for optimal performance, the number of threads specified should be the same for \( \text{init} \neq 0 \) and \( \text{init} = 0 \).

3. For optimal performance, the preferred value for \( \text{inc1x} \) and \( \text{inc1y} \) is 1. This implies that the sequences are stored with stride 1. In addition, \( \text{inc2x} \) and \( \text{inc2y} \) should be close to \( n/2+1 \).

It is possible to specify sequences in the transposed form—that is, as rows of a two-dimensional array. In this case, \( \text{inc2x} \) (or \( \text{inc2y} \)) is equal to the leading dimension of the array. One can specify either input, output, or both in the transposed form by specifying appropriate values for the stride parameters. For selecting optimal values of \( \text{inc1x} \) and \( \text{inc1y} \) for \_COSF, you should use “STRIDE—Determine the Stride Value for Optimal Performance in Specified Fourier Transform Subroutines” on page 991. Example 2 in the STRIDE subroutine description explains how it is used for \_COSF.

If you specify the same array for \( X \) and \( Y \), then \( \text{inc1x} \) and \( \text{inc1y} \) must be equal, and \( \text{inc2x} \) and \( \text{inc2y} \) must be equal. In this case, output overwrites input. If \( m = 1 \), the \( \text{inc2x} \) and \( \text{inc2y} \) values are not used by the subroutine. If you specify different arrays for \( X \) and \( Y \), they must have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.

Processor-Independent Formulas for SCOSF for NAUX1 and NAUX2

NAUX1 Formulas:

If \( n \leq 16384 \), use \( \text{naux1} = 40000 \).

If \( n > 16384 \), use \( \text{naux1} = 20000+.30n \).
**NAUX2 Formulas:**

If \( n \leq 16384 \), use \( \text{naux2} = 25000 \).
If \( n > 16384 \), use \( \text{naux2} = 20000 + 0.32n \).

For the transposed case, where \( \text{inc2x} = 1 \) or \( \text{inc2y} = 1 \), and where \( n \geq 252 \), add the following to the above storage requirements:

\[
(n/4 + 257)(\min(128, m)).
\]

**Processor-Independent Formulas for DCOSF for NAUX1 and NAUX2**

**NAUX1 Formulas:**

If \( n \leq 16384 \), use \( \text{naux1} = 35000 \).
If \( n > 16384 \), use \( \text{naux1} = 20000 + 0.60n \).

**NAUX2 Formulas:**

If \( n \leq 16384 \), use \( \text{naux2} = 20000 \).
If \( n > 16384 \), use \( \text{naux2} = 20000 + 0.64n \).

For the transposed case, where \( \text{inc2x} = 1 \) or \( \text{inc2y} = 1 \), and where \( n \geq 252 \), add the following to the above storage requirements:

\[
(n/2 + 257)(\min(128, m)).
\]

**Function:** The set of \( m \) real even discrete \( n \)-point Fourier transforms of the cosine sequences of real data in array \( X \), with results going into array \( Y \), is expressed as follows:

\[
y_{ki} = \text{scale} \left( 0.5 x_{0,j} + 0.5(-1)^k x_{n/2,j} + \sum_{j=1}^{n/2-1} x_{ji} \cos(jk(2\pi/n)) \right)
\]

for:

\[
k = 0, 1, \ldots, n/2
\]
\[
i = 1, 2, \ldots, m
\]

where:

\( x_j \) are elements of the sequences in array \( X \), where each sequence contains the \( n/2 + 1 \) real nonredundant data \( x_{j,j} \) \( j = 0, 1, \ldots, n/2 \).

\( y_{ki} \) are elements of the sequences in array \( Y \), where each sequence contains the \( n/2 + 1 \) real nonredundant data \( y_{ki} \) \( k = 0, 1, \ldots, n/2 \).

\( \text{scale} \) is a scalar value.

You can obtain the inverse cosine transform by specifying \( \text{scale} = 4.0/n \). Thus, if an \( X \) input is used with \( \text{scale} = 1.0 \), and its output is used as input on a subsequent call with \( \text{scale} = 4.0/n \), the original \( X \) is obtained. See references [1], [4], [19], and [20].

Two invocations of this subroutine are necessary:

1. With \( \text{init} \neq 0 \), the subroutine tests and initializes arguments of the program, setting up the \( \text{aux1} \) working storage.
2. With \( \text{init} = 0 \), the subroutine checks that the initialization arguments in the \( \text{aux1} \) working storage correspond to the present arguments, and if so, performs the calculation of the Fourier transforms.
These subroutines use a Fourier transform method with a mixed-radix capability. This provides maximum performance for your application.

**Error Conditions**

**Resource Errors:** Error 2015 is unrecoverable, naux2 = 0, and unable to allocate work area.

**Computational Errors:** None

**Input-Argument Errors**

1. \( n > 37748736 \)
2. \( \text{inc1x or inc1y} \leq 0 \)
3. \( \text{inc2x or inc2y} \leq 0 \)
4. \( m \leq 0 \)
5. \( \text{scale} = 0.0 \)
6. The subroutine has not been initialized with the present arguments.
7. The length of the transform in \( n \) is not an allowable value. Return code 1 is returned if error 2030 is recoverable.
8. \( \text{naux1} \) is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.
9. Error 2015 is recoverable or \( \text{naux2} \neq 0 \), and \( \text{naux2} \) is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.

**Example 1:** This example shows an input array \( X \) with a set of \( m \) cosine sequences of length \( n/2+1 \), \( \cos(j(2\pi/n)) \), \( j = 0, 1, \ldots, n/2 \), with the single frequencies \( k = 0, 1, 2, 3 \). The Fourier transform of the cosine sequence with frequency \( k = 0 \) or \( n/2 \) has \( n/2 \) in the 0-th or \( n/2 \)-th position, respectively, and zeros elsewhere. For all other \( k \), the Fourier transform has \( n/4 \) in position \( k \) and zeros elsewhere. The arrays are declared as follows:

\[
\begin{align*}
\text{REAL*4} & \quad \text{X(0:71), Y(0:71)} \\
\text{REAL*8} & \quad \text{AUX1(414), AUX2(8960)}
\end{align*}
\]

First, initialize \( \text{AUX1} \) using the calling sequence shown below with \( \text{INIT} 
eq 0 \). Then use the same calling sequence with \( \text{INIT} = 0 \) to do the calculation.

**Call Statement and Input**

\[
\text{INIT} \quad \text{X INCIX INC2X Y INC1Y INC2Y N M SCALE AUX1 NAUX1 AUX2 NAUX2}
\]

\[
\text{CALL SCOSF(INIT, X , 1 , 18 , Y , 1 , 18 , 32 , 4 , SCALE, AUX1 , 414 , AUX2 , 8960)}
\]

\[
\begin{align*}
\text{INIT} & = 1 \text{(for initialization)} \\
\text{INIT} & = 0 \text{(for computation)} \\
\text{SCALE} & = 1.0
\end{align*}
\]

\( X \) contains the following four sequences:
Example 2: This example shows an input array \( X \) with a set of four input spike sequences equal to the output of Example 1. This shows how you can compute the inverse of the transform in Example 1 by using \( \text{scale} = 4.0/n \), giving as output the four sequences listed in the input for Example 1. First, initialize \( \text{AUX1} \) using the calling sequence shown below with \( \text{INIT} = 0 \). Then use the same calling sequence with \( \text{INIT} = 0 \) to do the calculation.

### Call Statement and Input

```plaintext
INIT X INC1X INC2X Y INC1Y INC2Y N M SCALE AUX1 NAUX1 AUX2 NAUX2
```

```plaintext
CALL SCOSF(INIT, X, 1, 18, Y, 1, 18, 32, 4, SCALE, AUX1, 414, AUX2, 8960)
```

- \( \text{INIT} = 1 \) (for initialization)
- \( \text{INIT} = 0 \) (for computation)
- \( \text{SCALE} = 4.0/32 \)
- \( X = \) (same sequences as in output \( Y \) in Example 1)
Output

\[ Y = \text{(same sequences as in output X in Example 1)} \]

**Example 3:** This example shows another computation using the same arguments initialized in Example 1 and using different input sequence data. The data for this example has frequencies \( k = 14, 15, 16, 17 \). Because only the sequence data has changed, initialization does not have to be done again.

**Call Statement and Input**

```
INIT X INC1X INC2X Y INC1Y INC2Y N M SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | | | |
CALL SCOSF(0, X, 1, 18, Y, 1, 18, 32, 4, SCALE, AUX1, 414, AUX2, 8960)
```

\[ \text{SCALE} = 1.0 \]

\( X \) contains the following four sequences:

- 1.0000 1.0000 1.0000 1.0000
- -0.9239 -0.9808 -1.0000 -0.9808
- 0.7071 0.9239 1.0000 0.9239
- -0.3827 -0.8315 -1.0000 -0.8315
- 0.0000 0.7071 1.0000 0.7071
- 0.3827 -0.5556 -1.0000 -0.5556
- -0.7071 0.3827 1.0000 0.3827
- 0.9239 -0.1951 -1.0000 -0.1951
- -1.0000 0.0000 1.0000 0.0000
- 0.9239 0.1951 -1.0000 0.1951
- -0.7071 -0.3827 1.0000 -0.3827
- 0.3827 0.5556 -1.0000 0.5556
- 0.0000 -0.7071 1.0000 -0.7071
- -0.3827 0.8315 -1.0000 0.8315
- 0.7071 -0.9239 1.0000 -0.9239
- -0.9239 0.9808 -1.0000 0.9808
- 1.0000 -1.0000 1.0000 -1.0000

\[ \ldots \]

**Output:** \( Y \) contains the following four sequences:

- 0.0000 0.0000 0.0000 0.0000
- 0.0000 0.0000 0.0000 0.0000
- 0.0000 0.0000 0.0000 0.0000
- 0.0000 0.0000 0.0000 0.0000
- 0.0000 0.0000 0.0000 0.0000
- 0.0000 0.0000 0.0000 0.0000
- 0.0000 0.0000 0.0000 0.0000
- 0.0000 0.0000 0.0000 0.0000
- 0.0000 0.0000 0.0000 0.0000
- 0.0000 0.0000 0.0000 0.0000
- 8.0000 0.0000 0.0000 0.0000
- 0.0000 8.0000 0.0000 8.0000
- 0.0000 0.0000 16.0000 0.0000

\[ \ldots \]
SSINF and DSINF

SSINF and DSINF—Sine Transform

These subroutines compute a set of $m$ real even discrete $n$-point Fourier transforms of sine sequences of real even data.

<table>
<thead>
<tr>
<th>Table 134. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x$, $y$, scale</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
</tbody>
</table>

Note: Two invocations of this subroutine are necessary: one to prepare the working storage for the subroutine, and the other to perform the computations.

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL SSINF</th>
<th>DSINF (init, $x$, inc1x, inc2x, $y$, inc1y, inc2y, $n$, $m$, scale, aux1, aux2, aux1, aux2, aux2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>ssinf</td>
<td>dsinf (init, $x$, inc1x, inc2x, $y$, inc1y, inc2y, $n$, $m$, scale, aux1, aux1, aux2, aux2);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SSINF</td>
<td>DSINF (init, $x$, inc1x, inc2x, $y$, inc1y, inc2y, $n$, $m$, scale, aux1, aux1, aux2, aux2);</td>
</tr>
</tbody>
</table>

On Entry

init

is a flag, where:

If init ≠ 0, trigonometric functions and other parameters, depending on arguments other than $x$, are computed and saved in aux1. The contents of $x$ and $y$ are not used or changed.

If init = 0, the discrete Fourier transforms of the given sequences are computed. The only arguments that may change after initialization are $x$, $y$, and aux2. All scalar arguments must be the same as when the subroutine was called for initialization with init ≠ 0.

Specified as: a fullword integer. It can have any value.

$x$

is the array $X$, consisting of $m$ sequences of length $n/2$. Specified as: an array of (at least) length 1+(n / 2−1)inc1x+(m−1)inc2x, containing numbers of the data type indicated in Table 134. The first element in $X$ must have a value of 0.0 (otherwise, incorrect results may occur).

inc1x

is the stride between the elements within each sequence in array $X$. Specified as: a fullword integer; inc1x > 0.

inc2x

is the stride between the first elements of the sequences in array $X$. (If m = 1, this argument is ignored.) Specified as: a fullword integer; inc2x > 0.

$y$

See “On Return” on page 802.

inc1y

is the stride between the elements within each sequence in array $Y$. Specified as: a fullword integer; inc1y > 0.
inc2y
is the stride between the first elements of the sequences in array Y. (If \( m = 1 \),
this argument is ignored.) Specified as: a fullword integer; \( \text{inc2y} > 0 \).

\( n \)
is the transform length. However, due to symmetry, only the first \( n/2 \) values are
given in the input and output. Specified as: a fullword integer; \( n \leq 37748736 \)
and must be one of the values listed in “Acceptable Lengths for the
Transforms” on page 761. For all other values specified less than 37748736,
you have the option of having the next larger acceptable value returned in this
argument. For details, see “Providing a Correct Transform Length to ESSL” on
page 36.

\( m \)
is the number of sequences to be transformed. Specified as: a fullword integer;
\( m > 0 \).

scale
is the scaling constant \( \text{scale} \). See “Function” on page 803 for its usage.
Specified as: a number of the data type indicated in Table 134 on page 800,
where \( \text{scale} > 0.0 \) or \( \text{scale} < 0.0 \).

aux1
is the working storage for this subroutine, where:
If \( \text{init} \neq 0 \), the working storage is computed.
If \( \text{init} = 0 \), the working storage is used in the computation of the Fourier
transforms.

Specified as: an area of storage, containing \( \text{naux1} \) long-precision real numbers.

\( \text{naux1} \)
is the number of doublewords in the working storage specified in \( \text{aux1} \).
Specified as: a fullword integer; \( \text{naux1} \geq \) (minimum value required for
successful processing). To determine a sufficient value, use the
processor-independent formulas. For all other values specified less than the
minimum value, you have the option of having the minimum value returned in
this argument. For details, see “Using Auxiliary Storage in ESSL” on page 30.

aux2
has the following meaning:
If \( \text{naux2} = 0 \) and error 2015 is unrecoverable, \( \text{aux2} \) is ignored.
Otherwise, it is the working storage used by this subroutine, which is available
for use by the calling program between calls to this subroutine.

Specified as: an area of storage, containing \( \text{naux2} \) long-precision real numbers.
On output, the contents are overwritten.

\( \text{naux2} \)
is the number of doublewords in the working storage specified in \( \text{aux2} \).
Specified as: a fullword integer, where:
If \( \text{naux2} = 0 \) and error 2015 is unrecoverable, SSINF and DSINF dynamically
allocate the work area used by the subroutine. The work area is deallocated
before control is returned to the calling program.
Otherwise, \( \text{naux2} \geq \) (minimum value required for successful processing). To
determine a sufficient value, use the processor-independent formulas. For all
other values specified less than the minimum value, you have the option of
having the minimum value returned in this argument. For details, see “Using
Auxiliary Storage in ESSL” on page 30.
On Return

\( y \)

has the following meaning, where:

If \( \text{init} \neq 0 \), this argument is not used, and its contents remain unchanged.

If \( \text{init} = 0 \), this is array \( Y \), consisting of the results of the \( m \) discrete Fourier transforms, where each Fourier transform is real and of length \( n \). However, due to symmetry, only the first \( n/2 \) values are given in the output—that is, \( y_{kb} \), \( k = 0, 1, ..., n/2-1 \) for each \( i = 1, 2, ..., m \).

Returned as: an array of (at least) length \( 1+(n/2-1)\text{inc1y}+(m-1)\text{inc2y} \), containing numbers of the data type indicated in Table 134 on page 800.

\( \text{aux1} \)

is the working storage for this subroutine, where:

If \( \text{init} \neq 0 \), it contains information ready to be passed in a subsequent invocation of this subroutine.

If \( \text{init} = 0 \), its contents are unchanged.

Returned as: the contents are not relevant.

Notes

1. \( \text{aux1} \) should not be used by the calling program between calls to this subroutine with \( \text{init} \neq 0 \) and \( \text{init} = 0 \). However, it can be reused after intervening calls to this subroutine with different arguments.

2. When using the ESSL SMP library, for optimal performance, the number of threads specified should be the same for \( \text{init} \neq 0 \) and \( \text{init} = 0 \).

3. For optimal performance, the preferred value for \( \text{inc1x} \) and \( \text{inc1y} \) is 1. This implies that the sequences are stored with stride 1. In addition, \( \text{inc2x} \) and \( \text{inc2y} \) should be close to \( n/2 \).

It is possible to specify sequences in the transposed form—that is, as rows of a two-dimensional array. In this case, \( \text{inc2x} \) (or \( \text{inc2y} \)) = 1 and \( \text{inc1x} \) (or \( \text{inc1y} \)) is equal to the leading dimension of the array. One can specify either input, output, or both in the transposed form by specifying appropriate values for the stride parameters. For selecting optimal values of \( \text{inc1x} \) and \( \text{inc1y} \) for \(_{SINF} \), you should use “STRIDE—Determine the Stride Value for Optimal Performance in Specified Fourier Transform Subroutines” on page 991.

Example 3 in the STRIDE subroutine description explains how it is used for \( _{SINF} \).

If you specify the same array for \( X \) and \( Y \), then \( \text{inc1x} \) and \( \text{inc1y} \) must be equal, and \( \text{inc2x} \) and \( \text{inc2y} \) must be equal. In this case, output overwrites input. If \( m = 1 \), the \( \text{inc2x} \) and \( \text{inc2y} \) values are not used by the subroutine. If you specify different arrays for \( X \) and \( Y \), they must have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.

Processor-Independent Formulas for SSINF for NAUX1 and NAUX2

NAUX1 Formulas:

If \( n \leq 16384 \), use \( \text{naux1} = 60000 \).

If \( n > 16384 \), use \( \text{naux1} = 20000+.30n \).
**NAUX2 Formulas:**

If \( n \leq 16384 \), use \( naux2 = 25000 \).

If \( n > 16384 \), use \( naux2 = 20000+.32n \).

For the transposed case, where \( inc2x = 1 \) or \( inc2y = 1 \), and where \( n \geq 252 \), add the following to the above storage requirements:

\[(n/4+257)(\min(128, m))\].

**Processor-Independent Formulas for DSINF for NAUX1 and NAUX2**

**NAUX1 Formulas:**

If \( n \leq 16384 \), use \( naux1 = 50000 \).

If \( n > 16384 \), use \( naux1 = 20000+.60n \).

**NAUX2 Formulas:**

If \( n \leq 16384 \), use \( naux2 = 20000 \).

If \( n > 16384 \), use \( naux2 = 20000+.64n \).

For the transposed case, where \( inc2x = 1 \) or \( inc2y = 1 \), and where \( n \geq 252 \), add the following to the above storage requirements:

\[(n/2+257)(\min(128, m))\].

**Function:** The set of \( m \) real even discrete \( n \)-point Fourier transforms of the sine sequences of real data in array \( X \), with results going into array \( Y \), is expressed as follows:

\[ y_{ki} = scale \sum_{j=0}^{n/2-1} x_{ji} \sin(jk(2\pi/n)) \]

for:

- \( k = 0, 1, \ldots, n/2-1 \)
- \( i = 1, 2, \ldots, m \)

where:

- \( x_{0j} = 0.0 \)
- \( x_{ij} \) are elements of the sequences in array \( X \), where each sequence contains the \( n/2 \) real nonredundant data \( x_{ij} \) for \( j = 0, 1, \ldots, n/2-1 \).
- \( y_{ki} \) are elements of the sequences in array \( Y \), where each sequence contains the \( n/2 \) real nonredundant data \( y_{ki} \) for \( k = 0, 1, \ldots, n/2-1 \).
- \( scale \) is a scalar value.

You can obtain the inverse sine transform by specifying \( scale = 4.0/n \). Thus, if an \( X \) input is used with \( scale = 1.0 \), and its output is used as input on a subsequent call with \( scale = 4.0/n \), the original \( X \) is obtained. See references [1], [4], [19], and [20].

Two invocations of this subroutine are necessary:

1. With \( init \neq 0 \), the subroutine tests and initializes arguments of the program, setting up the \( aux1 \) working storage.
2. With \( \text{init} = 0 \), the subroutine checks that the initialization arguments in the \( \text{aux1} \) working storage correspond to the present arguments, and if so, performs the calculation of the Fourier transforms.

These subroutines use a Fourier transform method with a mixed-radix capability. This provides maximum performance for your application.

**Error Conditions**

*Resource Errors:* Error 2015 is unrecoverable, \( \text{naux2} = 0 \), and unable to allocate work area.

*Computational Errors:* None

*Input-Argument Errors*

1. \( n > 37748736 \)
2. \( \text{inc1x or inc1y} \leq 0 \)
3. \( \text{inc2x or inc2y} \leq 0 \)
4. \( m \leq 0 \)
5. \( \text{scale} = 0.0 \)
6. The subroutine has not been initialized with the present arguments.
7. The length of the transform in \( n \) is not an allowable value. Return code 1 is returned if error 2030 is recoverable.
8. \( \text{naux1} \) is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.
9. Error 2015 is recoverable or \( \text{naux2} \neq 0 \), and \( \text{naux2} \) is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.

**Example 1:** This example shows an input array \( X \) with a set of \( m \) sine sequences of length \( n/2 \), \( \sin(j(2\pi/n)) \), \( j = 0, 1, ..., n/2-1 \), with the single frequencies \( k = 1, 2, 3 \). The Fourier transform of the sine sequence has \( n/4 \) in position \( k \) and zeros elsewhere. The arrays are declared as follows:

\[
\begin{align*}
\text{REAL*:4} & \quad X(0:53), Y(0:53) \\
\text{REAL*:8} & \quad \text{AUX1(414), AUX2(8960)}
\end{align*}
\]

First, initialize \( \text{AUX1} \) using the calling sequence shown below with \( \text{INIT} \neq 0 \). Then use the same calling sequence with \( \text{INIT} = 0 \) to do the calculation.

**Call Statement and Input**

\[
\begin{align*}
\text{INIT} & \quad X \quad \text{INC1X} \quad \text{INC2X} \quad Y \quad \text{INC1Y} \quad \text{INC2Y} \quad N \quad M \quad \text{SCALE} \quad \text{AUX1} \quad \text{AUX2} \quad \text{NAUX1} \quad \text{NAUX2} \\
& \quad 1 \quad 1 \quad 18 \quad 1 \quad 18 \quad 32 \quad 3 \quad \text{SCALE} \quad \text{AUX1} \quad 414 \quad \text{AUX2} \quad 8960
\end{align*}
\]

\[
\begin{align*}
\text{INIT} & \quad = \quad 1 \text{(for initialization)} \\
\text{INIT} & \quad = \quad 0 \text{(for computation)} \\
\text{SCALE} & \quad = \quad 1.0
\end{align*}
\]

\( X \) contains the following three sequences:
Output: Y contains the following three sequences:

```
0.0000 0.0000 0.0000
8.0000 0.0000 0.0000
0.0000 8.0000 0.0000
0.0000 0.0000 8.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
```

Example 2: This example shows an input array X with a set of three input spike sequences equal to the output of Example 1. This shows how you can compute the inverse of the transform in Example 1 by using scale = 4.0/n, giving as output the three sequences listed in the input for Example 1. First, initialize AUX1 using the calling sequence shown below with INIT = 0. Then use the same calling sequence with INIT = 0 to do the calculation.

Call Statement and Input

```
INIT X INC1X INC2X Y INC1Y INC2Y N M SCALE AUX1 NAUX1 AUX2 NAUX2
```

```
CALL SSINF(INIT, X , 1 , 18 , Y , 1 , 18 , 32 , 3 , SCALE, AUX1 , 414 , AUX2 , 8960)
```

```
INIT = 1(for initialization)
INIT = 0(for computation)
SCALE = 4.0/32
X = (same sequences as in output Y in Example 1)
SSINF and DSINF

Output

Y = (same sequences as in output X in Example 1)

Example 3: This example shows another computation using the same arguments initialized in Example 1 and using different input sequence data. The data for this example has frequencies $k = 14, 15, 17$. Because only the sequence data has changed, initialization does not have to be done again.

Call Statement and Input

```
INIT X INC1X INC2X Y INC1Y INC2Y N M SCALE AUX1 NAUX1 AUX2 NAUX2
|   |   |   |   |   |   |   |   |   |   |   |   |
CALL SSINF( 0, X, 1, 18, Y, 1, 18, 32, 3, SCALE, AUX1, 414, AUX2, 8960)
```

SCALE = 1.0

X contains the following three sequences:

```
0.0000  0.0000  0.0000
0.3827  0.1951 -0.1951
-0.7071 -0.3827  0.3827
0.9239  0.5556 -0.5556
-1.0000 -0.7071  0.7071
 0.9239  0.8315 -0.8315
-0.7071 -0.9239  0.9239
 0.3827  0.9808 -0.9808
 0.8573 -1.0000  1.0000
-0.3827  0.9808 -0.9808
 0.7071 -0.9239  0.9239
-0.9239  0.8315 -0.8315
 1.0000 -0.7071  0.7071
-0.9239  0.5556 -0.5556
 0.7071 -0.3827  0.3827
-0.3827  0.1951 -0.1951
```

Output: Y contains the following three sequences:

```
0.0000  0.0000  0.0000
0.0000  0.0000  0.0000
0.0000  0.0000  0.0000
0.0000  0.0000  0.0000
0.0000  0.0000  0.0000
0.0000  0.0000  0.0000
0.0000  0.0000  0.0000
0.0000  0.0000  0.0000
0.0000  0.0000  0.0000
0.0000  0.0000  0.0000
0.0000  0.0000  0.0000
0.0000  0.0000  0.0000
0.0000  0.0000  0.0000
0.0000  0.0000  0.0000
0.0000  0.0000  0.0000
8.0000  0.0000  0.0000
 0.0000  8.0000  -8.0000
 0.0000  0.0000  0.0000
```

806 Engineering and Scientific Subroutine Library Version 3 Guide and Reference
SCFT2 and DCFT2—Complex Fourier Transform in Two Dimensions

These subroutines compute the two-dimensional discrete Fourier transform of complex data.

Table 135. Data Types

<table>
<thead>
<tr>
<th>X, Y</th>
<th>scale</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision complex</td>
<td>Short-precision real</td>
<td>SCFT2</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>Long-precision real</td>
<td>DCFT2</td>
</tr>
</tbody>
</table>

Note: Two invocations of this subroutine are necessary: one to prepare the working storage for the subroutine, and the other to perform the computations.

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL SCFT2</th>
<th>DCFT2 (init, x, inc1x, inc2x, y, inc1y, inc2y, n1, n2, isign, scale, aux1, aux2, naux1, naux2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>scft2</td>
<td>dcht2 (init, x, inc1x, inc2x, y, inc1y, inc2y, n1, n2, isign, scale, aux1, aux2, naux1, naux2);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SCFT2</td>
<td>DCFT2 (init, x, inc1x, inc2x, y, inc1y, inc2y, n1, n2, isign, scale, aux1, aux2, naux1, naux2);</td>
</tr>
</tbody>
</table>

On Entry

- **init**
 - is a flag, where:
 - If $init \neq 0$, trigonometric functions and other parameters, depending on arguments other than x, are computed and saved in $aux1$. The contents of x and y are not used or changed.
 - If $init = 0$, the discrete Fourier transform of the given array is computed. The only arguments that may change after initialization are x, y, and $aux2$. All scalar arguments must be the same as when the subroutine was called for initialization with $init \neq 0$.
 - Specified as: a fullword integer. It can have any value.

- **x**
 - is the array X, containing the two-dimensional data to be transformed, where each element $x_{j1,j2}$, using zero-based indexing, is stored in $X(j1(inc1x)+j2(inc2x))$ for $j1 = 0, 1, ..., n1-1$ and $j2 = 0, 1, ..., n2-1$.
 - Specified as: an array of (at least) length $1+(n1-1)inc1x+(n2-1)inc2x$, containing numbers of the data type indicated in Table 135. This array must be aligned on a doubleword boundary, and:
 - If $inc1x = 1$, the input array is stored in normal form, and $inc2x \geq n1$.
 - If $inc2x = 1$, the input array is stored in transposed form, and $inc1x \geq n2$.
 - See “Notes” on page 810 for more details.

- **inc1x**
 - is the stride between the elements in array X for the first dimension.
 - If the array is stored in the normal form, $inc1x = 1$.
If the array is stored in the transposed form, $inc1x$ is the leading dimension of the array and $inc1x \geq n2$.

Specified as: a fullword integer; $inc1x > 0$. If $inc2x = 1$, then $inc1x \geq n2$.

$inc2x$

is the stride between the elements in array X for the second dimension.

If the array is stored in the transposed form, $inc2x = 1$.

If the array is stored in the normal form, $inc2x$ is the leading dimension of the array and $inc2x \geq n1$.

Specified as: a fullword integer; $inc2x > 0$. If $inc1x = 1$, then $inc2x \geq n1$.

y

See “On Return” on page 809.

$inc1y$

is the stride between the elements in array Y for the first dimension.

If the array is stored in the normal form, $inc1y = 1$.

If the array is stored in the transposed form, $inc1y$ is the leading dimension of the array and $inc1y \geq n2$.

Specified as: a fullword integer; $inc1y > 0$. If $inc2y = 1$, then $inc1y \geq n2$.

$inc2y$

is the stride between the elements in array Y for the second dimension.

If the array is stored in the transposed form, $inc2y = 1$.

If the array is stored in the normal form, $inc2y$ is the leading dimension of the array and $inc2y \geq n1$.

Specified as: a fullword integer; $inc2y > 0$. If $inc1y = 1$, then $inc2y \geq n1$.

$n1$

is the length of the first dimension of the two-dimensional data in the array to be transformed. Specified as: a fullword integer; $n1 \leq 37748736$ and must be one of the values listed in “Acceptable Lengths for the Transforms” on page 761. For all other values specified less than 37748736, you have the option of having the next larger acceptable value returned in this argument.

For details, see “Providing a Correct Transform Length to ESSL” on page 36.

$n2$

is the length of the second dimension of the two-dimensional data in the array to be transformed. Specified as: a fullword integer; $n2 \leq 37748736$ and must be one of the values listed in “Acceptable Lengths for the Transforms” on page 761. For all other values specified less than 37748736, you have the option of having the next larger acceptable value returned in this argument.

For details, see “Providing a Correct Transform Length to ESSL” on page 36.

$isign$

controls the direction of the transform, determining the sign $Isign$ of the exponents of W_{n1} and W_{n2}, where:

If $isign$ = positive value, $isign = +$ (transforming time to frequency).

If $isign$ = negative value, $isign = -$ (transforming frequency to time).

Specified as: a fullword integer; $isign > 0$ or $isign < 0$.

scale

is the scaling constant $scale$. See “Function” on page 811 for its usage.

Specified as: a number of the data type indicated in Table 135 on page 807, where $scale > 0.0$ or $scale < 0.0$.

aux1
is the working storage for this subroutine, where:
If \(\text{init} \neq 0 \), the working storage is computed.
If \(\text{init} = 0 \), the working storage is used in the computation of the Fourier transforms.

Specified as: an area of storage, containing \(\text{naux1} \) long-precision real numbers.

\(\text{naux1} \)
is the number of doublewords in the working storage specified in \(\text{aux1} \).
Specified as: a fullword integer; \(\text{naux1} \geq \) (minimum value required for successful processing). To determine a sufficient value, use the processor-independent formulas. For all other values specified less than the minimum value, you have the option of having the minimum value returned in this argument. For details, see “Using Auxiliary Storage in ESSL” on page 30.

\(\text{aux2} \)
has the following meaning:
If \(\text{naux2} = 0 \) and error 2015 is unrecoverable, \(\text{aux2} \) is ignored.
Otherwise, it is the working storage used by this subroutine, which is available for use by the calling program between calls to this subroutine.
Specified as: an area of storage, containing \(\text{naux2} \) long-precision real numbers. On output, the contents are overwritten.

\(\text{naux2} \)
is the number of doublewords in the working storage specified in \(\text{aux2} \).
Specified as: a fullword integer, where:
If \(\text{naux2} = 0 \) and error 2015 is unrecoverable, SCFT2 and DCFT2 dynamically allocate the work area used by the subroutine. The work area is deallocated before control is returned to the calling program.
Otherwise, \(\text{naux2} \geq \) (minimum value required for successful processing). To determine a sufficient value, use the processor-independent formulas. For all other values specified less than the minimum value, you have the option of having the minimum value returned in this argument. For details, see “Using Auxiliary Storage in ESSL” on page 30.

On Return

\(y \)
has the following meaning, where:
If \(\text{init} \neq 0 \), this argument is not used, and its contents remain unchanged.
If \(\text{init} = 0 \), this is array \(Y \), containing the elements resulting from the two-dimensional discrete Fourier transform of the data in \(X \). Each element \(y_{k1,k2} \) using zero-based indexing, is stored in \(Y(k1(\text{inc1y})+k2(\text{inc2y})) \) for \(k1 = 0, 1, ..., n1-1 \) and \(k2 = 0, 1, ..., n2-1 \).

Returned as: an array of (at least) length \(1+(n1-1)\text{inc1y}+(n2-1)\text{inc2y} \), containing numbers of the data type indicated in Table 135 on page 807. This array must be aligned on a doubleword boundary, and:
If \(\text{inc1y} = 1 \), the output array is stored in normal form, and \(\text{inc2y} \geq n1 \).
If \(\text{inc2y} = 1 \), the output array is stored in transposed form, and \(\text{inc1y} \geq n2 \).
See “Notes” on page 810 for more details.
SCFT2 and DCFT2

aux1

is the working storage for this subroutine, where:

If $init \neq 0$, it contains information ready to be passed in a subsequent invocation of this subroutine.

If $init = 0$, its contents are unchanged.

Returned as: the contents are not relevant.

Notes

1. aux1 should not be used by the calling program between program calls to this subroutine with $init \neq 0$ and $init = 0$. However, it can be reused after intervening calls to this subroutine with different arguments.

2. When using the ESSL SMP library, for optimal performance, the number of threads specified should be the same for $init \neq 0$ and $init = 0$.

3. If you specify the same array for X and Y, then $inc1x$ must equal $inc1y$, and $inc2x$ must equal $inc2y$. In this case, output overwrites input. If you specify different arrays X and Y, they must have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.

4. By appropriately specifying the inc arguments, this subroutine allows you to specify that it should use one of two forms of its arrays, the normal untransposed form or the transposed form. As a result, you do not have to move any data. Instead, the subroutine performs the adjustments for you. Also, either the input array or the output array can be in transposed form. The FFT computation is symmetrical with respect to $n1$ and $n2$. They can be interchanged without the loss of generality. If they are interchanged, an array that is stored in the normal form appears as an array stored in the transposed form and vise versa. If, for performance reasons, the forms of the input and output arrays are different, then the input array should be specified in the normal form, and the output array should be specified in the transposed form. This can always be done by interchanging $n1$ and $n2$.

5. Although the inc arguments for each array can be arbitrary, in most cases, one of the inc arguments is 1 for each array. If $inc1 = 1$, the array is stored in normal form; that is, the first dimension of the array is along the columns. In this case, $inc2$ is the leading dimension of the array and must be at least $n1$. Conversely, if $inc2 = 1$, the array is stored in the transposed form; that is, the first dimension of the array is along the rows. In this case, $inc1$ is the leading dimension of the array and must be at least $n2$. The rows of the arrays are accessed with a stride that equals the leading dimension of the array. To minimize cache interference in accessing a row, an optimal value should be used for the leading dimension of the array. You should use “STRIDE—Determine the Stride Value for Optimal Performance in Specified Fourier Transform Subroutines” on page 991 to determine this optimal value. Example 4 in the STRIDE subroutine description explains how it is used to find either $inc1$ or $inc2$.

Processor-Independent Formulas for SCFT2 for NAUX1 and NAUX2:

The required values of $naux1$ and $naux2$ depend on $n1$ and $n2$.

NAUX1 Formulas

If $\max(n1, n2) \leq 8192$, use $naux1 = 40000$.
If $\max(n1, n2) > 8192$, use $naux1 = 40000 + 1.14(n1+n2)$.
NAUX2 Formulas

If \(\max(n_1, n_2) < 252 \), use \(\text{naux2} = 20000 \).

If \(\max(n_1, n_2) \geq 252 \), use \(\text{naux2} = 20000 + (r + 256)(s + 1.14) \), where \(r = \max(n_1, n_2) \) and \(s = \min(64, n_1, n_2) \).

Processor-Independent Formulas for DCFT2 for NAUX1 and NAUX2: The required values of \(\text{naux1} \) and \(\text{naux2} \) depend on \(n_1 \) and \(n_2 \).

NAUX1 Formulas

If \(\max(n_1, n_2) \leq 2048 \), use \(\text{naux1} = 40000 \).

If \(\max(n_1, n_2) > 2048 \), use \(\text{naux1} = 40000 + 2.28(n_1 + n_2) \).

NAUX2 Formulas

If \(\max(n_1, n_2) < 252 \), use \(\text{naux2} = 20000 \).

If \(\max(n_1, n_2) \geq 252 \), use \(\text{naux2} = 20000 + (2r + 256)(s + 2.28) \), where \(r = \max(n_1, n_2) \) and \(s = \min(64, n_1, n_2) \).

Function: The two-dimensional discrete Fourier transform of complex data in array \(X \), with results going into array \(Y \), is expressed as follows:

\[
y_{k1,k2} = \text{scale} \sum_{j1=0}^{n1-1} \sum_{j2=0}^{n2-1} x_{j1,j2} W_{n1}^{(isign)j1k1} W_{n2}^{(isign)j2k2}
\]

for:

\[
k1 = 0, 1, ..., n1-1
\]
\[
k2 = 0, 1, ..., n2-1
\]

where:

\[
W_{n1} = e^{-2\pi(i^{-1})/n1}
\]
\[
W_{n2} = e^{-2\pi(i^{-1})/n2}
\]

and where:

\(x_{j1,j2} \) are elements of array \(X \).

\(y_{k1,k2} \) are elements of array \(Y \).

\(isign \) is + or − (determined by argument \(isign \)).

\(scale \) is a scalar value.

For \(scale = 1.0 \) and \(isign \) being positive, you obtain the discrete Fourier transform, a function of frequency. The inverse Fourier transform is obtained with \(scale = 1.0/((n1)(n2)) \) and \(isign \) being negative. See references \([1\,],[4\,],\) and \([20\,]\).

Two invocations of this subroutine are necessary:

1. With \(init \neq 0 \), the subroutine tests and initializes arguments of the program, setting up the \(aux1 \) working storage.
2. With init = 0, the subroutine checks that the initialization arguments in the aux1 working storage correspond to the present arguments, and if so, performs the calculation of the Fourier transform.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux2 = 0, and unable to allocate work area.

Computational Errors: None

Input-Argument Errors

1. n1 > 37748736
2. n2 > 37748736
3. inc1x|inc2x|inc1y|inc2y ≤ 0
4. scale = 0.0
5. isign = 0
6. The subroutine has not been initialized with the present arguments.
7. The length of one of the transforms in n1 or n2 is not an allowable value.
 Return code 1 is returned if error 2030 is recoverable.
8. naux1 is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.
9. Error 2015 is recoverable or naux2≠0, and naux2 is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.

Example 1: This example shows how to compute a two-dimensional transform where both input and output are stored in normal form (inc1x = inc1y = 1). Also, inc2x = inc2y so the same array can be used for both input and output. The arrays are declared as follows:

```plaintext
COMPLEX*8      X(6,8), Y(6,8)
REAL*8         AUX1(20000), AUX2(10000)
```

Arrays X and Y are made equivalent by the following statement, making them occupy the same storage: EQUIVALENCE (X, Y). First, initialize AUX1 using the calling sequence shown below with INIT = 0. Then use the same calling sequence with INIT = 0 to do the calculation.

Call Statement and Input

```
INIT X INC1X INC2X Y INC1Y INC2Y N1 N2 ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
| | | | | | | | | | | | | | | | | | | | |
CALL SCFT2(INIT, X, 1, 6, Y, 1, 6, 6, 8, 1, SCALE, AUX1, 20000, AUX2, 10000)
```

INIT = 1(for initialization)

INIT = 0(for computation)

SCALE = 1.0

X is an array with 6 rows and 8 columns with (1.0, 0.0) in all locations.

Output: Y is an array with 6 rows and 8 columns having (48.0, 0.0) in location Y(1,1) and (0.0, 0.0) in all others.
Example 2: This example shows how to compute a two-dimensional inverse Fourier transform. For this example, \(X\) is stored in normal untransposed form \((\text{inc}1x = 1)\), and \(Y\) is stored in transposed form \((\text{inc}2y = 1)\). The arrays are declared as follows:

- **COMPLEX:** \(X(6,8), Y(8,6)\)
- **REAL:** \(\text{AUX1}(20000), \text{AUX2}(10000)\)

First, initialize \(\text{AUX1}\) using the calling sequence shown below with \(\text{INIT} \neq 0\). Then use the same calling sequence with \(\text{INIT} = 0\) to do the calculation.

Call Statement and Input

```
INIT  X  INC1X INC2X  Y  INC1Y INC2Y  N1  N2  ISIGN  SCALE  AUX1  NAUX1  AUX2  NAUX2
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |
CALL DCFT2(INIT, X, 1, 6, Y, 8, 1, 6, 8, -1, SCALE, AUX1, 20000, AUX2, 10000)
```

Parameters:

- **INIT** = 1 (for initialization)
- **INIT** = 0 (for computation)
- **SCALE** = \(1.0/48.0\)
- **X** = (same as output \(Y\) in Example 1)

Output: \(Y\) is an array with 8 rows and 6 columns with \((1.0, 0.0)\) in all locations.
SRCFT2 and DRCFT2—Real-to-Complex Fourier Transform in Two Dimensions

These subroutines compute the two-dimensional discrete Fourier transform of real data in a two-dimensional array.

Table 136. Data Types

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>X, scale</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Short-precision real</td>
<td>Short-precision complex</td>
<td>SRCFT2</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>Long-precision complex</td>
<td>DRCFT2</td>
</tr>
</tbody>
</table>

Note: Two invocations of this subroutine are necessary: one to prepare the working storage for the subroutine, and the other to perform the computations.

Syntax

Fortran

CALL SRCFT2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, aux2, aux3, aux3);
CALL DRCFT2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, aux2, aux2);

C and C++

srcft2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, aux2, aux3, aux3);
drcft2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, aux2, aux2);

PL/I

CALL SRCFT2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, aux2, aux3, aux3);
CALL DRCFT2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, aux2, aux2);

On Entry

init
is a flag, where:

If init ≠ 0, trigonometric functions and other parameters, depending on arguments other than x, are computed and saved in aux1. The contents of x and y are not used or changed.

If init = 0, the discrete Fourier transform of the given array is computed. The only arguments that may change after initialization are x, y, and aux2. All scalar arguments must be the same as when the subroutine was called for initialization with init ≠ 0.

Specified as: a fullword integer. It can have any value.

x
is the array x, containing n1 rows and n2 columns of data to be transformed. The data in each column is stored with stride 1. Specified as: an inc2x by (at least) n2 array, containing numbers of the data type indicated in Table 136. See “Notes” on page 816 for more details.

inc2x
is the leading dimension (stride between columns) of array x. Specified as: a fullword integer; inc2x ≥ n1.

y
See “On Return” on page 816.
inc2y

is the leading dimension (stride between columns) of array \(Y \). Specified as: a fullword integer; \(inc2y \geq ((n1)/2)+1 \).

\(n1 \)

is the number of rows of data—that is, the length of the columns in array \(X \) involved in the computation. The length of the columns in array \(Y \) are \((n1)/2+1 \).

Specified as: a fullword integer; \(n1 \leq 37748736 \) and must be one of the values listed in “Acceptable Lengths for the Transforms” on page 761. For all other values specified less than 37748736, you have the option of having the next larger acceptable value returned in this argument. For details, see “Providing a Correct Transform Length to ESSL” on page 36.

\(n2 \)

is the number of columns of data—that is, the length of the rows in arrays \(X \) and \(Y \) involved in the computation. Specified as: a fullword integer; \(n2 \leq 37748736 \) and must be one of the values listed in “Acceptable Lengths for the Transforms” on page 761. For all other values specified less than 37748736, you have the option of having the next larger acceptable value returned in this argument. For details, see “Providing a Correct Transform Length to ESSL” on page 36.

\(isign \)

controls the direction of the transform, determining the sign \(Isign \) of the exponents of \(W_{n1} \) and \(W_{n2} \), where:

If \(isign = \) positive value, \(Isign = + \) (transforming time to frequency).

If \(isign = \) negative value, \(Isign = - \) (transforming frequency to time).

Specified as: a fullword integer; \(isign > 0 \) or \(isign < 0 \).

\(scale \)

is the scaling constant \(scale \). See “Function” on page 817 for its usage.

Specified as: a number of the data type indicated in Table 136 on page 814, where \(scale > 0.0 \) or \(scale < 0.0 \).

\(aux1 \)

is the working storage for this subroutine, where:

If \(init \neq 0 \), the working storage is computed.

If \(init = 0 \), the working storage is used in the computation of the Fourier transforms.

Specified as: an area of storage, containing \(naux1 \) long-precision real numbers.

\(naux1 \)

is the number of doublewords in the working storage specified in \(aux1 \).

Specified as: a fullword integer; \(naux1 \geq \) (minimum value required for successful processing). To determine a sufficient value, use the processor-independent formulas. For all other values specified less than the minimum value, you have the option of having the minimum value returned in this argument. For details, see “Using Auxiliary Storage in ESSL” on page 30.

\(aux2 \)

has the following meaning:

If \(naux2 = 0 \) and error 2015 is unrecoverable, \(aux2 \) is ignored.

Otherwise, it is the working storage used by this subroutine, which is available for use by the calling program between calls to this subroutine.

Specified as: an area of storage, containing \(naux2 \) long-precision real numbers. On output, the contents are overwritten.
SRCFT2 and DRCFT2

naux2
- is the number of doublewords in the working storage specified in **aux2**.
- Specified as: a fullword integer, where:
 - If \(naux2 = 0 \) and error 2015 is unrecoverable, SRCFT2 and DRCFT2 dynamically allocate the work area used by the subroutine. The work area is deallocated before control is returned to the calling program.
 - Otherwise, \(naux2 \geq (\text{minimum value required for successful processing}) \). To determine a sufficient value, use the processor-independent formulas. For all other values specified less than the minimum value, you have the option of having the minimum value returned in this argument. For details, see “Using Auxiliary Storage in ESSL” on page 30.

aux3
- this argument is provided for migration purposes only and is ignored.
- Specified as: an area of storage containing \(naux3 \) long-precision real numbers.

naux3
- this argument is provided for migration purposes only and is ignored.
- Specified as: a fullword integer.

On Return

y
- has the following meaning, where:
 - If \(\text{init} \neq 0 \), this argument is not used, and its contents remain unchanged.
 - If \(\text{init} = 0 \), this is array \(Y \), containing the results of the complex discrete Fourier transform of \(X \). The output consists of \(n2 \) columns of data. The data in each column is stored with stride 1. Due to complex conjugate symmetry, the output consists of only the first \(((n1)/2)+1 \) rows of the array—that is, \(y_{k1,k2} \), where \(k1 = 0, 1, ..., (n1)/2 \) and \(k2 = 0, 1, ..., n2-1 \).

- Returned as: an \(\text{inc2y} \) by (at least) \(n2 \) array, containing numbers of the data type indicated in Table 136 on page 814. This array must be aligned on a doubleword boundary.

aux1
- is the working storage for this subroutine, where:
 - If \(\text{init} \neq 0 \), it contains information ready to be passed in a subsequent invocation of this subroutine.
 - If \(\text{init} = 0 \), its contents are unchanged.

- Returned as: the contents are not relevant.

Notes
1. **aux1** should **not** be used by the calling program between calls to this subroutine with \(\text{init} \neq 0 \) and \(\text{init} = 0 \). However, it can be reused after intervening calls to this subroutine with different arguments.
2. When using the ESSL SMP library, for optimal performance, the number of threads specified should be the same for \(\text{init} \neq 0 \) and \(\text{init} = 0 \).
3. If you specify the same array for \(X \) and \(Y \), then \(\text{inc2x} \) must equal \((2)(\text{inc2y}) \). In this case, output overwrites input. If you specify different arrays \(X \) and \(Y \), they must have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.
4. For selecting optimal strides (or leading dimensions \(inc2x\) and \(inc2y\)) for your input and output arrays, you should use “STRIDE—Determine the Stride Value for Optimal Performance in Specified Fourier Transform Subroutines” on page 991. Example 5 in the STRIDE subroutine description explains how it is used for these subroutines.

5. Be sure to align array \(X\) on a doubleword boundary, and specify an even number for \(inc2x\), if possible.

Processor-Independent Formulas for SRCFT2 for NAUX1 and NAUX2: The required values of \(naux1\) and \(naux2\) depend on \(n1\) and \(n2\).

NAUX1 Formulas

If \(\max(n1/2, n2) \leq 8192\), use \(naux1 = 45000\).

If \(\max(n1/2, n2) > 8192\), use \(naux1 = 40000+0.82n1+1.14n2\).

NAUX2 Formulas

If \(n1 \leq 16384\) and \(n2 < 252\), use \(naux2 = 20000\).

If \(n1 > 16384\) and \(n2 < 252\), use \(naux2 = 20000+0.57n1\).

If \(n2 \geq 252\), add the following to the above storage requirements:

\[(n2+256)(1.14+s) \]

where \(s = \min(64, 1+n1/2)\).

Processor-Independent Formulas for DRCFT2 for NAUX1 and NAUX2: The required values of \(naux1\) and \(naux2\) depend on \(n1\) and \(n2\).

NAUX1 Formulas

If \(n \leq 2048\), use \(naux1 = 42000\).

If \(n > 2048\), use \(naux1 = 40000+1.64n1+2.28n2\),

where \(n = \max(n1/2, n2)\).

NAUX2 Formulas

If \(n1 \leq 4096\) and \(n2 < 252\), use \(naux2 = 20000\).

If \(n1 > 4096\) and \(n2 < 252\), use \(naux2 = 20000+1.14n1\).

If \(n2 \geq 252\), add the following to the above storage requirements:

\[((2)n2+256)(2.28+s) \]

where \(s = \min(64, 1+n1/2)\).

Function: The two-dimensional complex conjugate even discrete Fourier transform of real data in array \(X\), with results going into array \(Y\), is expressed as follows:

\[y_{k1,k2} = scale \sum_{j1=0}^{n1-1} \sum_{j2=0}^{n2-1} x_{j1,j2} W_{n1}^{(lsign)j1k1} W_{n2}^{(lsign)j2k2} \]

for:

\[k1 = 0, 1, ..., n1-1 \]

\[k2 = 0, 1, ..., n2-1 \]

where:
and where:

\[W_{1} = e^{-2\pi(\sqrt{-1})/n_{1}} \]

\[W_{2} = e^{-2\pi(\sqrt{-1})/n_{2}} \]

\[x_{j_1,j_2} \] are elements of array \(X \).

\[y_{k_1,k_2} \] are elements of array \(Y \).

\(isign \) is + or – (determined by argument \(isign \)).

\(scale \) is a scalar value.

The output in array \(Y \) is complex. For \(scale = 1.0 \) and \(isign \) being positive, you obtain the discrete Fourier transform, a function of frequency. The inverse Fourier transform is obtained with \(scale = 1.0/(n_{1}(n_{2})) \) and \(isign \) being negative. See references [1], [4], [19], and [20].

Two invocations of this subroutine are necessary:

1. With \(init \neq 0 \), the subroutine tests and initializes arguments of the program, setting up the \(aux1 \) working storage.
2. With \(init = 0 \), the subroutine checks that the initialization arguments in the \(aux1 \) working storage correspond to the present arguments, and if so, performs the calculation of the Fourier transform.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, \(naux2 = 0 \), and unable to allocate work area.

Computational Errors: None

Input-Argument Errors

1. \(n_{1} > 37748736 \)
2. \(n_{2} > 37748736 \)
3. \(inc2x < n_{1} \)
4. \(inc2y < (n_{1}/2)+1 \)
5. \(scale = 0.0 \)
6. \(isign = 0 \)
7. The subroutine has not been initialized with the present arguments.
8. The length of one of the transforms in \(n_{1} \) or \(n_{2} \) is not an allowable value. Return code 1 is returned if error 2030 is recoverable.
9. \(naux1 \) is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.
10. Error 2015 is recoverable or \(naux2=0 \), and \(naux2 \) is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.

Example 1: This example shows how to compute a two-dimensional transform. The arrays are declared as follows:

- COMPLEX×8 \(Y(0:6,0:7) \)
- REAL×4 \(X(0:11,0:7) \)
- REAL×8 \(AUX1(1000), AUX2(1000), AUX3(1) \)
First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0. Then use the same calling sequence with INIT = 0 to do the calculation.

Call Statement and Input

```
INIT X INC2X Y INC2Y N1 N2 ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
| | | | | | | | | | | | | | |
CALL SRCFT2(INIT, X, 12, Y, 7, 12, 8, 1, SCALE, AUX1, 1000, AUX2, 1000, AUX3, 0)
```

INIT	1 (for initialization)
INIT	0 (for computation)
SCALE	1.0

X is an array with 12 rows and 8 columns having 1.0 in location X(0,0) and 0.0 in all others.

Output: Y is an array with 7 rows and 8 columns with (1.0, 0.0) in all locations.

Example 2: This example shows another transform computation with different data using the same initialized array AUX1 in Example 1.

Call Statement and Input

```
INIT X INC2X Y INC2Y N1 N2 ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
| | | | | | | | | | | | | | |
CALL SRCFT2(0, X, 12, Y, 7, 12, 8, 1, SCALE, AUX1, 1000, AUX2, 1000, AUX3, 0)
```

| SCALE | 1.0 |

X is an array with 12 rows and 8 columns with 1.0 in all locations.

Output: Y is an array with 7 rows and 8 columns having (96.0, 0.0) in location Y(0,0) and (0.0, 0.0) in all others.

Example 3: This example shows the same array being used for input and output, where isign = -1 and scale = 1/((N1)(N2)). The arrays are declared as follows:

- COMPLEX: \texttt{Y(0:8,0:7)}
- REAL: \texttt{X(0:19,0:7)}
- REAL: \texttt{AUX1(1000), AUX2(1000), AUX3(1)}

Arrays X and Y are made equivalent by the following statement, making them occupy the same storage.

```
EQUIVALENCE (X,Y)
```

This requires inc2x ≥ 2(inc2y). First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0. Then use the same calling sequence with INIT = 0 to do the calculation.

Call Statement and Input

```
INIT X INC2X Y INC2Y N1 N2 ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
| | | | | | | | | | | | | | |
CALL DRCFT2(INIT, X, 20, Y, 9, 16, 8, -1, SCALE, AUX1, 1000, AUX2, 1000, AUX3, 0)
```
SRCFT2 and DRCFT2

INIT = 1 (for initialization)
INIT = 0 (for computation)
SCALE = 1.0/128.0

\[
\begin{bmatrix}
2.0 & 2.0 & -2.0 & -2.0 & 2.0 & 2.0 & -2.0 & -2.0 \\
2.0 & -2.0 & -2.0 & 2.0 & 2.0 & -2.0 & -2.0 & 2.0 \\
-2.0 & 2.0 & 2.0 & -2.0 & 2.0 & 2.0 & -2.0 & 2.0 \\
-2.0 & 2.0 & 2.0 & -2.0 & 2.0 & 2.0 & -2.0 & 2.0 \\
2.0 & 2.0 & -2.0 & 2.0 & 2.0 & -2.0 & 2.0 & -2.0 \\
2.0 & -2.0 & 2.0 & 2.0 & -2.0 & 2.0 & -2.0 & 2.0 \\
-2.0 & -2.0 & 2.0 & 2.0 & -2.0 & 2.0 & 2.0 & 2.0 \\
-2.0 & -2.0 & 2.0 & 2.0 & -2.0 & 2.0 & 2.0 & -2.0 \\
2.0 & 2.0 & 2.0 & -2.0 & -2.0 & 2.0 & -2.0 & -2.0 \\
2.0 & -2.0 & 2.0 & 2.0 & -2.0 & 2.0 & -2.0 & -2.0 \\
-2.0 & -2.0 & 2.0 & 2.0 & -2.0 & 2.0 & 2.0 & 2.0 \\
-2.0 & -2.0 & 2.0 & 2.0 & -2.0 & 2.0 & 2.0 & -2.0 \\
2.0 & 2.0 & 2.0 & -2.0 & 2.0 & 2.0 & -2.0 & -2.0 \\
\end{bmatrix}
\]

X = \[
\begin{bmatrix}
2.0 & -2.0 & -2.0 & 2.0 & 2.0 & -2.0 & -2.0 & 2.0 \\
-2.0 & -2.0 & 2.0 & 2.0 & -2.0 & 2.0 & -2.0 & 2.0 \\
-2.0 & 2.0 & 2.0 & -2.0 & 2.0 & 2.0 & -2.0 & 2.0 \\
2.0 & 2.0 & -2.0 & 2.0 & 2.0 & -2.0 & 2.0 & -2.0 \\
2.0 & -2.0 & 2.0 & 2.0 & -2.0 & 2.0 & -2.0 & 2.0 \\
-2.0 & -2.0 & 2.0 & 2.0 & -2.0 & 2.0 & 2.0 & 2.0 \\
-2.0 & 2.0 & 2.0 & -2.0 & -2.0 & 2.0 & -2.0 & -2.0 \\
-2.0 & -2.0 & 2.0 & 2.0 & -2.0 & 2.0 & -2.0 & -2.0 \\
2.0 & 2.0 & 2.0 & -2.0 & 2.0 & 2.0 & -2.0 & -2.0 \\
2.0 & -2.0 & 2.0 & 2.0 & -2.0 & 2.0 & -2.0 & -2.0 \\
\end{bmatrix}
\]

Output: Y is an array with 9 rows and 8 columns having (1.0, 1.0) in location Y(4,2) and (0.0, 0.0) in all others.
SCRFT2 and DCRFT2—Complex-to-Real Fourier Transform in Two Dimensions

These subroutines compute the two-dimensional discrete Fourier transform of complex conjugate even data in a two-dimensional array.

<table>
<thead>
<tr>
<th>Table 137. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
</tr>
<tr>
<td>Short-precision complex</td>
</tr>
<tr>
<td>Long-precision complex</td>
</tr>
</tbody>
</table>

Note: Two invocations of this subroutine are necessary: one to prepare the working storage for the subroutine, and the other to perform the computations.

Syntax

Fortran

CALL SCRFT2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, aux2, aux3, naux3)

CALL DCRFT2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, aux2, aux2, naux2)

C and C++

scrft2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, aux2, aux2, aux3, naux3);

dcrft2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, aux1, aux2, naux2);

PL/I

CALL SCRFT2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, aux2, aux2, aux3, naux3);

CALL DCRFT2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, aux2, aux2, naux2);

On Entry

init

is a flag, where:

If init ≠ 0, trigonometric functions and other parameters, depending on arguments other than x, are computed and saved in aux1. The contents of x and y are not used or changed.

If init = 0, the discrete Fourier transform of the given array is computed. The only arguments that may change after initialization are x, y, and aux2. All scalar arguments must be the same as when the subroutine was called for initialization with init ≠ 0.

Specified as: a fullword integer. It can have any value.

x

is the array X, containing n2 columns of data to be transformed. Due to complex conjugate symmetry, the input consists of only the first \((n1/2)+1\) rows of the array—that is, \(x_{j1,j2}, j1 = 0, 1, ..., (n1/2), j2 = 0, 1, ..., n2-1\). The data in each column is stored with stride 1.

Specified as: an inc2x by (at least) n2 array, containing numbers of the data type indicated in Table 137. This array must be aligned on a doubleword boundary.

inc2x

is the leading dimension (stride between columns) of array X. Specified as: a fullword integer; inc2x ≥ \((n1/2)+1\).
y

See “On Return” on page 823.

$inc2y$

is the leading dimension (stride between the columns) of array Y. Specified as: a fullword integer; $inc2y \geq n1+2$.

$n1$

is the number of rows of data—that is, the length of the columns in array Y involved in the computation. The length of the columns in array X are $(n1)/2+1$. Specified as: a fullword integer; $n1 \leq 37748736$ and must be one of the values listed in “Acceptable Lengths for the Transforms” on page 761. For all other values specified less than 37748736, you have the option of having the next larger acceptable value returned in this argument. For details, see “Providing a Correct Transform Length to ESSL” on page 36.

$n2$

is the number of columns of data—that is, the length of the rows in arrays X and Y involved in the computation. Specified as: a fullword integer; $n2 \leq 37748736$ and must be one of the values listed in “Acceptable Lengths for the Transforms” on page 761. For all other values specified less than 37748736, you have the option of having the next larger acceptable value returned in this argument. For details, see “Providing a Correct Transform Length to ESSL” on page 36.

$isign$

controls the direction of the transform, determining the sign $isign$ of the exponents of W_{n1} and W_{n2}, where:

If $isign$ = positive value, $isign = +$ (transforming time to frequency).

If $isign$ = negative value, $isign = -$ (transforming frequency to time).

Specified as: a fullword integer; $isign > 0$ or $isign < 0$.

$scale$

is the scaling constant $scale$. See “Function” on page 824 for its usage.

Specified as: a number of the data type indicated in Table 137 on page 821, where $scale > 0.0$ or $scale < 0.0$.

$aux1$

is the working storage for this subroutine, where:

If $init \neq 0$, the working storage is computed.

If $init = 0$, the working storage is used in the computation of the Fourier transforms.

Specified as: an area of storage, containing $naux1$ long-precision real numbers.

$naux1$

is the number of doublewords in the working storage specified in aux. Specified as: a fullword integer; $naux1 \geq$ (minimum value required for successful processing). To determine a sufficient value, use the processor-independent formulas. For all other values specified less than the minimum value, you have the option of having the minimum value returned in this argument. For details, see “Using Auxiliary Storage in ESSL” on page 30.

$aux2$

has the following meaning:

If $naux2 = 0$ and error 2015 is unrecoverable, $aux2$ is ignored.

Otherwise, it is the working storage used by this subroutine, which is available for use by the calling program between calls to this subroutine.
Specified as: an area of storage, containing \(naux2 \) long-precision real numbers. On output, the contents are overwritten.

\(naux2 \)
is the number of doublewords in the working storage specified in \(aux2 \).
Specified as: a fullword integer, where:

If \(naux2 = 0 \) and error 2015 is unrecoverable, SCRFT2 and DCRFT2 dynamically allocate the work area used by the subroutine. The work area is deallocated before control is returned to the calling program.

Otherwise, \(naux2 \geq (\text{minimum value required for successful processing}) \). To determine a sufficient value, use the processor-independent formulas. For all other values specified less than the minimum value, you have the option of having the minimum value returned in this argument. For details, see “Using Auxiliary Storage in ESSL” on page 30.

\(aux3 \)
this argument is provided for migration purposes only and is ignored.

Specified as: an area of storage, containing \(naux3 \) long-precision real numbers.

\(naux3 \)
this argument is provided for migration purposes only and is ignored.

Specified as: a fullword integer.

On Return

\(y \)
has the following meaning, where:

If \(init \neq 0 \), this argument is not used, and its contents remain unchanged.

If \(init = 0 \), this is the array \(Y \), containing \(n1 \) rows and \(n2 \) columns of results of the real discrete Fourier transform of \(X \). The data in each column of \(Y \) is stored with stride 1.

Returned as: an \(inc2y \) by (at least) \(n2 \) array, containing numbers of the data type indicated in Table 137 on page 821. See “Notes” for more details.

\(aux1 \)
is the working storage for this subroutine, where:

If \(init \neq 0 \), it contains information ready to be passed in a subsequent invocation of this subroutine.

If \(init = 0 \), its contents are unchanged.

Returned as: the contents are not relevant.

Notes

1. \(aux1 \) should not be used by the calling program between program calls to this subroutine with \(init \neq 0 \) and \(init = 0 \). However, it can be reused after intervening calls to this subroutine with different arguments.

2. When using the ESSL SMP library, for optimal performance, the number of threads specified should be the same for \(init \neq 0 \) and \(init = 0 \).

3. If you specify the same array for \(X \) and \(Y \), then \(2(inc2x) \) must equal \(inc2y \). In this case, output overwrites input. If you specify different arrays \(X \) and \(Y \), they must have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.
4. For selecting optimal strides (or leading dimensions inc2x and inc2y) for your input and output arrays, you should use “STRIDE—Determine the Stride Value for Optimal Performance in Specified Fourier Transform Subroutines” on page 991. Example 6 in the STRIDE subroutine description explains how it is used for these subroutines.

5. Be sure to align array Y on a doubleword boundary, and specify an even number for inc2y, if possible.

Processor-Independent Formulas for SCRFT2 for NAUX1 and NAUX2: The required values of naux1 and naux2 depend on n1 and n2.

NAUX1 Formulas

If max(n1/2, n2) ≤ 8192, use naux1 = 45000.
If max(n1/2, n2) > 8192, use naux1 = 40000+0.82n1+1.14n2.

NAUX2 Formulas

If n1 ≤ 16384 and n2 < 252, use naux2 = 20000.
If n1 > 16384 and n2 < 252, use naux2 = 20000+0.57n1.
If n2 ≥ 252, add the following to the above storage requirements:

\[(n2+256)(1.14+s)\]

where s = min(64, 1+n1/2).

Processor-Independent Formulas for DCRFT2 for NAUX1 and NAUX2: The required values of naux1 and naux2 depend on n1 and n2.

NAUX1 Formulas

If n ≤ 2048, use naux1 = 42000.
If n > 2048, use naux1 = 40000+1.64n1+2.28n2,
where n = max(n1/2, n2).

NAUX2 Formulas

If n1 ≤ 4096 and n2 < 252, use naux2 = 20000.
If n1 > 4096 and n2 < 252, use naux2 = 20000+1.14n1.
If n2 ≥ 252, add the following to the above storage requirements:

\[((2)n2+256) (2.28+s)\]

where s = min(64, 1+n1/2).

Function: The two-dimensional discrete Fourier transform of complex conjugate even data in array X, with results going into array Y, is expressed as follows:

\[y_{k1,k2} = scale \sum_{j1=0}^{n1-1} \sum_{j2=0}^{n2-1} x_{j1,j2} W_{n1}^{(\text{isign}) j1k1} W_{n2}^{(\text{isign}) j2k2}\]

for:

\[k1 = 0, 1, ..., n1-1\]
\[k2 = 0, 1, ..., n2-1\]

where:
and where:

\[x_{j_1,j_2} \] are elements of array \(X \).
\[y_{k_1,k_2} \] are elements of array \(Y \).
\(isign \) is + or – (determined by argument \(isign \)).
\(scale \) is a scalar value.

Because of the complex conjugate symmetry, the output in array \(Y \) is real. For \(scale = 1.0 \) and \(isign \) being positive, you obtain the discrete Fourier transform, a function of frequency. The inverse Fourier transform is obtained with \(scale = 1.0/((n_1)(n_2)) \) and \(isign \) being negative. See references [1], [4], and [20].

Two invocations of this subroutine are necessary:

1. With \(init \neq 0 \), the subroutine tests and initializes arguments of the program, setting up the \(aux1 \) working storage.

2. With \(init = 0 \), the subroutine checks that the initialization arguments in the \(aux1 \) working storage correspond to the present arguments, and if so, performs the calculation of the Fourier transform.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, \(naux2 = 0 \), and unable to allocate work area.

Computational Errors: None

Input-Argument Errors

1. \(n_1 > 37748736 \)
2. \(n_2 > 37748736 \)
3. \(inc2x < (n_1)/2+1 \)
4. \(inc2y < n_1+2 \)
5. \(scale = 0.0 \)
6. \(isign = 0 \)
7. The subroutine has not been initialized with the present arguments.
8. The length of one of the transforms in \(n_1 \) or \(n_2 \) is not an allowable value.
 Return code 1 is returned if error 2030 is recoverable.
9. \(naux1 \) is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.
10. Error 2015 is recoverable or \(naux2=0 \), and \(naux2 \) is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.

Example 1: This example shows how to compute a two-dimensional transform. The arrays are declared as follows:

- REAL*4 \(Y(0:13,0:7) \)
- COMPLEX*8 \(X(0:6,0:7) \)
- REAL*8 \(AUX1(1000), AUX2(1000), AUX3(1) \)
First, initialize AUX1 using the calling sequence shown below with \(\text{INIT} \neq 0 \). Then use the same calling sequence with \(\text{INIT} = 0 \) to do the calculation.

Call Statement and Input

\[
\begin{array}{cccccccccccc}
\text{INIT} & \text{X} & \text{INC2X} & \text{Y} & \text{INC2Y} & \text{N1} & \text{N2} & \text{ISIGN} & \text{SCALE} & \text{AUX1} & \text{AUX2} & \text{AUX3} & \text{NAUX1} & \text{NAUX2} & \text{NAUX3} \\
\hline
\text{CALL SCRFT2} & (& \text{INIT}, & \text{X}, & 7, & \text{Y}, & 14, & 12, & 8, & -1, & \text{SCALE}, & \text{AUX1}, & 1000, & \text{AUX2}, & 1000, & \text{AUX3}, & 0) \\
\end{array}
\]

\[
\begin{align*}
\text{INIT} &= 1 \text{(for initialization)} \\
\text{INIT} &= 0 \text{(for computation)} \\
\text{SCALE} &= 1.0/96.0 \\
\text{X} &= \text{an array with 7 rows and 8 columns with (1.0, 0.0) in all locations.}
\end{align*}
\]

Output

\[
\begin{bmatrix}
1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\end{bmatrix}
\]

Example 2: This example shows another transform computation with different data using the same initialized array AUX1 in Example 1.

Call Statement and Input

\[
\begin{array}{cccccccccccc}
\text{INIT} & \text{X} & \text{INC2X} & \text{Y} & \text{INC2Y} & \text{N1} & \text{N2} & \text{ISIGN} & \text{SCALE} & \text{AUX1} & \text{AUX2} & \text{AUX3} & \text{NAUX1} & \text{NAUX2} & \text{NAUX3} \\
\hline
\text{CALL SCRFT2} & (& 0, & \text{X}, & 7, & \text{Y}, & 14, & 12, & 8, & -1, & \text{SCALE}, & \text{AUX1}, & 1000, & \text{AUX2}, & 1000, & \text{AUX3}, & 0) \\
\end{array}
\]

\[
\begin{align*}
\text{SCALE} &= 1.0/96.0 \\
\text{X} &= \text{an array with 7 rows and 8 columns having (96.0, 0.0) in location } X(0,0) \text{ and (0.0, 0.0) in all others.}
\end{align*}
\]

Output
Example 3: This example shows the same array being used for input and output. The arrays are declared as follows:

```
REAL*8 Y(0:17,0:7)
COMPLEX*16 X(0:8,0:7)
REAL*8 AUX1(1:4000), AUX2(1:1000), AUX3(1)
```

Arrays X and Y are made equivalent by the following statement, making them occupy the same storage.

```
EQUIVALENCE (X,Y)
```

This requires \(inc2y = 2(inc2x) \). First, initialize AUX1 using the calling sequence shown below with INIT \(\neq 0 \). Then use the same calling sequence with INIT = 0 to do the calculation.

Call Statement and Input

```
INIT X INC2X Y INC2Y N1 N2 ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
```

```
CALL DCRFT2(INIT, X, 9, Y, 18, 16, 8, 1, SCALE, AUX1, 1000, AUX2, 1000, AUX3, 0)
```

- INIT = 1 (for initialization)
- INIT = 0 (for computation)
- SCALE = 1.0

X is an array with 9 rows and 8 columns having (1.0, 1.0) in location \(X(4,2) \) and (0.0, 0.0) in all others.

Output
\[
Y = \begin{bmatrix}
2.0 & 2.0 & -2.0 & -2.0 & 2.0 & 2.0 & -2.0 & -2.0 \\
2.0 & -2.0 & -2.0 & 2.0 & 2.0 & -2.0 & -2.0 & 2.0 \\
-2.0 & -2.0 & 2.0 & 2.0 & -2.0 & -2.0 & 2.0 & 2.0 \\
2.0 & 2.0 & -2.0 & -2.0 & 2.0 & 2.0 & -2.0 & -2.0 \\
-2.0 & -2.0 & 2.0 & 2.0 & -2.0 & -2.0 & 2.0 & 2.0 \\
-2.0 & 2.0 & 2.0 & -2.0 & -2.0 & 2.0 & 2.0 & -2.0 \\
-2.0 & 2.0 & 2.0 & -2.0 & 2.0 & -2.0 & -2.0 & 2.0 \\
2.0 & 2.0 & -2.0 & -2.0 & 2.0 & 2.0 & -2.0 & -2.0 \\
-2.0 & 2.0 & 2.0 & -2.0 & 2.0 & -2.0 & -2.0 & 2.0 \\
2.0 & -2.0 & 2.0 & 2.0 & -2.0 & -2.0 & 2.0 & 2.0 \\
-2.0 & 2.0 & 2.0 & -2.0 & 2.0 & -2.0 & -2.0 & 2.0 \\
\cdot & \cdot \\
\cdot & \cdot \\
\end{bmatrix}
\]
SCFT3 and DCFT3—Complex Fourier Transform in Three Dimensions

These subroutines compute the three-dimensional discrete Fourier transform of complex data.

<table>
<thead>
<tr>
<th>Table 138. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>X, Y</td>
</tr>
<tr>
<td>Short-precision complex</td>
</tr>
<tr>
<td>Long-precision complex</td>
</tr>
</tbody>
</table>

Note: For each use, only one invocation of this subroutine is necessary. The initialization phase, preparing the working storage, is a relatively small part of the total computation, so it is performed on each invocation.

Syntax

Fortran
CALL SCFT3 | DCFT3 (x, inc2x, inc3x, y, inc2y, inc3y, n1, n2, n3, isign, scale, aux, naux)

C and C++
sct3 | dct3 (x, inc2x, inc3x, y, inc2y, inc3y, n1, n2, n3, isign, scale, aux, naux);

PL/I
CALL SCFT3 | DCFT3 (x, inc2x, inc3x, y, inc2y, inc3y, n1, n2, n3, isign, scale, aux, naux);

On Entry

x
is the array X, containing the three-dimensional data to be transformed, where each element \(x_{j1,j2,j3} \), using zero-based indexing, is stored in \(X(j1+j2(inc2x)+j3(inc3x)) \) for \(j1 = 0, 1, ..., n1-1, j2 = 0, 1, ..., n2-1, \) and \(j3 = 0, 1, ..., n3-1 \). The strides for the elements in the first, second, and third dimensions are assumed to be 1, \(inc2x \geq n1 \), and \(inc3x \geq (n2)(inc2x) \), respectively.

Specified as: an array, containing numbers of the data type indicated in Table 138. This array must be aligned on a doubleword boundary. If the array is dimensioned \(X(LDA1,LDA2,LDA3) \), then \(LDA1 = inc2x \), \((LDA1)(LDA2) = inc3x \), and \(LDA3 \geq n3 \). For information on how to set up this array, see “Setting Up Your Data” on page 764. For more details, see “Notes” on page 831.

inc2x
is the stride between the elements in array X for the second dimension. Specified as: a fullword integer; \(inc2x \geq n1 \).

inc3x
is the stride between the elements in array X for the third dimension. Specified as: a fullword integer; \(inc3x \geq (n2)(inc2x) \).

y
See “On Return” on page 830.

inc2y
is the stride between the elements in array Y for the second dimension. Specified as: a fullword integer; \(inc2y \geq n1 \).

inc3y
is the stride between the elements in array Y for the third dimension. Specified as: a fullword integer; \(inc3y \geq (n2)(inc2y) \).
n1 is the length of the first dimension of the three-dimensional data in the array to be transformed. Specified as: a fullword integer; $n1 \leq 37748736$ and must be one of the values listed in “Acceptable Lengths for the Transforms” on page 761. For all other values specified less than 37748736, you have the option of having the next larger acceptable value returned in this argument. For details, see “Providing a Correct Transform Length to ESSL” on page 36.

n2 is the length of the second dimension of the three-dimensional data in the array to be transformed. Specified as: a fullword integer; $n2 \leq 37748736$ and must be one of the values listed in “Acceptable Lengths for the Transforms” on page 761. For all other values specified less than 37748736, you have the option of having the next larger acceptable value returned in this argument. For details, see “Providing a Correct Transform Length to ESSL” on page 36.

n3 is the length of the third dimension of the three-dimensional data in the array to be transformed. Specified as: a fullword integer; $n3 \leq 37748736$ and must be one of the values listed in “Acceptable Lengths for the Transforms” on page 761. For all other values specified less than 37748736, you have the option of having the next larger acceptable value returned in this argument. For details, see “Providing a Correct Transform Length to ESSL” on page 36.

isign controls the direction of the transform, determining the sign $Isign$ of the exponents of W_{n1}, W_{n2}, and W_{n3}, where:

If $isign = $ positive value, $Isign = +$ (transforming time to frequency).

If $isign = $ negative value, $Isign = -$ (transforming frequency to time).

Specified as: a fullword integer; $isign > 0$ or $isign < 0$.

scale is the scaling constant $scale$. See “Function” on page 832 for its usage. Specified as: a number of the data type indicated in Table 138 on page 829, where $scale > 0.0$ or $scale < 0.0$.

aux has the following meaning:

If $naux = 0$ and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is a storage work area used by this subroutine.

Specified as: an area of storage, containing $naux$ long-precision real numbers. On output, the contents are overwritten.

naux is the number of doublewords in the working storage specified in aux. Specified as: a fullword integer, where:

If $naux = 0$ and error 2015 is unrecoverable, SCFT3 and DCFT3 dynamically allocate the work area used by the subroutine. The work area is deallocated before control is returned to the calling program.

Otherwise, $naux \geq$ (minimum value required for successful processing). To determine a sufficient value, use the processor-independent formulas. For all other values specified less than the minimum value, you have the option of having the minimum value returned in this argument. For details, see “Using Auxiliary Storage in ESSL” on page 30.

On Return
y is the array Y, containing the elements resulting from the three-dimensional discrete Fourier transform of the data in X. Each element $y_{k1,k2,k3}$, using zero-based indexing, is stored in $Y(k1+inc2y(k2)+inc3y(k3))$ for $k1 = 0, 1, ..., n1-1$, $k2 = 0, 1, ..., n2-1$, and $k3 = 0, 1, ..., n3-1$. The strides for the elements in the first, second, and third dimensions are assumed to be 1, $inc2y \geq n1$, and $inc3y \geq (n2)(inc2y)$, respectively.

Returned as: an array, containing numbers of the data type indicated in Table 138 on page 829. This array must be aligned on a doubleword boundary. If the array is dimensioned $Y(LDA1,LDA2,LDA3)$, then $LDA1 = inc2y$, $(LDA1)(LDA2) = inc3y$, and $LDA3 \geq n3$. For information on how to set up this array, see “Setting Up Your Data” on page 764. For more details, see “Notes.”

Notes

1. If you specify the same array for X and Y, then $inc2x$ must be greater than or equal to $inc2y$, and $inc3x$ must be greater than or equal to $inc3y$. In this case, output overwrites input. When using the ESSL SMP library in a multithreaded environment, if $inc2x > inc2y$ or $inc3x > inc3y$, these subroutines run on a single thread and issue an attention message.

If you specify different arrays X and Y, they must have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.

2. You should use “STRIDE—Determine the Stride Value for Optimal Performance in Specified Fourier Transform Subroutines” on page 991 to determine the optimal values for the strides $inc2y$ and $inc3y$ for your output array. The strides for your input array do not affect performance. Example 7 in the STRIDE subroutine description explains how it is used for these subroutines. For additional information on how to set up your data, see “Setting Up Your Data” on page 764.

Processor-Independent Formulas for SCFT3 for NAUX: Use the following formulas for calculating $naux$:

1. If max$(n2, n3) < 252$ and:

 If $n1 \leq 8192$, use $naux = 60000$.
 If $n1 > 8192$, use $naux = 60000+2.28n1$.

2. If $n2 \geq 252$, $n3 < 252$, and:

 If $n1 \leq 8192$, use $naux = 60000+\lambda$.
 If $n1 > 8192$, use $naux = 60000+2.28n1+\lambda$,
 where $\lambda = (n2+256)(s+2.28)$
 and $s = \min(64, n1)$.

3. If $n2 < 252$, $n3 \geq 252$, and:

 If $n1 \leq 8192$, use $naux = 60000+\psi$.
 If $n1 > 8192$, use $naux = 60000+2.28n1+\psi$,
 where $\psi = (n3+256)(s+2.28)$
 and $s = \min(64, (n1)(n2))$.

4. If $n2 \geq 252$ and $n3 \geq 252$, use the larger of the values calculated for cases 2 and 3 above.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 831
Processor-Independent Formulas for DCFT3 for NAUX: Use the following formulas for calculating \(n_{aux} \):

1. If \(\max(n_2, n_3) < 252 \) and:
 - If \(n_1 \leq 2048 \), use \(n_{aux} = 60000 \).
 - If \(n_1 > 2048 \), use \(n_{aux} = 60000 + 4.56n_1 \).

2. If \(n_2 \geq 252 \), \(n_3 < 252 \), and:
 - If \(n_1 \leq 2048 \), use \(n_{aux} = 60000 + \lambda \).
 - If \(n_1 > 2048 \), use \(n_{aux} = 60000 + 4.56n_1 + \lambda \),
 where \(\lambda = ((2)n_2+256)(s+4.56) \)
 and \(s = \min(64, n_1) \).

3. If \(n_2 < 252 \), \(n_3 \geq 252 \), and:
 - If \(n_1 \leq 2048 \), use \(n_{aux} = 60000 + \psi \).
 - If \(n_1 > 2048 \), use \(n_{aux} = 60000 + 4.56n_1 + \psi \),
 where \(\psi = ((2)n_3+256)(s+4.56) \)
 and \(s = \min(64, (n_1)n_2) \).

4. If \(n_2 \geq 252 \) and \(n_3 \geq 252 \), use the larger of the values calculated for cases 2 and 3 above.

Function: The three-dimensional discrete Fourier transform of complex data in array \(X \), with results going into array \(Y \), is expressed as follows:

\[
Y_{k1,k2,k3} = scale \sum_{j1=0}^{n1-1} \sum_{j2=0}^{n2-1} \sum_{j3=0}^{n3-1} X_{j1,j2,j3} W_{n1}^{(isign)j1k1} W_{n2}^{(isign)j2k2} W_{n3}^{(isign)j3k3}
\]

for:

\[
k1 = 0, 1, ..., n1-1
\]
\[
k2 = 0, 1, ..., n2-1
\]
\[
k3 = 0, 1, ..., n3-1
\]

where:

\[
W_{n1} = e^{-2\pi(j-1)/n1}
\]
\[
W_{n2} = e^{-2\pi(j-1)/n2}
\]
\[
W_{n3} = e^{-2\pi(j-1)/n3}
\]

and where:

\(x_{j1,j2,j3} \) are elements of array \(X \).
\(y_{k1,k2,k3} \) are elements of array \(Y \).
\(isign \) is + or − (determined by argument \(isign \)).
\(scale \) is a scalar value.

For \(scale = 1.0 \) and \(isign \) being positive, you obtain the discrete Fourier transform, a function of frequency. The inverse Fourier transform is obtained with \(scale = 1.0/((n1)(n2)(n3)) \) and \(isign \) being negative. See references [1], [4], [5], [19], and [20].

832 Engineering and Scientific Subroutine Library Version 3 Guide and Reference
Error Conditions

Resource Errors: Error 2015 is unrecoverable, naux = 0, and unable to allocate work area.

Computational Errors: None

Input-Argument Errors

1. \(n1 > 37748736 \)
2. \(n2 > 37748736 \)
3. \(n3 > 37748736 \)
4. \(\text{inc}2x < n1 \)
5. \(\text{inc}3x < (n2)(\text{inc}2x) \)
6. \(\text{inc}2y < n1 \)
7. \(\text{inc}3y < (n2)(\text{inc}2y) \)
8. \(\text{scale} = 0.0 \)
9. \(\text{isign} = 0 \)
10. The length of one of the transforms in \(n1, n2, \) or \(n3 \) is not an allowable value. Return code 1 is returned if error 2030 is recoverable.
11. Error 2015 is recoverable or \(\text{naux} \neq 0 \), and \(\text{naux} \) is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.

Example: This example shows how to compute a three-dimensional transform. In this example, \(\text{INC}2X \geq \text{INC}2Y \) and \(\text{INC}3X \geq \text{INC}3Y \), so that the same array can be used for both input and output. The STRIDE subroutine is called to select good values for the \(\text{INC}2Y \) and \(\text{INC}3Y \) strides. (As explained below, STRIDE is not called for \(\text{INC}2X \) and \(\text{INC}3X \).) Using the transform lengths (\(N1 = 32, N2 = 64, \) and \(N3 = 40 \)) along with the output data type (short-precision complex: 'C'), STRIDE is called once for each stride needed. First, it is called for \(\text{INC}2Y \):

\[
\text{CALL STRIDE (N2,N1,INC2Y,'C','root')}
\]

The output value returned for \(\text{INC}2Y \) is 32. Then STRIDE is called again for \(\text{INC}3Y \):

\[
\text{CALL STRIDE (N3,N2*INC2Y,INC3Y,'C','root')}
\]

The output value returned for \(\text{INC}3Y \) is 2056. Because \(\text{INC}3Y \) is not a multiple of \(\text{INC}2Y \), \(Y \) is not declared as a three-dimensional array. It is declared as a two-dimensional array, \(Y(\text{INC}3Y,N3) \).

To equivalence the \(X \) and \(Y \) arrays requires \(\text{INC}2X \geq \text{INC}2Y \) and \(\text{INC}3X \geq \text{INC}3Y \). Therefore, \(\text{INC}2X \) is set equal to \(\text{INC}2Y(= 32) \). Also, to declare the \(X \) array as a three-dimensional array, \(\text{INC}3X \) must be a multiple of \(\text{INC}2X \). Therefore, its value is set as \(\text{INC}3X = (65)(\text{INC}2X) = 2080 \).

The arrays are declared as follows:

\[
\begin{align*}
\text{COMPLEX*8} & \quad X(32,65,40),Y(2056,40) \\
\text{REAL*8} & \quad \text{AUX}(30000)
\end{align*}
\]

Arrays \(X \) and \(Y \) are made equivalent by the following statement, making them occupy the same storage:

\[
\text{EQUIVALENCE (X,Y)}
\]

Call Statement and Input

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations 833
SCFT3 and DCFT3

\[
\begin{array}{cccccccc}
X & INC2X & INC3X & Y & INC2Y & INC3Y & N1 & N2 & N3 & ISIGN & SCALE & AUX & NAUX \\
\hline
\end{array}
\]

CALL SCFT3(X, 32, 2080, Y, 32, 2056, 32, 64, 40, 1, SCALE, AUX, 30000)

SCALE = 1.0
X has (1.0,2.0) in location X(1,1,1) and (0.0,0.0) in all other locations.

Output: Y has (1.0,2.0) in locations Y(ij,k), where ij = 1, 2048 and j = 1, 40. It remains unchanged elsewhere.
 SRCFT3 and DRCFT3—Real-to-Complex Fourier Transform in Three Dimensions

These subroutines compute the three-dimensional discrete Fourier transform of real data in a three-dimensional array.

<table>
<thead>
<tr>
<th>Table 139. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>X, $scale$</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
<tr>
<td>Subroutine</td>
</tr>
<tr>
<td>SRCFT3</td>
</tr>
<tr>
<td>DRCFT3</td>
</tr>
</tbody>
</table>

Note: For each use, only one invocation of this subroutine is necessary. The initialization phase, preparing the working storage, is a relatively small part of the total computation, so it is performed on each invocation.

Syntax

<table>
<thead>
<tr>
<th>Language</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>CALL SRCFT3</td>
</tr>
<tr>
<td>C and C++</td>
<td>srcft3</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SRCFT3</td>
</tr>
</tbody>
</table>

On Entry

- x is the array X, containing the three-dimensional data to be transformed, where each element $x_{j1,j2,j3}$ using zero-based indexing, is stored in $X(j1+j2(inc2x)+j3(inc3x))$ for $j1 = 0, 1, ..., \ n1-1$, $j2 = 0, 1, ..., \ n2-1$, and $j3 = 0, 1, ..., \ n3-1$. The strides for the elements in the first, second, and third dimensions are assumed to be 1, $inc2x(\geq n1)$, and $inc3x(\geq (n2)(inc2x))$, respectively.

- Specified as: an array, containing numbers of the data type indicated in Table 139. If the array is dimensioned $X(LDA1,LDA2,LDA3)$, then $LDA1 = inc2x$, $(LDA1)(LDA2) = inc3x$, and $LDA3 \geq n3$. For information on how to set up this array, see “Setting Up Your Data” on page 764. For more details, see “Notes” on page 837.

- $inc2x$ is the stride between the elements in array X for the second dimension. Specified as: a fullword integer; $inc2x \geq n1$.

- $inc3x$ is the stride between the elements in array X for the third dimension. Specified as: a fullword integer; $inc3x \geq (n2)(inc2x)$.

- y See “On Return” on page 836.

- $inc2y$ is the stride between the elements in array Y for the second dimension. Specified as: a fullword integer; $inc2y \geq n1/2+1$.

- $inc3y$ is the stride between the elements in array Y for the third dimension. Specified as: a fullword integer; $inc3y \geq (n2)(inc2y)$.

Chapter 12. Fourier Transforms, Convolutions and Correlations, and Related Computations
n_1
is the length of the first dimension of the three-dimensional data in the array to be transformed. Specified as: a fullword integer; $n_1 \leq 37748736$ and must be one of the values listed in “Acceptable Lengths for the Transforms” on page 761. For all other values specified less than 37748736, you have the option of having the next larger acceptable value returned in this argument. For details, see “Providing a Correct Transform Length to ESSL” on page 36.

n_2
is the length of the second dimension of the three-dimensional data in the array to be transformed. Specified as: a fullword integer; $n_2 \leq 37748736$ and must be one of the values listed in “Acceptable Lengths for the Transforms” on page 761. For all other values specified less than 37748736, you have the option of having the next larger acceptable value returned in this argument. For details, see “Providing a Correct Transform Length to ESSL” on page 36.

n_3
is the length of the third dimension of the three-dimensional data in the array to be transformed. Specified as: a fullword integer; $n_3 \leq 37748736$ and must be one of the values listed in “Acceptable Lengths for the Transforms” on page 761. For all other values specified less than 37748736, you have the option of having the next larger acceptable value returned in this argument. For details, see “Providing a Correct Transform Length to ESSL” on page 36.

isign
controls the direction of the transform, determining the sign isign of the exponents of W_{n_1}, W_{n_2}, and W_{n_3}, where:

If $\text{isign} = \text{positive value}$, $\text{isign} = +$ (transforming time to frequency).

If $\text{isign} = \text{negative value}$, $\text{isign} = -$ (transforming frequency to time).

Specified as: a fullword integer; $\text{isign} > 0$ or $\text{isign} < 0$.

scale
is the scaling constant scale. See “Function” on page 838 for its usage.

Specified as: a number of the data type indicated in Table 139 on page 835, where $\text{scale} > 0.0$ or $\text{scale} < 0.0$.

aux
has the following meaning:

If $\text{naux} = 0$ and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is a storage work area used by this subroutine.

Specified as: an area of storage, containing naux long-precision real numbers. On output, the contents are overwritten.

naux
is the number of doublewords in the working storage specified in aux. Specified as: a fullword integer, where:

If $\text{naux} = 0$ and error 2015 is unrecoverable, SRCFT3 and DRCFT3 dynamically allocate the work area used by the subroutine. The work area is deallocated before control is returned to the calling program.

Otherwise, $\text{naux} \geq$ (minimum value required for successful processing). To determine a sufficient value, use the processor-independent formulas. For all other values specified less than the minimum value, you have the option of having the minimum value returned in this argument. For details, see “Using Auxiliary Storage in ESSL” on page 30.
is the array \(Y \), containing the elements resulting from the three-dimensional discrete Fourier transform of the data in \(X \). Each element \(y_{k_1,k_2,k_3} \), using zero-based indexing, is stored in \(Y(k_1+k_2(\text{inc}_2y)+k_3(\text{inc}_3y)) \) for \(k_1 = 0, 1, \ldots, n_1/2, k_2 = 0, 1, \ldots, n_2-1, \) and \(k_3 = 0, 1, \ldots, n_3-1 \). Due to complex conjugate symmetry, the output consists of only the first \(n_1/2+1 \) values along the first dimension of the array, for \(k_1 = 0, 1, \ldots, n_1/2 \). The strides for the elements in the first, second, and third dimensions are assumed to be 1, \(\text{inc}_2y \geq n_1/2+1 \), and \(\text{inc}_3y \geq (n_2)(\text{inc}_2y) \), respectively.

Returned as: an array, containing numbers of the data type indicated in Table 139 on page 835. This array must be aligned on a doubleword boundary. If the array is dimensioned \(Y(LDA_1,LDA_2,LDA_3) \), then \(LDA_1 = \text{inc}_2y \), \((LDA_1)(LDA_2) = \text{inc}_3y \), and \(LDA_3 \geq n_3 \). For information on how to set up this array, see “Setting Up Your Data” on page 764. For more details, see “Notes.”

Notes

1. If you specify the same array for \(X \) and \(Y \), then \(\text{inc}_2x \) must be greater than or equal to \((2)(\text{inc}_2y) \), and \(\text{inc}_3x \) must be greater than or equal to \((2)(\text{inc}_3y) \). In this case, output overwrites input. When using the ESSL SMP library in a multithreaded environment, if \(\text{inc}_2x > (2)(\text{inc}_2y) \) or \(\text{inc}_3x > (2)(\text{inc}_3y) \), these subroutines run on a single thread and issue an attention message.

If you specify different arrays \(X \) and \(Y \), they must have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.

2. To achieve the best performance, you should align array \(X \) on a doubleword boundary, and \(\text{inc}_2x \) and \(\text{inc}_3x \) should be even numbers. The strides for your input array do not affect performance as long as they are even numbers. In addition, you should use “STRIDE—Determine the Stride Value for Optimal Performance in Specified Fourier Transform Subroutines” on page 991 to determine the optimal values for the strides \(\text{inc}_2y \) and \(\text{inc}_3y \) for your output array. Example 8 in the STRIDE subroutine description explains how it is used for these subroutines. For additional information on how to set up your data, see “Setting Up Your Data” on page 764.

Processor-Independent Formulas for SRCFT3 for N AUX: Use the following formulas for calculating \(n_{aux} \):

1. If \(\max(n_2, n_3) < 252 \) and:
 - If \(n_1 \leq 16384 \), use \(n_{aux} = 65000 \).
 - If \(n_1 > 16384 \), use \(n_{aux} = 60000+1.39n_1 \).

2. If \(n_2 \geq 252, n_3 < 252 \), and:
 - If \(n_1 \leq 16384 \), use \(n_{aux} = 65000+\lambda \).
 - If \(n_1 > 16384 \), use \(n_{aux} = 60000+1.39n_1+\lambda \), where \(\lambda = (n_2+256)(s+2.28) \) and \(s = \min(64, 1+n_1/2) \).

3. If \(n_2 < 252, n_3 \geq 252 \), and:
 - If \(n_1 \leq 16384 \), use \(n_{aux} = 65000+\psi \).
 - If \(n_1 > 16384 \), use \(n_{aux} = 60000+1.39n_1+\psi \), where \(\psi = (n_3+256)(s+2.28) \) and \(s = \min(64, (n_2)(1+n_1/2)) \).

4. If \(n_2 \geq 252 \) and \(n_3 \geq 252 \), use the larger of the values calculated for cases 2 and 3 above.
If \(\text{inc}2x \) or \(\text{inc}3x \) is an odd number, or if array \(X \) is not aligned on a doubleword boundary, you should add the following amount to all the formulas given above:

\[
n2(1+n1/2)
\]

Processor-Independent Formulas for DRCFT3 for NAUX: Use the following formulas for calculating \(naux \):

1. If \(\max(n2, n3) < 252 \) and:
 - If \(n1 \leq 4096 \), use \(naux = 62000 \).
 - If \(n1 > 4096 \), use \(naux = 60000 + 2.78n1 \).

2. If \(n2 \geq 252 \), \(n3 < 252 \), and:
 - If \(n1 \leq 4096 \), use \(naux = 62000 + \lambda \).
 - If \(n1 > 4096 \), use \(naux = 60000 + 2.78n1 + \lambda \),
 where \(\lambda = ((2)n2+256)(s+4.56) \)
 and \(s = \min(64, n1/2) \).

3. If \(n2 < 252 \), \(n3 \geq 252 \), and:
 - If \(n1 \leq 4096 \), use \(naux = 62000 + \psi \).
 - If \(n1 > 4096 \), use \(naux = 60000 + 2.78n1 + \psi \),
 where \(\psi = ((2)n3+256)(s+4.56) \)
 and \(s = \min(64, n2(1+n1/2)) \).

4. If \(n2 \geq 252 \) and \(n3 \geq 252 \), use the larger of the values calculated for cases 2 and 3 above.

Function: The three-dimensional complex conjugate even discrete Fourier transform of real data in array \(X \), with results going into array \(Y \), is expressed as follows:

\[
y_{k1,k2,k3} = \text{scale} \sum_{j1=0}^{n1-1} \sum_{j2=0}^{n2-1} \sum_{j3=0}^{n3-1} x_{j1,j2,j3} W_{n1}^{(\text{isign})j1k1} W_{n2}^{(\text{isign})j2k2} W_{n3}^{(\text{isign})j3k3}
\]

for:

\[
k1 = 0, 1, \ldots, n1-1
\]
\[
k2 = 0, 1, \ldots, n2-1
\]
\[
k3 = 0, 1, \ldots, n3-1
\]

where:

\[
W_{n1} = e^{-2\pi(\sqrt{-1})/n1}
\]
\[
W_{n2} = e^{-2\pi(\sqrt{-1})/n2}
\]
\[
W_{n3} = e^{-2\pi(\sqrt{-1})/n3}
\]

and where:

\(x_{j1,j2,j3} \) are elements of array \(X \).
\(y_{k1,k2,k3} \) are elements of array \(Y \).
\(\text{isign} \) is + or − (determined by argument \(\text{isign} \)).
scale is a scalar value.

The output in array \(Y \) is complex. For \(scale = 1.0 \) and \(isign \) being positive, you obtain the discrete Fourier transform, a function of frequency. The inverse Fourier transform is obtained with \(scale = 1.0/((n1)(n2)(n3)) \) and \(isign \) being negative. See references [1], [4], [5], [19], and [20].

Error Conditions

Resource Errors: Error 2015 is unrecoverable, \(naux = 0 \), and unable to allocate work area.

Computational Errors: None

Input-Argument Errors

1. \(n1 > 37748736 \)
2. \(n2 > 37748736 \)
3. \(n3 > 37748736 \)
4. \(inc2x < n1 \)
5. \(inc3x < (n2)(inc2x) \)
6. \(inc2y < n1/2+1 \)
7. \(inc3y < (n2)(inc2y) \)
8. \(scale = 0.0 \)
9. \(isign = 0 \)
10. The length of one of the transforms in \(n1, n2, \) or \(n3 \) is not an allowable value. Return code 1 is returned if error 2030 is recoverable.
11. Error 2015 is recoverable or \(naux \neq 0 \), and \(naux \) is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.

Example: This example shows how to compute a three-dimensional transform. In this example, \(INC2X \geq (2)(INC2Y) \) and \(INC3X \geq (2)(INC3Y) \), so that the same array can be used for both input and output. The STRIDE subroutine is called to select good values for the \(INC2Y \) and \(INC3Y \) strides. Using the transform lengths (\(N1 = 32 \), \(N2 = 64 \), and \(N2 = 40 \)) along with the output data type (short-precision complex: 'C'). STRIDE is called once for each stride needed. First, it is called for \(INC2Y \):

\[
\text{CALL STRIDE (N2,N1/2+1,INC2Y,'C',0)}
\]

The output value returned for \(INC2Y \) is 17. (This value is equal to \(N1/2+1 \).) Then STRIDE is called again for \(INC3Y \):

\[
\text{CALL STRIDE (N3,N2+INC2Y,INC3Y,'C',0)}
\]

The output value returned for \(INC3Y \) is 1088. Because \(INC3Y \) is a multiple of \(INC2Y \)—that is, \(INC3Y = (N2)(INC2Y) \)—\(Y \) is declared as a three-dimensional array, \(Y(17,64,40) \). (In general, for larger arrays, these types of values for \(INC2Y \) and \(INC3Y \) are not returned by STRIDE, and you are probably not able to declare \(Y \) as a three-dimensional array.)

To equivalence the \(X \) and \(Y \) arrays requires \(INC2X \geq (2)(INC2Y) \) and \(INC3X \geq (2)(INC3Y) \). Therefore, the values \(INC2X = (2)(INC2Y) = 34 \) and \(INC3X = (2)(INC3Y) = 2176 \) are set, and \(X \) is declared as a three-dimensional array, \(X(34,64,40) \).
The arrays are declared as follows:

- **REAL**: \(X(34, 64, 4) \)
- **COMPLEX**: \(Y(17, 64, 4) \)
- **REAL**: \(AUX(32) \)

Arrays \(X \) and \(Y \) are made equivalent by the following statement, making them occupy the same storage:

\[
\text{EQUIVALENCE (X,Y)}
\]

Call Statement and Input

\[
\begin{align*}
\text{CALL SRCFT3(X , 34 , 2176 , Y , 17 , 1088 , 32 , 64 , 4 , 1 , SCALE , AUX , 32000)}
\end{align*}
\]

Scale

\[
\text{SCALE} = 1.0
\]

\(X \) has 1.0 in location \((1,1,1)\) and 0.0 in all other locations.

Output

\(Y \) has \((1.0,0.0)\) in all locations.
SCRFT3 and DCRFT3—Complex-to-Real Fourier Transform in Three Dimensions

These subroutines compute the three-dimensional discrete Fourier transform of complex conjugate even data in a three-dimensional array.

<table>
<thead>
<tr>
<th>Table 140. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
</tr>
<tr>
<td>Short-precision complex</td>
</tr>
<tr>
<td>Long-precision complex</td>
</tr>
</tbody>
</table>

Note: For each use, only one invocation of this subroutine is necessary. The initialization phase, preparing the working storage, is a relatively small part of the total computation, so it is performed on each invocation.

Syntax

- **Fortran**
  ```fortran
  CALL SCRFT3 | DCRFT3 (x, inc2x, inc3x, y, inc2y, inc3y, n1, n2, n3, isign, scale, aux, naux)
  ```

- **C and C++**
  ```c
  scrft3 | dcrft3 (x, inc2x, inc3x, y, inc2y, inc3y, n1, n2, n3, isign, scale, aux, naux);
  ```

- **PL/I**
  ```pli
  CALL SCRFT3 | DCRFT3 (x, inc2x, inc3x, y, inc2y, inc3y, n1, n2, n3, isign, scale, aux, naux);
  ```

On Entry

- **x**
 is the array X, containing the three-dimensional data to be transformed, where each element \(x_{j1,j2,j3}\) using zero-based indexing, is stored in \(X(j1+j2(inc2x)+j3(inc3x))\) for \(j1 = 0, 1, ..., n1/2, j2 = 0, 1, ..., n2-1, and j3 = 0, 1, ..., n3-1. Due to complex conjugate symmetry, the input consists of only the first \(n1/2+1\) values along the first dimension of the array, for \(j1 = 0, 1, ..., n1/2\). The strides for the elements in the first, second, and third dimensions are assumed to be 1, \(inc2x \geq n1/2+1\), and \(inc3x \geq (n2)(inc2x)\), respectively. Specified as: an array, containing numbers of the data type indicated in Table 140. This array must be aligned on a doubleword boundary. If the array is dimensioned \(X(LDA1,LDA2,LDA3)\), then \(LDA1 = inc2x, (LDA1)(LDA2) = inc3x, and LDA3 \geq n3. For information on how to set up this array, see “Setting Up Your Data” on page 764. For more details, see “Notes” on page 843.

- **inc2x**
 is the stride between the elements in array X for the second dimension. Specified as: a fullword integer; \(inc2x \geq n1/2+1\).

- **inc3x**
 is the stride between the elements in array X for the third dimension. Specified as: a fullword integer; \(inc3x \geq (n2)(inc2x)\).

- **y**
 See “On Return” on page 842.

- **inc2y**
 is the stride between the elements in array Y for the second dimension. Specified as: a fullword integer; \(inc2y \geq n1+2\).

- **inc3y**
 is the stride between the elements in array Y for the third dimension. Specified as: a fullword integer; \(inc3y \geq (n2)(inc2y)\).
n1
is the length of the first dimension of the three-dimensional data in the array to be transformed. Specified as: a fullword integer; \(n1 \leq 37748736 \) and must be one of the values listed in “Acceptable Lengths for the Transforms” on page 761. For all other values specified less than 37748736, you have the option of having the next larger acceptable value returned in this argument. For details, see “Providing a Correct Transform Length to ESSL” on page 36.

n2
is the length of the second dimension of the three-dimensional data in the array to be transformed. Specified as: a fullword integer; \(n2 \leq 37748736 \) and must be one of the values listed in “Acceptable Lengths for the Transforms” on page 761. For all other values specified less than 37748736, you have the option of having the next larger acceptable value returned in this argument. For details, see “Providing a Correct Transform Length to ESSL” on page 36.

n3
is the length of the third dimension of the three-dimensional data in the array to be transformed. Specified as: a fullword integer; \(n3 \leq 37748736 \) and must be one of the values listed in “Acceptable Lengths for the Transforms” on page 761. For all other values specified less than 37748736, you have the option of having the next larger acceptable value returned in this argument. For details, see “Providing a Correct Transform Length to ESSL” on page 36.

isign
controls the direction of the transform, determining the sign \(\text{Isign} \) of the exponents of \(W_{n1} \), \(W_{n2} \), and \(W_{n3} \), where:

If \(\text{isign} = \) positive value, \(\text{Isign} = + \) (transforming time to frequency).

If \(\text{isign} = \) negative value, \(\text{Isign} = - \) (transforming frequency to time).

Specified as: a fullword integer; \(\text{isign} > 0 \) or \(\text{isign} < 0 \).

scale
is the scaling constant \(\text{scale} \). See “Function” on page 844 for its usage.
Specified as: a number of the data type indicated in Table 140 on page 841, where \(\text{scale} > 0.0 \) or \(\text{scale} < 0.0 \).

aux
has the following meaning:

If \(\text{naux} = 0 \) and error 2015 is unrecoverable, \(\text{aux} \) is ignored.

Otherwise, it is a storage work area used by this subroutine. Specified as: an area of storage, containing \(\text{naux} \) long-precision real numbers. On output, the contents are overwritten.

naux
is the number of doublewords in the working storage specified in \(\text{aux} \). Specified as: a fullword integer, where:

If \(\text{naux} = 0 \) and error 2015 is unrecoverable, SCRFT3 and DCRFT3 dynamically allocate the work area used by the subroutine. The work area is deallocated before control is returned to the calling program.

Otherwise, \(\text{naux} \geq \) (minimum value required for successful processing). To determine a sufficient value, use the processor-independent formulas. For all other values specified less than the minimum value, you have the option of having the minimum value returned in this argument. For details, see “Using Auxiliary Storage in ESSL” on page 30.

On Return
is the array \(Y \), containing the elements resulting from the three-dimensional discrete Fourier transform of the data in \(X \). Each element \(y_{k1,k2,k3} \), using zero-based indexing, is stored in \(Y(k1+k2(inc2y)+k3(inc3y)) \) for \(k1 = 0, 1, ..., n1-1, k2 = 0, 1, ..., n2-1, \) and \(k3 = 0, 1, ..., n3-1 \). The strides for the elements in the first, second, and third dimensions are assumed to be 1, \(inc2y \geq n1+2 \), and \(inc3y \geq (n2)(inc2y) \), respectively.

Returned as: an array, containing numbers of the data type indicated in Table 140 on page 841. If the array is dimensioned \(Y(LDA1,LDA2,LDA3) \), then \(LDA1 = inc2y(\text{LDA1}) \), \(LDA2 = inc3y(\text{LDA1})(\text{LDA2}) = inc3y \), and \(LDA3 \geq n3 \). For information on how to set up this array, see “Setting Up Your Data” on page 764. For more details, see “Notes.”

Notes

1. If you specify the same array for \(X \) and \(Y \), then \(inc2y \) must equal \((2)(inc2x) \) and \(inc3y \) must equal \((2)(inc3x) \). In this case, output overwrites input. If you specify different arrays \(X \) and \(Y \), they must have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.

2. To achieve the best performance, you should align array \(Y \) on a doubleword boundary, and \(inc2y \) and \(inc3y \) should be even numbers. In addition, you should use “STRIDE—Determine the Stride Value for Optimal Performance in Specified Fourier Transform Subroutines” on page 991 to determine the optimal values for the strides \(inc2y \) and \(inc3y \) for your output array. To obtain the best performance, you should use \(inc2x = inc2y/2 \) and \(inc3x = inc3y/2 \). Example 9 in the STRIDE subroutine description explains how it is used for these subroutines. For additional information on how to set up your data, see “Setting Up Your Data” on page 764.

Processor-Independent Formulas for SCRFT3 for Calculating NAUX: Use the following formulas for calculating \(naux \):

1. If \(\max(n2, n3) < 252 \) and:

 If \(n1 \leq 16384 \), use \(naux = 65000 \).

 If \(n1 > 16384 \), use \(naux = 60000+1.39n1 \).

2. If \(n2 \geq 252 \), \(n3 < 252 \), and:

 If \(n1 \leq 16384 \), use \(naux = 65000+\lambda \).

 If \(n1 > 16384 \), use \(naux = 60000+1.39n1+\lambda \),

 where \(\lambda = (n2+256)(s+2.28) \)

 and \(s = \min(64, 1+n1/2) \).

3. If \(n2 < 252 \), \(n3 \geq 252 \), and:

 If \(n1 \leq 16384 \), use \(naux = 65000+\psi \).

 If \(n1 > 16384 \), use \(naux = 60000+1.39n1+\psi \),

 where \(\psi = (n3+256)(s+2.28) \)

 and \(s = \min(64, (n2)(1+n1/2)) \).

4. If \(n2 \geq 252 \) and \(n3 \geq 252 \), use the larger of the values calculated for cases 2 and 3 above.

If \(inc2y \) or \(inc3y \) is an odd number, or if array \(Y \) is not aligned on a doubleword boundary, you should add the following amount to all the formulas given above:

\[(1+n1/2)(\max(n2, n3))\]
Processor-Independent Formulas for DCRFT3 for NAUX: Use the following formulas for calculating naux:

1. If \(\max(n2, n3) < 252 \) and:
 - If \(n1 \leq 4096 \), use \(naux = 62000 \).
 - If \(n1 > 4096 \), use \(naux = 60000 + 2.78 n1 \).

2. If \(n2 \geq 252, n3 < 252 \) and:
 - If \(n1 \leq 4096 \), use \(naux = 62000 + \lambda \).
 - If \(n1 > 4096 \), use \(naux = 60000 + 2.78 n1 + \lambda \),
 where \(\lambda = (2^{n2+256})(s+4.56) \)
 and \(s = \min(64, n1/2) \).

3. If \(n2 < 252, n3 \geq 252 \) and:
 - If \(n1 \leq 4096 \), use \(naux = 62000 + \psi \).
 - If \(n1 > 4096 \), use \(naux = 60000 + 2.78 n1 + \psi \),
 where \(\psi = (2^{n3+256})(s+4.56) \)
 and \(s = \min(64, n2(1+n1/2)) \).

4. If \(n2 \geq 252 \) and \(n3 \geq 252 \), use the larger of the values calculated for cases 2 and 3 above.

Function: The three-dimensional discrete Fourier transform of complex conjugate even data in array \(X \), with results going into array \(Y \), is expressed as follows:

\[
y_{k1,k2,k3} = scale \sum_{j1=0}^{n1-1} \sum_{j2=0}^{n2-1} \sum_{j3=0}^{n3-1} x_{j1,j2,j3} W_{n1}^{(isign)jk1} W_{n2}^{(isign)jk2} W_{n3}^{(isign)jk3}
\]

for:

- \(k1 = 0, 1, \ldots, n1-1 \)
- \(k2 = 0, 1, \ldots, n2-1 \)
- \(k3 = 0, 1, \ldots, n3-1 \)

where:

\[
W_{n1} = e^{-2\pi(j^-1)/n1}
\]
\[
W_{n2} = e^{-2\pi(j^-1)/n2}
\]
\[
W_{n3} = e^{-2\pi(j^-1)/n3}
\]

and where:

- \(x_{j1,j2,j3} \) are elements of array \(X \).
- \(y_{k1,k2,k3} \) are elements of array \(Y \).
- \(isign \) is + or – (determined by argument \(isign \)).
- \(scale \) is a scalar value.

Because of the complex conjugate symmetry, the output in array \(Y \) is real. For \(scale = 1.0 \) and \(isign \) being positive, you obtain the discrete Fourier transform, a function of frequency. The inverse Fourier transform is obtained with
\[scale = \frac{1.0}{(n1)(n2)(n3)} \] and \(isign \) being negative. See references [1], [4], [5], [19], and [20].

Error Conditions

Resource Errors: Error 2015 is unrecoverable, \(naux \neq 0 \), and unable to allocate work area.

Computational Errors: None

Input-Argument Errors
1. \(n1 > 37748736 \)
2. \(n2 > 37748736 \)
3. \(n3 > 37748736 \)
4. \(inc2x < n1/2+1 \)
5. \(inc3x < (n2)(inc2x) \)
6. \(inc2y < n1+2 \)
7. \(inc3y < (n2)(inc2y) \)
8. \(scale = 0.0 \)
9. \(isign = 0 \)

10. The length of one of the transforms in \(n1, n2, \) or \(n3 \) is not an allowable value.

 Return code 1 is returned if error 2030 is recoverable.

11. Error 2015 is recoverable or \(naux = 0 \), and \(naux \) is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.

Example: This example shows how to compute a three-dimensional transform. In this example, \(INC2Y = (2)(INC2X) \) and \(INC3Y = (2)(INC3X) \), so that the same array can be used for both input and output. The STRIDE subroutine is called to select good values for the INC2Y and INC3Y strides. (As explained below, STRIDE is not called for INC2X and INC3X.) Using the transform lengths (\(N1 = 32, N2 = 64, \) and \(N3 = 40 \)) along with the output data type (short-precision real: \('S' \)), STRIDE is called once for each stride needed. First, it is called for INC2Y:

 \[\text{CALL STRIDE (N2,N1+2,INC2Y,'S',0)} \]

The output value returned for INC2Y is 34. (This value is equal to \(N1+2 \).) Then STRIDE is called again for INC3Y:

 \[\text{CALL STRIDE (N3,N2+INC2Y,INC3Y,'S',0)} \]

The output value returned for INC3Y is 2176. Because INC3Y is a multiple of INC2Y—that is, \(INC3Y = (N2)(INC2Y) \)—Y is declared as a three-dimensional array, \(Y(34,64,40) \). (In general, for larger arrays, these types of values for INC2Y and INC3Y are not returned by STRIDE, and you are probably not able to declare \(Y \) as a three-dimensional array.)

A good stride value for INC2X is INC2Y/2, and a good stride value for INC3X is INC3Y/2. Also, to equivalence the \(X \) and \(Y \) arrays requires \(INC2Y = (2)(INC2X) \) and \(INC3Y = (2)(INC3X) \). Therefore, the values \(INC2X = INC2Y/2 = 17 \) and \(INC3X = INC3Y/2 = 1088 \) are set, and \(X \) is declared as a three-dimensional array, \(X(17,64,40) \).

The arrays are declared as follows:
Arrays X and Y are made equivalent by the following statement, making them occupy the same storage:

EQUIVALENCE (X, Y)

Call Statement and Input

CALL SCRFT3(X, 17, 1088, Y, 34, 2176, 32, 64, 40, 1, SCALE, AUX, 32000)

SCALE = 1.0
X has (1.0,0.0) in location X(1,1,1) and (0.0,0.0) in all other locations.

Output: Y has 1.0 in all locations.
Convolution and Correlation Subroutines

This section contains the convolution and correlation subroutine descriptions.
SCON and SCOR—Convolution or Correlation of One Sequence with One or More Sequences

These subroutines compute the convolutions and correlations of a sequence with one or more sequences using a direct method. The input and output sequences contain short-precision real numbers.

Note: These subroutines are considered obsolete. They are provided in ESSL only for compatibility with earlier releases. You should use SCOND, SCORD, SDCON, SDCOR, SCONF, and SCORF instead, because they provide better performance. For further details, see “Convolution and Correlation Considerations” on page 765.

Syntax

<table>
<thead>
<tr>
<th>Language</th>
<th>Declaration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>CALL SCON</td>
</tr>
<tr>
<td>C and C++</td>
<td>scon</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SCON</td>
</tr>
</tbody>
</table>

On Entry

init

is a flag, where:

If init ≠ 0, no computation is performed, error checking is performed, and the subroutine exits back to the calling program.

If init = 0, the convolutions or correlations of the sequence in h with the sequences in x are computed.

Specified as: a fullword integer. It can have any value.

h

is the array H, consisting of the sequence of length Nh to be convolved or correlated with the sequences in array X. Specified as: an array of (at least) length 1+(Nh−1)inc1h, containing short-precision real numbers.

inc1h

is the stride between the elements within the sequence in array H. Specified as: a fullword integer; inc1h > 0.

x

is the array X, consisting of m input sequences of length Nx each to be convolved or correlated with the sequence in array H. Specified as: an array of (at least) length 1+(m−1)inc2x+(Nx−1)inc1x, containing short-precision real numbers.

inc1x

is the stride between the elements within each sequence in array X. Specified as: a fullword integer; inc1x > 0.

inc2x

is the stride between the first elements of the sequences in array X. Specified as: a fullword integer; inc2x > 0.

y

See “On Return” on page 849.
inity
is the stride between the elements within each sequence in output array Y. Specified as: a fullword integer; inity > 0.

init2y
is the stride between the first elements of each sequence in output array Y. Specified as: a fullword integer; init2y > 0.

nh
is the number of elements, Nh, in the sequence in array H. Specified as: a fullword integer; Nh > 0.

nx
is the number of elements, Nx, in each sequence in array X. Specified as: a fullword integer; Nx > 0.

m
is the number of sequences in array X to be convolved or correlated. Specified as: a fullword integer; m > 0.

iy0
is the convolution or correlation index of the element to be stored in the first position of each sequence in array Y. Specified as: a fullword integer. It can have any value.

ny
is the number of elements, Ny, in each sequence in array Y. Specified as: a fullword integer; Ny > 0 for SCON and Ny ≥ −Nh+1 for SCOR.

aux1
is no longer used in the computation, but must still be specified as a dummy argument (for migration purposes from Version 1 of ESSL). It can have any value.

naux1
is no longer used in the computation, but must still be specified as a dummy argument (for migration purposes from Version 1 of ESSL). It can have any value.

aux2
is no longer used in the computation, but must still be specified as a dummy argument (for migration purposes from Version 1 of ESSL). It can have any value.

naux2
is no longer used in the computation, but must still be specified as a dummy argument (for migration purposes from Version 1 of ESSL). It can have any value.

On Return

y
is array Y, consisting of m output sequences of length Ny that are the result of the convolutions or correlations of the sequence in array H with the sequences in array X. Returned as: an array of (at least) length 1 + (m−1)init2y + (Ny−1)inity, containing short-precision real numbers.

Notes
1. Output should not overwrite input; that is, input arrays X and H must have no common elements with output array Y. Otherwise, results are unpredictable. See “Concepts” on page 53.
2. When using the ESSL SMP library, for optimal performance, the number of threads specified should be the same for init ≠ 0 and init = 0.
3. Auxiliary storage is not needed, but the arguments \(aux1, naux1, aux2, \) and \(naux2 \) must still be specified. You can assign any values to these arguments.

Function: The convolutions and correlations of a sequence in array \(H \) with one or more sequences in array \(X \) are expressed as follows:

Convolutions for SCON:

\[
y_{ki} = \min(N_h - 1, k) \sum_{j = \max(0, k - N_x + 1)} h_j x_{k-j}
\]

Correlations for SCOR:

\[
y_{ki} = \min(N_h - 1, N_x - 1 - k) \sum_{j = \max(0, -k)} h_j x_{k+j}
\]

for:

\[k = iy0, iy0+1, \ldots, iy0+N_y-1 \]

\[i = 1, 2, \ldots, m \]

where:

- \(y_{ki} \) are elements of the \(m \) sequences of length \(N_y \) in array \(Y \).
- \(x_{ki} \) are elements of the \(m \) sequences of length \(N_x \) in array \(X \).
- \(h_j \) are elements of the sequence of length \(N_h \) in array \(H \).
- \(iy0 \) is the convolution or correlation index of the element to be stored in the first position of each sequence in array \(Y \).
- \(\min \) and \(\max \) select the minimum and maximum values, respectively.

It is assumed that elements outside the range of definition are zero. See references [17] and [84].

Only one invocation of this subroutine is needed:

1. You do not need to invoke the subroutine with \(init \neq 0 \). If you do, however, the subroutine performs error checking, exits back to the calling program, and no computation is performed.

2. With \(init = 0 \), the subroutine performs the calculation of the convolutions or correlations.

Error Conditions

Computational Errors: None

Input-Argument Errors

1. \(nh, nx, ny, \) or \(m \leq 0 \)

2. \(inc1h, inc1x, inc2x, inc1y, \) or \(inc2y \leq 0 \)
Example 1: This example shows how to compute a convolution of a sequence in \(H\), which is a ramp function, and three sequences in \(X\), a triangular function and its cyclic translates. It computes the full range of nonzero values of the convolution plus two extra points, which are set to 0. The arrays are declared as follows:

```fortran
REAL+4  H(0:4999), X(0:49999), Y(0:49999)
REAL+8  AUX1, AUX2
```

Call Statement and Input

```fortran
| INIT H INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY NY AUX1 NAUX1 AUX2 NAUX2 |
|-----------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
CALL SCON(INIT, H, 1, X, 1, 10, Y, 1, 15, 4, 10, 3, 0, 15, AUX1, 0, AUX2, 0)
```

INIT = 0 (for computation)

\(H = (1.0, 2.0, 3.0, 4.0)\)

\(X\) contains the following three sequences:

1.0 2.0 3.0
2.0 1.0 2.0
3.0 2.0 1.0
4.0 3.0 2.0
5.0 4.0 3.0
6.0 5.0 4.0
5.0 6.0 5.0
4.0 5.0 6.0
3.0 4.0 5.0
2.0 3.0 4.0

Output: \(Y\) contains the following three sequences:

1.0 2.0 3.0
4.0 5.0 8.0
10.0 10.0 14.0
20.0 18.0 22.0
30.0 20.0 18.0
40.0 30.0 20.0
48.0 40.0 30.0
52.0 48.0 40.0
50.0 52.0 48.0
40.0 50.0 52.0
29.0 38.0 47.0
18.0 25.0 32.0
8.0 12.0 16.0
0.0 0.0 0.0
0.0 0.0 0.0

Example 2: This example shows how the output from Example 1 differs when the values for \(NY\) and \(inc2y\) are 10 rather than 15. The output is the same except that it consists of only the first 10 values produced in Example 1.

Output: \(Y\) contains the following three sequences:
Example 3: This example shows how the output from Example 2 differs if the value for \(IY \) is 3 rather than 0. The output is the same except it starts at element 3 of the convolution sequences rather than element 0.

Output: \(Y \) contains the following three sequences:

\[
\begin{align*}
20.0 & 18.0 & 22.0 \\
30.0 & 20.0 & 18.0 \\
40.0 & 30.0 & 20.0 \\
48.0 & 40.0 & 30.0 \\
52.0 & 48.0 & 40.0 \\
50.0 & 52.0 & 48.0 \\
40.0 & 50.0 & 52.0 \\
29.0 & 25.0 & 32.0 \\
8.0 & 12.0 & 16.0
\end{align*}
\]

Example 4: This example shows how to compute a correlation of a sequence in \(H \), which is a ramp function, and three sequences in \(X \), a triangular function and its cyclic translates. It computes the full range of nonzero values of the correlation plus two extra points, which are set to 0. The arrays are declared as follows:

\[
\begin{align*}
\text{REAL}: & H(0:4999), X(0:49999), Y(0:49999) \\
\text{REAL}: & \text{AUX1, AUX2}
\end{align*}
\]

Call Statement and Input

\[
\begin{align*}
\text{INIT } & H \text{ INC1H } X \text{ INC1X } \text{ INC2X } \text{ Y INC1Y INC2Y } \text{ NH } \text{ NX } \text{ M } IY \text{ NY } \text{ AUX1 } \text{ NAUX1 } \text{ AUX2 } \text{ NAUX2} \\
\text{CALL SCOR(INIT, H , 1 , X , 1 , 10 , Y , 1 , 15 , 4, 10, 3, -3, 15, AUX1 , 0 , AUX2 , 0)}
\end{align*}
\]

\[
\begin{align*}
\text{INIT} & = 0\text{(for computation)} \\
H & = (1.0, 2.0, 3.0, 4.0)
\end{align*}
\]

\(X \) contains the following three sequences:

\[
\begin{align*}
1.0 & 2.0 & 3.0 \\
2.0 & 1.0 & 2.0 \\
3.0 & 2.0 & 1.0 \\
4.0 & 3.0 & 2.0 \\
5.0 & 4.0 & 3.0 \\
6.0 & 5.0 & 4.0 \\
5.0 & 6.0 & 5.0 \\
4.0 & 5.0 & 6.0 \\
3.0 & 4.0 & 5.0 \\
2.0 & 3.0 & 4.0
\end{align*}
\]
Output: Y contains the following three sequences:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>8.0</td>
<td>12.0</td>
</tr>
<tr>
<td>11.0</td>
<td>10.0</td>
<td>17.0</td>
</tr>
<tr>
<td>20.0</td>
<td>15.0</td>
<td>16.0</td>
</tr>
<tr>
<td>30.0</td>
<td>22.0</td>
<td>18.0</td>
</tr>
<tr>
<td>40.0</td>
<td>30.0</td>
<td>22.0</td>
</tr>
<tr>
<td>50.0</td>
<td>40.0</td>
<td>30.0</td>
</tr>
<tr>
<td>52.0</td>
<td>50.0</td>
<td>40.0</td>
</tr>
<tr>
<td>48.0</td>
<td>52.0</td>
<td>50.0</td>
</tr>
<tr>
<td>40.0</td>
<td>48.0</td>
<td>52.0</td>
</tr>
<tr>
<td>30.0</td>
<td>40.0</td>
<td>48.0</td>
</tr>
<tr>
<td>2.0</td>
<td>3.0</td>
<td>4.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Example 5: This example shows how the output from Example 4 differs when the values for NY and INC2Y are 10 rather than 15. The output is the same except that it consists of only the first 10 values produced in Example 4.

Output: Y contains the following three sequences:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>8.0</td>
<td>12.0</td>
</tr>
<tr>
<td>11.0</td>
<td>10.0</td>
<td>17.0</td>
</tr>
<tr>
<td>20.0</td>
<td>15.0</td>
<td>16.0</td>
</tr>
<tr>
<td>30.0</td>
<td>22.0</td>
<td>18.0</td>
</tr>
<tr>
<td>40.0</td>
<td>30.0</td>
<td>22.0</td>
</tr>
<tr>
<td>50.0</td>
<td>40.0</td>
<td>30.0</td>
</tr>
<tr>
<td>52.0</td>
<td>50.0</td>
<td>40.0</td>
</tr>
<tr>
<td>48.0</td>
<td>52.0</td>
<td>50.0</td>
</tr>
<tr>
<td>40.0</td>
<td>48.0</td>
<td>52.0</td>
</tr>
<tr>
<td>30.0</td>
<td>40.0</td>
<td>48.0</td>
</tr>
<tr>
<td>2.0</td>
<td>3.0</td>
<td>4.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Example 6: This example shows how the output from Example 5 differs if the value for IY is 0 rather than −3. The output is the same except it starts at element 0 of the correlation sequences rather than element −3.

Output: Y contains the following three sequences:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30.0</td>
<td>22.0</td>
<td>18.0</td>
</tr>
<tr>
<td>40.0</td>
<td>30.0</td>
<td>22.0</td>
</tr>
<tr>
<td>50.0</td>
<td>40.0</td>
<td>30.0</td>
</tr>
<tr>
<td>52.0</td>
<td>50.0</td>
<td>40.0</td>
</tr>
<tr>
<td>48.0</td>
<td>52.0</td>
<td>50.0</td>
</tr>
<tr>
<td>40.0</td>
<td>48.0</td>
<td>52.0</td>
</tr>
<tr>
<td>30.0</td>
<td>40.0</td>
<td>48.0</td>
</tr>
<tr>
<td>16.0</td>
<td>22.0</td>
<td>28.0</td>
</tr>
<tr>
<td>7.0</td>
<td>10.0</td>
<td>13.0</td>
</tr>
<tr>
<td>2.0</td>
<td>3.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>
SCOND and SCORD—Convolution or Correlation of One Sequence with Another Sequence Using a Direct Method

These subroutines compute the convolution and correlation of a sequence with another sequence using a direct method. The input and output sequences contain short-precision real numbers.

Notes:

1. These subroutines compute the convolution and correlation using direct methods. In most cases, these subroutines provide better performance than using SCON or SCOR, if you determine that SCON or SCOR would have used a direct method for its computation. For information on how to make this determination, see reference [4].

2. For long-precision data, you should use DDCON or DDCOR with the decimation rate, id, equal to 1.

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL SCOND</th>
<th>SCORD (h, inch, x, incx, y,incy, nh, nx, iy0, ny)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>scond</td>
<td>scord (h, inch, x, incx, y,incy, nh, nx, iy0, ny);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SCOND</td>
<td>SCORD (h, inch, x, incx, y,incy, nh, nx, iy0, ny);</td>
</tr>
</tbody>
</table>

On Entry

h
is the array H, consisting of the sequence of length Nh to be convolved or correlated with the sequence in array X. Specified as: an array of (at least) length 1+(Nh−1)*inchl, containing short-precision real numbers.

inch
is the stride between the elements within the sequence in array H. Specified as: a fullword integer; inch > 0 or inch < 0.

x
is the array X, consisting of the input sequence of length Nx, to be convolved or correlated with the sequence in array H. Specified as: an array of (at least) length 1+(Nx−1)*incxl, containing short-precision real numbers.

incx
is the stride between the elements within the sequence in array X. Specified as: a fullword integer; incx > 0 or incx < 0.

y
See “On Return” on page 855.

incy
is the stride between the elements within the sequence in output array Y. Specified as: a fullword integer; incy > 0 or incy < 0.

nh
is the number of elements, Nh, in the sequence in array H. Specified as: a fullword integer; Nh > 0.

nx
is the number of elements, Nx, in the sequence in array X. Specified as: a fullword integer; Nx > 0.
SCOND and SCORD

\(iy0 \)

is the convolution or correlation index of the element to be stored in the first position of the sequence in array \(Y \). Specified as: a fullword integer. It can have any value.

\(ny \)

is the number of elements, \(N_y \), in the sequence in array \(Y \). Specified as: a fullword integer; \(N_y > 0 \).

On Return

\(y \)

is the array \(Y \) of length \(N_y \), consisting of the output sequence that is the result of the convolution or correlation of the sequence in array \(H \) with the sequence in array \(X \). Returned as: an array of (at least) length \(1+(N_y-1)\text{incy} \), containing short-precision real numbers.

Notes

1. Output should not overwrite input—that is, input arrays \(X \) and \(H \) must have no common elements with output array \(Y \). Otherwise, results are unpredictable. See “Concepts” on page 53.

2. If \(iy0 \) and \(ny \) are such that output outside the basic range is needed, where the basic range is \(0 \leq k \leq (n_h+n_x-2) \) for SCOND and \((-n_h+1) \leq k \leq (n_x-1) \) for SCORD, the subroutine stores zeros using scalar code. It is not efficient to store many zeros in this manner. It is more efficient to set \(iy0 \) and \(ny \) so that the output is produced within the above range of \(k \) values.

Function: The convolution and correlation of a sequence in array \(H \) with a sequence in array \(X \) are expressed as follows:

Convolution for SCOND:

\[
y_k = \sum_{j = \max(0,k-N_x+1)}^{\min(N_h-1,k)} h_j x_{k-j}
\]

Correlation for SCORD:

\[
y_k = \sum_{j = \max(0,-k)}^{\min(N_h-1,N_x-1-k)} h_j x_{k+j}
\]

for \(k = iy0, iy0+1, \ldots, iy0+N_y-1 \)

where:

- \(y_k \) are elements of the sequence of length \(N_y \) in array \(Y \).
- \(x_k \) are elements of the sequence of length \(N_x \) in array \(X \).
- \(h_j \) are elements of the sequence of length \(N_h \) in array \(H \).
- \(iy0 \) is the convolution or correlation index of the element to be stored in the first position of each sequence in array \(Y \).
- \(\min \) and \(\max \) select the minimum and maximum values, respectively.
SCOND and SCORD

It is assumed that elements outside the range of definition are zero. See reference [4].

Special Usage: SCORD can also perform the functions of SCON and SACOR; that is, it can compute convolutions and autocorrelations. To compute a convolution, you must specify a negative stride for \(h \) (see Example 9). To compute the autocorrelation, you must specify the two input sequences to be the same (see Example 10). In fact, you can also compute the autoconvolution by using both of these techniques together, letting the two input sequences be the same, and specifying a negative stride for the first input sequence.

Error Conditions

Computational Errors: None

Input-Argument Errors

1. \(nh, nx, \text{ or } ny \leq 0 \)
2. \(inch, incx, \text{ or } incy = 0 \)

Example 1: This example shows how to compute a convolution of a sequence in \(H \) with a sequence in \(X \), where both sequences are ramp functions.

Call Statement and Input

\[
\text{H INCH X INCX Y INCY NH NX IY:z"ro"ot NY}
\]

\[
\text{CALL SCOND(H, 1 , X, 1 , Y, 1 , 4 , 8 , 0 , 11)}
\]

\[
H = (1.0, 2.0, 3.0, 4.0)
\]

\[
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)
\]

Output

\[
Y = (11.0, 34.0, 70.0, 124.0, 130.0, 140.0, 150.0, 160.0, 151.0, 122.0, 70.0)
\]

Example 2: This example shows how the output from Example 1 differs when the value for \(IY:z"ro"ot \) is \(-2\) rather than 0, and \(NY \) is 15 rather than 11. The output has two zeros at the beginning and end of the sequence, for points outside the range of nonzero output.

Call Statement and Input

\[
\text{H INCH X INCX Y INCY NH NX IY:z"ro"ot NY}
\]

\[
\text{CALL SCOND(H, 1 , X, 1 , Y, 1 , 4 , 8 , -2 , 15)}
\]

\[
H = (1.0, 2.0, 3.0, 4.0)
\]

\[
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)
\]

Output

\[
Y = (0.0, 0.0, 11.0, 34.0, 70.0, 120.0, 130.0, 140.0, 150.0, 160.0, 151.0, 122.0, 70.0, 0.0, 0.0)
\]

Example 3: This example shows how the same output as Example 1 can be obtained when \(H \) and \(X \) are interchanged, because the convolution is symmetric in \(H \) and \(X \). (The arguments are switched in the calling sequence.)
Call Statement and Input

```
CALL SCOND( X, 1 , H, 1 , Y, 1 , 4 , 8 , 0 , 11 )
```

\[
\begin{align*}
H &= (1.0, 2.0, 3.0, 4.0) \\
X &= (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)
\end{align*}
\]

Output

\[
\begin{align*}
Y &= (11.0, 34.0, 70.0, 120.0, 130.0, 140.0, 150.0, 160.0, 151.0, 122.0, 72.0)
\end{align*}
\]

Example 4: This example shows how the output from Example 1 differs when a negative stride is specified for the sequence in \(H \). By reversing the \(H \) sequence, the correlation is computed.

Call Statement and Input

```
CALL SCOND( H, -1 , X, 1 , Y, 1 , 4 , 8 , 0 , 11 )
```

\[
\begin{align*}
H &= (1.0, 2.0, 3.0, 4.0) \\
X &= (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)
\end{align*}
\]

Output

\[
\begin{align*}
Y &= (44.0, 81.0, 110.0, 130.0, 140.0, 150.0, 160.0, 170.0, 104.0, 53.0, 18.0)
\end{align*}
\]

Example 5: This example shows how to compute the autoconvolution of a sequence by letting the two input sequences for \(H \) and \(X \) be the same. (X is specified for both arguments in the calling sequence.)

Call Statement and Input

```
CALL SCOND( X, 1 , X, 1 , Y, 1 , 4 , 4 , 0 , 7 )
```

\[
\begin{align*}
X &= (11.0, 12.0, 13.0, 14.0)
\end{align*}
\]

Output

\[
\begin{align*}
Y &= (121.0, 264.0, 430.0, 620.0, 505.0, 364.0, 196.0)
\end{align*}
\]

Example 6: This example shows how to compute a correlation of a sequence in \(H \) with a sequence in \(X \), where both sequences are ramp functions.

Call Statement and Input

```
CALL SCORD( H, 1 , X, 1 , Y, 1 , 4 , 8 , -3 , 11 )
```

\[
\begin{align*}
H &= (1.0, 2.0, 3.0, 4.0) \\
X &= (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)
\end{align*}
\]
Output
Y = (44.0, 81.0, 110.0, 130.0, 140.0, 150.0, 160.0, 170.0, 104.0, 53.0, 18.0)

Example 7: This example shows how the output from Example 6 differs when the value for IY is -5 rather than -3 and NY is 15 rather than 11. The output has two zeros at the beginning and end of the sequence, for points outside the range of nonzero output.

Call Statement and Input

```
H INCH X INCX Y INCY NH NX IY NY
|     |     |     |     |     |     |     |
CALL SCORD(H, 1, X, 1, Y, 1, 4, 8, -5, 15)
```

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

Output
Y = (:ro:, :ro:, 44.0, 81.0, 11.0:ro:, 13.0:ro:, 14.0:ro:, 15.0:ro:, 16.0:ro:, 17.0:ro:, 18.0:ro:, :ro:, :ro:)

Example 8: This example shows how the output from Example 6 differs when H and X are interchanged (in the calling sequence). The output sequence is the reverse of that in Example 6. To get the full range of output, IY is set to $-NX+1$.

Call Statement and Input

```
H INCH X INCX Y INCY NH NX IY NY
|     |     |     |     |     |     |     |
CALL SCORD(X, 1, H, 1, Y, 1, 4, 8, -7, 11)
```

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

Output
Y = (18.0, 53.0, 1.0:ro:, 12.0:ro:, 13.0:ro:, 14.0:ro:, 15.0:ro:, 16.0:ro:, 17.0:ro:, 18.0)

Example 9: This example shows how the output from Example 6 differs when a negative stride is specified for the sequence in H. By reversing the H sequence, the convolution is computed.

Call Statement and Input

```
H INCH X INCX Y INCY NH NX IY NY
|     |     |     |     |     |     |     |
CALL SCORD(H, -1, X, 1, Y, 1, 4, 8, -3, 11)
```

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

Output
Y = (11.0, 34.0, 70.0, 120.0, 130.0, 140.0, 150.0, 160.0, 151.0, 122.0, 72.0)
Example 10: This example shows how to compute the autocorrelation of a sequence by letting the two input sequences for H and X be the same. (X is specified for both arguments in the calling sequence.)

Call Statement and Input

```
H INCH X INCX Y INCY NH NX IY NY
| | | | | | | | |
CALL SCORD( X , 1 , X , 1 , Y , 1 , 4 , 4 , -3 , 7 )
```

$X = (11.0, 12.0, 13.0, 14.0)$

Output

$Y = (154.0, 311.0, 470.0, 630.0, 470.0, 311.0, 154.0)$
SCONF and SCORF—Convolution or Correlation of One Sequence with One or More Sequences Using the Mixed-Radix Fourier Method

These subroutines compute the convolutions and correlations, respectively, of a sequence with one or more sequences using the mixed-radix Fourier method. The input and output sequences contain short-precision real numbers.

Note: Two invocations of these subroutines are necessary: one to prepare the working storage for the subroutine, and the other to perform the computations.

Syntax

<table>
<thead>
<tr>
<th>Language</th>
<th>Call</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>CALL SCONF</td>
<td>init, h, inc1h, x, inc1x, inc2x, y, inc1y, inc2y, nh, nx, m, iy0, ny, aux1, aux2, naux1, naux2</td>
</tr>
<tr>
<td>C and C++</td>
<td>scorf</td>
<td>init, h, inc1h, x, inc1x, inc2x, y, inc1y, inc2y, nh, nx, m, iy0, ny, aux1, aux2, naux2</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SCONF</td>
<td>init, h, inc1h, x, inc1x, inc2x, y, inc1y, inc2y, nh, nx, m, iy0, ny, aux1, aux2, naux1, naux2</td>
</tr>
</tbody>
</table>

On Entry

- **init** is a flag, where:
 - If init ≠ 0, trigonometric functions, the transform of the sequence in h, and other parameters, depending on arguments other than x, are computed and saved in aux1. The contents of x and y are not used or changed.
 - If init = 0, the convolutions or correlations of the sequence that was in h at initialization with the sequences in x are computed. h is not used or changed. The only arguments that may change after initialization are x, y, and aux2. All scalar arguments must be the same as when the subroutine was called for initialization with init ≠ 0.
 - Specified as: a fullword integer. It can have any value.

- **h** is the array H, consisting of the sequence of length Nh to be convolved or correlated with the sequences in array x. Specified as: an array of (at least) length 1+(Nh−1)inc1h, containing short-precision real numbers.

- **inc1h** is the stride between the elements within the sequence in array H. Specified as: a fullword integer; inc1h > 0.

- **x** is the array X, consisting of m input sequences of length Nx each to be convolved or correlated with the sequence in array H. Specified as: an array of (at least) length 1+(Nx−1)inc1x+(m−1)inc2x, containing short-precision real numbers.

- **inc1x** is the stride between the elements within each sequence in array X. Specified as: a fullword integer; inc1x > 0.

- **inc2x** is the stride between the first elements of the sequences in array X. Specified as: a fullword integer; inc2x > 0.
y
See “On Return” on page 862.

\(\text{inc1y}\)
is the stride between the elements within each sequence in output array \(Y\).
Specified as: a fullword integer; \(\text{inc1y} > 0\).

\(\text{inc2y}\)
is the stride between the first elements of each sequence in output array \(Y\).
Specified as: a fullword integer; \(\text{inc2y} > 0\).

\(nh\)
is the number of elements, \(N_h\), in the sequence in array \(H\). Specified as: a fullword integer; \(N_h > 0\).

\(nx\)
is the number of elements, \(N_x\), in each sequence in array \(X\). Specified as: a fullword integer; \(N_x > 0\).

\(m\)
is the number of sequences in array \(X\) to be convolved or correlated. Specified as: a fullword integer; \(m > 0\).

\(iy0\)
is the convolution or correlation index of the element to be stored in the first position of each sequence in array \(Y\). Specified as: a fullword integer. It can have any value.

\(ny\)
is the number of elements, \(N_y\), in each sequence in array \(Y\). Specified as: a fullword integer; \(N_y > 0\).

\(aux1\)
is the working storage for this subroutine, where:

If \(\text{init} \neq 0\), the working storage is computed.

If \(\text{init} = 0\), the working storage is used in the computation of the convolutions.

Specified as: an area of storage, containing \(naux1\) long-precision real numbers.

\(naux1\)
is the number of doublewords in the working storage specified in \(aux1\).
Specified as: a fullword integer; \(naux1 > 23\) and \(naux1 \geq (\text{minimum value required for successful processing})\). To determine a sufficient value, use the processor-independent formulas. For values between 23 and the minimum value, you have the option of having the minimum value returned in this argument. For details, see “Using Auxiliary Storage in ESSL” on page 30.

\(aux2\)
has the following meaning:

If \(naux2 = 0\) and error 2015 is unrecoverable, \(aux2\) is ignored.

Otherwise, it is the working storage used by this subroutine, which is available for use by the calling program between calls to this subroutine.

Specified as: an area of storage, containing \(naux2\) long-precision real numbers. On output, the contents are overwritten.

\(naux2\)
is the number of doublewords in the working storage specified in \(aux2\).
Specified as: a fullword integer, where:

If \(naux2 = 0\) and error 2015 is unrecoverable, SCONF and SCORF dynamically allocate the work area used by the subroutine. The work area is deallocated before control is returned to the calling program.
Otherwise, \(naux2 \geq (\text{minimum value required for successful processing}) \). To determine a sufficient value, use the processor-independent formulas. For all other values specified less than the minimum value, you have the option of having the minimum value returned in this argument. For details, see “Using Auxiliary Storage in ESSL” on page 30.

On Return

\(y \) has the following meaning, where:

- If \(init \neq 0 \), this argument is not used, and its contents remain unchanged.
- If \(init = 0 \), this is array \(Y \), consisting of \(m \) output sequences of length \(N_y \) that are the result of the convolutions or correlations of the sequence in array \(H \) with the sequences in array \(X \).

Returned as: an array of (at least) length \(1+(N_y-1)inc1y+(m-1)inc2y \), containing short-precision real numbers.

\(aux1 \) is the working storage for this subroutine, where:

- If \(init \neq 0 \), it contains information ready to be passed in a subsequent invocation of this subroutine.
- If \(init = 0 \), its contents are unchanged.

Returned as: the contents are not relevant.

Notes

1. \(aux1 \) should not be used by the calling program between calls to this subroutine with \(init \neq 0 \) and \(init = 0 \). However, it can be reused after intervening calls to this subroutine with different arguments.

2. When using the ESSL SMP library, for optimal performance, the number of threads specified should be the same for \(init \neq 0 \) and \(init = 0 \).

3. If you specify the same array for \(X \) and \(Y \), then \(inc1x \) and \(inc1y \) must be equal, and \(inc2x \) and \(inc2y \) must be equal. In this case, output overwrites input.

4. If you specify different arrays for \(X \) and \(Y \), they must have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.

5. If \(iy0 \) and \(ny \) are such that output outside the basic range is needed, the subroutine stores zeros. These ranges are: \(0 \leq k \leq N_x+1-N_h \) for SCONF and \(1-N_h \leq k \leq N_x-1 \) for SCORF.

Formulas for the Length of the Fourier Transform: Before calculating the necessary sizes of \(naux1 \) and \(naux2 \), you must determine the length \(n \) of the Fourier transform. The value of \(n \) is based on \(nf \). You can use one of two techniques to determine \(nf \):

- Use the simple overestimate of \(nf = nx+nh-1 \). (If \(iy0 = 0 \) and \(ny > nh+nx \), this is the actual value, not an overestimate.)
- Use the values of the arguments \(iy0, nh, nx \), and \(ny \) inserted into the following formulas to get a value for the variable \(nf \):

\[
\begin{align*}
 iy0p &= \max(iy0, 0) \\
 ix0 &= \max((iy0p+1)-nh, 0) \\
 ih0 &= \max((iy0p+1)-nx, 0)
\end{align*}
\]
\[nd = ix0 + ih0 \]
\[n1 = iy0 + ny \]
\[nxx = \min(n1, nx) - ix0 \]
\[nhh = \min(n1, nh) - ih0 \]
\[ntt = nxx + nhh - 1 \]
\[nn1 = n1 - nd \]
\[iyy0 = iy0p - nd \]
\[nzleft = \max(0, nhh - iyy0 - 1) \]
\[nzrt = \min(nn1, ntt) - nxx \]
\[nf = \max(12, nxx + \max(nzleft, nzrt)) \]

After calculating the value for \(nf \), using one of these two techniques, refer to the formula or table of allowable values of \(n \) in “Acceptable Lengths for the Transforms” on page 761, selecting the value equal to or greater than \(nf \).

Processor-Independent Formulas for NAUX1 and NAUX2: The required values of \(naux1 \) and \(naux2 \) depend on the value determined for \(n \) in “Formulas for the Length of the Fourier Transform” on page 862.

NAUX1 Formulas
- If \(n \leq 16384 \), use \(naux1 = 58000 \).
- If \(n > 16384 \), use \(naux1 = 40000 + 2.14n \).

NAUX2 Formulas
- If \(n \leq 16384 \), use \(naux2 = 30000 \).
- If \(n > 16384 \), use \(naux2 = 20000 + 1.07n \).

Function: The convolutions and correlations of a sequence in array \(H \) with one or more sequences in array \(X \) are expressed as follows.

Convolutions for SCONF:

\[
y_{ki} = \sum_{j = \max(0, k - N_x + 1)}^{\min(N_x - 1, k)} h_j x_{k-j} \]

Correlations for SCORF:

\[
y_{ki} = \sum_{j = \max(0, -k)}^{\min(N_h - 1, N_x - 1 - k)} h_j x_{k+j} \]

for:

\[k = iy0, iy0+1, \ldots, iy0+N_y-1 \]
\[i = 1, 2, \ldots, m \]

where:

\(y_{ki} \) are elements of the \(m \) sequences of length \(N_y \) in array \(Y \).
\(x_{ki} \) are elements of the \(m \) sequences of length \(N_x \) in array \(X \).
\(h_j \) are elements of the sequence of length \(N_h \) in array \(H \).
\$iy0\$ is the convolution or correlation index of the element to be stored in the first position of each sequence in array \$Y\$.

\text{min} \text{ and } \text{max} \text{ select the minimum and maximum values, respectively.}

These subroutines use a Fourier transform method with a mixed-radix capability. This provides maximum performance for your application. The length of the transform, \$n\$, that you must calculate to determine the correct sizes for \$naux1\$ and \$naux2\$ is the same length used by the Fourier transform subroutines called by this subroutine. It is assumed that elements outside the range of definition are zero. See references [17] and [84].

Two invocations of this subroutine are necessary:

1. With \$init \neq 0\$, the subroutine tests and initializes arguments of the program, setting up the \$aux1\$ working storage.
2. With \$init = 0\$, the subroutine checks that the initialization arguments in the \$aux1\$ working storage correspond to the present arguments, and if so, performs the calculation of the convolutions.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, \$naux2 = 0\$, and unable to allocate work area.

Computational Errors: None

Input-Argument Errors

1. \$nh, nx, ny, \text{ or } m \leq 0\$
2. \$inc1h, inc1x, inc2x, inc1y, \text{ or } inc2y \leq 0\$
3. The resulting internal Fourier transform length \$n\$, is too large. See “Convolutions and Correlations by Fourier Methods” on page 767.
4. The subroutine has not been initialized with the present arguments.
5. \$naux1 \leq 23\$
6. \$naux1\$ is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.
7. Error 2015 is recoverable or \$naux2=0\$, and \$naux2\$ is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.

Example 1: This example shows how to compute a convolution of a sequence in \$H\$, where \$H\$ and \$X\$ are ramp functions. It calculates all nonzero values of the convolution of the sequences in \$H\$ and \$X\$. The arrays are declared as follows:

\[\text{REAL*4 } H(8), X(10,1), Y(17)\]

Because this convolution is symmetric in \$H\$ and \$X\$, you can interchange the \$H\$ and \$X\$ sequences, leaving all other arguments the same, and you get the same output shown below. First, initialize \$AUX1\$ using the calling sequence shown below with \$INIT \neq 0\$. Then use the same calling sequence with \$INIT = 0\$ to do the calculation.

Call Statement and Input

\[
\text{INIT } H \text{ INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY0 NY AUX1 NAUX1 AUX2 NAUX2 }
\]

\[
\text{CALL SCONF(INIT, } H , 1 , X , 1 , 1 , Y , 1 , 1 , 8, 10, 1, 0, 17, AUX1, 128, AUX2, 23)\]

864 Engineering and Scientific Subroutine Library Version 3 Guide and Reference
INIT = 1 (for initialization)
INIT = 0 (for computation)
H = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0)

Output
Y = (11.0, 34.0, 70.0, 120.0, 185.0, 266.0, 364.0, 480.0, 516.0, 552.0, 567.0, 560.0, 530.0, 476.0, 397.0, 292.0, 160.0)

Example 2: This example shows how the output from Example 1 differs when the value for NY is 21 rather than 17, and the value for IY0 is -2 rather than 0. This yields two zeros on each end of the convolution.

Output
Y = (0.0, 0.0, 11.0, 34.0, 70.0, 120.0, 185.0, 266.0, 364.0, 480.0, 516.0, 552.0, 567.0, 560.0, 530.0, 476.0, 397.0, 292.0, 160.0, 0.0, 0.0)

Example 3: This example shows how to compute the autoconvolution by letting the two input sequences be the same for Example 2. First, initialize AUX1 using the calling sequence shown below with INIT = 0. Then use the same calling sequence with INIT = 0 to do the calculation.

Call Statement and Input

\[\text{INIT H INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY IY NY AUX1 NAUX1 AUX2 NAUX2} \]
\[\text{CALL SCONF(INIT, H, 1, X, 1, 1, Y, 1, 1, 8, 10, 1, -2, 21, AUX1, 128, AUX2, 23)} \]

INIT = 1 (for initialization)
INIT = 0 (for computation)

Output
Y = (1.0, 4.0, 10.0, 20.0, 35.0, 56.0, 84.0, 120.0, 147.0, 164.0, 170.0, 164.0, 145.0, 112.0, 64.0)

Example 4: This example shows how to compute all nonzero values of the convolution of the sequence in H with the two sequences in X. First, initialize AUX1 using the calling sequence shown below with INIT ≠ 0. Then use the same calling sequence with INIT = 0 to do the calculation.

Call Statement and Input

\[\text{INIT H INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY IY NY AUX1 NAUX1 AUX2 NAUX2} \]
\[\text{CALL SCONF(INIT, H, 1, X, 1, Y, 1, 17, 8, 10, 2, 0, 17, AUX1, 148, AUX2, 43)} \]

INIT = 1 (for initialization)
INIT = 0 (for computation)
H = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0)

X contains the following two sequences:
Output: Y contains the following two sequences:

11.0 12.0
34.0 37.0
70.0 76.0
120.0 130.0
185.0 200.0
266.0 287.0
364.0 392.0
480.0 516.0
516.0 552.0
552.0 578.0
567.0 582.0
560.0 563.0
530.0 520.0
476.0 452.0
397.0 358.0
292.0 237.0
160.0 88.0

Example 5: This example shows how to compute a correlation of a sequence in H, where H and X are ramp functions. It calculates all nonzero values of the correlation of the sequences in H and X. The arrays are declared as follows:

\[
\text{REAL*4 } H(8), X(1:10,1)
\]

First, initialize AUX1 using the calling sequence shown below with INIT = 0. Then use the same calling sequence with INIT = 0 to do the calculation.

Call Statement and Input

\[
\begin{align*}
\text{INIT } & \quad \text{H INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY NY AUX1 NAUX1 AUX2 NAUX2} \\
\text{CALL SCORF(INIT, H , 1 , X, 1 , 1 , Y , 1 , 1 , 8, 10, 1, -7, 17, AUX1, 128, AUX2, 23)}
\end{align*}
\]

\[
\begin{align*}
\text{INIT} & = 1 \text{(for initialization)} \\
\text{INIT} & = 0 \text{(for computation)} \\
\text{H} & = \text{(same as input } H \text{ in Example 1)} \\
\text{X} & = \text{(same as input } X \text{ in Example 1)}
\end{align*}
\]

Output

\[
Y = (88.0, 173.0, 254.0, 330.0, 400.0, 463.0, 518.0, 564.0, 600.0, 636.0, 504.0, 385.0, 280.0, 190.0, 116.0, 59.0, 20.0)
\]
Example 6: This example shows how the output from Example 5 differs when the value for NY is 21 rather than 17, and the value for IY0 is −9 rather than 0. This yields two zeros on each end of the correlation.

Output

\[
Y = (0.0, 0.0, 88.0, 173.0, 254.0, 330.0, 400.0, 463.0, 518.0, 564.0, 600.0, 636.0, 504.0, 385.0, 280.0, 190.0, 116.0, 59.0, 20.0, 0.0, 0.0)
\]

Example 7: This example shows the effect of interchanging \(H \) and \(X \). It uses the same input as Example 5, with \(H \) and \(X \) switched in the calling sequence, and with IY0 with a value of −9. Unlike convolution, as noted in Example 1, the correlation is not symmetric in \(H \) and \(X \). First, initialize AUX1 using the calling sequence shown below with \(INIT \neq 0 \). Then use the same calling sequence with \(INIT = 0 \) to do the calculation.

Call Statement and Input

\[
\text{CALL SCONF(INIT, } X, 1, H, 1, 1, Y, 1, 1, 8, 10, 1, -9, 17, \text{ AUX1, 128, AUX2, 23)}
\]

\[
\begin{align*}
\text{INIT} & = 1 \text{(for initialization)} \\
\text{INIT} & = 0 \text{(for computation)}
\end{align*}
\]

Output

\[
Y = (2.0, 59.0, 116.0, 190.0, 280.0, 385.0, 504.0, 636.0, 600.0, 564.0, 518.0, 463.0, 400.0, 330.0, 254.0, 173.0, 88.0)
\]

Example 8: This example shows how to compute the autocorrelation by letting the two input sequences be the same. First, initialize AUX1 using the calling sequence shown below with \(INIT \neq 0 \). Then use the same calling sequence with \(INIT = 0 \) to do the calculation. Because there is only one \(H \) input sequence, only one autocorrelation can be computed. Furthermore, this usage does not take advantage of the fact that the output is symmetric. Therefore, you should use SACORF to compute autocorrelations, because it does not have either of these problems.

Call Statement and Input

\[
\text{CALL SCONF(INIT, } H, 1, H, 1, Y, 1, 1, 8, 8, 1, -7, 15, \text{ AUX1, 148, AUX2, 43)}
\]

\[
\begin{align*}
\text{INIT} & = 1 \text{(for initialization)} \\
\text{INIT} & = 0 \text{(for computation)}
\end{align*}
\]

Output

\[
Y = (8.0, 23.0, 44.0, 70.0, 100.0, 133.0, 168.0, 204.0, 168.0, 133.0, 100.0, 70.0, 44.0, 23.0, 8.0)
\]
Example 9: This example shows how to compute all nonzero values of the correlation of the sequence in H with the two sequences in X. First, initialize $AUX1$ using the calling sequence shown below with $INIT \neq 0$. Then use the same calling sequence with $INIT = 0$ to do the calculation.

Call Statement and Input

```
INIT H INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY NY AUX1 NAUX1 AUX2 NAUX2
CALL SCONF(INIT, H, 1, X, 10, Y, 1, 17, 8, 10, 2, -7, 17, AUX1, 148, AUX2, 43)
```

- $INIT = 1$ (for initialization)
- $INIT = 0$ (for computation)
- $H =$ (same as input H in Example 4)
- $X =$ (same as input X in Example 4)

Output: Y contains the following two sequences:

```
88.0 96.0
173.0 188.0
254.0 275.0
330.0 356.0
400.0 430.0
463.0 496.0
518.0 553.0
564.0 600.0
600.0 636.0
636.0 592.0
504.0 462.0
385.0 346.0
280.0 245.0
190.0 160.0
116.0 92.0
59.0 42.0
20.0 11.0
```
SDCON, DDCON, SDCOR, and DDCOR—Convolution or Correlation with Decimated Output Using a Direct Method

These subroutines compute the convolution and correlation of a sequence with another sequence, with decimated output, using a direct method.

<table>
<thead>
<tr>
<th>Table 141. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>h, x, y</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
</tbody>
</table>

Note: These subroutines are the short- and long-precision equivalents of SCOND and SCORD when the decimation interval \(id\) is equal to 1. Because there is no long-precision version of SCOND and SCORD, you can use DDCON and DDCOR, respectively, with decimation interval \(id = 1\) to perform the same function.

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALL SDCON</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C and C++</th>
</tr>
</thead>
<tbody>
<tr>
<td>sdcon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PL/I</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALL SDCON</td>
</tr>
</tbody>
</table>

On Entry

- **h** is the array \(\mathcal{H}\), consisting of the sequence of length \(N_h\) to be convolved or correlated with the sequence in array \(X\). Specified as: an array of (at least) length \(1+((N_h-1)\mid\text{\textit{inch}}\mid)\), containing numbers of the data type indicated in Table 141.
- **\textit{inch}** is the stride between the elements within the sequence in array \(\mathcal{H}\). Specified as: a fullword integer; \(\text{\textit{inch}} > 0\) or \(\text{\textit{inch}} < 0\).
- **x** is the array \(X\), consisting of the input sequence of length \(N_x\) to be convolved or correlated with the sequence in array \(\mathcal{H}\). Specified as: an array of (at least) length \(1+((N_x-1)\mid\text{\textit{incx}}\mid)\), containing numbers of the data type indicated in Table 141.
- **\textit{incx}** is the stride between the elements within the sequence in array \(X\). Specified as: a fullword integer; \(\text{\textit{incx}} > 0\) or \(\text{\textit{incx}} < 0\).
- **y** is the array \(Y\), consisting of the sequence of length \(N_y\) to be convolved or correlated with the sequence in array \(\mathcal{H}\). Specified as: an array of (at least) length \(1+((N_y-1)\mid\text{\textit{incy}}\mid)\), containing numbers of the data type indicated in Table 141.
- **\textit{incy}** is the stride between the elements within the sequence in output array \(Y\). Specified as: a fullword integer; \(\text{\textit{incy}} > 0\) or \(\text{\textit{incy}} < 0\).
- **\textit{nh}** is the number of elements, \(N_h\), in the sequence in array \(\mathcal{H}\). Specified as: a fullword integer; \(N_h > 0\).
Convolution for SDCON and DDCON:

\[y_k = \sum_{j = \max(0, k - N_x + 1)}^{\min(N_h - 1, k)} h_j x_{k-j} \]
for \(k = iy_0, iy_0 + id, iy_0 + (2)id, \ldots, iy_0 + (Ny - 1)id \)

where:

- \(y_k \) are elements of the sequence of length \(Ny \) in array \(Y \).
- \(x_k \) are elements of the sequence of length \(Nx \) in array \(X \).
- \(h_j \) are elements of the sequence of length \(Nh \) in array \(H \).
- \(iy_0 \) is the convolution or correlation index of the element to be stored in the first position of the sequence in array \(Y \).
- \(\min \) and \(\max \) select the minimum and maximum values, respectively.

It is assumed that elements outside the range of definition are zero. See reference [4].

Special Usage: SDCON and DDCON can also perform a correlation, autoconvolution, or autocorrelation. To compute a correlation, you must specify a negative stride for \(H \). To compute the autoconvolution, you must specify the two input sequences to be the same. You can also compute the autocorrelation by using both of these techniques together, letting the two input sequences be the same, and specifying a negative stride for the first input sequence. For examples of this, see the examples for SCOND on page 856. Because SCOND and SDCON are functionally the same, their results are the same as long as the decimation interval \(id = 1 \) for SDCON.

SDCOR and DDCOR can also perform a convolution, autocorrelation, or autoconvolution. To compute a convolution, you must specify a negative stride for \(H \). To compute the autocorrelation, you must specify the two input sequences to be the same. You can also compute the autoconvolution by using both of these techniques together, letting the two input sequences be the same and specifying a negative stride for the first input sequence. For examples of these, see the examples for SCORD on page 857. Because SCORD and SDCOR are functionally the same, their results are the same as long as the decimation interval \(id = 1 \) for SDCOR.

Error Conditions

Computational Errors: None

Input-Argument Errors

1. \(nh, nx, \text{ or } ny \leq 0 \)
2. \(inch, incx, \text{ or } incy = 0 \)
3. \(id \leq 0 \)

Example 1: This example shows how to compute a convolution of a sequence in \(H \) with a sequence in \(X \), where both sequences are ramp functions. It shows how a decimated output can be obtained, using the same input as “Example 1” on page 856 for SCOND and using a decimation interval \(ID = 2 \).
Note: For further examples of use, see the examples for SCOND on page 856. Because SCOND and SDCON are functionally the same, their results are the same as long as the decimation interval ID = 1 for SDCON.

Call Statement and Input

\[
\begin{align*}
\text{H INCH X INCX Y INCY NH NX IY0 NY ID} \\
\end{align*}
\]
\[
\begin{align*}
\text{CALL SDCON(H, 1, X, 1, Y, 1, 4, 8, 0, 6, 2)}
\end{align*}
\]

\[
\begin{align*}
\text{H} &= (1.0, 2.0, 3.0, 4.0) \\
\text{X} &= (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)
\end{align*}
\]

Output

\[
\begin{align*}
\text{Y} &= (11.0, 70.0, 130.0, 150.0, 151.0, 72.0)
\end{align*}
\]

Example 2: This example shows how to compute a correlation of a sequence in H with a sequence in X, where both sequences are ramp functions. It shows how a decimated output can be obtained, using the same input as "Example 6" on page 857 for SCORD and using a decimation interval ID = 2.

Note: For further examples of use, see the examples for SCORD on page 857. Because SCORD and SDCOR are functionally the same, their results are the same as long as the decimation interval ID = 1 for SDCOR.

Call Statement and Input

\[
\begin{align*}
\text{H INCH X INCX Y INCY NH NX IY0 NY ID} \\
\end{align*}
\]
\[
\begin{align*}
\text{CALL SDCOR(H, 1, X, 1, Y, 1, 4, 8, -3, 6, 2)}
\end{align*}
\]

\[
\begin{align*}
\text{H} &= (1.0, 2.0, 3.0, 4.0) \\
\text{X} &= (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)
\end{align*}
\]

Output

\[
\begin{align*}
\text{Y} &= (44.0, 110.0, 140.0, 160.0, 104.0, 18.0)
\end{align*}
\]

Example 3: This example shows how to compute the same function as computed in "Example 1" on page 856 for SCOND. The input sequences and arguments are the same as that example, except a decimation interval ID = 1 is specified here for SDCON.

Call Statement and Input

\[
\begin{align*}
\text{H INCH X INCX Y INCY NH NX IY0 NY ID} \\
\end{align*}
\]
\[
\begin{align*}
\text{CALL SDCON(H, 1, X, 1, Y, 1, 4, 8, 0, 11, 1)}
\end{align*}
\]

\[
\begin{align*}
\text{H} &= (1.0, 2.0, 3.0, 4.0) \\
\text{X} &= (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)
\end{align*}
\]

Output

\[
\begin{align*}
\text{Y} &= (11.0, 34.0, 70.0, 120.0, 130.0, 140.0, 150.0, 151.0, 122.0, 72.0)
\end{align*}
\]
SACOR—Autocorrelation of One or More Sequences

This subroutine computes the autocorrelations of one or more sequences using a direct method. The input and output sequences contain short-precision real numbers.

Note: This subroutine is considered obsolete. It is provided in ESSL only for compatibility with earlier releases. You should use SCORD, SDCOR, SCORF and SACORF instead, because they provide **better performance**. For further details, see reference [4].

Syntax

<table>
<thead>
<tr>
<th>Language</th>
<th>Call to SACOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>CALL SACOR (init, x, inc1x, inc2x, y, inc1y, inc2y, nx, m, ny, aux1, aux2, naux1, aux2, naux2)</td>
</tr>
<tr>
<td>C and C++</td>
<td>sacor (init, x, inc1x, inc2x, y, inc1y, inc2y, nx, m, ny, aux1, aux2, naux1, aux2, naux2);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SACOR (init, x, inc1x, inc2x, y, inc1y, inc2y, nx, m, ny, aux1, aux2, naux1, aux2, naux2);</td>
</tr>
</tbody>
</table>

On Entry

- **init**
 - is a flag, where:
 - If `init ≠ 0`, no computation is performed, error checking is performed, and the subroutine exits back to the calling program.
 - If `init = 0`, the autocorrelations of the sequence in `x` are computed.
 - Specified as: a fullword integer. It can have any value.

- **x**
 - is the array `X`, consisting of `m` input sequences of length `Nx` to be autocorrelated. Specified as: an array of (at least) length `1+(Nx−1)inc1x+(m−1)inc2x`, containing short-precision real numbers.

- **inc1x**
 - is the stride between the elements within each sequence in array `X`. Specified as: a fullword integer; `inc1x > 0`.

- **inc2x**
 - is the stride between the first elements of the sequences in array `X`. Specified as: a fullword integer; `inc2x > 0`.

- **y**
 - See “On Return” on page 874.

- **inc1y**
 - is the stride between the elements within each sequence in output array `Y`. Specified as: a fullword integer; `inc1y > 0`.

- **inc2y**
 - is the stride between the first elements of each sequence in output array `Y`. Specified as: a fullword integer; `inc2y > 0`.

- **nx**
 - is the number of elements, `Nx`, in each sequence in array `X`. Specified as: a fullword integer; `Nx > 0`.

- **m**
 - is the number of sequences in array `X` to be correlated. Specified as: a fullword integer; `m > 0`.

- **ny**
 - is the number of elements, `Ny`, in each sequence in array `Y`. Specified as: a fullword integer; `Ny > 0`.
aux1
is no longer used in the computation, but must still be specified as a dummy argument (for migration purposes from Version 1 of ESSL). It can have any value.

naux1
is no longer used in the computation, but must still be specified as a dummy argument (for migration purposes from Version 1 of ESSL). It can have any value.

aux2
is no longer used in the computation, but must still be specified as a dummy argument (for migration purposes from Version 1 of ESSL). It can have any value.

naux2
is no longer used in the computation, but must still be specified as a dummy argument (for migration purposes from Version 1 of ESSL). It can have any value.

On Return

y
is array Y, consisting of m output sequences of length Ny that are the autocorrelation functions of the sequences in array X. Returned as: an array of (at least) length 1 + (Ny-1)inc1y + (m-1)inc2y, containing short-precision real numbers.

Notes
1. Output should not overwrite input; that is, input arrays X and H must have no common elements with output array Y. Otherwise, results are unpredictable. See “Concepts” on page 53.
2. When using the ESSL SMP library, for optimal performance, the number of threads specified should be the same for init ≠ 0 and init = 0.
3. Auxiliary storage is not needed, but the arguments aux1, naux1, aux2, and naux2 must still be specified. You can assign any values to these arguments.

Function: The autocorrelations of the sequences in array X are expressed as follows:

\[y_{ki} = \sum_{j=0}^{N_x-1-k} x_{ji} x_{j+k+i} \]

for:

\[k = 0, 1, ..., N_y-1 \]
\[i = 1, 2, ..., m \]

where:

\[y_{ki} \] are elements of the m sequences of length Ny in array Y.
\[x_{ji} \] and \[x_{j+k+i} \] are elements of the m sequences of length Nx in array X.

See references [17] and [84].
Only one invocation of this subroutine is needed:

1. You do not need to invoke the subroutine with \(\text{init} \neq 0 \). If you do, however, the subroutine performs error checking, exits back to the calling program, and no computation is performed.

2. With \(\text{init} = 0 \), the subroutine performs the calculation of the convolutions or correlations.

Error Conditions

Computational Errors: None

Input-Argument Errors

1. \(nx, ny, \) or \(m \leq 0 \)
2. \(\text{inc1x}, \text{inc2x}, \text{inc1y}, \text{or inc2y} \leq 0 \) (or incompatible)

Example 1: This example shows how to compute an autocorrelation for three short sequences in array \(X \), where the input sequence length \(NX \) is equal to the output sequence length \(NY \). This gives all nonzero autocorrelation values.

The arrays are declared as follows:

```
REAL+4 X(0:49999), Y(0:49999)
REAL+8 AUX1, AUX2
```

Call Statement and Input

```
INIT X INC1X INC2X Y INC1Y INC2Y NX M NY AUX1 NAUX1 AUX2 NAUX2
```

```
CALL SACOR(INIT, X , 1 , 7 , Y , 1 , 7 , 7 , 3 , 7 , AUX1 , 0 , AUX2 , 0)
```

INIT = 0 (for computation)

X contains the following three sequences:

1.0 2.0 3.0
2.0 1.0 2.0
3.0 2.0 1.0
4.0 3.0 2.0
4.0 4.0 3.0
3.0 4.0 4.0
2.0 3.0 4.0

Output: \(Y \) contains the following three sequences:

59.0 59.0 59.0
54.0 50.0 44.0
43.0 39.0 30.0
29.0 27.0 24.0
16.0 18.0 21.0
7.0 11.0 20.0
2.0 6.0 12.0

Example 2: This example shows how the output from Example 1 differs when the values for \(NY \) and \(\text{INC2Y} \) are 9 rather than 7. This shows that when \(NY \) is greater than \(NX \), the output array is longer, and that part is filled with zeros.
Output: Y contains the following three sequences:

```
59.0  59.0  59.0
54.0  50.0  44.0
43.0  39.0  30.0
29.0  27.0  24.0
16.0  18.0  21.0
  7.0   11.0  20.0
  2.0   6.0  12.0
  0.0   0.0  0.0
  0.0   0.0  0.0
```

Example 3: This example shows how the output from Example 1 differs when the value for NY is 5 rather than 7. Also, the values for INC1X and INC1Y are 3, and the values for INC2X and INC2Y are 1 rather than 7. This shows that when NY is less than NX, the output array is shortened.

Output: Y contains the following three sequences:

```
59.0  59.0  59.0
54.0  50.0  44.0
43.0  39.0  30.0
29.0  27.0  24.0
16.0  18.0  21.0
```
SACORF—Autocorrelation of One or More Sequences Using the Mixed-Radix Fourier Method

This subroutine computes the autocorrelations of one or more sequences using the mixed-radix Fourier method. The input and output sequences contain short-precision real numbers.

Note: Two invocations of this subroutine are necessary: one to prepare the working storage for the subroutine, and the other to perform the computations.

Syntax

<table>
<thead>
<tr>
<th>Language</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>CALL SACORF (init, x, inc1x, inc2x, y, inc1y, inc2y, nx, m, ny, aux1, aux1, aux2, aux2)</td>
</tr>
<tr>
<td>C и C++</td>
<td>sacorf (init, x, inc1x, inc2x, y, inc1y, inc2y, nx, m, ny, aux1, aux1, aux2, aux2);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SACORF (init, x, inc1x, inc2x, y, inc1y, inc2y, nx, m, ny, aux1, aux1, aux2, aux2);</td>
</tr>
</tbody>
</table>

On Entry

init

is a flag, where:

- If init ≠ 0, trigonometric functions and other parameters, depending on arguments other than x, are computed and saved in aux1. The contents of x and y are not used or changed.
- If init = 0, the autocorrelations of the sequence in x are computed. The only arguments that may change after initialization are x, y, and aux2. All scalar arguments must be the same as when the subroutine was called for initialization with init ≠ 0.

Specified as: a fullword integer. It can have any value.

x

is the array X, consisting of m input sequences of length Nx, to be autocorrelated. Specified as: an array of (at least) length 1+(Nx−1)inc1x+(m−1)inc2x, containing short-precision real numbers.

inc1x

is the stride between the elements within each sequence in array X. Specified as: a fullword integer; inc1x > 0.

inc2x

is the stride between the first elements of the sequences in array X. Specified as: a fullword integer; inc2x > 0.

y

See “On Return” on page 878.

inc1y

is the stride between the elements within each sequence in output array Y. Specified as: a fullword integer; inc1y > 0.

inc2y

is the stride between the first elements of each sequence in output array Y. Specified as: a fullword integer; inc2y > 0.

nx

is the number of elements, Nx, in each sequence in array X. Specified as: a fullword integer; Nx > 0.
m
is the number of sequences in array X to be correlated. Specified as: a fullword integer; $m > 0$.

ny
is the number of elements, N_y, in each sequence in array Y. Specified as: a fullword integer; $N_y > 0$.

$aux1$
is the working storage for this subroutine, where:

- If $init \neq 0$, the working storage is computed.
- If $init = 0$, the working storage is used in the computation of the autocorrelations.

Specified as: an area of storage, containing $naux1$ long-precision real numbers.

$naux1$
is the number of doublewords in the working storage specified in $aux1$.

Specified as: a fullword integer; $naux1 > 21$ and $naux1 \geq$ (minimum value required for successful processing). To determine a sufficient value, use the processor-independent formulas. For values between 21 and the minimum value, you have the option of having the minimum value returned in this argument. For details, see “Using Auxiliary Storage in ESSL” on page 30.

$aux2$
has the following meaning:

- If $naux2 = 0$ and error 2015 is unrecoverable, $aux2$ is ignored.
- Otherwise, it is the working storage used by this subroutine, which is available for use by the calling program between calls to this subroutine.

Specified as: an area of storage, containing $naux2$ long-precision real numbers.

On output, the contents are overwritten.

$naux2$
is the number of doublewords in the working storage specified in $aux2$.

Specified as: a fullword integer, where:

- If $naux2 = 0$ and error 2015 is unrecoverable, SACORF dynamically allocates the work area used by this subroutine. The work area is deallocated before control is returned to the calling program.
- Otherwise, $naux2 \geq$ (minimum value required for successful processing). To determine a sufficient value, use the processor-independent formulas. For all other values specified less than the minimum value, you have the option of having the minimum value returned in this argument. For details, see “Using Auxiliary Storage in ESSL” on page 30.

On Return

y
has the following meaning, where:

- If $init \neq 0$, this argument is not used, and its contents remain unchanged.
- If $init = 0$, this is array Y, consisting of m output sequences of length N_y that are the autocorrelation functions of the sequences in array X.

Returned as: an array of (at least) length $1 + (N_y - 1)inc1y + (m - 1)inc2y$, containing short-precision real numbers.
aux1

is the working storage for this subroutine, where:

If $init \neq 0$, it contains information ready to be passed in a subsequent invocation of this subroutine.

If $init = 0$, its contents are unchanged.

Returned as: the contents are not relevant.

Notes

1. aux1 should not be used by the calling program between calls to this subroutine with $init \neq 0$ and $init = 0$. However, it can be reused after intervening calls to this subroutine with different arguments.

2. When using the ESSL SMP library, for optimal performance, the number of threads specified should be the same for $init \neq 0$ and $init = 0$.

3. If you specify the same array for X and Y, then inc1x and inc1y must be equal and inc2x and inc2y must be equal. In this case, output overwrites input.

4. If you specify different arrays for X and Y, they must have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.

5. If ny is such that output outside the basic range is needed, the subroutine stores zeros. This range is: $0 \leq k \leq nx-1$.

Formula for Calculating the Length of the Fourier Transform: Before calculating the necessary sizes of naux1 and naux2, you must determine the length n of the Fourier transform. To do this, you use the values of the arguments nx and ny, inserted into the following formula, to get a value for the variable nf. After calculating nf, reference the formula or table of allowable values of n in “Acceptable Lengths for the Transforms” on page 761, selecting the value equal to or greater than nf. Following is the formula for determining nf:

$$nf = \min(ny, nx)+nx+1$$

Processor-Independent Formulas for NAUX1 and NAUX2: The required values of naux1 and naux2 depend on the value determined for n in “Formula for Calculating the Length of the Fourier Transform” and the argument m.

NAUX1 Formulas

- If $n \leq 16384$, use $naux1 = 55000$.
- If $n > 16384$, use $naux1 = 40000+1.89n$.

NAUX2 Formulas

- If $n \leq 16384$, use $naux2 = 50000$.
- If $n > 16384$, use $naux2 = 40000+1.64n$.

Function: The autocorrelations of the sequences in array X are expressed as follows:

$$y_{ki} = \sum_{j=0}^{N_x-1-k} x_{ji}x_{j+k,i}$$
for:
\[k = 0, 1, \ldots, N_y - 1 \]
\[i = 1, 2, \ldots, m \]

where:
\[y_{ki} \] are elements of the \(m \) sequences of length \(N_y \) in array \(Y \).
\[x_{ji} \] and \(x_{j+k,i} \) are elements of the \(m \) sequences of length \(N_x \) in array \(X \).

This subroutine uses a Fourier transform method with a mixed-radix capability. This provides maximum performance for your application. The length of the transform, \(n \), that you must calculate to determine the correct sizes for \(\text{naux1} \) and \(\text{naux2} \) is the same length used by the Fourier transform subroutines called by this subroutine. See references [17] and [84].

Two invocations of this subroutine are necessary:

1. With \(\text{init} \neq 0 \), the subroutine tests and initializes arguments of the program, setting up the \(\text{aux1} \) working storage.
2. With \(\text{init} = 0 \), the subroutine checks that the initialization arguments in the \(\text{aux1} \) working storage correspond to the present arguments, and if so, performs the calculation of the autocorrelations.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, \(\text{naux2} = 0 \), and unable to allocate work area.

Computational Errors: None

Input-Argument Errors

1. \(nx, ny, \text{or} m \leq 0 \)
2. \(\text{inc1x}, \text{inc2x}, \text{inc1y}, \text{or} \ \text{inc2y} \leq 0 \) (or incompatible)
3. The resulting correlation is too long.
4. The subroutine has not been initialized with the present arguments.
5. \(\text{naux1} \leq 21 \)
6. \(\text{naux1} \) is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.
7. Error 2015 is recoverable or \(\text{naux2} = 0 \), and \(\text{naux2} \) is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.

Example 1: This example shows how to compute an autocorrelation for three short sequences in array \(X \), where the input sequence length \(NX \) is equal to the output sequence length \(NY \). This gives all nonzero autocorrelation values. The arrays are declared as follows:

```plaintext
REAL*4 X(0:49999), Y(0:49999)
REAL*8 AUX1(30788), AUX2(17105)
```

First, initialize \(\text{AUX1} \) using the calling sequence shown below with \(\text{INIT} \neq 0 \). Then use the same calling sequence with \(\text{INIT} = 0 \) to do the calculation.

Call Statement and Input
CALL SACORF(INIT, X, 1, 7, Y, 1, 7, 3, 7, AUX1, 2959, AUX2, 4354)

INIT = 1 (for initialization)
INIT = 0 (for computation)

X contains the following three sequences:

1. 0 2.0 3.0
2. 0 1.0 2.0
3. 0 2.0 1.0
4. 0 3.0 2.0
4. 0 4.0 3.0
3. 0 4.0 4.0
2. 0 3.0 4.0

Output: Y contains the following three sequences:

59.0 59.0 59.0
54.0 50.0 44.0
43.0 39.0 30.0
29.0 27.0 24.0
16.0 18.0 21.0
7.0 11.0 20.0
2.0 6.0 12.0

Example 2: This example shows how the output from Example 1 differs when the value for NY and INC2Y are 9 rather than 7. This shows that when NY is greater than NX, the output array is longer and that part is filled with zeros.

Output: Y contains the following three sequences:

59.0 59.0 59.0
54.0 50.0 44.0
43.0 39.0 30.0
29.0 27.0 24.0
16.0 18.0 21.0
7.0 11.0 20.0
2.0 6.0 12.0
0.0 0.0 0.0
0.0 0.0 0.0

Example 3: This example shows how the output from Example 1 differs when the value for NY is 5 rather than 7. Also, the values for INC1X and INC1Y are 3 rather than 1, and the values for INC2X and INC2Y are 1 rather than 7. This shows that when NY is less than NX, the output array is shortened.

Output: Y contains the following three sequences:

59.0 59.0 59.0
54.0 50.0 44.0
43.0 39.0 30.0
29.0 27.0 24.0
16.0 18.0 21.0
Related-Computation Subroutines

This section contains the related-computation subroutine descriptions.
SPOLY and DPOLY—Polynomial Evaluation

These subroutines evaluate a polynomial of degree \(k \), using coefficient vector \(u \), input vector \(x \), and output vector \(y \):

\[
y_i = u_0 + u_1 x_i + u_2 x_i^2 + \ldots + u_k x_i^k \quad \text{for} \quad i = 1, 2, \ldots, n
\]

where \(u_i \), \(x_i \), and \(y_i \) are elements of \(u \), \(x \), and \(y \), respectively.

Syntax

<table>
<thead>
<tr>
<th>Data Types</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u), (x), (y)</td>
<td></td>
</tr>
<tr>
<td>Short-precision real</td>
<td>SPOLY</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DPOLY</td>
</tr>
</tbody>
</table>

Fortran

```fortran
CALL SPOLY | DPOLY (u, incu, k, x, incx, y, incy, n)
```

C and C++

```c
spoly | dpoly (u, incu, k, x, incx, y, incy, n);
```

PL/I

```pli
CALL SPOLY | DPOLY (u, incu, k, x, incx, y, incy, n);
```

On Entry

- \(u \) is the coefficient vector \(u \) of length \(k+1 \). It contains elements \(u_0, u_1, u_0, u_1, u_2, \ldots, u_k \), which are stored in this order. Specified as: a one-dimensional array of (at least) length \(1+k \cdot \text{incu} \), containing numbers of the data type indicated in Table 142.

- \(\text{incu} \) is the stride for vector \(u \). Specified as: a fullword integer. It can have any value.

- \(k \) is the degree \(k \) of the polynomial. Specified as: a fullword integer; \(k \geq 0 \).

- \(x \) is the input vector \(x \) of length \(n \). Specified as: a one-dimensional array of (at least) length \(1+(n-1) \cdot \text{incx} \), containing numbers of the data type indicated in Table 142.

- \(\text{incx} \) is the stride for vector \(x \). Specified as: a fullword integer. It can have any value.

- \(y \) See “On Return.”

- \(\text{incy} \) is the stride for the output vector \(y \). Specified as: a fullword integer. It can have any value.

- \(n \) is the number of elements in input vector \(x \) and the number of resulting elements in output vector \(y \). Specified as: a fullword integer; \(n \geq 0 \).

On Return
y

is the output vector y of length n, containing the results of the polynomial evaluation. Returned as: a one-dimensional array of (at least) length
1+(n-1)|incy|, containing numbers of the data type indicated in Table 142.

Note: Vectors u, x, and y must have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.

Function: The evaluation of the polynomial:

\[y_i = u_0 + u_1 x_i + u_2 x_i^2 + \ldots + u_k x_i^k \quad \text{for } i = 1, 2, \ldots, n \]

is expressed as follows:

\[y_i = u_0 + x_i (u_1 + x_i (u_2 + \ldots + x_i (u_{\text{interp-1}} + x_i u_k) \ldots)) \quad \text{for } i = 1, 2, \ldots, n \]

See reference [81] for Horner's Rule. If n is 0, no computation is performed. For SPOLY, intermediate results are accumulated in long precision.

SPOLY provides the same function as the IBM 3838 function POLY, with restrictions removed. DPOLY provides a long-precision computation that is not included in the IBM 3838 functions. See the IBM 3838 Array Processor Functional Characteristics manual.

Error Conditions

Computational Errors: None

Input-Argument Errors

1. k < 0
2. n < 0

Example 1: This example shows a polynomial evaluation with the degree, K, equal to 0.

Call Statement and Input

\[
\begin{array}{ccccccccc}
\text{U} & \text{INCU} & \text{K} & \text{X} & \text{INCX} & \text{Y} & \text{INCY} & \text{N} \\
\hline
\text{U} & \text{INCU} & \text{K} & \text{X} & \text{INCX} & \text{Y} & \text{INCY} & \text{N} \\
\end{array}
\]

CALL SPOLY(U, INCU, 0, X, INCX, Y, 1, 3)

U = (4.0)
INCU = (not relevant)
X = (not relevant)
INCX = (not relevant)

Output

Y = (4.0, 4.0, 4.0)

Example 2: This example shows a polynomial evaluation, using a negative stride INCU for vector u. For u, processing begins at element U(4) which is 1.0.

Call Statement and Input
CALL SPOLY(U, -1, 3, X, 1, Y, 1, 3)

U = (4.0, 3.0, 2.0, 1.0)
X = (2.0, 1.0, -3.0)

Output
Y = (49.0, 10.0, -86.0)

Example 3: This example shows a polynomial evaluation, using a stride INCX of 0 for input vector X.

Call Statement and Input
CALL SPOLY(U, 1, 3, X, 0, Y, 1, 3)

U = (4.0, 3.0, 2.0, 1.0)
X = (2.0, ., .)

Output
Y = (26.0, 26.0, 26.0)

Example 4: This example shows a polynomial evaluation, using a stride INCX greater than 1 for input vector X, and a negative stride INCY for output vector Y. For Y, results are stored beginning at element Y(5).

Call Statement and Input
CALL SPOLY(U, 1, 3, X, 2, Y, -2, 3)

U = (4.0, 3.0, 2.0, 1.0)
X = (2.0, ., -3.0, ., 1.0)

Output
Y = (10.0, ., -14.0, ., 26.0)
SIZC and DIZC

SIZC and DIZC—I-th Zero Crossing

These subroutines find the position of the \(i \)-th zero crossing in vector \(x \). This is the \(i \)-th transition between positive and negative or negative and positive, where 0 is considered a positive value. It returns the position of the element in vector \(x \) where the \(i \)-th zero crossing is detected. The direction of the scan is either from the first element to the last or from the last element to the first, depending on the value you specify for the scan direction argument.

<table>
<thead>
<tr>
<th>Table 143. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
</tr>
<tr>
<td>Subroutine</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
</tbody>
</table>

Syntax

Fortran

```fortran
CALL SIZC | DIZC (x, idrx, n, i, ky)
```

C and C++

```c
sizc | dizc (x, idrx, n, i, ky);
```

PL/I

```pl/i
CALL SIZC | DIZC (x, idrx, n, i, ky);
```

On Entry

\(x \)

is the target vector \(x \) of length \(n \). Specified as: a one-dimensional array of (at least) length \(n \), containing numbers of the data type indicated in Table 143.

\(idrx \)

indicates the scan direction. If it is positive or 0, \(x \) is scanned from the first element to the last (1, \(n \)). If it is negative, \(x \) is scanned from the last element to the first (\(n \), 1). Specified as: a fullword integer. It can have any value.

\(n \)

is the number of elements in vector \(x \). Specified as: a fullword integer; \(n > 1 \).

\(i \)

is the number of the zero crossing to be identified. Specified as: a fullword integer; \(i > 0 \).

\(ky \)

See “On Return.”

On Return

\(ky \)

is the integer vector \(ky \) of length 2, containing elements \(ky_1 \) and \(ky_2 \), where:

If the \(i \)-th zero crossing is found:

- \(ky_1 = j \), where \(j \) is the position of the element \(x_j \) at the point that the \(i \)-th zero crossing is found. The position is always relative to the beginning of the vector regardless of the scan direction.
- \(ky_2 = i \)

If the \(i \)-th zero crossing is not found:

- \(ky_1 = 0 \)
- \(ky_2 \) = the total number of zero crossings encountered in the scan.

Returned as: an array of (at least) length 2, containing fullword integers.
Note: The aux and naux arguments, required in some earlier releases of ESSL, are no longer required by these subroutines. If your program still includes them, you do not have to change your program; it continues to run normally. It ignores these arguments. However, if you did any program checking for error code 2015, you may want to remove it, because this error no longer occurs. (You must not code these arguments in your C program.)

Function: The i-th zero crossing in vector x is found by scanning vector x for i occurrences of TRUE for the following logical expressions. A zero crossing is defined here as a crossing either from a positive value to a negative value or from a negative value to a positive value, where 0 is considered a positive value. If the i-th zero crossing is found, the value of j at that point is returned in ky1 as the position of the i-th zero crossing, and i is returned in ky2.

If idrx ≥ 0:
TRUE = (x_{j-1} < 0 and x_j ≥ 0) or (x_{j-1} ≥ 0 and x_j < 0) for j = 2, n
If idrx < 0:
TRUE = (x_{j+1} < 0 and x_j ≥ 0) or (x_{j+1} ≥ 0 and x_j < 0) for j = n-1, 1

If the position of the i-th zero crossing is not found, 0 is returned in y1 and the number of zero crossings encountered in the scan is returned in y2.

SIZC provides the same functions as the IBM 3838 functions NZCP and NZCN, with restrictions removed. It combines these functions into one ESSL subroutine. DIZC provides a long-precision computation that is not included in the IBM 3838 functions. See the IBM 3838 Array Processor Functional Characteristics manual.

Error Conditions

Computational Errors: None

Input-Argument Errors
1. n ≤ 1
2. i ≤ 0

Example 1: This example shows a scan of a vector x from the first element to the last. It is looking for the fifth zero crossing, which is encountered at position 9.

Call Statement and Input
\[
\begin{align*}
X & \quad \text{IDRX} \quad \text{N} \quad \text{I} \quad \text{KY} \\
\mid & \quad \mid \quad \mid \quad \mid \quad \mid \\
\text{CALL SIZC(} \ & \quad X , \ 1 \ , \ 12 \ , \ 5 \ , \ KY \) \\
\end{align*}
\]

\[X = (2.0, -1.0, -3.0, 3.0, 0.0, 8.0, -2.0, 0.0, -5.0, -3.0, 2.0, -9.0)\]

Output
\[KY = (9, 5)\]
Example 2: This example shows a scan of a vector \(x \) from the last element to the first. It is looking for the seventh zero crossing, which is encountered at position 3. Because \(IDRX \) is negative, \(X \) is scanned from the last element, \(X(12) \), to the first element, \(X(1) \).

Call Statement and Input
\[
\begin{array}{c}
X \quad IDRX \quad N \quad I \quad KY \\
| \quad | \quad | \quad | \\
\text{CALL SIZC}(X, -1, 12, 7, KY)
\end{array}
\]

\[\]
\[
X = (2.0, -1.0, 3.0, -3.0, 0.0, -8.0, -2.0, 0.0, -5.0, -3.0, 2.0, -9.0)
\]

Output
\[
KY = (3, 7)
\]

Example 3: This example shows a scan of a vector \(x \) when the \(i \)-th zero crossing is not found. It encounters seven zero crossings and returns this value in \(KY(2) \).

Call Statement and Input
\[
\begin{array}{c}
X \quad IDRX \quad N \quad I \quad KY \\
| \quad | \quad | \quad | \\
\text{CALL SIZC}(X, 1, 12, 10, KY)
\end{array}
\]

\[\]
\[
X = (2.0, -1.0, -3.0, 3.0, 0.0, 8.0, -2.0, 0.0, -5.0, -3.0, 2.0, -9.0)
\]

Output
\[
KY = (0, 7)
\]
STREC and DTREC—Time-Varying Recursive Filter

These subroutines implement the first-order time-varying recursive equation, using initial value \(s \), target vectors \(u \) and \(x \), and output vector \(y \).

Table 144. Data Types

<table>
<thead>
<tr>
<th>(s, u, x, y)</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>STREC</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DTREC</td>
</tr>
</tbody>
</table>

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL STREC</th>
<th>DTREC ((s, u, incu, x, incx, y, incy, n, iopt))</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>strec</td>
<td>dtrec ((s, u, incu, x, incx, y, incy, n, iopt));</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL STREC</td>
<td>DTREC ((s, u, incu, x, incx, y, incy, n, iopt));</td>
</tr>
</tbody>
</table>

On Entry

\(s \)

is the scalar \(s \) used in the initial computation for \(y_1 \). Specified as: a number of the data type indicated in Table 144.

\(u \)

is the target vector \(u \) of length \(n \). Specified as: a one-dimensional array of (at least) length \(1+(n-1)|incu| \), containing numbers of the data type indicated in Table 144.

\(incu \)

is the stride for target vector \(u \). Specified as: a fullword integer. It can have any value.

\(x \)

is the target vector \(x \) of length \(n \). Specified as: a one-dimensional array of (at least) length \(1+(n-1)|incx| \), containing numbers of the data type indicated in Table 144.

\(incx \)

is the stride for target vector \(x \). Specified as: a fullword integer. It can have any value.

\(y \)

See “On Return.”

\(incy \)

is the stride for output vector \(y \). Specified as: a fullword integer; \(incy > 0 \) or \(incy < 0 \).

\(n \)

is the number of elements in vectors \(u \) and \(x \) and the number of resulting elements in output vector \(y \). Specified as: a fullword integer; \(n \geq 0 \).

\(iopt \)

this argument has no effect on the performance of the computation, but still must be specified as: a fullword integer; \(iopt = 0 \) or \(1 \).

On Return

\(y \)

is the vector \(y \) of length \(n \), containing the results of the implementation of the first-order time-varying recursive equation. Returned as: a one-dimensional
array of (at least) length \(1+(n-1)\) \(\text{incy}\), containing numbers of the data type indicated in Table 144.

Note: Vectors \(u\), \(x\), and \(y\) must have no common elements; otherwise, results are unpredictable. See “Concepts” on page 53.

Function: The first-order time-varying recursive equation is expressed as follows:

\[
y_1 = s + u_1 x_1 \\
y_2 = u_2 y_1 + u_1 x_2 \\
\vdots \\
y_i = u_i y_{i-1} + u_1 x_i \text{ for } i = 3, 4, \ldots, n
\]

STREC provides the same function as the IBM 3838 function REC, with restrictions removed. DTREC provides a long-precision computation that is not included in the IBM 3838 functions. See the *IBM 3838 Array Processor Functional Characteristics* manual.

Error Conditions

Computational Errors: None

Input-Argument Errors

1. \(\text{incy} = 0\)
2. \(n < 0\)
3. \(\text{iopt} \neq 0\) or 1

Example 1: This example shows all strides \(\text{INCU}\), \(\text{INCX}\), and \(\text{INCY}\) equal to 1 for vectors \(u\), \(x\), and \(y\), respectively.

Call Statement and Input

```plaintext
S U INCU X INCX Y INCY N IOPT
\| | | | | | | | |
CALL STREC( 1.0 , U , 1 , X , 1 , Y , 1 , 8 , 0 )
```

\[
U = (1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 1.0, 2.0) \\
X = (3.0, 2.0, 1.0, 1.0, 2.0, 3.0, 3.0, 2.0)
\]

Output

\[
Y = (4.0, 10.0, 31.0, 94.0, 190.0, 193.0, 196.0, 394.0)
\]

Example 2: This example shows a stride, \(\text{INCU}\), that is greater than 1 for vector \(u\). The strides \(\text{INCX}\) and \(\text{INCY}\) for vectors \(x\) and \(y\), respectively, are 1.

Call Statement and Input

```plaintext
S U INCU X INCX Y INCY N IOPT
\| | | | | | | | |
CALL STREC( 1.0 , U , 2 , X , 1 , Y , 1 , 4 , 0 )
```

\[
U = (1.0, \ldots, 3.0, \ldots, 2.0, \ldots, 1.0, \ldots) \\
X = (3.0, 2.0, 1.0, 1.0, 2.0, 3.0, 3.0, 2.0)
\]
Output
Y = (4.0, 14.0, 29.0, 30.0)

Example 3: This example shows a stride, INCU, of 1 for vector u, a stride, INCX, that is greater than 1 for vector x, and a negative stride, INCY, for vector y. For y, results are stored beginning at element Y(4).

Call Statement and Input

\[
\begin{align*}
\text{CALL STREC(} & 1.0, \text{u, } 1, x, 2, y, -1, 4, 1) \\
\end{align*}
\]

U = (1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 1.0, 2.0)
X = (3.0, ., 1.0, ., 2.0, ., 3.0)

Output
Y = (90.0, 29.0, 9.0, 4.0)
SQINT and DQINT—Quadratic Interpolation

These subroutines perform a quadratic interpolation at specified points in the vector \(x \), using initial linear displacement in the samples \(s \), sample interval \(g \), output scaling parameter \(\Omega \), and sample reflection times in vector \(t \). The result is returned in vector \(y \).

Syntax

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x, s, g, \Omega, t, y)</td>
<td>SQINT, DQINT</td>
</tr>
</tbody>
</table>

```fortran
CALL SQINT | DQINT (s, g, omega, x, incx, n, t, inct, y, incy, m)
```

```c
sqint | dqint (s, g, omega, x, incx, n, t, inct, y, incy, m);
```

```pli
CALL SQINT | DQINT (s, g, omega, x, incx, n, t, inct, y, incy, m);
```

On Entry

- \(s \) is the scalar \(s \), containing the initial linear displacement in samples. Specified as: a number of the data type indicated in Table 145.
- \(g \) is the scalar \(g \), containing the sample interval. Specified as: a number of the data type indicated in Table 145; \(g > 0.0 \).
- \(\omega \) is the output scaling parameter \(\Omega \). Specified as: a number of the data type indicated in Table 145.
- \(x \) is the vector \(x \) of length \(n \), containing the trace data. Specified as: a one-dimensional array of (at least) length \(1+(n-1)|\text{incx}| \), containing numbers of the data type indicated in Table 145.
- \(\text{incx} \) is the stride for vector \(x \). Specified as: a fullword integer; \(\text{incx} > 0 \) or \(\text{incx} < 0 \).
- \(n \) is the number of elements in vector \(x \). Specified as: a fullword integer; \(n \geq 3 \).
- \(t \) is the vector \(t \) of length \(m \), containing the sample reflection times to be processed. Specified as: a one-dimensional array of (at least) length \(1+(m-1)|\text{inct}| \), containing numbers of the data type indicated in Table 145.
- \(\text{inct} \) is the stride for vector \(t \). Specified as: a fullword integer; \(\text{inct} > 0 \) or \(\text{inct} < 0 \).
- \(y \) is the output vector \(y \). Specified as: a fullword integer; \(\text{incy} > 0 \) or \(\text{incy} < 0 \).
- \(m \) is the number of elements in vector \(t \) and the number of elements in output vector \(y \). Specified as: a fullword integer; \(m \geq 0 \).
On Return

\(y \)

is the vector \(y \) of length \(m \), containing the results of the quadratic interpolation. Returned as: a one-dimensional array of (at least) length \(1+ (m-1) | \text{incy} | \), containing numbers of the data type indicated in Table 145 on page 892.

Function: The quadratic interpolation, which is expressed as follows:

\[
y_i = \Omega \left(\text{trace}_{k_i} \left(f_i^2 - f_i \right) + 2 \text{trace}_{k_i+1} \left(1 - f_i^2 \right) + \text{trace}_{k_i+2} \left(f_i^2 + f_i \right) \right)
\]

for \(i = 1, 2, ..., m \)

uses the following values:

- \(x \) is the vector containing the specified points.
- \(s \) is the initial linear displacement in the samples.
- \(g \) is a sample interval.
- \(\Omega \) is the output scaling parameter.
- \(t \) is the vector containing the sample reflection times.

and where \(\text{trace} \), \(k \), \(f \), and \(w \) are four working vectors, and \(s_0 \) is a working scalar defined as:

- \(\text{trace}_1 = 3x_1 - 3x_2 + x_3 \)
- \(\text{trace}_{i+1} = x_i \) for \(i = 1, 2, ..., n \)
- \(s_0 = s + 2.0 \)
- \(w_i = s_0 + t_i / g \) for \(i = 1, 2, ..., m \)
- \(f_i = \text{fraction part of } w_i \)
- \(k_{i+1} = \text{integer part of } w_i \)

Note: Allowing \(k_{i+1} \) to have a value of 2 results in performance degradation. If possible, avoid specifying a point at which this occurs.

If \(n \) or \(m \) is 0, no computation is performed.

SQINT provides the same function as the IBM 3838 function INT, with restrictions removed. DQINT provides a long-precision computation that is not included in the IBM 3838 functions. See the IBM 3838 Array Processor Functional Characteristics manual.

Error Conditions

Computational Errors: The condition \((k_{i+1} > n)\) or \((k_{i+1} \leq 2)\) has occurred, where \(n \) is the number of elements in vector \(x \). See “Function” for how to calculate \(k_p \).

- The lower range \(l \) and the upper range \(j \) of the vector are identified in the computational error message.
- The return code is set to 1.
- The ranges \(l \) and \(j \) of the vector can be determined at run time by using the ESSL error-handling facilities. To obtain this information, you must use ERRSET to change the number of allowable errors for error code 2100 in the ESSL error option table; otherwise, the default value causes your program to terminate when this error occurs. For details, see “What Can You Do about ESSL Computational Errors?” on page 46.
Input-Argument Errors

1. \(n < 3 \)
2. \(m < 0 \)
3. \(g \leq 0 \)
4. \(\text{incx} = 0 \)
5. \(\text{inct} = 0 \)
6. \(\text{incy} = 0 \)

Example 1: This example shows a quadratic interpolation, using vectors with strides of 1.

Call Statement and Input

\[
\begin{array}{cccccccc}
S & G & OMEGA & X & INCX & N & T & INCT & Y & INCY & M \\
\mid & | & | & | & | & | & | & | & | & |
\end{array}
\]

\[
\text{CALL SQINT(2.0 , 1.0 , 1.0 , X , 1 , 8 , T , 1 , Y , 1 , 4)}
\]

\[
\begin{align*}
X &= (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0) \\
T &= (1.5, 2.5, 3.5, 4.5)
\end{align*}
\]

Output

\[
Y = (9.0, 11.0, 13.0, 15.0)
\]

Example 2: This example shows a quadratic interpolation, using vectors with a positive stride of 1 and negative strides of \(-1\).

Call Statement and Input

\[
\begin{array}{cccccccc}
S & G & OMEGA & X & INCX & N & T & INCT & Y & INCY & M \\
\mid & | & | & | & | & | & | & | & | & |
\end{array}
\]

\[
\text{CALL SQINT(2.0 , 1.0 , 1.0 , X , -1 , 8 , T , -1 , Y , 1 , 4)}
\]

\[
\begin{align*}
X &= (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0) \\
T &= (1.5, 2.5, 3.5, 4.5)
\end{align*}
\]

Output

\[
Y = (3.0, 5.0, 7.0, 9.0)
\]

Example 3: This example shows a quadratic interpolation, using vectors with a positive stride greater than 1 and negative strides less than \(-1\).

Call Statement and Input

\[
\begin{array}{cccccccc}
S & G & OMEGA & X & INCX & N & T & INCT & Y & INCY & M \\
\mid & | & | & | & | & | & | & | & | & |
\end{array}
\]

\[
\text{CALL SQINT(2.0 , 1.0 , 1.0 , X , -2 , 8 , T , -1 , Y , 2 , 4)}
\]

\[
\begin{align*}
X &= (1.0, . , 3.0, . , 5.0, . , 7.0, . , 9.0, . , 11.0, . , 13.0, . , 15.0) \\
T &= (1.36, 2.36, 3.36, 4.36)
\end{align*}
\]

Output

\[
Y = (4.56, . , 8.56, . , 12.56, . , 16.56)
\]

Example 4: This example shows a quadratic interpolation, using vectors with positive strides and larger values for \(S \) and \(G \) than shown in the previous examples.
Call Statement and Input

\[
\begin{array}{cccccccccccc}
S & G & \text{OMEGA} & X & \text{INCX} & N & T & \text{INCT} & Y & \text{INCY} & M \\
| & | & | & | & | & | & | & | & | & | \\
\end{array}
\]

CALL SQINT(3.0, 10.0, 1.0, X, 1, 8, T, 2, Y, 3, 4)

\[
\begin{align*}
X &= (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0) \\
T &= (1.5, ., 2.5, ., 3.5, ., 4.5)
\end{align*}
\]

Output

\[
\begin{align*}
Y &= (8.3, ., ., 8.5, ., ., 8.7, ., ., 8.9)
\end{align*}
\]
SWLEV, DWLEV, CWLEV, and ZWLEV

SWLEV, DWLEV, CWLEV, and ZWLEV—Wiener-Levinson
Filter Coefficients

These subroutines compute the coefficients of an n-point Wiener-Levinson filter, using vector \(x \), the trace for which the filter is to be designed, and vector \(u \), the right-hand side of the system, chosen to remove reverberations or sharpen the wavelet. The result is returned in vector \(y \).

Table 146. Data Types

<table>
<thead>
<tr>
<th>(x, u, y)</th>
<th>(aux)</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>Long-precision real</td>
<td>SWLEV</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>Long-precision real</td>
<td>DWLEV</td>
</tr>
<tr>
<td>Short-precision complex</td>
<td>Long-precision complex</td>
<td>CWLEV</td>
</tr>
<tr>
<td>Long-precision complex</td>
<td>Long-precision complex</td>
<td>ZWLEV</td>
</tr>
</tbody>
</table>

Syntax

<table>
<thead>
<tr>
<th></th>
<th>CALL SWLEV</th>
<th>DWLEV</th>
<th>CWLEV</th>
<th>ZWLEV</th>
<th>((x, inx, u, incu, y, incy, n, aux, naux))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>swlev</td>
<td>dwlev</td>
<td>cwlev</td>
<td>zwlev</td>
<td>((x, inx, u, incu, y, incy, n, aux, naux));</td>
</tr>
<tr>
<td>C and C++</td>
<td>CALL SWLEV</td>
<td>DWLEV</td>
<td>CWLEV</td>
<td>ZWLEV</td>
<td>((x, inx, u, incu, y, incy, n, aux, naux));</td>
</tr>
</tbody>
</table>

On Entry

\(x \)

is the vector \(x \) of length \(n \), containing the trace data for which the filter is to be designed.

For SWLEV and DWLEV, \(x \) represents the first row (or the first column) of a positive definite or negative definite symmetric Toeplitz matrix, which is the autocorrelation matrix for which the filter is designed.

For CWLEV and ZWLEV, \(x \) represents the first row of a positive definite or negative definite complex Hermitian Toeplitz matrix, which is the autocorrelation matrix for which the filter is designed.

Specified as: a one-dimensional array of (at least) length \(1+(n-1)|inx| \), containing numbers of the data type indicated in Table 146.

\(inx \)

is the stride for vector \(x \). Specified as: a fullword integer; \(inx > 0 \).

\(u \)

is the vector \(u \) of length \(n \), containing the right-hand side of the system to be solved. Specified as: a one-dimensional array of (at least) length \(1+(n-1)|incu| \), containing numbers of the data type indicated in Table 146.

\(incu \)

is the stride for vector \(u \). Specified as: a fullword integer. It can have any value.

\(y \)

See “On Return” on page 897.

\(incy \)

is the stride for vector \(y \). Specified as: a fullword integer; \(incy > 0 \) or \(incy < 0 \).

\(n \)

is the number of elements in vectors \(x, u, \) and \(y \). Specified as: a fullword integer; \(n \geq 0 \).
aux

has the following meaning:

If $naux = 0$ and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is the storage work area used by these subroutines.

Specified as: an area of storage of length $naux$, containing numbers of the data type indicated in Table 146 on page 896.

$naux$

is the size of the work area specified by aux—that is, the number of elements in aux. Specified as: a fullword integer, where:

If $naux = 0$ and error 2015 is unrecoverable, SWLEV, DWLEV, CWLEV, and ZWLEV dynamically allocate the work area used by the subroutine. The work area is deallocated before control is returned to the calling program.

Otherwise, $naux \geq 3n$.

You cannot use dynamic allocation if you need the information returned in AUX(1).

On Return

y

is the vector y of length n, containing the solution vector—that is, the coefficients of the n-point Wiener-Levinson filter. Returned as: a one-dimensional array of (at least) length $1+ (n-1) \times incy$, containing numbers of the data type indicated in Table 146 on page 896.

aux

is the storage work area used by these subroutines, where if $naux \neq 0$:

If AUX(1) = 0.0, the input Toeplitz matrix is positive definite or negative definite.

If AUX(1) > 0.0, the input Toeplitz matrix is indefinite (that is, it is not positive definite and it is not negative definite). The value returned in AUX(1) is the order of the first submatrix of A that is indefinite. The subroutine continues processing. See reference [62] for information about under what circumstances your solution vector y would be valid.

All other values in aux are overwritten and are not significant.

Returned as: an area of storage of length $naux$, containing numbers of the data type indicated in Table 146 on page 896, where AUX(1)≥0.0.

Notes

1. For a description of a positive definite or negative definite symmetric Toeplitz matrix, see “Positive Definite or Negative Definite Symmetric Toeplitz Matrix” on page 69.

2. For a description of a positive definite or negative definite complex Hermitian Toeplitz matrix, see “Positive Definite or Negative Definite Complex Hermitian Toeplitz Matrix” on page 70.

3. You have the option of having the minimum required value for $naux$ dynamically returned to your program. For details, see “Using Auxiliary Storage in ESSL” on page 30.
Function: The computation of the coefficients of an n-point Wiener-Levinson filter in vector \(y \) is expressed as solving the following system:

\[
Ay = u
\]

where:

- For SWLEV and DWLEV, matrix \(A \) is a real symmetric Toeplitz matrix whose first row (or first column) is represented by vector \(x \).
 - For CWLEV and ZWLEV, matrix \(A \) is a complex Hermitian Toeplitz matrix whose first row is represented by vector \(x \).
- \(u \) is the vector specifying the right side of the system, chosen to remove reverberations or to sharpen the wavelet.
- \(y \) is the solution vector.

See reference [62], [27], and the *IBM 3838 Array Processor Functional Characteristics*.

If \(n \) is 0, no computation is performed. For SWLEV and CWLEV, intermediate results are accumulated in long precision.

SWLEV provides the same function as the IBM 3838 function WLEV, with restrictions removed. See the *IBM 3838 Array Processor Functional Characteristics* manual.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, \(naux = 0 \), and unable to allocate work area.

Computational Errors: None

Input-Argument Errors

1. \(n < 0 \)
2. \(incx \leq 0 \)
3. \(incy = 0 \)
4. Error 2015 is recoverable or \(naux \neq 0 \), and \(naux \) is too small—that is, less than the minimum required value specified in the syntax for this argument. Return code 1 is returned if error 2015 is recoverable.

Example 1: This example shows how to compute filter coefficients in vector \(y \) by solving the system \(Ay = u \). Matrix \(A \) is:

\[
\begin{pmatrix}
50.0 & -8.0 & 7.0 & -5.0 \\
-8.0 & 50.0 & -8.0 & 7.0 \\
7.0 & -8.0 & 50.0 & -8.0 \\
-5.0 & 7.0 & -8.0 & 50.0
\end{pmatrix}
\]

This input Toeplitz matrix is positive definite, as indicated by the zero value in \(\text{AUX}(1) \) on output.

Call Statement and Input
Example 2: This example shows how to compute filter coefficients in vector y by solving the system $Ay = u$. Matrix A is:

$$
A = \begin{bmatrix}
10.0 & -8.0 & 7.0 & -5.0 \\
-8.0 & 10.0 & -8.0 & 7.0 \\
7.0 & -8.0 & 10.0 & -8.0 \\
-5.0 & 7.0 & -8.0 & 10.0
\end{bmatrix}
$$

This input Toeplitz matrix is not positive definite, as indicated by the zero value in $AUX(1)$ on output.

Example 3: This example shows a vector x with a stride greater than 1, a vector u with a negative stride, and a vector y with a stride of 1. It uses the same input Toeplitz matrix as in Example 2, which is not positive definite.
Example 4: This example shows how to compute filter coefficients in vector \(y \) by solving the system \(A y = u \). Matrix \(A \) is:

\[
\begin{bmatrix}
(10.0, 0.0) & (2.0, -3.0) & (-3.0, 1.0) & (1.0, 1.0) \\
(2.0, 3.0) & (10.0, 0.0) & (2.0, -3.0) & (-3.0, 1.0) \\
(-3.0, -1.0) & (2.0, 3.0) & (10.0, 0.0) & (2.0, -3.0) \\
(1.0, -1.0) & (-3.0, -1.0) & (2.0, 3.0) & (10.0, 0.0)
\end{bmatrix}
\]

This input complex Hermitian Toeplitz matrix is positive definite, as indicated by the zero value in \(\text{AUX}(1) \) on output.

Call Statement and Input

\[
\begin{array}{cccccccc}
\text{X INCY U INCU Y INCY N AUX NAUX} \\
\hline
\text{CALL ZWLEV(X , 1 , U , 1 , Y , 1 , 4 , AUX , 12)} \\
\end{array}
\]

\[
\begin{align*}
X &= ((10.0, 0.0), (2.0, -3.0), (-3.0, 1.0), (1.0, 1.0)) \\
U &= ((8.0, 3.0), (21.0, -5.0), (67.0, -13.0), (72.0, 11.0)) \\
\text{AUX} &= \text{(not relevant)}
\end{align*}
\]

Output

\[
\begin{align*}
Y &= ((1.0, 0.0), (3.0, 0.0), (5.0, 0.0), (7.0, 0.0)) \\
\text{AUX} &= ((0.0, 0.0), \ldots, \ldots, \ldots, \ldots, \ldots, \ldots)
\end{align*}
\]

Example 5: This example shows a vector \(x \) with a stride greater than 1, a vector \(u \) with a negative stride, and a vector \(y \) with a stride of 1. It uses the same input complex Hermitian Toeplitz matrix as in Example 4.

This input complex Hermitian Toeplitz matrix is positive definite, as indicated by the zero value in \(\text{AUX}(1) \) on output.

Call Statement and Input

\[
\begin{array}{cccccccc}
\text{X INCY U INCU Y INCY N AUX NAUX} \\
\hline
\text{CALL ZWLEV(X , 2 , U , -2 , Y , 1 , 4 , AUX , 12)} \\
\end{array}
\]

\[
\begin{align*}
X &= ((10.0, 0.0), \ldots, (2.0, -3.0), \ldots, (-3.0, 1.0), \ldots, (1.0, 1.0)) \\
U &= ((72.0, 11.0), \ldots, (67.0, -13.0), \ldots, (21.0, -5.0), \ldots, (8.0, 3.0), \ldots) \\
\text{AUX} &= \text{(not relevant)}
\end{align*}
\]

Output

\[
\begin{align*}
Y &= ((1.0, 0.0), (3.0, 0.0), (5.0, 0.0), (7.0, 0.0)) \\
\text{AUX} &= ((0.0, 0.0), \ldots, \ldots, \ldots, \ldots, \ldots, \ldots)
\end{align*}
\]
Chapter 13. Sorting and Searching

The sorting and searching subroutines are described in this chapter.

Overview of the Sorting and Searching Subroutines

The sorting and searching subroutines operate on three types of data: integer, short-precision real, and long-precision-real (Table 147). The sorting subroutines perform sorts with or without index designations. The searching subroutines perform either a binary or sequential search.

Table 147. List of Sorting and Searching Subroutines

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Integer Subroutine</th>
<th>Short-Precision Subroutine</th>
<th>Long-Precision Subroutine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sort the Elements of a Sequence</td>
<td>ISORT</td>
<td>SSORT</td>
<td>DSORT</td>
<td>904</td>
</tr>
<tr>
<td>Sort the Elements of a Sequence and Note the Original Element Positions</td>
<td>ISORTX</td>
<td>SSORTX</td>
<td>DSORTX</td>
<td>906</td>
</tr>
<tr>
<td>Sort the Elements of a Sequence Using a Stable Sort and Note the Original Element Positions</td>
<td>ISORTS</td>
<td>SSORTS</td>
<td>DSORTS</td>
<td>909</td>
</tr>
<tr>
<td>Binary Search for Elements of a Sequence X in a Sorted Sequence Y</td>
<td>IBSRCH</td>
<td>SBSRCH</td>
<td>DBSRCH</td>
<td>912</td>
</tr>
<tr>
<td>Sequential Search for Elements of a Sequence X in the Sequence Y</td>
<td>ISSRCH</td>
<td>SSSRCH</td>
<td>DSSRCH</td>
<td>916</td>
</tr>
</tbody>
</table>

Use Considerations

It is important to understand the concept of stride for sequences when using these subroutines. For example, in the sort subroutines, a negative stride causes a sequence to be sorted into descending order in an array. In the search subroutines, a negative stride reverses the direction of the search. See “How Stride Is Used for Vectors” on page 56.

Performance and Accuracy Considerations

1. The binary search subroutines provide better performance than the sequential search subroutines because of the nature of the searching algorithms. However, the binary search subroutines require that, before the subroutine is called, the sequence to be searched is sorted into ascending order. Therefore, if your data is already sorted, a binary search subroutine is faster. On the other hand, if your data is in random order and the number of elements being searched for is small, a sequential search subroutine is faster than doing a sort and binary search.

2. When doing multiple invocations of the binary search subroutines, you get better overall performance from the searching algorithms by doing fewer invocations and specifying larger search element arrays for argument x.
3. If you do not need the results provided in array \(RC \) by these subroutine, you get better performance if you do not request it. That is, specify 0 for the \(iopt \) argument.
Sorting and Searching Subroutines

This section contains the sorting and searching subroutine descriptions.
ISORT, SSORT, and DSORT—Sort the Elements of a Sequence

These subroutines sort the elements of sequence \(x \).

<table>
<thead>
<tr>
<th>Table 148. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
</tr>
<tr>
<td>Integer</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
</tbody>
</table>

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL ISORT</th>
<th>SSORT</th>
<th>DSORT ((x, inx, n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>isort</td>
<td>ssort</td>
<td>dsort ((x, inx, n));</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL ISORT</td>
<td>SSORT</td>
<td>DSORT ((x, inx, n));</td>
</tr>
</tbody>
</table>

On Entry

- \(x \)
 - is the sequence \(x \) of length \(n \), to be sorted. Specified as: a one-dimensional array of (at least) length \(1+(n-1)\cdot|inx| \), containing numbers of the data type indicated in Table 148.
- \(inx \)
 - is the stride for both the input sequence \(x \) and the output sequence \(x \). If it is positive, elements are sorted into ascending order in the array, and if it is negative, elements are sorted into descending order in the array.
 - Specified as: a fullword integer. It can have any value.
- \(n \)
 - is the number of elements in sequence \(x \). Specified as: a fullword integer; \(n \geq 0 \).

On Return

- \(x \)
 - is the sequence \(x \) of length \(n \), with its elements sorted into designated order in the array. Returned as: a one-dimensional array, containing numbers of the data type indicated in Table 148.

Function: The elements of input sequence \(x \) are sorted into ascending order, in place and using a partition sort. The elements of output sequence \(x \) can be expressed as follows:

\[
x_1 \leq x_2 \leq x_3 \leq \ldots \leq x_n
\]

By specifying a negative stride for sequence \(x \), the elements of sequence \(x \) are assumed to be reversed in the array, \((x_n, x_{n-1}, \ldots, x_1) \), thus producing a sort into descending order within the array. If \(n \) is 0 or 1 or if \(inx \) is 0, no sort is performed. See reference [75].

Error Conditions
Resource Errors: Unable to allocate internal work area.

Computational Errors: None

Input-Argument Errors: \(n < 0 \)

Example 1: This example shows a sequence \(x \) with a positive stride.

Call Statement and Input

\[
\begin{array}{ccc}
X & \text{INCX} & N \\
\mid & \mid & \mid \\
\text{CALL ISORT(} X , 2 , 5) \\
\end{array}
\]

\[
X = (2, . , -1, . , 5, . , 4, . , -2)
\]

Output

\[
X = (-2, . , -1, . , 2, . , 4, . , 5)
\]

Example 2: This example shows a sequence \(x \) with a negative stride.

Call Statement and Input

\[
\begin{array}{ccc}
X & \text{INCX} & N \\
\mid & \mid & \mid \\
\text{CALL ISORT(} X , -1 , 5) \\
\end{array}
\]

\[
X = (2, -1, 5, 4, -2)
\]

Output

\[
X = (5, 4, 2, -1, -2)
\]
ISORTX, SSORTX, and DSORTX—Sort the Elements of a Sequence and Note the Original Element Positions

These subroutines sort the elements of sequence \(x \). The original positions of the elements in sequence \(x \) are returned in the indices array, \(\text{INDX} \). Where equal elements occur in the input sequence, they do not necessarily remain in the same relative order in the output sequence.

Note: If you need a stable sort, you should use ISORTS, SSORTS, or DSORTS rather than these subroutines.

<table>
<thead>
<tr>
<th>Table 149. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
</tr>
<tr>
<td>Integer</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
</tbody>
</table>

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL ISORTX</th>
<th>SSORTX</th>
<th>DSORTX ((x, \text{incx}, n, \text{indx}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>isortx</td>
<td>ssortx</td>
<td>dsortx ((x, \text{incx}, n, \text{indx}));</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL ISORTX</td>
<td>SSORTX</td>
<td>DSORTX ((x, \text{incx}, n, \text{indx}));</td>
</tr>
</tbody>
</table>

On Entry

\(x \)

is the sequence \(x \) of length \(n \), to be sorted. Specified as: a one-dimensional array of (at least) length \(1+(n-1)|\text{incx}| \) elements, containing numbers of the data type indicated in Table 149.

\(\text{incx} \)

is the stride for both the input sequence \(x \) and the output sequence \(x \). If it is positive, elements are sorted into ascending order in the array, and if it is negative, elements are sorted into descending order in the array.

Specified as: a fullword integer. It can have any value.

\(n \)

is the number of elements in sequence \(x \). Specified as: a fullword integer; \(n \geq 0 \).

\(\text{indx} \)

See “On Return.”

On Return

\(x \)

is the sequence \(x \) of length \(n \), with its elements sorted into designated order in the array. Returned as: a one-dimensional array, containing numbers of the data type indicated in Table 149.

\(\text{indx} \)

is the array, referred to as \(\text{INDX} \), containing the \(n \) indices that indicate, for the elements in the sorted output sequence, the original positions of those elements in input sequence \(x \).
Note: It is important to remember that when you specify a negative stride, ESSL assumes that the order of the input and output sequence elements in the \(X\) array is reversed; however, the elements in \(INDX\) are not reversed. See “Function” on page 907.

Returned as: a one-dimensional array of length \(n\), containing fullword integers;
\[1 \leq (INDX \text{ elements}) \leq n.\]

Function: The elements of input sequence \(x\) are sorted into ascending order, in place and using a partition sort. The elements of output sequence \(x\) can be expressed as follows:
\[x_1 \leq x_2 \leq x_3 \leq ... \leq x_n\]

Where equal elements occur in the input sequence, they do not necessarily remain in the same relative order in the output sequence.

By specifying a negative stride for \(x\), the elements of input sequence \(x\) are assumed to be reversed in the array, \((x_n, x_{n-1}, ..., x_1)\), thus producing a sort into descending order within the array.

In addition, the \(INDX\) array contains the \(n\) indices that indicate, for the elements in the sorted output sequence, the original positions of those elements in input sequence \(x\). (These are not the positions in the array, but rather the positions in the sequence.) For each element \(x_j\) in the input sequence, becoming element \(xx_k\) in the output sequence, the elements in \(INDX\) are defined as follows:
\[INDX(k) = j \quad \text{for} \ j = 1, n \text{ and } k = 1, n\]

where \(xx_k = x_j\)

To understand \(INDX\) when you specify a negative stride, you should remember that both the input and output sequences, \(x\), are assumed to be in reverse order in array \(X\), but \(INDX\) is not affected by stride. The sequence elements of \(x\) are assumed to be stored in your input array as follows:
\[X = (x_n, x_{n-1}, ..., x_1)\]

The sequence elements of \(x\) are stored in your output array by ESSL as follows:
\[X = (xx_n, xx_{n-1}, ..., xx_1)\]

where the elements \(xx_k\) are the elements \(x_j\) sorted into descending order in \(X\). As an example of how \(INDX\) is calculated, if \(xx_1 = x_{n-1}\), then \(INDX(1) = n-1\).

If \(n\) is 0, no computation is performed. See reference [75].

Error Conditions

Resource Errors: Unable to allocate internal work area.

Computational Errors: None

Input-Argument Errors: \(n < 0\)

Example 1: This example shows how to sort a sequence \(x\) into ascending order by specifying a positive stride.
Call Statement and Input

\[
\begin{array}{cccc}
X & \text{INCX} & N & \text{INDX} \\
\mid & \mid & \mid & \mid \\
\text{CALL ISORTX}(X, 2, 5, \text{INDX}) \\
\end{array}
\]

\[
X = (2, . , -1, . , 5, . , 1, . , -2)
\]

Output

\[
X = (-2, . , -1, . , 1, . , 2, . , 5)
\]
\[
\text{INDX} = (5, 2, 4, 1, 3)
\]

Example 2: This example shows how to sort a sequence \(x \) into descending order by specifying a negative stride. Therefore, both the input and output sequences are assumed to be reversed in the array \(X \). The input sequence is assumed to be stored as follows:

\[
X = (x_5, x_4, x_3, x_2, x_1) = (2, -1, 5, 1, -2)
\]

The output sequence is stored by ESSL as follows:

\[
X = (xx_5, xx_4, xx_3, xx_2, xx_1) = (5, 2, 1, -1, -2)
\]

As a result, \(\text{INDX} \) is defined as follows:

\[
\text{INDX} = (indx_1, indx_2, indx_3, indx_4, indx_5) = (1, 4, 2, 5, 3)
\]

For example, because output sequence element \(xx_4 = 2 \) is input sequence element \(x_5 \), then \(\text{INDX}(4) = 5 \).

Call Statement and Input

\[
\begin{array}{cccc}
X & \text{INCX} & N & \text{INDX} \\
\mid & \mid & \mid & \mid \\
\text{CALL ISORTX}(X, -1, 5, \text{INDX}) \\
\end{array}
\]

\[
X = (2, -1, 5, 1, -2)
\]

Output

\[
X = (5, 2, 1, -1, -2)
\]
\[
\text{INDX} = (1, 4, 2, 5, 3)
\]
ISORTS, SSORTS, and DSORTS—Sort the Elements of a Sequence Using a Stable Sort and Note the Original Element Positions

These subroutines sort the elements of sequence \(x \) using a stable sort; that is, where equal elements occur in the input sequence, they remain in the same relative order in the output sequence. The original positions of the elements in sequence \(x \) are returned in the indices array \(\text{INDX} \).

Note: If you need a stable sort, then you should use these subroutines rather than ISORTX, SSORTX, or DSORTX.

Table 150. Data Types

<table>
<thead>
<tr>
<th>(x, \text{work})</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer</td>
<td>ISORTS</td>
</tr>
<tr>
<td>Short-precision real</td>
<td>SSORTS</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DSORTS</td>
</tr>
</tbody>
</table>

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL ISORTS</th>
<th>SSORTS</th>
<th>DSORTS ((x, \text{incx}, n, \text{indx}, \text{work}, \text{lwork}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>isorts</td>
<td>lsorts</td>
<td>dsorts ((x, \text{incx}, n, \text{indx}, \text{work}, \text{lwork}));</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL ISORTS</td>
<td>SSORTS</td>
<td>DSORTS ((x, \text{incx}, n, \text{indx}, \text{work}, \text{lwork}));</td>
</tr>
</tbody>
</table>

On Entry

- **\(x \)**
 - is the sequence \(x \) of length \(n \), to be sorted. Specified as: a one-dimensional array of (at least) length \(1+(n-1)\text{\textsl{incx}} \) elements, containing numbers of the data type indicated in Table 150.
 - **\(\text{incx} \)**
 - is the stride for both the input sequence \(x \) and the output sequence \(x \). If it is positive, elements are sorted into ascending order in the array, and if it is negative, elements are sorted into descending order in the array.
 - Specified as: a fullword integer. It can have any value.
 - **\(n \)**
 - is the number of elements in sequence \(x \). Specified as: a fullword integer; \(n \geq 0 \).
 - **\(\text{indx} \)**
 - See “On Return” on page 910.
 - **\(\text{work} \)**
 - is the storage work area used by this subroutine. Its size is specified by \(\text{lwork} \).
 - Specified as: an area of storage, containing numbers of the data type indicated in Table 150.
 - **\(\text{lwork} \)**
 - is the size of the work area specified by \(\text{work} \)—that is, the number of elements in \(\text{work} \).
 - Specified as: a fullword integer; \(\text{lwork} \geq n/2 \).

Note: This is the value to achieve optimal performance. The sort is performed regardless of the value you specify for \(\text{lwork} \), but you may receive an attention message.
ISORTS, SSORTS, and DSORTS

On Return

\(x \)

is the sequence \(x \) of length \(n \), with its elements sorted into designated order in the array. Returned as: a one-dimensional array, containing numbers of the data type indicated in Table 150 on page 909.

\(\text{indx} \)

is the array, referred to as \(\text{INDX} \), containing the \(n \) indices that indicate, for the elements in the sorted output sequence, the original positions of those elements in input sequence \(x \).

Note: It is important to remember that when you specify a negative stride, ESSL assumes that the order of the input and output sequence elements in the \(X \) array is reversed; however, the elements in \(\text{INDX} \) are not reversed. See “Function.”

Returned as: a one-dimensional array of length \(n \), containing fullword integers; \(1 \leq (\text{INDX} \text{ elements}) \leq n \).

Function: The elements of input sequence \(x \) are sorted into ascending order using a partition sort. The sorting is stable; that is, where equal elements occur in the input sequence, they remain in the same relative order in the output sequence. The elements of output sequence \(x \) can be expressed as follows:

\[x_1 \leq x_2 \leq x_3 \leq ... \leq x_n \]

By specifying a negative stride for \(x \), the elements of input sequence \(x \) are assumed to be reversed in the array, \((x_n, x_{n-1}, ..., x_1) \), thus producing a sort into descending order within the array.

In addition, the \(\text{INDX} \) array contains the \(n \) indices that indicate, for the elements in the sorted output sequence, the original positions of those elements in input sequence \(x \). (These are not the positions in the array, but rather the positions in the sequence.) For each element \(x_j \) in the input sequence, becoming element \(xx_k \) in the output sequence, the elements in \(\text{INDX} \) are defined as follows:

\[\text{INDX}(k) = j \quad \text{for } j = 1, n \text{ and } k = 1, n \]

\[\text{where } xx_k = x_j \]

To understand \(\text{INDX} \) when you specify a negative stride, you should remember that both the input and output sequences, \(x \), are assumed to be in reverse order in array \(X \), but \(\text{INDX} \) is not affected by stride. The sequence elements of \(x \) are assumed to be stored in your input array as follows:

\[X = (x_n, x_{n-1}, ..., x_1) \]

The sequence elements of \(x \) are stored in your output array by ESSL as follows:

\[X = (xx_n, xx_{n-1}, ..., xx_1) \]

where the elements \(xx_k \) are the elements \(x_j \), sorted into descending order in \(X \). As an example of how \(\text{INDX} \) is calculated, if \(xx_1 = x_{n-1} \), then \(\text{INDX}(1) = n-1 \).

If \(n \) is 0, no computation is performed. See references [28] and [75].

Error Conditions

Resource Errors: Unable to allocate internal work area.
Computational Errors: None

Input-Argument Errors: \(n < 0 \)

Example 1: This example shows how to sort a sequence \(x \) into ascending order by specifying a positive stride. Because this is a stable sort, the \(-1\) elements remain in the same relative order in the output sequence, indicated by \(\text{INDX}(2) = 2 \) and \(\text{INDX}(3) = 4 \).

Call Statement and Input

\[
\begin{array}{cccccc}
X & \text{INCX} & N & \text{INDX} & \text{WORK} & \text{LWORK} \\
\mid & & & & & \\
\text{CALL ISORTS}(X, 2, 5, \text{INDX}, \text{WORK}, 5) \\
\end{array}
\]

\[
X = (2, . , -1, . , 5, . , -1, . , -2)
\]

Output

\[
X = (-2, . , -1, . , -1, . , 2, . , 5) \\
\text{INDX} = (5, 2, 4, 1, 3)
\]

Example 2: This example shows how to sort a sequence \(x \) into descending order by specifying a negative stride. Therefore, both the input and output sequences are assumed to be reversed in the array \(X \). The input sequence is assumed to be stored as follows:

\[
X = (x_5, x_4, x_3, x_2, x_1) = (2, -1, 5, -1, -2)
\]

The output sequence is stored by ESSL as follows:

\[
X = (xx_5, xx_4, xx_3, xx_2, xx_1) = (5, 2, -1, -1, -2)
\]

As a result, \(\text{INDX} \) is defined as follows:

\[
\text{INDX} = (indx_1, indx_2, indx_3, indx_4, indx_5) = (1, 2, 4, 5, 3)
\]

For example, because output sequence element \(xx_4 = 2 \) is input sequence element \(x_5 \), then \(\text{INDX}(4) = 5 \). Also, because this is a stable sort, the \(-1\) elements remain in the same relative order in the output sequence, indicated by \(\text{INDX}(2) = 2 \) and \(\text{INDX}(3) = 4 \).

Call Statement and Input

\[
\begin{array}{cccccc}
X & \text{INCX} & N & \text{INDX} & \text{WORK} & \text{LWORK} \\
\mid & & & & & \\
\text{CALL ISORTS}(X, -1, 5, \text{INDX}, \text{WORK}, 5) \\
\end{array}
\]

\[
X = (2, -1, 5, -1, -2)
\]

Output

\[
X = (5, 2, -1, -1, -2) \\
\text{INDX} = (1, 2, 4, 5, 3)
\]
IBSRCH, SBSRCH, and DBSRCH

IBSRCH, SBSRCH, and DBSRCH—Binary Search for
Elements of a Sequence X in a Sorted Sequence Y

These subroutines perform a binary search for the locations of the elements of
sequence \(x \) in another sequence \(y \), where \(y \) has been sorted into ascending order.
The first occurrence of each element is found. When an exact match is not found,
the position of the next larger element in \(y \) is indicated. The locations are returned
in the indices array \(\text{INDX} \), and, optionally, return codes indicating whether the exact
elements were found are returned in array \(\text{RC} \).

Table 151. Data Types

<table>
<thead>
<tr>
<th>Type</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x, y)</td>
<td>IBSRCH</td>
</tr>
<tr>
<td>Integer</td>
<td>SBSRCH</td>
</tr>
<tr>
<td>Short-precision real</td>
<td>DBSRCH</td>
</tr>
<tr>
<td>Long-precision real</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

<table>
<thead>
<tr>
<th>Language</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>`CALL IBSRCH</td>
</tr>
<tr>
<td>C and C++</td>
<td>`ibsrch</td>
</tr>
<tr>
<td>PL/I</td>
<td>`CALL IBSRCH</td>
</tr>
</tbody>
</table>

On Entry

- \(x \)
 - is the sequence \(x \) of length \(n \), containing the elements for which sequence \(y \) is
 searched. Specified as: a one-dimensional array, containing numbers of the
data type indicated in Table 151. It must have at least \(1+(n-1)|\text{incx}| \) elements.
- \(\text{incx} \)
 - is the stride for sequence \(x \). Specified as: a fullword integer. It can have any
 value.
- \(n \)
 - is the number of elements in sequence \(x \) and arrays \(\text{INDX} \) and \(\text{RC} \). Specified as:
a fullword integer; \(n \geq 0 \).
- \(y \)
 - is the sequence \(y \) of length \(m \), to be searched, where \(y \) must be sorted into
 ascending order.

Note: Be careful in specifying the stride for sequence \(y \). A negative stride
reverses the direction of the search, because the order of the sequence
elements is reversed in the array.

- Specified as: a one-dimensional array of (at least) length \(1+(m-1)|\text{incy}| \),
 containing numbers of the data type indicated in Table 151.
- \(\text{incy} \)
 - is the stride for sequence \(y \). Specified as: a fullword integer. It can have any
 value.
- \(m \)
 - is the number of elements in sequence \(y \). Specified as: a fullword integer;
 \(m \geq 0 \).
- \(\text{indx} \)
 - See “On Return” on page 913.
rc
See “On Return” on page 913.

iopt
has the following meaning, where:
If $iopt = 0$, the rc argument is not used in the computation.
If $iopt = 1$, the rc argument is used in the computation.
Specified as: a fullword integer; $iopt = 0$ or 1.

On Return

indx
is the array, referred to as INDX, containing the n indices that indicate the positions of the elements of sequence x in sequence y. The first occurrence of the element found in sequence y is indicated in array INDX. When an exact match between an element of sequence x and an element of sequence y is not found, the position of the next larger element in sequence y is indicated. When the element in sequence x is larger than all the elements in sequence y, then $m+1$ is indicated in array INDX.

Returned as: a one-dimensional array of length n, containing fullword integers; $1 \leq \text{(INDX elements)} \leq m+1$.

rc
has the following meaning, where:
If $iopt = 0$, then rc is not used, and its contents remain unchanged.
If $iopt = 1$, it is the array, referred to as RC, containing the n return codes that indicate whether the elements in sequence x were found in sequence y. For $i = 1, n$, elements $RC(i) = 0$ if x_i matches an element in sequence y, and $RC(i) = 1$ if an exact match is not found in sequence y.

Returned as: a one-dimensional array of length n, containing fullword integers; $RC(i) = 0$ or 1.

Notes

1. The elements of y must be sorted into ascending order; otherwise, results are unpredictable. For details on how to do this, see “ISORT, SSORT, and DSORT—Sort the Elements of a Sequence” on page 904.

2. If you do not need the results provided in array RC by these subroutines, you get better performance if you do not request it. That is, specify 0 for the $iopt$ argument.

Function: These subroutines perform a binary search for the first occurrence (or last occurrence, using negative stride) of the locations of the elements of sequence x in another sequence y, where y must be sorted into ascending order before calling this subroutine. The first occurrence of each element is found. Two arrays are returned, containing the results of the binary searches:

- INDX, the indices array, contains the positions of the elements of sequence x in sequence y. When an exact match between values of elements in sequences x and y is not found, the location of the next larger element in sequence y is indicated in array INDX.
• RC, the return codes array, indicates for each element in sequence \(x \) whether the exact element was found in sequence \(y \). If you do not need these results, you get better performance if you set \(iopt = 0 \).

The results returned for the INDX and RC arrays are expressed as follows:

For \(i = 1, n \)
- for all \(y_j \geq x_i, j = 1, m \), \(\text{INDX}(i) = \min(j) \)
- if all \(y_j < x_i, j = 1, m \), \(\text{INDX}(i) = m+1 \)

And for \(i = 1, n \)
- if \(x_i = y_{\text{INDX}(i)} \), \(\text{RC}(i) = 0 \)
- if \(x_i \neq y_{\text{INDX}(i)} \), \(\text{RC}(i) = 1 \)

where:
- \(x \) is a sequence of length \(n \), containing the search elements.
- \(y \) is a sequence of length \(m \) to be searched. It must be sorted into ascending order.
- INDX is the array of length \(n \) of indices.
- RC is the array of length \(n \) of return codes.

See reference [75]. If \(n \) is 0, no search is performed. If \(m \) is 0, then:

\[\text{INDX}(i) = 1 \text{ and } \text{RC}(i) = 1 \quad \text{for } i = 1, n \]

It is important to note that a negative stride for sequence \(y \) reverses the direction of the search, because the order of the sequence elements is reversed in the array. For more details on sorting sequences, see “Function” on page 904.

Error Conditions

Computational Errors: None

Input-Argument Errors

1. \(n < 0 \)
2. \(m < 0 \)
3. \(iopt \neq 0 \text{ or } 1 \)

Example 1: This example shows a search where sequences \(x \) and \(y \) have positive strides, and where the optional return codes are returned as part of the output.

Call Statement and Input

```plaintext
X INCX N Y INCY M INDX RC IOPT
| | | | | | | | |
CALL IBSRCH(X, 2, 5, Y, 1, 10, INDX, RC, 1)
```

\[X = (-3, . , 125, . , 30, . , 20, . , 70) \]
\[Y = (10, 20, 30, 30, 40, 50, 60, 80, 90, 100) \]

Output

\[\text{INDX} = (1, 11, 3, 2, 8) \]
\[\text{RC} = (1, 1, 0, 0, 1) \]
Example 2: This example shows the same calling sequence as in Example 1, except that it includes the \texttt{IOPT} argument, specified as 1. This is equivalent to using the calling sequence in Example 1 and gives the same results.

Call Statement and Input

\begin{verbatim}
<table>
<thead>
<tr>
<th>X</th>
<th>INCX</th>
<th>N</th>
<th>Y</th>
<th>INCY</th>
<th>M</th>
<th>INDX</th>
<th>RC</th>
<th>IOPT</th>
</tr>
</thead>
</table>
| CALL IBSRCH(X , 2 , 5 , Y , 1 , 10 , INDX , RC , 1)
\end{verbatim}

Example 3: This example shows a search where sequence \(x \) has a negative stride, and sequence \(y \) has a positive stride. The optional return codes are not requested, because \texttt{IOPT} is specified as 0.

Call Statement and Input

\begin{verbatim}
<table>
<thead>
<tr>
<th>X</th>
<th>INCX</th>
<th>N</th>
<th>Y</th>
<th>INCY</th>
<th>M</th>
<th>INDX</th>
<th>RC</th>
<th>IOPT</th>
</tr>
</thead>
</table>
| CALL IBSRCH(X , -2 , 5 , Y , 1 , 10 , INDX , RC , 0)
\end{verbatim}

\(X = (-3, . , 125, . , 30, . , 20, . , 70) \)

\(Y = (10, 20, 30, 30, 40, 50, 60, 80, 90, 100) \)

Output

\(\text{INDX} = (8, 2, 3, 11, 1) \)

\(\text{RC} = \text{(not relevant)} \)

Example 4: This example shows a search where sequence \(x \) has a positive stride, and sequence \(y \) has a negative stride. As shown below, elements of \(y \) are in descending order in array \(Y \). The optional return codes are not requested, because \texttt{IOPT} is specified as 0.

Call Statement and Input

\begin{verbatim}
<table>
<thead>
<tr>
<th>X</th>
<th>INCX</th>
<th>N</th>
<th>Y</th>
<th>INCY</th>
<th>M</th>
<th>INDX</th>
<th>RC</th>
<th>IOPT</th>
</tr>
</thead>
</table>
| CALL IBSRCH(X , 2 , 5 , Y , -1 , 10 , INDX , RC , 0)
\end{verbatim}

\(X = (-3, . , 125, . , 30, . , 20, . , 70) \)

\(Y = (100, 90, 80, 60, 50, 40, 30, 30, 20, 10) \)

\(\text{RC} = \text{(not relevant)} \)

Output

\(\text{INDX} = (1, 11, 3, 2, 8) \)
ISSRCH, SSSRCH, and DSSRCH—Sequential Search for Elements of a Sequence X in the Sequence Y

These subroutines perform a sequential search for the locations of the elements of sequence X in another sequence Y. Depending on the sign of the idir argument, the search direction indicator, the location of either the first or last occurrence of each element is indicated in the resulting indices array INDX. When an exact match between elements is not found, the position is indicated as 0.

<table>
<thead>
<tr>
<th>Table 152. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>x, y</td>
</tr>
<tr>
<td>Integer</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
</tbody>
</table>

Syntax

Fortran

CALL ISSRCH | SSSRCH | DSSRCH (x, incx, n, y, incy, m, idir, indx)

C and C++

issrch | sssrch | dssrch (x, incx, n, y, incy, m, idir, indx);

PL/I

CALL ISSRCH | SSSRCH | DSSRCH (x, incx, n, y, incy, m, idir, indx);

On Entry

x

is the sequence X of length n, containing the elements for which sequence Y is searched. Specified as: a one-dimensional array of (at least) length 1+(n−1)|incx|, containing numbers of the data type indicated in Table 152.

incx

is the stride for sequence X. Specified as: a fullword integer. It can have any value.

n

is the number of elements in sequence X and array INDX. Specified as: a fullword integer; n ≥ 0.

y

is the sequence Y of length m to be searched.

Note: Be careful in specifying the stride for sequence Y. A negative stride reverses the direction of the search, because the order of the sequence elements is reversed in the array.

Specified as: a one-dimensional array of (at least) length 1+(m−1)|incy|, containing numbers of the data type indicated in Table 152.

incy

is the stride for sequence Y. Specified as: a fullword integer. It can have any value.

m

is the number of elements in sequence Y. Specified as: a fullword integer; m ≥ 0.

idir

indicates the search direction, where:

If idir ≥ 0, sequence Y is searched from the first element to the last (1, n), thus finding the first occurrence of the element in the sequence.
If idir < 0, sequence y is searched from the last element to the first (n, 1), thus finding the last occurrence of the element in the sequence.

Specified as: a fullword integer. It can have any value.

indx

See On Return.

On Return

indx

is the array, referred to as INDX, containing the n indices that indicate the positions of the elements of sequence x in sequence y, where:

If idir ≥ 0, the first occurrence of the element found in sequence y is indicated in array INDX.

If idir < 0, the last occurrence of the element found in sequence y is indicated in array INDX.

In all cases, if no match is found, 0 is indicated in array INDX.

Returned as: a one-dimensional array of length n, containing fullword integers; 0 ≤ (INDX elements) ≤ m.

Function: These subroutines perform a sequential search for the first occurrence (or last occurrence, using a negative idir) of the locations of the elements of sequence x in another sequence y. The results of the sequential searches are returned in the indices array INDX, indicating the positions of the elements of sequence x in sequence y. The positions indicated in array INDX are calculated relative to the first sequence element position—that is, the position of y_1. When an exact match between values of elements in sequences x and y is not found, 0 is indicated in array INDX for that position.

The results returned in array INDX are expressed as follows:

For i = 1, n

for all j \(y_j = x_p \), j = 1, m

INDX(i) = min(j), if idir ≥ 0

INDX(i) = max(j), if idir < 0

if all \(y_j \neq x_p \), j = 1, m

INDX(i) = 0

where:

x is a sequence of length n, containing the search elements.

y is a sequence of length m to be searched.

INDX is the array of length n of indices.

See reference [75]. If n is 0, no search is performed.

It is important to note that a negative stride for sequence y reverses the direction of the search, because the order of the sequence elements is reversed in the array.

Error Conditions

Computational Errors: None
Input-Argument Errors

1. \(n < 0 \)
2. \(m < 0 \)

Example 1: This example shows a search where sequences \(x \) and \(y \) have positive strides, and the search direction indicator, \(idir \), is positive.

Call Statement and Input

\[
\begin{array}{cccccccc}
X & \text{INCX} & N & Y & \text{INCY} & M & IDIR & \text{INDX} \\
\end{array}
\]

\text{CALL ISSRCH(} X , 1 , 3 , Y , 2 , 8 , 1 , \text{INDX) } \\
\]

\[
X = (0, 12, 3) \\
Y = (0, . , 8, . , 12, . , 0, . , 1, . , 4, . , 0, . , 2)
\]

Output

\[
\text{INDX} = (1, 3, 0)
\]

Example 2: This example shows a search where sequences \(x \) and \(y \) have positive strides, and the search direction indicator, \(idir \), is negative.

Call Statement and Input

\[
\begin{array}{cccccccc}
X & \text{INCX} & N & Y & \text{INCY} & M & IDIR & \text{INDX} \\
\end{array}
\]

\text{CALL ISSRCH(} X , 2 , 3 , Y , 2 , 8 , -1 , \text{INDX) } \\
\]

\[
X = (0, . , 12, . , 3) \\
Y = (0, . , 8, . , 12, . , 0, . , 1, . , 4, . , 0, . , 2)
\]

Output

\[
\text{INDX} = (7, 3, 0)
\]

Example 3: This example shows a search where sequences \(x \) and \(y \) have negative strides, and the search direction indicator, \(idir \), is positive.

Call Statement and Input

\[
\begin{array}{cccccccc}
X & \text{INCX} & N & Y & \text{INCY} & M & IDIR & \text{INDX} \\
\end{array}
\]

\text{CALL ISSRCH(} X , -1 , 3 , Y , -2 , 8 , 1 , \text{INDX) } \\
\]

\[
X = (0, 12, 3) \\
Y = (0, . , 8, . , 12, . , 0, . , 1, . , 4, . , 0, . , 2)
\]

Output

\[
\text{INDX} = (0, 6, 2)
\]

Example 4: This example shows a search where sequences \(x \) and \(y \) have negative strides, and the search direction indicator, \(idir \), is negative.

Call Statement and Input
ISSRCH, SSSRCH, and DSSRCH

<table>
<thead>
<tr>
<th>X</th>
<th>INCX</th>
<th>N</th>
<th>Y</th>
<th>INCY</th>
<th>M</th>
<th>IDIR</th>
<th>INDX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CALL ISSRCH(X, -2, 3, Y, -1, 8, -1, INDX)

X = (0, ., 12, ., 3)
Y = (0, 8, 12, 0, 1, 4, 0, 2)

Output

INDX = (0, 6, 8)
Chapter 14. Interpolation

The interpolation subroutines are described in this chapter.

Overview of the Interpolation Subroutines

The interpolation subroutines provide the capabilities of doing polynomial interpolation, local polynomial interpolation, and one- and two-dimensional cubic spline interpolation (Table 153).

Table 153. List of Interpolation Subroutines

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subroutine</th>
<th>Long-Precision Subroutine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polynomial Interpolation</td>
<td>SPINT</td>
<td>DPINT</td>
<td>923</td>
</tr>
<tr>
<td>Local Polynomial Interpolation</td>
<td>STPINT</td>
<td>DTPINT</td>
<td>928</td>
</tr>
<tr>
<td>Cubic Spline Interpolation</td>
<td>SCSINT</td>
<td>DCSINT</td>
<td>931</td>
</tr>
<tr>
<td>Two-Dimensional Cubic Spline Interpolation</td>
<td>SCSIN2</td>
<td>DCSIN2</td>
<td>937</td>
</tr>
</tbody>
</table>

Use Considerations

Polynomial interpolation (SPINT and DPINT) is a global scheme. As the number of data points increases, the degree of the interpolating polynomial is raised; therefore, the graph of the interpolating polynomial tends to be oscillatory.

Local polynomial interpolation (STPINT and DTPINT) is a local scheme. The data generated is affected only by locally grouped data points. The degree of the local interpolating polynomial is usually lower than a global interpolating polynomial.

Performance and Accuracy Considerations

1. Doing extrapolation with SPINT and DPINT is not encouraged unless you know the consequences of doing polynomial extrapolation.

2. If performance is the overriding consideration, you should investigate using the general signal processing subroutines, DQINT and SQINT.

3. There are some ESSL-specific rules that apply to the results of computations on the workstation processors using the ANSI/IEEE standards. For details, see “What Data Type Standards Are Used by ESSL, and What Exceptions Should You Know About?” on page 43.
Interpolation Subroutines

This section contains the interpolation subroutine descriptions.
SPINT and DPINT—Polynomial Interpolation

These subroutines compute the Newton divided difference coefficients and perform a polynomial interpolation through a set of data points at specified abscissas.

<table>
<thead>
<tr>
<th>Table 154. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x, y, c, t, s)</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
</tbody>
</table>

Syntax

<table>
<thead>
<tr>
<th>Language</th>
<th>Call Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>CALL SPINT</td>
</tr>
<tr>
<td>C and C++</td>
<td>spint</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SPINT</td>
</tr>
</tbody>
</table>

On Entry

- \(x \) is the vector \(x \) of length \(n \), containing the abscissas of the data points used in the interpolations. The elements of \(x \) must be distinct. Specified as: a one-dimensional array of (at least) length \(n \), containing numbers of the data type indicated in Table 154.

- \(y \) is the vector \(y \) of length \(n \), containing the ordinates of the data points used in the interpolations. Specified as: a one-dimensional array of (at least) length \(n \), containing numbers of the data type indicated in Table 154.

- \(n \) is the number of elements in vectors \(x, y, \) and \(c \)—that is, the number of data points. Specified as: a fullword integer; \(n \geq 0 \).

- \(c \) is the vector \(c \) of length \(n \), where:
 - If \(ninit \leq 0 \), all elements of \(c \) are undefined on entry.
 - If \(ninit > 0 \), \(c \) contains the Newton divided difference coefficients, \(c_j \) for \(j = 1, ninit \), for the interpolating polynomial through the data points \((x_j, y_j)\) for \(j = 1, \ldots, ninit \). If \(ninit < n \), the values of \(c_j \) for \(j = ninit + 1, n \) are undefined.
 Specified as: a one-dimensional array of (at least) length \(n \), containing numbers of the data type indicated in Table 154.

- \(ninit \) indicates the following:
 - If \(ninit \leq 0 \), this is the first call to this subroutine with the data in \(x \) and \(y \); therefore, none of the Newton divided difference coefficients in \(c \) have been initialized.
 - If \(ninit > 0 \), a previous call to this subroutine was made with the data points \((x_j, y_j)\) for \(j = 1, ninit \), where:
 - If \(ninit = n \), all the Newton divided difference coefficients in \(c \) were computed for the data points. No additional coefficients are computed on this entry.
• If \(n_{\text{init}} < n \), the first \(n_{\text{init}} \) Newton divided difference coefficients in \(\mathbf{c} \) were computed for the data points \((x_j, y_j)\) for \(j = 1, n_{\text{init}} \). The coefficients are updated for the additional data points \((x_j, y_j)\) for \(j = n_{\text{init}}+1, n \) on this entry.

\[\text{Specified as: a fullword integer; } n_{\text{init}} \leq n. \]

\(t \) is the vector \(t \) of length \(m \), containing the abscissas at which interpolation is to be done. Specified as: a one-dimensional array of (at least) length \(m \), containing numbers of the data type indicated in Table 154 on page 923.

\(s \)

See “On Return.”

\(m \)

is the number of elements in vectors \(t \) and \(s \)—that is, the number of interpolations to be performed. Specified as: a fullword integer; \(m \geq 0 \).

\(\text{On Return} \)

\(\mathbf{c} \)

is the vector \(\mathbf{c} \) of length \(n \), containing the coefficients of the Newton divided difference form of the interpolating polynomial through the data points \((x_j, y_j)\) for \(j = 1, n \). Returned as: a one-dimensional array of (at least) length \(n \), containing numbers of the data type indicated in Table 154 on page 923.

\(n_{\text{init}} \)

is the number of coefficients, \(n \), in output vector \(\mathbf{c} \). (If you call this subroutine again with the same data, this value should be specified for \(n_{\text{init}} \).) Returned as: a fullword integer; \(n_{\text{init}} = n \).

\(s \)

is the vector \(s \) of length \(m \), containing the resulting interpolated values; that is, each \(s_i \) is the value of the interpolating polynomial evaluated at \(t_i \). Returned as: a one-dimensional array of (at least) length \(m \), containing numbers of the data type indicated in Table 154 on page 923.

\(\text{Notes} \)

1. In your C program, argument \(n_{\text{init}} \) must be passed by reference.

2. Vectors \(x, y, \) and \(t \) must have no common elements with vectors \(\mathbf{c} \) and \(s \), and vector \(\mathbf{c} \) must have no common element with vector \(s \); otherwise, results are unpredictable.

3. The elements of vector \(x \) must be distinct; that is, \(x_i \neq x_j \) if \(i \neq j \) for \(i, j = 1, n \).

\(\text{Function:} \) Polynomial interpolation is performed at specified abscissas, \(t_i \) for \(i = 1, m \), in vector \(t \), using the method of Newton divided differences through the data points:

\[(x_j, y_j) \text{ for } j = 1, n \]

where:

\(x_j \) are elements of vector \(x \).

\(y_j \) are elements of vector \(y \).

The interpolated value at each \(t_i \) is returned in \(s_i \) for \(i = 1, m \). See references [15] and [54]. The interpolating values returned in \(s \) are computed using the Newton divided difference coefficients, as defined in the following section.
The divided difference coefficients, \(c_j \) for \(j = 1, n \), are returned in vector \(c \). These coefficients can then be reused on subsequent calls to this subroutine, using the same data points \((x_j, y_j)\), but with new values of \(t \). If the number of data points is increased from one call this subroutine to the next, the new coefficients are computed, and the existing coefficients are updated (not recomputed). This feature can be used to test for the convergence of the interpolations through a sequence of an increasingly larger set of points.

The values specified for \(n_{\text{init}} \) and \(m \) indicate which combination of functions are performed by this subroutine: computing the coefficients, performing the interpolation, or both. If \(m = 0 \), only the divided difference coefficients are computed. No interpolation is performed. If \(n = 0 \), no computation or interpolation is performed.

For SPINT, the Newton divided differences and interpolating values are accumulated in long precision.

Newton Divided Differences and Interpolating Values: The Newton divided differences of the following data points:

\[
(x_j, y_j) \quad \text{for} \quad j = 1, n
\]

where \(x_j \neq x_l \) if \(j \neq l \) for \(j, l = 1, n \) are denoted by \(\delta_k y_j \) for \(k = 0, 1, 2, ..., n-1 \) and \(j = 1, 2, ..., n-k \), and are defined as follows:

- For \(k = 0 \) and 1:
 \[
 \delta_0 y_j = y_j \quad \text{for} \quad j = 1, 2, ..., n
 \]
 \[
 \delta_1 y_j = (y_{j+1} - y_j) / (x_{j+1} - x_j) \quad \text{for} \quad j = 1, 2, ..., n-1
 \]

- For \(k = 2, 3, ..., n-1 \):
 \[
 \delta_k y_j = (\delta_{k-1} y_j - \delta_{k-1} y_{j-1}) / (x_{j+k} - x_j) \quad \text{for} \quad j = 1, 2, ..., n-k
 \]

The value \(s \) of the Newton divided difference form of the interpolating polynomial evaluated at an abscissa \(t \) is given by:

\[
 s = y_n + (t-x_n) \delta_1 y_{n-1} \\
+ (t-x_{n-1}) (t-x_n) \delta_2 y_{n-2} \\
+ ...+(t-x_2) (t-x_3) ... (t-x_n) \delta_{n-1} y_1
\]

Therefore, on output, the coefficients in vector \(c \) are as follows:

\[
 c_n = y_n \\
c_{n-1} = \delta_1 y_{n-1} \\
c_{n-2} = \delta_2 y_{n-2} \\
... \\
c_1 = \delta_{n-1} y_1
\]

Also, the interpolating values in \(s \), in terms of \(c \), are as follows for \(i = 1, m \):

\[
 s_i = c_n + (t-x_n) c_{n-1} \\
+ (t-x_{n-1}) (t-x_n) c_{n-2} \\
+ ... \\
+ (t-x_2) (t-x_3) ... (t-x_n) c_1
\]

Error Conditions
Computational Errors: None

Input-Argument Errors

1. \(n < 0 \)
2. \(\text{ninit} > n \)
3. \(m < 0 \)

Example 1: This example shows a quadratic polynomial interpolation on the initial call with the specified data points; that is, \(\text{NINIT} = 0 \), and \(C \) contains all undefined values. On output, \(\text{NINIT} \) and \(C \) are updated with new values.

Call Statement and Input

\[
\begin{array}{cccccccc}
\text{X} & \text{Y} & \text{N} & \text{C} & \text{NINIT} & \text{T} & \text{S} & \text{M} \\
\hline
\text{CALL SPINT}(\text{X}, \text{Y}, 3, \text{C}, 0, \text{T}, \text{S}, 2)
\end{array}
\]

\[
\begin{align*}
\text{X} &= (-0.50, 0.00, 1.00) \\
\text{Y} &= (0.25, 0.00, 1.00) \\
\text{C} &= (., ., ., .) \\
\text{T} &= (-0.2, 0.2)
\end{align*}
\]

Output

\[
\begin{align*}
\text{C} &= (1.00, 1.00, 1.00) \\
\text{NINIT} &= 3 \\
\text{S} &= (0.04, 0.04)
\end{align*}
\]

Example 2: This example shows a quadratic polynomial interpolation on a subsequent call with the same data points specified in Example 1, but using a different set of abscissas in \(T \). In this case, \(\text{NINIT} = N = 3 \), and \(C \) contains the values defined on output in Example 1. On output here, the values in \(\text{NINIT} \) and \(C \) are unchanged.

Call Statement and Input

\[
\begin{array}{cccccccc}
\text{X} & \text{Y} & \text{N} & \text{C} & \text{NINIT} & \text{T} & \text{S} & \text{M} \\
\hline
\text{CALL SPINT}(\text{X}, \text{Y}, 3, \text{C}, 3, \text{T}, \text{S}, 2)
\end{array}
\]

\[
\begin{align*}
\text{X} &= (-0.50, 0.00, 1.00) \\
\text{Y} &= (0.25, 0.00, 1.00) \\
\text{C} &= (1.00, 1.00, 1.00) \\
\text{T} &= (-0.10, 0.10)
\end{align*}
\]

Output

\[
\begin{align*}
\text{C} &= (1.00, 1.00, 1.00) \\
\text{NINIT} &= 3 \\
\text{S} &= (0.01, 0.01)
\end{align*}
\]

Example 3: This example is the same as Example 2 except that it specifies additional data points on the subsequent call to the subroutine. In this case, \(0 < \text{NINIT} < N \). On output here, the values in \(\text{NINIT} \) and \(C \) are updated. The interpolating polynomial is a degree of 4.

Call Statement and Input
CALL SPINT(X, Y, 5, C, 3, T, S, 2)

X = (-0.50, 0.00, 1.00, -1.00, 0.50)
Y = (0.25, 0.00, 1.00, 1.10, 0.26)
C = (1.00, 1.00, 1.00, . , .)
T = (-0.10, 0.10)

Output
C = (0.04, -0.06, 1.02, -0.56, 0.26)
NINIT = 5
S = (0.0072, 0.0130)
STPINT and DTPINT

STPINT and DTPINT—Local Polynomial Interpolation

These subroutines perform a polynomial interpolation at specified abscissas, using data points selected from a table of data.

Table 155. Data Types

<table>
<thead>
<tr>
<th>x, y, t, s, aux</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>STPINT</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DTPINT</td>
</tr>
</tbody>
</table>

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL STPINT</th>
<th>DTPINT (x, y, n, nint, t, s, m, aux, naux)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>stpint</td>
<td>dtoint (x, y, n, nint, t, s, m, aux, naux);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL STPINT</td>
<td>DTPINT (x, y, n, nint, t, s, m, aux, naux);</td>
</tr>
</tbody>
</table>

On Entry

x

is the vector x of length n, containing the abscissas of the data points used in the interpolations. The elements of x must be distinct and sorted into ascending order. Specified as: a one-dimensional array of (at least) length n, containing numbers of the data type indicated in Table 155.

y

is the vector y of length n, containing the ordinates of the data points used in the interpolations. Specified as: a one-dimensional array of (at least) length n, containing numbers of the data type indicated in Table 155.

n

is the number of elements in vectors x and y—that is, the number of data points. Specified as: a fullword integer; n ≥ 0.

nint

is the number of data points to be used in the interpolation at any given point. Specified as: a fullword integer; 0 ≤ nint ≤ n.

t

is the vector t of length m, containing the abscissas at which interpolation is to be done. For optimal performance, t should be sorted into ascending order. Specified as: a one-dimensional array of (at least) length m, containing numbers of the data type indicated in Table 155.

s

See “On Return” on page 929.

m

is the number of elements in vectors t and s—that is, the number of interpolations to be performed. Specified as: a fullword integer; m ≥ 0.

aux

has the following meaning:

If naux = 0 and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is the storage work area used by this subroutine. Its size is specified by naux.

Specified as: an area of storage, containing numbers of the data type indicated in Table 155. On output, the contents are overwritten.
STPINT and DTPINT

$naux$

is the size of the work area specified by aux—that is, the number of elements in aux. Specified as: a fullword integer, where:

If $naux = 0$ and error 2015 is unrecoverable, STPINT and DTPINT dynamically allocate the work area used by the subroutine. The work area is deallocated before control is returned to the calling program.

Otherwise, $naux \geq nint + m$.

On Return

s

is the vector s of length m, containing the resulting interpolated values; that is, each s_i is the value of the interpolating polynomial evaluated at t_i. Returned as: a one-dimensional array of (at least) length m, containing numbers of the data type indicated in Table 155 on page 928.

Notes

1. Vectors x, y, and t must have no common elements with vector s or work area aux; otherwise, results are unpredictable. See “Concepts” on page 53.

2. The elements of vector x must be distinct and must be sorted into ascending order; that is, $x_1 < x_2 < ... < x_n$. Otherwise, results are unpredictable. For details on how to do this, see “ISORT, SSORT, and DSORT—Sort the Elements of a Sequence” on page 904.

3. The elements of vector t should be sorted into ascending order; that is, $t_1 \leq t_2 \leq t_3 \leq ... \leq t_m$. Otherwise, performance is affected.

4. You have the option of having the minimum required value for $naux$ dynamically returned to your program. For details, see “Using Auxiliary Storage in ESSL” on page 30.

Function: Polynomial interpolation is performed at specified abscissas, t_i for $i = 1, m$, in vector t, using $nint$ points selected from the following data:

$$(x_j, y_j) \quad \text{for } j = 1, n$$

where:

$x_1 < x_2 < x_3 < ... < x_n$

x_j are elements of vector x.

y_j are elements of vector y.

The points (x_j, y_j), used in the interpolation at a given abscissa t_i, are chosen as follows, where $k = \lceil nint/2 \rceil$:

- For $t_i \leq x_{k+1}$, the first $nint$ points are used.
- For $t_i > x_{n-nint+k}$, the last $nint$ points are used.
- Otherwise, points h through $h+nint-1$ are used, where:

 $$x_{h+k-1} < t_i \leq x_{h+k}$$

The interpolated value at each t_i is returned in s_i for $i = 1, m$. See references [15] and [54]. If n, $nint$, or m is 0, no computation is performed. For a definition of the polynomial interpolation function performed through a set of data points, see “Function” on page 924.
For STPINT, the Newton divided differences and interpolating values are accumulated in long precision.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, \(naux = 0 \), and unable to allocate work area.

Computational Errors: None

Input-Argument Errors

1. \(n < 0 \)
2. \(nint < 0 \) or \(nint > n \)
3. \(m < 0 \)
4. Error 2015 is recoverable or \(naux \neq 0 \), and \(naux \) is too small—that is, less than the minimum required value specified in the syntax for this argument. Return code 1 is returned if error 2015 is recoverable.

Example 1: This example shows interpolation using two data points—that is, linear interpolation—at each \(t_i \) value.

Call Statement and Input

```
CALL STPINT( X , Y , 10 , 2 , T , S , 5 , AUX , 7 )
```

```
X = (0.0, 0.4, 1.0, 1.5, 2.1, 2.6, 3.0, 3.4, 3.9, 4.3)  
Y = (1.0, 2.0, 3.0, 4.0, 5.0, 5.0, 4.0, 3.0, 2.0, 1.0)  
T = (-1.0, 0.1, 1.1, 1.2, 3.9)  
```

Output

```
S = (-1.5000, 1.2500, 3.2000, 3.4000, 2.0000)  
```

Example 2: This example shows interpolation using three data points—that is, quadratic interpolation—at each \(t_i \) value.

Call Statement and Input

```
CALL STPINT( X , Y , 10 , 3 , T , S , 5 , AUX , 8 )
```

```
X = (0.0, 0.4, 1.0, 1.5, 2.1, 2.6, 3.0, 3.4, 3.9, 4.3)  
Y = (1.0, 2.0, 3.0, 4.0, 5.0, 5.0, 4.0, 3.0, 2.0, 1.0)  
T = (-1.0, 0.1, 1.1, 1.2, 3.9)  
```

Output

```
S = (-2.6667, 1.2750, 3.2121, 3.4182, 2.0000)  
```
SCSINT and DCSINT—Cubic Spline Interpolation

These subroutines compute the coefficients of the cubic spline through a set of data points and evaluate the spline at specified abscissas.

<table>
<thead>
<tr>
<th>Table 156. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>x, y, C, t, s</td>
</tr>
<tr>
<td>Subroutine</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
</tbody>
</table>

Syntax

<table>
<thead>
<tr>
<th>Language</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>CALL SCSINT</td>
</tr>
<tr>
<td>C and C++</td>
<td>scsint</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SCSINT</td>
</tr>
</tbody>
</table>

On Entry

x

is the vector x of length n, containing the abscissas of the data points that define the spline. The elements of x must be distinct and sorted into ascending order. Specified as: a one-dimensional array of (at least) length n, containing numbers of the data type indicated in Table 156.

y

is the vector y of length n, containing the ordinates of the data points that define the spline. Specified as: a one-dimensional array of (at least) length n, containing numbers of the data type indicated in Table 156.

c

is the matrix C with elements c_{jk} for $j = 1, n$ and $k = 1, 4$ that contain the following:

If $init \leq 0$, all elements of c are undefined on entry.
If $init = 1$, c_{11} contains the spline derivative at x_1.
If $init = 2$, c_{21} contains the spline derivative at x_n.
If $init = 3$, c_{11} contains the spline derivative at x_1, and c_{21} contains the spline derivative at x_n.
If $init > 3$, c contains the coefficients of the spline computed for the data points (x_j, y_j) for $j = 1, n$ on a previous call to this subroutine.
Specified as: an n by (at least) 4 array, containing numbers of the data type indicated in Table 156.

n

is the number of elements in vectors x and y and the number of rows in matrix C—that is, the number of data points. Specified as: a fullword integer; $n \geq 0$.

$init$

indicates the following, where in those cases for uninitialized coefficients, this is the first call to this subroutine with the data in x and y:

If $init \leq 0$, the coefficients are uninitialized. The second derivatives of the spline at x_1 and x_n are set to zero. (These are free end conditions, also called natural boundary conditions.)
If \(\textit{init} = 1 \), the coefficients are uninitialized. The value in \(c_{11} \) is used as the spline derivative at \(x_1 \).

If \(\textit{init} = 2 \), the coefficients are uninitialized. The value in \(c_{21} \) is used as the spline derivative at \(x_n \).

If \(\textit{init} = 3 \), the coefficients are uninitialized. The value in \(c_{11} \) is used as the spline derivative at \(x_1 \) and the value in \(c_{21} \) is used as the spline derivative at \(x_n \).

If \(\textit{init} > 3 \), the coefficients in \(c \) were computed for data points \((x_j, y_j)\) for \(j = 1, n \) on a previous call to this subroutine.

Specified as: a fullword integer. It can have any value.

\(t \)

is the vector \(t \) of length \(m \), containing the abscissas at which the spline is evaluated. Specified as: a one-dimensional array of (at least) length \(m \), containing numbers of the data type indicated in Table 156 on page 931.

\(s \)

See “On Return.”

\(m \)

is the number of elements in vectors \(t \) and \(s \)—that is, the number of points at which the spline interpolation is evaluated. Specified as: a fullword integer; \(m \geq 0 \).

On Return

\(c \)

is the matrix \(C \), containing the coefficients of the spline through the data points \((x_j, y_j)\) for \(j = 1, n \). Returned as: an \(n \) by (at least) 4 array, containing numbers of the data type indicated in Table 156 on page 931.

\(\textit{init} \)

is an indicator that is set to indicate that the coefficients have been initialized. (If you call this subroutine again with the same data, this value should be specified for \(\textit{init} \).) Returned as: a fullword integer; \(\textit{init} = 4 \).

\(s \)

is the vector \(s \) of length \(m \), containing the resulting values of the spline; that is, each \(s_i \) is the value of the spline evaluated at \(t_i \). Returned as: a one-dimensional array of (at least) length \(m \), containing numbers of the data type indicated in Table 156 on page 931.

Notes

1. In your C program, argument \(\textit{init} \) must be passed by reference.

2. Vectors \(x \), \(y \), and \(t \) must have no common elements with matrix \(C \) and vector \(s \), and matrix \(C \) must have no common elements with vector \(s \); otherwise, results are unpredictable.

3. The elements of vector \(x \) must be distinct and must be sorted into ascending order; that is, \(x_1 < x_2 < \ldots < x_n \). Otherwise, results are unpredictable. For details on how to do this, see “ISORT, SSORT, and DSORT—Sort the Elements of a Sequence” on page 904.

Function: Interpolation is performed at specified abscissas, \(t_i \) for \(i = 1, m \), in vector \(t \), using the cubic spline passing through the data points:

\((x_j, y_j)\) for \(j = 1, n \)

where:
The value of the cubic spline at each \(t_i \) is returned in \(s_i \) for \(i = 1, m \). See references [15] and [54]. The coefficients of the spline, \(c_{jk} \) for \(j = 1, n \) and \(k = 1, 4 \), are returned in matrix \(C \). These coefficients can then be reused on subsequent calls to this subroutine, using the same data points \((x_j, y_j)\), but with new values of \(t_i \). The cubic spline values returned in \(s \) are computed using the coefficients as follows:

\[
s_i = c_{j1} + c_{j2} (x_j - t_i) + c_{j3} (x_j - t_i)^2 + c_{j4} (x_j - t_i)^3 \quad \text{for} \quad i = 1, m
\]

where:

\[
j = 1 \quad \text{for} \quad t_i \leq x_1
\]
\[
j = k \quad \text{for} \quad x_1 < t_i \leq x_n \text{ such that } x_{k-1} < t_i \leq x_k
\]
\[
j = n \quad \text{for} \quad x_n < t_i
\]

The values specified for \(m \) and \(\text{init} \) indicate which combination of functions are performed by this subroutine:

- If \(m = 0 \) and \(\text{init} > 3 \), no computation is performed.
- If \(m = 0 \) and \(\text{init} \leq 3 \), only the coefficients are computed, and no interpolation is performed.
- If \(m \neq 0 \) and \(\text{init} > 3 \), the coefficients are not computed, and the interpolation is performed.
- If \(m \neq 0 \) and \(\text{init} \leq 3 \), the coefficients are computed, and the interpolation is performed.

In addition, if \(n = 0 \), no computation is performed.

The values specified for \(n \) and \(\text{init} \) determine the type of spline function:

- If \(n = 1 \), the constructed spline is a constant function.
- If \(n = 2 \) and \(\text{init} = 0 \), the constructed spline is a line through the points.
- If \(n = 2 \) and \(\text{init} = 1 \), the constructed spline is a cubic function through the points whose derivative at \(x_1 \) is \(c_{11} \).
- If \(n = 2 \) and \(\text{init} = 2 \), the constructed spline is a cubic function through the points whose derivative at \(x_n \) is \(c_{21} \).
- If \(n = 2 \) and \(\text{init} = 3 \), the constructed spline is a cubic function through the points whose derivative at \(x_1 \) is \(c_{11} \) and at \(x_n \) is \(c_{21} \).

Error Conditions

\textit{Computational Errors: } None

\textit{Input-Argument Errors}

1. \(n < 0 \)
2. \(m < 0 \)

Example 1: This example computes the spline coefficients through a set of data points with no derivative value specified. It also evaluates the spline at the abscissas specified in T. On output, INIT and C are updated with new values.

Call Statement and Input
Example 2: This example computes the spline coefficients through a set of data points with a derivative value specified at the right endpoint. It also evaluates the spline at the abscissas specified in \(T \). On output, \(\text{INIT} \) and \(\text{C} \) are updated with new values.

Call Statement and Input

\[
\begin{bmatrix}
0.000 & -0.868 & 0.000 & -0.132 \\
1.000 & -1.264 & 0.396 & -0.132 \\
2.000 & -0.076 & -1.585 & 0.660 \\
1.100 & 1.267 & 0.243 & -0.609 \\
0.000 & 1.010 & 0.014 & 0.076 \\
-1.000 & 0.995 & 0.000 & 0.005 \\
\end{bmatrix}
\]

\[\text{INIT} = 4 \]
\[\text{S} = (-2.792, 1.649, 1.100, -2.000) \]
SCSINT and DCSINT

\[
C = \begin{bmatrix}
0.000 & -0.865 & 0.000 & -0.135 \\
1.000 & -1.270 & 0.405 & -0.135 \\
2.000 & -0.054 & -1.621 & 0.675 \\
1.100 & 1.188 & 0.379 & -0.667 \\
0.000 & 1.303 & -0.494 & 0.291 \\
-1.000 & 0.100 & 1.897 & -0.797 \\
\end{bmatrix}
\]

\[
\text{INIT} = 4 \\
S = (-2.81, 1.652, 1.100, 1.794)
\]

Example 3: This example computes the spline coefficients through a set of data points with a derivative value specified at both endpoints. It does not evaluate the spline at any points. On output, INIT and C are updated with new values. Because arrays are not needed for arguments \(t \) and \(s \), the value 0 is specified in their place.

Call Statement and Input

\[
\begin{align*}
&\text{X Y C N INIT T S M} \\
&\text{CALL SCSINT(X, Y, C, 6, 3, :z\#ro\#ot, :z\#ro\#ot, :z\#ro\#ot) }
\end{align*}
\]

\[
\begin{align*}
&X = (1.000, 2.000, 3.000, 4.000, 5.000, 6.000) \\
&Y = (:z\#ro\#ot,:z\#ro\#ot,:z\#ro\#ot,:z\#ro\#ot, 1.000, 2.000, 1.100, 0.000, -1.000)
\end{align*}
\]

Output

\[
\begin{bmatrix}
0.000 & 1.000 & 3.230 & 1.230 \\
1.000 & -1.770 & -0.460 & 1.230 \\
2.000 & 0.879 & -1.389 & 0.310 \\
1.100 & 1.152 & 0.316 & -0.568 \\
0.000 & 1.312 & -0.476 & 0.264 \\
-1.000 & -0.100 & 1.888 & -0.788 \\
\end{bmatrix}
\]

\[
\text{INIT} = 4 \\
\]

Example 4: This example evaluates the spline at a set of points, using the coefficients obtained in Example 3.

Call Statement and Input

\[
\begin{align*}
&\text{X Y C N INIT T S M} \\
&\text{CALL SCSINT(X, Y, C, 6, 4, T, S, 4) }
\end{align*}
\]

\[
\begin{align*}
&X = (1.000, 2.000, 3.000, 4.000, 5.000, 6.000) \\
&Y = (:z\#ro\#ot,:z\#ro\#ot,:z\#ro\#ot,:z\#ro\#ot, 1.000, 2.000, 1.100, 0.000, -1.000)
\end{align*}
\]
SCSINT and DCSINT

\[C = \text{(same as output } C \text{ in Example 3) } \]
\[T = (-1.000, 2.500, 4.000, 7.000) \]

Output

\[C = \text{(same as output } C \text{ in Example 3) } \]
\[S = (24.762, 1.731, 1.100, 1.776) \]
\[\text{INIT} = 4 \]
SCSIN2 and DCSIN2—Two-Dimensional Cubic Spline Interpolation

These subroutines compute the interpolation values at a specified set of points, using data defined on a rectangular mesh in the x-y plane.

Table 157. Data Types

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>x, y, Z, t, u, aux, S</td>
<td>SCSIN2</td>
</tr>
<tr>
<td>Short-precision real</td>
<td>SCSIN2</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DCSIN2</td>
</tr>
</tbody>
</table>

Syntax

Fortran

```
CALL SCSIN2 | DCSIN2 (x, y, z, n1, n2, ldz, t, u, m1, m2, s, lds, aux, naux)
```

C and C++

```
scsin2 | dcsin2 (x, y, z, n1, n2, ldz, t, u, m1, m2, s, lds, aux, naux);
```

PL/I

```
CALL SCSIN2 | DCSIN2 (x, y, z, n1, n2, ldz, t, u, m1, m2, s, lds, aux, naux);
```

On Entry

x

is the vector x of length $n1$, containing the x-coordinates of the data points that define the spline. The elements of x must be distinct and sorted into ascending order. Specified as: a one-dimensional array of (at least) length $n1$, containing numbers of the data type indicated in Table 157.

y

is the vector y of length $n2$, containing the y-coordinates of the data points that define the spline. The elements of y must be distinct and sorted into ascending order. Specified as: a one-dimensional array of (at least) length $n2$, containing numbers of the data type indicated in Table 157.

z

is the matrix Z, containing the data at (x_i, y_j) for $i = 1, n1$ and $j = 1, n2$ that defines the spline. Specified as: an ldz by (at least) $n2$ array, containing numbers of the data type indicated in Table 157.

$n1$

is the number of elements in vector x and the number of rows in matrix Z—that is, the number of x-coordinates at which the spline is defined. Specified as: a fullword integer; $n1 \geq 0$.

$n2$

is the number of elements in vector y and the number of columns in matrix Z—that is, the number of y-coordinates at which the spline is defined. Specified as: a fullword integer; $n2 \geq 0$.

ldz

is the leading dimension of the array specified for z. Specified as: a fullword integer; $ldz > 0$ and $ldz \geq n1$.

t

is the vector t of length $m1$, containing the x-coordinates at which the spline is evaluated. Specified as: a one-dimensional array of (at least) length $m1$, containing numbers of the data type indicated in Table 157.

u

is the vector u of length $m2$, containing the y-coordinates at which the spline is evaluated. Specified as: a one-dimensional array of (at least) length $m2$, containing numbers of the data type indicated in Table 157.
$m1$
is the number of elements in vector t—that is, the number of x-coordinates at which the spline interpolation is evaluated. Specified as: a fullword integer; $m1 \geq 0$.

$m2$
is the number of elements in vector u—that is, the number of y-coordinates at which the spline interpolation is evaluated. Specified as: a fullword integer; $m2 \geq 0$.

s
See “On Return.”

lds
is the leading dimension of the array specified for s. Specified as: a fullword integer; $lds > 0$ and $lds \geq m1$.

aux
has the following meaning:
If $naux = 0$ and error 2015 is unrecoverable, aux is ignored.
Otherwise, it is the storage work area used by this subroutine. Its size is specified by $naux$.
Specified as: an area of storage, containing numbers of the data type indicated in Table 155 on page 928. On output, the contents are overwritten.

$naux$
is the size of the work area specified by aux—that is, the number of elements in aux. Specified as: a fullword integer, where:
If $naux = 0$ and error 2015 is unrecoverable, SCSIN2 and DCSIN2 dynamically allocate the work area used by the subroutine. The work area is deallocated before control is returned to the calling program.
Otherwise, $naux \geq (10)(\max(n1, n2))+(n2+1)(m1)+2(m2)$.

On Return

s
is the matrix S with elements s_{kh} that contain the interpolation values at (t_k, u_h) for $k = 1, m1$ and $h = 1, m2$. Returned as: an lds by (at least) $m2$ array, containing numbers of the data type indicated in Table 157 on page 937.

Notes
1. The cyclic reduction method used to solve the equations in this subroutine can generate underflows on well-scaled problems. This does not affect accuracy, but it may decrease performance. For this reason, you may want to disable underflow before calling this subroutine.
2. Vectors x, y, t, and u, matrix Z, and the aux work area must have no common elements with matrix S; otherwise, results are unpredictable.
3. The elements within vectors x and y must be distinct. In addition, the elements in the vectors must be sorted into ascending order; that is, $x_1 < x_2 < \ldots < x_{n1}$ and $y_1 < y_2 < \ldots < y_{n2}$. Otherwise, results are unpredictable. For details on how to do this, see “ISORT, SSORT, and DSORT—Sort the Elements of a Sequence” on page 904.
4. You have the option of having the minimum required value for $naux$ dynamically returned to your program. For details, see “Using Auxiliary Storage in ESSL” on page 30.
Function: Interpolation is performed at a specified set of points:

\[(t_k, u_h) \quad \text{for } k = 1, m1 \text{ and } h = 1, m2\]

by fitting bicubic spline functions with natural boundary conditions, using the following set of data, defined on a rectangular grid, \((x_i, y_j)\) for \(i = 1, n1\) and \(j = 1, n2\):

\[z_{ij} \quad \text{for } i = 1, n1 \text{ and } j = 1, n2\]

where \(t_k, u_h, x_i, y_j\), and \(z_{ij}\) are elements of vectors \(t, u, x, y\) and matrix \(Z\), respectively. In vectors \(x\) and \(y\), elements are assumed to be sorted into ascending order.

The interpolation involves two steps:

1. For each \(j\) from 1 to \(n2\), the single variable cubic spline:

\[s_{y_j}(x)\]

with natural boundary conditions, is constructed using the data points:

\[(x_i, z_{ij}) \quad \text{for } i = 1, n1\]

The following interpolation values are then computed:

\[s_{y_j}(t_k) \quad \text{for } k = 1, m1\]

2. For each \(k\) from 1 to \(m1\), the single variable cubic spline:

\[s_{t_k}(y),\]

with natural boundary conditions, is constructed using the data points:

\[(y_j, s_{y_j}(t_k)) \quad \text{for } j = 1, n2\]

The following interpolation values are then computed:

\[s_{kh} = s_{t_k}(u_h) \quad \text{for } l = 1, m2\]

See references [54] and [60]. Because natural boundary conditions (zero second derivatives at the end of the ranges) are used for the splines, unless the underlying function has these properties, interpolated values near the boundaries may be less satisfactory than elsewhere. If \(n1, n2, m1,\) or \(m2\) is 0, no computation is performed.

Error Conditions
Resource Errors: Error 2015 is unrecoverable, \(naux = 0 \), and unable to allocate work area.

Computational Errors: None

Input-Argument Errors

1. \(n1 < 0 \) or \(n1 > ldz \)
2. \(n2 < 0 \)
3. \(m1 < 0 \) or \(m1 > lds \)
4. \(m2 < 0 \)
5. \(ldz < 0 \)
6. \(lds < 0 \)
7. Error 2015 is recoverable or \(naux \neq 0 \), and \(naux \) is too small—that is, less than the minimum required value specified in the syntax for this argument. Return code 1 is returned if error 2015 is recoverable.

Example: This example computes the interpolated values at a specified set of points, given by \(T \) and \(U \), from a set of data points defined on a rectangular mesh in the x-y plane, using \(X \), \(Y \), and \(Z \).

Call Statement and Input

\[
\begin{array}{ccccccccccl}
X & Y & Z & N1 & N2 & LDZ & T & U & M1 & M2 & S & LDS & AUX & NAUX \\
\mid | | | | | | | | | | | | | | \\
\end{array}
\]

\[
\text{CALL SCSIN2}(X , Y , Z , 6 , 5 , 6 , T , U , 4 , 3 , S , 4 , AUX , 90)
\]

\[
\begin{array}{c}
X = (0.0, 0.2, 0.3, 0.4, 0.5, 0.7) \\
Y = (0.0, 0.2, 0.3, 0.4, 0.6)
\end{array}
\]

\[
Z = \begin{bmatrix}
0.000 & 0.008 & 0.027 & 0.064 & 0.216 \\
0.008 & 0.016 & 0.035 & 0.072 & 0.224 \\
0.027 & 0.035 & 0.054 & 0.091 & 0.243 \\
0.064 & 0.072 & 0.091 & 0.128 & 0.280 \\
0.125 & 0.133 & 0.152 & 0.189 & 0.341 \\
0.343 & 0.351 & 0.370 & 0.407 & 0.559
\end{bmatrix}
\]

\[
T = (0.10, 0.15, 0.25, 0.35) \\
U = (0.05, 0.25, 0.45)
\]

Output

\[
S = \begin{bmatrix}
0.001 & 0.017 & 0.095 \\
0.003 & 0.019 & 0.097 \\
0.016 & 0.031 & 0.110 \\
0.043 & 0.059 & 0.137
\end{bmatrix}
\]
Chapter 15. Numerical Quadrature

The numerical quadrature subroutines are described in this chapter.

Overview of the Numerical Quadrature Subroutines

The numerical quadrature subroutines provide Gaussian quadrature methods for integrating a tabulated function and a user-supplied function over a finite, semi-infinite, or infinite region of integration (Table 158).

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subroutine</th>
<th>Long-Precision Subroutine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical Quadrature Performed on a Set of Points</td>
<td>SPTNQ</td>
<td>DPTNQ</td>
<td>945</td>
</tr>
<tr>
<td>Numerical Quadrature Performed on a Function Using Gauss-Legendre Quadrature</td>
<td>SGLNQ†</td>
<td>DGLNQ†</td>
<td>948</td>
</tr>
<tr>
<td>Numerical Quadrature Performed on a Function Over a Rectangle Using Two-Dimensional Gauss-Legendre Quadrature</td>
<td>SGLNQ2†</td>
<td>DGLNQ2†</td>
<td>951</td>
</tr>
<tr>
<td>Numerical Quadrature Performed on a Function Using Gauss-Laguerre Quadrature</td>
<td>SGLGQ†</td>
<td>DGLGQ†</td>
<td>957</td>
</tr>
<tr>
<td>Numerical Quadrature Performed on a Function Using Gauss-Rational Quadrature</td>
<td>SGRAQ†</td>
<td>DGRAQ†</td>
<td>960</td>
</tr>
<tr>
<td>Numerical Quadrature Performed on a Function Using Gauss-Hermite Quadrature</td>
<td>SGHMQ†</td>
<td>DGHMQ†</td>
<td>964</td>
</tr>
</tbody>
</table>

† This subprogram is invoked as a function in a Fortran program.

Use Considerations

This section contains some key points about using the numerical quadrature subroutines.

Choosing the Method

The theoretical aspects of choosing the method to use for integration can be found in the references [26], [61], and [92].

Performance and Accuracy Considerations

1. There are n function evaluations for a method of order n. Because function evaluations are expensive in terms of computing time, you should weigh the considerations for computing time and accuracy in choosing a value for n.

2. To achieve optimal performance in the _GLNQ2 subroutines, specify the first variable integrated to be the variable having more points. This allows both the subroutine and the function evaluation to achieve optimal performance. Details on how to do this are given in “Notes” on page 952.
3. There are some ESSL-specific rules that apply to the results of computations on the workstation processors using the ANSI/IEEE standards. For details, see “What Data Type Standards Are Used by ESSL, and What Exceptions Should You Know About?” on page 43.

Programming Considerations for the SUBF Subroutine

This section describes how to design and code the subf subroutine for use by the numerical quadrature subroutines.

Designing SUBF

For the Gaussian quadrature subroutines, you must supply a separate subroutine that is callable by ESSL. You specify the name of the subroutine in the subf argument. This subroutine name is selected by you. You should design the subf subroutine so it receives, as input, a tabulated set of points at which the integrand is evaluated, and it returns, as output, the values of the integrand evaluated at these points.

Depending on the numerical quadrature subroutine that you use, the subf subroutine is defined in one of the two following ways:

- For _GLNQ, _GLGQ, _GRAQ, and _GHMQ, you define the subf subroutine with three arguments: t, y, and n, where:

 t is an input array, referred to as T, of tabulated Gaussian quadrature abscissas, containing n real numbers, where t_i is automatically provided by the ESSL subroutine and is determined by n and the Gaussian quadrature method chosen.

 y is an output array, referred to as Y, containing n real numbers, where for the integrand, the following is true: y_i = f(t_i) for i = 1, n.

 n is a positive integer indicating the number of elements in T and Y.

- For _GLNQ2, you define the subf subroutine with six arguments: s, n1, t, n2, z, and ldz, where:

 s is an input array, referred to as S, of tabulated Gaussian quadrature abscissas, containing n1 real numbers, where s_i is automatically provided by the ESSL subroutine and is determined by n1 and the Gaussian quadrature method.

 n1 is a positive integer indicating the number of elements in S and the number of rows to be used in array Z.

 t is an input array, referred to as T, of tabulated Gaussian quadrature abscissas, containing n2 real numbers, where t_i is automatically provided by the ESSL subroutine and is determined by n2 and the Gaussian quadrature method.

 n2 is a positive integer indicating the number of elements in T and the number of columns to be used in array Z.

 z is an ldz by (at least) n2 output array, referred to as Z, of real numbers, where for the integrand, the following is true: z_ij = f(s_i, t_j) for i = 1, n1 and j = 1, n2.

 ldz is a positive integer indicating the size of the leading dimension of the array Z.
Coding and Setting Up SUBF in Your Program

Examples of coding a *subf* subroutine in Fortran are provided for each subroutine in this chapter. Examples of coding a *subf* subroutine in C, C++, and PL/I are provided in “Example 1” on page 953.

Depending on the programming language you use for your program that calls the numerical quadrature subroutines, you have a choice of one or more languages that you can use for writing *subf*. These rules and other language-related coding rules for setting up *subf* in your program are described in the following sections:

- “Setting Up a User-Supplied Subroutine for ESSL in Fortran” on page 109
- “Setting Up a User-Supplied Subroutine for ESSL in C” on page 129
- “Setting Up a User-Supplied Subroutine for ESSL in C++” on page 145
Numerical Quadrature Subroutines

This section contains the numerical quadrature subroutine descriptions.
SPTNQ and DPTNQ—Numerical Quadrature Performed on a Set of Points

These subroutines approximate the integral of a real valued function specified in tabular form, \((x_i, y_i)\) for \(i = 1, n\). For more than four points, an error estimate is returned along with the resulting value.

Table 159. Data Types

<table>
<thead>
<tr>
<th></th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x, y, xyint, eest)</td>
<td>SPTNQ</td>
</tr>
<tr>
<td>Short-precision real</td>
<td>SPTNQ</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DPTNQ</td>
</tr>
</tbody>
</table>

Syntax

<table>
<thead>
<tr>
<th>Language</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>`CALL SPTNQ</td>
</tr>
<tr>
<td>C and C++</td>
<td>`sptnq</td>
</tr>
<tr>
<td>PL/I</td>
<td>`CALL SPTNQ</td>
</tr>
</tbody>
</table>

On Entry

- **\(x\)** is the vector \(x\) of length \(n\), containing the abscissas of the data points to be integrated. The elements of \(x\) must be distinct and sorted into ascending or descending order. Specified as: a one-dimensional array of (at least) length \(n\), containing numbers of the data type indicated in Table 159.

- **\(y\)** is the vector \(y\) of length \(n\), containing the ordinates of the data points to be integrated. Specified as: a one-dimensional array of (at least) length \(n\), containing numbers of the data type indicated in Table 159.

- **\(n\)** is the number of elements in vectors \(x\) and \(y\)—that is, the number of data points. The value of \(n\) determines the algorithm used by this subroutine. For details, see “Function” on page 946. Specified as: a fullword integer; \(n \geq 2\).

- **\(xyint\)**
 - See “On Return.”
- **\(eest\)**
 - See “On Return.”

On Return

- **\(xyint\)** is the approximation \(xyint\) of the integral. Returned as: a number of the data type indicated in Table 159.

- **\(eest\)** has the following meaning, where:
 - If \(n < 5\), it is undefined and is set to 0.
 - If \(n \geq 5\), it is an estimate, \(eest\), of the error in the integral, where \(xyint + eest\) tends to give a better approximation to the integral than \(xyint\). For details, see references [26] and [61].

 Returned as: a number of the data type indicated in Table 159.
Notes

1. In your C program, arguments $xyint$ and $eest$ must be passed by reference.

2. The elements of vector x must be distinct—that is, $x_i \neq x_j$ for $i \neq j$—and they must be sorted into ascending or descending order; otherwise, results are unpredictable. For how to do this, see “ISORT, SSORT, and DSORT—Sort the Elements of a Sequence” on page 904.

Function: The integral is approximated for a real valued function specified in tabular form, (x_i, y_i) for $i = 1, n$, where x_i are distinct and sorted into ascending or descending order, and $n \geq 2$. If $y_i = f(x_i)$ for $i = 1, n$, then on output, $xyint$ is an approximation to the integral of the following form:

$$\int_{x_i}^{x_n} f(x) \, dx$$

The algorithm used by this subroutine is based on the number of data points used in the computation, where:

- If $n = 2$, the trapezoid rule is used to do the integration.
- If $n = 3$, the parabola through the three points is integrated.
- If $n \geq 4$, the method of Gill and Miller is used to do the integration.

For $n \geq 5$, an estimate of the error $eest$ is returned. For the method of Gill and Miller, it is shown that adding the estimate of the error $eest$ to the result $xyint$ often gives a better approximation to the integral than the result $xyint$ by itself. For $n < 5$, an estimate of the error is not returned. In this case, a value of 0 is returned for $eest$. See references [61] and [26].

Error Conditions

Computational Errors: None

Input-Argument Errors: $n < 2$

Example 1: This example shows the result of an integration, where the abscissas in X are sorted into ascending order.

Call Statement and Input

```
X  Y  N  XYINT  EEST
|   |   |      |     |
CALL SPTNQ( X , Y , 10 , XYINT , EEST )
```

```
X = (0.0, 0.4, 1.0, 1.5, 2.1, 2.6, 3.0, 3.4, 3.9, 4.3)
Y = (1.0, 2.0, 3.0, 4.0, 5.0, 4.5, 4.0, 3.0, 3.5, 3.3)
```

Output

```
XYINT = 15.137
EEST = -0.003
```

Example 2: This example shows the result of an integration, where the abscissas in X are sorted into descending order.
Call Statement and Input

\[
\begin{array}{cccccc}
X & Y & N & XYINT & EEST \\
\hline
\end{array}
\]

CALL SPTNQ(X, Y, 10, XYINT, EEST)

\[
\begin{align*}
X &= (4.3, 3.9, 3.4, 3.0, 2.6, 2.1, 1.5, 1.0, 0.4, 0.0) \\
Y &= (3.3, 3.5, 3.0, 4.0, 4.5, 5.0, 4.0, 3.0, 2.0, 1.0) \\
\end{align*}
\]

Output

\[
\begin{align*}
XYINT &= -15.137 \\
EEST &= 0.003 \\
\end{align*}
\]
SGLNQ and DGLNQ

SGLNQ and DGLNQ—Numerical Quadrature Performed on a Function Using Gauss-Legendre Quadrature

These functions approximate the integral of a real valued function over a finite interval, using the Gauss-Legendre Quadrature method of specified order.

Table 160. Data Types

<table>
<thead>
<tr>
<th>a, b, Result</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>SGLNQ</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DGLNQ</td>
</tr>
</tbody>
</table>

Syntax

<table>
<thead>
<tr>
<th>Language</th>
<th>Declaration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>SGLNQ</td>
</tr>
<tr>
<td>C and C++</td>
<td>sglq</td>
</tr>
<tr>
<td>PL/I</td>
<td>SGLNQ</td>
</tr>
</tbody>
</table>

On Entry

subf

is the user-supplied subroutine that evaluates the integrand function. The subroutine should be defined with three arguments: t, y, and n. For details, see “Programming Considerations for the SUBF Subroutine” on page 942.

Specified as: *subf* must be declared as an external subroutine in your application program. It can be whatever name you choose.

a

is the lower limit of integration, a. Specified as: a number of the data type indicated in Table 160.

b

is the upper limit of integration, b. Specified as: a number of the data type indicated in Table 160.

n

is the order of the quadrature method to be used. Specified as: a fullword integer; n = 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 20, 24, 32, 40, 48, 64, 96, 128, or 256.

On Return

Function value

is the approximation of the integral. Returned as: a number of the data type indicated in Table 160.

Notes

1. Declare the DGLNQ function in your program as returning a long-precision real number. Declare the SGLNQ, if necessary, as returning a short-precision real number.

2. The subroutine specified for *subf* must be declared as external in your program. Also, data types used by *subf* must agree with the data types specified by this ESSL subroutine. The variable *x*, described under “Function” on page 949, and
the argument n correspond to the subf arguments t and n, respectively. For details on how to set up the subroutine, see “Programming Considerations for the SUBF Subroutine” on page 942.

Function: The integral is approximated for a real valued function over a finite interval, using the Gauss-Legendre Quadrature method of specified order. The region of integration is from a to b. The method of order n is theoretically exact for integrals of the following form, where f is a polynomial of degree less than $2n$:

$$\int_a^b f(x)dx$$

The method of order n is a good approximation when your integrand is closely approximated by a function of the form $f(x)$, where f is a polynomial of degree less than $2n$. See references [26] and [92]. The result is returned as the function value.

Error Conditions

Computational Errors: None

Input-Argument Errors: n is not an allowable value, as listed in the syntax for this argument.

Example: This example shows how to compute the integral of the function f given by:

$$f(x) = x^2 + e^x$$

over the interval (0.0, 2.0), using the Gauss-Legendre method with 10 points:

$$\int_{0.0}^{2.0} (x^2 + e^x)dx$$

The user-supplied subroutine FUN1, which evaluates the integrand function, is coded in Fortran as follows:

```fortran
SUBROUTINE FUN1 (T,Y,N)
INTEGER*4 N
REAL*4 T(*),Y(*)
DO 1 I=1,N
  1   Y(I)=T(I)**2+EXP(T(I))
RETURN
END
```

Program Statements and Input
EXTERNAL FUN1
.
.
.

SUBF A B N
| | | |
XINT = SGLNQ(FUN1 , 0.0 , 2.0 , 10)
.
.
.

FUN1 = (see above)

Output
XINT = 9.056
SGLNQ2 and DGLNQ2—Numerical Quadrature Performed on a Function Over a Rectangle Using Two-Dimensional Gauss-Legendre Quadrature

These functions approximate the integral of a real valued function of two variables over a rectangular region, using the Gauss-Legendre Quadrature method of specified order in each variable.

Syntax

<table>
<thead>
<tr>
<th>Data Types</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>SGLNQ2</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DGLNQ2</td>
</tr>
</tbody>
</table>

On Entry

subf

is the user-supplied subroutine that evaluates the integrand function. The subroutine should be defined with six arguments: \(s, n1, t, n2, z, \) and \(ldz \). For details, see “Programming Considerations for the SUBF Subroutine” on page 942.

Specified as: \(subf \) must be declared as an external subroutine in your application program. It can be whatever name you choose.

a

is the lower limit of integration, \(a \), for the first variable integrated. Specified as: a number of the data type indicated in Table 161.

b

is the upper limit of integration, \(b \), for the first variable integrated. Specified as: a number of the data type indicated in Table 161.

n1

is the order of the quadrature method to be used for the first variable integrated. Specified as: a fullword integer; \(n1 = 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 20, 24, 32, 40, 48, 64, 96, 128, \) or 256.

c

is the lower limit of integration, \(c \), for the second variable integrated. Specified as: a number of the data type indicated in Table 161.

d

is the upper limit of integration, \(d \), for the second variable integrated. Specified as: a number of the data type indicated in Table 161.

n2

is the order of the quadrature method to be used for the second variable integrated. Specified as: a fullword integer; \(n2 = 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 20, 24, 32, 40, 48, 64, 96, 128, \) or 256.

z

is the matrix \(Z \), containing the \(n1 \) rows and \(n2 \) columns of data used to evaluate the integrand function. (The output values from the \(subf \) subroutine...
SGLNQ2 and DGLNQ2

are placed in Z. Specified as: an ldz by (at least) n2 array, containing
numbers of the data type indicated in Table 161.

ldz
is the size of the leading dimension of the array specified for z. Specified as: a
fullword integer; ldz > 0 and ldz ≥ n1.

On Return

Function value
is the approximation of the integral. Returned as: a number of the data type
indicated in Table 161 on page 951.

Notes

1. Declare the DGLNQ2 function in your program as returning a long-precision
real number. Declare the SGLNQ2 function, if necessary, as returning a
short-precision real number.

2. The subroutine specified for subf must be declared as external in your program.
Also, data types used by subf must agree with the data types specified by this
ESSL subroutine. For details on how to set up the subroutine, see
"Programming Considerations for the SUBF Subroutine" on page 942.

Function: The integral:

\[\int_{a}^{b} \int_{c}^{d} f(s, t) \, ds \, dt \]

is approximated for a real valued function of two variables s and t, over a
rectangular region, using the Gauss-Legendre Quadrature method of specified
order in each variable. The region of integration is:

(a, b) for s
(c, d) for t

The method gives a good approximation when your integrand is closely
approximated by a function of the form f(s, t), where f is a polynomial of degree
less than 2(n1) for s and 2(n2) for t. See the function description for “SGLNQ and
DGLNQ—Numerical Quadrature Performed on a Function Using Gauss-Legendre
Quadrature” on page 948 and references [26] and [92]. The result is returned as
the function value.

Special Usage: To achieve optimal performance in this subroutine and in the
functional evaluation, specify the first variable integrated in this subroutine as the
variable having more points. The first variable integrated is the variable in the inner
integral. For example, in the following integration, x is the first variable integrated:

\[\int_{a}^{b} \int_{c}^{d} f(x, y) \, dx \, dy \]

This is the suggested order of integration if the x variable has more points than the
y variable. On the other hand, if the y variable has more points, you make y the
first variable integrated.
Because the order of integration does not matter to the resulting approximation, you may be able to reverse the order that x and y are integrated and get better performance. This can be expressed as:

$$\int_{u_1}^{u_2} \int_{r_1}^{r_2} f(x, y) \, dx \, dy = \int_{r_1}^{r_2} \int_{u_1}^{u_2} f(x, y) \, dy \, dx$$

Results are mathematically equivalent. However, because the algorithm is computed in a different way, results may not be bitwise identical.

Table 162 shows how to assign your variables to the `_GLNQ2` and `subf` arguments for the x-y integration shown on the left and for the y-x integration shown on the right. For examples of how to do each of these, see “Example 1” and “Example 2” on page 955.

<table>
<thead>
<tr>
<th>_GLNQ2 and SUBF Arguments</th>
<th>Variables for x-y Integration</th>
<th>Variables for y-x Integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>For _GLNQ2:</td>
<td>r_1</td>
<td>u_1</td>
</tr>
<tr>
<td>a</td>
<td>r_2</td>
<td>u_2</td>
</tr>
<tr>
<td>b</td>
<td>(order for x)</td>
<td>(order for y)</td>
</tr>
<tr>
<td>n_1</td>
<td>u_1</td>
<td>r_1</td>
</tr>
<tr>
<td>c</td>
<td>u_2</td>
<td>r_2</td>
</tr>
<tr>
<td>d</td>
<td>(order for y)</td>
<td>(order for x)</td>
</tr>
<tr>
<td>n_2</td>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>For subf:</td>
<td>y</td>
<td>x</td>
</tr>
<tr>
<td>s</td>
<td>(order for x)</td>
<td>(order for y)</td>
</tr>
<tr>
<td>t</td>
<td>(order for y)</td>
<td>(order for x)</td>
</tr>
<tr>
<td>n_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Error Conditions

Computational Errors: None

Input-Argument Errors

1. $ldz \leq 0$
2. $n_1 > ldz$
3. n_1 or n_2 is not an allowable value, as listed in the syntax for this argument.

Example 1: This example shows how to compute the integral of the function f given by:

$$f(x, y) = e^x \sin y$$

over the intervals $(0.0, 2.0)$ for the first variable x and $(-2.0, -1.0)$ for the second variable y, using the Gauss-Legendre method with 10 points in the x variable and 5 points in the y variable:

$$\int_{-2.0}^{-1.0} \int_{0.0}^{2.0} (e^x \sin y) \, dx \, dy$$
Because the variable x has more points, it is the first variable integrated. This allows the SGLNQ2 subroutine and the FUN1 evaluation to achieve optimal performance. Therefore, the x and y variables correspond to S and T in the FUN1 subroutine. Also, the x and y variables correspond to the A, B, $N1$ and C, D, $N2$ sets of arguments, respectively, for SGLNQ2.

Using Fortran for SUBF: The user-supplied subroutine FUN1, which evaluates the integrand function, is coded in Fortran as follows:

```fortran
SUBROUTINE FUN1 (S,N1,T,N2,Z,LDZ)
  INTEGER*4 N1,N2,LDZ
  REAL*4 S(*),T(*),Z(LDZ,*)
  DO 1 J=1,N2
     DO 2 I=1,N1
     2  Z(I,J)=EXP(S(I))*SIN(T(J))
 1 CONTINUE
  RETURN
END
```

Note: The computation for this user-supplied subroutine FUN1 can also be performed by using the following statements in place of the above DO loops, using T1 and T2 as temporary storage areas:

```fortran
DO 1 I=1,N1
   1 T1(I)=EXP(S(I))
DO 2 J=1,N2
   2 T2(J)=SIN(T(J))
DO 3 J=1,N2
   DO 4 I=1,N1
     4 Z(I,J)=T1(I)*T2(J)
3 CONTINUE
```

When coding your application, this is the preferred technique. It reduces the number of evaluations performed and, therefore, provides better performance.

Using C for SUBF: The user-supplied subroutine FUN1, which evaluates the integrand function, is coded in C as follows:

```c
void fun1(s, n1, t, n2, z, ldz)
float *s, *t, *z;
int *n1, *n2, *ldz;
{
  int i, j;
  for(j = 0; j < *n2; ++j, z += ldz)
  {
    for(i = 0; i < *n1; ++i)
      z[i] = exp(s[i]) * sin(t[j]);
  }
}
```

Using C++ for SUBF: The user-supplied subroutine FUN1, which evaluates the integrand function, is coded in C++ as follows:
void fun1(float *s, int *n1, float *t, int *n2, float *z, int *ldz)
{
 int i, j;
 for(j = 0; j < *n2; ++j, z += *ldz)
 {
 for(i = 0; i < *n1; ++i)
 z[i] = exp(s[i]) * sin(t[j]);
 }
}

Using PL/I for SUBF: The user-supplied subroutine FUN1, which evaluates the integrand function, is coded in PL/I as follows:

 FUN1: PROCEDURE(S,N1,T,N2,Z,LDZ) OPTIONS(FORTRAN,NOMAP);
 DCL (N1,N2,LDZ,I,J) REAL FIXED BINARY(31);
 DCL (S(1),T(1),Z(5,1)) REAL FLOAT DEC(16) ALIGNED CONNECTED;
 DO J=1 TO N1;
 DO I=1 TO N2;
 Z(I,J)=EXP(S(J))*SIN(T(I));
 END;
 END;
 RETURN;
END FUN1;

Program Statements and Input
EXTERNAL FUN1.
.
SUBF A B N1 C D N2 Z LDZ
| | | | | | | | |
XYINT = SGLNQ2(FUN1 , 0.0 , 2.0 , 10 , -2.0 , -1.0 , 5 , Z , 10)
.
.
FUN1 = (see sections above)
Z = (not relevant)

Output
XYINT = -6.1108

Example 2: This example shows how to reverse the order of integration of the variables x and y. It computes the integral of the function f given by:

 \[f(x, y) = \cos x \sin y \]

over the intervals (0.0, 1.0) for the variable x and (0.0, 20.0) for the variable y, using the Gauss-Legendre method with 5 points in the x variable and 48 points in the y variable. Because the order of integration does not matter to the approximation:

\[
\int_{0.0}^{1.0} \int_{0.0}^{1.0} (\cos x \sin y) \, dx \, dy = \int_{0.0}^{1.0} \int_{0.0}^{20.0} (\cos x \sin y) \, dy \, dx
\]
the variable \(y \), having more points, is the first variable integrated (performing the integration shown on the right.) This allows the SGLNQ2 subroutine and the FUN1 evaluation to achieve optimal performance. Therefore, the \(x \) and \(y \) variables correspond to \(T \) and \(S \) in the FUN2 subroutine. Also, the \(x \) and \(y \) variables correspond to the \(C, D, N2 \) and \(A, B, N1 \) sets of arguments, respectively, for SGLNQ2.

The user-supplied subroutine FUN2, which evaluates the integrand function, is coded in Fortran as follows:

```fortran
SUBROUTINE FUN2 (S,N1,T,N2,Z,LDZ)
INTEGER*4 N1,N2,LDZ
REAL*4 S(*),T(*),Z(LDZ,*)
DO 1 J=1,N2
   DO 2 I=1,N1
      2 Z(I,J)=COS(T(J))*SIN(S(I))
 1 CONTINUE
RETURN
END
```

Note: The same coding principles for achieving good performance that are noted in “Example 1” on page 953 also apply to this user-supplied subroutine FUN2.

Program Statements and Input

```fortran
EXTERNAL FUN2.
.
.
.
SUBF A B N1 C D N2 Z LDZ
| | | | | | | | |
YXINT = SGLNQ2( FUN2 , 0.0 , 20.0 , 48 , 0.0 , 1.0 , 5 , Z , 48 )
.
.
.
FUN2 = (see above)
Z = (not relevant)
```

Output

```
YXINT  =  0.4981
```
SGLGQ and DGLGQ—Numerical Quadrature Performed on a Function Using Gauss-Laguerre Quadrature

These functions approximate the integral of a real valued function over a semi-infinite interval, using the Gauss-Laguerre Quadrature method of specified order.

<table>
<thead>
<tr>
<th>Table 163. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a, b, \text{Result})</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
</tbody>
</table>

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>SGLGQ</th>
<th>DGLGQ ((\text{subf}, a, b, n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>sglgq</td>
<td>dglgq ((\text{subf}, a, b, n));</td>
</tr>
<tr>
<td>PL/I</td>
<td>SGLGQ</td>
<td>DGLGQ ((\text{subf}, a, b, n));</td>
</tr>
</tbody>
</table>

On Entry

- **\(\text{subf} \)**
 - is the user-supplied subroutine that evaluates the integrand function. The subroutine should be defined with three arguments: \(t, y, \) and \(n \). For details, see “Programming Considerations for the SUBF Subroutine” on page 942.
 - Specified as: \(\text{subf} \) must be declared as an external subroutine in your application program. It can be whatever name you choose.

- **\(a \)**
 - has the following meaning, where:
 - If \(b > 0 \), it is the lower limit of integration.
 - If \(b < 0 \), it is the upper limit of integration.
 - Specified as: a number of the data type indicated in Table 163.

- **\(b \)**
 - is the scaling constant \(b \) for the exponential. Specified as: a number of the data type indicated in Table 163; \(b > 0 \) or \(b < 0 \).

- **\(n \)**
 - is the order of the quadrature method to be used. Specified as: a fullword integer; \(n = 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 20, 24, 32, 40, 48, \) or 64.

On Return

- **Function value**
 - is the approximation of the integral. Returned as: a number of the data type indicated in Table 163.

Notes

1. Declare the DGLGQ function in your program as returning a long-precision real number. Declare the SGLGQ function, if necessary, as returning a short-precision real number.
2. The subroutine specified for \(\text{subf} \) must be declared as external in your program. Also, data types used by \(\text{subf} \) must agree with the data types specified by this
ESSL subroutine. The variable \(x \), described under “Function” on page 958, and the argument \(n \) correspond to the \(\text{subf} \) arguments \(t \) and \(n \), respectively. For details on how to set up the subroutine, see “Programming Considerations for the \(\text{SUBF} \) Subroutine” on page 942.

Function: The integral is approximated for a real valued function over a semi-infinite interval, using the Gauss-Laguerre Quadrature method of specified order. The region of integration is:

- \((a, \infty)\) if \(b > 0 \)
- \((-\infty, a)\) if \(b < 0 \)

The method of order \(n \) is theoretically exact for integrals of the following form, where \(f \) is a polynomial of degree less than \(2n \):

\[
\int_a^\infty f(x)e^{-bx} \, dx \quad \text{if } b > 0
\]

\[
\int_{-\infty}^a f(x)e^{-bx} \, dx \quad \text{if } b < 0
\]

The method of order \(n \) is a good approximation when your integrand is closely approximated by a function of the form \(f(x)e^{-bx} \), where \(f \) is a polynomial of degree less than \(2n \). See references [26] and [92]. The result is returned as the function value.

Error Conditions

Computational Errors: None

Input-Argument Errors

1. \(b = 0 \)
2. \(n \) is not an allowable value, as listed in the syntax for this argument.

Example 1: This example shows how to compute the integral of the function \(f \) given by:

\[f(x) = \sin (3.0x)e^{-1.5x} \]

over the interval \((-2.0, \infty)\), using the Gauss-Laguerre method with 20 points:

\[
\int_{-2.0}^{\infty} (\sin(3.0x)e^{-1.5x}) \, dx
\]

The user-supplied subroutine \(\text{FUN1} \), which evaluates the integrand function, is coded in Fortran as follows:

```fortran
SUBROUTINE FUN1 (T,Y,N)
INTEGER*4 N
REAL*4 T(*),Y(*)
DO 1 I=1,N
  Y(I)=SIN(3.0*T(I))*EXP(-1.5*T(I))
1 RETURN
END
```
Program Statements and Input

EXTERNAL FUN1
.
.
.

```
SUBF A B N
    XINT = SGLGQ( FUN1, -2.0, 1.5, 20 )
.
.
FUN1 = (see above)
```

Output

```
XINT = 5.891
```

Example 2: This example shows how to compute the integral of the function \(f \) given by:

\[
f(x) = \sin(3.0x)e^{1.5x}
\]

over the interval \((-\infty, -2.0)\), using the Gauss-Laguerre method with 20 points:

\[
\int_{-\infty}^{-2.0} \sin(3.0x)e^{1.5x} dx
\]

The user-supplied subroutine \(\text{FUN2} \), which evaluates the integrand function, is coded in Fortran as follows:

```
SUBROUTINE FUN2 (T,Y,N)
INTEGER*4 N
REAL*4 T(*),Y(*),TEMP
DO 1 I=1,N
  1 Y(I)=SIN(3.0*T(I))*EXP(1.5*T(I))
RETURN
END
```

Program Statements and Input

EXTERNAL FUN2
.
.
.

```
SUBF A B N
    XINT = SGLGQ( FUN2, -2.0, -1.5, 20 )
.
.
FUN2 = (see above)
```

Output

```
XINT = -0.011
```
SGRAQ and DGRAQ—Numerical Quadrature Performed on a Function Using Gauss-Rational Quadrature

These functions approximate the integral of a real valued function over a semi-infinite interval, using the Gaussian-Rational quadrature method of specified order.

<table>
<thead>
<tr>
<th>Table 164. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>a, b, Result</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
</tbody>
</table>

Syntax

- **Fortran**

 SGRAQ | DGRAQ (subf, a, b, n)

- **C and C++**

 sgraq | dgraq (subf, a, b, n);

- **PL/I**

 SGRAQ | DGRAQ (subf, a, b, n);

On Entry

- **subf**

 is the user-supplied subroutine that evaluates the integrand function. The subroutine should be defined with three arguments: \(t \), \(y \), and \(n \). For details, see “Programming Considerations for the SUBF Subroutine” on page 942.

 Specified as: subf must be declared as an external subroutine in your application program. It can be whatever name you choose.

- **a**

 has the following meaning, where:

 - If \(a+b > 0 \), it is the lower limit of integration.
 - If \(a+b < 0 \), it is the upper limit of integration.

 Specified as: a number of the data type indicated in Table 164.

- **b**

 is the centering constant \(b \) for the integrand. Specified as: a number of the data type indicated in Table 164.

- **n**

 is the order of the quadrature method to be used. Specified as: a fullword integer; \(n = 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 20, 24, 32, 40, 48, 64, 96, 128, \) or 256.

On Return

- **Function value**

 is the approximation of the integral. Returned as: a number of the data type indicated in Table 164.
Notes

1. Declare the DGRAQ function in your program as returning a long-precision real number. Declare the SGRAQ function, if necessary, as returning a short-precision real number.

2. The subroutine specified for subf must be declared as external in your program. Also, data types used by subf must agree with the data types specified by this ESSL subroutine. The variable x, described under “Function,” and the argument n correspond to the subf arguments t and n, respectively. For details on how to set up the subroutine, see “Programming Considerations for the SUBF Subroutine” on page 942.

Function: The integral is approximated for a real valued function over a semi-infinite interval, using the Gauss-Rational quadrature method of specified order. The region of integration is:

\[(a, \infty) \quad \text{if} \ a+b > 0\]
\[(-\infty, a) \quad \text{if} \ a+b < 0\]

The method of order \(n\) is theoretically exact for integrals of the following form, where \(f\) is a polynomial of degree less than 2n:

\[
\int_{a}^{\infty} f\left(\frac{1}{x+b}\right) \frac{1}{(x+b)^2} \, dx \quad \text{if} \ a+b > 0
\]
\[
\int_{-\infty}^{a} f\left(\frac{1}{x+b}\right) \frac{1}{(x+b)^2} \, dx \quad \text{if} \ a+b < 0
\]

The method of order \(n\) is a good approximation when your integrand is closely approximated by a function of the following form, where \(f\) is a polynomial of degree less than 2n:

\[
f\left(\frac{1}{x+b}\right) \frac{1}{(x+b)^2}
\]

See references [26] and [92]. The result is returned as the function value to a Fortran, C, C++, or PL/I program.

Error Conditions

Computational Errors: None

Input-Argument Errors

1. \(a+b = 0\)
2. \(n\) is not an allowable value, as listed in the syntax for this argument.

Example 1: This example shows how to compute the integral of the function \(f\) given by:

\[f(x) = \left(e^{1.0/x}\right) / x^2\]
over the interval \((-\infty, -2.0)\), using the Gauss-Rational method with 10 points:

\[
\int_{-\infty}^{-2.0} \left(\frac{e^{1.0/x}}{x^2} \right) \, dx
\]

The user-supplied subroutine \textsc{fun1}, which evaluates the integrand function, is coded in Fortran as follows:

```fortran
SUBROUTINE FUN1 (T,Y,N)
INTEGER*4 N
REAL*4 T(\*),Y(\*),TEMP
DO 1 I=1,N
   TEMP=1.0/T(I)
1   Y(I)=EXP(TEMP)*TEMP**2
RETURN
END
```

Program Statements and Input

```fortran
EXTERNAL FUN1
.
.
.
SUBF A B N
|   |   |   |
XINT = SGRAQ( FUN1 , -2.0 , 0.0 , 10 )
.
.
FUN1 = (see above)
```

Output

XINT = 0.393

Example 2: This example shows how to compute the integral of the function \(f \) given by:

\[f(x) = (x-3.0)^{-2} + 10(x-3.0)^{-11} \]

over the interval \((4.0, \infty)\), using the Gauss-Rational method with 6 points:

\[
\int_{4.0}^{\infty} \left((x-3.0)^{-2} + 10(x-3.0)^{-11} \right) \, dx
\]

The user-supplied subroutine \textsc{fun2}, which evaluates the integrand function, is coded in Fortran as follows:
SUBROUTINE FUN2 (T,Y,N)
INTEGER*4 N
REAL*4 T(*),Y(*),TEMP
DO 1 I=1,N
 TEMP=1.0/((T(I)-3.0)
1 Y(I)=TEMP**2+10.0*TEMP**11
RETURN
END

Program Statements and Input
EXTERNAL FUN2

SUBF A B N
| | | |
XINT = SGRAQ(FUN2 , 4.0 , -3.0 , 6)
| | | |

FUN2 = (see above)

Output
XINT = 2.00
SGHMQ and DGHMQ

SGHMQ and DGHMQ—Numerical Quadrature Performed on a Function Using Gauss-Hermite Quadrature

These functions approximate the integral of a real valued function over the entire real line, using the Gauss-Hermite Quadrature method of specified order.

Table 165. Data Types

<table>
<thead>
<tr>
<th>a, b, Result</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>SGHMQ</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>DGHMQ</td>
</tr>
</tbody>
</table>

Syntax

<table>
<thead>
<tr>
<th>ForTRAN</th>
<th>SGHMQ</th>
<th>DGHMQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGHMQ</td>
<td>DGHMQ (subf, a, b, n)</td>
<td></td>
</tr>
<tr>
<td>C and C++</td>
<td>sghmq</td>
<td>dghmq</td>
</tr>
<tr>
<td></td>
<td>(subf, a, b, n);</td>
<td></td>
</tr>
<tr>
<td>PL/I</td>
<td>SGHMQ</td>
<td>DGHMQ</td>
</tr>
<tr>
<td></td>
<td>(subf, a, b, n);</td>
<td></td>
</tr>
</tbody>
</table>

On Entry

subf

is the user-supplied subroutine that evaluates the integrand function. The subroutine should be defined with three arguments: t, y, and n. For details, see “Programming Considerations for the SUBF Subroutine” on page 942.

Specified as: subf must be declared as an external subroutine in your application program. It can be whatever name you choose.

a

is the centering constant a for the exponential. Specified as: a number of the data type indicated in Table 165.

b

is the scaling constant b for the exponential. Specified as: a number of the data type indicated in Table 165; b > 0.

n

is the order of the quadrature method to be used. Specified as: a fullword integer; n = 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 20, 24, 32, 40, 48, 64, or 96.

On Return

Function value

is the approximation of the integral. Returned as: a number of the data type indicated in Table 165.

Notes

1. Declare the DGHMQ function in your program as returning a long-precision real number. Declare the SGHMQ function, if necessary, as returning a short-precision real number.

2. The subroutine specified for subf must be declared as external in your program. Also, data types used by subf must agree with the data types specified by this ESSL subroutine. The variable x, described under “Function” on page 965, and the argument n correspond to the subf arguments t and n, respectively. For
SGHMQ and DGHMQ

details on how to set up the subroutine, see “Programming Considerations for the SUBF Subroutine” on page 942.

Function: The integral is approximated for a real valued function over the entire real line, using the Gauss-Hermite Quadrature method of specified order. The region of integration is from $-\infty$ to ∞. The method of order n is theoretically exact for integrals of the following form, where f is a polynomial of degree less than $2n$:

$$\int_{-\infty}^{\infty} f(x)e^{-b(x-a)^2} \, dx$$

The method of order n is a good approximation when your integrand is closely approximated by a function of the following form, where f is a polynomial of degree less than $2n$:

$$f(x)e^{-b(x-a)^2}$$

See references [26] and [92]. The result is returned as the function value to a Fortran, C, C++, or PL/I program.

Error Conditions

Computational Errors: None

Input-Argument Errors

1. $b \leq 0$
2. n is not an allowable value, as listed in the syntax for this argument.

Example: This example shows how to compute the integral of the function f given by:

$$f(x) = x^2 e^{-2(x-5.0)^2}$$

over the interval $(-\infty, \infty)$, using the Gauss-Hermite method with 4 points:

$$\int_{-\infty}^{\infty} \left(x^2 e^{-2(x+5.0)^2}\right) \, dx$$

The user-supplied subroutine FUN1, which evaluates the integrand function, is coded in Fortran as follows:

```
SUBROUTINE FUN1 (T,Y,N)
  INTEGER+4  N
  REAL+4  T(*),Y(*)
  DO 1 I=1,N
    1  Y(I)=T(I)**2*EXP(-2.0*(T(I)+5.0)**2)
  RETURN
END
```
SGHMQ and DGHMQ

Program Statements and Input
EXTERNAL FUN1

SUBF A B N

XINT = SGHMQ(FUN1, -5.0, 2.0, 4)

FUN1 = (see above)

Output
XINT = 31.646
Chapter 16. Random Number Generation

The random number generation subroutines are described in this chapter.

Overview of the Random Number Generation Subroutines

Random number generation subroutines generate uniformly distributed random numbers or normally distributed random numbers (Table 166).

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subroutine</th>
<th>Long-Precision Subroutine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generate a Vector of Uniformly Distributed Random Numbers</td>
<td>SURAND</td>
<td>DURAND</td>
<td>968</td>
</tr>
<tr>
<td>Generate a Vector of Normally Distributed Random Numbers</td>
<td>SNRAND</td>
<td>DNRAND</td>
<td>971</td>
</tr>
<tr>
<td>Generate a Vector of Long Period Uniformly Distributed Random Numbers</td>
<td>SURXOR</td>
<td>DURXOR</td>
<td>975</td>
</tr>
</tbody>
</table>

Use Considerations

If you need a very long period random number generator, you should use SURXOR and DURXOR, rather than SURAND and DURAND, respectively. The very long period of the generator used by SURXOR and DURXOR, \(2^{1279} - 1\), makes it useful in modern statistical simulations in which the shorter period of other generators can be exhausted during a single run. As a result, if you need a large number of random numbers, you can use these subroutines, because with this generator, you are not be requesting more than a small percentage of the entire period of the generator.

Random Number Generation Subroutines

This section contains the random number generation subroutine descriptions.
SURAND and DURAND—Generate a Vector of Uniformly Distributed Random Numbers

These subroutines generate vector x of uniform (0,1) pseudo-random numbers, using the multiplicative congruential method with a user-specified seed.

Table 167. Data Types

<table>
<thead>
<tr>
<th>x</th>
<th>seed</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>Long-precision real</td>
<td>SURAND</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>Long-precision real</td>
<td>DURAND</td>
</tr>
</tbody>
</table>

Note: If you need a very long period random number generator, use SURXOR and DURXOR instead of these subroutines.

Syntax

Fortran

```fortran
CALL SURAND | DURAND (seed, n, x)
```

C and C++

```c
surand | durand (seed, n, x);
```

PL/I

```pli
CALL SURAND | DURAND (seed, n, x);
```

On Entry

seed

is the initial value used to generate the random numbers. Specified as: a number of the data type indicated in Table 167. It should be a whole number; that is, the fraction part should be 0. (If you specify a mixed number, it is truncated.) Its value must be $1.0 \leq \text{seed} < (2147483647.0 = 2^{31} - 1)$.

Note: seed is always a long-precision real number, even in SURAND.

n

is the number of random numbers to be generated. Specified as: a fullword integer; $n \geq 0$.

x

See “On Return.”

On Return

seed

is the new seed that is to be used to generate additional random numbers in subsequent invocations of SURAND or DURAND. Returned as: a number of the data type indicated in Table 167. It is a whole number whose value is $1.0 \leq \text{seed} < (2147483647.0 = 2^{31} - 1)$.

x

is a vector of length n, containing the uniform pseudo-random numbers with values between 0 and 1. Returned as: a one-dimensional array of (at least) length n, containing numbers of the data type indicated in Table 167.

Note: In your C program, argument seed must be passed by reference.
Function: The uniform \((0,1)\) pseudo-random numbers are generated as follows, using the multiplicative congruential method:

\[
 s_i = (a(s_{i-1})) \mod(m) = (a's_0) \mod(m) \\
 x_i = s_i / m \quad \text{for } i = 1, 2, ..., n
\]

where:

- \(s_i\) is a random sequence.
- \(x_i\) is a random number.
- \(s_0\) is the initial seed provided by the caller.
- \(a = 7^5 = 16807.0\)
- \(m = 2^{31} - 1 = 2147483647.0\)
- \(n\) is the number of random numbers to be generated.

See references [76] and [80]. If \(n\) is 0, no computation is performed, and the initial seed is unchanged.

Error Conditions

Computational Errors: None

Input-Argument Errors

1. \(n < 0\)
2. \(seed < 1.0\) or \(seed \geq 2147483647.0\)

Example 1: This example shows a call to SURAND to generate 10 random numbers.

Call Statement and Input

```
SEED   N   X
| | |
CALL SURAND( SEED , 10 , X )
```

SEED = 80629.0

Note: It is important to note that \(SEED\) is a long-precision number, even though \(X\) contains short-precision numbers.

Output

SEED = 759150100.0

\[
X = (0.6310323, \\
0.7603292, \\
0.7015232, \\
0.5014868, \\
0.4895853, \\
0.4602344, \\
0.1603608, \\
0.1832564, \\
0.9899062, \\
0.35335068)
\]

Example 2: This example shows a call to DURAND to generate 10 random numbers.
Call Statement and Input

\[
\text{SEED} \quad \text{N} \quad \text{X}
\]

\[
\text{CALL DURAND(SEED, 10, X)}
\]

SEED = 80629.0

Output

SEED = 759150100.0

\[
\text{X} = (0.6310323270182275, 0.7603201953509451, 0.7015232633340746, 0.5014868557925740, 0.4895853057920864, 0.4602344475967038, 0.1603607578018497, 0.1832563756887132, 0.9899062002030695, 0.3535068129904134)
\]
SNRAND and DNRAND—Generate a Vector of Normally Distributed Random Numbers

These subroutines generate vector x of normally distributed pseudo-random numbers, with a mean of 0 and a standard deviation of 1, using Polar methods with a user-specified seed.

Table 168. Data Types

<table>
<thead>
<tr>
<th>x, aux</th>
<th>$seed$</th>
<th>Subroutine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-precision real</td>
<td>Long-precision real</td>
<td>SNRAND</td>
</tr>
<tr>
<td>Long-precision real</td>
<td>Long-precision real</td>
<td>DNRAND</td>
</tr>
</tbody>
</table>

Syntax

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>CALL SNRAND</td>
</tr>
<tr>
<td>C and C++</td>
<td>snrand</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SNRAND</td>
</tr>
</tbody>
</table>

On Entry

- **seed**

is the initial value used to generate the random numbers. Specified as: a number of the data type indicated in Table 168. It must be a whole number; that is, the fraction part must be 0. Its value must be $1.0 \leq seed < (2^{31} - 1)$.

 Note: *seed* is always a long-precision real number, even in SNRAND.

- **n**

is the number of random numbers to be generated. Specified as: a fullword integer; n must be an even number and $n \geq 0$.

- **x**

 See “On Return.”

- **aux**

 has the following meaning:

 If $naux = 0$ and error 2015 is unrecoverable, aux is ignored.

 Otherwise, it is the storage work area used by this subroutine. Its size must be greater than or equal to $n/2$.

 Specified as: an area of storage, containing numbers of the data type indicated in Table 168. They can have any value.

- **naux**

is the size of the work area specified by aux. Specified as: a fullword integer, where:

 If $naux = 0$ and error 2015 is unrecoverable, SNRAND and DNRAND dynamically allocate the work area used by the subroutine. The work area is deallocated before control is returned to the calling program.

 Otherwise, $naux \geq n/2$.

On Return
se**ed**

is the new seed that is to be used to generate additional random numbers in subsequent invocations of **SNRAND** or **DNRAND**. Returned as: a number of the data type indicated in Table 168. It is a whole number whose value is $1.0 \leq \text{seed} < (2^{147483647.0} = 2^{31} - 1)$.

x

is a vector of length n, containing the normally distributed pseudo-random numbers. Returned as: a one-dimensional array of (at least) length n, containing numbers of the data type indicated in Table 168 on page 971.

Notes

1. In your C program, argument **seed** must be passed by reference.
2. Vector **x** must have no common elements with the storage area specified for **aux**; otherwise, results are unpredictable.
3. You have the option of having the minimum required value for **naux** dynamically returned to your program. For details, see “Using Auxiliary Storage in ESSL” on page 30.

Function:

The normally distributed pseudo-random numbers, with a mean of 0 and a standard deviation of 1, are generated as follows, using Polar methods with a user-specified seed. The Polar method, which this technique is based on, was developed by G. E. P. Box, M. E. Muller, and G. Marsaglia and is described in reference [76].

1. Using **seed**, a vector of uniform (0,1) pseudo-random numbers, u_i for $i = 1, n$, is generated by calling **SURAND** or **DURAND**, respectively. These u_i values are then used in the subsequent steps.
2. All (y_j, z_j) for $j = 1, n/2$ are set as follows, where each (y, z) is a point in the square -1 to 1:

 $$ y_j = 2u_{2j-1} - 1 $$

 $$ z_j = 2u_{2j} - 1 $$

3. All p_j for $j = 1, n/2$ are set as follows, where each p measures the square of the radius of (y, z):

 $$ p_j = y_j^2 + z_j^2 $$

 If $p_j \geq 1$, then p_j is discarded, and steps 1 through 3 are repeated until $p_j < 1$.

4. All x_i for $i = 1, n$ are set as follows to produce the normally distributed random numbers:

 $$ x_{2j-1} = y_j \left((-2 \ln p_j) / p_j\right)^{0.5} $$

 $$ x_{2j} = z_j \left((-2 \ln p_j) / p_j\right)^{0.5} $$

 for $j = 1, n/2$

 If n is 0, no computation is performed, and the initial seed is unchanged.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, **naux** = 0, and unable to allocate work area.
Computational Errors: None

Input-Argument Errors

1. $n < 0$ or n is an odd number
2. $seed < 1.0$ or $seed \geq 2147483647.0$
3. Error 2015 is recoverable or $naux \neq 0$, and $naux$ is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.

Example 1: This example shows a call to SNRAND to generate 10 random numbers.

Call Statement and Input

```
CALL SNRAND( SEED, 10, X, AUX, 5 )
```

SEED = 80629.0

Note: It is important to note that SEED is a long-precision number, even though X contains short-precision numbers.

Output

```
SEED = 48669425.0
X = (0.660649538, 1.312503695, 1.906438112, 0.014065863, -0.800935328, -3.058144093, -0.397426069, -0.370634943, -0.064151444, -0.275887042)
```

Example 2: This example shows a call to DNRAND to generate 10 random numbers.

Call Statement and Input

```
CALL DNRAND( SEED, 10, X, AUX, 5 )
```

SEED = 80629.0

Output
SNRAND and DNRAND

SEED = 48669425.0

X = (0.6606495655963802,
 1.3125037758861060,
 1.9064381379483730,
 0.0149658628770495,
 -0.8009353314494653,
 -3.0581441239248530,
 -0.3974260845722100,
 -0.3706349643478605,
 -0.0641514443372939,
 -0.2758870630332470)
SURXOR and DURXOR—Generate a Vector of Long Period Uniformly Distributed Random Numbers

These subroutines generate a vector x of uniform [0,1) pseudo-random numbers, using the Tausworthe exclusive-or algorithm.

<table>
<thead>
<tr>
<th>Table 169. Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>x, vseed</td>
</tr>
<tr>
<td>iseed</td>
</tr>
<tr>
<td>Subroutine</td>
</tr>
<tr>
<td>Short-precision real</td>
</tr>
<tr>
<td>Integer</td>
</tr>
<tr>
<td>SURXOR</td>
</tr>
<tr>
<td>Long-precision real</td>
</tr>
<tr>
<td>Integer</td>
</tr>
<tr>
<td>DURXOR</td>
</tr>
</tbody>
</table>

Syntax

<table>
<thead>
<tr>
<th>Language</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>CALL SURXOR</td>
</tr>
<tr>
<td>C and C++</td>
<td>surxor</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL SURXOR</td>
</tr>
</tbody>
</table>

On Entry

iseed

has the following meaning, where:

If $iseed \neq 0$, $iseed$ is the initial value used to generate the random numbers. You specify $iseed \neq 0$ when you call this subroutine for the first time or when you changed $vseed$ between calls to this subroutine.

If $iseed = 0$, $vseed$ is used to generate the random numbers, where $vseed$ was initialized by an earlier call to this subroutine. ESSL assumes you have not changed $vseed$ between calls to this subroutine, when you specify $iseed = 0$.

Specified as: a fullword integer, as indicated in Table 169.

n

is the number of random numbers to be generated. Specified as: a fullword integer; $n \geq 0$.

x

See “On Return.”

vseed

is the work area used by this subroutine and has the following meaning, where:

If $iseed \neq 0$, $vseed$ is not used for input. The work area can contain anything.

If $iseed = 0$, $vseed$ contains the seed vector generated by a preceding call to this subroutine. $vseed$ is used in this computation to generate the new random numbers. It should not be changed between calls to this subroutine.

Specified as: a one-dimensional array of (at least) length 10000, containing numbers of the data type indicated in Table 169.

On Return

iseed

is set to 0 for subsequent calls to SURXOR or DURXOR. Returned as: a fullword integer, as indicated in Table 169.
is a vector of length n, containing the uniform pseudo-random numbers with the following values: $0 \leq x < 1$. Returned as: a one-dimensional array of (at least) length n, containing numbers of the data type indicated in Table 169.

$vseed$

is the work area used by these subroutines, containing the new seed that is to be used in subsequent calls to this subroutine. Returned as: a one-dimensional array of (at least) length 10000, containing numbers of the data type indicated in Table 169 on page 975.

Notes

1. You can generate the same vector x of random numbers by starting over and specifying your original nonzero $iseed$ value.

2. Multiple calls to these subroutines with mixed sizes generate the same sequence of numbers as a single call the total length, assuming you specify the same initial $iseed$ in both cases. For example, you can generate the same vector x of random numbers by calling this subroutine twice and specifying $n = 10$ or by calling this subroutine once and specifying $n = 20$. You need to specify the same $iseed$ in the initial call in both cases, and $iseed = 0$ in the second call with $n = 10$.

3. Vector x must have no common elements with the storage area specified for $vseed$; otherwise, results are unpredictable.

4. In your C program, argument $iseed$ must be passed by reference.

Function: The pseudo-random numbers uniformly distributed in the interval $[0,1)$ are generated using the Tausworthe exclusive-or algorithm. This is based on a linear-feedback shift-register sequence. The very long period of the generator, $2^{1279} - 1$, makes it useful in modern statistical simulations where the shorter period of other generators could be exhausted during a single run. If you need a large number of random numbers, you can use these subroutines, because with this generator you do not request more than a small percentage of the entire period of the generator.

This generator is based on two feedback positions to generate a new binary digit:

$$z_k = z_{(k-p)} \oplus z_{(k-q)}$$

where:

$p > q$

$k = 1, 2, ...$

z is a bit vector.

and where:

\oplus is the bitwise exclusive-or operation.

For details, see references [53], [74], and [94]. The values of p and q are selected according to the criteria stated in reference [100].
The algorithm initializes a seed vector of length p, starting with $iseed$. The seed vector is stored in $vseed$ for use in subsequent calls to this subroutine with $iseed = 0$.

If n is 0, no computation is performed, and the initial seed is unchanged.

Special Usage: For some specialized applications, if you need multiple sources of random numbers, you can specify different $vseed$ areas, which are initialized with different seeds on multiple calls to this subroutine. You then get multiple sequences of the random number sequence provided by the generator that are sufficiently far apart for most purposes.

Error Conditions

Computational Errors: None.

Input-Argument Errors

1. $n < 0$
2. $iseed = 0$ and $vseed$ does not contain valid data.

Example 1: This example shows a call to SURXOR to generate 10 random numbers.

Call Statement and Input

```
ISEED N X VSEED
| | | |
CALL SURXOR( ISEED , 10 , X , VSEED )
```

ISEED = 137

Output

ISEED = 0

$X = (0.6440868, 0.5105118, 0.4878680, 0.3209075, 0.6624528, 0.2499877, 0.0056630, 0.7329214, 0.7486335, 0.8050517)$

Example 2: This example shows a call to SURXOR to generate 10 random numbers. This example specifies $iseed = 0$ and uses the $vseed$ output generated from Example 1.

Call Statement and Input

```
ISEED N X VSEED
| | | |
CALL SURXOR( ISEED , 10 , X , VSEED )
```

ISEED = 0
Output

ISEED = 0

\[
X = (0.9930249, \\
 0.0441873, \\
 0.6891295, \\
 0.3101060, \\
 0.6324178, \\
 0.3299408, \\
 0.3553145, \\
 0.0100013, \\
 0.0214620, \\
 0.8059390)
\]

Example 3: This example shows a call to DURXOR to generate 20 random numbers. This sequence of numbers generated are like those generated in Examples 1 and 2.

Call Statement and Input

\[
\begin{array}{cccc}
ISEED & N & X & VSEED \\
\mid & \mid & \mid & \mid \\
\end{array}
\]

CALL DURXOR(ISEED, 20, X, VSEED)

ISEED = 137

Output

ISEED = 0

\[
X = (0.64408693438956721, \\
 0.51051182536460882, \\
 0.48786801310787142, \\
 0.32090755617007050, \\
 0.6624528314486166, \\
 0.24998782843398081, \\
 0.00566308101257373, \\
 0.73292147005172925, \\
 0.74863359794102236, \\
 0.80505169697755319, \\
 0.9930249462139138, \\
 0.04418740640269125, \\
 0.68912952155409579, \\
 0.31010611495627916, \\
 0.63241786342211936, \\
 0.32994081459690583, \\
 0.35531452631408911, \\
 0.01000134413132581, \\
 0.02146199494672940, \\
 0.80593898487597615)
\]
Chapter 17. Utilities

The utility subroutines are described in this chapter.

Overview of the Utility Subroutines

The utility subroutines perform general service functions that support ESSL, rather than mathematical computations (Table 170).

<table>
<thead>
<tr>
<th>Table 170. List of Utility Subroutines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descriptive Name</td>
</tr>
<tr>
<td>ESSL Error Information-Handler Subroutine</td>
</tr>
<tr>
<td>ESSL ERRSAV Subroutine for ESSL</td>
</tr>
<tr>
<td>ESSL ERRSET Subroutine for ESSL</td>
</tr>
<tr>
<td>ESSL ERRSTR Subroutine for ESSL</td>
</tr>
<tr>
<td>Set the Vector Section Size (VSS) for the ESSL/370 Scalar Library</td>
</tr>
<tr>
<td>Set the Extended Vector Operations Indicator for the ESSL/370 Scalar Library</td>
</tr>
<tr>
<td>Determine the Level of ESSL Installed</td>
</tr>
<tr>
<td>Determine the Stride Value for Optimal Performance in Specified Fourier Transform Subroutines</td>
</tr>
<tr>
<td>Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode</td>
</tr>
<tr>
<td>For a General Sparse Matrix, Convert Between Diagonal-Out and Profile-In Skyline Storage Mode</td>
</tr>
<tr>
<td>For a Symmetric Sparse Matrix, Convert Between Diagonal-Out and Profile-In Skyline Storage Mode</td>
</tr>
</tbody>
</table>

‡ This subroutine is provided for migration from earlier releases of ESSL and is not intended for use in new programs. Documentation for this subroutine is no longer provided.

Use Considerations

This section describes what you use the utility subroutines for.

Determining the Level of ESSL Installed

IESSL gets the level of ESSL and returns it to your program. The level consists of the following: version number, release number, modification number, and number of the most recently installed ESSL PTF. You can use this function to verify that you are running on or using the capabilities of the desired level.

Finding the Optimal Stride(s) for Your Fourier Transforms

STRIDE is used to determine optimal stride values for your Fourier transforms when using any of the Fourier transform subroutines, except _RCFT and _CRFT. You must invoke STRIDE for each optimal stride you want computed. Sometimes you need a separate stride for your input and output data. For the three-dimensional Fourier transforms, you need an optimal stride for both the
second and third dimensions of the array. The examples provided for STRIDE explain how it is used for each of the subroutines listed above.

After obtaining the optimal strides from STRIDE, you should arrange your data using these stride values. After the data is set up, call the Fourier transform subroutine. For additional information on how to set up your data, see “Setting Up Your Data” on page 764.

Converting Sparse Matrix Storage

DSRSM is used to migrate your existing program from sparse matrices stored by rows to sparse matrices stored in compressed-matrix storage mode. This converts the matrices into a storage format that is compatible with the input requirements for some ESSL sparse matrix subroutines, such as DSMMX.

DGKTRN and DSKTRN are used to convert your sparse matrix from one skyline storage mode to another, if necessary, before calling the subroutines DGKFS/DGKFSP or DSKFS/DSKFSP, respectively.
Utility Subroutines

This section contains the utility subroutine descriptions.
EINFO—ESSL Error Information-Handler Subroutine

This subroutine returns information to your program about the data involved in a computational error that occurred in an ESSL subroutine. This is the same information that is provided in the ESSL messages; however, it allows you to check the information in your program at run time and continue processing. You pass the computational error code of interest to this subroutine in `icode`, and it passes back one or more pieces of information in the output arguments `inf1` and, optionally, `inf2`, as defined in Table 171. You should use this subroutine only for those computational errors listed in the table. It does not apply to computational errors that do not return information.

For multithreaded application programs, if you want the error handling capabilities that this subroutine provides to be implemented on each thread created by your program, this subroutine must be called from each thread. If your application creates multiple threads, the action performed by a call to this subroutine applies to the thread that this subroutine was invoked from. For an example, see “Example of Handling Errors in a Multithreaded Application Program” on page 125.

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Receiver</th>
<th>Type of Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>2100</td>
<td><code>inf1</code></td>
<td>Lower range of a vector</td>
</tr>
<tr>
<td></td>
<td><code>inf2</code></td>
<td>Upper range of a vector</td>
</tr>
<tr>
<td>2101</td>
<td><code>inf1</code></td>
<td>Index of the eigenvalue that failed to converge</td>
</tr>
<tr>
<td></td>
<td><code>inf2</code></td>
<td>Number of iterations after which it failed to converge</td>
</tr>
<tr>
<td>2102</td>
<td><code>inf1</code></td>
<td>Index of the last eigenvector that failed to converge</td>
</tr>
<tr>
<td></td>
<td><code>inf2</code></td>
<td>Number of iterations after which it failed to converge</td>
</tr>
<tr>
<td>2103</td>
<td><code>inf1</code></td>
<td>Index of the pivot with zero value</td>
</tr>
<tr>
<td>2104</td>
<td><code>inf1</code></td>
<td>Index of the last pivot with nonpositive value</td>
</tr>
<tr>
<td>2105</td>
<td><code>inf1</code></td>
<td>Index of the pivot element near zero causing factorization to fail</td>
</tr>
<tr>
<td>2107</td>
<td><code>inf1</code></td>
<td>Index of the singular value that failed to converge</td>
</tr>
<tr>
<td></td>
<td><code>inf2</code></td>
<td>Number of iterations after which it failed to converge</td>
</tr>
<tr>
<td>2109</td>
<td><code>inf1</code></td>
<td>Iteration count when it was determined that the matrix was not definite</td>
</tr>
<tr>
<td>2114</td>
<td><code>inf1</code></td>
<td>Index of the last eigenvalue that failed to converge</td>
</tr>
<tr>
<td></td>
<td><code>inf2</code></td>
<td>Number of iterations after which it failed to converge</td>
</tr>
<tr>
<td>2115</td>
<td><code>inf1</code></td>
<td>Order of the leading minor that was discovered to have a nonpositive determinant</td>
</tr>
<tr>
<td>2117</td>
<td><code>inf1</code></td>
<td>Column number for which pivot value was near zero</td>
</tr>
<tr>
<td>2118</td>
<td><code>inf1</code></td>
<td>Row number for which pivot value was near zero</td>
</tr>
<tr>
<td>2120</td>
<td><code>inf1</code></td>
<td>Row number of empty row where factorization failed</td>
</tr>
<tr>
<td>2121</td>
<td><code>inf1</code></td>
<td>Column number of empty column where factorization failed</td>
</tr>
<tr>
<td>2126</td>
<td><code>inf1</code></td>
<td>Row number for which pivot value was unacceptable</td>
</tr>
<tr>
<td>2145</td>
<td><code>inf1</code></td>
<td>First diagonal element with zero value</td>
</tr>
</tbody>
</table>
Syntax

<table>
<thead>
<tr>
<th>Language</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>CALL EINFO (icode, inf1[, inf2])</td>
</tr>
<tr>
<td>C and C++</td>
<td>einfo (icode, inf1, inf2);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL EINFO (icode[, inf1[, inf2]]);</td>
</tr>
</tbody>
</table>

On Entry

- `icode`
 - has the following meaning, where:
 - If `icode = 0`, this indicates that the ESSL error option table is to be initialized. (You specify this value once in the beginning of your program before calls to ERRSET.)
 - If `icode` has any of the allowable error code values listed in Table 171 on page 982, this is the computational error code of interest. (You specify one of these values whenever you want information returned about a computational error.)
 - Specified as: a fullword integer; `icode = 0` or an error code value indicated in Table 171 on page 982.

- `inf1`
 - See “On Return.”

- `inf2`
 - See “On Return.”

On Return

- `inf1`
 - has the following meaning, where:
 - If `icode = 0`, this argument is not used in the computation. In this case, `inf1` is an optional argument, except in C and C++ programs.
 - If `icode ≠ 0`, then `inf1` is the first information receiver, containing numerical information related to the computational error.
 - Returned as: a fullword integer.

- `inf2`
 - has the following meaning, where:
 - If `icode = 0`, this argument is not used in the computation.
 - If `icode ≠ 0`, then `inf2` is the second information receiver, containing numerical information related to the computational error. It should be specified when the error code provides a second piece of information, and you want the information.
 - In both of these cases, `inf2` is an optional argument, except in C and C++ programs. For more details, see “Notes.”
 - Returned as: a fullword integer.

Notes

1. If `icode` is not 0 and is not one of the error codes specified in Table 171 on page 982, this subroutine returns to the caller, and no information is provided in `inf1` and `inf2`.

Chapter 17. Utilities 983
2. If there are two pieces of information for the error and you specify one output argument, the second piece of information is not returned to the caller.

3. If there is one piece of information for the error and you specify two output arguments, the second output argument is not set by this subroutine.

4. In C and C++ programs you must code the inf1 and inf2 arguments, because they are not optional arguments.

5. In Fortran programs, inf1 and inf2 are optional arguments. This is an exception to the rule, because other ESSL subroutines do not allow optional arguments.

6. Examples of how to use EINFO are provided in Chapter 4 on page 109.
ERRSAV—ESSL ERRSAV Subroutine for ESSL

The ERRSAV subroutine copies an ESSL error option table entry into an 8-byte storage area that is accessible to your program.

For multithreaded application programs, if you want the error handling capabilities that this subroutine provides to be implemented on each thread created by your program, this subroutine must be called from each thread. If your application creates multiple threads, the action performed by a call to this subroutine applies to the thread that this subroutine was invoked from. For an example, see “Example of Handling Errors in a Multithreaded Application Program” on page 125.

Syntax

<table>
<thead>
<tr>
<th>Language</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>CALL ERRSAV (ierno, tabent)</td>
</tr>
<tr>
<td>C and C++</td>
<td>errsav (ierno, tabent);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL ERRSAV (ierno, tabent);</td>
</tr>
</tbody>
</table>

On Entry

- **ierno** is the error number in the option table. The entry for ierno in the ESSL error option table is stored in the 8-byte storage area tabent. Specified as: a fullword integer; ierno must be one of the error numbers in the option table. For a list of these numbers, see Table 26 on page 49.

- **tabent** is the storage area where the option table entry is stored. Specified as: an area of storage of length 8-bytes.

Note: Examples of how to use ERRSAV are provided in Chapter 4 on page 109.
ERRSET—ESSSL ERRSET Subroutine for ESSL

The ERRSET subroutine allows you to control execution when error conditions occur. It modifies the information in the ESSL error option table for the error number indicated. For a range of error messages, you can specify the following:

- How many times a particular error is allowed to occur before the program is terminated
- How many times a particular error message is printed before printing is suppressed
- Whether the ESSL error exit routine is to be invoked

For multithreaded application programs, if you want the error handling capabilities that this subroutine provides to be implemented on each thread created by your program, this subroutine must be called from each thread. If your application creates multiple threads, the action performed by a call to this subroutine applies to the thread that this subroutine was invoked from. For an example, see “Example of Handling Errors in a Multithreaded Application Program” on page 125.

Syntax

Fortran

```fortran
CALL ERRSET (ierno, inoal, inomes, itrace, iusadr, irange)
```

C and C++

```c
errset (ierno, inoal, inomes, itrace, iusadr, irange);
```

PL/I

```pli
CALL ERRSET (ierno, inoal, inomes, itrace, iusadr, irange);
```

On Entry

- **ierno**

is the error number in the option table. The entry for ierno in the ESSL error option table is updated as indicated by the other arguments. Specified as: a fullword integer; ierno must be one of the error numbers in the option table. For a list of these numbers, see Table 26 on page 49.

- **inoal**

indicates the number of errors allowed before each execution is terminated, where:

 - If inoal ≤ 0, the specification is ignored, and the number-of-errors option is not changed.
 - If inoal = 1, execution is terminated after one error.
 - If 2 ≤ inoal ≤ 255, then inoal specifies the number of errors allowed before each execution is terminated.
 - If inoal > 255, an unlimited number of errors is allowed.

 Specified as: a fullword integer, where:

 - If iusadr = ENOTRM, then 2 ≤ inoal ≤ 255.

- **inomes**

indicates the number of messages to be printed, where:

 - If inomes < 0, all messages are suppressed.
 - If inomes = 0, the number-of-messages option is not changed.
 - If 0 < inomes ≤ 255, then inomes specifies the number of messages to be printed.
If $inomes > 255$, an unlimited number of error messages is allowed.

Specified as: a fullword integer.

itrace

this argument is ignored, but must be specified. Specified as: a fullword integer
where, $itrace = 0$, 1, or 2 (for migration purposes).

iusadr

indicates whether or not the ESSL error exit routine is to be invoked, where:

If $iusadr$ is zero, the option table is not altered.

If $iusadr$ is one, the option table is set to show no exit routine. Therefore,
standard corrective action is to be used when continuing execution.

If $iusadr = ENOTRM$, the option table entry is set to the ESSL error exit routine
ENOTRM. Therefore, the ENOTRM subroutine is to be invoked after the
occurrence of the indicated errors. (ENOTRM must appear in an EXTERNAL
statement in your program.)

Specified as: a 32-bit integer in a 32-bit environment or the name of a
subroutine; $iusadr = 0$, 1, or ENOTRM.

Specified as: a 64-bit integer in a 64-bit environment or the name of a
subroutine; $iusadr = 0_8$, 1_8, or ENOTRM.

irange

indicates the range of errors to be updated in the ESSL error option table,
where:

If $irange < ierno$, the parameter is ignored.

If $irange \geq ierno$, the options specified for the other parameters are to be
applied to the entire range of error conditions encompassed by $ierno$ and
$irange$.

Specified as: a fullword integer.

Notes

1. Examples of how to use ERRSET are provided in Chapter 4 on page 109.

2. If you specify ENOTRM for $iusadr$, then $inoal$ must be in the following range:
 $2 \leq inoal \leq 255$.

ERRSTR—ESL ERRSTR Subroutine for ESSL

The ERRSTR subroutine stores an entry in the ESSL error option table.

For multithreaded application programs, if you want the error handling capabilities that this subroutine provides to be implemented on each thread created by your program, this subroutine must be called from each thread. If your application creates multiple threads, the action performed by a call to this subroutine applies to the thread that this subroutine was invoked from. For an example, see “Example of Handling Errors in a Multithreaded Application Program” on page 125.

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL ERRSTR (ierno, tabent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>errstr (ierno, tabent);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL ERRSTR (ierno, tabent);</td>
</tr>
</tbody>
</table>

On Entry

$ierno$

is the error number in the option table. The information in the 8-byte storage area $tabent$ is stored into the entry for $ierno$ in the ESSL error option table. Specified as: a fullword integer; $ierno$ must be one of the error numbers in the option table. For a list of these numbers, see Table 26 on page 49.

$tabent$

is the storage area containing the table entry data. Specified as: an area of storage of length 8-bytes.

Note: Examples of how to use ERRSTR are provided in Chapter 4 on page 109.
IESSL—Determine the Level of ESSL Installed

This function returns the level of ESSL installed on your system, where the level consists of a version number, release number, and modification number, plus the fix number of the most recent PTF installed.

Syntax

<table>
<thead>
<tr>
<th>Language</th>
<th>Call Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>CALL IESSL ()</td>
</tr>
<tr>
<td>C and C++</td>
<td>iessl ();</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL IESSL ();</td>
</tr>
</tbody>
</table>

On Return

Function value

is the level of ESSL installed on your system. It is provided as a fullword integer in the form \(vvrrmmff \), where each two digits represents a part of the level:

- \(vv \) is the version number.
- \(rr \) is the release number.
- \(mm \) is the modification number.
- \(ff \) is the fix number of the most recent PTF installed.

Returned as: a fullword integer; \(vvrrmmff > 0 \).

Notes

1. To use IESSL effectively, you must install your ESSL PTFs in their proper sequential order. As part of the result, IESSL returns the value \(ff \) of the most recent PTF installed, rather than the highest number PTF installed. Therefore, if you do not install your PTFs sequentially, the \(ff \) value returned by IESSL does not reflect the actual level of ESSL.

2. Declare the IESSL function in your program as returning a fullword integer value.

Function: The IESSL function enables you to determine the current level of ESSL installed on your system. It is useful to you in those instances where your program is using a subroutine or feature that exists only in certain levels of ESSL. It is also useful when your program is dependent upon certain PTFs being applied to ESSL.

Example: This example shows several ways to use the IESSL function. Most typically, you use IESSL for checking the version and release level of ESSL. Suppose you are dependent on a new capability in ESSL, such as a new subroutine or feature, provided for the first time in ESSL Version 3. You can add the following check in your program before using the new capability:

\[
\text{IF IESSL() } \geq 3010000
\]

By specifying 0000 for \(mmff \), the modification and fix level, you are independent of the order in which your modifications and PTFs are installed.

Less typically, you use IESSL for checking the PTF level of ESSL. Suppose you are dependent on PTF 2 being installed on your ESSL Version 3 system. You want...
to know whether to call a different user-callable subroutine to set up your array data. You can add the following check in your program before making the call:

IF IESSL() ≥ 3010002

If your system support group installed the ESSL PTFs in their proper sequential order, this test works properly; otherwise, it is unpredictable.
STRIDE—Determine the Stride Value for Optimal Performance in Specified Fourier Transform Subroutines

This subroutine determines an optimal stride value for you to use for your input or output data when you are computing large row Fourier transforms in any of the Fourier transform subroutines, except _RCFT and _CRFT. The strides determined by this subroutine allow your arrays to fit comfortably in various levels of storage hierarchy on your particular processor, thus allowing you to improve your run-time performance.

Note: This subroutine returns a single stride value. Where you need multiple strides, you must invoke this subroutine multiple times; for example, in the multidimensional Fourier transforms and, also, when input and output data types differ. For more details, see “Function” on page 992.

Syntax

<table>
<thead>
<tr>
<th>Language</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>CALL STRIDE (n, incd, incr, dt, iopt)</td>
</tr>
<tr>
<td>C and C++</td>
<td>stride (n, incd, incr, dt, iopt);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL STRIDE (n, incd, incr, dt, iopt);</td>
</tr>
</tbody>
</table>

On Entry

\(n \)

is the length \(n \) of the Fourier transform for which the optimal stride is being determined. The transform corresponding to \(n \) is usually a row transform; that is, the data elements are stored using a stride value.

Specified as: a fullword integer; \(n > 0 \).

\(incd \)

is the minimum allowable stride for the Fourier transform for which the optimal stride is being determined. For each situation in each subroutine, there is a specific way to compute this minimum value. This is explained in the examples starting on page 993.

Specified as: a fullword integer; \(incd > 0 \) or \(incd < 0 \).

\(incr \)

See “On Return” on page 992.

\(dt \)

is the data type of the numbers for the Fourier transform for which the optimal stride is being determined, where:

If \(dt = 'S' \), the numbers are short-precision real.

If \(dt = 'D' \), the numbers are long-precision real.

If \(dt = 'C' \), the numbers are short-precision complex.

If \(dt = 'Z' \), the numbers are long-precision complex.

Specified as: a single character; \(dt = 'S', 'D', 'C', \) or \('Z' \).

\(iopt \)

is provided only for migration purposes from ESSL Version 1 and is no longer used; however, you must still specify it as a dummy argument. Specified as: a fullword integer; \(iopt = 0, 1, \) or \(2 \).
On Return

`incr`

is the stride that allows you to improve your run-time performance in your Fourier transform computation on your particular processor. In general, this value differs for each processor you are running on.

Returned as: a fullword integer; `incr > 0` or `incr < 0` and `|incr| ≥ |incd|`, where `incr` has the same sign (+ or −) as `incd`.

Notes

1. In your C program, argument `incr` must be passed by reference.
2. All subroutines accept lowercase letters for the `dt` argument.
3. For each situation in each of the Fourier transform subroutines, there is a specific way to compute the value you should specify for the `incd` argument. Details on how to compute each of these values is given in the examples starting on page 993. See the example corresponding to the Fourier transform subroutine you are using.
4. Where different data types are specified for the input and output data in your Fourier transform subroutine, you should be careful to indicate the correct data type in the `dt` argument in this subroutine.
5. For additional information on how to set up your data, see “Setting Up Your Data” on page 764.

Function: This subroutine determines an optimal stride, `incr`, for you to use for your input or output data when computing large row Fourier transforms. The stride value returned by this subroutine is based on the size and structure of your transform data, using:

- The size of each data item (`dt`)
- The minimum allowable stride for this transform (`incd`)
- The length of the transform (`n`)

This information is used in determining the optimal stride for the processor you are currently running on. The stride determined by this subroutine allows your arrays to fit comfortably in various levels of storage hierarchy for that processor, thus giving you the ability to improve your run-time performance.

You get only one stride value returned by this subroutine on each invocation. Therefore, in many instances, you may need to invoke this subroutine multiple times to obtain several stride values to use in your Fourier transform computation:

- For multidimensional Fourier transforms using several strides, this subroutine must be called once for each optimal stride you want to obtain. Successive invocations should go from the lower (earlier) dimensions to the higher (later) dimensions, because the results from the lower dimensions are used to calculate the `incd` values for the higher dimensions.
- Where input and output data have different data types and you want to obtain optimal strides for each, this subroutine must be called once for each data type.

Where multiple invocations are necessary, they are explained in the examples starting on page 993. The examples also explain how to calculate the `incd` values.
for each invocation. There are nine examples to cover the Fourier transform subroutines that can use the STRIDE subroutine.

After calling this subroutine and obtaining the optimal stride value, you then set up your input or output array accordingly. This may involve movement of data for input arrays or increasing the sizes of input or output arrays. To accomplish this, you may want to set up a separate subroutine with the stride values passed into it as arguments. You can then dimension your arrays in that subroutine, depending on the values calculated by STRIDE. For additional information on how to set up your data, see “Setting Up Your Data” on page 764.

Error Conditions

Computational Errors: None

Input-Argument Errors

1. \(n \leq 0 \)
2. \(incd = 0 \)
3. \(iopt \neq 0, 1, \text{ or } 2 \)
4. \(dt \neq S, D, C, \text{ or } Z \)

Example 1—SCFT: This example shows the use of the STRIDE subroutine in computing one-dimensional row transforms using the SCFT subroutine.

If \(inc2x = 1 \), the input sequences are stored in the transposed form as rows of a two-dimensional array \(X(INC1X,N) \). In this case, the STRIDE subroutine helps in determining a good value of \(inc1x \) for this array. The required minimum value of \(inc1x \) is \(m \), the number of Fourier transforms being computed. To find a good value of \(inc1x \), use STRIDE as follows:

```
N INCD INCR DT IOPT
```

```
CALL STRIDE( N , M , INC1X , 'C' , :z"ro"ot )
```

Here, the arguments refer to the SCFT subroutine. In the following table, values of \(inc1x \) are given (as obtained from the STRIDE subroutine) for some combinations of \(n \) and \(m \) and for POWER2-P2SC with 64KB level 1 cache using the POWER2 library for ESSL:

<table>
<thead>
<tr>
<th>(N)</th>
<th>(M)</th>
<th>(INC1X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>240</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>240</td>
<td>64</td>
<td>65</td>
</tr>
<tr>
<td>256</td>
<td>256</td>
<td>264</td>
</tr>
<tr>
<td>512</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>1024</td>
<td>64</td>
<td>65</td>
</tr>
</tbody>
</table>

The above example also applies when the output sequences are stored in the transposed form (\(inc2y = 1 \)). In that case, in the above example, \(inc1x \) is replaced by \(inc1y \).

In computing column transforms (\(inc1x = inc1y = 1 \)), the values of \(inc2x \) and \(inc2y \) are not very important. For these, any value over the required minimum of \(n \) can be used.
Example 2—DCOSF: This example shows the use of the STRIDE subroutine in computing one-dimensional row transforms using the DCOSF subroutine.

If \(\text{inc}2x = 1 \), the input sequences are stored in the transposed form as rows of a two-dimensional array \(X(\text{INC}1X, N/2+1) \). In this case, the STRIDE subroutine helps in determining a good value of \(\text{inc}1x \) for this array. The required minimum value of \(\text{inc}1x \) is \(m \), the number of Fourier transforms being computed. To find a good value of \(\text{inc}1x \), use STRIDE as follows:

\[
\begin{array}{c|ccccc}
N & \text{INCD} & \text{INCR} & \text{DT} & \text{IOPT} \\
\hline
\end{array}
\]

\[
\text{CALL STRIDE}(N/2+1, M, \text{INC}1X, 'D', 0)
\]

Here, the arguments refer to the DCOSF subroutine. In the following table, values of \(\text{inc}1x \) are given (as obtained from the STRIDE subroutine) for some combinations of \(n \) and \(m \) and for POWER2-P2SC with 64KB level 1 cache using the POWER2 library for ESSL:

<table>
<thead>
<tr>
<th>(N)</th>
<th>(M)</th>
<th>(\text{INC}1X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>240</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>240</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>256</td>
<td>256</td>
<td>264</td>
</tr>
<tr>
<td>512</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>1024</td>
<td>64</td>
<td>65</td>
</tr>
</tbody>
</table>

The above example also applies when the output sequences are stored in the transposed form (\(\text{inc}2y = 1 \)). In that case, in the above example, \(\text{inc}1x \) is replaced by \(\text{inc}1y \).

In computing column transforms (\(\text{inc}1x = \text{inc}1y = 1 \)), the values of \(\text{inc}2x \) and \(\text{inc}2y \) are not very important. For these, any value over the required minimum of \(n/2+1 \) can be used.

Example 3—DSINF: This example shows the use of the STRIDE subroutine in computing one-dimensional row transforms using the DSINF subroutine.

If \(\text{inc}2x = 1 \), the input sequences are stored in the transposed form as rows of a two-dimensional array \(X(\text{INC}1X, N/2) \). In this case, the STRIDE subroutine helps in determining a good value of \(\text{inc}1x \) for this array. The required minimum value of \(\text{inc}1x \) is \(m \), the number of Fourier transforms being computed. To find a good value of \(\text{inc}1x \), use STRIDE as follows:

\[
\begin{array}{c|ccccc}
N & \text{INCD} & \text{INCR} & \text{DT} & \text{IOPT} \\
\hline
\end{array}
\]

\[
\text{CALL STRIDE}(N/2 , M , \text{INC}1X , 'D' , 0)
\]

Here, the arguments refer to the DSINF subroutine. In the following table, values of \(\text{inc}1x \) are given (as obtained from the STRIDE subroutine) for some combinations of \(n \) and \(m \) and for POWER2-P2SC with 64KB level 1 cache using the POWER2 library for ESSL:
Example 4—SCFT2: This example shows the use of the STRIDE subroutine in computing two-dimensional transforms using the SCFT2 subroutine.

If inc1y = 1, the two-dimensional output array is stored in the normal form. In this case, the output array can be declared as Y(INC2Y,N2), where the required minimum value of inc2y is n1. The STRIDE subroutine helps in picking a good value of inc2y. To find a good value of inc2y, use STRIDE as follows:

```
CALL STRIDE( N2 , N1 , INC2Y , 'C' , :z"ro"ot )
```

Here, the arguments refer to the SCFT2 subroutine. In the following table, values of inc2y are given (as obtained from the STRIDE subroutine) for some two-dimensional arrays with n1 = n2 and for POWER2-P2SC with 64KB level 1 cache using the POWER2 library for ESSL:

<table>
<thead>
<tr>
<th>N1</th>
<th>N2</th>
<th>INC2Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>128</td>
<td>128</td>
<td>136</td>
</tr>
<tr>
<td>240</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>512</td>
<td>512</td>
<td>520</td>
</tr>
<tr>
<td>840</td>
<td>840</td>
<td>848</td>
</tr>
</tbody>
</table>

If the input array is stored in the normal form (inc1x = 1), the value of inc2x is not important. However, if you want to use the same array for input and output, you should use inc2x = inc2y.

If inc2y = 1, the two-dimensional output array is stored in the transposed form. In this case, the output array can be declared as Y(INC1Y,N1), where the required minimum value of inc1y is n2. The STRIDE subroutine helps in picking a good value of inc1y. To find a good value of inc1y, use STRIDE as follows:

```
CALL STRIDE( N1 , N2 , INC1Y , 'C' , 0 )
```

Here, the arguments refer to the SCFT2 subroutine. In the following table, values of inc1y are given (as obtained from the STRIDE subroutine) for some combinations...
of \(n1 \) and \(n2 \) and for POWER2-P2SC with 64K level 1 cache using the POWER2 library for ESSL:

<table>
<thead>
<tr>
<th>N1</th>
<th>N2</th>
<th>INC1Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>120</td>
<td>128</td>
<td>136</td>
</tr>
<tr>
<td>256</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>512</td>
<td>512</td>
<td>520</td>
</tr>
<tr>
<td>840</td>
<td>840</td>
<td>848</td>
</tr>
</tbody>
</table>

If the input array is stored in the transposed form \((inc2x = 1)\), the value of \(inc1x \) is also important. The above example can be used to find a good value of \(inc1x \), by replacing \(inc1y \) with \(inc1x \). If both arrays are stored in the transposed form, a good value for \(inc1y \) is also a good value for \(inc1x \). In that situation, the two arrays can also be made equivalent.

Example 5—SRCFT2: This example shows the use of the STRIDE subroutine in computing two-dimensional transforms using the SRCFT2 subroutine.

For this subroutine, the output array is declared as \(Y(INC2Y,N2) \), where the required minimum value of \(inc2y \) is \(n1/2+1 \). The STRIDE subroutine helps in picking a good value of \(inc2y \). To find a good value of \(inc2y \), use STRIDE as follows:

```fortran
N INCD INCR DT IOPT
|   |   |   |   |
CALL STRIDE( N2 , N1/2 + 1 , INC2Y , 'C' , 0 )
```

Here, the arguments refer to the SRCFT2 subroutine. In the following table, values of \(inc2y \) are given (as obtained from the STRIDE subroutine) for some two-dimensional arrays with \(n1 = n2 \) and for POWER2-P2SC with 64KB level 1 cache using the POWER2 library for ESSL:

<table>
<thead>
<tr>
<th>N1</th>
<th>N2</th>
<th>INC2Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>240</td>
<td>121</td>
</tr>
<tr>
<td>420</td>
<td>420</td>
<td>211</td>
</tr>
<tr>
<td>512</td>
<td>512</td>
<td>257</td>
</tr>
<tr>
<td>840</td>
<td>840</td>
<td>421</td>
</tr>
<tr>
<td>1024</td>
<td>1024</td>
<td>513</td>
</tr>
<tr>
<td>2048</td>
<td>2048</td>
<td>1032</td>
</tr>
</tbody>
</table>

For this subroutine, the leading dimension of the input array \((inc2x)\) is not important. If you want to use the same array for input and output, you should use \(inc2x \geq 2(inc2y) \).

Example 6—SCRFT2: This example shows the use of the STRIDE subroutine in computing two-dimensional transforms using the SCRFT2 subroutine.

For this subroutine, the output array is declared as \(Y(INC2Y,N2) \), where the required minimum value of \(inc2y \) is \(n1+2 \). The STRIDE subroutine helps in picking a good value of \(inc2y \). To find a good value of \(inc2y \), use STRIDE as follows:

```fortran
N INCD INCR DT IOPT
|   |   |   |   |
CALL STRIDE( N2 , N1 + 2 , INC2Y , 'S' , 0 )
```
Here, the arguments refer to the SCRFT2 subroutine. In the following table, values of inc2y are given (as obtained from the STRIDE subroutine) for some two-dimensional arrays with \(n1 = n2 \) and for POWER2-P2SC with 64KB level 1 cache using the POWER2 library for ESSL:

<table>
<thead>
<tr>
<th>N1</th>
<th>N2</th>
<th>INC2Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>240</td>
<td>242</td>
</tr>
<tr>
<td>420</td>
<td>420</td>
<td>422</td>
</tr>
<tr>
<td>512</td>
<td>512</td>
<td>514</td>
</tr>
<tr>
<td>840</td>
<td>840</td>
<td>842</td>
</tr>
<tr>
<td>1024</td>
<td>1024</td>
<td>1026</td>
</tr>
<tr>
<td>2048</td>
<td>2048</td>
<td>2064</td>
</tr>
</tbody>
</table>

For this subroutine, the leading dimension of the input array (inc2x) is also important. In general, inc2x = inc2y/2 is a good choice. This is also the requirement if you want to use the same array for input and output.

Example 7—SCFT3: This example shows the use of the STRIDE subroutine in computing three-dimensional transforms using the SCFT3 subroutine.

For this subroutine, the strides for the input array are not important. They are important for the output array. The STRIDE subroutine helps in picking good values of inc2y and inc3y. This requires two calls to the STRIDE subroutine as shown below. First, you should find a good value for inc2y. The minimum acceptable value for inc2y is \(n1 \).

```fortran
CALL STRIDE( N2 , N1 , INC2Y , 'C' , :zero: )
```

Here, the arguments refer to the SCFT3 subroutine. Next, you should find a good value for inc3y. The minimum acceptable value for inc3y is \((n2)(inc2y) \).

```fortran
CALL STRIDE( N3 , N2*INC2Y , INC3Y , 'C' , :zero: )
```

If inc3y turns out to be a multiple of inc2y, then \(Y \) can be declared a three-dimensional array as \(Y(INC2Y,INC3Y/INC2Y,N3) \). For large problems, this may not happen. In that case, you can declare the \(Y \) array as a two-dimensional array \(Y(0:INC3Y-1,0:N3-1) \) or a one-dimensional array \(Y(0:INC3Y*N3-1) \). Using zero-based indexing, the element \(y(k1,k2,k3) \) is stored in the following location in these arrays:

- For the two-dimensional array, location \((k1+k2*inc2y,k3) \)
- For the one-dimensional array, location \((k1+k2*inc2y+k3*inc3y) \)

In the following table, values of inc2y and inc3y are given (as obtained from the STRIDE subroutine) for some three-dimensional arrays with \(n1 = n2 = n3 \) and for POWER2-P2SC with 64KB level 1 cache using the POWER2 library for ESSL:
As mentioned before, the strides of the input array are not important. The array can be declared as a three-dimensional array. If you want to use the same array for input and output, the requirements are \(\text{inc2x} \geq \text{inc2y} \) and \(\text{inc3x} \geq \text{inc3y} \). A simple thing to do is to use \(\text{inc2x} = \text{inc2y} \) and make \(\text{inc3x} \) a multiple of \(\text{inc2x} \) not smaller than \(\text{inc3y} \). Then \(X \) can be declared as a three-dimensional array \(X(\text{INC2X}, \text{INC3X}/\text{INC2X}, N3) \).

Example 8—SRCFT3: This example shows the use of the STRIDE subroutine in computing three-dimensional transforms using the SRCFT3 subroutine.

For this subroutine, the strides for the input array are not important. They are important for the output array. The STRIDE subroutine helps in picking good values of \(\text{inc2y} \) and \(\text{inc3y} \). This requires two calls to the STRIDE subroutine as shown below. First, you should find a good value for \(\text{inc2y} \). The minimum acceptable value for \(\text{inc2y} \) is \(n1/2 + 1 \).

\[
\begin{array}{cccc}
N & \text{INCD} & \text{INCR} & \text{DT} & \text{IOPT} \\
\hline
\text{CALL STRIDE(N2, N1/2 + 1, INC2Y, 'C', 0)}
\end{array}
\]

Here, the arguments refer to the SRCFT3 subroutine. Next, you should find a good value for \(\text{inc3y} \). The minimum acceptable value for \(\text{inc3y} \) is \((n2)(\text{inc2y})\).

\[
\begin{array}{cccc}
N & \text{INCD} & \text{INCR} & \text{DT} & \text{IOPT} \\
\hline
\text{CALL STRIDE(N3, N2*INC2Y, INC3Y, 'C', 0)}
\end{array}
\]

If \(\text{inc3y} \) turns out to be a multiple of \(\text{inc2y} \), then \(Y \) can be declared a three-dimensional array as \(Y(\text{INC2Y}, \text{INC3Y}/\text{INC2Y}, N3) \). For large problems, this may not happen. In that case, you can declare the \(Y \) array as a two-dimensional array \(Y(0:\text{INC3Y}-1, 0:N3-1) \) or a one-dimensional array \(Y(0:\text{INC3Y+N3}-1) \). Using zero-based indexing, the element \(y(k1,k2,k3) \) is stored in the following location in these arrays:

- For the two-dimensional array, location \((k1+k2*\text{inc2y}, k3) \)
- For the one-dimensional array, location \((k1+k2*\text{inc2y}+k3*\text{inc3y}) \)

In the following table, values of \(\text{inc2y} \) and \(\text{inc3y} \) are given (as obtained from the STRIDE subroutine) for some three-dimensional arrays with \(n1 = n2 = n3 \) and for POWER2-P2SC with 64KB level 1 cache using the POWER2 library for ESSL:
As mentioned before, the strides of the input array are not important. The array can be declared as a three-dimensional array. If you want to use the same array for input and output, the requirements are \(\text{inc2x} \geq 2(\text{inc2y}) \) and \(\text{inc3x} \geq 2(\text{inc3y}) \). A simple thing to do is to use \(\text{inc2x} = 2(\text{inc2y}) \) and make \(\text{inc3x} \) a multiple of \(\text{inc2x} \) not smaller than \(2(\text{inc3y}) \). Then \(X \) can be declared as a three-dimensional array \(X(\text{INC2X},\text{INC3X}/\text{INC2X},N3) \).

Example 9—SCRFT3: This example shows the use of the STRIDE subroutine in computing three-dimensional transforms using the SCRFT3 subroutine.

The STRIDE subroutine helps in picking good values of \(\text{inc2y} \) and \(\text{inc3y} \). This requires two calls to the STRIDE subroutine as shown below. First, you should find a good value for \(\text{inc2y} \). The minimum acceptable value for \(\text{inc2y} \) is \(n1 + 2 \).

\[
\begin{array}{cccc|c}
N & \text{INCD} & \text{INCR} & \text{DT} & \text{IOPT} \\
\hline
 & & & & \\
call \text{STRIDE}(N2,N1+2,\text{INC2Y},'S',0)
\end{array}
\]

Here, the arguments refer to the SCRFT3 subroutine. Next, you should find a good value for \(\text{inc3y} \). The minimum acceptable value for \(\text{inc3y} \) is \((n2)(\text{inc2y}) \).

\[
\begin{array}{cccc|c}
N & \text{INCD} & \text{INCR} & \text{DT} & \text{IOPT} \\
\hline
 & & & & \\
call \text{STRIDE}(N3,N2*\text{INC2Y},\text{INC3Y},'S',0)
\end{array}
\]

If \(\text{inc3y} \) turns out to be a multiple of \(\text{inc2y} \), then \(Y \) can be declared a three-dimensional array as \(Y(\text{INC2Y},\text{INC3Y}/\text{INC2Y},N3) \). For large problems, this may not happen. In that case, you can declare the \(Y \) array as a two-dimensional array \(Y(0:\text{INC3Y}-1,0:N3-1) \) or a one-dimensional array \(Y(0:\text{INC3Y}*N3-1) \). Using zero-based indexing, the element \(y(k1,k2,k3) \) is stored in the following location in these arrays:

- For the two-dimensional array, location \((k1+k2*\text{inc2y},k3) \)
- For the one-dimensional array, location \((k1+k2*\text{inc2y}+k3*\text{inc3y}) \)

In the following table, values of \(\text{inc2y} \) and \(\text{inc3y} \) are given (as obtained from the STRIDE subroutine) for some three-dimensional arrays with \(n1 = n2 = n3 \) and for POWER2-P2SC with 64KB level 1 cache using the POWER2 library for ESSL:

<table>
<thead>
<tr>
<th>N1,N2,N3</th>
<th>INC2Y</th>
<th>INC3Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>17</td>
<td>544</td>
</tr>
<tr>
<td>64</td>
<td>33</td>
<td>2112</td>
</tr>
<tr>
<td>120</td>
<td>61</td>
<td>7320</td>
</tr>
<tr>
<td>128</td>
<td>65</td>
<td>8328</td>
</tr>
<tr>
<td>240</td>
<td>121</td>
<td>29064</td>
</tr>
<tr>
<td>256</td>
<td>129</td>
<td>33032</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N1,N2,N3</th>
<th>INC2Y</th>
<th>INC3Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>34</td>
<td>1088</td>
</tr>
<tr>
<td>64</td>
<td>66</td>
<td>4224</td>
</tr>
<tr>
<td>120</td>
<td>122</td>
<td>14640</td>
</tr>
<tr>
<td>128</td>
<td>130</td>
<td>16656</td>
</tr>
<tr>
<td>240</td>
<td>242</td>
<td>58128</td>
</tr>
<tr>
<td>256</td>
<td>258</td>
<td>66064</td>
</tr>
</tbody>
</table>
For this subroutine, the strides ($inc2x$ and $inc3x$) of the input array are also important. In general, $inc2x = inc2y/2$ and $inc3x = inc3y/2$ are good choices. These are also the requirement if you want to use the same array for input and output.
DSRSM—Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode

This subroutine converts either \(m \) by \(n \) general sparse matrix \(A \) or symmetric sparse matrix \(A \) of order \(n \) from storage-by-rows to compressed-matrix storage mode, where matrix \(A \) contains long-precision real numbers.

Syntax

<table>
<thead>
<tr>
<th>Fortran</th>
<th>CALL DSRSM (iopt, ar, ja, ia, m, nz, ac, ka, lda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C and C++</td>
<td>dsrsm (iopt, ar, ja, ia, m, nz, ac, ka, lda);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL DSRSM (iopt, ar, ja, ia, m, nz, ac, ka, lda);</td>
</tr>
</tbody>
</table>

On Entry

\(\text{iopt} \)

indicates the storage variation used for sparse matrix \(A \) storage-by-rows:

- If \(\text{iopt} = 0 \), matrix \(A \) is a general sparse matrix, where all the nonzero elements in matrix \(A \) are used to set up the storage arrays.
- If \(\text{iopt} = 1 \), matrix \(A \) is a symmetric sparse matrix, where only the upper triangle and diagonal elements are used to set up the storage arrays.

Specified as: a fullword integer; \(\text{iopt} = 0 \) or 1.

\(\text{ar} \)

is the sparse matrix \(A \), stored by rows in an array, referred to as \(AR \). The \(\text{iopt} \) argument indicates the storage variation used for storing matrix \(A \). Specified as: a one-dimensional array, containing long-precision real numbers. The number of elements, \(ne \), in this array can be determined by subtracting 1 from the value in \(\text{IA}(m+1) \).

\(\text{ja} \)

is the array, referred to as \(JA \), containing the column numbers of each nonzero element in sparse matrix \(A \). Specified as: a one-dimensional array, containing fullword integers; \(1 \leq (\text{JA elements}) \leq n \). The number of elements, \(ne \), in this array can be determined by subtracting 1 from the value in \(\text{IA}(m+1) \).

\(\text{ia} \)

is the row pointer array, referred to as \(IA \), containing the starting positions of each row of matrix \(A \) in array \(AR \) and one position past the end of array \(AR \). Specified as: a one-dimensional array of (at least) length \(m+1 \), containing fullword integers; \(\text{IA}(i+1) \geq \text{IA}(i) \) for \(i = 1, m+1 \).

\(m \)

is the number of rows in sparse matrix \(A \). Specified as: a fullword integer; \(m \geq 0 \).

\(\text{nz} \)

is the number of columns in output arrays \(AC \) and \(KA \) that are available for use. Specified as: a fullword integer; \(\text{nz} > 0 \).

\(\text{ac} \)

See “On Return” on page 1002.

\(\text{ka} \)

See “On Return” on page 1002.

\(\text{lda} \)

is the size of the leading dimension of the arrays specified for \(\text{ac} \) and \(\text{ka} \). Specified as: a fullword integer; \(0 < \text{lda} \leq m \).
On Return

\(nz \)

is the maximum number of nonzero elements, \(nz \), in each row of matrix \(A \), which is stored in compressed-matrix storage mode. Returned as: a fullword integer; (input argument) \(nz \leq \) (output argument) \(nz \).

\(ac \)
is the \(m \) by \(n \) general sparse matrix \(A \) or symmetric matrix \(A \) of order \(n \) stored in compressed-matrix storage mode in an array, referred to as \(AC \). Returned as: an \(lda \) by at least (input argument) \(nz \) array, containing long-precision real numbers, where only the first (output argument) \(nz \) columns are used to store the matrix.

\(ka \)
is the array, referred to as \(KA \), containing the column numbers of the matrix \(A \) elements that are stored in the corresponding positions in array \(AC \). Returned as: an \(lda \) by at least (input argument) \(nz \) array, containing fullword integers, where only the first (output argument) \(nz \) columns are used to store the column numbers.

Notes

1. In your C program, argument \(nz \) must be passed by reference.
2. The value specified for input argument \(nz \) should be greater than or equal to the number of nonzero elements you estimate to be in each row of sparse matrix \(A \). The value returned in output argument \(nz \) corresponds to the \(nz \) value defined for compressed-matrix storage mode. This value is less than or equal to the value specified for input argument \(nz \).
3. For a description of the storage modes for sparse matrices, see “Compressed-Matrix Storage Mode” on page 91 and “Storage-by-Rows” on page 97.

Function: A sparse matrix \(A \) is converted from storage-by-rows (using arrays \(AR \), \(JA \), and \(IA \)) to compressed-matrix storage mode (using arrays \(AC \) and \(KA \)). The argument \(iopt \) indicates whether the input matrix \(A \) is stored by rows using the storage variation for general sparse matrices or for symmetric sparse matrices. See reference [73].

This subroutine is meant for existing programs that need to convert their sparse matrices to a storage mode compatible with some of the ESSL sparse matrix subroutines, such as DSMMX.

Error Conditions

Computational Errors: None

Input-Argument Errors

1. \(iopt \neq 0 \) or \(1 \)
2. \(m < 0 \)
3. \(lda < 1 \)
4. \(lda < m \)
5. \(nz \leq 0 \)
6. \(IA(m+1) < 1 \)
7. \(IA(i+1)-IA(i) < 0 \), for any \(i = 1, m \)
8. \(nz \) is too small to store matrix \(A \) in array \(AC \), where:
• If \(iopt = 0 \), \(AC \) and \(KA \) are not modified.
• If \(iopt = 1 \), \(AC \) and \(KA \) are modified.

Example 1: This example shows a general sparse matrix \(A \), which is stored by rows and converted to compressed-matrix storage mode, where sparse matrix \(A \) is:

\[
\begin{bmatrix}
11.0 & 0.0 & 0.0 & 14.0 \\
0.0 & 22.0 & 0.0 & 24.0 \\
0.0 & 0.0 & 33.0 & 34.0 \\
0.0 & 0.0 & 0.0 & 44.0
\end{bmatrix}
\]

Because there is a maximum of only two nonzero elements in each row of \(A \), and argument \(nz \) is specified as 5, columns 3 through 5 of arrays \(AC \) and \(KA \) are not used.

Call Statement and Input

```
CALL DSRSM( 0 , AR , JA , IA , 4 , 5 , AC , KA , 4 )
```

\(AR = (11.0, 14.0, 22.0, 24.0, 33.0, 34.0, 44.0) \)
\(JA = (1, 4, 2, 4, 3, 4, 4) \)
\(IA = (1, 3, 5, 7, 8) \)

Output

\(NZ = 2 \)

\[
\begin{bmatrix}
11.0 & 14.0 & . & . \\
22.0 & 24.0 & . & . \\
33.0 & 34.0 & . & . \\
44.0 & 0.0 & . & .
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 4 & . & . \\
2 & 4 & . & . \\
3 & 4 & . & . \\
4 & 4 & . & .
\end{bmatrix}
\]

Example 2: This example shows a symmetric sparse matrix \(A \), which is stored by rows and converted to compressed-matrix storage mode, where sparse matrix \(A \) is:

\[
\begin{bmatrix}
11.0 & 0.0 & 0.0 & 14.0 \\
0.0 & 22.0 & 0.0 & 24.0 \\
0.0 & 0.0 & 33.0 & 34.0 \\
14.0 & 24.0 & 34.0 & 44.0
\end{bmatrix}
\]

Because there is a maximum of only four nonzero elements in each row of \(A \), and argument \(nz \) is specified as 6, columns 5 and 6 of arrays \(AC \) and \(KA \) are not used.

Call Statement and Input
CALL DSRSM(1 , AR , JA , IA , 4 , 6 , AC , KA , 4)

AR = (11.0, 14.0, 22.0, 24.0, 33.0, 34.0, 44.0)
JA = (1, 4, 2, 4, 3, 4, 4)
IA = (1, 3, 5, 7, 8)

Output
NZ = 4

\[
AC = \begin{bmatrix}
11.0 & 14.0 & 0.0 & 0.0 & . & . \\
22.0 & 24.0 & 0.0 & 0.0 & . & . \\
33.0 & 34.0 & 0.0 & 0.0 & . & . \\
44.0 & 24.0 & 34.0 & 14.0 & . & . \\
\end{bmatrix}
\]

\[
KA = \begin{bmatrix}
1 & 4 & 4 & 4 & . & . \\
2 & 4 & 4 & 4 & . & . \\
3 & 4 & 4 & 4 & . & . \\
4 & 2 & 3 & 1 & . & . \\
\end{bmatrix}
\]
DGKTRN—For a General Sparse Matrix, Convert Between Diagonal-Out and Profile-In Skyline Storage Mode

This subroutine converts general sparse matrix A of order n from one skyline storage mode to another—that is, between the following:

- Diagonal-out skyline storage mode
- Profile-in skyline storage mode

Syntax

<table>
<thead>
<tr>
<th>Language</th>
<th>Call to DGKTRN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>CALL DGKTRN (n, au, nu, idu, al, nl, idl, $itran$, aux, $naux$)</td>
</tr>
<tr>
<td>C and C++</td>
<td>dgktrn (n, au, nu, idu, al, nl, idl, $itran$, aux, $naux$);</td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL DGKTRN (n, au, nu, idu, al, nl, idl, $itran$, aux, $naux$);</td>
</tr>
</tbody>
</table>

On Entry

n

is the order of general sparse matrix A. Specified as: a fullword integer; $n \geq 0$.

au

is the array, referred to as AU, containing the upper triangular part of general sparse matrix A, stored as follows, where:

If $ITRAN(1) = 0$, A is stored in diagonal-out skyline storage mode.

If $ITRAN(1) = 1$, A is stored in profile-in skyline storage mode.

Specified as: a one-dimensional array of (at least) length nu, containing long-precision real numbers.

nu

is the length of array AU. Specified as: a fullword integer; $nu \geq 0$ and $nu \geq (IDU(n+1)-1)$.

idu

is the array, referred to as IDU, containing the relative positions of the diagonal elements of matrix A in input array AU. Specified as: a one-dimensional array of (at least) length $n+1$, containing fullword integers.

al

is the array, referred to as AL, containing the lower triangular part of general sparse matrix A, stored as follows, where:

If $ITRAN(1) = 0$, A is stored in diagonal-out skyline storage mode.

If $ITRAN(1) = 1$, A is stored in profile-in skyline storage mode.

Note: Entries in AL for diagonal elements of A are assumed not to have meaningful values.

Specified as: a one-dimensional array of (at least) length nl, containing long-precision real numbers.

nl

is the length of array AL. Specified as: a fullword integer; $nl \geq 0$ and $nl \geq (IDL(n+1)-1)$.

idl

is the array, referred to as IDL, containing the relative positions of the diagonal elements of matrix A in input array AL. Specified as: a one-dimensional array of (at least) length $n+1$, containing fullword integers.
itrans is an array of parameters, *ITRAN*(*i*), where:

- *ITRAN*(1) indicates the input storage mode used for matrix *A*. This determines the arrangement of data in arrays *AU*, *IDU*, *AL*, and *IDL* on input, where:
 - If *ITRAN*(1) = 0, diagonal-out skyline storage mode is used.
 - If *ITRAN*(1) = 1, profile-in skyline storage mode is used.

- *ITRAN*(2) indicates the output storage mode used for matrix *A*. This determines the arrangement of data in arrays *AU*, *IDU*, *AL*, and *IDL* on output, where:
 - If *ITRAN*(2) = 0, diagonal-out skyline storage mode is used.
 - If *ITRAN*(2) = 1, profile-in skyline storage mode is used.

- *ITRAN*(3) indicates the direction of sweep that ESSL uses through the matrix *A*, allowing you to optimize performance (see “Notes” on page 1007), where:
 - If *ITRAN*(3) = 1, matrix *A* is transformed in the positive direction, starting in row or column 1 and ending in row or column *n*.
 - If *ITRAN*(3) = −1, matrix *A* is transformed in the negative direction, starting in row or column *n* and ending in row or column 1.

Specified as: a one-dimensional array of (at least) length 3, containing fullword integers, where:

- *ITRAN*(1) = 0 or 1
- *ITRAN*(2) = 0 or 1
- *ITRAN*(3) = −1 or 1

aux has the following meaning:

- If *naux* = 0 and error 2015 is unrecoverable, *aux* is ignored.
- Otherwise, it is the storage work area used by this subroutine. Its size is specified by *naux*.

Specified as: an area of storage, containing *naux* long-precision real numbers.

naux is the size of the work area specified by *aux*—that is, the number of elements in *aux*. Specified as: a fullword integer, where:

- If *naux* = 0 and error 2015 is unrecoverable, DGKTRN dynamically allocates the work area used by this subroutine. The work area is deallocated before control is returned to the calling program.
- Otherwise, *naux* ≥ 2*n*.

On Return

au is the array, referred to as *AU*, containing the upper triangular part of general sparse matrix *A*, stored as follows, where:

- If *ITRAN*(2) = 0, *A* is stored in diagonal-out skyline storage mode.
- If *ITRAN*(2) = 1, *A* is stored in profile-in skyline storage mode.
Returned as: a one-dimensional array of (at least) length \(nu \), containing long-precision real numbers.

\textit{idu} \\
 is the array, referred to as IDU, containing the relative positions of the diagonal elements of matrix \(A \) in output array \(AU \). Returned as: a one-dimensional array of (at least) length \(n+1 \), containing fullword integers.

\textit{al} \\
 is the array, referred to as AL, containing the lower triangular part of general sparse matrix \(A \), stored as follows, where:

If \(\text{ITRAN(2)} = 0 \), \(A \) is stored in diagonal-out skyline storage mode.

If \(\text{ITRAN(2)} = 1 \), \(A \) is stored in profile-in skyline storage mode.

\textbf{Note:} You should assume that entries in \(AL \) for diagonal elements of \(A \) do not have meaningful values.

Returned as: a one-dimensional array of (at least) length \(nl \), containing long-precision real numbers.

\textit{idl} \\
 is the array, referred to as IDL, containing the relative positions of the diagonal elements of matrix \(A \) in output array \(AL \). Returned as: a one-dimensional array of (at least) length \(n+1 \), containing fullword integers.

\textbf{Notes}

1. Your various arrays must have no common elements; otherwise, results are unpredictable.

2. The \(\text{ITRAN(3)} \) argument allows you to specify the direction of travel through matrix \(A \) that ESSL takes during the transformation. By properly specifying \(\text{ITRAN(3)} \), you can optimize the performance of the transformation, which is especially beneficial when transforming large matrices.

 The direction specified by \(\text{ITRAN(3)} \) should be opposite the most recent direction of access through the matrix performed by the DGKFS or DGKFSP subroutine, as indicated in the following table:

<table>
<thead>
<tr>
<th>Most Recent Computation Performed by DGKFS/DGKFSP</th>
<th>Direction Used by DGKFS/DGKFSP</th>
<th>Direction to Specify in ITRAN(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor and Solve</td>
<td>Negative</td>
<td>Positive (ITRAN(3) = 1)</td>
</tr>
<tr>
<td>Factor Only</td>
<td>Positive</td>
<td>Negative (ITRAN(3) = -1)</td>
</tr>
<tr>
<td>Solve Only</td>
<td>Negative</td>
<td>Positive (ITRAN(3) = 1)</td>
</tr>
</tbody>
</table>

3. For a description of how sparse matrices are stored in skyline storage mode, see “Profile-In Skyline Storage Mode” on page 101 and “Diagonal-Out Skyline Storage Mode” on page 99.

4. You have the option of having the minimum required value for \(naux \) dynamically returned to your program. For details, see “Using Auxiliary Storage in ESSL” on page 30.

\textbf{Function:} A general sparse matrix \(A \), stored in diagonal-out or profile-in skyline storage mode is converted to either of these same two storage modes. (Generally, you convert from one to the other, but the capability exists to specify the same
storage mode for input and output.) The argument ITRAN(3) indicates the direction in which you want the transformation performed on matrix \(A \), allowing you to optimize your performance in this subroutine. This is especially beneficial for large matrices.

This subroutine is meant to be used in conjunction with DGKFS and DGKFSP, which process matrices stored in these skyline storage modes.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, \(naux = 0 \), and unable to allocate work area.

Computational Errors: None

Input-Argument Errors

1. \(n < 0 \)
2. \(nu < 0 \)
3. \(IDU(n+1) > nu+1 \)
4. \(IDU(i+1) \leq IDU(i) \) for \(i = 1, n \)
5. \(IDU(i+1) > IDU(i)+i \) and ITRAN(1) = 0 for \(i = 1, n \)
6. \(IDU(i) > IDU(i−1)+i \) and ITRAN(1) = 1 for \(i = 2, n \)
7. \(nl < 0 \)
8. \(IDL(n+1) > nl+1 \)
9. \(IDL(i+1) \leq IDL(i) \) for \(i = 1, n \)
10. \(IDL(i+1) > IDL(i)+i \) and ITRAN(1) = 0 for \(i = 1, n \)
11. \(IDL(i) > IDL(i−1)+i \) and ITRAN(1) = 1 for \(i = 2, n \)
12. \(ITRAN(1) \neq 0 \) or 1
13. \(ITRAN(2) \neq 0 \) or 1
14. \(ITRAN(3) \neq -1 \) or 1
15. Error 2015 is recoverable or \(naux<0 \), and \(naux \) is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.

Example 1: This example shows how to convert a 9 by 9 general sparse matrix \(A \) from diagonal-out skyline storage mode to profile-in skyline storage mode. Matrix \(A \) is:

\[
\begin{bmatrix}
11.0 & 12.0 & 13.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
21.0 & 22.0 & 23.0 & 24.0 & 25.0 & 0.0 & 0.0 & 0.0 & 29.0 \\
31.0 & 32.0 & 33.0 & 34.0 & 35.0 & 0.0 & 37.0 & 0.0 & 39.0 \\
41.0 & 42.0 & 43.0 & 44.0 & 45.0 & 46.0 & 47.0 & 0.0 & 49.0 \\
0.0 & 0.0 & 0.0 & 54.0 & 55.0 & 56.0 & 57.0 & 58.0 & 59.0 \\
0.0 & 62.0 & 63.0 & 64.0 & 65.0 & 66.0 & 67.0 & 68.0 & 69.0 \\
0.0 & 0.0 & 0.0 & 74.0 & 75.0 & 76.0 & 77.0 & 78.0 & 79.0 \\
0.0 & 0.0 & 0.0 & 84.0 & 85.0 & 86.0 & 87.0 & 88.0 & 89.0 \\
91.0 & 92.0 & 93.0 & 94.0 & 95.0 & 96.0 & 97.0 & 98.0 & 99.0
\end{bmatrix}
\]

Assuming that DGKFS last performed a solve on matrix \(A \), the direction of the transformation is positive; that is, ITRAN(3) is 1. This provides the best performance here.

Note: On input and output, the diagonal elements in AL do not have meaningful values.
Call Statement and Input

\[
\begin{array}{ccccccccccc}
\text{N} & \text{AU} & \text{NU} & \text{IDU} & \text{AL} & \text{NL} & \text{IDL} & \text{ITRAN} & \text{AUX} & \text{NAUX} \\
\hline
\text{CALL DGKTRN(9 , AU , 33 , IDU , AL , 35 , IDL , ITRAN , AUX , 18)} \\
\end{array}
\]

\[
\text{AU} = (11.0, 22.0, 12.0, 33.0, 23.0, 13.0, 44.0, 34.0, 24.0, 55.0, 45.0, 35.0, 25.0, 66.0, 56.0, 46.0, 77.0, 67.0, 57.0, 47.0, 37.0, 88.0, 78.0, 68.0, 58.0, 99.0, 89.0, 79.0, 69.0, 59.0, 49.0, 39.0, 29.0) \\
\text{IDU} = (1, 2, 4, 7, 10, 14, 17, 22, 26, 34) \\
\text{AL} = (., 21.0, ., 32.0, 31.0, ., 43.0, 42.0, 41.0, ., 54.0, ., 65.0, 64.0, 63.0, 62.0, ., 76.0, 75.0, 74.0, ., 87.0, 86.0, 85.0, 84.0, ., 98.0, 97.0, 96.0, 95.0, 94.0, 93.0, 92.0, 91.0) \\
\text{IDL} = (1, 3, 6, 9, 13, 16, 21, 25, 33, 34) \\
\text{ITRAN} = (1, 0, 1) \\
\end{array}
\]

Output

\[
\begin{array}{ccccccccccc}
\text{AU} = (11.0, 12.0, 22.0, 13.0, 23.0, 33.0, 24.0, 34.0, 44.0, 25.0, 35.0, 45.0, 55.0, 46.0, 56.0, 66.0, 37.0, 47.0, 57.0, 67.0, 77.0, 58.0, 68.0, 78.0, 88.0, 29.0, 39.0, 49.0, 59.0, 69.0, 79.0, 89.0, 99.0) \\
\text{IDU} = (1, 3, 6, 9, 13, 16, 21, 25, 33, 34) \\
\text{AL} = (., 21.0, ., 32.0, 31.0, ., 43.0, 42.0, 41.0, ., 54.0, ., 65.0, 64.0, 63.0, 62.0, ., 76.0, 75.0, 74.0, ., 84.0, 85.0, 86.0, 87.0, ., 91.0, 92.0, 93.0, 94.0, 95.0, 96.0, 97.0, 98.0, .) \\
\text{IDL} = (1, 3, 6, 10, 12, 17, 21, 26, 35, 36) \\
\end{array}
\]

Example 2: This example shows how to convert the same 9 by 9 general sparse matrix \(A\) in Example 1 from profile-in skyline storage mode to diagonal-out skyline storage mode.

Assuming that DGKFS last performed a factorization on matrix \(A\), the direction of the transformation is negative; that is, \(\text{ITRAN}(3) = -1\). This provides the best performance here.

Note: On input and output, the diagonal elements in \(AL\) do not have meaningful values.

Call Statement and Input

\[
\begin{array}{ccccccccccc}
\text{N} & \text{AU} & \text{NU} & \text{IDU} & \text{AL} & \text{NL} & \text{IDL} & \text{ITRAN} & \text{AUX} & \text{NAUX} \\
\hline
\text{CALL DGKTRN(9 , AU , 33 , IDU , AL , 35 , IDL , ITRAN , AUX , 18)} \\
\end{array}
\]

\[
\text{AU} = (\text{same as output AU in Example 1}) \\
\text{IDU} = (\text{same as output IDU in Example 1}) \\
\text{AL} = (\text{same as output AL in Example 1}) \\
\text{IDL} = (\text{same as output IDL in Example 1}) \\
\text{ITRAN} = (1, 0, -1)
\]
Output

AU = (same as input AU in Example 1)
IDU = (same as input IDU in Example 1)
AL = (same as input AL in Example 1)
IDL = (same as input IDL in Example 1)
DSKTRN—For a Symmetric Sparse Matrix, Convert Between Diagonal-Out and Profile-In Skyline Storage Mode

This subroutine converts symmetric sparse matrix A of order n from one skyline storage mode to another—that is, between the following:

- Diagonal-out skyline storage mode
- Profile-in skyline storage mode

Syntax

<table>
<thead>
<tr>
<th>Language</th>
<th>Call</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>CALL DSKTRN (n, a, na, idia, itran, aux, naux)</td>
<td></td>
</tr>
<tr>
<td>C and C++</td>
<td>dsktrn (n, a, na, idia, itran, aux, naux);</td>
<td></td>
</tr>
<tr>
<td>PL/I</td>
<td>CALL DSKTRN (n, a, na, idia, itran, aux, naux);</td>
<td></td>
</tr>
</tbody>
</table>

On Entry

- n is the order of symmetric sparse matrix A. Specified as: a fullword integer; $n \geq 0$.
- a is the array, referred to as A, containing the upper triangular part of symmetric sparse matrix A, stored as follows, where:
 - If $ITRAN(1) = 0$, A is stored in diagonal-out skyline storage mode.
 - If $ITRAN(1) = 1$, A is stored in profile-in skyline storage mode.
- Specified as: a one-dimensional array of (at least) length na, containing long-precision real numbers.
- na is the length of array A. Specified as: a fullword integer; $na \geq 0$ and $na \geq (IDIA(n1+1)-1)$.
- $idia$ is the array, referred to as IDIA, containing the relative positions of the diagonal elements of matrix A in input array A. Specified as: a one-dimensional array of (at least) length $n1$, containing fullword integers.
- $itran$ is an array of parameters, $ITRAN(i)$, where:
 - $ITRAN(1)$ indicates the input storage mode used for matrix A. This determines the arrangement of data in arrays A and $IDIA$ on input, where:
 - If $ITRAN(1) = 0$, diagonal-out skyline storage mode is used.
 - If $ITRAN(1) = 1$, profile-in skyline storage mode is used.
 - $ITRAN(2)$ indicates the output storage mode used for matrix A. This determines the arrangement of data in arrays A and IDA on output, where:
 - If $ITRAN(2) = 0$, diagonal-out skyline storage mode is used.
 - If $ITRAN(2) = 1$, profile-in skyline storage mode is used.
 - $ITRAN(3)$ indicates the direction of sweep that ESSL uses through the matrix A, allowing you to optimize performance (see "Notes" on page 1012), where:
If $\text{ITRAN}(3) = 1$, matrix A is transformed in the positive direction, starting in row or column 1 and ending in row or column n.

If $\text{ITRAN}(3) = -1$, matrix A is transformed in the negative direction, starting in row or column n and ending in row or column 1.

Specified as: a one-dimensional array of (at least) length 3, containing fullword integers, where:

- $\text{ITRAN}(1) = 0$ or 1
- $\text{ITRAN}(2) = 0$ or 1
- $\text{ITRAN}(3) = -1$ or 1

aux has the following meaning:

If $n_{\text{aux}} = 0$ and error 2015 is unrecoverable, aux is ignored.

Otherwise, it is the storage work area used by this subroutine. Its size is specified by n_{aux}.

Specified as: an area of storage, containing n_{aux} long-precision real numbers.

n_{aux} is the size of the work area specified by aux—that is, the number of elements in aux. Specified as: a fullword integer, where:

If $n_{\text{aux}} = 0$ and error 2015 is unrecoverable, DSKTRN dynamically allocates the work area used by this subroutine. The work area is deallocated before control is returned to the calling program.

Otherwise, $n_{\text{aux}} \geq n$.

On Return

- a is the array, referred to as A, containing the upper triangular part of symmetric sparse matrix A, stored as follows, where:
 - If $\text{ITRAN}(2) = 0$, A is stored in diagonal-out skyline storage mode.
 - If $\text{ITRAN}(2) = 1$, A is stored in profile-in skyline storage mode.

Returned as: a one-dimensional array of (at least) length n_{a}, containing long-precision real numbers.

- idia_g is the array, referred to as IDIAG, containing the relative positions of the diagonal elements of matrix A in output array A. Returned as: a one-dimensional array of (at least) length $n+1$, containing fullword integers.

Notes

1. Your various arrays must have no common elements; otherwise, results are unpredictable.

2. The $\text{ITRAN}(3)$ argument allows you to specify the direction of travel through matrix A that ESSL takes during the transformation. By properly specifying $\text{ITRAN}(3)$, you can optimize the performance of the transformation, which is especially beneficial when transforming large matrices.

 The direction specified by $\text{ITRAN}(3)$ should be opposite the most recent direction of access through the matrix performed by the DSKFS or DSKFSP subroutine, as indicated in the following table:
3. For a description of how sparse matrices are stored in skyline storage mode, see “Profile-In Skyline Storage Mode” on page 101 and “Diagonal-Out Skyline Storage Mode” on page 99.

4. You have the option of having the minimum required value for \(n_{aux} \) dynamically returned to your program. For details, see “Using Auxiliary Storage in ESSL” on page 30.

Function: A symmetric sparse matrix \(A \), stored in diagonal-out or profile-in skyline storage mode is converted to either of these same two storage modes. (Generally, you convert from one to the other, but the capability exists to specify the same storage mode for input and output.) The argument \(\text{ITRAN}(3) \) indicates the direction in which you want the transformation performed on matrix \(A \), allowing you to optimize your performance in this subroutine. This is especially beneficial for large matrices.

This subroutine is meant to be used in conjunction with DSKFS and DSKFSP, which process matrices stored in these skyline storage modes.

Error Conditions

Resource Errors: Error 2015 is unrecoverable, \(n_{aux} = 0 \), and unable to allocate work area.

Computational Errors: None

Input-Argument Errors

1. \(n < 0 \)
2. \(n_{a} < 0 \)
3. \(\text{IDIAG}(n+1) > n_{a}+1 \)
4. \(\text{IDIAG}(i+1) \leq \text{IDIAG}(i) \) for \(i = 1, n \)
5. \(\text{IDIAG}(i+1) > \text{IDIAG}(i)+i \) and \(\text{ITRAN}(1) = 0 \) for \(i = 1, n \)
6. \(\text{IDIAG}(i) > \text{IDIAG}(i-1)+i \) and \(\text{ITRAN}(1) = 1 \) for \(i = 2, n \)
7. \(\text{ITRAN}(1) \neq 0 \) or \(1 \)
8. \(\text{ITRAN}(2) \neq 0 \) or \(1 \)
9. \(\text{ITRAN}(3) \neq -1 \) or \(1 \)
10. \(n_{aux} \) Error 2015 is recoverable or \(n_{aux} \neq 0 \), and is too small—that is, less than the minimum required value. Return code 1 is returned if error 2015 is recoverable.

Example 1: This example shows how to convert a 9 by 9 symmetric sparse matrix \(A \) from diagonal-out skyline storage mode to profile-in skyline storage mode. Matrix \(A \) is:

<table>
<thead>
<tr>
<th>Most Recent Computation Performed by DSKFS/DSKFSP</th>
<th>Direction Used by DSKFS/DSKFSP</th>
<th>Direction to Specify in ITRAN(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor and Solve</td>
<td>Negative</td>
<td>Positive (ITRAN(3) = 1)</td>
</tr>
<tr>
<td>Factor Only</td>
<td>Positive</td>
<td>Negative (ITRAN(3) = -1)</td>
</tr>
<tr>
<td>Solve Only</td>
<td>Negative</td>
<td>Positive (ITRAN(3) = 1)</td>
</tr>
</tbody>
</table>
Assuming that DSKFS last performed a factorization on matrix \(A \), the direction of the transformation is negative; that is, \(\text{ITRAN}(3) \) is \(-1\). This provides the best performance here.

Call Statement and Input

\[
\begin{array}{cccccccc}
N & A & NA & IDIAG & ITRAN & AUX & NAUX \\
\mid & | & | & | & | & | & | \\
\text{CALL DSKTRN(} & 9 , & A , & 33 , & IDIAG , & ITRAN , & AUX , & 9 \text{)}
\end{array}
\]

\[
A = (11.0, 22.0, 12.0, 33.0, 23.0, 13.0, 44.0, 34.0, 24.0, \\
14.0, 55.0, 45.0, 35.0, 25.0, 66.0, 56.0, 46.0, 36.0, \\
26.0, 77.0, 67.0, 57.0, 88.0, 78.0, 68.0, 58.0, 48.0, \\
38.0, 28.0, 99.0, 89.0, 79.0, 69.0) \\
\]

\[
\begin{array}{cccc}
\text{IDIAG} & = & (1, 2, 4, 7, 11, 15, 20, 23, 30, 34) \\
\text{ITRAN} & = & (0, 1, -1)
\end{array}
\]

Output

\[
A = (11.0, 12.0, 22.0, 13.0, 23.0, 33.0, 14.0, 24.0, 34.0, \\
44.0, 25.0, 35.0, 45.0, 55.0, 26.0, 36.0, 46.0, 56.0, \\
66.0, 57.0, 67.0, 77.0, 28.0, 38.0, 48.0, 58.0, 68.0, \\
78.0, 88.0, 69.0, 89.0, 79.0, 99.0) \\
\]

\[
\begin{array}{cccc}
\text{IDIAG} & = & (1, 3, 6, 10, 14, 19, 22, 29, 33, 34) \\
\end{array}
\]

Example 2: This example shows how to convert the same 9 by 9 symmetric sparse matrix \(A \) in Example 1 from profile-in skyline storage mode to diagonal-out skyline storage mode.

Assuming that DSKFS last performed a solve on matrix \(A \), the direction of the transformation is positive; that is, \(\text{ITRAN}(3) \) is \(1\). This provides the best performance here.

Call Statement and Input

\[
\begin{array}{cccccccc}
N & A & NA & IDIAG & ITRAN & AUX & NAUX \\
\mid & | & | & | & | & | & | \\
\text{CALL DSKTRN(} & 9 , & A , & 33 , & IDIAG , & ITRAN , & AUX , & 9 \text{)}
\end{array}
\]

\[
A = \text{(same as output } A \text{ in Example 1)} \\
\text{IDIAG} = \text{(same as output } \text{IDIAG in Example 1)} \\
\text{ITRAN} = (1, 0, 1)
\]
Output

\[A = \text{(same as input } A \text{ in Example 1)} \]
\[\text{IDIAG} = \text{(same as input } \text{IDIAG in Example 1)} \]
Appendix A. Basic Linear Algebra Subprograms (BLAS)

This appendix lists the ESSL subprograms corresponding to a subprogram in the standard set of BLAS.

Level 1 BLAS

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subprogram</th>
<th>Long-Precision Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position of the First or Last Occurrence of the Vector Element Having the Largest Magnitude</td>
<td>ISAMAX</td>
<td>IDAMAX</td>
</tr>
<tr>
<td></td>
<td>ICAMAX</td>
<td>IZAMAX</td>
</tr>
<tr>
<td>Sum of the Magnitudes of the Elements in a Vector</td>
<td>SASUM</td>
<td>DASUM</td>
</tr>
<tr>
<td></td>
<td>SCASUM</td>
<td>DZASUM</td>
</tr>
<tr>
<td>Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in the Vector Y</td>
<td>SAXPY</td>
<td>DAXPY</td>
</tr>
<tr>
<td></td>
<td>CAXPY</td>
<td>ZAXPY</td>
</tr>
<tr>
<td>Copy a Vector</td>
<td>SCOPY</td>
<td>DCOPY</td>
</tr>
<tr>
<td></td>
<td>CCOPY</td>
<td>ZCOPY</td>
</tr>
<tr>
<td>Dot Product of Two Vectors</td>
<td>SDOT</td>
<td>DDOT</td>
</tr>
<tr>
<td></td>
<td>CDOTU</td>
<td>ZDOTU</td>
</tr>
<tr>
<td></td>
<td>CDOTC</td>
<td>ZDOTC</td>
</tr>
<tr>
<td>Euclidean Length of a Vector with Scaling of Input to Avoid Destructive Underflow and Overflow</td>
<td>SNRM2</td>
<td>DNRM2</td>
</tr>
<tr>
<td></td>
<td>SCNRM2</td>
<td>DZNRM2</td>
</tr>
<tr>
<td>Construct a Givens Plane Rotation</td>
<td>SROTG</td>
<td>DROTG</td>
</tr>
<tr>
<td></td>
<td>CROTG</td>
<td>ZROTG</td>
</tr>
<tr>
<td>Apply a Plane Rotation</td>
<td>SROT</td>
<td>DROT</td>
</tr>
<tr>
<td></td>
<td>CROT</td>
<td>ZROT</td>
</tr>
<tr>
<td></td>
<td>CSROT</td>
<td>ZDROT</td>
</tr>
<tr>
<td>Multiply a Vector X by a Scalar and Store in the Vector X</td>
<td>SSCAL</td>
<td>DSCAL</td>
</tr>
<tr>
<td></td>
<td>CSCAL</td>
<td>ZSCAL</td>
</tr>
<tr>
<td></td>
<td>CSSCAL</td>
<td>ZDSCAL</td>
</tr>
<tr>
<td>Interchange the Elements of Two Vectors</td>
<td>SSWAP</td>
<td>DSWAP</td>
</tr>
<tr>
<td></td>
<td>CSWAP</td>
<td>ZSWAP</td>
</tr>
</tbody>
</table>

Level 2 BLAS

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subprogram</th>
<th>Long-Precision Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix-Vector Product for a General Matrix, Its Transpose, or Its Conjugate Transpose</td>
<td>SGEMV</td>
<td>DGEMV</td>
</tr>
<tr>
<td></td>
<td>CGEMV</td>
<td>ZGEMV</td>
</tr>
</tbody>
</table>
Table 173 (Page 2 of 2). Level 2 BLAS Included in ESSL

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subprogram</th>
<th>Long-Precision Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank-One Update of a General Matrix</td>
<td>SGER</td>
<td>DGER</td>
</tr>
<tr>
<td></td>
<td>CGERU</td>
<td>ZGERU</td>
</tr>
<tr>
<td></td>
<td>CGERC</td>
<td>ZGERC</td>
</tr>
<tr>
<td>Matrix-Vector Product for a Real Symmetric or Complex Hermitian Matrix</td>
<td>SPPMV</td>
<td>DPPMV</td>
</tr>
<tr>
<td></td>
<td>CHPMV</td>
<td>ZHPMV</td>
</tr>
<tr>
<td></td>
<td>SSYMV</td>
<td>DSYMV</td>
</tr>
<tr>
<td></td>
<td>CHEMV</td>
<td>ZHEMV</td>
</tr>
<tr>
<td>Rank-One Update of a Real Symmetric or Complex Hermitian Matrix</td>
<td>SPPR</td>
<td>DPPR</td>
</tr>
<tr>
<td></td>
<td>CHPR</td>
<td>ZHPR</td>
</tr>
<tr>
<td></td>
<td>SSYR</td>
<td>DSYR</td>
</tr>
<tr>
<td></td>
<td>CHER</td>
<td>ZHER</td>
</tr>
<tr>
<td>Rank-Two Update of a Real Symmetric or Complex Hermitian Matrix</td>
<td>SPPR2</td>
<td>DPPR2</td>
</tr>
<tr>
<td></td>
<td>CHPR2</td>
<td>ZHPR2</td>
</tr>
<tr>
<td></td>
<td>SSYR2</td>
<td>DSYR2</td>
</tr>
<tr>
<td></td>
<td>CHER2</td>
<td>ZHER2</td>
</tr>
<tr>
<td>Matrix-Vector Product for a General Band Matrix, Its Transpose, or Its Conjugate Transpose</td>
<td>SGBMV</td>
<td>DGBMV</td>
</tr>
<tr>
<td></td>
<td>CGBMV</td>
<td>ZGBMV</td>
</tr>
<tr>
<td>Matrix-Vector Product for a Real Symmetric or Complex Hermitian Band Matrix</td>
<td>SSBMV</td>
<td>DSBMV</td>
</tr>
<tr>
<td></td>
<td>CHBMV</td>
<td>ZHBVM</td>
</tr>
<tr>
<td>Matrix-Vector Product for a Triangular Matrix, Its Transpose, or Its Conjugate Transpose</td>
<td>STPMV</td>
<td>DTPMV</td>
</tr>
<tr>
<td></td>
<td>CTPMV</td>
<td>ZTPMV</td>
</tr>
<tr>
<td></td>
<td>STRMV</td>
<td>DTRMV</td>
</tr>
<tr>
<td></td>
<td>CTRMV</td>
<td>ZTRMV</td>
</tr>
<tr>
<td>Solution of a Triangular System of Equations with a Single Right-Hand Side</td>
<td>STPSV</td>
<td>DTPSV</td>
</tr>
<tr>
<td></td>
<td>CTPSV</td>
<td>ZTPSV</td>
</tr>
<tr>
<td></td>
<td>STRSV</td>
<td>DTRSV</td>
</tr>
<tr>
<td></td>
<td>CTRSV</td>
<td>ZTRSV</td>
</tr>
<tr>
<td>Matrix-Vector Product for a Triangular Band Matrix, Its Transpose, or Its Conjugate Transpose</td>
<td>STBMV</td>
<td>DTBVM</td>
</tr>
<tr>
<td></td>
<td>CTBMV</td>
<td>ZTBVM</td>
</tr>
<tr>
<td>Triangular Band Equation Solve</td>
<td>STBSV</td>
<td>DTBSV</td>
</tr>
<tr>
<td></td>
<td>CTBSV</td>
<td>ZTBSV</td>
</tr>
</tbody>
</table>

Level 3 BLAS

Table 174 (Page 1 of 2). Level 3 BLAS Included in ESSL

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subprogram</th>
<th>Long-Precision Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined Matrix Multiplication and Addition for General Matrices, Their Transposes, or Conjugate Transposes</td>
<td>SGEMM</td>
<td>DGEMM</td>
</tr>
<tr>
<td></td>
<td>CGEMM</td>
<td>ZGEMM</td>
</tr>
<tr>
<td>Matrix-Matrix Product Where One Matrix is Real or Complex Symmetric or Complex Hermitian</td>
<td>SSYMM</td>
<td>DSYMM</td>
</tr>
<tr>
<td></td>
<td>CSYMM</td>
<td>ZSYMM</td>
</tr>
<tr>
<td></td>
<td>CHEMM</td>
<td>ZHEMM</td>
</tr>
<tr>
<td>Descriptive Name</td>
<td>Short-Precision Subprogram</td>
<td>Long-Precision Subprogram</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Triangular Matrix-Matrix Product</td>
<td>STRMM, CTRMM</td>
<td>DTRMM, ZTRMM</td>
</tr>
<tr>
<td>Rank-K Update of a Real or Complex Symmetric or a Complex Hermitian Matrix</td>
<td>SSYRK, CSYRK, CHERK</td>
<td>DSYRK, ZSYRK, ZHERK</td>
</tr>
<tr>
<td>Rank-2K Update of a Real or Complex Symmetric or a Complex Hermitian Matrix</td>
<td>SSYR2K, CSYR2K, CHER2K</td>
<td>DSYR2K, ZSYR2K, ZHER2K</td>
</tr>
<tr>
<td>Solution of Triangular Systems of Equations with Multiple Right-Hand Sides</td>
<td>STRSM, CTRSM</td>
<td>DTRSM, ZTRSM</td>
</tr>
</tbody>
</table>
Appendix B. LAPACK

This appendix lists the ESSL subroutines corresponding to subroutines in the standard set of LAPACK.

LAPACK

<table>
<thead>
<tr>
<th>Descriptive Name</th>
<th>Short-Precision Subprogram</th>
<th>Long-Precision Subprogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Matrix Factorization</td>
<td>SGETRF</td>
<td>DGETRF</td>
</tr>
<tr>
<td></td>
<td>CGETRF</td>
<td>ZGETRF</td>
</tr>
<tr>
<td>General Matrix, Its Transpose, or Its Conjugate Transpose Multiple Right-Hand Side Solve</td>
<td>SGETRS</td>
<td>DGETRS</td>
</tr>
<tr>
<td></td>
<td>CGETRS</td>
<td>ZGETRS</td>
</tr>
<tr>
<td>General Matrix QR Factorization</td>
<td></td>
<td>DGEQRF</td>
</tr>
</tbody>
</table>
This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracy or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes to the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Department LJEB/P905
2455 South Road
Poughkeepsie, NY 12601-5400
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and distribute these sample programs in any form without payment to IBM for the purposes of developing, using, marketing, or distributing application programs conforming to IBM's application programming interfaces.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States or other countries or both:

- AIX
- AIX/6000
- HACMP/6000
- IBM
- IBMLink
- POWER2 Architecture
- POWER3
- POWER3-II
- POWERparallel
- PowerPC Architecture
- POWERserver
- RS/6000
- RS/6000 Scalable POWERparallel Systems
- Scalable POWERparallel Systems
- SP
- System/370
- System/390
- VisualAge

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, BackOffice, MS-DOS, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Tivoli Enterprise Console is a trademark of Tivoli Systems Inc. in the United States, other countries, or both.

UNIX is a registered trademark in the United States and other countries licensed exclusively through The Open Group.

Other company, product, and service names may be the trademarks or service marks of others.

Software Update Protocol

IBM has provided modifications to this software. The resulting software is provided to you on an "AS IS" basis and WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Programming Interfaces

This *Engineering and Scientific Subroutine Library (ESSL) Version 3 Guide and Reference* manual is intended to help the customer to do application programming. This *ESSL Version 3 Guide and Reference* manual documents General-use Programming Interface and Associated Guidance Information provided by ESSL Version 3.

General-use programming interfaces allow the customer to write programs that obtain the services of ESSL Version 3.
Glossary

This glossary defines terms and abbreviations used in this publication. If you do not find the term you are looking for, refer to the index portion of this book. This glossary includes terms and definitions from:

- *American National Standard Dictionary for Information Systems*, ANSI X3.172-1990, copyright 1990 by the American National Standards Institute (ANSI). Copies may be purchased from the American National Standards Institute, 11 West 42nd Street, New York, New York 10036. Definitions are identified by the symbol (A) after the definition.
- *Information Technology Vocabulary*, developed by Subcommittee 1, Joint Technical Committee 1, of the International Organization for Standardization and the International Electrotechnical Commission (ISO/IEC JTC1/SC1). Definitions from published sections of these vocabularies are identified by the symbol (I) after the definition. Definitions taken from draft international standards, committee drafts, and working papers being developed by ISO/IEC JTC1/SC1 are identified by the symbol (T) after the definition, indicating that final agreement has not yet been reached among the participating National Bodies of SC1.

APAR. Authorized Program Analysis Report. A report of a problem caused by a suspected defect in a current unaltered release of a program.

argument. A parameter passed between a calling program and a SUBROUTINE subprogram, a FUNCTION subprogram, or a statement function.

array. An ordered set of data items identified by a single name.

array element. A data item in an array, identified by the array name followed by a subscript indicating its position in the array.

array name. The name of an ordered set of data items that make up an array.

assignment statement. A statement that assigns a value to a variable or array element. It is made up of a variable or array element, followed by an equal sign (=), followed by an expression. The variable, array element, or expression can be character, logical, or arithmetic. When the assignment statement is processed, the expression to the right of the equal sign replaces the value of the variable or array element to the left.

Basic Linear Algebra Subprograms (BLAS). A standard, public domain, set of mathematical subroutines that perform linear algebra operations.

BLAS. Basic Linear Algebra Subprograms.

cache. A special-purpose buffer storage, smaller and faster than main storage, used to hold a copy of instructions and data obtained from main storage and likely to be needed next by the processor. (T)

character constant. A string of one or more alphanumerical characters enclosed in apostrophes. The delimiting apostrophes are not part of the value of the constant.

character expression. An expression in the form of a single character constant, variable, array element, substring, function reference, or another expression enclosed in parentheses. A character expression is always of type character.

character type. The data type for representing strings of alphanumerical characters; in storage, one byte is used for each character.

column-major order. A sequencing method used for storing multidimensional arrays according to the subscripts of the array elements. In this method the leftmost subscript position varies most rapidly and completes a full cycle before the next subscript position to the right is incremented.

complex conjugate even data. Complex data that has its real part even and its imaginary part odd.

complex constant. An ordered pair of real or integer constants separated by a comma and enclosed in parentheses. The first real constant of the pair is the real part of the complex number; the second is the imaginary part.

complex type. The data type for representing an approximation of the value of a complex number. A data item of this type consists of an ordered pair of real data items separated by a comma and enclosed in parentheses. The first item represents the real part of the complex number; the second represents the imaginary part.

constant. An unvarying quantity. The four classes of constants specify numbers (arithmetic), truth values (logical), character data (character), and hexadecimal data.
data type. The structural characteristics, features and properties of data that may be directly specified by a programming language; for example, integers, real numbers in Fortran; arrays in APL; linked lists in LISP; character string in SNOBOL.

decimation. The formation of a sequence containing every n-th element of another sequence.

dimension of an array. One of the subscript expression positions in a subscript for an array. In Fortran, an array may have from one to seven dimensions. Graphically, the first dimension is represented by the rows, the second by the columns, and the third by the planes. Contrast with rank. See also extent of a dimension.

direct access storage. A storage device in which the access time is in effect independent of the location of the data. (A)

divide-by-zero exception. The condition recognized by a processor that results from running a program that attempts to divide by zero.

double precision. Synonym for long-precision.

expression. A notation that represents a value: a primary appearing alone, or combinations of primaries and operators. An expression can be arithmetic, character, logical, or relational.

extent of a dimension. The number of different integer values that may be represented by subscript expressions for a particular dimension in a subscript for an array.

external function. A function defined outside the program unit that refers to it. It may be referred to in a procedure subprogram or in the main program, but it must not refer to itself, either directly or indirectly. Contrast with statement function.

function. In Fortran, a procedure that is invoked by referring to it in an expression and that supplies a value to the expression. The value supplied is the value of the function. See also external function, intrinsic function, and statement function. Contrast with subroutine.

function reference. A Fortran source program reference to an intrinsic function, to an external function, or to a statement function.

general matrix. A matrix with no assumed special properties such as symmetry. Synonym for matrix.

integer constant. A string of decimal digits containing no decimal point and expressing a whole number.

integer expression. An arithmetic expression whose values are of integer type.

integer type. An arithmetic data type capable of expressing the value of an integer. It can have a positive, negative, or 0 value. It must not include a decimal point.

intrinsic function. A function, supplied by Fortran, that performs mathematical or character operations.

leading dimension. For a two-dimensional array, an increment used to find the starting point for the matrix elements in each successive column of the array.

logical constant. A constant that can have one of two values: true or false. The form of these values in Fortran is: .TRUE. and .FALSE. respectively.

logical expression. A logical primary alone or a combination of logical primaries and logical operators. A logical expression can have one of two values: true or false.

logical type. The data type for data items that can have the value true or false and upon which logical operations such as .NOT. and .OR. can be performed. See also “data type.”

long-precision. Real type of data of length 8. Contrast with single precision and short-precision.

main program. In Fortran, a program unit, required for running, that can call other program units but cannot be called by them.

mask. To use a pattern of characters to control the retention or elimination of portions of another pattern of characters. (I)

matrix. A rectangular array of elements, arranged in rows and columns, that may be manipulated according to the rules of matrix algebra. (A) (I)

multithreaded. There may be one or more threads in a process, and each thread is executed by the operating system concurrently. An application program is multithreaded if more than one thread is executed concurrently.

overflow exception. A condition caused by the result of an arithmetic operation having a magnitude that exceeds the largest possible number.

platform. A mainframe or a workstation.

primary. An irreducible unit of data; a single constant, variable, array element, function reference, or expression enclosed in parentheses.

program exception. The condition recognized by a processor that results from running a program that
improperly specifies or uses instructions, operands, or control information.

PTF. Program Temporary Fix. A temporary solution or by-pass of a problem diagnosed by IBM as resulting from a defect in a current unaltered release of the program. A report of a problem caused by a suspected defect in a current unaltered release of a program.

pthread. A thread that conforms to the POSIX Threads Programming Model.

real constant. A string of decimal digits that expresses a real number. A real constant must contain either a decimal point or a decimal exponent and may contain both. For example, the real constant 0.36819E+2 has the value +36.819.

real type. An arithmetic data type, capable of approximating the value of a real number. It can have a positive, negative, or 0 value.

row-major order. A sequencing method used for storing multidimensional arrays according to the subscripts of the array elements. In this method the rightmost subscript position varies most rapidly and completes a full cycle before the next subscript position to the left is incremented.

scalar. (1) A quantity characterized by a single number. (A) (I) (2) Contrast with vector.

shape of an array. The extents of all the dimensions of an array listed in order. For example, the shape of a three-dimensional array that has four rows, five columns, and three planes is (4,5,3) or 4 by 5 by 3.

short-precision. Real type data of length 4. Contrast with double precision and long-precision.

single precision. Synonym for short-precision.

size of an array. The number of elements in an array. This is the product of the extents of its dimensions.

SMP. Symmetric Multi-Processing.

statement. The basic unit of a program, that specifies an action to be performed, or the nature and characteristics of the data to be processed, or information about the program itself. Statements fall into two broad classes: executable and nonexecutable.

statement function. A procedure specified by a single statement that is similar in form to an arithmetic, logical, or character assignment statement. The statement must appear after the specification statements and before the first executable statement. In the remainder of the program it can be referenced as a function. A statement function may be referred to only in the program unit in which it is defined. Contrast with external function.

statement label. A number of from one through five decimal digits that is used to identify a statement. Statement labels can be used to transfer control, to define the range of a DO, or to refer to a FORMAT statement.

statement number. See “statement label.”

stride. The increment used to step through array storage to select the vector or matrix elements from the array.

subprogram. A program unit that is invoked by another program unit in the same program. In Fortran, a subprogram has a FUNCTION, SUBROUTINE, or BLOCK DATA statement as its first statement.

subscript. (1) A symbol that is associated with the name of a set to identify a particular subset or element. (A) (2) A subscript expression or set of subscript expressions, enclosed in parentheses and used with an array name to identify a particular array element.

subscript expression. An integer expression in a subscript whose value and position in the subscript determine the index number for the corresponding dimension in the referenced array.

thread. A thread is the element that is scheduled, and to which resources such as execution time, locks, and queues may be assigned. There may be one or more threads in a process, and each thread is executed by the operating system concurrently.

thread-safe. A subroutine which may be called from multiple threads of the same process simultaneously.

type declaration. The explicit specification of the type of a constant, variable, array, or function by use of an explicit type specification statement.

underflow exception. A condition caused by the result of an arithmetic operation having a magnitude less than the smallest possible nonzero number.

variable. (1) A quantity that can assume any of a given set of values. (A) (2) A data item, identified by a name, that is not a named constant, array, or array element, and that can assume different values at different times during program processing.

vector. A one-dimensional ordered collection of numbers.

working storage. A storage area provided by the application program for the use of an ESSL subroutine.
workstation. A workstation is a single-user, high-performance microcomputer (or even a minicomputer) which has been specialized in some way, usually for graphics output. Such a machine has a screen and a keyboard, but is also capable of extensive processing of your input before it is passed to the host. Likewise, the host's responses may be extensively processed before being passed along to your screen. A workstation may be intelligent enough to do much or all the processing itself.
Bibliography

This bibliography lists the publications that you may need to use with ESSL and describes how to obtain them.

References

Text books and articles covering the mathematical aspects of ESSL are listed in this section, as well as several software libraries available from other companies. They are listed alphabetically as follows:

- Publications are listed by the author's name. IBM publications that include an order number, other than an IBM Technical Report can be ordered through the Subscription Library Services System (SLSS). The non-IBM publications listed here should be obtained through publishers, bookstores, or professional computing organizations.
- Software libraries are listed by their product name. Each reference includes the names, addresses, and phone numbers of the companies from which they can be obtained.

Each citation in the text of this book is shown as a number enclosed in square brackets. It indicates the number of the item listed in the bibliography. For example, reference [1] cites the first item listed below.

40. Dongarra, J. J.; Kolatis M. October 1994. “Call Conversion Interface (CCI) for LAPACK/ESSL.” LAPACK Working Note 82, Department of Computer Science University of Tennessee, Knoxville, Tennessee. (You can download this document from http://www.netlib.org/lapack/lawns/lawn82.ps.)

49. EISPACK software library; National Energy Software Center, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (312-972-7250); International Mathematical and Statistical Libraries, Inc., Sixth Floor, GNB Building, 7500 Bellaire Boulevard, Houston, Texas 77036 (713-772-1927)

50. Elmroth, E.; Gustavson, F. "Applying Recursion to Serial and Parallel QR Factorization Leads to Better Performance." To be Published. IBM J. Res. Develop. 44, No. 5.

ESSL Publications

This section lists the ESSL publications for each major task that you perform.

Evaluation and Planning

ESSL Products General Information, GC23-0529—provides detailed information helpful in evaluating and planning for ESSL: Parallel ESSL, ESSL for AIX, and ESSL/370.

Installation

ESSL Version 3 Installation Memo, GI10-0604—describes how to install ESSL on AIX. It is a packing list for the ESSL product when it is shipped. (One copy is delivered with each ESSL product.)

Application Programming

ESSL Version 3 Guide and Reference, SA22-7272—contains ESSL guidance information for designing, coding, and running programs using ESSL, and contains complete reference information for coding calls to the ESSL subroutines. This manual is available in HTML and PostScript format on the product medium.

Parallel ESSL Version 2 Guide and Reference, SA22-7273—contains Parallel ESSL guidance information for designing, coding, and running programs using Parallel ESSL, and contains complete reference information for coding calls to the Parallel ESSL subroutines. This manual is available in HTML and PostScript format on the Parallel ESSL product medium.

Related Publications

The related publications listed below may be useful to you when using ESSL.

AIX for the RS/6000

IBM AIX Calls and Subroutines Reference for IBM RS/6000, (all volumes) SC23-2198

AIX Performance Monitoring and Tuning Guide, SC23-2365

AIX Version 4 Release 3 for the RS/6000

For the latest updates, visit the RS/6000 web site at: http://www.rs6000.ibm.com/resource/aix_resource/Pubs

AIX Version 4.3 Commands and Reference, (all volumes) SBOF-1877

AIX Version 4.3 General Programming Concepts: Writing and Debugging Programs, SC23-4128

XL Fortran

| IBM XL Fortran for AIX User’s Guide Version 7.1, SC09-2866 |
| IBM XL Fortran for AIX Language Reference Version 7.1, SC09-2867 |

PL/I

| IBM PL/I Set for AIX Programming Guide, SC26-8456 |
| IBM PL/I Set for AIX Language Reference, SC26-8455 |

Workstation Processors

RS/6000 POWERstation and POWERserver Hardware Technical Reference Information—General Architectures, SA23-2643
Index

Numerics
3838 Array Processor
 general signal processing routines 760
3838 Array Processor publications BIB-6
64-bit environment processing procedures 162

A
abbreviations xviii
 for product names xxii
 in the Glossary GLOS-1
 interpreting math and programming xxvi
absolute value xviii
 maximum 199
 minimum 202
 notation xxvi
 sum of all absolute values 211
accuracy xviii
 considerations for dense and banded linear algebraic equations 459
 considerations for eigensystem analysis 715
 considerations for Fourier transforms, convolutions, and correlations 764
 considerations for interpolation 921
 considerations for linear algebra subprograms 197
 considerations for matrix operations 377
 considerations for numerical quadrature 941
 considerations for related computations 767
 considerations for sorting and searching 901
 error of computation 42
 of results 6, 42
 precisions 42
 what accuracy means 42
 where to find information on 42
acronyms xviii
 associated with programming values xxvi
 in the Glossary GLOS-1
 product names xxii
adding xviii
 absolute values 211
 general matrices or their transposes 379
 vector x to vector y and store in vector z 257
address notation xxvi
advantages of ESSL 3
AIX xviii
 publications BIB-5
AIX processing procedures
 for processing your Fortran program 162
 processing a 64-bit environment program 162
 processing your C program 163
 processing your C++ program 164
algebra xviii, 455
 See also linear algebra subprograms
 See also linear algebraic equations
Announcing ESSL brochure BIB-5
ANSI definitions in Glossary GLOS-1
APAR xviii
application programming, publication for BIB-5
applications in the industry 4
architecture supported by ESSL on the workstations 7
arguments xviii
 coding rules 28
 conventions used in the subroutine descriptions xxviii
 diagnosing ESSL input-argument errors 173
 font for ESSL calling xxii
 list of ESSL input-argument errors 177, 188
 passing in C programs 128
 passing in C++ programs 144
array xviii
 coding in C programs 131
 coding in C++ programs 147
 coding in Fortran programs 110
 conventions for xxv
 definition of 27
 real and complex elements 110
 setting up data structures inside 53
 storage techniques overview 26
array data xviii
 storage and performance tradeoffs 43
arrow notation, what it means xxvi
attention error messages, interpreting 175
autocorrelation of one or more sequences 873, 877
auxiliary working storage xviii
 calculating 31
 dynamic allocation 31
 list of subroutines using 30
 provided by the user 31

B
background books BIB-1
band matrix
 definition of 75
 storage layout 76, 78, 81, 82, 86, 87
band matrix subroutines, names of 455
band width 75, 80
banded linear algebraic equation subroutines
 SGBF and DGBF 561
 SGBS and DGBS 565
 SGTF and DGTF 575
 SGTNP, DGTP, CGTNP, and ZGTNP 580
 SGTNPF, DGTNPF, CGTNPF, and ZGTNP 583
banded linear algebraic equation subroutines

(continued)

SGTNPS, DGTNPS, CGTNPS, and ZGTNPS 586
SGTS and DGTS 578
SPBF, DPBF, SPBCHF, and DPBCHF 568
SPBS, DPBS, SPBCHS, and DPBCHS 572
SPTF and DPTF 589
SPTS and DPTS 591
STBSV, DTBSV, CTBSV, and ZTBSV 593

base program, processing your
under AIX 161
Basic Linear Algebra Subprograms xviii
See also BLAS
bibliography BIB-1
binary search 912

BLAS (Basic Linear Algebra Subprograms) xviii, 193
ESSL subprograms 193, APA-1
Level 1 APA-1
Level 2 APA-1
Level 3 APA-2
migrating from 169
migrating to ESSL 23
BLAS-general-band storage mode 78
bold letters, usage of xxii
books BIB-1
See also publications

calling sequence xviii
for C programs 127
for C++ programs 143
for Fortran programs 109
for PL/I programs 159
specifying the arguments 28
subroutines versus functions 109, 127, 143
syntax description xxviii
cataloged procedures, ESSL 161
CAXPY 214
CAXPYI 286
CCOPY 217
CDOTC 220
CDOTCI 289
CDOTU 220
CDOTUI 289
ceiling notation and meaning xxvi
CGBMV 338
CGEADD 379
CGEEV 718
CGEF 465
CGEMM 409
CGEMMS 403
CGEMUL 393
CGEMV 294
CGERC 305
CGERU 305
CGES 468
CGESM 472
CGESUB 386
CGETMI 448
CGETMO 451
CGETRF 478
CGETRS 482
CGTHR 280
CGTHRZ 283
CGTNP 580
CGTNPF 583
CGTNPS 586
character data xviii
conventions xxiii, 26
characters, special usage of xxvi
CHBMV 345
CHEMM 418
CHEMV 313
CHER 321
CHER2 329
CHER2K 440
CHERK 433
choosing the ESSL library 23
choosing the ESSL subroutine 23
CHPEV 729
CHPMV 313
CHPR 321
CHPR2 329
citations BIB-1

conventions xviii

column vector 53

copy a vector 217

correlation 848

See also convolution and correlation

cosine notation xxvi

cosine transform 793

courier font usage xxii

CPOF 491

CPOSM 502

CROT 247

CROTG 240

CSCAL 251

CSCTR 277

CSROT 247

CSSCAL 251

CSWAP 254

CSYAX 269

CSYMM 418

CSYR2K 440

CSYRK 433

CTBMV 356

CTBSV 593

CTPMV 350

CTPSV 541

CTRMM 426

CTRMV 350

CTRSM 547

CTRSV 541

cubic spline interpolating 931, 937

conjugate transpose of a matrix 60

conjugate transpose of a vector 54

continuation, convention for numerical data xxiii

convolutions xviii, xxiii

for messages 176

mathematical and programming notations xxvi

subroutine descriptions xxviii

convolution and correlation xviii

autocorrelation of one or more sequences 873

direct method xviii

one sequence with another sequence 854

with decimated output 869

mixed radix Fourier method xviii

autocorrelation of one or more sequences 877

one sequence with one or more sequences 860

one sequence with one or more sequences 848

convolution and correlation subroutines

accuracy considerations 764

performance and accuracy considerations 765

performance considerations 764

SACOR 873

SACORF 877

SCON and SCOR 848

SCOND and SCORD 854

SCONF and SCORF 860

SDCON, DDCON, SDCOR, and DDCOR 869

usage considerations 761

cosine notation xxvi

convolution and correlation

cosine transform 793

courier font usage xxii

CPOF 491

CPOSM 502

CROT 247

CROTG 240

CSCAL 251

CSCTR 277

CSROT 247

CSSCAL 251

CSWAP 254

CSYAX 269

CSYMM 418

CSYR2K 440

CSYRK 433

CTBMV 356

CTBSV 593

CTPMV 350

CTPSV 541

CTRMM 426

CTRMV 350

CTRSM 547

CTRSV 541

cubic spline interpolating 931, 937

conjugate transpose of a matrix 60

conjugate transpose of a vector 54

continuation, convention for numerical data xxiii

convolutions xviii, xxiii

for messages 176

mathematical and programming notations xxvi

subroutine descriptions xxviii

convolution and correlation xviii

autocorrelation of one or more sequences 873

direct method xviii

one sequence with another sequence 854

with decimated output 869

mixed radix Fourier method xviii

autocorrelation of one or more sequences 877

one sequence with one or more sequences 860

one sequence with one or more sequences 848
dense linear algebraic equation subroutines (continued)
 SPPS and DPPS 499
 STPSV, DTPSV, CTPSV, and ZTPSV 541
 STRI, DTRI, STPI, and DPTI 555
 STRSM, DTRSM, CTRSM, and ZTRSM 547
 STRSV, DTRSV, CTRSV, and ZTRSV 541
dense matrix, definition 90
descriptions, conventions used in the subroutine xxviii
designing your program xviii
 accuracy of results 42
 choosing the ESSL library 23
 choosing the ESSL subroutine 23
 error considerations 45
 performance considerations 43
 storage considerations 26
determinant xviii
 general matrix 487, 529
 general skyline sparse matrix 610
 matrix notation xxvi
 positive definite real symmetric matrix 507, 534
 symmetric skyline sparse matrix 629

dense linear algebraic equation subroutines
 DGBF 561
 DGBMV 338
 DGBSV 565
 DGEADD 379
 DGEEV 718
 DGGEF 465
 DGGEFC 487
 DGEGV 746
 DGGEICD 529
 DGELL 708
 DGEM 409
 DGEMS 403
 DGEMTX 294
 DGEMUL 393
 DGEMV 294
 DGEMX 294
 DGEOQR 703
 DGFS 305
 DGES 468
 DGESM 472
 DGEVS 386
 DGESVF 690
 DGESVS 698
 DGEM 448
 DGEMI 451
 DGETF 478
 DGETS 482
 DGHM 964
 DGKFS 610
 DGKFSR 1005
 DGLGQ 957
 DGLNQ 948
 DGLNQ2 951
 DGRAQ 960
D
DASUM 211
DAXPY 214
DAXPYI 286
DBSRCH 912
DBSSV 514
DBSTVF 520
DBSTRS 525
DCFT 769
DCFT2 807
DCFT3 829
DCOPY 217
DCOSF 793
DCRFT 785
DCRFT2 821
DCRFT3 841
DCSIN2 937
DCSINT 931
DDCON 896
DDCOR 896
DDOT 220
DDOTI 289
default values in the ESSL error option table 49
definitions of terms in the Glossary GLOS-1
dense and banded subroutines
 performance and accuracy considerations 459
dense linear algebraic equation subroutines
 DBSSV 514
 DBSTVF 520
 DBSTRS 525
 SGEF, DGGEF, CGEFS, and ZGEF 465
 SGEFCD and DGGEFCD 487
 SGEICD and DGGEICD 529
 SGES, DGES, CGES, and ZGES 468
 SGESM, DGESM, CGESM, and ZGESM 472
 SGETRF, DGGETRF, CGETRF, and ZGETRF 478
 SGETRS, DGGETRS, CGETRS, and ZGETRS 482
 SPOFCD and DPOFCFD 507
 SPOSF, DPOSF, SPOF, DPOF, CPOF, and ZPOF 491
 SPOFCFD and DPOFCFD 507
 SPOFCD, DPOFCD, SPOIFCD, and DPOIFCD 534
INDEX-5

DGSF 600
DGSS 606
DGT 575
DGTHR 280
DGTHRZ 283
DGTHFR 280
DGTHFRZ 283
DGTP 580
DGTPF 583
DGTPS 586
DGTS 578

diagnosis procedures xviii
attention error messages 175
computational errors 174
ESSL messages, list of 176
in your program 171
informational error messages 175
initial problem diagnosis procedures (symptom index) 172
input-argument errors 173
miscellaneous error messages 176
program exceptions 173
resource error messages 174
diagnostics 176
See also messages
diagonal-out skyline storage mode 99
dimensions of arrays xviii
storage layout 110
direct access storage xviii
direct method xviii
general skyline sparse matrix 610
general sparse matrix 600
symmetric skyline sparse matrix 629
direct sparse matrix solvers
usage considerations 459
DICY 886
DNDAXPY 224
DDOT 229
DNORM2 237
NDRAND 971
NRM2 234
documentation BIB-1
See also publications
dot product xviii
notation xxvi
of dense vectors 220
of sparse vectors 289
special (compute N times) 229
DBCHF 568
DBCHS 572
DBF 568
DBS 572
DPINT 923
DOF 491
DOFCD 507
DOFOCD 534
DOPO 883

DPOSM 502
DPPF 491
DPPFCD 507
DPPICD 534
DPPS 499
DPT 589
DPTNQ 945
DPTS 591
DQINT 892
DRCFT 777
DRCFT2 814
DRCFT3 835
DROT 247
DROTG 240
DSBMV 345
DSCL 251
DSCTR 277
DSDCG 667
DSDCGC 682
DSDMX 370
DSINF 800
DSKFS 629
DSKTRN 1011
DSLX 313
DSLR1 321
DSLR2 329
DSMX 659
DSMCG 675
DSMMX 363
DSMTM 366
DSORT 904
DSORTS 909
DSORTX 906
DSPEV 729
DSR 313
DSR2 329
DSR3 738
DSRIS 648
DSRS 1001
DSRSM 916
DSWAP 254
DSYGV 752
DSYMM 418
DSYMV 313
DSYR 321
DSYR2 329
DSYR2K 440
DSYRK 433
DTBMV 356
DTBSV 593
DTPI 555
DTPINT 928
DTPMV 350
DTPSV 541

Index
DTREC 889
DTRI 555
DTRMM 426
DTRMV 350
DTRSM 547
DTRSV 541
DURAND 968
DURXOR 975
DVEA 257
DVEM 265
DVES 261
DWLEV 896
DYAX 269
dynamic allocation of auxiliary working storage 31
See also auxiliary working storage
DZASUM 211
DZAXPY 272
DZNRM2 234

efficiency of your program 43
eigensystem analysis subroutines
performance and accuracy considerations 715
SGEEV, DGEEV, CGEEV, and ZGEEV 718
SGEGV and DGEGV 746
SSPEV, DSPEV, CHPEV, and ZHPEV 729
SSPSV, DSPSV, CHPSV, and ZHPSV 738
SSYGV and DSYGV 752
eigenvalues and eigenvectors xviii, 718
See also extreme eigenvalues and eigenvectors
complex Hermitian matrix 729
general matrix 718
real general matrices 746
real symmetric matrix 729, 752
real symmetric positive definite matrix 752
EINFO, ESSL error information-handler xviii
considerations when designing your program 46
diagnosis procedures using 174
subroutine description 982
using EINFO in C programs 134
using EINFO in C++ programs 150
using EINFO in Fortran programs 117
element of a matrix notation xxvi
element of a vector notation xxvi
Engineering and Scientific Subroutine Library xviii
See also ESSL (Engineering and Scientific Subroutine Library)
error conditions, conventions used in the subroutine descriptions xxix
error messages 176
See also messages
error option table default values 49
error-handling subroutines xviii
EINFO 982
ERRSAV 985
error-handling subroutines (continued)
ERRSET 986
ERRSTR 988
errors xviii
attention error messages, interpreting 175
attention messages, overview 49
calculating auxiliary storage 30
computational errors 46, 174
EINFO subroutine description 982
extended error-handling subroutines 22
handling errors in your C program 134
handling errors in your C++ program 150
handling errors in your Fortran program 116
how errors affect output 45
informational error messages, interpreting 175
input-argument errors 173
input-argument errors, overview 45
miscellaneous error messages, interpreting 176
overview of 45
program exceptions 45, 173
resource error messages, interpreting 174
resource errors, overview 48
types of errors that you can encounter 45
using ERRSAV and ERRSTR 51
values returned for EINFO error codes 982
when to use ERRSET 49
where to find information on 45
ERRSAV xviii
in workstation environment 22
subroutine description 985
using with large applications 51
ERRSET xviii
diagnosis procedures using 174
ESSL default values for 49
handling errors in C 134
handling errors in C++ 150
in workstation environment 22
subroutine description 986
using EINFO in C programs 134
using EINFO in C++ programs 150
using EINFO in Fortran programs 117
using ERRSET, EINFO, and return codes in C 134
using ERRSET, EINFO, and return codes in C++ 150
using ERRSET, EINFO, and return codes in Fortran 117
when to use 46, 49
when to use ERRSAV and ERRSTR with ERRSET 51
ERRSTR xviii
in workstation environment 22
subroutine description 988
using with large applications 51
ESSL (Engineering and Scientific Subroutine Library) xviii
avantages of 3
ESSL (Engineering and Scientific Subroutine Library) (continued)
attention error messages, interpreting 175
attention messages, overview 49
coding your program 109
computational areas, overview 4
computational errors 46
computational errors, diagnosing 174
designing your program 23
diagnosis procedures for ESSL errors 171
eigensystem analysis subroutines 715
error option table default values 49
extended error-handling subroutines 22
Fourier transform, convolutions and correlations, and related-computation subroutines 759
functional capability 4
informational error messages, interpreting 175
input-argument errors, diagnosing 173
input-argument errors, overview 45
installation requirements 8
interpolation subroutines 921
introduction to 3
languages supported 7
linear algebra subprograms 193
linear algebraic equations subroutines 455
matrix operation subroutines 375
message conventions 176
messages, list of 176
migrating between RS/6000 processors 167
migrating programs 165
migrating to future releases or future hardware 167
miscellaneous error messages, interpreting 176
name xxii
names with an underscore, interpreting xxii
number of subroutines in each area 4
numerical quadrature subroutines 941
ordering publications BIB-5
overview 3
overview of the subroutines 4
packaging characteristics 8
parallel processing subroutines on the workstations 5
processing your program 161
program exceptions 45
program number for BIB-5
publications overview BIB-5
random number generation subroutines 967
reference information conventions xxviii
related publications BIB-5
resource error messages, interpreting 174
resource errors, overview 48
setting up your data structures 53
sorting and searching subroutines 901
usability of subroutines 3
utility subroutines 979
when coding large applications 51
when to use ERRSET for ESSL errors 49
ESSL messages 176
See also messages
ESSL/370, migrating from 168
ESSLPARM file xviii
migrating programs to use 166
Euclidean length xviii
with no scaling of input 237
with scaling of input 234
Euclidean norm notation xxvi
evaluation and planning, publications for BIB-5
descriptions xxix
exception xviii
See also program exception
exponential function notation xxvi
expressions, special usage of xxvi
extended error-handling subroutines xviii
handling errors in C 134
handling errors in C++ 150
handling errors in your Fortran program 116
how they work 45, 51
in ESSL and in Fortran, list of 22
using them in diagnosing problems 173
extended-error-handling subroutines, using
in your C program 134
in your C++ program 150
in your Fortran program 116
extreme eigenvalues and eigenvectors xviii, 718, 738, 752
See also eigenvalues and eigenvectors
complex Hermitian matrix 738
real symmetric matrix 738
F
factoring xviii
general band matrix 561
general matrix 465, 478, 487
general skyline matrix 610
general sparse matrix 600
general tridiagonal matrix 575
positive definite xviii
complex Hermitian matrix 491
real symmetric indefinite matrix 520, 525
real symmetric matrix 491, 507
symmetric band matrix 568
symmetric tridiagonal matrix 589
symmetric skyline sparse matrix 629
tridiagonal matrix 580, 583
fast Fourier transform (FFT) 765
See also Fourier transform
INDEX-8 Engineering and Scientific Subroutine Library Version 3 Guide and Reference

Glossary

G

Gather vector elements 280, 283
Gaussian quadrature methods xviii
Gauss-Hermite Quadrature 964
Gauss-Laguerre Quadrature 957
Gauss-Legendre Quadrature 948
Gauss-Rational Quadrature 960
Two-dimensional Gauss-Legendre Quadrature 951
General matrix subroutines, names of 455
General tridiagonal matrix
definition of 88
storage layout 88
general-band storage mode 76
generalized eigensystem xviii
real general matrices 746
real symmetric matrix 752
real symmetric positive definite matrix 752
generation of random numbers 967
Givens plane rotation, constructing 240
Glossary GLOS-1
greek letters notation xxvi
guide information 1
guidelines for handling problems 171
See also diagnosis procedures

H

Half band width 80
handling errors xviii
in your C program 134
in your C++ program 150
in your Fortran program 116
hardware xviii
publications BIB-5
required on the workstations 7
header file, ESSL, for C 127, 130
header file, ESSL, for C++ 143, 146
Hermitian band matrix
definition of 83
storage layout 83
Hermitian matrix
definition of 68
definition of, complex 70
Hermitian matrix (continued)
 storage layout 68
how to use this book xix, xxi
Hypertext Markup Language, required products 8

i-th zero crossing 886
IBM products, migrating from 168
IBM publications BIB-5
 See also publications
IBSRCH 912
ICAMAX 199
IDAMAX 199
IDAMIN 202
identifying problems 172
IDMAX 205
IDMIN 208
IESSL 989
industry areas 4
infinity notation xxvi
informational error messages, interpreting 175
informational messages, for ESSL 176
input arguments, conventions used in the subroutine
descriptions xxviii
input data, conventions for 26
input-argument errors xviii
diagnosing 173
list of messages for 177, 188
overview 45, 48, 49
installation documentation, Program Directory BIB-5
int notation and meaning xxvi
integer data xviii
 conventions xxiii, 26
integral notation xxvi
interchange elements of two vectors 254
interface, ESSL xviii
 for C programs 127
 for C++ programs 143
 for Fortran programs 109
 for PL/I programs 159
interpolating xviii
cubic spline 931
local polynomial 928
polynomial 923
quadratic 892
two-dimensional cubic spline 937
interpolation subroutines
 accuracy considerations 921
 performance considerations 921
SCSIN2 and DCSIN2 937
SCSINT and DCSINT 931
SPINT and DPINT 923
STPINT and DTPINT 928
usage considerations 921

introduction to ESSL 3
inverse xviii
general matrix 529
matrix notation xxvi
 positive definite real symmetric matrix 534
triangular matrix 555
ISAMAX 199
ISAMIN 202
ISMAX 205
ISMIN 208
ISO definitions in Glossary GLOS-1
ISORT 904
ISORTS 909
ISORTX 906
ISSRCH 916
italic font usage xxii
iterative linear system solver xviii
general sparse matrix 648, 675, 682
 sparse negative definite symmetric matrix 659, 667
 sparse positive definite symmetric matrix 659, 667
 symmetric sparse matrix 648
 usage considerations 461
IZAMAX 199

l(2) norm xviii
 with no scaling of input 237
 with scaling of input 234
languages supported by ESSL 7
LAPACK
 ESSL subprograms APB-1
LAPACK, migrating from 168
leading dimension for matrices xviii
 how it is used for matrices 61
 how it is used in three dimensions 106
least squares solution 698, 703
 See also linear least squares solution
letters, fonts of xxii
Level 1 BLAS APA-1
Level 2 BLAS APA-1
Level 3 BLAS APA-2
level of ESSL, getting 989
library
 migrating from a non-IBM 169
 migrating from another IBM 168
 migrating from ESSL Version 2 to Version 3 166
 migrating from ESSL Version 3 to Version 3 Release
 1.1 166
 migrating from ESSL Version 3 to Version 3 Release
 1.2 165
 migrating from ESSL Version 3 to Version 3 Release
 2 165
 migrating from LAPACK 168
 overview 4

Index

INDEX-9
Licensed Program Specification, ESSL BIB-5

linear algebra 455
See also linear algebraic equations
linear algebra subprograms xviii, 193
See also sparse vector-scalar linear algebra subprograms
See also vector-scalar linear algebra subprograms
accuracy considerations 197
list of matrix-vector linear algebra subprograms 195
list of sparse matrix-vector linear algebra subprograms 196
list of sparse vector-scalar linear algebra subprograms 194
list of vector-scalar linear algebra subprograms 193
overview 193
performance considerations 197
usage considerations 196
linear algebraic equations xviii, 455
See also banded linear algebraic equation subroutines
See also dense linear algebraic equation subroutines
See also linear least squares subroutines
See also sparse linear algebraic equation subroutines
accuracy considerations 459
list of banded linear algebraic equation subroutines 456
list of dense linear algebraic equations 455
list of linear least squares subroutines 458
list of sparse linear algebraic equation subroutines 457
overview 455
performance considerations 459
usage considerations 458
linear least squares solution xviii
preparing for 690
QR decomposition with column pivoting 708
singular value decomposition 698
linear least squares subroutines
DGEQRF 703
SGELLS and DGELLS 708
SGESVF and DGESVF 690
SGESVS and DGESVS 698
linking and loading your program xviii
under AIX 161
loading your program xviii
logical data xviii
conventions xiii, 26
setting up for C 130
setting up for C++ 146
long precision xviii
accuracy statement 6
meaning of 42
lower band width 75
lower storage mode 64, 66
lower-band-packed storage mode 82
lower-packed storage mode 64
lower-storage-by-rows for symmetric sparse matrices 97
lower-triangular storage mode 72, 74
lower-triangular-band-packed storage mode 85, 87
lower-triangular-packed storage mode 72, 73

M
mailing list for ESSL customers 9
masking underflow xviii
for performance 43
why you should 43
math and programming notations xxvi
math background publications BIB-1
See also references, math background
mathematical expressions, conventions for xxvi
mathematical functions, overview 4
matrix xviii, 69, 455
See also general matrix
See also Toeplitz matrix
band matrix 75
complex Hermitian band matrix 83
complex Hermitian matrix 68, 70
complex Hermitian Toeplitz matrix 70
conventions for xxiii
description of 60
font for xxiii
full or dense matrix 90
genral tridiagonal matrix 88
leading dimension for 61
negative definite complex Hermitian matrix 69
negative definite symmetric matrix 67
positive definite complex Hermitian matrix 69
positive definite symmetric band matrix 83
positive definite symmetric matrix 67
positive definite symmetric tridiagonal matrix 90
sparse matrix 90
storage of 61
symmetric band matrix 80
symmetric matrix 63
symmetric tridiagonal matrix 89
Toeplitz matrix 69
triangular band matrices 84
triangular matrices 72
matrix operation subroutines
accuracy considerations 377
performance considerations 377
SGEADD, DGEADD, CGEADD, and ZGEADD 379
SGEMM, DGEMM, CGEMM, and ZGEMM 409
SGEMMS, DGEMMS, CGEMMS, and ZGEMMS 403
SGEML, DGEMUL, CGEMUL, and ZGEMUL 393
SGESUB, DGESUB, CGESUB, and ZGESUB 386
SGETMI, DGETMI, CGETMI, and ZGETMI 448
matrix operation subroutines (continued)
SGETMO, DGETMO, CGETMO, and ZGETMO 451
SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM 418
SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K 440
SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and ZHERK 433
STRMM, DTRMM, CTRMM, and ZTRMM 426
usage considerations 376
matrix-matrix product xviii
complex Hermitian matrix 418
complex symmetric matrix 418
general matrices, their transposes, or their conjugate transposes 409
real symmetric matrix 418
triangular matrix 426
matrix-vector linear algebra subprograms xviii
SGBMV, DGBMV, CGBMV, and ZGBMV 338
SGEMX, DGEMX, SGEMTX, DGEMTX, SGEMV, DGMEM, CGEMV, and ZGEMV 294
SGER, DGER, CGERU, ZGERU, CGERC, and ZGERC 305
SSBMV, DSBMV, CHBMV, and ZHBVM 345
SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, ZHEMV, SSLMX and DSLMX 313
SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and DSLR1 321
SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2, and DSLR2 329
STBMV, DTBMV, CTBMV, and ZTBMV 356
STPMV, DTPMV, CTPMV, ZTPMV, STRMV, DTRMV, CTRMV, and ZTRMV 350
matrix-vector product xviii
complex Hermitian band matrix 345
complex Hermitian matrix 313
general band matrix, its transpose, or its conjugate transpose 338
general matrix, its transpose, or its conjugate transpose 294
real symmetric band matrix 345
real symmetric matrix 313
spare matrix 363
spare matrix or its transpose 370
triangular band matrix, its transpose, or its conjugate transpose 356
triangular matrix, its transpose, or its conjugate transpose 350
max notation and meaning xxvi
maximum xviii
absolute value 199
value 205
meanings of words in the Glossary GLOS-1
messages xviii
ESSSL and attention messages, interpreting 175
messages (continued)
ESSSL informational messages, interpreting 175
ESSSL miscellaneous messages, interpreting 176
ESSSL resource messages, interpreting 174
list of ESSL messages 177, 188
message conventions 176
migrating xviii
from ESSL Version 2 to Version 3 166
from ESSL Version 3 to Version 3 Release 1.1 166
from ESSL Version 3 to Version 3 Release 1.2 165
from ESSL Version 3 to Version 3 Release 2 165
from ESSL/370 168
from LAPACK 168
from non-IBM libraries 169
from other IBM subroutine libraries 168
future migration considerations 167
programs to ESSL 165
RS/6000 processors considerations 167
min notation and meaning xxvi
minimum xviii
absolute value 202
value 208
miscellaneous error messages, interpreting 176
mod notation and meaning xxvi
modification level of ESSL, getting 989
Modifying C language AIX commands 163
Modifying C++ language AIX commands 164
Modifying Fortran language AIX commands 162
modulo notation xxvi
multiplying xviii
See also product
compute SAXPY or DAXPY N times 224
general matrices using Strassen's algorithm 403
general matrices, their transposes, or their conjugate transposes 393
notation xxvi
sparse vector x by a scalar, add sparse vector y, and store in vector y 286
vector x by a scalar and store in vector x 251
vector x by a scalar and store in vector y 269
vector x by a scalar, add to vector y, and store in vector y 214
vector x by a scalar, add to vector y, and store in vector z 272
vector x by vector y, and store in vector z 265
multithreaded xviii
definition GLOS-2
ESSSL subroutines 23

N
name usage restrictions 26
names in ESSL with an underscore (_) prefix, how to interpret xxii
names of xviii
products and acronyms xxii
names of (continued)
the eigensystem analysis subroutines 715
the Fourier transform, convolution and correlation, and related-computation subroutines 759
the interpolation subroutines 921
the linear algebra subprograms 193
the linear algebraic equations subroutines 455
the matrix operations subroutines 375
the numerical quadrature subroutines 941
the random number generation subroutines 967
the sorting and searching subroutines 901
the utility subroutines 979
National Language Support 172
negative definite complex Hermitian matrix
definition of 69
negative definite complex Hermitian Toeplitz matrix
definition of 70
negative definite Hermitian matrix
storage layout 69
negative definite symmetric matrix
definition of 67
storage layout 67
negative definite symmetric Toeplitz matrix
definition of 69
negative stride, for vectors 58
NLS, National Language Support 172
non-IBM library, migrating from 169
norm notation xxvi
normally distributed random numbers, generate 971
notations and conventions xxiii
notes, conventions used in the subroutine descriptions xxix
number of subroutines in each area 4
numbers 21
See also random number generation
accuracy of computations 43
accuracy of computations, for ESSL 6
numerical quadrature xviii
accuracy considerations 941
performance considerations 941
programming considerations for SUBF 942
usage considerations 941
numerical quadrature performed xviii
on a function xviii
using Gauss-Hermite Quadrature 964
using Gauss-Laguerre Quadrature 957
using Gauss-Legendre Quadrature 948
using Gauss-Rational Quadrature 960
using two-dimensional Gauss-Legendre Quadrature 951
on a set of points 945
numerical quadrature subroutines
SGHMQ and DGHMQ 964
SGLGQ and DGLGQ 957
SGLNQ and DGLNQ 948
SGLNQ2 and DGLNQ2 951
numerical quadrature subroutines (continued)
SGRAQ and DGRAQ 960
SPTNQ and DPTNQ 945
O
one norm notation xxvi
online documentation
online Guide and Reference manual BIB-5
required HyperText Markup Language products 8
option table, default values for ESSL errors 49
order numbers of the publications BIB-5
ordering IBM publications BIB-5
output xviii
accuracy on different processors 6
how errors affect output 45
output arguments, conventions used in the subroutine descriptions xxix
overflow, avoiding 234
overview
do eigensystem analysis 715
do ESSL 3
do Fourier transforms, convolutions and correlations, and related computations 759
do interpolation 921
do linear algebra subprograms 193
do linear algebraic equations 455
do matrix operations 375
do numerical quadrature 941
do random number generation 967
do sorting and searching 901
do the documentation BIB-5
do utility subroutines 979
P
packed band storage mode 76
packed-Hermitian-Toeplitz storage mode 71
packed-symmetric-Toeplitz storage mode 70
Parallel Fortran xviii
parallel processing xviii
introduction to 5
performance xviii
achieving better performance in your program 43
aspects of parallel processing on the workstations 5
coding techniques that affect performance 43
considerations for dense and banded linear algebraic equations 459
considerations for eigensystem analysis 715
considerations for Fourier transforms, convolutions, and correlations 764
considerations for interpolation 921
considerations for linear algebra subprograms 197
considerations for matrix operations 377
considerations for numerical quadrature 941
considerations for related computations 767
performance (continued)
considerations for sorting and searching 901
how the Fourier transforms achieve high performance 765
information on ESSL run-time performance 44
tradeoffs for convolution and correlation subroutines 765
where to find information on 44
pi notation xxvi
PL/I
publications BIB-5
PL/I (Programming Language/I) xviii
coding programs 159
handling errors in your program 134, 150
plane rotation xviii
applying a 247
constructing a Givens 240
planning your program 23
planning, publications for BIB-5
polynomial
evaluating 883
interpolating 923, 928
positive definite complex Hermitian matrix
definition of 69
positive definite complex Hermitian Toeplitz matrix
definition of 70
positive definite Hermitian matrix
storage layout 69
positive definite symmetric band matrix
definition of 83
storage layout 83
positive definite symmetric band matrix subroutines, names of 455
positive definite symmetric matrix
definition of 67
storage layout 67
positive definite symmetric matrix subroutines, names of 455
positive definite symmetric Toeplitz matrix
definition of 69
positive definite symmetric tridiagonal matrix 90
definition of 90
storage layout 90
positive stride, for vectors 56
precision, meaning of 42
precision, short and long 6
problems, handling 171
See also diagnosis procedures
problems, IBM support for 171
procedures, job processing xviii
setting up your own AIX 161
processing your program xviii
requirements for ESSL on the workstations 7
setting up your AIX procedures 161
steps involved in 161
using parallel subroutines on the workstations 5
processor-independent formulas for auxiliary storage,
interpreting 31
product xviii, 214
See also multiplying
matrix-matrix xviii
complex Hermitian matrix 418
complex symmetric matrix 418
general matrices, their transposes, or their conjugate transposes 409
real symmetric matrix 418
triangular matrix 426
matrix-vector xviii
complex Hermitian band matrix 345
complex Hermitian matrix 313
general band matrix, its transpose, or its conjugate transpose 338
general matrix, its transpose, or its conjugate transpose 294
real symmetric band matrix 345
real symmetric matrix 313
sparse matrix 363
sparse matrix or its transpose 370
triangular band matrix, its transpose, or its conjugate transpose 356
triangular matrix, its transpose, or its conjugate transpose 350
product names, acronyms for xxii
products, programming xviii
migrating from LAPACK 168
migrating from other IBM 168
required by ESSL on the workstations, programming 8
profile-in skyline storage mode 101
program xviii
attention messages, overview 49
coding 109
computational errors 46
design 23
errors 45
handling errors in your C program 134
handling errors in your C++ program 150
handling errors in your Fortran program 116
input-argument errors, overview 45
interface for C programs 127
interface for C++ programs 143
interface for Fortran programs 109
interface for PL/I programs 159
migrated to ESSL 165
performance, achieving high 43
processing your program 161
resource errors, overview 48
setting up your data structures 53
types of data in your program 26
when coding large applications 51
program exceptions xviii
description of ESSL 45
program exceptions, diagnosing 173
program number for ESSL BIB-5
programming considerations for SUBF in numerical quadrature 942
programming items, font for xxii
Programming Language/I xviii
 See also PL/I (Programming Language/I)
programming products xviii
 required by ESSL on the workstations 8
programming publications BIB-5
PTF xviii
 getting the most recent level applied 989
publications xviii
 list of ESSL BIB-5
 math background BIB-1
 related BIB-5

Q
QR decomposition with column pivoting 708
quadratic interpolation 892

R
random number generation xviii
 long period uniformly distributed 975
 normally distributed 971
 uniformly distributed 968
 usage considerations 967
random number generation subroutines
SNRAND and DNRAND 971
SURAND and DURAND 968
SURXOR and DURXOR 975
rank-2k update xviii
 complex Hermitian matrix 440
 complex symmetric matrix 440
 real symmetric matrix 440
rank-k update xviii
 complex Hermitian matrix 433
 complex symmetric matrix 433
 real symmetric matrix 433
rank-one update xviii
 complex Hermitian matrix 321
 general matrix 305
 real symmetric matrix 321
rank-two update xviii
 complex Hermitian matrix 329
 real symmetric matrix 329
real and complex array elements 110
real data xviii
 conventions xxiii, 26
real general matrix eigensystem analysis subroutine 715
real symmetric matrix eigensystem analysis subroutine 715
reciprocal of the condition number xviii
 general matrix 487, 529
 positive definite real symmetric matrix 507, 534
 recursive filter 20
 See also time-varying recursive filter
reference for ESSL, online BIB-5
reference information xviii
 ESSL online information BIB-5
 math background texts and reports BIB-1
 organization of 191
 what is in each subroutine description and the conventions used xxviii
references, math background xviii
related publications BIB-5
related-computation subroutines
 accuracy considerations 767
 CWLEV and ZWLEV 896
 performance considerations 767
 SIZC and DIZC 886
 SPOLY and DPOLY 883
 SQINT and DQINT 892
 STREC and DTREC 889
 SWLEV and DWLEV 896
release of ESSL, getting 989
reporting problems to IBM 171
required publications BIB-5
requirements xviii
 auxiliary working storage 31
 for ESSL workstation product 7
 software products on the workstations 8
 transforms in storage, lengths of 36
 workstation hardware 7
resource error messages, interpreting 174
restrictions, ESSL coding 26
results xviii
 accuracy on different processors 6
 how accuracy is affected by the nature of the computation 42
 in C programs 127
 in C++ programs 143
 in Fortran programs 109
 multiplication of NaN 43
results transposed and conjugate transposed for matrix multiplication 396, 407, 412
results transposed for matrix addition 381
results transposed for matrix subtraction 388
return code xviii
 in C programs 134
 in C++ programs 150
 in Fortran programs 117
 using during diagnosis 174
rotation xviii
 applying a plane 247
 constructing a Givens plane 240
routine names 26
row vector 53
run-time performance xviii
 optimizing in your program 43
run-time problems, diagnosing xviii
 attention error messages, interpreting 175
 computational errors 174
 informational error messages, interpreting 175
 input-argument errors 173
 miscellaneous error messages, interpreting 176
 resource error messages, interpreting 174
running your program xviii

S
SACOR 873
SACORF 877
SASUM 211
SAXPY 214
SAXPYI 286
SBSRCH 912
scalar data xviii
 conventions xxiii, 26
scalar items, font for xxii
Scalar Library xviii
scalar processing xviii
scale argument used for Fourier transform subroutines 764
scaling, when to use 43
SCASUM 211
scatter vector elements 277
SCFT 769
SCFT2 807
SCFT3 829
Scientific Subroutine Package xviii
 See also SSP (Scientific Subroutine Package)
SCNRM2 234
SCON 848
SCOND 854
SCONF 860
SCOPY 217
SCOR 848
SCORD 854
SCORF 860
SCOSF 793
SCOSFT, no documentation provided for 759
SCRT 785
SCRFT2 821
SCRFT3 841
SCSIN2 937
SCSINT 931
SDCON 869
SDCOR 869
SDOT 220
SDOTI 289
searching xviii
 binary 912
searching (continued)
 sequential 916
selecting an ESSL library 23
selecting an ESSL subroutine 23
sequences xviii
 conventions for xxiv
 description of 103
 storage layout 103
sequential search 916
service, IBM 171
setting up
 AIX procedures 161
setting up your data 26
SGBF 561
SGBMV 338
SGBS 565
SGEADD 379
SGEEV 718
SGEF 465
SGFCD 487
SGEGV 746
SGEICD 529
SGELS 708
SGEMM 409
SGEMMS 403
SGEMTX 294
SGESM 472
SGESUB 386
SGESVF 690
SGESVS 698
SGETMI 448
SGETMO 451
SGETRF 478
SGETRS 482
SGHMQ 964
SGLGQ 957
SGLNQ 948
SGLNQ2 951
SGLRAQ 960
SGTF 575
SGTHR 280
SGTHRZ 283
SGTNP 580
SGTNPF 583
SGTNPS 586
SGTS 578
short precision xviii
 accuracy statement 6
 meaning of 42
SIGN notation and meaning xxvi
signal processing subroutines 760
simple formulas for auxiliary storage, interpreting 31
sin notation xxvi
sine transform 800
singular value decomposition for a general matrix 690, 698
SIZC 886
size of array xviii
required for a vector 55
skyline solvers
usage considerations 460
skyline storage mode for sparse matrices, diagonal-out 99
skyline storage mode for sparse matrices, profile-in 101
SL MATH (Subroutine Library—Mathematics) xviii
migrating from 168
SLSS (Subscription Library Services System) BIB-5
SMP xviii
definition GLOS-3
ESSL Library, why use it 23
ESSL multithreaded subroutines 23
performance 6
SNAXPY 224
SNDOT 229
SNORM2 237
SNRAND 971
SNRM2 234
software products
required by ESSL on the workstations 8
required by Hypertext Markup Language 8
solving xviii
general band matrix 565
general matrix or its transpose 468, 482
general skyline sparse matrix 610
general sparse matrix or its transpose 606
general tridiagonal matrix 578, 580, 586
iterative linear system solver xviii
general sparse matrix 648, 675, 682
sparse negative definite symmetric matrix 659, 667
sparse positive definite symmetric matrix 659, 667
symmetric sparse matrix 648
multiple right-hand sides xviii
general matrix, its transpose, or its conjugate transpose 472, 482
positive definite complex Hermitian matrix 502
positive definite real symmetric matrix 502
triangular matrix 547
positive definite xviii
real symmetric matrix 499
symmetric band matrix 572
symmetric tridiagonal matrix 591
symmetric skyline sparse matrix 629
triangular band matrix 593
solving (continued)
triangular matrix 541
some eigenvalues and eigenvectors xviii, 738
See also extreme eigenvalues and eigenvectors
sorting xviii
elements of a sequence 904
index 906
stable sort 909
sorting and searching subroutines
accuracy considerations 901
IBSRCH, SBSRCH, and DBSRCH 912
ISORT, SSORT, and DSORT 904
ISORTS, SSORTS, and DSORTS 909
ISORTX, SSORTX, and DSORTX 906
ISSRCH, SSSRCH, and DSSRCH 916
performance considerations 901
usage considerations 901
sparse linear algebraic equation subroutines
DGKFS 610
eiGF 600
eiGS 606
DSDCG 667
DSDGCG 682
DSDKFS 629
DSMCG 659
DSMGCG 675
DSRIS 648
sparse matrix subroutines
direct solvers 459
iterative linear system solvers 461
performance and accuracy considerations 459, 461
skyline solvers 460
sparse matrix-vector linear algebra subprograms xviii
DSDMX 370
DSMMX 363
DSMTM 366
sparse matrix, definition and storage modes 90
sparse vector–scalar linear algebra subprograms xviii
SAXPYI, DAXPYI, CAXPYI, and ZAXPYI 286
SDOTI, DDOTI, CDOTUI, ZDOTUI, CDOTCI, and, ZDOTCI 289
SGTHR, DGTHR, CGTHR, and ZGTHR 280
SGTHRM, DGTHRM, CGTHRM, and ZGTHRM 283
SSCTR, DSCTR, CSCTR, and ZSCTR 277
sparse vector, definition and storage modes 58
SPBCHF 568
SPBCHS 572
SPBF 568
SPBS 572
special usage xviii
of matrix addition 381
of matrix multiplication 396, 407, 412
of matrix subtraction 388
spectral norm notation xxvi
SPINT 923
storage considerations when designing your program 26
 diagonal-out skyline storage mode for sparse matrices 99
 for matrices 61
 for vectors 55
 layout for a complex Hermitian band matrix 83
 layout for a complex Hermitian matrix 68
 layout for a general tridiagonal matrix 88
 layout for a negative definite Hermitian matrix 69
 layout for a negative definite symmetric matrix 67
 layout for a positive definite Hermitian matrix 69
 layout for a positive definite symmetric matrix 67
 layout for a positive definite symmetric tridiagonal matrix 90
 layout for a sequence 103, 104, 105
 layout for a symmetric indefinite matrix 68
 layout for a symmetric tridiagonal matrix 89
 layout for a Toeplitz matrix 70, 71
 layout for band matrices 76, 78
 layout for positive definite symmetric band matrices 83
 layout for sparse matrices 90
 layout for sparse vectors 59
 layout for symmetric band matrices 81
 layout for symmetric matrices 64
 layout for triangular band matrices 85, 86, 87
 layout for triangular matrices 72
 list of subroutines using auxiliary storage 30
 list of subroutines using transforms 36
 of arrays in Fortran 110
 profile-in skyline storage mode for sparse matrices 101
 storage-by-columns for sparse matrices 96
 storage-by-indices for sparse matrices 95
 storage-by-rows for sparse matrices 97
 tradeoffs for input 43
 transform length requirements 36
storage conversion subroutine xviii
 general skyline sparse matrix 1005
 sparse matrix 1001
 symmetric skyline sparse matrix 1011
 storage-by-columns for sparse matrices 96
 storage-by-indices for sparse matrices 95
 storage-by-rows for sparse matrices 97
storage conversion subroutine xviii
 general skyline sparse matrix 1005
 sparse matrix 1001
 symmetric skyline sparse matrix 1011
 storage-by-columns for sparse matrices 96
 storage-by-indices for sparse matrices 95
 storage-by-rows for sparse matrices 97
 STPI 555
 STPINT 928
 STPMV 350
 STPSV 541
 Strassen's algorithm, multiplying general matrices 403
 STREC 889
 STRI 555
stride xviii
 defining vectors in arrays 56
 how it is used in three dimensions 106
 negative 58
<table>
<thead>
<tr>
<th>Subroutine</th>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRIDE</td>
<td>subroutine for optimizing Fourier transforms</td>
<td>991</td>
</tr>
<tr>
<td>STRMM</td>
<td></td>
<td>426</td>
</tr>
<tr>
<td>STRMV</td>
<td></td>
<td>350</td>
</tr>
<tr>
<td>STRSM</td>
<td></td>
<td>547</td>
</tr>
<tr>
<td>STRSV</td>
<td></td>
<td>541</td>
</tr>
<tr>
<td>CAXPY</td>
<td></td>
<td>214</td>
</tr>
<tr>
<td>CAXPYI</td>
<td></td>
<td>286</td>
</tr>
<tr>
<td>CCOPY</td>
<td></td>
<td>217</td>
</tr>
<tr>
<td>CDOTC</td>
<td></td>
<td>220</td>
</tr>
<tr>
<td>CDOTCI</td>
<td></td>
<td>289</td>
</tr>
<tr>
<td>CDOTU</td>
<td></td>
<td>220</td>
</tr>
<tr>
<td>CDOTUI</td>
<td></td>
<td>289</td>
</tr>
<tr>
<td>CGBMV</td>
<td></td>
<td>338</td>
</tr>
<tr>
<td>CGEADD</td>
<td></td>
<td>379</td>
</tr>
<tr>
<td>CGEEV</td>
<td></td>
<td>718</td>
</tr>
<tr>
<td>CGEF</td>
<td></td>
<td>465</td>
</tr>
<tr>
<td>CGEMM</td>
<td></td>
<td>409</td>
</tr>
<tr>
<td>CGEMMS</td>
<td></td>
<td>403</td>
</tr>
<tr>
<td>CGEMUL</td>
<td></td>
<td>393</td>
</tr>
<tr>
<td>CGEMV</td>
<td></td>
<td>294</td>
</tr>
<tr>
<td>CGERC</td>
<td></td>
<td>305</td>
</tr>
<tr>
<td>CGERU</td>
<td></td>
<td>305</td>
</tr>
<tr>
<td>CGES</td>
<td></td>
<td>468</td>
</tr>
<tr>
<td>CGESM</td>
<td></td>
<td>472</td>
</tr>
<tr>
<td>CGESUB</td>
<td></td>
<td>386</td>
</tr>
<tr>
<td>CGETMI</td>
<td></td>
<td>448</td>
</tr>
<tr>
<td>CGETMO</td>
<td></td>
<td>451</td>
</tr>
<tr>
<td>CGETRF</td>
<td></td>
<td>478</td>
</tr>
<tr>
<td>CGETRS</td>
<td></td>
<td>482</td>
</tr>
<tr>
<td>CGTHR</td>
<td></td>
<td>280</td>
</tr>
<tr>
<td>CGTHRZ</td>
<td></td>
<td>283</td>
</tr>
<tr>
<td>CGTNP</td>
<td></td>
<td>580</td>
</tr>
<tr>
<td>Subroutine</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>DCRFT2</td>
<td>821</td>
<td></td>
</tr>
<tr>
<td>DCRFT3</td>
<td>841</td>
<td></td>
</tr>
<tr>
<td>DCSIN2</td>
<td>937</td>
<td></td>
</tr>
<tr>
<td>DCSINT</td>
<td>931</td>
<td></td>
</tr>
<tr>
<td>DDCON</td>
<td>869</td>
<td></td>
</tr>
<tr>
<td>DDCOR</td>
<td>869</td>
<td></td>
</tr>
<tr>
<td>DDOT</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>DDOT1</td>
<td>289</td>
<td></td>
</tr>
<tr>
<td>DGBF</td>
<td>561</td>
<td></td>
</tr>
<tr>
<td>DGBMV</td>
<td>338</td>
<td></td>
</tr>
<tr>
<td>DGBS</td>
<td>565</td>
<td></td>
</tr>
<tr>
<td>DGEADD</td>
<td>379</td>
<td></td>
</tr>
<tr>
<td>DGEEV</td>
<td>718</td>
<td></td>
</tr>
<tr>
<td>DGEF</td>
<td>465</td>
<td></td>
</tr>
<tr>
<td>DGEFCD</td>
<td>487</td>
<td></td>
</tr>
<tr>
<td>DGEGV</td>
<td>746</td>
<td></td>
</tr>
<tr>
<td>DGECID</td>
<td>529</td>
<td></td>
</tr>
<tr>
<td>DGELLS</td>
<td>708</td>
<td></td>
</tr>
<tr>
<td>DGEMM</td>
<td>409</td>
<td></td>
</tr>
<tr>
<td>DGEMMS</td>
<td>403</td>
<td></td>
</tr>
<tr>
<td>DGEMTX</td>
<td>294</td>
<td></td>
</tr>
<tr>
<td>DGEMUL</td>
<td>393</td>
<td></td>
</tr>
<tr>
<td>DGEMV</td>
<td>294</td>
<td></td>
</tr>
<tr>
<td>DGEMX</td>
<td>294</td>
<td></td>
</tr>
<tr>
<td>DGEGRF</td>
<td>703</td>
<td></td>
</tr>
<tr>
<td>DGER</td>
<td>305</td>
<td></td>
</tr>
<tr>
<td>DGES</td>
<td>468</td>
<td></td>
</tr>
<tr>
<td>DGESM</td>
<td>472</td>
<td></td>
</tr>
<tr>
<td>DGESUB</td>
<td>386</td>
<td></td>
</tr>
<tr>
<td>DGESVF</td>
<td>690</td>
<td></td>
</tr>
<tr>
<td>DGESVS</td>
<td>698</td>
<td></td>
</tr>
<tr>
<td>DGETMI</td>
<td>448</td>
<td></td>
</tr>
<tr>
<td>DGETMO</td>
<td>451</td>
<td></td>
</tr>
<tr>
<td>DGETRF</td>
<td>478</td>
<td></td>
</tr>
<tr>
<td>DGETRS</td>
<td>482</td>
<td></td>
</tr>
<tr>
<td>DGHMQ</td>
<td>964</td>
<td></td>
</tr>
<tr>
<td>DGKFS</td>
<td>610</td>
<td></td>
</tr>
<tr>
<td>DGKTRN</td>
<td>1005</td>
<td></td>
</tr>
<tr>
<td>DGLGQ</td>
<td>957</td>
<td></td>
</tr>
<tr>
<td>DGLNQ</td>
<td>948</td>
<td></td>
</tr>
<tr>
<td>DGLNQ2</td>
<td>951</td>
<td></td>
</tr>
<tr>
<td>DGRAQ</td>
<td>960</td>
<td></td>
</tr>
<tr>
<td>DGSF</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>DGSS</td>
<td>606</td>
<td></td>
</tr>
<tr>
<td>DGTF</td>
<td>575</td>
<td></td>
</tr>
<tr>
<td>DGTHR</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>DGTHRZ</td>
<td>283</td>
<td></td>
</tr>
<tr>
<td>DGTPN</td>
<td>580</td>
<td></td>
</tr>
<tr>
<td>DGTNP</td>
<td>583</td>
<td></td>
</tr>
<tr>
<td>DGTNPS</td>
<td>586</td>
<td></td>
</tr>
<tr>
<td>GTGS</td>
<td>578</td>
<td></td>
</tr>
<tr>
<td>DIZC</td>
<td>886</td>
<td></td>
</tr>
<tr>
<td>DNAXPY</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>DNDOT</td>
<td>229</td>
<td></td>
</tr>
<tr>
<td>DNORM2</td>
<td>237</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subroutine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNRAND</td>
<td>971</td>
</tr>
<tr>
<td>DNRM2</td>
<td>234</td>
</tr>
<tr>
<td>DPBCHF</td>
<td>568</td>
</tr>
<tr>
<td>DPBCHS</td>
<td>572</td>
</tr>
<tr>
<td>DPBF</td>
<td>568</td>
</tr>
<tr>
<td>DPBS</td>
<td>572</td>
</tr>
<tr>
<td>DPINT</td>
<td>923</td>
</tr>
<tr>
<td>DPOF</td>
<td>491</td>
</tr>
<tr>
<td>DPOFCD</td>
<td>507</td>
</tr>
<tr>
<td>DPOICD</td>
<td>534</td>
</tr>
<tr>
<td>DPOFY</td>
<td>883</td>
</tr>
<tr>
<td>DPOSM</td>
<td>502</td>
</tr>
<tr>
<td>DPPF</td>
<td>491</td>
</tr>
<tr>
<td>DPPFCD</td>
<td>507</td>
</tr>
<tr>
<td>DPPICD</td>
<td>534</td>
</tr>
<tr>
<td>DPPS</td>
<td>499</td>
</tr>
<tr>
<td>DPTF</td>
<td>589</td>
</tr>
<tr>
<td>DPTNQ</td>
<td>945</td>
</tr>
<tr>
<td>DPTS</td>
<td>591</td>
</tr>
<tr>
<td>DQINT</td>
<td>892</td>
</tr>
<tr>
<td>DRCFT</td>
<td>777</td>
</tr>
<tr>
<td>DRCFT2</td>
<td>814</td>
</tr>
<tr>
<td>DRCFT3</td>
<td>835</td>
</tr>
<tr>
<td>DROTF</td>
<td>247</td>
</tr>
<tr>
<td>DROTFG</td>
<td>240</td>
</tr>
<tr>
<td>DSBMV</td>
<td>345</td>
</tr>
<tr>
<td>DSCAL</td>
<td>251</td>
</tr>
<tr>
<td>DSCTR</td>
<td>277</td>
</tr>
<tr>
<td>DSDCG</td>
<td>667</td>
</tr>
<tr>
<td>DSGCG</td>
<td>682</td>
</tr>
<tr>
<td>DSDMX</td>
<td>370</td>
</tr>
<tr>
<td>DSNINF</td>
<td>800</td>
</tr>
<tr>
<td>DSKFS</td>
<td>629</td>
</tr>
<tr>
<td>DSKTRN</td>
<td>1011</td>
</tr>
<tr>
<td>DSLMX</td>
<td>313</td>
</tr>
<tr>
<td>DSR1</td>
<td>321</td>
</tr>
<tr>
<td>DSR2</td>
<td>329</td>
</tr>
<tr>
<td>DSMCG</td>
<td>598</td>
</tr>
<tr>
<td>DSMGC</td>
<td>675</td>
</tr>
<tr>
<td>DSMGCG</td>
<td>675</td>
</tr>
<tr>
<td>DSMMX</td>
<td>363</td>
</tr>
<tr>
<td>DSTM</td>
<td>366</td>
</tr>
<tr>
<td>DSORT</td>
<td>604</td>
</tr>
<tr>
<td>DSORTS</td>
<td>909</td>
</tr>
<tr>
<td>DSORTX</td>
<td>906</td>
</tr>
<tr>
<td>DSPEV</td>
<td>729</td>
</tr>
<tr>
<td>DspmV</td>
<td>313</td>
</tr>
<tr>
<td>DSYMM</td>
<td>418</td>
</tr>
<tr>
<td>DSSRCH</td>
<td>916</td>
</tr>
<tr>
<td>DSWAP</td>
<td>254</td>
</tr>
<tr>
<td>DSYG</td>
<td>752</td>
</tr>
<tr>
<td>Subroutines, ESSL (continued)</td>
<td>Subroutines, ESSL (continued)</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>DSYMV 313</td>
<td>SCFT2 807</td>
</tr>
<tr>
<td>DSYR 321</td>
<td>SCFT3 829</td>
</tr>
<tr>
<td>DSYR2 329</td>
<td>SCNRM2 234</td>
</tr>
<tr>
<td>DSYRK 440</td>
<td>SCON 848</td>
</tr>
<tr>
<td>DTBMV 356</td>
<td>SCORD 854</td>
</tr>
<tr>
<td>DTBSV 593</td>
<td>SCORD 860</td>
</tr>
<tr>
<td>DTPI 555</td>
<td>SCOR 848</td>
</tr>
<tr>
<td>DTPINT 928</td>
<td>SCORF 860</td>
</tr>
<tr>
<td>DTPM V 350</td>
<td>SCOSF 793</td>
</tr>
<tr>
<td>DTPSV 541</td>
<td>SCRFT 785</td>
</tr>
<tr>
<td>DTREC 889</td>
<td>SCRFT2 821</td>
</tr>
<tr>
<td>DTRI 555</td>
<td>SCRFT3 841</td>
</tr>
<tr>
<td>DTRMM 426</td>
<td>SCSIN2 937</td>
</tr>
<tr>
<td>DTRMV 350</td>
<td>SCSINT 931</td>
</tr>
<tr>
<td>DTRSV 541</td>
<td>SDCON 869</td>
</tr>
<tr>
<td>DURAND 968</td>
<td>SDOT 220</td>
</tr>
<tr>
<td>DURXOR 975</td>
<td>SDOT1 289</td>
</tr>
<tr>
<td>DVEA 257</td>
<td>SGBF 561</td>
</tr>
<tr>
<td>DVEM 265</td>
<td>SGBMV 338</td>
</tr>
<tr>
<td>DVES 261</td>
<td>SGBS 565</td>
</tr>
<tr>
<td>DWLEV 896</td>
<td>SGEBADD 379</td>
</tr>
<tr>
<td>DYAX 269</td>
<td>SGEEV 718</td>
</tr>
<tr>
<td>DZASUM 211</td>
<td>SGEF 465</td>
</tr>
<tr>
<td>DZAXPY 272</td>
<td>SGEFCD 487</td>
</tr>
<tr>
<td>DZNRM2 234</td>
<td>SGEGV 746</td>
</tr>
<tr>
<td>EINFO 982</td>
<td>SGEICD 529</td>
</tr>
<tr>
<td>ERRSAV 985</td>
<td>SGEILS 708</td>
</tr>
<tr>
<td>ERRSET 986</td>
<td>SGEMM 409</td>
</tr>
<tr>
<td>ERRSTR 988</td>
<td>SGEMMS 403</td>
</tr>
<tr>
<td>IBSRCH 912</td>
<td>SGEMTX 294</td>
</tr>
<tr>
<td>ICAMAX 199</td>
<td>SGEMUL 393</td>
</tr>
<tr>
<td>IDAMAX 199</td>
<td>SGMV 294</td>
</tr>
<tr>
<td>IDAMIN 202</td>
<td>SGMVX 294</td>
</tr>
<tr>
<td>IDMAX 205</td>
<td>SGER 305</td>
</tr>
<tr>
<td>IDMIN 208</td>
<td>SGES 468</td>
</tr>
<tr>
<td>IESSL 989</td>
<td>SGESM 472</td>
</tr>
<tr>
<td>ISAMAX 199</td>
<td>SGESUB 386</td>
</tr>
<tr>
<td>ISAMIN 202</td>
<td>SGESVF 690</td>
</tr>
<tr>
<td>ISMAX 205</td>
<td>SGESVS 698</td>
</tr>
<tr>
<td>ISMIN 208</td>
<td>SGETM 448</td>
</tr>
<tr>
<td>ISORT 904</td>
<td>SGETM0 451</td>
</tr>
<tr>
<td>ISORTS 909</td>
<td>SGETRF 478</td>
</tr>
<tr>
<td>ISORTX 906</td>
<td>SGETRS 482</td>
</tr>
<tr>
<td>ISSRCH 916</td>
<td>SGHMQ 964</td>
</tr>
<tr>
<td>IZAMAX 199</td>
<td>SGLGQ 957</td>
</tr>
<tr>
<td>SACOR 873</td>
<td>SGLNQ 948</td>
</tr>
<tr>
<td>SACORF 877</td>
<td>SGLNQ2 951</td>
</tr>
<tr>
<td>SASUM 211</td>
<td>SGRAQ 960</td>
</tr>
<tr>
<td>SAXPY 214</td>
<td>SGTF 575</td>
</tr>
<tr>
<td>SAXPYI 286</td>
<td>SGTHR 280</td>
</tr>
<tr>
<td>SBSRCH 912</td>
<td>SGTHRZ 283</td>
</tr>
<tr>
<td>SCASUM 211</td>
<td>SGTNP 580</td>
</tr>
<tr>
<td>Subroutine</td>
<td>Page</td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
</tr>
<tr>
<td>SGTNPF</td>
<td>583</td>
</tr>
<tr>
<td>SGTNPS</td>
<td>586</td>
</tr>
<tr>
<td>SGTS</td>
<td>578</td>
</tr>
<tr>
<td>SIZC</td>
<td>886</td>
</tr>
<tr>
<td>SNAXPY</td>
<td>224</td>
</tr>
<tr>
<td>SDOT</td>
<td>229</td>
</tr>
<tr>
<td>SNORM2</td>
<td>237</td>
</tr>
<tr>
<td>SNRAND</td>
<td>971</td>
</tr>
<tr>
<td>SNRM2</td>
<td>234</td>
</tr>
<tr>
<td>SPBCHF</td>
<td>568</td>
</tr>
<tr>
<td>SPBCHS</td>
<td>572</td>
</tr>
<tr>
<td>SPBF</td>
<td>568</td>
</tr>
<tr>
<td>SPBS</td>
<td>572</td>
</tr>
<tr>
<td>SPINT</td>
<td>923</td>
</tr>
<tr>
<td>SPOF</td>
<td>491</td>
</tr>
<tr>
<td>SPOFCD</td>
<td>507</td>
</tr>
<tr>
<td>SPOICD</td>
<td>534</td>
</tr>
<tr>
<td>SPOLY</td>
<td>883</td>
</tr>
<tr>
<td>SPOSTF</td>
<td>814</td>
</tr>
<tr>
<td>SPOSTM</td>
<td>835</td>
</tr>
<tr>
<td>SPPF</td>
<td>491</td>
</tr>
<tr>
<td>SPPFCD</td>
<td>507</td>
</tr>
<tr>
<td>SPPICD</td>
<td>534</td>
</tr>
<tr>
<td>SPPS</td>
<td>499</td>
</tr>
<tr>
<td>SPTRG</td>
<td>409</td>
</tr>
<tr>
<td>SSMBV</td>
<td>345</td>
</tr>
<tr>
<td>SSCAL</td>
<td>251</td>
</tr>
<tr>
<td>SSCTR</td>
<td>277</td>
</tr>
<tr>
<td>SSINF</td>
<td>800</td>
</tr>
<tr>
<td>SSLMXX</td>
<td>313</td>
</tr>
<tr>
<td>SSLR1</td>
<td>321</td>
</tr>
<tr>
<td>SSLR2</td>
<td>329</td>
</tr>
<tr>
<td>SSORT</td>
<td>904</td>
</tr>
<tr>
<td>SSORTS</td>
<td>909</td>
</tr>
<tr>
<td>SSORTX</td>
<td>906</td>
</tr>
<tr>
<td>SSPEV</td>
<td>729</td>
</tr>
<tr>
<td>SSPMV</td>
<td>313</td>
</tr>
<tr>
<td>SSPR</td>
<td>321</td>
</tr>
<tr>
<td>SSPR2</td>
<td>329</td>
</tr>
<tr>
<td>SSPSV</td>
<td>738</td>
</tr>
<tr>
<td>SSSRCH</td>
<td>916</td>
</tr>
<tr>
<td>SSWAP</td>
<td>254</td>
</tr>
<tr>
<td>SSYG5</td>
<td>752</td>
</tr>
<tr>
<td>SSYM</td>
<td>418</td>
</tr>
<tr>
<td>SSYMV</td>
<td>313</td>
</tr>
<tr>
<td>SSYR</td>
<td>321</td>
</tr>
<tr>
<td>SSYR2</td>
<td>329</td>
</tr>
<tr>
<td>SSYR2K</td>
<td>440</td>
</tr>
<tr>
<td>SSYR3</td>
<td>329</td>
</tr>
<tr>
<td>SSR3</td>
<td>329</td>
</tr>
<tr>
<td>STBMV</td>
<td>356</td>
</tr>
<tr>
<td>STBSV</td>
<td>593</td>
</tr>
<tr>
<td>STPI</td>
<td>555</td>
</tr>
<tr>
<td>STPII</td>
<td>593</td>
</tr>
<tr>
<td>STPINT</td>
<td>928</td>
</tr>
<tr>
<td>STPMV</td>
<td>350</td>
</tr>
<tr>
<td>STPSV</td>
<td>541</td>
</tr>
<tr>
<td>STRM</td>
<td>350</td>
</tr>
<tr>
<td>STRM2</td>
<td>350</td>
</tr>
<tr>
<td>STRM3</td>
<td>350</td>
</tr>
<tr>
<td>STRSM</td>
<td>547</td>
</tr>
<tr>
<td>STRSV</td>
<td>541</td>
</tr>
<tr>
<td>SURAND</td>
<td>968</td>
</tr>
<tr>
<td>SURXOR</td>
<td>975</td>
</tr>
<tr>
<td>SVEA</td>
<td>257</td>
</tr>
<tr>
<td>SVEM</td>
<td>265</td>
</tr>
<tr>
<td>SVES</td>
<td>261</td>
</tr>
<tr>
<td>SWLEV</td>
<td>896</td>
</tr>
<tr>
<td>SYAX</td>
<td>269</td>
</tr>
<tr>
<td>SZAAXY</td>
<td>272</td>
</tr>
<tr>
<td>ZAXPY</td>
<td>214</td>
</tr>
<tr>
<td>ZAXPYI</td>
<td>286</td>
</tr>
<tr>
<td>ZCOPY</td>
<td>217</td>
</tr>
<tr>
<td>ZDIFDOTC</td>
<td>220</td>
</tr>
<tr>
<td>ZDIFDOTCI</td>
<td>289</td>
</tr>
<tr>
<td>ZDIFDOTU</td>
<td>220</td>
</tr>
<tr>
<td>ZDIFDOTUI</td>
<td>289</td>
</tr>
<tr>
<td>ZDROT</td>
<td>247</td>
</tr>
<tr>
<td>ZDSCAL</td>
<td>251</td>
</tr>
<tr>
<td>ZDYAX</td>
<td>269</td>
</tr>
<tr>
<td>ZEADD</td>
<td>379</td>
</tr>
<tr>
<td>ZGEEV</td>
<td>718</td>
</tr>
<tr>
<td>ZGEB</td>
<td>465</td>
</tr>
<tr>
<td>ZGEM</td>
<td>409</td>
</tr>
<tr>
<td>ZGEMMS</td>
<td>403</td>
</tr>
<tr>
<td>ZGEMUL</td>
<td>393</td>
</tr>
<tr>
<td>ZGEMV</td>
<td>294</td>
</tr>
<tr>
<td>ZGER</td>
<td>305</td>
</tr>
<tr>
<td>ZGERU</td>
<td>305</td>
</tr>
<tr>
<td>ZGES</td>
<td>468</td>
</tr>
<tr>
<td>ZGESM</td>
<td>472</td>
</tr>
<tr>
<td>ZGESUB</td>
<td>386</td>
</tr>
<tr>
<td>ZGETMI</td>
<td>448</td>
</tr>
<tr>
<td>ZGETMO</td>
<td>451</td>
</tr>
<tr>
<td>ZGETRF</td>
<td>478</td>
</tr>
<tr>
<td>ZGETRS</td>
<td>482</td>
</tr>
<tr>
<td>ZGTHR</td>
<td>280</td>
</tr>
<tr>
<td>ZGTHRZ</td>
<td>283</td>
</tr>
<tr>
<td>ZGTNP</td>
<td>580</td>
</tr>
<tr>
<td>ZGTNPF</td>
<td>583</td>
</tr>
<tr>
<td>ZGTNPS</td>
<td>586</td>
</tr>
<tr>
<td>ZHBMV</td>
<td>345</td>
</tr>
</tbody>
</table>
subroutines, ESSL (continued)

ZHemm 418
ZHemv 313
Zher 321
Zher2 329
Zher2k 440
Zherk 433
Zhepv 729
ZhpMv 313
ZhpR 321
ZhpR2 329
ZhpSv 738
Znorm2 237
Zpof 491
Zpoms 502
Zrot 247
Zrotg 240
Zscal 251
Zsctr 277
Zswap 254
Zsymm 418
Zsyrm2 440
Zsyrk 433
ZtBMv 356
ZtBSV 593
ZTPMv 350
ZTPSV 541
ZTRMM 426
ZTRMV 350
ZTRSM 547
ZTRSV 541
Zvea 257
Zvem 265
Zves 261
ZWLeV 896
ZYAX 269
Zzaxpy 272

subscript notation, what it means xxvi

subtracting xviii

general matrices or their transposes 386
 vector y from vector x and store in vector z 261
 sum of xviii
 See also adding
absolute values 211
summation notation xxvi
superscript notation, what it means xxvi

support, IBM 171

Surand 968
Surxor 975
Svea 257
Svm 265
Sves 261
swap elements of two vectors 254
SwLeV 896
Syax 269

symbols, special usage of xxvi

symmetric band matrix
 definition of 80
 storage layout 81

symmetric indefinite matrix
 definition of 68
 storage layout 68

symmetric matrix
 definition of 63
 storage layout 64

Symmetric Multi-Processing xviii
 See also SMP

symmetric tridiagonal matrix 89
 definition of 89
 storage layout 89

symmetric-tridiagonal storage mode 89

symptoms, identifying problem 172

syntax rules for call statements and data 28

syntax, conventions used in the subroutine
descriptions xxviii

SzaXpy 272

T

table, default values for ESSL error option 49

termination, program xviii
 attention messages 49
 computational errors 46
 input-argument errors 45
 resource errors 48

terminology in the Glossary Glos-1

terminology used for Fourier transforms, convolutions, and correlations 761

terminology, names of products xxii

textbooks cited Bib-1
 See also references, math background

thread-safe xviii
 definition Glos-3
 ESSL Library, why use it 23

three-dimensional data structures, how stride is used for 106

time-varying recursive filter 889

times notation, multiply xxvi

timings, achieving high performance in your program 43

toeplitz matrix
 definition of 69, 70
 storage layout 70, 71

traceback map, using during diagnosis 174

trademarks Not-2

transform lengths, calculating 36

transpose xviii
 conjugate, of a matrix 60
 conjugate, of a vector 54
 notation xxvi
 of a matrix 60, 61
transpose (continued)
 of a matrix inverse notation xxvi
 of a vector 54, 55
 of a vector or matrix notation xxvi
 of matrix operation results for add 381
 of matrix operation results for multiply 396, 407, 412
 of matrix operation results for subtract 388
transposing xviii
 general matrix (In-Place) 448
 general matrix (Out-of-Place) 451
 sparse matrix 366
triangular band matrices
 storage layout 85
triangular band matrices, upper and lower
 definition of 84
triangular matrices
 storage layout 72
triangular matrices, upper and lower
 definition of 72
tridiagonal matrix
 definition of 88
 storage layout 88
tridiagonal storage mode 88
 how truncation affects output 42
type font usage xxii
U
 underflow xviii
 avoiding underflow 234
 why mask it 43
uniformly distributed random numbers, generate 968, 975
upper band width 75
upper storage mode 64, 67
upper-band-packed storage mode 81
upper-packed storage mode 64, 65
upper-storage-by-rows for symmetric sparse matrices 97
upper-triangular storage mode 72, 74
upper-triangular-band-packed storage mode 85, 86
upper-triangular-packed storage mode 72, 73
usability of subroutines 3
usability of the ESSL subroutines 4
usage considerations
 direct sparse matrix solvers 459
 for Fourier transforms, convolutions, and correlations 761
 for interpolation 921
 for linear algebra subprograms 196
 for linear algebraic equations 458
 for matrix operations 376
 for numerical quadrature 941
 for random number generation 967
usage considerations (continued)
 for sorting and searching 901
 for utility subroutines 979
 sparse matrix subroutines (iterative linear system solvers) 461
 sparse matrix subroutines (skyline solvers) 460
usage, special xviii
 conventions used in the subroutine description xxix
 for matrix addition 381
 for matrix multiplication 396, 407, 412
 for matrix subtraction 388
user applications 4
using this book xix, xxi
utility subroutines xviii
DGKTRN 1005
DSKTRN 1011
DSRSM 1001
EINFO 982
ERRSAV 985
ERRSET 986
ERRSTR 988
IESSL 989
STRIDE 991
usage considerations 979
V
 vector xviii
 compressed vector 59
 conventions for xxiii
 description of 53
 font for xxii
 full vector 59
 number of array elements needed for 55
 sparse vector 58
 storage of 55
 stride for 56
 Vector Library xviii
 vector processing xviii
 Vector Processing Subsystem xviii
 See also VPSS (Vector Processing Subsystem)
 vector register xviii
 vector-scalar linear algebra subprograms xviii
 ISAMAX, ICAMAX, IDMAX, and IZAMAX 199
 ISAMIN and IDAMIN 202
 ISMAX and IDMAM 205
 ISMIN and IDMIN 208
 SASUM, DASUM, SCASUM, and DZASUM 211
 SAXPY, DAXPY, CAXPY, and ZAXPY 214
 SCOPY, DCOPY, CCOPY, and ZCOPY 217
 SDOT, DDOT, CDOTU, ZDOTU, CDOTC, and ZDOTC 220
 SNAXPY and DNAXPY 224
 SNRM2, DNRM2, CNRM2, and ZNRM2 237
 SNRM2, DNRM2, SCNRM2, and DZNRM2 234
vector-scalar linear algebra subprograms (continued)

SROT, DROT, CROT, ZROT, CSROT, and ZDROT 247
SROTG, DROTG, CROTG, and ZROTG 240
SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, and ZDSCAL 251
SSWAP, DSWAP, CSWAP, and ZSWAP 254
SVEA, DVEA, CVEA, and ZVEA 257
SVEM, DVEM, CVEM, and ZVEM 265
SYAX, DYAX, CYAX, ZYAX, CSYAX, and ZDYAX 269
SZAXPY, DZAXPY, CZAXPY, and ZZAXPY 272

version of ESSL, getting 989
versions of subroutines 4
VPSS (Vector Processing Subsystem) xviii

W
Wiener-Levinson filter coefficients 896
words in the Glossary GLOS-1
working auxiliary storage, list of subroutines using 30
working storage for band matrix 76
workstations xviii
 migrating between RS/6000 processors 167
 required for ESSL 7

Z
ZAXPY 214
ZAXPYI 286
ZCOPY 217
ZDOTC 220
ZDOTCI 289
ZDOUTU 220
ZDOUTUI 289
ZDROT 247
ZDSCAL 251
ZDYAX 269
zero crossing 760
 See also i-th zero crossing
zero stride, for vectors 57
ZGBMV 338
ZGEADD 379
ZGEEV 718
ZGEF 465
ZGEMM 409
ZGEMMS 403
ZGEMUL 393
ZGEMV 294
ZGERC 305
ZGERU 305
ZGES 468
ZGESM 472
ZGESUB 386
ZGETMI 448
ZGETMO 451
ZGETRF 478
ZGETRS 482
ZGTHR 280
ZGTHRZ 283
ZGTNP 580
ZGTNPF 583
ZGTNPS 586
ZHBMV 345
ZHEMM 418
ZHEMV 313
ZHER 321
ZHER2 329
ZHER2K 440
ZHERK 433
ZHPMV 313
ZHTP 321
ZHTPR2 329
ZHPSSV 386
ZNORM2 237
ZPOF 491
ZPOSMD 502
ZROT 247
ZROTFG 240
ZSCAL 251
ZSCTR 277
ZSWAP 254
ZSYMM 418
ZSYR2K 440
ZSYRK 433
ZTBMV 356
ZTBSV 593
ZTPMV 350
ZTPSSV 541
ZTRMM 426
ZTRMV 350
ZTRSM 547
ZTRSV 541
ZVEA 257
ZVEM 265
ZVES 261
ZWLEV 896
ZYAX 269
ZZAXPY 272
Communicating Your Comments to IBM

Engineering and Scientific
Subroutine Library for AIX
Guide and Reference
Publication No. SA22-7272-03

If you especially like or dislike anything about this book, please use one of the methods listed below to send your comments to IBM. Whichever method you choose, make sure you send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter, or completeness of this book. However, the comments you send should pertain to only the information in this manual and the way in which the information is presented. To request additional publications, or to ask questions or make comments about the functions of IBM products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a reader’s comment form (RCF) from a country other than the United States, you can give the RCF to the local IBM branch office or IBM representative for postage-paid mailing.

- If you prefer to send comments by mail, use the RCF at the back of this book.
- If you prefer to send comments by FAX, use this number:
 - FAX: (International Access Code)+1+914+432-9405
- If you prefer to send comments electronically, use one of these network IDs:
 - IBM Mail Exchange: USIB6TC9 at IBMMAIL
 - Internet e-mail: mhvrcls@us.ibm.com

Make sure to include the following in your note:

- Title and publication number of this book
- Page number or topic to which your comment applies

Optionally, if you include your telephone number, we will be able to respond to your comments by phone.
Reader's Comments — We'd Like to Hear from You

Engineering and Scientific
Subroutine Library for AIX
Guide and Reference
Publication No. SA22-7272-03

You may use this form to communicate your comments about this publication, its organization, or subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any obligation to you. Your comments will be sent to the author's department for whatever review and action, if any, are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to the IBM branch office serving your locality.

Today's date: ____________________________

What is your occupation?

Newsletter number of latest Technical Newsletter (if any) concerning this publication:

How did you use this publication?

[] As an introduction [] As a text (student)
[] As a reference manual [] As a text (instructor)
[] For another purpose (explain)

Is there anything you especially like or dislike about the organization, presentation, or writing in this manual? Helpful comments include general usefulness of the book; possible additions, deletions, and clarifications; specific errors and omissions.

Page Number: Comment:

Name ___ Address ____________________________

Company or Organization __

Phone No. ___