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Preface

Overview

Welcome to the UltraSPARC IIi User’s Manual. This book contains information

about the architecture and programming of UltraSPARC IIi, one of Sun

Microsystems’ family of processors that are SPARC-V9-compliant as well as meeting

the requirements of the PCI specification, version 2.1. This manual describes the

UltraSPARC IIi processor implementation.

This book contains information on:

■ The UltraSPARC IIi system architecture

■ The components that make up an UltraSPARC IIi processor

■ Memory and low-level system management, including detailed information

needed by operating system programmers

■ Extensions to and implementation-dependencies of the SPARC-V9 architecture

■ Techniques for managing the pipeline and for producing optimized code

■ Instruction set, instruction grouping rules for efficient execution, address space

identifiers, and event ordering

■ Data and address formats

■ External interfaces and their support, including PCI, memory, and UPA64S

■ Interrupts and traps

■ Memory models

■ Debug and diagnostic provisions, including performance instrumentation

■ Power management

■ Performance instrumentation and Boundary Scan (IEEE 1149) support

■ Compatibility considerations with regard to prior processors
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A Brief History of SPARC and PCI

SPARC stands for Scalable Processor ARChitecture, which was first announced in

1987. Unlike more traditional processor architectures, SPARC is an open standard,

freely available through license from SPARC International, Inc. Any company that

obtains a license can manufacture and sell a SPARC-compliant processor.

By the early 1990s SPARC processors were available from over a dozen different

vendors, and over 8,000 SPARC-compliant applications had been certified.

In 1994, SPARC International, Inc. published The SPARC Architecture Manual, Version
9, which defined a powerful 64-bit enhancement to the SPARC architecture.

SPARC-V9 provided support for:

■ 64-bit virtual addresses and 64-bit integer data

■ Fault tolerance

■ Fast trap handling and context switching

■ Big- and little-endian byte orders

UltraSPARC is the first family of SPARC-V9-compliant processors available from

Sun Microsystems, Inc.

The Peripheral Component Interconnect (PCI) bus specification was first issued in

June 1992 (at version 1.0) by the PCI Special Interest Group to define a high-

performance bus for peripheral components. In 1993 they added a connector

specification. The current version 2.1 document added a 66 MHz bus specification

and was released in June, 1995.

The PCI Local Bus uses multiplexed address and data lines and is well suited for

connecting large bandwidth peripheral components. It is used to interconnect

highly-integrated peripheral-controller components, peripheral add-in boards, and

processor and memory systems and offers the following advantages:

■ Peripheral compatibility with existing drivers and application software

■ 32-bit or 64-bit data bus width and 64-bit addressing are supported

■ Synchronous Peripheral bus

■ Processor-independent bus optimized for I/O functions

■ Bus operation concurrent with processor subsystem

■ Peripheral access from anywhere in memory or I/O space

■ Peripheral latency minimized by efficient coupling with processor bus, cache, and

memory

■ 33 and 66 MHz bus clock specification

■ PCI peripherals contain registers with information for their configuration
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Sun provides the optional Advanced PCI Bridge (APBTM) ASIC for an optimized PCI

interface with the UltraSPARC IIi processor.

How to Use This Book

This book is a companion to The SPARC Architecture Manual, Version 9, which is

available from many technical bookstores or directly from its copyright holder:

SPARC International, Inc.

535 Middlefield Road, Suite 210

Menlo Park, CA 94025

(415) 321-8692

The SPARC Architecture Manual, Version 9 provides a complete description of the

SPARC-V9 architecture. Since SPARC-V9 is an open architecture, many of the

implementation decisions have been left to the manufacturers of SPARC-compliant

processors. These “implementation dependencies” are introduced in The SPARC
Architecture Manual, Version 9.

This book, the UltraSPARC IIi User’s Manual, describes the UltraSPARC IIi

implementation of the SPARC-V9 architecture. It provides specific information about

UltraSPARC IIi processors, including how each SPARC-V9 implementation

dependency was resolved. (See Chapter 14, Implementation Dependencies” for specific

information.) This manual also describes extensions to SPARC-V9 that are available

(currently) only on UltraSPARC IIi processors.

A great deal of background information and a number of architectural concepts are

not contained in this book. You will find cross references to The SPARC Architecture
Manual, Version 9 located throughout this book. You should have a copy of that book

at hand whenever you are working with the UltraSPARC IIi User’s Manual. For

detailed information about the electrical and mechanical characteristics of the

processor, including pin and pad assignments, consult the UltraSPARC-IIi Data Sheet.
The section: Bibliography on page 465 describes how to obtain the data sheet.

The UltraSPARC IIi includes the SME1041 and SME1430 CPUs. The differences are

noted below and in Chapter 18. Also see Glossary on page 459.

Textual Conventions

This book uses the same textual conventions as The SPARC Architecture Manual,
Version 9. They are summarized here for convenience.
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Fonts are used as follows:

■ Italic font is used for register names, instruction fields, and read-only register

fields.

■ courier font is used for literals and software examples.

■ Bold font is used for emphasis.

■ UPPER CASE items are acronyms, instruction names, or writable register fields.

■ Italic sans serif font is used for exception and trap names.

■ Underbar characters (_) join words in register, register field, exception, and trap

names. Such words can be split across lines at the underbar without an

intervening hyphen.

■ The following notational conventions are used:

■ Square brackets ‘[ ]’ indicate a numbered register in a register file.

■ Angle brackets ‘< >’ indicate a bit number or colon-separated range of bit

numbers within a field.

■ Curly braces ‘{ }’ are used to indicate textual substitution.

■ The symbol designates concatenation of bit vectors. A comma ‘,’ on the left side

of an assignment separates quantities that are concatenated for the purpose of

assignment.

Contents

This manual has the following organization:

The initial part of this book gives an overview of the UltraSPARC IIi and contains

the following chapters:

■ Chapter 1, UltraSPARC IIi Basics, describes the architecture in general terms and

introduces its components.

■ Chapter 2, Processor Pipeline, describes UltraSPARC IIi’s 9-stage pipeline.

■ Chapter 3, Cache Organization, describes the UltraSPARC IIi caches.

■ Chapter 4, Overview of I and D-MMUs, describes the UltraSPARC IIi MMU, its

architecture, how it performs virtual address translation, and how it is

programmed.

■ Chapter 5, UltraSPARC IIi in a System, briefly describes the UltraSPARC IIi

configuration.

■ Chapter 6, Address Spaces, ASIs, ASRs, and Traps discusses physical and virtual

address space mapping and identifiers. It lists address and port assignments,

including those for PCI, and also gives memory DIMM requirements.

■ Chapter 7, UltraSPARC IIi Memory System, discusses DRAM memory hardware

structure, selection, and addressing.
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■ Chapter 8, Cache and Memory Interactions, deals with the requirements to preserve

data integrity during cache and memory operations and describes instructions

used in these cases.

■ Chapter 9, PCI Bus Interface, describes the PCI Bus Interface Module of

UltraSPARC IIi which is a host PCI bridge.

■ Chapter 10, UltraSPARC IIi IOM, details the IO Memory Management Unit (IOM),

which performs virtual to physical address translation.

■ Chapter 11, Interrupt Handling, describes how UltraSPARC IIi processes interrupts.

■ Chapter 12, Instruction Set Summary, provides a list of all supported instructions,

including SPARC-V9 core instructions and UltraSPARC IIi extensions.

■ Chapter 13, VIS™ and Additional Instructions, contains detailed documentation of

the extended instructions that UltraSPARC IIi adds to the SPARC-V9 instruction

set, including those relating to power management, graphics, and memory-access

and control.

■ Chapter 14, Implementation Dependencies, discusses how UltraSPARC IIi resolves

each of the implementation-dependencies defined by the SPARC-V9 architecture.

The latter part of the book presents detailed information about UltraSPARC IIi

architecture and programming. This section contains the following chapters:

■ Chapter 15, MMU Internal Architecture
■ Chapter 16, Error Handling, discusses how UltraSPARC IIi handles system errors

and describes the available error status registers.

■ Chapter 17, Reset and RED_state, describes how UltraSPARC IIi handles the

various SPARC-V9 reset conditions, and how it implements RED_state.

■ Chapter 18, MCU Control and Status Registers,

■ Chapter 19, UltraSPARC IIi PCI Control and Status,

■ Chapter 20, SPARC-V9 Memory Models, describes the supported memory models

(which are documented fully in The SPARC Architecture Manual, Version 9. Low-

level programmers and operating system implementors should study this chapter

to understand how their code will interact with the UltraSPARC IIi cache and

memory systems.

■ Chapter 21, Code Generation Guidelines, contains detailed information about

generating optimum UltraSPARC IIi code.

■ Chapter 22, Grouping Rules and Stalls, describes instruction interdependencies and

optimal instruction ordering.

■ Appendices contain low-level technical material or information not needed for a

general understanding of the architecture. The manual contains the following

appendices:

■ Appendix A, Debug and Diagnostics Support, describes diagnostics registers and

capabilities.

■ Appendix B, Performance Instrumentation, describes built-in capabilities to measure

UltraSPARC IIi performance.

■ Appendix C, IEEE 1149.1 Scan Interface, contains information about the diagnostic

boundary-scan interface for UltraSPARC IIi.
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■ Appendix D, ECC Specification, details the specification for the error correcting

code (ECC) used in transactions between processor and DRAMs

■ Appendix E, UPA64S interface, describes transactions and data format on the

MEMDATA bus.

■ Appendix F, Pin and Signal Descriptions, contains general information about the

pins and signals of the UltraSPARC IIi and its components.

■ Appendix G, ASI Names, contains an alphabetical listing of the names and

suggested macro syntax for all supported ASIs.

■ Appendix H, Event Ordering on UltraSPARC IIi discusses ordering of load and

store operations.

■ Appendix I, Observability Bus describes this bus that can help bring up the

processor and provide performance monitoring.

■ Appendix J, List of Compatibility Notes, provides a reference list of the

compatibility notes from the various chapters of the text.

■ Appendix K, Errata, lists errata for the UltraSPARC IIi.

A Glossary, Bibliography, and Index complete the book.
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CHAPTER 1

UltraSPARC IIi Basics

1.1 Overview
The UltraSPARC IIi CPU is a high-performance, highly integrated superscalar

processor implementing the 64-bit SPARC-V9 RISC architecture that also includes

on-chip memory and I/O control. It supports Sun's popular Solaris operating system

and is binary-compatible with all ultraSPARC software.

Each functional area on the UltraSPARC-IIi maintains decentralized control,

allowing many activities to overlap. The design supports the following features:

■ Sustained issue of up to four instructions per cycle (even in the presence of

conditional branches and cache misses) with a decoupled Prefetch and Dispatch

Unit.

■ Load buffers on the input side of the Execution Unit, together with store buffers

on the output side, decouple pipeline execution from data cache misses.

■ Instructions are issued in program order to multiple functional units.

■ Instructions execute in parallel and may complete out of order.

■ Instructions from two basic blocks (that is, instructions before and after a

conditional branch) can be issued in the same group.

■ Separate Memory Control and PCI I/O interface units also decouple their related

key activities from the instruction pipeline.

UltraSPARC IIi includes a full implementation of the 64-bit SPARC-V9 architecture.

It supports a 44-bit virtual address space and a 41-bit physical address space with

64-bit address pointers. The core instruction set is extended to include the VIS

instruction set—graphics instructions that provide the most common operations

related to two-dimensional image processing, two and three-dimensional graphics

and image compression algorithms, and parallel operations on pixel data with 8-

and 16-bit components. Support for high bandwidth memory to memory transfers

also provided through 64-byte block load and block store instructions.
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1.2 Design Philosophy
The execution time of an application is the product of three factors: the number of

instructions generated by the compiler, the average number of cycles required per

instruction, and the cycle time of the processor. The architecture and implementation

of UltraSPARC IIi, coupled with new compiler techniques, makes it possible to

reduce each component while not deteriorating the other two.

The number of instructions for a given task depends on the instruction set and on

compiler optimizations (dead code elimination, constant propagation, profiling for

code motion, and so on). Since it is based on the SPARC-V9 architecture,

UltraSPARC IIi offers features that can help reduce the total instruction count:

■ 64-bit integer processing

■ Additional floating-point registers (beyond the number offered in SPARC-V8) that

can be used to eliminate floating-point loads and stores

■ Enhanced trap model with alternate global registers

The average number of cycles per instruction (CPI) depends on the architecture of

the processor and on the ability of the compiler to take advantage of the hardware

features offered. The UltraSPARC IIi execution units (ALUs, LD/ST, branch, two

floating-point, and two graphics) allow the CPI to be as low as 0.25 (four instructions

per cycle). To support this high execution bandwidth, sophisticated hardware is

provided to supply:

1. Up to four instructions per cycle, even in the presence of conditional branches

2. Data at a rate of eight bytes per two cycles from the external cache to the data

cache, and eight bytes per cycle into the register files.

To reduce instruction dependency stalls, UltraSPARC IIi has short latency operations

and provides direct bypassing between units or within the same unit. The impact of

cache misses, usually a large contributor to the CPI, is reduced significantly through

the use of decoupled units: (prefetch unit, load buffer, store buffer, and memory

control) that operate asynchronously with the rest of the pipeline.

The Memory Control Unit (MCU) is responsible for DRAM and UPA64S control

which is accomplished in synchronism with the processor clock. The DRAM

interface is expanded from 64 + 8 ECC bits to 128 + 16 ECC bits by means of external

data transceivers. This configuration maximizes the EDO CAS cycle rate. The MCU

specification is wide enough to embrace all major vendors’ DRAM specifications.

Other features such as a fully pipelined interface to the external cache (E-Cache) and

support for speculative loads, coupled with sophisticated compiler techniques such

as software pipelining and cross-block scheduling also reduce the CPI significantly.
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The PCI Bus Module (PBM) provides a direct interface with a 32-bit PCI bus that

meets PCI specification version 2.1. This module is internally linked with the

External Cache Unit (ECU) and the IOM.

The IO Memory Management Unit (IOM) manages virtual to physical memory

address mapping using a 16-entry Translation Lookaside Buffer (TLB) in conjunction

with a large Translation Storage Buffer (TSB) in memory.

The PCI bus can run at 66 MHz or at 33 MHz. Up to four Advanced PCI Bridge

ASICs (APB)s may be used with the UltraSPARC IIi, each of which can support up to

two 33 MHz secondary PCI busses. PCI DMA transfers are cache-coherent.

A balanced architecture must be able to provide a low CPI without affecting the

cycle time. Several of UltraSPARC IIi’s architectural features, coupled with an

aggressive implementation and state-of-the-art technology, make it possible to

achieve a short cycle time (see Table 1-1). The pipeline is organized so that large

scalarity (four), short latencies, and multiple bypasses do not affect the cycle time

significantly.

1.3 Component Description
Figure 1-1 shows a block diagram that illustrates the components of the

UltraSPARC IIi processor. In a single-chip implementation, UltraSPARC IIi integrates

these components:

■ Independently clocked (132 MHz internal, 66 or 33 MHz external) PCI interfaces,

fully decoupled from the main CPU

■ PCI bus module (PBM)

■ PCI I/O memory management unit (IOM) with 16 entries for incoming I/O to

physical mapping/protection

■ External (E-cache) cache control unit (ECU)

■ Memory controller unit (MCU), operates both the 144-bit-wide DRAM subsystem

and the UPA64S interface

■ 16-Kilobyte instruction cache (I-Cache)

■ 16-Kilobyte data cache (D-cache)

■ Prefetch, branch prediction and dispatch unit (PDU) containing grouping logic

and an instruction buffer

■ A 64-entry instruction translation lookaside buffer (iTLB) and a 64-entry data

translation lookaside buffer (dTLB)

■ Integer execution unit (IEU) with two arithmetic logic units (ALUs)

■ Floating-point unit (FPU) with independent add, multiply and divide/square root

sub-units

■ Graphics unit (GRU) composed of two independent execution pipelines
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■ Load buffer and store buffer unit (LSU), decoupling data accesses from the

pipeline

Figure 1-1 UltraSPARC IIi Block Diagram
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1.3.1 PCI Bus Module (PBM)

The PBM interfaces UltraSPARC IIi directly with a 32-bit PCI bus, compliant to the

PCI specification, revision 2.1. The PCI bus runs at speeds up to 66 MHz, typically 33

and 66 MHz. The PBM is optimized for 16-, 32- and 64-byte transfers, and can

support up to four PCI bus masters. The module also queues pending interrupts

received from the interrupt concentrator (or RIC--SME2210) chip or programmable

logic device (PLD).

The entire PCI address space is noncacheable for CPU references, but coherent DMA

is supported. (This means that all writes to memory from PCI, and reads from

memory, are cache coherent.) Interrupt handling is synchronized to the completion

of all prior DMA writes. The PCI data path is illustrated in Figure 1-2.

.

Figure 1-2 UltraSPARC IIi PCI and MCU Subsystems
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1.3.2 IO Memory Management Unit (IOM)

The IOM performs address translations from 32-bit DVMA to 34-bit physical

addresses when UltraSPARC IIi is a PCI target (when DVMA read/write access is

required). The IOM uses a fully associative 16-entry TLB (translation lookaside

buffer). In the case of a TLB miss, the IOM performs a single-level hardware

tablewalk into the large TSB (translation storage buffer) in memory.

1.3.3 External Cache Control Unit (ECU)

The main role of the ECU is to handle I-cache and D-Cache misses efficiently. The

ECU can handle one access every other cycle to the external cache. Loads that miss

in the D-cache cause 16-byte D-cache fills using two consecutive 8-byte accesses to

the E-cache. Stores are writethrough to the E-cache and are fully pipelined.

Instruction prefetches that miss the I-cache cause 32-byte I-cache fills using four

consecutive 8-byte accesses to the E-cache. The E-cache is parity-protected.

In addition, the ECU supports DMA accesses which hit in the external cache and

maintains data coherency between the external cache and the main memory. The size

of the external cache can be 256 kB, 512 kB, 1 MB, or 2 MB (where the line size is

always 64 bytes). Cache lines have only 3 states: modified, exclusive and invalid.

The combination of the load buffer and the ECU is fully pipelined. For programs

with large data sets, instructions are scheduled with load latencies based on the

E-Cache latency, so the E-cache acts like a large primary cache. Floating-point

applications use this feature to effectively “hide” D-Cache misses. Coherency is

maintained between all caches and external PCI DMA references.

The ECU overlaps processing during load and store misses. Stores that hit the

E-Cache can proceed while a load miss is being processed. The ECU is also capable

of processing reads and writes without a costly turnaround penalty on the

bidirectional E-cache data bus.

Block loads and block stores (these load or store a 64-byte line of data from memory

or E-cache to the floating-point register file) provide high transfer bandwidth. By not

installing into the E-cache on miss, they avoid polluting the cache with data that is

only touched once.

The ECU also provides support for multiple outstanding data transfer requests to

the MCU and PBM.

1.3.3.1 E-Cache SRAM Modes

The UltraSPARC IIi supports two alternative E-cache SRAM configurations that have

particular operational modes:
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■ 2–2–2 (Pipelined) mode and

■ 2–2 (Register-Latched) mode

In 2–2–2 (Pipelined) mode the E-cache SRAMs have a cycle time equal to half the

processor cycle time. The name “2–2–2” indicates that it takes two processor clocks

to send the address, two to access the SRAM array, and two to return the E-Cache

data. 2–2–2 mode has a 6 cycle pin-to-pin latency and provides the least expensive

SRAM solution at a given frequency.

In 2–2 (Register-Latched) mode the E-cache SRAMs also have a cycle time equal to

half of the processor cycle time. The name “2–2” indicates that it takes two processor

clocks to send the address and two clocks to access and return the E-Cache data. 2–2

mode has a 4 cycle pin-to-pin latency, which provides lower E-Cache latency. In

addition, no dead cycles are necessary when alternating between reads and writes

because of tighter control over turn on and turn off times in these SRAMs.

1.3.4 Memory Controller Unit (MCU)

All transactions to the DRAM and UPA64S subsystems are handled by the MCU.

The external pins controlled by the MCU operate at divisions of the processor clock:

The CPU to UPA clock ratio is fixed by design. In the SME1040CGA the ratio is always 3:1.

In SME1430LGA, the ratio is 4:1. The data transfer rate through the DRAM transceivers

is programmable but typically occurs at 1/4 of the processor clock rate. Other

options are 1/3 or 1/5 of the processor clock rate.

External data transceivers allow the DRAM data to be twice as wide as the

processor’s MEMDATA pins, so the EDO CAS cycle is 26.5 ns at 300 MHz. The MCU

supports a composite DRAM specification which is a superset of 60 ns EDO DRAM

specifications from all major vendors. These transceivers are commodity parts

available from Texas Instruments. Use of faster DRAMs allow performance higher

than quoted, as the various components of memory delay are programmable. A

typical memory configuration is shown in Figure 1-3.
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Figure 1-3 UltraSPARC IIi Memory—Typical Configuration
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1.3.7 Prefetch and Dispatch Unit (PDU)

The PDU fetches instructions before they are needed in the pipeline, so that the

execution units do not starve for instructions. Instructions can be prefetched from all

levels of the memory hierarchy, including the instruction cache, the external cache

and the main memory. To prefetch across conditional branches, a dynamic branch

prediction scheme is implemented in hardware, based on a two-bit history of the

branch. A “next field” associated with every four instructions in the I-Cache points

to the next I-Cache line to be fetched. This makes it possible to follow taken branches

and provides the same instruction bandwidth achieved during sequential code. Up

to 12 prefetched instructions are stored in the instruction buffer sent to the rest of the

pipeline.

1.3.8 Translation Lookaside Buffers (iTLB and dTLB)

The Translation Lookaside Buffers provide mapping between 44-bit virtual

addresses and 34-bit physical addresses. A 64-entry iTLB is used for instructions and

a 64-entry dTLB for data, and both are fully associative. UltraSPARC IIi provides

hardware support for a software-based TLB miss strategy. A trap to special software

handlers installs new entries, typically with a latency of the order of an E-cache

miss. A separate set of global registers is available whenever such a trap is

encountered, for low latency miss handling. Page sizes of 8 kB, 64 kB, and 512 kB

and 4 MB are supported.

1.3.9 Integer Execution Unit (IEU)

The IEU contains the following components:

■ Two ALUs

■ A multi-cycle integer multiplier

■ A multi-cycle integer divider

■ Eight register windows

■ Four sets of global registers (normal, alternate, MMU, and interrupt globals)

■ The trap registers (See Table 1-1 for supported trap levels)

Table 1-1 shows that UltraSPARC IIi supports one more than the four trap levels

mandated by the SPARC Version 9 specification
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.

1.3.10 Floating-Point Unit (FPU)

The separation of the execution units in the FPU allows UltraSPARC IIi to issue and

execute two floating-point instructions per cycle. Source data and results data are

stored in the 32-entry register file, where each entry can contain a 32- or 64-bit value.

Most instructions are fully pipelined (throughput of one per cycle), have a latency of

three, and are not affected by the precision of the operands (same latency for single

or double precision).

The divide and square-root instructions are not pipelined. These take 12 cycles

(single precision) and 22 cycles (double precision) to execute, but they do not stall

the processor. Other instructions, following the divide/square root can be issued,

executed, and retired to the register file before the divide/square root finishes. A

precise exception model is maintained by synchronizing the floating-point pipe with

the integer pipe and by predicting traps for long-latency operations.

1.3.11 Graphics Unit (GRU)

UltraSPARC IIi includes a comprehensive set of graphics instructions (VIS) that

provide industry-leading support for two-dimensional and three-dimensional image

and video processing, image compression, audio processing, and similar functions.

Sixteen-bit and 32-bit partitioned add, boolean and compare are provided. Eight-bit

and 16-bit partitioned multiplies are supported. Single cycle pixel distance, data

alignment, packing and merge operations are all supported in the GRU. The GRU

may also be referred to as the VIS Instruction Unit (VIU).

1.3.12 Load/Store Unit (LSU)

The LSU is responsible for generating the virtual address of all loads and stores

(including atomics and ASI loads), for accessing the data cache, for decoupling load

misses from the pipeline through the load buffer, and for decoupling the stores

through a store buffer. One load or one store can be issued per cycle. The store buffer

can compress (or gather) multiple stores to the same 8 bytes into a single E-cache

access. The UPA64S and PCI control units can compress sequential 8-byte stores into

burst transactions, to improve noncacheable store bandwidth.

Table 1-1 Supported Trap Levels

UltraSPARC IIi

MAXTL 4

Trap Levels 5
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1.3.13 Phase Locked Loops (PLLs)

To minimize the clock skew at the system level UltraSPARC IIi has PLLs for both the

processor clock and the PCI clock. The internal PCI clock runs at twice the speed of

the PCI interface clock. For details, see Appendix F, Pin and Signal Descriptions.”

1.3.14 Signals

All external cache signals are 2.6 V and exist only on the processor module. All other

signals are 3.3V LVTTL. The highest frequency signal that comes from the module to

the motherboard is 75 MHz. (unless the 100 MHz UPA64S interface is used). This

allows cost savings in motherboard design.

Figure 1-3 on page 8 shows an UltraSPARC IIi subsystem, which consists of the

UltraSPARC IIi processor and synchronous SRAM components for the E-cache tags

and data.
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CHAPTER 2

Processor Pipeline

2.1 Introductions
The UltraSPARC IIi processor contains a nine-stage pipeline. Most instructions go

through the pipeline in exactly 9 stages. The instructions are considered terminated

after they go through the last stage (W), after which changes to the processor

architectural state are irreversible. Figure 2-1 shows a simplified diagram of the

integer and floating-point pipeline stages.

Figure 2-1 UltraSPARC IIi Pipeline Stages (Simplified)

Three additional stages are added to the integer pipeline to make it symmetrical

with the floating-point pipeline. This simplifies pipeline synchronization and

exception handling. It also eliminates the need to implement a floating-point queue.

Floating-point instructions with a latency greater than three (divide, square root, and

inverse square root) behave differently than other instructions; the pipe is

“extended” when the instruction reaches stage N
1
. See Chapter 21, Code Generation

Guidelines” for more information. Memory operations are allowed to proceed

asynchronously with the pipeline in order to support latencies longer than the

latency of the on-chip D-cache.
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2.2 Pipeline Stages
This section describes each pipeline stage in detail. Figure 2-2 illustrates the pipeline

stages.

Figure 2-2 UltraSPARC IIi Pipeline Stages (Detail)

X1

IU
 R

eg
is

te
r 

F
ile

E C N1 N2G

D-Cache

TLB

FP add

F
P

 R
F

 3
2 

x 
64

IST_data

Icc

FPST_data

In
st

ru
ct

io
n 

B
uf

fe
rs A

nn
ex

F/D

FPU

IEU

PDU

G ALU
FP mul
G mul GRU

address bus
data bus
instruction bus

LSU
Tag

Tag Check

Hit

al
ig

n

VA

PA

N3 W

(Results in Annex)

ECU

LDQ/STQ

D-Cache
Data

R X2 X3

SB



Chapter 2 Processor Pipeline 15

2.2.1 Stage 1: Fetch (F) Stage

Prior to their execution, instructions are fetched from the Instruction Cache (I-cache)

and placed in the Instruction Buffer, where eventually they are selected to be

executed. Accessing the I-cache is done during the F Stage. Up to four instructions

are fetched along with branch prediction information, the predicted target address of

a branch, and the predicted set of the target. The high bandwidth provided by the

I-cache (4 instructions/cycle) allows the UltraSPARC IIi CPU to prefetch instructions

ahead of time based on the current instruction flow and on branch prediction.

Providing a fetch bandwidth greater than or equal to the maximum execution

bandwidth assures that, for well behaved code, the processor does not starve for

instructions. Exceptions to this rule occur when branches are hard to predict, when

branches are very close to each other, or when the I-cache miss rate is high.

2.2.2 Stage 2: Decode (D) Stage

After being fetched, instructions are pre-decoded and then sent to the Instruction

Buffer. The pre-decoded bits generated during this stage accompany the instructions

during their stay in the Instruction Buffer. Upon reaching the next stage (where the

grouping logic lives) these bits speed up the parallel decoding of up to four

instructions.

While it is being filled, the Instruction Buffer also presents up to 4 instructions to the

next stage. A pair of pointers manage the Instruction Buffer, ensuring that as many

instructions as possible are presented in order to the next stage.

2.2.3 Stage 3: Grouping (G) Stage

The G-stage logic’s main task is to group and dispatch a maximum of four valid

instructions in one cycle. It receives a maximum of four valid instructions from the

Prefetch and Dispatch Unit (PDU), it controls the Integer Core Register File (ICRF),

and it routes valid data to each integer functional unit. The G-stage sends up to two

floating-point or graphics instructions out of the four candidates to the Floating-

Point and Graphics Unit (FGU). The G-stage logic is responsible for comparing

register addresses for integer data bypassing and for handling pipeline stalls due to

interlocks.
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2.2.4 Stage 4: Execution (E) Stage

Data from the integer register file is processed by the two integer ALUs during this

cycle (if the instruction group includes ALU operations). Results are computed and

are available for other instructions (through bypasses) in the very next cycle. The

virtual address of a memory operation is also calculated during the E Stage, in

parallel with ALU computation.

FLOATING-POINT AND GRAPHICS UNIT: The Register (R) Stage of the FGU. The floating-

point register file is accessed during this cycle. The instructions are also further

decoded and the FGU control unit selects the proper bypasses for the current

instructions.

2.2.5 Stage 5: Cache Access (C) Stage

The virtual address of memory operations calculated in the E-stage is sent to the tag

RAM to determine if the access (load or store type) is a hit or a miss in the D-cache.

In parallel the virtual address is sent to the data MMU to be translated into a

physical address. On a load when there are no other outstanding loads, the data

array is accessed so that the data can be forwarded to dependent instructions in the

pipeline as soon as possible.

ALU operations executed in the E-stage generate condition codes in the C Stage. The

condition codes are sent to the PDU, which checks whether a conditional branch in

the group was correctly predicted. If the branch was mispredicted, earlier

instructions in the pipe are flushed and the correct instructions are fetched. The

results of ALU operations are not modified after the E Stage; the data merely

propagates down the pipeline (through the annex register file), where it is available

for bypassing for subsequent operations.

FLOATING-POINT AND GRAPHICS UNIT: The X
1

Stage of the FGU. Floating-point and

graphics instructions start their execution during this stage. Instructions of latency

one also finish their execution phase during the X
1
Stage.

2.2.6 Stage 6: N
1

Stage

A data cache (D-cache) miss/hit or a TLB miss/hit is determined during the N
1

Stage. If a load misses the D-cache, it enters the Load Buffer. The access will arbitrate

for the E-cache if there are no older unissued loads. If a TLB miss is detected, a trap

will be taken and the address translation is obtained through a software routine.

The physical address of a store is sent to the Store Buffer during this stage. To avoid

pipeline stalls when store data is not immediately available, the store address and

data parts are decoupled and sent to the Store Buffer separately.
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FLOATING-POINT AND GRAPHICS UNIT: The X
2

stage of the FGU. Execution continues for

most operations.

2.2.7 Stage 7: N
2

Stage

Most floating-point instructions finish their execution during this stage. After N
2
,

data can be bypassed to other stages or forwarded to the data portion of the Store

Buffer. All loads that have entered the Load Buffer in N
1

continue their progress

through the buffer; they will reappear in the pipeline only when the data comes

back. Normal dependency checking is performed on all loads, including those in the

load buffer.

FLOATING-POINT AND GRAPHICS UNIT: The X
3

stage of the FGU.

2.2.8 Stage 8: N
3

Stage

UltraSPARC IIi resolves traps at this stage.

2.2.9 Stage 9: Write (W) Stage

All results are written to the register files (integer and floating-point) during this

stage. All actions performed during this stage are irreversible. After this stage,

instructions are considered terminated.
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CHAPTER 3

Cache Organization

3.1 Introduction

3.1.1 Level-1 Caches

The UltraSPARC IIi Level-1 D-cache is virtually indexed, physically tagged (VIPT).

Virtual addresses are used to index into the D-cache tag and data arrays while

accessing the D-MMU (that is, the dTLB). The resulting tag is compared against the

translated physical address to determine D-cache hits.

A side-effect inherent in a virtual-indexed cache is address aliasing; this issue is

addressed in Section 8.2.1, Address Aliasing Flushing on page 66.

The UltraSPARC IIi Level-1 I-cache is physically indexed, physically tagged (PIPT).

The lowest 13 bits of instruction addresses are used to index into the I-cache tag and

data arrays while accessing the I-MMU (that is, the iTLB). The resulting tag is

compared against the translated physical address to determine I-cache hits.

3.1.1.1 Instruction Cache (I-cache)

The I-cache is a 16-kilobit pseudo-two-way set-associative cache with 32-byte blocks.

The set is predicted based on the next fetch address; thus, only the index bits of an

address are necessary to address the cache (that is, the lowest 13 bits, which matches

the minimum page size of 8 kilobit). Instruction fetches bypass the instruction cache

under the following conditions:

■ When the I-cache enable or I-MMU enable bits in the LSU_Control_Register are

clear (see Section A.6, LSU_Control_Register on page 370)
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■ When the processor is in RED_state, or

■ When the I-MMU maps the fetch as noncacheable

The instruction cache snoops stores from DMA transfers, but it is not updated by

stores, except for block commit stores (see Section 13.5.3, Block Load and Store
Instructions on page 164). The FLUSH instruction can be used to maintain coherency.

Block commit stores invalidate I-cache but do not flush instructions that have

already been prefetched into the pipeline. A FLUSH, DONE, or RETRY instruction

can be used to flush the pipeline. For block copies that must maintain I-cache

coherency, it is more efficient to use block commit stores in the loop, followed by a

single FLUSH instruction to flush the pipeline.

Note – The size of each I-cache set is the same as the page size in UltraSPARC IIi;

thus, the virtual index bits equal the physical index bits.

3.1.1.2 Data Cache (D-cache)

The D-cache is a write-through, nonallocating-on-write-miss, 16-kb direct mapped

cache with two 16-byte sub-blocks per line. Data accesses bypass the data cache

when the D-cache enable bit in the LSU_Control_Register is clear (see Section A.6,

LSU_Control_Register on page 370). Load misses will not allocate in the D-cache if the

D-MMU enable bit in the LSU_Control_Register is clear or the access is mapped by

the D-MMU as virtual noncacheable.

Note – A noncacheable access may access data in the D-cache from an earlier

cacheable access to the same physical block, unless the D-cache is disabled. Software

must flush the D-cache when changing a physical page from cacheable to

noncacheable (see Section 8.2, Cache Flushing). In UltraSPARC IIi, the noncacheable

accesses must follow the physical address space definition, so that this issue should

not occur.

3.1.2 Level-2 PIPT External Cache (E-cache)

The UltraSPARC IIi E-cache (also known as level-2 cache) is physically indexed,

physically tagged (PIPT). This cache has no virtual address or context information.

The operating system needs no knowledge of such caches after initialization, except

for stable storage management and error handling.

Memory accesses must be cacheable in the E-cache. As a result, there is no E-cache

enable bit in the LSU_Control_Register.
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Instruction fetches are directed to noncacheable PCI or UPA64s space when:

■ The I-MMU is disabled, or

■ The processor is in RED_state, or

■ The access is mapped by the I-MMU as physically noncacheable

Data accesses are to noncacheable PCI or UPA64s space when:

■ The D-MMU enable bit (DM) in the LSU_Control_Register is clear, or

■ The access is mapped by the D-MMU as nonphysical cacheable (unless

ASI_PHYS_USE_EC is used)

Note – When noncacheable accesses are used, the associated addresses must be

legal according to the physical address map in Table 6-1 on page 36.

The system must provide a noncacheable, ECC-less scratch memory for use of the

booting code until the MMUs are enabled.

The E-cache is a unified, write-back, allocating, direct-mapped cache. The E-cache

always includes the contents of the I-cache and D-cache. The E-cache size can range

from 256 kB to 2 MB with a line size is 64 bytes. See Table 1-1 on page 10.

Block loads and block stores, which load or store a 64-byte line of data from memory

to the floating-point register file, do not allocate into the E-cache, to avoid pollution.
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CHAPTER 4

Overview of I and D-MMUs

4.1 Introduction
Instruction and Data MMUs are similar and are generically referred to as “MMU.”

This chapter describes the UltraSPARC IIi Memory Management Unit as it is seen by

the operating system software. The UltraSPARC IIi MMU conforms to the

requirements set forth in The SPARC Architecture Manual, Version 9.

Note – The UltraSPARC IIi MMU does not conform to the SPARC-V8 Reference

MMU Specification. In particular, the UltraSPARC IIi MMU supports a 44-bit virtual

address space, software TLB miss processing only (no hardware page table walk),

simplified protection encoding, and multiple page sizes. All of these differ from

features required of SPARC-V8 Reference MMUs.

4.2 Virtual Address Translation
The UltraSPARC IIi MMU supports four page sizes: 8 kB, 64 kB, 512 kB, and 4 MB. It

supports a 44-bit virtual address space, with 41 bits of physical address. During each

processor cycle the UltraSPARC IIi MMU provides one instruction and one data

virtual-to-physical address translation. In each translation, the virtual page number

is replaced by a physical page number, which is concatenated with the page offset to

form the full physical address, as illustrated in Figure 4-1 on page 24. (This figure

shows the full 64-bit virtual address, even though UltraSPARC IIi supports only 44

bits of VA.)
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Figure 4-1 Virtual-to-physical Address Translation for all Page Sizes

UltraSPARC IIi implements a 44-bit virtual address space in two equal halves at the

extreme lower and upper portions of the full 64-bit virtual address space. Virtual

addresses between 0000 0800 0000 0000
16

and FFFF F7FF FFFF FFFF
16

, inclusive, are

termed “out of range” for UltraSPARC IIi and are illegal. (In other words, virtual

address bits VA<63:43> must be either all zeros or all ones.) Figure 4-2 on page 25

illustrates the UltraSPARC IIi virtual address space.
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Figure 4-2 UltraSPARC IIi 44-bit Virtual Address Space, with Hole (Same as
Figure 14-2 on page 178)

Note – Throughout this document, when virtual address fields are specified as 64-

bit quantities, they are assumed to be sign-extended based on VA<43>.

The operating system maintains translation information in a data structure called the

Software Translation Table. The I- and D-MMU each contain a hardware Translation

Lookaside Buffer (iTLB and dTLB). These buffers act as independent caches of the

Software Translation Table, providing one-cycle translation for the more frequently

accessed virtual pages.

Figure 4-3 on page 26 shows a general software view of the UltraSPARC IIi MMU.

The TLBs, which are part of the MMU hardware, are small and fast. The Software

Translation Table, which is kept in memory, is likely to be large and complex. The

Translation Storage Buffer (TSB), which acts like a direct-mapped cache, is the

interface between the two. The TSB can be shared by all processes running on a

processor, or it can be process specific. The hardware does not require any particular

scheme.

The term “TLB hit” means that the desired translation is present in the MMUs on-

chip TLB. The term “TLB miss” means that the desired translation is not present in

the MMUs on-chip TLB. On a TLB miss the MMU immediately traps to software for

TLB miss processing. The TLB miss handler has the option of filling the TLB by any

means available, but it is likely to take advantage of the TLB miss support features

provided by the MMU, since the TLB miss handler is time-critical code. Hardware

support is described in Section 15.3.1, Hardware Support for TSB Access on page 201.

FFFF FFFF FFFF FFFF

FFFF F800 0000 0000

0000 0000 0000 0000

0000 07FF FFFF FFFF

Out of Range VA
(VA “Hole”)

FFFF F7FF FFFF FFFF

0000 0800 0000 0000

FFFF F801 0000 0000

0000 07FE FFFF FFFF

See Note (1)

See Note (1)

Note (1): Prior implementations restricted use of this region to data only.
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Figure 4-3 Software View of the UltraSPARC IIi MMU

Aliasing between pages of different size (when multiple VAs map to the same PA)

may take place, as with the SPARC-V8 Reference MMU. The reverse case, when

multiple mappings from one VA/context to multiple PAs produce a multiple TLB

match, is not detected in hardware; it produces undefined results.

Note – The hardware ensures the physical reliability of the TLB on multiple

matches.
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CHAPTER 5

UltraSPARC IIi in a System

5.1 A Hardware Reference Platform
The elements of the hardware, the associated peripherals and their function can be

presented by considering each one in the context of a hardware reference platform.

Figure 5-1 shows a typical rendering of such a platform.

This model assumes CPU and SRAM for the E-cache are provided on the same

module, to keep the high-speed E-cache interface in a controlled electrical

environment and away from the motherboard.

A typical module uses four, 64K x 18 register-latch SRAMs for data, to provide a 512-

kilobyte E-cache or two 256K x 36 SRAMs for a 2-megabyte E-cache. A 64K x 18 or

256K x 18 tag SRAM is also used.

The reference platform provides support for two standard, 33 MHz, 32-bit, PCI

buses, along with a 66 MHz, 32-bit PCI interface to a bus bridge ASIC, for example,

the Advanced PCI Bridge (APB™).

Graphics can be implemented using a PCI add-in card, or by means of a custom

UPA64S solution.
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Figure 5-1 Overview of UltraSPARC IIi Reference Platform

5.2 Memory Subsystem
Figure 5-2 shows how memory is connected to, and controlled by, the

UltraSPARC IIi. The memory DIMMs are arranged on a 144-bit bus to allow an

entire cache line to be fetched in four CAS accesses.

UltraSPARC IIi implements ECC, with single-bit correction and multi-bit detection

of errors, for all memory data transfers.
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Figure 5-2 A Typical Subsystem: UltraSPARC IIi and Memory—Simplified Block
Diagram

5.2.1 E-cache

Synchronous access to the E-cache (L2-cache) is made through a data bus that carries

8-bytes plus parity.

The UltraSPARC-I or UltraSPARC-II 1-1-1 style SRAMs can be used at half the

processor clock rate. The UltraSPARC-II 2-2 mode SRAMS are also supported.

There are enough cache address bits to support a 2 MB E-cache, with a practical

minimum of 256 kB.

E-cache can be fitted in these alternative configurations:

■ 2 - 32k x 36 (data) plus 1-4k x 18 (minimally) (tag: can use 32k x 36) = 256 kilobyte

■ 4 - 64k x 18 (data) plus 1-8k x 18 (minimally) (tag: can use 32k x 36) = 512 kilobyte

■ 4 - 128k x 18 (data) plus 1-16k x 18 (minimally) (tag: can use 32k x 36) = 1 MB
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■ 2 - 128k x 36 (data) plus 1-16k x 18 (minimally) (tag: can use 32k x 36) = 1 MB

■ 4 - 256k x 18 (data) plus 1-32k x 18 (minimally) (tag: can use 32k x 36) = 2 MB

As provided in UltraSPARC-II, UltraSPARC IIi supports software programming to

selectively zero E-cache tag address bits, so that the same module can accommodate

different sizes of SRAM IC, without the necessity of tying unused address lines

low—which must be done if an over-capacity SRAM is used.

5.2.2 DRAM Memory

The following are the major features of the DRAM modules utilized in

UltraSPARC IIi memory:

■ Four DIMM pairs for up to 256 Megabytes, using 168-pin JEDEC DIMMs, with 16-

Megabit DRAM. Up to one Gigabyte, using 64-Megabit DRAM

■ 144-bit DRAM data bus with 8-bit ECC on each 64 bits of data—industry standard

ECC pinout

■ High performance CMOS silicon gate process

■ Single +3.3V ± 0.3 V power supply

■ All device pins are 3.3 V compatible

■ Low power, 9 mW standby; 1,800 mW active, typical

■ Refresh modes: CAS-BEFORE-RAS (CBR)

■ All inputs are buffered except RAS

■ 2,048-cycle refresh distributed across 32 ms interval

■ Extended Data Out (EDO) access cycles

The UltraSPARC IIi memory design is built with JEDEC standard 168-pin DIMMs.

The memory bus is 144 bits wide. RAS and CAS signals are provided that support a

maximum of eight 8 - 128 megabyte DIMMs. A mode that supports 11-bit column

addresses for 16M X 4, 64 megabit DRAMs allows a maximum of four 8–256

megabyte DIMMs. The memory bus width requires that the DIMMs be populated in

pairs at a time. Consequently the minimum memory configuration contains 16

megabytes and the maximum memory configuration contains 1 gigabyte.

These DIMMs are available from many vendors. A composite specification was

made considering typical vendor specifications. When the UltraSPARC IIi is

programmed according to Chapter 18, MCU Control and Status Registers, for a

particular frequency and DIMM loading combination, it generates signals that meet

this composite specification, if the electrical and topological motherboard layout

requirements are met.
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5.2.3 Transceivers

The Texas Instruments SN74ALVC16268 is a bidirectional registered 12-bit-to-24-bit

bus exchanger, with 3-state outputs.

The transceiver transfers data bidirectionally between the 72-bit UltraSPARC IIi

memory data bus, and the 144-bit DIMM memory data bus. The DIMMs cycle data

in EDO mode at 37.5 MHz maximum frequency—a period of 26.5 ns.

The transceiver has bus-hold on data inputs, eliminating the need for external

pullup resistors. It is available in 56-pin Plastic Shrink Small-Outline (DL) and Thin

Shrink Small-Outline (DGG) packages.

The ports connected to the DIMMs include the equivalent of 26Ω series resistors, to

make external series termination resistors unnecessary.

The device provides synchronous data exchange between the two ports. Data is

stored in the internal registers on the low-to-high transition of the CLK input,

provided that the appropriate CLKEN inputs are low. All control inputs, including

the CLK inputs, are driven by UltraSPARC IIi

5.3 PCI Interface—Advanced PCI Bridge
The PCI interface of UltraSPARC IIi can be used directly or expanded using one or

more PCI bridges. Figure 5-3 shows an example of the connection of an external PCI

subsystem using Sun Microsystems, Inc. Advanced PCI Bridge (APB™).

This configuration uses PCI clocks asynchronous with the processor clock and three

or more PCI buses, all compatible with the existing PCI 2.1 standard:

■ One 66 MHz, 32-bit primary bus from UltraSPARC IIi to APB; note that

multiple APBs can be used for multiplying PCI connectivity

■ Two 33 MHz, 32-bit secondary busses from each APB
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Figure 5-3 UltraSPARC-IIi System Implementation Example

The interface from UltraSPARC IIi with its I/O subsystems is a 32-bit PCI bus, which

can run at either 33 or 66 MHz. UltraSPARC IIi internal PLLs allow slower PCI bus

clock rates, down to 20 MHz or 40 MHz for each range respectively. This allows use

of more PCI targets than the 2.1 specification permits for full-speed operation.

However, the PCI arbiters on UltraSPARC-IIi and APB only support four master

requests per bus. The Advanced PCI Bridge (APB) allows external arbiters on the

secondary buses.

The UltraSPARC-IIi PCI interface runs at 3.3 V only. To support 5 V PCI cards, the

Advanced PCI Bridge (APB) must be used, which also provides expansion from one

66 MHz 32-bit PCI bus, to two 32-bit 33 MHz PCI buses. APB provides up to 64-byte

write posting and data prefetching, so that the delivered throughput can be higher

than a single 33 MHz bus could provide.

The secondary PCI buses have:

■ 3.3 Volt operation and signalling, but are compatible with the PCI 5 V signalling

environment definition.
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■ Compatibility with the PCI Rev. 2.1 Specification

■ Support for up to four master devices

Interrupts are not routed through the APB. A separate Drain/Empty protocol is used

to guarantee that all DMA writes temporally complete to memory, prior to receipt of

an interrupt, and thus before a potential processor trap as a result of that interrupt.

The Primary bus, which can be used with or without the Advanced PCI Bridge, has

the same characteristics discussed above, except it can run in the 20-33 MHz or the

40-66 MHz range. UltraSPARC-IIi operates internally at twice the external PCI clock

frequency, that is, up to 132 MHz. This helps reduce the latency involved in crossing

clock domains and manipulating state machines.

5.4 RIC Chip
The RIC Chip (SME2210) supports the system resets, system interrupts, system scan,

and system clock control functions. Its features include:

■ Support for resets from power supply, reset buttons, and scan

■ Concentration of all of the interrupts; it sends interrupt numbers to the

UltraSPARC IIi

■ Direction of SCAN inputs and outputs through scan chains

5.5 UPA64S interface (FFB)
UPA64S is a slave-only interface protocol used, for instance, by proprietary graphics

boards. It can be used for any high bandwidth control or data transfers between the

processor and a dedicated subsystem. Transfers to and from the UPA64S interface

are fully synchronous, since UPA64S receives a PECL clock that is aligned with the

processor’s clock. The processor transfers data on clock edges that correspond to the

UPA64S clock edges. The SME1430 UPA interface runs at 1/4 of the processor clock

rate (1/3 for the SME1040 CPU), that is, up to 120 MHz.

UltraSPARC IIi drives the SYSADR (system address), ADR_VLD (address valid)

signals, the S_REPLY handshake, and reset (RST_L) to the UPA64S. The data bus (64

bits out of 72) is shared with the transceiver connection to the UltraSPARC IIi. The

internal memory controller of the UltraSPARC IIi transfers data aligned to processor

clocks, but guarantees that UPA64S transfers appear aligned to the UPA64S clock. In

other words, these are valid for three processor clock cycles, and only sampled on

the UPA clock edge when UPA64S is driving.
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Note that, although the transceivers only cycle the 72-bit MEMDATA at 70 to 90

MHz, the FFB/UPA64S cycle this bus at up to 120 MHz.

5.6 Alternate RMTV support
UltraSPARC IIi has a pin to select a second RMTV to allow use of PC compatible

SuperIO chips on a PCI bus—see Section 17.3.2, RED_state Trap Vector on page 260.

5.7 Power Management
See Section 13.6.2, SHUTDOWN on page 172.
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CHAPTER 6

Address Spaces, ASIs, ASRs, and
Traps

6.1 Overview
A SPARC-V9 processor provides an Address Space Identifier (ASI) with every

address sent to memory. The ASI is used to distinguish between different address

spaces, provide an attribute that is unique to an address space, and to map internal

control and diagnostics registers within a processor.

SPARC-V9 also extends the limit of virtual addresses from 32 to 64 bits for each

address space. SPARC-V9 continues to support 32-bit addressing by masking the

upper 32-bits of the 64-bit address to zero when the address mask (AM) bit in the

PSTATE register is set.

Both big- and little-endian byte orderings are supported in the UltraSPARC IIi CPU.

The default data access byte ordering after a Power-On Reset (POR) is big-endian.

Instruction fetches are always big-endian.

6.2 Physical Address Space
The UltraSPARC IIi memory management hardware uses a 44-bit virtual address

and an 8-bit ASI to generate a 41-bit physical address. This physical address space

can be accessed using either virtual-to-physical address mapping or the MMU

bypass mode. For details of this mode See Section 15.10, MMU Bypass Mode.
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6.2.1 Port Allocations

UltraSPARC IIi divides its physical address space among:

■ DRAM

■ UPA64S (for a graphics device – FFB)

■ PCI, that is further subdivided into PCI A and B bus spaces, when the

Advanced PCI Bridge (APB) is used.

Only the Cacheability attribute and PA[33:32] are used for steering transactions.

Note that, for compatibility with prior UltraSPARC systems, software should use

PA[40:34] equal to all ‘1’s for noncacheable space, and all ‘0’s for cacheable space.

UltraSPARC IIi does not detect any errors associated with using a PA[40:34] that

violates this convention. UltraSPARC IIi also does not detect the error of using

PA[33:32] in violation of the above cacheable/noncacheable partitioning.

Consequently, all possible PA’s decode to some destination. DRAM accesses wrap at

the 1 GB boundary, although 4 GB of cacheable space is supported by the L2 cache

tags, so the L2 cache will wrap at 4 GB. Noncacheable destinations are determined

only by PA[33:32].

6.2.2 Memory DIMM requirements

There can be eight DIMMs ranging in size from eight MB to 128 MB. An alternate

mode for supporting DRAM with 11-bit column addressing allows four DIMMs

ranging in size from 8 MB to 256 MB. Each DIMM can have two banks of DRAM,

controlled by separate RAS# signals.

Table 6-1 UltraSPARC IIi Address Map

Address Range in
PA<40:0>

Size Port Addressed Access Type

0x000.0000.0000 -

0x000.3FFF.FFFF
1 GB Main Memory Cacheable

0x000.4000.0000 -

0x1FF.FFFF.FFFF
Do not use Undefined Cacheable

0x000.0000.0000 -

0x1FB.FFFF.FFFF
Do not use Undefined Noncacheable

0x1FC.0000.0000 -

0x1FD.FFFF.FFFF
8 GB UPA64S (FFB) Noncacheable

0x1FE.0000.0000 -

0x1FF.FFFF.FFFF
8 GB PCI Noncacheable
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The Memory Controller timing is programmable, The assumption is that ADDR,

CAS#, and WE# are buffered on the DIMM, and that RAS#, CAS# and WE# are

buffered on the motherboard.

Note the prior address/cacheability map implies that it is impossible to cause

noncacheable access to main memory.

Parameters that affect the address assignments of each DIMM module are DIMM

size and the pair in which the DIMM is installed. DIMMs must be loaded in pairs. If

the same size memory DIMMs are not installed within a pair, software should either

disable the pair, or configure it to match the smaller sized DIMM. Any mixture of

sizes is permitted among pairs.

Software can identify the type and size of a DIMM in the system from its address

range which is unique for each DIMM type and size. See Table 7-2 on page 61 or

Table 7-4 on page 64 for the DIMM to PA mapping.

6.2.3 PCI Address Assignments

Table 6-2 Physical address space to PCI space

PCI Address Space PA[40:0]
CPU Commands
Supported

PCI Commands
Generated

PCI Configuration

Space

0x1FE.0100.0000-

0x1FE.01FF.FFFF

NC read (any)

NC write (any)

Configuration Read

Configuration Write

(may also be Special

Cycle)

PCI Bus I/O Space
0x1FE.0200.0000-

0x1FE.02FF.FFFF

NC read (any)

NC write (any)

I/O Read

I/O Write

Don’t Use
0x1FE.0300.0000-

0x1FE.FFFF.FFFF

May wrap to

Configuration or I/O

Space behavior

PCI Bus Memory

Space

0x1FF.0000.0000-

0x1FF.FFFF.FFFF

NC read (4 byte)

NC read (8 byte)

NC Block read

NC write

NC Block write

NC Instruction fetch

Memory Read

Memory Read Multiple

Memory Read Line

Memory Write

Memory Write

Memory Read

Table 6-3 Additional Internal UltraSPARC IIi CSR space (noncacheable)

PA[40:0] Owner

0x1FE.0000.0000 - 0x1FE.0000.01FF PBM

0x1FE.0000.0200 - 0x1FE.0000.03FF IOM

0x1FE.0000.0400 - 0x1FE.0000.1FFF PIE
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6.2.4 Probing the address space

Generally, systems are configurable, and the boot prom needs to determine what

exact configuration is present. There are three address spaces to interrogate: DRAM,

UPA64S and PCI.

DRAM probing is explained in detail by Section A.10.2, Memory Probing on page 383.

Probing for PCI devices is done using PCI Configuration space accesses. To handle

non-response to some of these accesses, software should synchronize on traps as

described by Section 16.2.1, Probing PCI during boot using deferred errors on page 233.

Also see Section 16.5, Summary of Error Reporting on page 240

Unlike as for PCI, there is no trapping for non-reply to UPA64S transactions.

If the motherboard ties the P_REPLY[1:0] (UPA64S acknowledgment signals) high

during power-on reset, the MCU will assume it received a handshake for all loads

and stores targeting the UPA64S address space. This allows software to look for a

specific known data pattern being returned by a UPA64S device to report existence.

The MCU behavior prevents the software from hanging if no UPA64S device is

present.

APB existence can be determined by probing APB-specific registers. See the APB

specification for details.

UltraSPARC IIi does not support any UPA-compliant probing algorithm, other than

as described.

0x1FE.0000.2000 - 0x1FE.0000.5FFF PBM

0x1FE.0000.6000 - 0x1FE.0000.9FFF PIE

0x1FE.0000.A000 - 0x1FE.0000.A7FF IOM

0x1FE.0000.A800 - 0x1FE.0000.EFFF PIE

0x1FE.0000.F000 - 0x1FE.00FF.F018 MCU

0x1FE.00FF.F020 PIE

0x1FE.0000.F028 - 0x1FE.00FF.FFFF MCU

Table 6-3 Additional Internal UltraSPARC IIi CSR space (noncacheable) (Continued)

PA[40:0] Owner
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6.3 Alternate Address Spaces
The SPARC-V9 Address Space Identifier (ASI) is divided into restricted and

nonrestricted halves. ASIs in the range 00
16

..7F
16

are restricted; ASIs in the range

80
16

..FF
16

are non-restricted. An attempt by non-privileged software to access a

restricted ASI causes a data_access_exception trap.

ASIs in the ranges 04
16

..11
16

, 18
16

..19
16

, 24
16

..2C
16

, 70
16

..73
16

, 78
16

..79
16

and 80
16

..FF
16

are called “normal” or “translating” ASIs. These ASIs are translated by the MMU.

Bypass ASIs are in the range 14
16

..15
16

and 1C
16

..1D
16

. These ASIs are not translated

by the MMU; instead, they pass through their virtual addresses as physical

addresses.

UltraSPARC IIi Internal ASIs (also called “Nontranslating ASIs”) are in the ranges

45
16

..6F
16

, 76
16

..77
16

and 7E
16

..7F
16

. These ASIs are not translated by the MMU;

instead, they pass through their virtual addresses as physical addresses. Accesses

made using these ASIs are always made in “big-endian” mode, regardless of the

setting of the D-MMU’s IE bit. Accesses to Internal ASIs with invalid virtual address

have undefined behavior; they may or may not cause a data_access_exception trap.

They may or may not alias onto a valid virtual address. Software should not rely on

any specific behavior.

Note – MEMBAR #Sync is generally needed after stores to internal ASIs. A FLUSH,

DONE, or RETRY is needed after stores to internal ASIs that affect instruction

accesses. See Section 8.3.8, Instruction Prefetch to Side-Effect Locations on page 77.

6.3.1 Supported SPARC-V9 ASIs

The SPARC-V9 architecture defines several address spaces that must be supported

by a conforming processor. They are listed in Table 6-4. All operand sizes are

supported in these accesses. See Appendix G, ASI Names” for an alphabetical listing

of ASI names and macro syntax.
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.

1
 Read-only access; causes a data_access_exception trap if written respectively.

2
 Causes a data_access_exception trap if the page being accessed is privileged.

Table 6-4 Mandatory SPARC-V9 ASIs

ASI
Value

ASI Name (Suggested Macro Syntax) Access Description Section

04
16

ASI_NUCLEUS (ASI_N) RW Implicit address space; nucleus

privilege; TL>0

V9

0C
16

ASI_NUCLEUS_LITTLE (ASI_NL) RW Implicit address space; nucleus

privilege; TL>0; little endian

V9

10
16

ASI_AS_IF_USER_PRIMARY (ASI_AIUP) RW
2

Primary address space; user

privilege

V9

11
16

ASI_AS_IF_USER_SECONDARY

(ASI_AIUS)

RW
2

Secondary address space; user

privilege

V9

18
16

ASI_AS_IF_USER_PRIMARY_LITTLE

(ASI_AIUPL)

RW
2

Primary address space; user

privilege; little endian

V9

19
16

ASI_AS_IF_USER_SECONDARY_LITTLE

(ASI_AIUSL)

RW
2

Secondary address space; user

privilege; little endian

V9

80
16

ASI_PRIMARY (ASI_P) RW Implicit primary address space V9

81
16

ASI_SECONDARY (ASI_S) RW Implicit secondary address

space

V9

82
16

ASI_PRIMARY_NO_FAULT (ASI_PNF) R
1

Primary address space; no fault V9,

Section 1

4.4.6

83
16

ASI_SECONDARY_NO_FAULT (ASI_SNF) R
1

Secondary address space; no

fault

V9,

Section 1

4.4.6

88
16

ASI_PRIMARY_LITTLE (ASI_PL) RW Implicit primary address space;

little endian

V9

89
16

ASI_SECONDARY_LITTLE (ASI_SL) RW Implicit secondary address

space; little endian

V9

8A
16 ASI_PRIMARY_NO_FAULT_LITTLE

(ASI_PNFL)

R
1

Primary address space; no fault;

little endian

V9,

Section 1

4.4.6

8B
16 ASI_SECONDARY_NO_FAULT_LITTLE

(ASI_SNFL)

R
1

Secondary address space; no

fault; little endian

V9,

Section 1

4.4.6
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6.3.2 UltraSPARC IIi (Non-SPARC-V9) ASI Extensions

Table 6-5 on page 41 defines all non-SPARC-V9 ASI extensions supported in

UltraSPARC IIi. These ASIs may be used with LDXA, STXA, LDDFA, STDFA

instructions only, unless otherwise noted. Other length accesses will cause a

data_access_exception trap. See Appendix G, ASI Names” for an alphabetical listing of

ASI names and macro syntax.

Table 6-5 UltraSPARC IIi Extended (non-SPARC-V9) ASIs

ASI
Value

ASI Name (Suggested Macro Syntax) VA Access Description Section

14
16

ASI_PHYS_USE_EC

(ASI_PHYS_USE_EC)
— RW

2,5 Physical address;

external cacheable only

Section 15.

10

15
16 ASI_PHYS_BYPASS_EC_WITH_EBIT

(ASI_PHYS_BYPASS_EC_WITH_EBIT)
— RW

2

Physical address; non-

cacheable; with side

effect

Section 15.

10

1C
16 ASI_PHYS_USE_EC_LITTLE

(ASI_PHYS_USE_EC_L)
— RW

2,5

Physical address;

external cacheable only;

little endian

Section 15.

10

1D
16

ASI_PHYS_BYPASS_EC_WITH_EBIT_LIT

TLE

(ASI_PHYS_BYPASS_EC_WITH_EBIT_L)

— RW
2

Physical address; non-

cacheable; with side-

effect; little endian

Section 15.

10

24
16

ASI_NUCLEUS_QUAD_LDD

(ASI_NUCLEUS_QUAD_LDD)
— R

1,3 Cacheable; 128-bit atomic

LDDA

Section 13.

6.1

2C
16

ASI_NUCLEUS_QUAD_LDD_LITTLE

(ASI_NUCLEUS_QUAD_LDD_L)
— R

1,3 Cacheable; 128-bit atomic

LDDA; little endian

Section 13.

6.1

45
16

ASI_LSU_CONTROL_REG

(ASI_LSU_CONTROL_REG)
0

16
RW

Load/store unit control

register

Section A.

6

46
16

ASI_DCACHE_DATA

(ASI_DCACHE_DATA)
— RW

D-cache data RAM

diagnostics access

Section A.

8.1

47
16

ASI_DCACHE_TAG

(ASI_DCACHE_TAG)
— RW

D-cache tag/valid RAM

diagnostics access

Section A.

8.2

48
16

ASI_INTR_DISPATCH_STATUS

(ASI_INTR_DISPATCH_STATUS)
0

16
R

1 Interrupt vector dispatch

status

Section 11.

10.3

49
16

ASI_INTR_RECEIVE

(ASI_INTR_RECEIVE)
0

16
RW

Interrupt vector receive

status

Section 11.

10.5

4A
16

ASI_UPA_CONFIG_REG

(ASI_UPA_CONFIG_REG)
0

16
RW

UPA configuration

register

Section 18.

5

4B
16

ASI_ESTATE_ERROR_EN_REG

(ASI_ESTATE_ERROR_EN_REG)
0

16
RW

E-cache error enable

register

Section 16.

6.1

4C
16

ASI_ASYNC_FAULT_STATUS

(ASI_ASYNC_FAULT_STATUS)
0

16
RW

ECU Asynchronous fault

status register

Section 16.

6.2

4D
16

ASI_ASYNC_FAULT_ADDRESS

(ASI_ASYNC_FAULT_ADDRESS)
0

16
RW

ECU Asynchronous fault

address register

Section 16.

6.3
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4E
16

ASI_ECACHE_TAG_DATA

(ASI_EC_TAG_DATA)
0

16
RW

E-cache tag/valid RAM

data diagnostic access

Section A.

9.2

50
16

ASI_IMMU (ASI_IMMU)
0

16
R

1 I-MMU Tag Target

Register

Section 15.

9.2

50
16

ASI_IMMU (ASI_IMMU)
18

16
RW

I-MMU Synchronous

Fault Status Register

Section 15.

9.4

50
16

ASI_IMMU (ASI_IMMU)
28

16
RW I-MMU TSB Register

Section 15.

9.6

50
16

ASI_IMMU (ASI_IMMU)
30

16
RW

I-MMU TLB Tag Access

Register

Section 15.

9.7

51
16

ASI_IMMU_TSB_8KB_PTR_REG

(ASI_IMMU_TSB_8KB_PTR_REG)
0

16
R

1 I-MMU TSB 8KB Pointer

Register

Section 15.

9.8

52
16

ASI_IMMU_TSB_64KB_PTR_REG

(ASI_IMMU_TSB_64KB_PTR_REG)
0

16
R

1 I-MMU TSB 64KB

Pointer Register

Section 15.

9.8

54
16

ASI_ITLB_DATA_IN_REG

(ASI_ITLB_DATA_IN_REG)
0

16
W

1 I-MMU TLB Data In

Register

Section 15.

9.9

55
16

ASI_ITLB_DATA_ACCESS_REG

(ASI_ITLB_DATA_ACCESS_REG)
0

16
..1F8

16
RW

I-MMU TLB Data Access

Register

Section 15.

9.9

56
16

ASI_ITLB_TAG_READ_REG

(ASI_ITLB_TAG_READ_REG)
0

16
..1F8

16
R

1 I-MMU TLB Tag Read

Register

Section 15.

9.9

57
16

ASI_IMMU_DEMAP

(ASI_IMMU_DEMAP)

0
16

W
1

I-MMU TLB demap Section 15.

9.10

58
16

ASI_DMMU (ASI_D-MMU) 0
16

R
1

D-MMU Tag Target

Register

Section 15.

9.2

58
16

ASI_DMMU (ASI_DMMU) 8
16

RW I/D MMU Primary

Context Register

Section 15.

9.3

58
16

ASI_DMMU (ASI_DMMU) 10
16

RW D-MMU Secondary

Context Register

Section 15.

9.3

58
16

ASI_DMMU (ASI_DMMU) 18
16

RW D-MMU Synch. Fault

Status Register

Section 15.

9.4

58
16

ASI_DMMU (ASI_DMMU) 20
16

R
1

D-MMU Synch. Fault

Address Register

Section 15.

9.5

58
16 ASI_DMMU (ASI_DMMU) 28

16
RW D-MMU TSB Register

Section 15.

9.6

58
16

ASI_DMMU (ASI_DMMU) 30
16

RW D-MMU TLB Tag Access

Register

Section 15.

9.7

58
16

ASI_DMMU (ASI_DMMU) 38
16

RW D-MMU VA Data

Watchpoint Register

Section A.

5.3

58
16

ASI_DMMU (ASI_DMMU) 40
16

RW D-MMU PA Data

Watchpoint Register

Section A.

5.4

Table 6-5 UltraSPARC IIi Extended (non-SPARC-V9) ASIs (Continued)

ASI
Value

ASI Name (Suggested Macro Syntax) VA Access Description Section
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59
16

ASI_DMMU_TSB_8KB_PTR_REG

(ASI_DMMU_TSB_8KB_PTR_REG)

0
16

R
1

D-MMU TSB 8K Pointer

Register

Section 15.

9.8

5A
16

ASI_DMMU_TSB_64KB_PTR_REG

(ASI_DMMU_TSB_64KB_PTR_REG)

0
16

R
1

D-MMU TSB 64K Pointer

Register

Section 15.

9.8

5B
16

ASI_DMMU_TSB_DIRECT_PTR_REG

(ASI_DMMU_TSB_DIRECT_PTR_REG)

0
16

R
1

D-MMU TSB Direct

Pointer Register

Section 15.

9.8

5C
16

ASI_DTLB_DATA_IN_REG

(ASI_DTLB_DATA_IN_REG)

0
16

W
1

D-MMU TLB Data In

Register

Section 15.

9.9

5D
16

ASI_DTLB_DATA_ACCESS_REG

(ASI_DTLB_DATA_ACCESS_REG)

0
16

..1F8
16

RW D-MMU TLB Data

Access Register

Section 15.

9.9

5E
16

ASI_DTLB_TAG_READ_REG

(ASI_DTLB_TAG_READ_REG)

0
16

..1F8
16

R
1

D-MMU TLB Tag Read

Register

Section 15.

9.9

5F
16

ASI_DMMU_DEMAP

(ASI_DMMU_DEMAP)

0
16

W
1

DMMU TLB demap Section 15.

9.10

66
16

ASI_ICACHE_INSTR

(ASI_IC_INSTR)

— RW
3

I-cache instruction RAM

diagnostic access

Section A.

7.1

67
16

ASI_ICACHE_TAG

(ASI_IC_TAG)

— RW
3

I-cache tag/valid RAM

diagnostic access

Section A.

7.2

6E
16

ASI_ICACHE_PRE_DECODE

(ASI_IC_PRE_DECODE)

— RW
3

I-cache pre-decode RAM

diagnostics access

Section A.

7.3

6F
16

ASI_ICACHE_NEXT_FIELD

(ASI_IC_NEXT_FIELD)

— RW
3

I-cache next-field RAM

diagnostics access

Section A.

7.4

70
16 ASI_BLOCK_AS_IF_USER_PRIMARY

(ASI_BLK_AIUP)

— RW
4,6

Primary address space;

block load/store; user

privilege

Section 13.

5.3

71
16 ASI_BLOCK_AS_IF_USER_SECONDARY

(ASI_BLK_AIUS)

— RW
4,6

Secondary address space;

block load/store; user

privilege

Section 13.

5.3

76
16 ASI_ECACHE_W (ASI_EC_W)

<40:39>=1 W
1

E-cache data RAM

diagnostic write access

Section A.

9.1

76
16 ASI_ECACHE_W (ASI_EC_W)

<40:39>=2 W
1

E-cache tag/valid RAM

diagnostic write access

Section A.

9.2

77
16

ASI_SDBH_ERROR_REG_WRITE

(ASI_SDB_ERROR_W)

0
16

W
1

External UDB Error

Register; write high

Section 16.

6.4

77
16

ASI_SDBL_ERROR_REG_WRITE

(ASI_SDB_ERROR_W)

18
16

W
1

External UDB Error

Register; write low

Section 16.

6.5

77
16

ASI_SDBH_CONTROL_REG_WRITE

(ASI_SDB_CONTROL_W)

20
16

W
1

External UDB Control

Register; write high

Section 16.

6.6

77
16

ASI_SDBL_CONTROL_REG_WRITE

(ASI_SDB_CONTROL_W)

38
16

W
1

External UDB Control

Register; write low

Section 16.

6.7

Table 6-5 UltraSPARC IIi Extended (non-SPARC-V9) ASIs (Continued)

ASI
Value

ASI Name (Suggested Macro Syntax) VA Access Description Section
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77
16

ASI_SDB_INTR_W

(ASI_SDB_INTR_W)

<18:14>=MI

D,

<13:0>=

70
16

W
1

Interrupt vector dispatch Section 11.

10.2

77
16

ASI_SDB_INTR_W

(ASI_SDB_INTR_W)

40
16

W
1

Outgoing interrupt

vector data register 0

Section 11.

10.1

77
16

ASI_SDB_INTR_W

(ASI_SDB_INTR_W)

50
16

W
1

Outgoing interrupt

vector data register 1

Section 11.

10.1

77
16

ASI_SDB_INTR_W

(ASI_SDB_INTR_W)

60
16

W
1

Outgoing interrupt

vector data register 2

Section 11.

10.1

78
16

ASI_BLOCK_AS_IF_USER_PRIMARY_LI

TTLE

(ASI_BLK_AIUPL)

— RW
4

Primary address space;

block load/store; user

privilege; little endian

Section 13.

5.3

79
16

ASI_BLOCK_AS_IF_USER_SECONDARY

_LITTLE

(ASI_BLK_AIUSL)

— RW
4

Secondary address space;

block load/store; user

privilege; little endian

Section 13.

5.3

7E
16 ASI_ECACHE_R (ASI_EC_R)

<40:39>=1 R
1

E-cache data RAM

diagnostic read access

Section A.

8.1

7E
16 ASI_ECACHE_R (ASI_EC_R)

<40:39>=2 R
1

E-cache tag/valid RAM

diagnostic read access

Section A.

8.2

7F
16

ASI_SDBH_ERROR_REG_READ

(ASI_SDBH_ERROR_R)

0
16

R
1

External SDB Error

Register; read high

Section 16.

6.4

7F
16

ASI_SDBL_ERROR_REG_READ

(ASI_SDBL_ERROR_R)

18
16

R
1

External SDB Error

Register; read low

Section 16.

6.5

7F
16

ASI_SDBH_CONTROL_REG_READ

(ASI_SDBH_CONTROL_R)

20
16

R
1

External SDB Control

Register; read high

Section 16.

6.6

7F
16

ASI_SDBL_CONTROL_REG_READ

(ASI_SDBL_CONTROL_R)

38
16

R
1

External SDB Control

Register; read low

Section 16.

6.7

7F
16 ASI_SDB_INTR_R

40
16

R
1

Incoming interrupt

vector data register 0

Section 11.

10.4

7F
16 ASI_SDB_INTR_R

50
16

R
1

Incoming interrupt

vector data register 1

Section 11.

10.4

7F
16 ASI_SDB_INTR_R

60
16

R
1

Incoming interrupt

vector data register 2

Section 11.

10.4

7F
16

ASI_INT_ACK — R PCI interrupt

acknowledge register

Section 9.2

.6

C0
16

ASI_PST8_PRIMARY

(ASI_PST8_P)

— W
1,4

Primary address space, 8

8-bit partial store

Section 13.

5.1

C1
16

ASI_PST8_SECONDARY

(ASI_PST8_S)

— W
1,4

Secondary address space.

8 8-bit partial store

Section 13.

5.1

C2
16

ASI_PST16_PRIMARY

(ASI_PSY16_P)

— W
1,4

Primary address space, 4

16-bit partial store

Section 13.

5.1

Table 6-5 UltraSPARC IIi Extended (non-SPARC-V9) ASIs (Continued)

ASI
Value

ASI Name (Suggested Macro Syntax) VA Access Description Section
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C3
16 ASI_PST16_SECONDARY

(ASI_PST16_S)

— W
1,4

Secondary address

space,4; 16-bit partial

store

Section 13.

5.1

C4
16

ASI_PST32_PRIMARY

(ASI_PST32_P)

— W
1,4

Primary address space, 2;

32-bit partial store

Section 13.

5.1

C5
16

ASI_PST32_SECONDARY

(ASI_PST32_S)

— W
1,4

Secondary address space,

2; 32-bit partial store

Section 13.

5.1

C8
16 ASI_PST8_PRIMARY_LITTLE

(ASI_PST8_PL)

— W
1,4

Primary address space, 8;

8-bit partial store, little

endian

Section 13.

5.1

C9
16 ASI_PST8_SECONDARY_LITTLE

(ASI_PST8_SL)

— W
1,4

Secondary address space,

8; 8-bit partial store, little

endian

Section 13.

5.1

CA
16 ASI_PST16_PRIMARY_LITTLE

(ASI_PST16_PL)

— W
1,4

Primary address space,4;

16-bit partial store, little

endian

Section 13.

5.1

CB
16 ASI_PST16_SECONDARY_LITTLE

(ASI_PST16_SL)

— W
1,4

Secondary address

space,4; 16-bit partial

store, little endian

Section 13.

5.1

CC
16 ASI_PST32_PRIMARY_LITTLE

(ASI_PST32_PL)

— W
1,4

Primary address space, 2;

32-bit partial store; little

endian

Section 13.

5.1

CD
16 ASI_PST32_SECONDARY_LITTLE

(ASI_PST32_SL)

— W
1,4

Secondary address space,

2; 32-bit partial store;

little endian

Section 13.

5.1

D0
16 ASI_FL8_PRIMARY

(ASI_FL8_P)

— RW
4

Primary address space,

one; 8-bit floating point

load/store

Section 13.

5.2

D1
16 ASI_FL8_SECONDARY

(ASI_FL8_S)

— RW
4

Secondary address space,

one; 8-bit floating point

load/store

Section 13.

5.2

D2
16 ASI_FL16_PRIMARY

(ASI_Fl16_P)

— RW
4

Primary address space,

one; 16-bit floating point

load/store

Section 13.

5.2

D3
16 ASI_FL16_SECONDARY

(ASI_FL16_S)

— RW
4

Secondary address space,

one; 16-bit floating point

load/store

Section 13.

5.2

D8
16 ASI_FL8_PRIMARY_LITTLE

(ASI_FL8_PL)

— RW
4

Primary address space,

one; 8-bit floating point

load/store, little endian

Section 13.

5.2

D9
16 ASI_FL8_SECONDARY_LITTLE

(ASI_FL8_SL)

— RW
4

Secondary address space,

one; 8-bit floating point

load/store, little endian

Section 13.

5.2

Table 6-5 UltraSPARC IIi Extended (non-SPARC-V9) ASIs (Continued)

ASI
Value

ASI Name (Suggested Macro Syntax) VA Access Description Section
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1.
Read-/write-only accesses cause a data_access_exception trap if written/read respectively.

2.
8-/16-/32-/64-bit accesses allowed.

3.
LDDA, STDFA or STXA only. Other types of access cause a data_access_exception trap.

4.
LDDFA/STDFA only. Other types of access cause a data_access_exception trap.

5.
Can be used with LDSTUBA, SWAPA, CAS(X)A.

6.
Causes a data_access_exception trap if the page being accessed is privileged.

DA
16 ASI_FL16_PRIMARY_LITTLE

(ASI_FL16_PL)

— RW
4

Primary address space,

one; 16-bit floating point

load/store, little endian

Section 13.

5.2

DB
16 ASI_FL16_SECONDARY_LITTLE

(ASI_FL16_SL)

— RW
4

Secondary address space,

one; 16-bit floating point

load/store; little endian

Section 13.

5.2

E0
16 ASI_BLK_COMMIT_PRIMARY

(ASI_BLK_COMMIT_P)

— W
1,4

Primary address space;

block store commit

operation

Section 13.

5.3

E1
16 ASI_BLK_COMMIT_SECONDARY

(ASI_BLK_COMMIT_S)

— W
1,4

Secondary address space;

block store commit

operation

Section 13.

5.3

F0
16 ASI_BLOCK_PRIMARY (ASI_BLK_P)

— RW
4

Primary address space;

block load/store

Section 13.

5.3

F1
16 ASI_BLOCK_SECONDARY (ASI_BLK_S)

— RW
4

Secondary address space;

block load/store

Section 13.

5.3

F8
16 ASI_BLOCK_PRIMARY_LITTLE

(ASI_BLK_PL)

— RW
4

Primary address space;

block load/store; little

endian

Section 13.

5.3

F9
16 ASI_BLOCK_SECONDARY_LITTLE

(ASI_BLK_SL)

— RW
4

Secondary address space;

block load/store; little

endian

Section 13.

5.3

Table 6-5 UltraSPARC IIi Extended (non-SPARC-V9) ASIs (Continued)

ASI
Value

ASI Name (Suggested Macro Syntax) VA Access Description Section
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6.4 Summary of CSRs mapped to the
Noncacheable address space

Table 6-6 CSRs Mapped to Non-cacheable Address Space

PA Register Access Size Section

0x1FE.0000.0000 Undefined (alias to other csrs); was UPA PortID 8 bytes

0x1FE.0000.0008 Undefined (alias to other csrs); was UPA Config 8 bytes

0x1FE.0000.0010 Reserved 8 bytes

0x1FE.0000.0020 Reserved 8 bytes

0x1FE.0000.0030 DMA UE AFSR 8 bytes 19.4.3.1

0x1FE.0000.0038 DMA UE/CE AFAR 8 bytes 19.4.3.2

0x1FE.0000.0040 DMA CE AFSR 8 bytes 19.4.3.3

0x1FE.0000.0048 DMA UE/CE AFAR (aliases to 0x1fe.0000.0038) 8 bytes 19.4.3.2

0x1FE.0000.0100 Reserved 8 bytes

0x1FE.0000.0108 Reserved 8 bytes

0x1FE.0000.0200 IOMMU Control Register 8 bytes 19.3.2.1

0x1FE.0000.0208 IOMMU TSB Base Address Reg 8 bytes 19.3.2.2

0x1FE.0000.0210 IOMMU Flush Register 8 bytes 19.3.2.3

0x1FE.0000.0C00 PCI Bus A Slot 0 Int Mapping Reg 8 bytes 19.3.3.1

0x1FE.0000.0C08 PCI Bus A Slot 1 Int Mapping Reg 8 bytes 19.3.3.1

0x1FE.0000.0C10 PCI Bus A Slot 2 Int Mapping Reg 8 bytes 19.3.3.1

0x1FE.0000.0C18 PCI Bus A Slot 3 Int Mapping Reg 8 bytes 19.3.3.1

0x1FE.0000.0C20 PCI Bus B Slot 0 Int Mapping Reg 8 bytes 19.3.3.1

0x1FE.0000.0C28 PCI Bus B Slot 1 Int Mapping Reg 8 bytes 19.3.3.1

0x1FE.0000.0C30 PCI Bus B Slot 2 Int Mapping Reg 8 bytes 19.3.3.1

0x1FE.0000.0C38 PCI Bus B Slot 3 Int Mapping Reg 8 bytes 19.3.3.1

0x1FE.0000.1000 SCSI Int Mapping Reg 8 bytes 19.3.3.1

0x1FE.0000.1008 Ethernet Int Mapping Reg 8 bytes 19.3.3.1

0x1FE.0000.1010 Parallel Port Int Mapping Reg 8 bytes 19.3.3.1

0x1FE.0000.1018 Audio Record Int Mapping Reg 8 bytes 19.3.3.1

0x1FE.0000.1020 Audio Playback Int Mapping Reg 8 bytes 19.3.3.1

0x1FE.0000.1028 Power Fail Int Mapping Reg 8 bytes 19.3.3.1

0x1FE.0000.1030 Kbd/mouse/serial Int Mapping Reg 8 bytes 19.3.3.1

0x1FE.0000.1038 Floppy Int Mapping Reg 8 bytes 19.3.3.1

0x1FE.0000.1040 Spare HW Int Mapping Reg 8 bytes 19.3.3.1
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0x1FE.0000.1048 Keyboard Int Mapping Reg 8 bytes 19.3.3.1

0x1FE.0000.1050 Mouse Int Mapping Reg 8 bytes 19.3.3.1

0x1FE.0000.1058 Serial Int Mapping Reg 8 bytes 19.3.3.1

0x1FE.0000.1060 Reserved 19.3.3.1

0x1FE.0000.1068 Reserved 19.3.3.1

0x1FE.0000.1070 DMA UE Int Mapping Reg 8 bytes 19.3.3.1

0x1FE.0000.1078 DMA CE Int Mapping Reg 8 bytes 19.3.3.1

0x1FE.0000.1080 PCI Error Int Mapping Reg 8 bytes 19.3.3.1

0x1FE.0000.1088 Reserved 8 bytes

0x1FE.0000.1090 Reserved 8 bytes

0x1FE.0000.1098 On board graphics Int Mapping Reg

(also mapped at 0x1FE.0000.6000)

8 bytes 19.3.3.2

0x1FE.0000.10A0 Expansion UPA64S Int Mapping Reg

(also mapped at 0x1FE.0000.8000)

8 bytes 19.3.3.2

0x1FE.0000.1400-

0x1FE.0000.1418

PCI Bus A Slot 0 Clear Int Regs 8 bytes 19.3.3.3

0x1FE.0000.1420-

0x1FE.0000.1438

PCI Bus A Slot 1 Clear Int Regs 8 bytes 19.3.3.3

0x1FE.0000.1440-

0x1FE.0000.1458

PCI Bus A Slot 2 Clear Int Regs 8 bytes 19.3.3.3

0x1FE.0000.1460-

0x1FE.0000.1478

PCI Bus A Slot 3 Clear Int Regs 8 bytes 19.3.3.3

0x1FE.0000.1480-

0x1FE.0000.1498

PCI Bus B Slot 0 Clear Int Regs 8 bytes 19.3.3.3

0x1FE.0000.14A0-

0x1FE.0000.14B8

PCI Bus B Slot 1 Clear Int Regs 8 bytes 19.3.3.3

0x1FE.0000.14C0-

0x1FE.0000.14D8

PCI Bus B Slot 2 Clear Int Regs 8 bytes 19.3.3.3

0x1FE.0000.14E0-

0x1FE.0000.14F8

PCI Bus B Slot 3 Clear Int Regs 8 bytes 19.3.3.3

0x1FE.0000.1800 SCSI Clear Int Reg 8 bytes 19.3.3.3

0x1FE.0000.1808 Ethernet Clear Int Reg 8 bytes 19.3.3.3

0x1FE.0000.1810 Parallel Port Clear Int Reg 8 bytes 19.3.3.3

0x1FE.0000.1818 Audio Record Clear Int Reg 8 bytes 19.3.3.3

0x1FE.0000.1820 Audio Playback Clear Int Reg 8 bytes 19.3.3.3

0x1FE.0000.1828 Power Fail Clear Int Reg 8 bytes 19.3.3.3

0x1FE.0000.1830 Kbd/mouse/serial Clear Int Reg 8 bytes 19.3.3.3

0x1FE.0000.1838 Floppy Clear Int Reg 8 bytes 19.3.3.3

0x1FE.0000.1840 Spare HW Clear Int Reg 8 bytes 19.3.3.3

Table 6-6 CSRs Mapped to Non-cacheable Address Space (Continued)

PA Register Access Size Section
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0x1FE.0000.1848 Keyboard Clear Int Reg 8 bytes 19.3.3.3

0x1FE.0000.1850 Mouse Clear Int Reg 8 bytes 19.3.3.3

0x1FE.0000.1858 Serial Clear Int Reg 8 bytes 19.3.3.3

0x1FE.0000.1860 Reserved 8 bytes 19.3.3.3

0x1FE.0000.1868 Reserved 8 bytes 19.3.3.3

0x1FE.0000.1870 DMA UE Clear Int Reg 8 bytes 19.3.3.3

0x1FE.0000.1878 DMA CE Clear Int Reg 8 bytes 19.3.3.3

0x1FE.0000.1880 PCI Error Clear Int Reg 8 bytes 19.3.3.3

0x1FE.0000.1888 Reserved 8 bytes

0x1FE.0000.1890 Reserved 8 bytes

0x1FE.0000.1A00 Reserved 8 bytes

0x1FE.0000.1C00 Reserved 8 bytes

0x1FE.0000.1C08 Reserved 8 bytes

0x1FE.0000.1C10 Reserved 8 bytes

0x1FE.0000.1C18 Reserved 8 bytes

0x1FE.0000.1C20 PCI DMA Write Synchronization Register 8 bytes 19.3.0.5

0x1FE.0000.2000 PCI Control/Status Register 8 bytes 19.3.0.1

0x1FE.0000.2010 PCI PIO Write AFSR 8 bytes 19.3.0.2

0x1FE.0000.2018 PCI PIO Write AFAR 8 bytes 19.3.0.2

0x1FE.0000.2020 PCI Diagnostic Register 8 bytes 19.3.0.3

0x1FE.0000.2028 PCI Target Address Space Register 8 bytes 19.3.0.4

0x1FE.0000.2800 Reserved 8 bytes

0x1FE.0000.2808 Reserved 8 bytes

0x1FE.0000.2810 Reserved 8 bytes

0x1FE.0000.4800 Reserved 8 bytes

0x1FE.0000.4808 Reserved 8 bytes

0x1FE.0000.4810 Reserved 8 bytes

0x1FE.0000.5000 -

0x1FE.0000.5038

PIO Buffer Diag Access 8 bytes 19.3.0.6

0x1FE.0000.5100 -

0x1FE.0000.5138

DMA Buffer Diag Access 8 bytes 19.3.0.7

0x1FE.0000.51C0 DMA Buffer Diag Access (72:64) 8 bytes 19.3.0.8

0x1FE.0000.6000 On board graphics Int Mapping Reg

(also mapped at 0x1FE.0000.1098)

8bytes 19.3.3.2

0x1FE.0000.8000 Expansion UPA64S Int Mapping Reg

(also mapped at 0x1FE.0000.10A0)

8bytes 19.3.3.2

0x1FE.0000.A000 Reserved 8 bytes

Table 6-6 CSRs Mapped to Non-cacheable Address Space (Continued)

PA Register Access Size Section
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0x1FE.0000.A008 Reserved 8 bytes

0x1FE.0000.A400 IOMMU Virtual Address Diag Reg 8 bytes 19.3.2.6

0x1FE.0000.A408 IOMMU Tag Compare Diag 8 bytes 19.3.2.7

0x1FE.0000.A500-

0x1FE.0000.A57F

Reserved 8 bytes

0x1FE.0000.A580-

0x1FE.0000.A5FF

IOMMU Tag Diag 8 bytes 19.3.2.4

0x1FE.0000.A600-

0x1FE.0000.A67F

IOMMU Data RAM Diag 8 bytes 19.3.2.5

0x1FE.0000.A800 PCI Int State Diag Reg 8 bytes 19.3.3.4

0x1FE.0000.A808 OBIO and Misc Int State Diag Reg 8 bytes

0x1FE.0000.B000-

0x1FE.0000.B3FF

Reserved 8 bytes

0x1FE.0000.B400-

0x1FE.0000.B7FF

Reserved 8 bytes

0x1FE.0000.B800-

0x1FE.0000.B87F

Reserved 8 bytes

0x1FE.0000.B900-

0x1FE.0000.B97F

Reserved 8 bytes

0x1FE.0000.C000-

0x1FE.0000.C3FF

Reserved 8 bytes

0x1FE.0000.C400-

0x1FE.0000.C7FF

Reserved 8 bytes

0x1FE.0000.C800-

0x1FE.0000.C87F

Reserved 8 bytes

0x1FE.0000.C900-

0x1FE.0000.C97F

Reserved 8 bytes

0x1FE.0000.F000 FFB_Config 8 bytes

0x1FE.0000.F010 MC_Control0 8 bytes

0x1FE.0000.F018 MC_Control1 8 bytes

0x1FE.0000.F020 Reset_Control 8 bytes

0x1FE.0100.0000 PCI Configuration Space: Vendor ID 2 bytes 19.3.1.1

0x1FE.0100.0002 PCI Configuration Space: Device ID 2 bytes 19.3.1.2

0x1FE.0100.0004 PCI Configuration Space: Command 2 bytes 19.3.1.3

0x1FE.0100.0006 PCI Configuration Space: Status 2 bytes 19.3.1.4

0x1FE.0100.0008 PCI Configuration Space: Revision ID 2 bytes 19.3.1.5

0x1FE.0100.0009 PCI Configuration Space: Programming I/F Code 1 byte 19.3.1.6

0x1FE.0100.000A PCI Configuration Space: Sub-class Code 1 byte 19.3.1.7

0x1FE.0100.000B PCI Configuration Space: Base Class Code 1 byte 19.3.1.8

Table 6-6 CSRs Mapped to Non-cacheable Address Space (Continued)

PA Register Access Size Section
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Compatibility Note – A read of any addresses labelled “Reserved” above returns

zeros, and writes have no effect.

Caution – Reads to noncacheable addresses not listed above may return zeroes or

alias an existing CSR in the table. Writes to noncacheable addresses not listed above

may result in a no-op or invoke an alias to an existing CSR in the table and modify

it unexpectedly. Software should protect addresses over the full range of

0x1FE.0000.0000 through 0x1FE.00FF.FFFF to prevent back-door access.

6.5 Ancillary State Registers

6.5.1 Overview of ASRs

SPARC-V9 provides up to 32 Ancillary State Registers (ASRs 0..31). ASRs 0..6 are

defined by the SPARC-V9 ISA; ASRs 7..15 are reserved for future use by the

architecture. ASRs 16..31 are available for use by an implementation.

0x1FE.0100.000D PCI Configuration Space: Latency Timer 1 byte 19.3.1.9

0x1FE.0100.000E PCI Configuration Space: Header Type 1 byte 19.3.1.10

0x1FE.0100.0040 PCI Configuration Space: Bus Number 1 byte 19.3.1.11

0x1FE.0100.0041 PCI Configuration Space: Subordinate Bus Number 1 byte 19.3.1.11

0x1FE.0100.0042-

0x1FE.0100.07FF

Reserved Any

0x1FE.0200.0000-

0x1FE.02FF.FFFF

PCI Bus I/O Space Any

0x1FF.0000.0000-

0x1FF.FFFF.FFFF

PCI Bus Memory Space Any

Table 6-6 CSRs Mapped to Non-cacheable Address Space (Continued)

PA Register Access Size Section
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6.5.2 SPARC-V9-Defined ASRs

Table 6-7 defines the SPARC-V9 ASRs that must be supported by a conforming

processor implementation. Table 6-8 suggests the assembly language syntax for

accessing these registers.

1.
An attempt to read this register by non-privileged software with NPT = 1 causes a privileged_action trap. The tick
register can only be written with the privileged wrpr instruction.

2.
Read-only—an attempt to write this register causes an illegal_instruction trap.

6.5.3 Non-SPARC-V9 ASRs

Non-SPARC-V9 ASRs are listed in Section Table 6-9.

Table 6-7 Mandatory SPARC-V9 ASRs

ASR
Value

ASR Name Access Description Section

00
16

Y_REG RW Y register V9

02
16

COND_CODE_REG RW Condition code register V9

03
16

ASI_REG RW ASI register V9

04
16

TICK_REG R
1,2

TICK register V9

05
16

PC R
2

Program Counter V9

06
16

FP_STATUS_REG RW Floating-point status register V9

Table 6-8 Suggested Assembler Syntax for Mandatory ASRs

Operation Syntax

rd %y, regrd

wr regrs1, reg_or_imm, %y

rd %ccr , regrd

wr regrs1, reg_or_imm, %ccr

rd %asi , regrd

wr regrs1, reg_or_imm, %asi

rd %tick , regrd

rd %pc regrd

rd %fprs , regrd

wr regrs1, reg_or_imm, %fprs
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1.
Read accesses cause an illegal_instruction trap. Nonprivileged write accesses cause a privileged_opcode trap.

2.
Accesses cause an fp_disabled trap if PSTATE.PEF or FPRS.FEF are zero.

3.
Nonprivileged accesses cause a privileged_opcode trap.

4.
Nonprivileged accesses with PCR.PRIV=0 cause a privileged_action trap.

Table 6-9 Non-SPARC-V9 ASRs

ASR
Value

ASR Name/Syntax Access Description Section

10
16 PERF_CONTROL_REG

RW
3

Performance Control Reg

(PCR)

Section B

.2

11
16 PERF_COUNTER

RW
4

Performance Instrumentation

Counters (PIC)

Section B

.4

12
16 DISPATCH_CONTROL_REG

RW
3

Dispatch Control Register

(DCR)

Section

A.3

13
16 GRAPHIC_STATUS_REG

RW
2

Graphics Status Register (GSR)
Section 1

3.3

14
16 SET_SOFTINT

W
1

Set bit(s) in per-processor Soft

Interrupt register

Section 1

1.11

15
16 CLEAR_SOFTINT

W
1

Clear bit(s) in per-processor

Soft Interrupt register

Section 1

1.11

16
16 SOFTINT_REG

RW
3

Per-processor Soft Interrupt

register

Section 1

1.11

17
16 TICK_CMPR_REG

RW
3

TICK compare register
Section 1

4.5.1

Table 6-10 Suggested Assembler Syntax for Non-SPARC V9 ASRs

Operation Syntax

rd %pcr, regrd

wr regrs1,%pcr

rd %pic , regrd

wr regrs1,%pic

rd %gsr, regrd

wr regrs1,%gsr

wr regrs1,%clear_softint

wr regrs1,%set_softint

rd %softint , regrd

wr regrs1,%softint

rd %tick_cmpr , regrd
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6.6 Other UltraSPARC IIi Registers
Table 6-11 lists additional sets of 64-bit global registers supported by UltraSPARC IIi

.

6.7 Supported Traps
Table 6-12 lists the traps supported by UltraSPARC IIi.

wr regrs1,%tick_cmpr

rd %dcr, regrd

wr regrs1,%dcr

Table 6-11 Other UltraSPARC IIi Registers

Register Name Access Description Section

INTERRUPT_GLOBAL_REG RW 8 Interrupt handler globals
Section 14

.5.9

MMU_GLOBAL_REG RW 8 MMU handler globals
Section 14

.5.9

Table 6-12 Traps Supported in UltraSPARC IIi

Exception or Interrupt Request Globals 9 TT Priority

Reserved — 000
16

n/a

power_on_reset AG 001
16

0

watchdog_reset AG 002
16

1
1

externally_initiated_reset AG 003
16

1
1

software_initiated_reset AG 004
16

1
1

RED_state_exception AG 005
16

1
1

instruction_access_exception MG 008
16

5

instruction_access_error AG 00A
16

3

Table 6-10 Suggested Assembler Syntax for Non-SPARC V9 ASRs

Operation Syntax
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1.
Priority 1 traps are processed in the following order: XIR>WDR>SIR>RED.

2.Fp_exception_ieee_754, fp_exception_other are mutually exclusive with memory access traps such as privileged_action
and VA_watchpoint. Privileged_action has higher priority than VA_watchpoint.

3.
Priority 12 traps are processed in the following program order: data_access_exception >
fast_data_access_MMU_miss/fast_data_access_protection > PA_watchpoint > data_access_error.

4.
Priority 10 traps are processed in the following order: LDDF/STDF_mem_address_not_aligned >
mem_address_not_aligned trap. LDDF/STDF_mem_address_not_aligned traps are mutually exclusive.

illegal_instruction AG 010
16

7
10

privileged_opcode AG 011
16

6

fp_disabled AG 020
16

8

fp_exception_ieee_754 AG 021
16

11
2

fp_exception_other AG 022
16

11
2

tag_overflow AG 023
16

14

clean_window AG 024
16

..027
16

10

division_by_zero AG 028
16

15

data_access_exception MG 030
16

12
3

data_access_error AG 032
16

12
3

mem_address_not_aligned AG 034
16

10
4, 10

LDDF_mem_address_not_aligned AG 035
16

10
4

STDF_mem_address_not_aligned AG 036
16

10
4

privileged_action AG 037
16

11
2

interrupt_level_n (n=1..15) AG 041
16

..04F
16

32–n

interrupt_vector IG 060
16

16
5

PA_watchpoint AG 061
16

12
5

VA_watchpoint AG 062
16

11
2

corrected_ECC_error AG 063
16

33

fast_instruction_access_MMU_miss MG 064
16

..067
16

2
6

fast_data_access_MMU_miss MG 068
16

..06B
16

12
3,7

fast_data_access_protection MG 06C
16

..06F
16

12
3,8

spill_n_normal (n=0..7) AG 080
16

..09F
16

9

spill_n_other (n=0..7) AG 0A0
16

..0BF
16

9

fill_n_normal (n=0..7) AG 0C0
16

..0DF
16

9

fill_n_other (n=0..7) AG 0E0
16

..0FF
16

9

trap_instruction AG 100
16

..17F
16

16
5

Table 6-12 Traps Supported in UltraSPARC IIi (Continued)

Exception or Interrupt Request Globals 9 TT Priority
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5.
Priority 16 traps are processed in the following order: trap instruction > interrupt_vector.

6.
When an MMU fault is detected during an instruction access, a fast_instruction_access_MMU_miss trap is generated
instead of an instruction_access_MMU_miss trap.

7.
A fast_data_access_MMU_miss trap is generated instead of a data_access_MMU_miss trap.

8.
A fast_data_access_protection trap is generated instead of a data_access_protection trap.

9.
AG = alternate globals, MG = MMU globals, IG = interrupt globals

10.
Some ASIs must be used with specific types of loads and stores; for example, block ASIs can be used only with
LDDFA/STDFA. When these ASIs are used with incorrect opcodes, they do not take mem_address_not_aligned or
illegal_instruction traps for memory and register alignment required by the ASI. For example, block ASIs require
64-byte alignment, but an LDFA opcode with a block ASI checks only for 4-byte alignment.
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CHAPTER 7

UltraSPARC IIi Memory System

7.1 Overview
The UltraSPARC IIi Memory system is designed to provide overall comparable

performance with existing UltraSPARC systems, while using a narrower memory

interface. Using EDO DRAMs achieves a CAS cycle half as long as that possible

using FPM. Control signals are asserted on processor clock boundaries to allow

precise control of DRAM signal transitions.

In addition to addressing that supports 10-bit column address DRAMs, an additional

mode supports 11-bit column addressing. Since the total available address bits in the

memory controller is constant, at 1 GB maximum addressable, the maximum

number of DIMM pairs in this mode is halved in 11-bit column address mode.

The connectivity of RASB_L/RAST_L is critical and non-intuitive given the JEDEC

standard pin names for the DIMMs. Exactly follow the schematics in Figure 7-1 and

Figure 7-2. The B and T versions of RAS must go to the same DIMM since there are

not separate B and T versions of the refresh enable/disable bits for each DIMM. See

Section 18.2, Mem_Control0 Register on page 267.
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.

Figure 7-1 Memory RAS Wiring with 10-bit Column, 8-128 MB DIMM

ADDR

RAS#<0,2>

RAS#<1,3>

CAS#

WE#

DATA

ADDR

RAS#<0,2>

RAS#<1,3>

CAS#

WE#

DATA

ADDR

RAS#<0,2>

RAS#<1,3>

CAS#

WE#

DATA

ADDR

RAS#<0,2>

RAS#<1,3>

CAS#

WE#

DATA

RASB_L[0]

RAST_L[0]

RASB_L[1] RASB_L[2] RASB_L[3]

RAST_L[1] RAST_L[2] RAST_L[3]

ADDR

RAS#<0,2>

RAS#<1,3>

CAS#

WE#

DATA

ADDR

RAS#<0,2>

RAS#<1,3>

CAS#

WE#

DATA

ADDR

RAS#<0,2>

RAS#<1,3>

CAS#

WE#

DATA

ADDR

RAS#<0,2>

RAS#<1,3>

CAS#

WE#

DATA

RASB_L[0]

RAST_L[0]

RASB_L[1] RASB_L[2] RASB_L[3]

RAST_L[1] RAST_L[2] RAST_L[3]

DIMM PAIR 0

MEMADDR[12:0]

RASB_L[3:0]

RAST_L[3:0]

CAS_L[1:0]

WE_L

XCVR interface

144

72

72

DIMM PAIR 1 DIMM PAIR 2 DIMM PAIR 3

DATA

Two copies of CAS_L are provided only to reduce loading. Both are always asserted together.
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See design guide for requirements for min/max delays and skew relationships.
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Figure 7-2 Memory RAS Wiring with 11-bit Column, 8-256MB DIMM
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7.2 10-bit Column Addressing

Figure 7-3 UltraSPARC IIi Memory Addressing for 10-bit Column Address Mode

In this scheme, PA[28:27] is used as a DIMM select; it selects a DIMM-pair. PA[29] is

used as a upper/lower bank select: 0 = bottom bank, 1 = top bank. DIMMs that

contain only a single (bottom) bank must have PA[29] = 0 to be accessed. Mapping of

PA[29:27] to RAS assertion is shown in Table 7-3.

Table 7-1 PA[29:27] to RASX_L Mapping for 10-bit Column Address Mode

PA[29:27] RAS_L Asserted

000 RASB_L[0]

001 RASB_L[1]

010 RASB_L[2]

ROW COL

COL

COL

ROW

3711151923 0
2629

Physical address

8 MB(1M x 16 parts)

16 MB(2M x 8 parts)

32 MB(4M x 4 parts)

64 MB(4M x 4 banked)

128 MB(8M x 8 banked parts)

0

0

0

u
l
s

u
l
s

ds

ds

ds

ds

ds

**

ROW

ROW COL

COL

ROW COL

uls = upper/lower bank select
ds = DIMM pair select

** uls used if banked,
otherwise uls = 0 and msbs of the
row address may or may not be 0.
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011 RASB_L[3]

100 RAST_L[0]

101 RAST_L[1]

110 RAST_L[2]

111 RAST_L[3]

Table 7-2 Memory Address Map for 10-bit Column Address Mode

DIMM Pair Individual DIMM size Address Range (PA[29:0])

0 8MB 0x0000_0000 to 0x00FF_FFFF

0 16MB 0x0000_0000 to 0x01FF_FFFF

0 32MB 0x0000_0000 to 0x03FF_FFFF

0 64MB 0x0000_0000 to 0x07FF_FFFF

0
64MB (banked) 0x0000_0000 to 0x03FF_FFFF and

0x2000_0000 to 0x23FF_FFFF

0
128MB (banked) 0x0000_0000 to 0x07FF_FFFF and

0x2000_0000 to 0x27FF_FFFF

1 8MB 0x0800_0000 to 0x08FF_FFFF

1 16MB 0x0800_0000 to 0x09FF_FFFF

1 32MB 0x0800_0000 to 0x0BFF_FFFF

1 64MB 0x0800_0000 to 0x0FFF_FFFF

1
64MB (banked) 0x0800_0000 to 0x0BFF_FFFF and

0x2800_0000 to 0x2BFF_FFFF

1
128MB (banked) 0x0800_0000 to 0x0FFF_FFFF and

0x2800_0000 to 0x2FFF_FFFF

2 8MB 0x1000_0000 to 0x10FF_FFFF

2 16MB 0x1000_0000 to 0x11FF_FFFF

2 32MB 0x1000_0000 to 0x13FF_FFFF

2 64MB 0x1000_0000 to 0x17FF_FFFF

2 64MB (banked)
0x1000_0000 to 0x13FF_FFFF and

0x3000_0000 to 0x33FF_FFFF

2 128MB (banked)
0x1000_0000 to 0x17FF_FFFF and

0x3000_0000 to 0x37FF_FFFF

3 8MB 0x1800_0000 to 0x18FF_FFFF

3 16MB 0x1800_0000 to 0x19FF_FFFF

Table 7-1 PA[29:27] to RASX_L Mapping for 10-bit Column Address Mode (Continued)

PA[29:27] RAS_L Asserted
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3 32MB 0x1800_0000 to 0x1BFF_FFFF

3 64MB 0x1800_0000 to 0x1FFF_FFFF

3 64MB (banked)
0x1800_0000 to 0x1BFF_FFFF and

0x3800_0000 to 0x3BFF_FFFF

3 128MB (banked)
0x1800_0000 to 0x1FFF_FFFF and

0x3800_0000 to 0x3FFF_FFFF

Table 7-2 Memory Address Map for 10-bit Column Address Mode (Continued)

DIMM Pair Individual DIMM size Address Range (PA[29:0])
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7.3 11-bit Column Addressing

Figure 7-4 UltraSPARC IIi Memory Addressing for 11-bit Column Address Mode

In this scheme, PA[28] is used as a DIMM select; it selects a DIMM-pair. PA[29] is

used as a upper/lower bank select: 0 = bottom bank, 1 = top bank. DIMMs that

contain only a single (bottom) bank must have PA[29] = 0 in order to be accessed.

The mapping of PA[29:28]into RASX_L[?] is shown in Table 7-3.
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Table 7-3 PA[29:28] to RASX_L Mapping for 11-bit Column Address Mode

PA[29:28] RAS_L Asserted

00 RASB_L[0]

01 RASB_L[2]

10 RAST_L[0]

11 RAST_L[2]

Table 7-4 Memory Address Map for 11-bit Column Address Mode

DIMM Pair Individual DIMM size Address Range (PA[29:0])

0 8MB 0x0000_0000 to 0x00FF_FFFF

0 16MB 0x0000_0000 to 0x01FF_FFFF

0 32MB 0x0000_0000 to 0x03FF_FFFF

0 64MB 0x0000_0000 to 0x07FF_FFFF

0 64MB (banked)
0x0000_0000 to 0x03FF_FFFF and

0x2000_0000 to 0x23FF_FFFF

0 128MB 0x0000_0000 to 0x0FFF_FFFF

0 128MB (banked)
0x0000_0000 to 0x07FF_FFFF and

0x2000_0000 to 0x27FF_FFFF

0 256MB (banked)
0x0000_0000 to 0x0FFF_FFFF and

0x2000_0000 to 0x2FFF_FFFF

2 8MB 0x1000_0000 to 0x10FF_FFFF

2 16MB 0x1000_0000 to 0x11FF_FFFF

2 32MB 0x1000_0000 to 0x13FF_FFFF

2 64MB 0x1000_0000 to 0x17FF_FFFF

2 64MB (banked)
0x1000_0000 to 0x13FF_FFFF and

0x3000_0000 to 0x33FF_FFFF

2 128MB 0x1000_0000 to 0x1FFF_FFFF

2 128MB (banked)
0x1000_0000 to 0x17FF_FFFF and

0x3000_0000 to 0x37FF_FFFF

2 256MB (banked)
0x1000_0000 to 0x1FFF_FFFF and

0x3000_0000 to 0x3FFF_FFFF
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CHAPTER 8

Cache and Memory Interactions

8.1 Introduction
This chapter describes various interactions between the caches and memory, and the

management processes that an operating system must perform to maintain data

integrity in these cases. In particular, it discusses:

■ Invalidation of one or more cache entries – when and how to do it

■ Differences between cacheable and non-cacheable accesses

■ Ordering and synchronization of memory accesses

■ Accesses to addresses that cause side effects (I/O accesses)

■ Non-faulting loads

■ Instruction prefetching

■ Load and store buffers

This chapter only addresses coherence in a uniprocessor environment. For more

information about coherence in multi-processor environments, see Chapter 20,

SPARC-V9 Memory Models.

8.2 Cache Flushing
Data in the level-1 (read-only or write-through) caches can be flushed by

invalidating the entry in the cache. Modified data in the level-2 (writeback) cache—

subsequently referred to as the External or E-cache—must be written back to

memory when flushed.
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Cache flushing is required in the following cases:

■ I-cache: Flush is needed before executing code that is modified by a local store

instruction other than block commit store, see Section 3.1.1.1, Instruction Cache (I-
cache). This is done with the FLUSH instruction or using ASI accesses. See

Section A.7, I-cache Diagnostic Accesses on page 373. When ASI accesses are used,

software must ensure that the flush is done on the same processor as the stores

that modified the code space.

■ D-cache: Flush is needed when a physical page is changed from (virtually)

cacheable to (virtually) noncacheable, or when an illegal address alias is created.

(see Section 8.2.1, Address Aliasing Flushing on page 66.) This is done with a

displacement flush. (see Section 8.2.3, Displacement Flushing on page 67.) or using

ASI accesses. (See Section A.8, D-cache Diagnostic Accesses on page 378.)

■ E-cache: Flush is needed for stable storage. Examples of stable storage include

battery-backed memory and transaction logs. This is done with either a

displacement flush. (see Section 8.2.3, Displacement Flushing on page 67.) or a store

with ASI_BLK_COMMIT_{PRIMARY,SECONDARY}. Flushing the E-cache flushes

the corresponding blocks from the I- and D-caches, because UltraSPARC IIi

maintains inclusion between the external and internal caches. See Section 8.2.2,

Committing Block Store Flushing on page 67.

8.2.1 Address Aliasing Flushing

A side-effect inherent in a virtual-indexed cache is illegal address aliasing. Aliasing

occurs when multiple virtual addresses map to the same physical address. Since

UltraSPARC IIi’s D-cache is indexed with the virtual address bits and is larger than

the minimum page size, it is possible for the different aliased virtual addresses to

end up in different cache blocks. Such aliases are illegal because updates to one

cache block will not be reflected in aliased cache blocks.

Normally, software avoids illegal aliasing by forcing aliases to have the same

address bits (virtual color) up to an alias boundary. For UltraSPARC IIi, the minimum

alias boundary is 16 kB; this size may increase in future designs. When the alias

boundary is violated, software must flush the D-cache if the page was virtual

cacheable. In this case, only one mapping of the physical page can be allowed in the

D-MMU at a time. Alternatively, software can turn off virtual caching of illegally

aliased pages. This allows multiple mappings of the alias to be in the D-MMU and

avoids flushing the D-cache each time a different mapping is referenced.

Note – A change in virtual color when allocating a free page does not require a

D-cache flush, because the D-cache is write-through.
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8.2.2 Committing Block Store Flushing

In UltraSPARC IIi, stable storage must be implemented by software cache flush. Data

that is present and modified in the E-cache must be written back to the stable

storage.

Two ASIs: (ASI_BLK_COMMIT_{PRIMARY,SECONDARY}) are implemented by

UltraSPARC IIi to perform these writebacks efficiently when software can ensure

exclusive write access to the block being flushed. Using these ASIs, software can

write back data from the floating-point registers to memory and invalidate the entry

in the cache. The data in the floating-point registers must first be loaded by a block

load instruction. A MEMBAR #Sync instruction is needed to ensure that the flush is

complete. See also Section 13.5.3, Block Load and Store Instructions on page 164.

8.2.3 Displacement Flushing

Cache flushing also can be accomplished by a displacement flush. This is done by

reading a range of read-only addresses that map to the corresponding cache line

being flushed, forcing out modified entries in the local cache. Care must be taken to

ensure that the range of read-only addresses is mapped in the MMU before starting

a displacement flush, otherwise the TLB miss handler may put new data into the

caches.

Note – Diagnostic ASI accesses to the E-cache can be used to invalidate a line, but

they are generally not an alternative to displacement flushing. Modified data in the

E-cache will not be written back to memory using these ASI accesses. See

Section A.9, E-cache Diagnostics Accesses on page 380.

8.3 Memory Accesses and Cacheability

Note – Atomic load-store instructions are treated as both a load and a store; they

can be performed only in cacheable address spaces.
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8.3.1 Coherence Domains

Two types of memory operations are supported in UltraSPARC IIi: cacheable and

noncacheable accesses, as indicated by the page translation. Cacheable accesses are

inside the coherence domain; noncacheable accesses are outside the coherence

domain.

SPARC-V9 does not specify memory ordering between cacheable and noncacheable

accesses. In TSO mode, UltraSPARC IIi maintains TSO ordering, regardless of the

cacheability of the accesses. For SPARC-V9 compatibility while in PSO or RMO

mode, a MEMBAR #Lookaside should be used between a store and a subsequent

load to the same noncacheable address. See The SPARC Architecture Manual, Version 9
for more information about the SPARC-V9 memory models.

Note – On UltraSPARC IIi, a MEMBAR #Lookaside executes more efficiently than

a MEMBAR #StoreLoad .

8.3.1.1 Cacheable Accesses

Accesses that fall within the coherence domain are called cacheable accesses. They

are implemented in UltraSPARC IIi with the following properties:

■ Data resides in real memory locations.

■ They observe supported cache coherence protocol.

■ The unit of coherence is 64 bytes.

8.3.1.2 Non-Cacheable and Side-Effect Accesses

Accesses that are outside the coherence domain are called noncacheable accesses.

Accesses of some of these memory (or memory mapped) locations may result in

side-effects. Noncacheable accesses are implemented in UltraSPARC IIi with the

following properties:

■ Data may or may not reside in real memory locations.

■ Accesses may result in program-visible side-effects; for example, memory-

mapped I/O control registers in a UART may change state when read.

■ Accesses may not observe supported cache coherence protocol.

■ The smallest unit in each transaction is a single byte.

Noncacheable accesses with the E-bit set (that is, those having side-effects) are all

strongly ordered with respect to other noncacheable accesses with the E-bit set. In

addition, store buffer compression is disabled for these accesses. Speculative loads

with the E-bit set cause a data_access_exception trap (with SFSR.FT=2, speculative

load to page marked with E-bit).
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Note – The side-effect attribute does not imply noncacheability.

8.3.1.3 Global Visibility and Memory Ordering

To ensure the correct ordering between the cacheable and noncacheable domains,

explicit memory synchronization is needed in the form of MEMBARs or atomic

instructions. Code Example 8-1 illustrates the issues involved in mixing cacheable and

noncacheable accesses.

Code Example 8-1 Memory Ordering and MEMBAR Examples

Assume that all accesses go to non-side-effect memory locations.

Process A:

While (1)

{

Store D1:data produced

1 MEMBAR #StoreStore (needed in PSO, RMO)

Store F1:set flag

While F1 is set (spin on flag)

Load F1

2 MEMBAR #LoadLoad | #LoadStore (needed in RMO)

Load D2

}

Process B:

While (1)

{

While F1 is cleared (spin on flag)

Load F1

2 MEMBAR #LoadLoad | #LoadStore (needed in RMO)

Load D1

Store D2

1 MEMBAR #StoreStore (needed in PSO, RMO)

Store F1:clear flag

}

Note – A MEMBAR #MemIssue or MEMBAR #Sync is needed if ordering of

cacheable accesses following noncacheable accesses must be maintained in PSO or

RMO.
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Due to load and store buffers implemented in UltraSPARC IIi, Code Example 8-1 may

not work in PSO and RMO modes without the MEMBARs shown in the program

segment.

In TSO mode, loads and stores (except block stores) cannot pass earlier loads, and

stores cannot pass earlier stores; therefore, no MEMBAR is needed.

In PSO mode, loads are completed in program order, but stores are allowed to pass

earlier stores; therefore, only the MEMBAR at #1 is needed between updating data

and the flag.

In RMO mode, there is no implicit ordering between memory accesses; therefore, the

MEMBARs at both #1 and #2 are needed.

8.3.2 Memory Synchronization: MEMBAR and FLUSH

The MEMBAR (STBAR in SPARC-V8) and FLUSH instructions are provide for

explicit control of memory ordering in program execution. MEMBAR has several

variations; their implementations in UltraSPARC IIi are described below. See the

references to “Memory Barrier,” “The MEMBAR Instruction,” and “Programming

With the Memory Models,” in The SPARC Architecture Manual, Version 9 for more

information.

8.3.2.1 MEMBAR #LoadLoad

Forces all loads after the MEMBAR to wait until all loads before the MEMBAR have

reached global visibility.

8.3.2.2 MEMBAR #StoreLoad

Forces all loads after the MEMBAR to wait until all stores before the MEMBAR have

reached global visibility.

8.3.2.3 MEMBAR #LoadStore

Forces all stores after the MEMBAR to wait until all loads before the MEMBAR have

reached global visibility.
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8.3.2.4 MEMBAR #StoreStore and STBAR

Forces all stores after the MEMBAR to wait until all stores before the MEMBAR have

reached global visibility.

Note – STBAR has the same semantics as MEMBAR #StoreStore ; it is included

for SPARC-V8 compatibility.

Note – The above four MEMBARs do not guarantee ordering between cacheable

accesses after noncacheable accesses.

8.3.2.5 MEMBAR #Lookaside

SPARC-V9 provides this variation for implementations having virtually tagged store

buffers that do not contain information for snooping.

Note – For SPARC-V9 compatibility, this variation should be used before issuing a

load to an address space that cannot be snooped.

8.3.2.6 MEMBAR #MemIssue

Forces all outstanding memory accesses to be completed before any memory access

instruction after the MEMBAR is issued. It must be used to guarantee ordering of

cacheable accesses following non-cacheable accesses. For example, I/O accesses

must be followed by a MEMBAR #MemIssue before subsequent cacheable stores;

this ensures that the I/O accesses reach global visibility before the cacheable stores

after the MEMBAR.

Note – MEMBAR #MemIssue is different from the combination of MEMBAR

#LoadLoad | #LoadStore | #StoreLoad | #StoreStore . MEMBAR #MemIssue
orders cacheable and noncacheable domains; it prevents memory accesses after it

from issuing until it completes.

8.3.2.7 MEMBAR #Sync (Issue Barrier)

Forces all outstanding instructions and all deferred errors to be completed before

any instructions after the MEMBAR are issued.
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Note – MEMBAR #Sync is a costly instruction; unnecessary usage may result in

substantial performance degradation.

8.3.2.8 Self-Modifying Code (FLUSH)

The SPARC-V9 instruction set architecture does not guarantee consistency between

code and data spaces. A problem arises when code space is dynamically modified by

a program writing to memory locations containing instructions. LISP programs and

dynamic linking require this behavior. SPARC-V9 provides the FLUSH instruction to

synchronize instruction and data memory after code space has been modified.

In UltraSPARC IIi, a FLUSH behaves like a store instruction for the purpose of

memory ordering. In addition, all instruction fetch (or prefetch) buffers are

invalidated. The issue of the FLUSH instruction is delayed until previous (cacheable)

stores are completed. Instruction fetch (or prefetch) resumes at the instruction

immediately after the FLUSH.

8.3.3 Atomic Operations

SPARC-V9 provides three atomic instructions to support mutual exclusion. These

instructions behave like both a load and a store but the operations are carried out

indivisibly. Atomic instructions may be used only in the cacheable domain.

An atomic access with a restricted ASI in unprivileged mode (PSTATE.PRIV=0)

causes a privileged_action trap. An atomic access with a noncacheable address causes a

data_access_exception trap (with SFSR.FT=4, atomic to page marked non-cacheable).

An atomic access with an unsupported ASI causes a data_access_exception trap (with

SFSR.FT=8, illegal ASI value or virtual address). Table 8-1 lists the ASIs that support

atomic accesses

.

Table 8-1 ASIs that Support SWAP, LDSTUB, and CAS

ASI Name Access

ASI_NUCLEUS{_LITTLE} Restricted

ASI_AS_IF_USER_PRIMARY{_LITTLE} Restricted

ASI_AS_IF_USER_SECONDARY{_LITTLE} Restricted

ASI_PRIMARY{_LITTLE} Unrestricted

ASI_SECONDARY{_LITTLE} Unrestricted

ASI_PHYS_USE_EC{_LITTLE} Unrestricted
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Note – Atomic accesses with non-faulting ASIs are not allowed, because these ASIs

have the load-only attribute.

8.3.3.1 SWAP Instruction

SWAP atomically exchanges the lower 32 bits in an integer register with a word in

memory. This instruction is issued only after store buffers are empty. Subsequent

loads interlock on earlier SWAPs. A cache miss allocates the corresponding line.

Note – If a page is marked as virtually-non-cacheable but physically cacheable,

allocation is done to the E-cache only.

8.3.3.2 LDSTUB Instruction

LDSTUB behaves like SWAP, except that it loads a byte from memory into an integer

register and atomically writes all ones (FF
16

) into the addressed byte.

8.3.3.3 Compare and Swap (CASX) Instruction

Compare-and-swap combines a load, compare, and store into a single atomic

instruction. It compares the value in an integer register to a value in memory; if they

are equal, the value in memory is swapped with the contents of a second integer

register. All of these operations are carried out atomically; in other words, no other

memory operation may be applied to the addressed memory location until the entire

compare-and-swap sequence is completed.

8.3.4 Non-Faulting Load

A non-faulting load behaves like a normal load, except that:

■ It does not allow side-effect access. An access with the E-bit set causes a

data_access_exception trap (with SFSR.FT=2, Speculative Load to page marked

E-bit).

■ It can be applied to a page with the NFO-bit set; other types of accesses will cause

a data_access_exception trap (with SFSR.FT=10
16

, Normal access to page marked

NFO).
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Non-faulting loads are issued with ASI_PRIMARY_NO_FAULT{_LITTLE}, or

ASI_SECONDARY_NO_FAULT{_LITTLE}. A store with a NO_FAULT ASI causes a

data_access_exception trap (with SFSR.FT=8, Illegal RW).

When a non-faulting load encounters a TLB miss, the operating system should

attempt to translate the page. If the translation results in an error (for example,

address out of range), a 0 is returned and the load completes silently.

Typically, optimizers use non-faulting loads to move loads before conditional control

structures that guard their use. This technique potentially increases the distance

between a load of data and the first use of that data, to hide latency; it allows for

more flexibility in code scheduling. It also allows for improved performance in

certain algorithms by removing address checking from the critical code path.

For example, when following a linked list, non-faulting loads allow the null pointer

to be accessed safely in a read-ahead fashion if the OS can ensure that the page at

virtual address 0
16

is accessed with no penalty. The NFO (non-fault access only) bit

in the MMU marks pages that are mapped for safe access by non-faulting loads, but

can still cause a trap by other, normal accesses. This allows programmers to trap on

wild pointer references (many programmers count on an exception being generated

when accessing address 0
16

to debug code) while benefitting from the acceleration of

non-faulting access in debugged library routines.

8.3.5 PREFETCH Instructions

UltraSPARC IIi has extensions to support the v9 Prefetch instruction. These

extensions primarily address floating-point vector code, in which the software

(compiler) can accurately schedule the prefetch of data sufficiently ahead of its

usage, and in which execution is bounded by (E-cache) miss throughput.

UltraSPARC IIi allows loads and stores (E-cache-hits) to continue while a prefetch

(E-cache-miss) is outstanding. An outstanding Prefetch does not block subsequent

load or store hits.

This extension from UltraSPARC allows greater miss throughput. The UltraSPARC

Load Buffer is designed such that a load with an E-cache-miss blocks subsequent

load hits; these load-hits in turn block subsequent load misses. This tends to serialize

load-misses.

However, Prefetch misses do not block subsequent load hits. Hence prefetches can

be scheduled sufficiently far in advance of the associated Load (or Store) instruction,

without interfering with subsequent loads and stores.
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Prefetches appear as Loads that do not return data to a register. A prefetch request

that is sent to the ECU checks the E-cache for the block. If the Prefetch hits in the E-

cache, the operation will be complete; if it does not hit, the ECU requests that block

from the Memory Control Unit (MCU). When the MCU returns the requested data, it

is only written into the E-cache, not into the D-cache.

8.3.5.1 PREFETCH Behavior and Limitations

■ All PREFETCH instructions are enqueued on the load buffer, except as noted

below.

■ Some conditions, noted below, cause an otherwise supported PREFETCH to be

treated as a no-op and removed from the load buffer when it reaches the front of

the queue.

■ No PREFETCH will cause a trap except:

■ PREFETCH with fcn=5..15 causes an illegal_instruction trap, as defined in The
SPARC Architecture Manual, Version 9.

■ Watchpoint, as defined in Section A.5, Watchpoint Support on page 368.

■ Any PREFETCHA that specifies an internal ASI in the following ranges is not

enqueued on the load buffer and is not executed:

■ 40
16

..4F
16

, 50
16

..5F
16

, 60
16

..6F
16

, 76
16

, 77
16

■ The following conditions cause a PREFETCH{A} to be treated as a NOP:

■ PREFETCH with fcn=16..31, as defined in The SPARC Architecture Manual,
Version 9.

■ A data_access_MMU_miss exception

■ D-MMU disabled

■ For PREFETCHA, any ASI other than the following 04
16

, 0C
16

, 10
16

, 11
16

, 18
16

,

19
16

, 80
16

..83
16

, 88
16

..8B
16

■ Attempt to PREFETCH to a noncacheable page

■ fcn==16
16

..31
16

■ Alignment is not checked on PREFETCH{A}. The five least-significant address

bits are ignored.

8.3.5.2 Implemented fcn Values

Table 8-2 lists the supported values for fcn and their meanings.
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For more information, including an enumeration of the bus transaction that each fcn
value causes, see Section 14.4.5, PREFETCH{A} (Impdep #103, 117) on page 189.

8.3.6 Block Loads and Stores

Block load and store instructions work like normal floating-point load and store

instructions, except that the data size (granularity) is 64 bytes per transfer. See

Section 13.5.3, Block Load and Store Instructions on page 164 for a full description of

the instructions.

8.3.7 I/O (PCI or UPA64S) and Accesses with Side-

effects

I/O locations may not behave with memory semantics. Loads and stores may have

side-effects; for example, a read access may clear a register or pop an entry off a

FIFO. A write access may set a register address port so that the next access to that

address will read or write a particular internal registers, etc. Such devices are

considered order sensitive. Also, such devices may only allow accesses of a fixed

size, so store buffer merging of adjacent stores or stores within a 16-byte region will

cause an access error.

The UltraSPARC IIi MMU includes an attribute bit (the E-Bit) in each page

translation, which, when set, indicates that access to this page cause side effects.

Accesses other than block loads or stores to pages that have this bit set have the

following behavior:

■ Noncacheable accesses are strongly ordered with respect to each other

■ Noncacheable loads with the E-bit set will not be issued until all previous control

transfers (including exceptions) are resolved.

■ Store buffer compression is disabled for noncacheable accesses.

Table 8-2 PREFETCH{A} Variants

fcn Prefetch function Action

0 Prefetch for several reads
Generate DRAM read

if the desired line is not E-cache-resident
1 Prefetch for one read

4 Prefetch page

2 Prefetch for several writes Generate DRAM read

if the desired line is not E-cache-resident3 Prefetch for one write

5-15 reserved illegal-instruction trap

16-31 Implementation-dependent no-op
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■ Non-faulting loads are not allowed and will cause a data_access_exception trap

(with SFSR.FT = 2, speculative load to page marked E-bit).

■ A MEMBAR may be needed between side-effect and non-side-effect accesses

while in PSO and RMO modes.

8.3.8 Instruction Prefetch to Side-Effect Locations

UltraSPARC IIi does instruction prefetching and follows branches that it predicts

will be taken. Addresses mapped by the I-MMU may be accessed even though they

are not actually executed by the program. Normally, locations with side effects or

those that generate time-outs or bus errors will not be mapped by the I-MMU, so

prefetching will not cause problems. When running with the I-MMU disabled,

however, software must avoid placing data in the path of a control transfer

instruction target or sequentially following a trap or conditional branch instruction.

Data can be placed sequentially following the delay slot of a BA(,pt), CALL, or JMPL
instruction. Instructions should not be placed within 256 bytes of locations with side

effects. See Section 21.2.10, Return Address Stack (RAS) on page 335 for other

information about JMPLs and RETURNs.

8.3.9 Instruction Prefetch When Exiting RED_state

Exiting RED_state by writing 0 to PSTATE.RED in the delay slot of a JMPL is not

recommended. A noncacheable instruction prefetch may be made to the JMPL target,

which may be in a cacheable memory area. This may result in a bus error on some

systems, which will cause an instruction_access_error trap. The trap can be masked by

setting the NCEEN bit in the ESTATE_ERR_EN register to zero, but this will mask all

non-correctable error checking. To avoid this problem exit RED_state with DONE or

RETRY, or with a JMPL to a noncacheable target address.

8.3.10 UltraSPARC IIi Internal ASIs

ASIs in the ranges 46
16

..6F
16

and 76
16

..7F
16

are used for accessing internal

UltraSPARC IIi states. Stores to these ASIs do not follow the normal memory model

ordering rules. Correct operation requires the following:

■ A MEMBAR #Sync is needed after an internal ASI store other than MMU ASIs

before the point that side effects must be visible. This MEMBAR must precede the

next load or noninternal store. The MEMBAR also must be in or before the delay

slot of a delayed control transfer instruction of any type. This is necessary to

avoid corrupting data.
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■ A FLUSH, DONE, or RETRY is needed after an internal store to the MMU ASIs

(ASI 50
16

..52
16

, 54
16

..5F
16

) or to the IC bit in the LSU control register before the

point that side effects must be visible. Stores to D-MMU registers other than the

context ASIs may also use a MEMBAR #Sync . One of these instructions must

precede the next load or noninternal store. They also must be in or before the

delay slot of a delayed control transfer instruction. This is necessary to avoid

corrupting data.

8.4 Load Buffer
The load buffer allows the load and execution pipelines in UltraSPARC IIi to be

decoupled; thus, loads that cannot return data immediately will not stall the pipeline

but, rather, will be buffered until they can return data. For example, when a load

misses the on-chip D-cache and must access the E-cache, the load will be placed in

the load buffer and the execution pipelines will continue moving as long as they do

not require the register that is being loaded. An instruction that attempts to use the

data that is being loaded by an instruction in the load buffer is called a ‘use’

instruction.

The pipelines are not fully decoupled, because UltraSPARC IIi still supports the

notion of precise traps, and loads that are younger than a trapping instruction must

not execute, except in the case of deferred traps. Loads themselves can take precise

traps, when exceptions are detected in the pipeline. For example, address

misalignment or access violations detected in the translation process will both be

reported as precise traps. However, when a load has a hardware problem on the

external bus (for example, a parity error), it will generate a deferred trap since

younger instructions, unblocked by the D-cache miss, could have been retired and

modified the machine state. This may result in termination of the user thread or

reset. UltraSPARC IIi does not support recovery from such hardware errors, and

they are fatal. See Chapter 16, Error Handling.

8.5 Store Buffer
All store operations (including atomic and STA instructions) and barriers or store

completion instructions (MEMBAR and STBAR) are entered into the Store Buffer.
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8.5.1 Stores Delayed by Loads

The store buffer normally has lower priority than the load buffer when arbitrating

for the D-cache or E-cache, since returning load data is usually more critical than

store completion. To ensure that stores complete in a finite amount of time as

required by SPARC-V9, UltraSPARC IIi eventually will raise the store buffer priority

above load buffer priority if the store buffer is continually locked out by subsequent

loads (other than internal ASI loads). Software using a load spin loop to wait for a

signal from another processor following a store that signals that processor waits for

the store to time out in the store buffer. For this type of code, it is more efficient to

put a MEMBAR #StoreLoad between the store and the load spin loop.

8.5.2 Store Buffer Compression

Consecutive non-side-effect stores may be combined into aligned 8-byte entries in

the store buffer to improve store bandwidth. Cacheable stores can only be

compressed with adjacent cacheable stores, Likewise, noncacheable stores can only

be compressed with adjacent noncacheable stores. In order to maintain strong

ordering for I/O accesses, stores with the side-effect attribute (E-bit set) cannot be

combined with any other stores.

The memory control unit can also compress consecutive 8-byte stores into single 16-

byte UPA64S transactions.

8.6 Use of CP==1, CV==0 to Bypass the D-
cache
The D-cache can return stale data if CP==1, CV==0 is used to bypass the cache, after

use of CP==1 and CV==1, for loads and stores to a particular address.

The D-cache should be flushed after mixing use of any CP/CV settings for a

physical address, including cacheable (DRAM) and noncacheable (IO) physical

addresses. The term “noncacheable” in the user’s manual does not refer to “non-D-

cacheable”. The term “virtually noncacheable” does refer to the “non-D-cacheable”

CP==1, CV==0 case.

CP==1, CV==1: Cacheable, Virtually-cacheable

CP==1, CV==0: Cacheable, Virtually-noncacheable

CP==0, CV==1: Not Used
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CP==0, CV==0: Noncacheable

Only two entries in the D-cache need be flushed for each physical address

{VA[13]==0,PA[12:0]} and {VA[13]==1,PA[12:0]}.

When a load with a physical address occurs, using ASI=0x14 (ASI_PHYS_USE_EC),

causing CP==1 and CV==0, and the address hits in the D-cache, the data can come

from the D-cache instead of from the E-cache .

Note that the manual has a caveat that is similar to this case: If CP==0 and CV==0,

which indicates a “noncacheable” access, and the address is in the D-cache, data can

be returned from the D-cache. Section 3.1.1.2, Data Cache (D-cache) on page 20 warns

that the address should be flushed from the D-cache before changing its mapping.

Similarly, if CP==1, and CV==0, and the data is in the D-cache, data may be returned

from the D-cache. However there are corner cases where it may not be returned.

For instance, with ASI_PHYS_USE_EC, the physical PA[13] is used to index the D-

cache, where VA[13] would ordinarily be used. So the data might not be correctly

returned if the real data were in VA[13]==0, but PA[13]==1. Ordinarily the rest of the

PA bits will show a difference, so there is a miss in the D-cache, and a correct

reference to the E-cache. This takes advantage of knowing that a valid PA can only

exist in one VA[13] mapping at a time in the D-cache. Note that this depends on how

the addresses were mapped earlier, when the line was installed in the D-cache.

This ASI_PHYS_USE_EC load hitting on the D-cache behavior is not defined or

tested, so software should not rely on it.

When a store is done with a physical address, using ASI=0x14 (ASI_PHYS_USE_EC),

causing CP==1 and CV==0, and the address hits in the D-cache D-cache, the D-cache

apparently does get updated. However, this behavior is not verified or guaranteed.

Again, software should make sure the physical address is not in the D-cache, before

accessing that address using CP==1, CV==0, whether by a TLB mapping, or using

one of the special ASIs.
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CHAPTER 9

PCI Bus Interface

9.1 Introduction
This chapter describes the PCI Bus Interface Module (PBM) of UltraSPARC IIi.

The PBM is a 0–66 MHz 32-bit host-PCI bridge. The Advanced PCI Bridge (APB)

provides an external connection to two 32-bit 0-33 MHz PCI busses. APB forwards

transactions in both directions, between these primary and secondary PCI busses.

Main features:

■ Operates with a 2x PCI clock. (40–132 MHz)

■ Single 64-byte DMA read/write buffers, single 64-byte PIO read/write buffer

■ Little-endian to the bus and internal configuration space

9.1.1 Supported PCI features:
■ 64-bit Addressing (Dual Address Cycle) for DMA bypass

■ Required adapter and host-bridge configuration space header registers

■ Fast Back-to-Back cycles as a DMA target

■ Arbitrary byte enables (Consistent DMA)

■ Ability to generate memory, I/O, and configuration read and write cycles

■ Ability to generate special cycles

■ Ability to receive memory cycles

■ Peer-to-peer DMA on a single segment
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9.1.2 Unsupported PCI features:
■ Exclusive Access to main memory (LOCK)

■ Peer-to-peer transfers between bus segments

■ Cache support

■ Cache-line Wrap Addressing Mode

■ Fast Back-to-Back cycles as a PIO master

■ Address/Data Stepping

■ Subtractive decode

■ Any DOS compatibility features

9.2 PCI Bus Operations

9.2.1 Basic Read/Write Cycles

Read and write transactions occur as specified in the PCI specification.

When a DMA burst transfer goes over a line (64 B) boundary, UltraSPARC IIi

generates a disconnect. This disconnect normally causes the master device to

reattempt the transaction at the address of the next untransferred data.

UltraSPARC IIi is capable of generating arbitrary byte enables on PIO writes. It can

also generated aligned PIO reads of 1, 2, 4, 8, 16, and 64 bytes. A target device is

required to drive all data bytes on reads, but is not required to support arbitrary

byte enables on writes and may terminate the cycle with a target-abort if an illegal

byte enable combination is signalled. UltraSPARC IIi supports arbitrary byte enables

for all DMA transactions.

The PBM can accept Dual-Address-Cycles, using the 64-bit address in bypass mode.

UltraSPARC IIi does not generate 64-bit PIO cycles or PIOs with DACs.

9.2.2 Transaction Termination Behavior
■ Retries: For PIO transactions, a count is kept of the number of retries for a given

transaction. When this value exceeds the Retry Limit Count the PBM ceases to

attempt the transaction and issues an interrupt to the processor. The Retry Limit

Count is fixed at 512.
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■ Disconnects: The difference between a disconnect and a retry is that there is no

data transferred during a retry; otherwise, the signalling is the same. No count is

kept of disconnects. The transaction is restarted with the next untransferred data.

■ Master-aborts: A master-abort typically happens when no device responds to the

PIO address.

■ Target-aborts: A target-abort may be received for a variety of error conditions. All

cases for which UltraSPARC IIi may signal a target-abort are given in Chapter 16,

Error Handling.

9.2.3 Addressing Modes

Only the Linear Incrementing addressing mode is supported. Reserved and Cache

Line Wrap address mode accesses are disconnected after the first data phase,

allowing the master to complete the transfer one data word at a time.

9.2.4 Configuration Cycles

UltraSPARC IIi generates both Type 0 and Type 1 configuration accesses. The type

generated depends on the bus number field within the configuration address.

UltraSPARC IIi hardwires its Bus Number to 0. See Section 19.3.1, PCI Configuration
Space on page 289 for details.

Compatibility Note – If Configuration cycles are generated with compressed

(E-bit==0) byte or halfword stores, or with random byte enable patterns using the

PSTORE instruction, UltraSPARC IIi does not guarantee that AD[1:0] points to the

first byte with a BE asserted.

Also, while not addressed by the PCI 2.1 specification UltraSPARC IIi can generate

multi-databeat configuration reads and writes.

9.2.5 Special Cycles

UltraSPARC IIi ignores Special Cycles and does not generate them.
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9.2.6 PCI INT_ACK Generation

UltraSPARC IIi can generate an interrupt acknowledge in response to a PCI

Interrupt. See Section 19.3.4, PCI INT_ACK Generation on page 309 for the method of

generating this transaction.

9.2.7 Exclusive Access

UltraSPARC IIi does not implement locking and the LOCK# signal is not connected.

Any exclusive access proceeds as if it were a non-exclusive access.

9.2.8 Fast Back-to-Back Cycles

UltraSPARC IIi is capable of handling Fast Back-to-Back DMA transactions as a

target device. The Fast Back-to-Back Capable bit in the Status register is hardwired

to ‘1’. It handles the master-based mechanism (as required) and is capable of

decoding the target-based mechanism as well. The address is checked and

UltraSPARC IIi does not reply to masters presenting an invalid address.

The specification requires that TRDY#, DEVSEL#, and STOP# be delayed by one

cycle unless this device were the target of the previous transaction. This delay causes

writes to be extended by a cycle but is hidden on reads.

There is little performance gain except for reads that follow writes, but support is

provided for third party devices that choose to implement this feature.

UltraSPARC IIi is not capable of generating Fast Back-to-Back PIO transactions and

does not implement the Fast Back-to-Back enable bit in the Command Register in the

configuration header.

A Fast Back-to-Back PIO would remove the idle cycle between two transactions to

the same target as long as the first transaction were a write. Alternately stated, it

would insert an idle cycle between transactions to different targets and after read

transactions. UltraSPARC IIi does not support this sequence.
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9.3 Functional Topics

9.3.1 PCI Arbiter

9.3.1.1 Arbitration Schemes

Two arbitration schemes are implemented in the UltraSPARC IIi and APB on-chip

PCI arbiters. The default condition is fair arbitration, where all enabled requests are

serviced in “round-robin” fashion. The second condition (enabled by the ARB_PRIO

bits in the PCI Control Register) gives higher priority to a specific request. This

allows the device attached to that pair to claim, at most, every other PCI transaction.

Additionally, a transaction that is Retried gets the highest priority the next time it

asserts its request. Only one request at a time is given this high priority. The high

priority remains in effect until the request is accepted without Retry.

9.3.1.2 Bus Parking

The ARB_PARK bit in the PCI Control Register causes the last GNT to remain

asserted when no other requests are asserted. This results in a saving of one clock

cycle for bursts of transactions from the same device.

9.3.2 PCI Commands

Table 9-1 lists the commands that the UltraSPARC IIi PBM generates.

Table 9-1 PCI Command Generation

Command C/BE# Generate? Notes

Interrupt Acknowledge 0000 Yes

Special Cycle 0001 Yes

I/O Read 0010 Yes

I/O Write 0011 Yes

Reserved 0100 No

Reserved 0101 No
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Table 9-2 lists the commands to which UltraSPARC IIi responds as a Target.

Memory Read 0110 Yes Perform read access, no prefetch

Memory Write 0111 Yes Perform write access

Reserved 1000 No

Reserved 1001 No

Configuration Read 1010 Yes

Configuration Write 1011 Yes

Memory Read Multiple 1100 Yes Perform read with 8 byte prefetch

Dual Address Cycle 1101 No

Memory Read Line 1110 Yes Perform read with 64 byte prefetch

Memory Write &

Invalidate
1111 No

Table 9-2 PCI Command Response

Command C/BE# Response

Interrupt Acknowledge 0000 Ignored

Special Cycle 0001 Ignored

I/O Read 0010 Ignored

I/O Write 0011 Ignored

Reserved 0100 Ignored

Reserved 0101 Ignored

Memory Read 0110 Perform read access. 64-byte prefetch if to memory;

16-byte prefetch if to UPA64S

Memory Write 0111 Perform write access

Reserved 1000 Ignored

Reserved 1001 Ignored

Configuration Read 1010 Ignored

Configuration Write 1011 Ignored

Memory Read Multiple 1100 Perform read with 64 byte prefetch

Table 9-1 PCI Command Generation (Continued)

Command C/BE# Generate? Notes
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Note – All PCI DMA reads to UPA64S address space cause 64-byte read transactions

on the UPA64S. This action may cause unwanted prefetch effects. All DMA writes to

UPA64S address space cause a succession of 1-16-byte UPA64S writes.

9.4 Little-endian Support

9.4.1 Endian-ness

The UltraSPARC IIi internal, UPA64S, and DRAM system interfaces are big-endian,

That is, the address of a word (or quadword, doubleword, or halfword) is the

address of its most significant byte. The PCI bus is little-endian, where the word (or

quadword, doubleword, or halfword) address is the address of the least significant

byte. See the section Addressing Conventions in Chapter 6 of The SPARC Architecture
Manual, Version 9 for a detailed explanation of this topic. To route the byte lanes

logically correctly, the UltraSPARC IIi main internal data busses are connected to the

PCI bus in a “byte-twisted” fashion. In particular, UltraSPARC IIi data bits [63:56]

are connected to the PCI data bits [7:0], UltraSPARC IIi bits [55:48] map to PCI bits

[15:8], an so on. The PBM internal control registers, which are big-endian, are byte-

twisted again internally.

This implementation causes all byte-sized PIOs and byte-stream DMA to be handled

correctly. It, along with other features built into SPARC V9 processors, allows all PIO

and DMA activity to and from the PCI bus to take place correctly.

Dual Address Cycle 1101 Bypass access

Memory Read Line 1110 Perform read with 64 byte prefetch

Memory Write &

Invalidate
1111 Equivalent to Memory Write command

Table 9-2 PCI Command Response (Continued)

Command C/BE# Response
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9.4.2 Big- and Little-endian regions

9.4.2.1 Address Space

The UltraSPARC IIi 8-gigabyte address space consists of several regions. The lower

16 MB, from 0x1FE.0000.0000 to 0x1FE.00FF.FFFF allows access to internal registers

within UltraSPARC IIiIO This portion of the address space is big-endian and there is

no byte twisting done for accesses within this range.

There is a large region of unused/reserved address space from 0x1FE.0202.0000 to

0x1FE.FFFF.FFFF. Reads to this address range return zero and writes are simply

ignored.

The remaining address regions are little-endian. The upper 4 gigabytes, from

0x1FF.0000.0000 to 0x1FF.FFFF.FFFF are used for accesses to PCI bus memory space.

The 16-megabyte region from 0x0.0100.0000 to 0x0.01FF.FFFF is used for access to

PCI configuration space, and there are two 64-kilobyte regions from 0x0.0200.0000 to

0x0.02FF.FFFF that are used to access PCI bus I/O space. All of these address ranges

are little-endian, and all accesses to them use byte twisting.

Note – This means that any configuration and status registers in the APB ASIC

must be accessed with little-endian loads and stores, or they will appear byte

twisted. All configuration and status registers within UltraSPARC IIi are accessed

with big-endian loads and stores, except for those used to access the PCI

configuration space.

If the UltraSPARC IIi PCI bridge ASIC provides the path to the system PROM, the

PROM is found between offsets 0x1FF.F000.0000 and 0x1FF.F0FF.FFFF. This range

falls in the upper 4-gigabyte region, that UltraSPARC IIi considers as little-endian,

and subjects to byte-twisting. In spite of the byte-twisting, and because of the way

the PROM is programmed, this PROM appears to the system correctly as a big-

endian device. An explanation of this mechanism is detailed in succeeding sections.

9.4.2.2 Byte Twisting

Figure 9-1 shows how data is manipulated from a 32-bit little-endian PCI bus to 64-

bit big-endian UltraSPARC IIi busses.
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Figure 9-1 UltraSPARC IIi Byte Twisting
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9.4.3 Specific Cases

9.4.3.1 PIOs

Normal

All byte sized PIOs work correctly. The byte lane used for a given address on the

big-endian side is directly wired to the byte lane used for that address on the little-

endian side.

Byte twisting is insufficient for any access larger than a byte. For example, if the 32-

bit value 0x12345678 is written to a 32-bit register on a PCI device, the PCI device

sees the value 0x78563412 instead.

The UltraSPARC core has special support to correct this By either marking the page

containing the PCI register as little-endian in the processor’s MMU, or by using one

of the little-endian ASIs, UltraSPARC IIi will alter its ordering of the bytes so that the

PCI device correctly sees 0x12345678.

PROM accesses

Instruction fetches from the PROM are a special case because they are unable to use

the little-endian features. PROM instruction fetches, like all instruction fetches, are

always done in big-endian mode.

In UltraSPARC IIi systems, the PROM could be a byte device on an 8 byte bus,

controlled by an integrated IO controller (or SuperIO) IC. This SuperIO could stack

the bytes in little-endian format, such that the byte at address 0 in the PROM

appears on PCI bus data bits 7:0, byte 1 on bits 15:8, and so on. To function correctly

with the byte-twisting of UltraSPARC IIi, and in the absence of any other byte

reordering by the processor, the PROM must be programmed in big-endian order –

byte 0 in the PROM should be the MSB of the first instruction.

Because of this required byte programming ordering for the PROM, data accesses to

the PROM should not use the little-endian byte reordering of the processor, even

though the PROM is located within the little-endian PCI space.

If only big-endian accesses are made to the PROM, PIOs of any size will return data

with the correct byte order.

Note that use of a SuperIO IC may require different ordering of the bytes in the

PROM to make UltraSPARC IIi references work correctly.
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9.4.3.2 DMA

Data streams

DMA of byte streams works correctly without further intervention. A PCI device

that receives the byte stream (01,02,03,04) packs the bytes into a 32-bit register

starting with the LSB of the register, that is, 0x04030201. After transferring to

memory on the PCI bus, the value 0x01 occurs at the lowest memory location, as

required.

After byte twisting, the value given to the UltraSPARC core would be 0x01020304.

Since the MSB is the lowest memory location, the value 0x01 is still stored at the

lowest memory location, as required.

Descriptors

Byte twisting is insufficient for any access larger than a byte, just as for PIOs. With

byte twisting used alone, a DMA descriptor access would retrieve the wrong byte

ordering. For example, if the value 0x12345678 were set up as an address in a

descriptor, the PCI device interprets this value as 0x78563412 instead.

To avoid this, the UltraSPARC core little-endian features are used again. Processor

loads and stores to the descriptors should be specified as little-endian. This will re-

order the bytes in memory so that after byte twisting, the PCI device sees the correct

value.
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CHAPTER 10

UltraSPARC IIi IOM

The IO Memory Management Unit (IOM) performs virtual to physical address

translation during DVMA cycles. PCI master devices provide a 32-bit virtual address

at the beginning of a DVMA transfer, which the IOM translates into 34 bits of

physical address.

The UltraSPARC IIi CPU contains 16-entry fully-associative Translation Lookaside

Buffers (TLBs) and a a one-level, software-managed data structure called a

Translation Storage Buffer(TSB). The TLB stores recently used translation

information. Hardware performs a TSB lookup (also known as hardware table walk)

when the translation cannot be found in the TLB. If a TSB lookup fails to locate a

valid mapping, the IOM returns an error to the PCI master device.

The IOM supports alternative page sizes of 8K and 64K. Mixed page sizes can be

used in the system but the TSB table lookup assumes the smaller page size. No page

overlapping is allowed. Operation in Bypass mode allows devices with their own

translation facility to bypass IOM.
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10.1 Block Diagram

Figure 10-1 IOM Top Level Block Diagram

10.2 TLB Entry Formats
A TLB entry consists of TLB tag in the CAM and TLB data in the RAM.

10.2.1 TLB CAM Tag

Figure 10-2 TLB CAM Tag Format

Figure 10-2 shows the bit fields of the TLB CAM Tag. These assignments are

explained in Table 10-1.
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For an IOM miss, if the returned TTE data has Valid = 0, or lacks the appropriate

write privilege, or has an uncorrectable ECC error (UE), the IOM adjusts the

ERR_STS[1:0] to reflect the error, and sets ERR == 1 and Valid == 1.

The error is reported by the DMA master as a Target Abort. The PBM will also log its

target-abort generation with the STA bit in the PCI Configuration Space Status

Register.

The Valid bit for the entry is set, regardless of the state of the valid bit in the TTE

data, so the DMA transaction does not cause another IOM miss.

Software is responsible for flushing the IOM entry when it rectifies the missing TSB

entry or bad DMA address.

If a VA hit results in a protection error, the IOM state is not modified.

10.2.2 TLB RAM Data

Figure 10-3 TLB RAM Data Format

Table 10-1 Description of TLB Tag Fields

Field Bits Description Type

ERRSTS 24:23 Error Status:

00 = Reserved

01 = Invalid Error

10 = Reserved

11 = UE Error (on TTE read)

RW

ERR 22 When set to 1, indicates that there is an error

associated with this entry

RW

W 21 Writable; when set, the page mapped by this TLB

has write permission.

RW

S 20 Stream; Ignored by UltraSPARC IIi RW

SIZE 19 0 means 8K page, 1 means 64K page RW

VA [31:13] 18:0 19-bit VPN (Virtual Page Number) RW

PA[33:13]

0

C

2829

V

30

U 0s or 1s

27:21 20
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10.3 DMA Operational Modes
There are three different operational DMA IOM modes: translation, bypass, and

pass-through. The applicable mode depends upon:

■ The value of the “MMU_EN” bit of the IOM Control Register

■ The PCI addressing mode used: DAC using 64 bits or SAC using 32 bits

■ The PCI virtual address – bits 31:29 in SAC mode or bits 63:50 in DAC mode

The Target Address Space Register is used to decide if AD[31:29] is a hit.

Table 10-2 TLB Data Format

Field Bits Description Type

V 30 Valid bit; when set, the TLB data field is

meaningful

RW

U 29 Used bit; affects the LRU replacement. RW

C 28 Cacheable bit; 1=Cacheable access; 0=Non-

cacheable.

RW

PA[40:34] 27:21 Not stored; all 1s if Noncacheable; all 0s if

cacheable.

R

PA[33:13] 20:0 21-bit physical page number RW

Table 10-3 PCI DMA Modes of Operation

Mode ad[31:29] MMU_EN Addr<63:50> Result

SAC miss X N/A PCI peer-to-peer
(Ignored by UltraSPARC IIi)

SAC hit 0 N/A Pass-through

SAC hit 1 N/A IOM Translation (DMA)

DAC X X
0x0000-

0x3FFE

Ignored by UltraSPARC IIi

DAC X X 0x3FFF Bypass (DMA)
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10.3.1 Translation Mode

The PBM block initiates the translation by providing a 32-bit virtual address. The

IOM hardware performs the following actions in order, beginning with a TLB

lookup, until a valid mapping or an error results.

1. If the lookup results in TLB hit, the IOM returns a 34 bit physical address.

2. If a TLB miss occurs, hardware automatically starts a TSB lookup.

3. If the TSB lookup locates a valid mapping for the virtual page, information in the

TSB entry is loaded into the TLB and translation continued.

4. If the TSB lookup results in a miss, an error is returned to the PBM.

The virtual address consists of two fields: virtual page number and page offset. Page

offset is from virtual address to physical address. The conversion of virtual address

to physical address for page sizes 8K and 64K is shown below.

Figure 10-4 Virtual to Physical Address Translation for 8K Page Size

Figure 10-5 Virtual to Physical Address Translation for 64K Page Size
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10.3.2 Bypass Mode

The IOM allows PCI devices to have their own MMU and bypass the IOM supported

by the system. A PCI device is operating in bypass mode if all conditions in the last

row in Table 10-3 are met. In this mode, the physical address

PA[33:0] = PCI_ADDR[33:0].

Figure 10-6 Physical Address Formation in Bypass Mode (8K and 64K)

A PCI device operating in bypass mode has direct access to the entire physical

address space. Bit [34] of PCI_ADDR indicates whether the PCI device is accessing

the coherent space, where (PA[34] = 0), or the UPA64S or IO space, where

(PA[34] = 1).

10.3.3 Pass-through Mode

The IOM operates in pass-through mode if all conditions listed in the first row in

Table 10-3 are met. Pass-through mode allows access to the coherent address space

(DRAM) only. Higher bits of physical address are padded with 0.

Figure 10-7 Physical Address Formation in Pass-through Mode (8K and 64K)
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10.4 Translation Storage Buffer
The Translation Storage Buffer, or TSB, is a translation table in memory. It contains

one-level mapping information for the virtual pages. IOM hardware looks up this

table if a translation cannot be found in the TLB. A TSB entry is called Translation

Table Entry, or TTE, and is eight bytes long.

The system.supports several TSB table sizes and specifies the size with the TSB_SIZE

field of the IOM Control Register. The possible table sizes are 1K, 2K, 4K, 8K, 16K,

32K, 64K and 128K entries (not bytes) which supports DMA address space of 8M to

1G for an 8K page, and 64K to 2G for a 64K page (128K and 64K TSB sizes are not

supported with a 64K page). Software must set up the TSB before it allows

translation to start.

10.4.1 Translation Table Entry

Translation Table Entries (TTE) contain translation information for virtual pages. The

IOM hardware reads one TTE during a table walk and stores it in the TLB. A TTE

entry has valid information only when the DATA_V bit is set. Table 10-4 shows the

contents of the TTE.

TTE data is stored in main memory, in the software-managed TSB. All other bits are

reserved.

Table 10-4 TTE Data Format

Field Bits Description

DATA_V <63> Valid bit (1 = TTE entry has valid mapping)

DATA_SIZE <61> Page size of the mapping (0 = 8K; 1 = 64K)

STREAM <60> Stream bit (1 = streamable page; 0 = consistent page)

LOCALBUS <59> Local bus bit; not used

DATA_SOFT_2 <58:51> Reserved for software use

DATA_PA <40:13> Contains bits <33:13> of physical address; bits 15:13 are not

used for 64K page; bits <40:34> are not used and implied to be

1 if noncacheable, 0 if cacheable.

DATA_SOFT <12:7> Reserved for software use

CACHEABLE <4>
Cacheable (1 = cacheable page, 0 = non-cacheable page); not

used

DATA_W <1> Set if this page is writable
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10.4.2 TSB Lookup

During the TSB lookup, the physical address for the TTE entry is formed based on

the following information.

■ Base address of the TSB table

■ Page size assumed during TSB lookup (as specified by the TBW_SIZE bit in IOM

Control Register)

■ TSB table size

The TSB Base Address Register contains the physical address of the first TTE entry

in the TSB table. The lower order 13 bits of this register are all zeros because the TSB

table must be aligned on an 8K boundary regardless of TSB size. Physical address for

an entry in TSB table is formed by adding the base address and an offset generated

as shown in Table 10-5. The lower order three bits of the offset are set to 0x0 because

each TTE entry is eight bytes long.

Table 10-5 Offset to TSB Table

TSB Table Size N
Offset (8K TSB lookup
page size)
(TBW_SIZE=0)

Offset (64K TSB
lookup page size)
(TBW_SIZE=1)

1K 12 [VA<22:13>, 000] [VA<25:16>, 000]

2K 13 [VA<23:13>, 000] [VA<26:16>, 000]

4K 14 [VA<24:13>, 000] [VA<27:16>, 000]

8K 15 [VA<25:13>, 000] [VA<28:16>, 000]

16K 16 [VA<26:13>, 000] [VA<29:16>, 000]

32K 17 [VA<27:13>, 000] [VA<30:16>, 000]

64K 18 [VA<28:13>, 000] Not allowed
1

1. UltraSPARC IIi does not detect illegal combinations, and its behavior is unspecified
for such combinations. Software must ensure they do not occur.

128K 19 [VA<29:13>, 000] Not allowed
1
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Figure 10-8 Computation of TTE Entry Address

TBW_SIZE should be set to 0 if 8K page size or mixed (8K and 64K) page sizes is

used for DMA mappings. If mixed page sizes is used, each 64K page will use up 8

entries of TTE. Software must fill all 8 entries with the same information.

10.5 PIO Operations
To prevent random PIO operations from interfering with the internal states of the

translation, the IOM implements an interlocking mechanism. This mechanism is

described below.

■ No PIO operation to the IOM is allowed during address translation for any DMA

operation.

■ No PIO operation to the IOM is allowed during service of TLB Miss.

■ For a pending PIO request, the IOM begins the PIO operation once it completes

the current translation or TLB miss service. In other words

■ When the IOM is in idle state, it gives higher priority to PIO requests than

address translations.
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10.6 Translation Errors
Translation errors detected by the IOM are:

■ Invalid Errors: An invalid error happens if bit DATA_V in the TTE read by IOM

hardware indicates that the TTE is invalid (DATA_V = 0).

■ Protection Errors: A protection error is detected if the PCI device is doing DMA

write to a page which is mapped as read-only (bit W = 0 in the TLB tag or bit

DATA_W = 0 in the TTE).

■ TTE UE Error: If a correctable ECC error occurred during table walk, the MCU

will correct the error and the TTE received by the IOM is error free. If the ECC

error is uncorrectable, the received TTE will be invalid and the IOM will flag an

error.

Compatibility Note – There are no time out errors during table walk for the

UltraSPARC IIi IOM.

Compatibility Note – Bits in the DMA UE AFSR/AFAR are set, and the PA of the

TTE entry is saved on Invalid, Protection (IOM miss), and TTE UE errors. This

should aid debugging of software errors. If the Protection error had an IOM hit, the

translated PA from the IOM is saved instead of the PA of the TTE entry. This may

occur if a prior DMA read caused the IOM entry to be installed.

10.7 IOM Demap
After establishing mapping between virtual and physical addresses, implementing a

change must include a demap of this existing mapping before a new mapping can be

used by the device. Demap is required when taking down existing mapping to make

physical memory available to other virtual addresses, or when changing access

permission for a page.

During IOM demap, the PCI device is not allowed to use the page being demapped.

If a device attempts to access a page currently being demapped, unexpected results

may occur. The following events are needed to demap a page in the IOM.

■ TSB entry properly updated with new information

■ TLB flush performed with virtual page number
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TLB flush is initiated by writing to the IOM Flush Address Register with the

specified virtual page number. Match criteria are different for 8K and 64K page sizes.

Hardware performing the flush adjusts matching criteria based on the page size. The

matched entry in the TLB will be marked invalid.

10.8 Pseudo-LRU replacement algorithm

Compatibility Note – Prior PCI-based UltraSPARC systems implemented a true

LRU scheme.

The UltraSPARC IIi IOM uses a 1-bit LRU scheme, just like the UltraSPARC MMUs.

Each TLB entry has an associated “Valid,” and “Used” bit. On an automatic write to

the TLB after a hardware tablewalk, the TLB picks the entry to write based on the

following rules:

1. If any entry is not Valid, the first such entry is replaced (measuring from TLB

entry 0). If not, then:

2. If any entry is not Used, the first such entry is replaced (measuring from TLB

entry 0). If not, then:

3. All but one Used bit will be reset, then the process is repeated from Step 2 above.

All replacements can also be forced to a single entry.

10.9 TLB Initialization and Diagnostics
The IOM provides direct access to its internal resources, such as TLB Tag, TLB Data,

and Match Comparison Logic.

After power is turned on, the contents of the IOM are undefined. Before any DMA is

allowed to use the IOM, all TLB entries must be invalidated by writing 0s to them.
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CHAPTER 11

Interrupt Handling

11.1 Overview
The “Mondo” interrupt transfer mechanism for Sun4u systems reduces interrupt

service overhead by directly identifying the unique interrupter, without polling

multiple status registers.

SPARC V9 CPUs provide a dedicated set of registers to be used exclusively for

servicing interrupts. This eliminates the need for the processor to save its current

register set to service an interrupt, and then restore it later.

An interrupt packet contains a Mondo vector which has three double words

designed to assist the processor in servicing the interrupt.

Limitations of the Mondo vector approach include:

■ Only one interrupt request packet can be serviced at a time.

■ There is no priority level associated with Mondo vector interrupts; they are

serviced on a first come, first served basis.

This interrupt packet delivery now happens inside UltraSPARC IIi, rather than being

visible on the UPA interconnect. Since it is an internal dedicated uniprocessor path,

the flow control issues are simpler, and no interrupt retry is needed. UltraSPARC IIi

just causes one interrupt packet delivery at a time, after each acknowledgment by

software (clearing of the MVR_BUSY bit in the mondo receive trap handler).
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11.1.1 Mondo Dispatch Overview

UltraSPARC IIi’s PIE logic block is responsible for fielding interrupts from external

PCI sources, other external sources, and internal UltraSPARC IIi sources, loading the

mondo data receive registers, and signalling a mondo receive trap to the

UltraSPARC IIi pipeline.

External interrupt sources include 8 PCI slots on two separate PCI busses, the

onboard IO devices, a graphics interrupt, and the expansion UPA slot.

These interrupts are concentrated in an external ASIC and presented to the Mondo

Unit one at a time. This saves pins on UltraSPARC IIi.

Internal interrupt sources include ECC (errors) and PBM (PCI bus errors).

Each of the 8 PCI slots have 4 interrupts. However, with the current RIC chip, only

26 PCI interrupt requests can be connected.

The documentation assumes these interrupts are mapped to certain slots and INTA-

D wires. System designers are free to distribute the PCI interrupt wires differently,

but system software will need a new mapping of PCI slots, and related CSRs.

The CSRs and logic are implemented so that 32 PCI interrupts can be handled, if

required, using a new RIC IC.

11.2 Mondo Unit Functional Description

11.2.1 Mondo Vectors.

The Sun4u architectural specification states that interrupts are delivered to the

process potentially using three double words used to carry “pertinent” information.

Note that UltraSPARC IIi does not deliver interrupt data, only the Interrupt Number.

Reads of Mondo Data Receive registers 1 and 2 always return 0.
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Figure 11-1 Mondo Vector Format

The first data register contains the interrupt number (11 bits).

The interrupt number is specific to each interrupt source.

The CPU can process only one interrupt at a time. The Mondo Dispatch Unit is

responsible for remembering all interrupts that have arrived, and serializing them to

the CPU pipeline as traps. In addition, it tracks the state of pending DMA writes in

the APB and UltraSPARC IIi, and guarantees that all DMA writes completed on the

Secondary PCI buses (temporally) before a PCI interrupt request, complete to

memory before notifying the CPU.

11.2.1.1 DMA synchronization

After receiving a any external interrupt request, the PIE checks whether the two

SB_EMPTY lines are asserted, indicating no pending DMA writes inside external

APB ASICs.

If SB_EMPTY, the PIE then checks there are no pending DMA writes to the MCU.

If either empty indication were false, the PIE asserts SB_DRAIN, blocking arrival of

future DMA writes (some may arrive during the transmission time). The PIE then

waits for both SB_EMPTY assertions, and then further waits for the internal EMPTY

assertion. At this point the trap may be delivered, and all other pending interrupts

marked as “synchronized”, so that this process is again unnecessary when these

arrive at the CPU.

The PIE deasserts SB_DRAIN once it sees that DMA writes are successfully cleared

from both APB and the MCU/PBM.
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63 0

Data 1

63 0
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SB_DRAIN does not have to block any other external PCI activity, as long as the

SB_EMPTY and MCU/PBM DMA activity signals only reflect the status of pending

DMA writes.

There is no deadlock, since the MCU can only forward DMA writes to slave devices,

i.e. memory and UPA64S.

There is a read-only CSR available that causes this DRAIN-EMPTY protocol to be

activated by a noncacheable load. The load does not complete until the DRAIN-

EMPTY synchronization protocol completes. This allows software to synchronize

against outstanding DMA writes when there is a standard PCI bus bridge beyond

the APB. (First issue a PIO read to the far bus bridge, then after completion,

synchronize against APB and UltraSPARC IIi using the CSR read).

11.2.1.2 Interrupt Number Register

Generally, each interrupt source has an Interrupt Number Register (INR) associated

with it. The INR is either fully or partially software programmable and contains the

Interrupt Number and a valid bit which enables or disables the interrupt.

Figure 11-2 Full INR Contents

As shown the INR has 3 fields:

1. Valid bit (1 bit) - enables the interrupt when set to 1. Note that when an interrupt

is present and the valid bit is 0, the interrupt is prevented from being delivered.

However, once the valid bit is set to 1, the interrupt is delivered.

2. Target Processor (5 bits) - Read-only as 0 for UltraSPARC IIi.

3. Interrupt Number (11 bits)

For most interrupts, the Interrupt Number field is further broken down into two

separate fields: the Interrupt Group Number (IGN) and the Interrupt Number Offset.

The Interrupt Number Offset (INO) is a fixed value depending on the interrupt.

Compatibility Note – The IGN on UltraSPARC IIi is not programmable, and fixed

to 0x1F.
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Figure 11-3 Partial INR Contents

External Interrupts

External Interrupts refer to those interrupts that are generated external to

UltraSPARC IIi. All external sources for interrupts (PCI, OBIO, Graphics, and

UPA64S) go through the Interrupt Concentrator, a RIC ASIC.

Figure 11-4 Interrupt Concentrator

The Interrupt Concentrator simply samples all interrupts lines in round-robin

fashion, and presents one of them at a time to UltraSPARC IIi. To save package pins,

the 38 interrupt lines are simply encoded into a 6 bit value that passes to

UltraSPARC IIi.

■ PCI - UltraSPARC IIi supports 8 total PCI slots on two separate busses. Each PCI

slot has 4 interrupt lines. RIC only supports 26 of these.

■ On-board IO Devices (OBIO) - There are 12 interrupts from OBIO devices.

■ Graphics/UPA - 2 UPA slot interrupts are supported. These are the only two

interrupts that are of pulse type (see below). These are also the only interrupts

with the complete, fully software programmable, INR register. All other

interrupts have IGN and INO fields.
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11.2.1.3 Priority

Each interrupt has a priority associated with it. There are eight priority levels.

priority 8 is the highest and priority 1 is the lowest.

Priority is taken into account during interrupt arbitration. When multiple interrupts

are present, the highest priority interrupt is delivered first. If multiple interrupts

with the same priority are present, they are delivered in a round-robin fashion.

When all interrupts at the highest priority level are delivered, the next highest

priority level is processed.

11.3 Details
Three registers are loaded with data on each interrupt.

Table 11-1 Interrupt Receiver State Register

Level Number of Interrupts Source

8 6
Audio Record, Power Fail, Floppy, UE ECC, CE

ECC, PBM error

7 6
Kbd/mouse/serial, Serial Int, Audio Playback

PCI_A0_INTA#, PCI_A1_INTA#

6 6

PCI_B0_INTA#, PCI_B1_INTA#

PCI_B2_INTA#, PCI_B3_INTA#

PCI_A2_INTA#,PCI_A3_INTA#

5 7

OB Graphics, UPA64S Int

PCI_A0_INTB#, PCI_A1_INTB#

PCI_A0_INTC#, PCI_A1_INTC#

PCI_A2_INTB#

4 7

Keyboard Int, Mouse Int

PCI_B0_INTB#, PCI_B1_INTB#

PCI_B2_INTB#, PCI_B3_INTB#

PCI_A3_INTB#

3 6

SCSI Int, Ethernet Int

PCI_B0_INTC#, PCI_B1_INTC#

PCI_B2_INTC#, PCI_B3_INTC#

2 6

Parallel Port, Spare Int

PCI_A0_INTD#, PCI_A1_INTD#

PCI_A2_INTC#, PCI_A3_INTC#

1 6

PCI_B0_INTD#, PCI_B1_INTD#

PCI_B2_INTD#, PCI_B3_INTD#

PCI_A2_INTD#, PCI_A3_INTD#
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For UltraSPARC IIi, the upper 53 bits of the first interrupt word as well as the last

two 64 bit words are 0. The least significant 11 bits of the first word contain an

interrupt number (INR) which indicates the type of interrupting event. Software

uses the INR to index into a table which will typically supply the IRL, PC of the

interrupt service routine, and the arguments for the routine.

Two types of interrupt lines enter the concentrator: pulse and level. The distinction

between these is not visible to software but is explained for clarity.

Processing hardware treats these types of interrupts slightly differently. In the case

of the level interrupt, the concentrator takes the set of asserted level interrupt lines,

scans them and sends the code corresponding to that interrupt once per scan time.

Hardware within the UltraSPARC IIi detects the first assertion of a code, and causes

a state transition which queues an interrupt packet for the UltraSPARC IIi core.

A three state FSM transmits only one interrupt (provided it remains in the

PENDING state) regardless of how many interrupt codes it receives from a source. A

software write causes a transition to the IDLE state and “rearms” the FSM to accept

another interrupt.

Pulse interrupts are scanned and delivered to UltraSPARC IIi in a similar fashion;

however, only one code is given per pulse. The distinction is subtle, but very

important.

In the case of the existing interrupts, multiple interrupt sources can contribute to the

physical line signalling the interrupt, but there is no restriction which guarantees

that software knows that the interrupt line has properly deasserted.

In the case of pulse interrupts, this is required. There must be the equivalent of the

pending register in the device sourcing the interrupt. Writing to this register

guarantees that the interrupt line has been deasserted and therefore pulsed. As a

consequence, the state machine in the UltraSPARC IIi that corresponds to a pulse

interrupt has only two states.

Refer to Interrupt States on page 115 for a discussion of the state transitions.

11.4 Interrupt Initialization
All fields in all mapping registers listed above reset to 0. When the valid bit is

cleared, no interrupts are generated from that interrupt group.

Prior to receiving the first interrupt, software must program all mapping registers to

set INR.

Hardware guarantees that any transaction not in progress when the valid bit is

disabled does not proceed. Once the valid bit is enabled again, interrupts proceed.
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Note the valid bit only gates delivery of interrupts to the processor. It does not affect

other state transitions within the interrupt logic. An interrupt can be delivered

immediately upon first setting the valid bit if an interrupt condition exists.

11.5 Interrupt Servicing
Upon receipt of an interrupt, and assuming that PSTATE.IE=1, the UltraSPARC IIi

core will take a type 0x60 trap. The INR is used to index into a table which provides

three pieces of information: the IRL, the PC for the interrupt service routine, and the

arguments that need to be supplied. A SOFINT trap is issued to call the interrupt

service enqueue routine with this information.

When the interrupt service routine has performed all device level servicing, it calls

an operating system service to dequeue it. This OS service must write the clear

interrupt register for the appropriate interrupt source in order to re-enable interrupts

from that source. Information in the appropriate clear interrupt register should be

saved at the time of enqueue.

Note – The UltraSPARC IIi core uses PSTATE.IE to enable the generation of trap for

IRL[4:0]. Software should not disable PSTATE.IE for a long period of time when

servicing IRL[4:0].

11.6 Interrupt Sources
Interrupts in UltraSPARC IIi systems come from I/O devices, system error

conditions, and software. Examples of sources of I/O device interrupts are PCI slots

and the graphics interface. All I/O device interrupts are connected to the Interrupt

Concentrator (the RIC IC). The Interrupt Concentrator scans through its inputs and

encodes the interrupt into 6-bits for UltraSPARC IIi. UltraSPARC IIi maintains state

information on all of the interrupt sources and sends an interrupt packet to the

proper processor.

A unique interrupt number can be assigned to each interrupt signal line connected

to the Interrupt Concentrator. The interrupt number allows the software to identify

the interrupt source without polling devices. Excepting the serial ports and the

keyboard and mouse, system devices do not share interrupts.

There are no outgoing interrupts from the processor.
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11.6.1 PCI Interrupts

The 24 (6 slot) interrupts of prior PCI-based UltraSPARC systems are supported.

eight interrupts for two more slots are also supported, although RIC does not

support all the INT_NUM[4:0] encodings that are specified.

11.6.2 On-board Device Interrupts

Additional interrupts are available for use by non-PCI devices or integrated I/O

devices with more interrupt requests.

11.6.3 Graphic Interrupt

During the vertical blanking period, the UPA64S device can generate an interrupt

that is fed to the interrupt concentrator. Masking and clearing the UPA64S interrupt

is done through the UPA64S ASIC register.

11.6.4 Error Interrupts

Internal errors detected by the PCI logic in UltraSPARC IIi are generally reported

through interrupts. Error related information is recorded in UltraSPARC IIi internal

registers. Refer to Chapter 16, Error Handling for details.

Since the Advanced PCI Bridge (APB) can delay the completion of writes, it may

cause a late error report that it cannot complete the write on the secondary PCI

busses. APB logs status associated with this error, and signals an error (SERR) to

UltraSPARC IIi, which causes an interrupt.

11.6.5 Software Interrupts

The processor can send an interrupt to itself by setting bits in the UltraSPARC IIi

SOFTINT Register.
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11.7 Interrupt Concentrator
The Interrupt Concentrator logic is implemented in a Reset/interrupt/Clock

Controller (RIC) chip, part number STP2210QFP, to encode interrupts from various

sources into a 6-bit code that UltraSPARC IIi IO uses to identify the interrupt source.

The code assignment is transparent to the software. See Table 11-4.

Note – A value of all ones in INT_NUM indicates the idle condition.

The Interrupt Concentrator scans the interrupt inputs in fixed order. If there is no

active interrupt, the IDLE code is sent to UltraSPARC IIi. When it detects an active

interrupt, the Interrupt Concentrator changes the code from IDLE to one of the

active codes. It can deliver one interrupt code to UltraSPARC IIi every PCI clock

cycle with an initial latency of three clock cycles.

If multiple interrupts are active at the same time, the interrupts behind the current

one observe the latency due to the Interrupt Concentrator. The worst case latency

introduced by the Interrupt Concentrator is 50 PCI clock periods. This figure only

describes the latency from the assertion of an interrupt line to the receipt of the

interrupt code in the UltraSPARC IIi.

The Interrupt Concentrator does not keep track of any state for level interrupts. For

pulse interrupts, it tracks the assertion of the interrupt, and transmits only one code

for each assertion. Filter logic within the chip inhibits sending additional codes to

UltraSPARC IIi until the interrupt signal is deasserted. Table 11-2 lists the edge-

sensitive interrupts.

Level interrupt codes are sent to the UltraSPARC IIi whenever there is a currently

active interrupt. The UltraSPARC IIi must ignore incoming interrupt code when an

interrupt has been detected.

Table 11-2 INT Code Assignments for Edge-sensitive Interrupts

INT Code Interrupt Source

0x23 Graphics Interrupt

0x26 Spare edge sensitive interrupt
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11.8 UltraSPARC IIi Interrupt Handling

11.8.1 Interrupt States

Interrupts generated by I/O devices are of level or pulse type and are converted into

UPA interrupt packets. UltraSPARC IIi must track of the state of each level interrupt

to avoid reacting to an interrupt that the processor already received.

The three FSM states are IDLE, XMIT, and PEND. Pulse interrupts only use IDLE

and XMIT.

Note – The PEND state is to indicate that the interrupt was already sent to the

UltraSPARC IIi core and is not yet cleared. For the state machine to transition to this

state, the valid bit in the mapping register must be set. Interrupts for which the valid

bit is not set can transition to the XMIT state, but may not dispatch to the

UltraSPARC IIi core.

The interrupt state information can be obtained from Interrupt State Registers in

UltraSPARC IIi. Two bits in each register define the state of a interrupt. Please refer

to Section 19.3.3, Interrupt Registers on page 300 for a description of the registers.

11.8.2 Interrupt Prioritizing

If there are multiple interrupts in the XMIT state, their dispatch is based on a fixed

priority. Between interrupts of the same priority, round-robin priority arbitration is

applied.

Table 11-3 Interrupt State Transition Table

State Transition Description

IDLE -> XMIT An active interrupt is detected from Interrupt Concentrator.

XMIT -> PEND
The interrupt has been delivered to the processor. This transition

is present only for the three state version.

XMIT -> IDLE
The interrupt has been delivered to the processor. This transition

is present only for the two state version.

PEND -> IDLE The interrupt has been cleared by software.
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11.8.3 Interrupt Dispatching

UltraSPARC IIi maintains an interrupt number lookup table as shown in Table 11-4.

The Interrupt Vector Data Registers in UltraSPARC IIi are used to store the INR

created from this lookup.

After an Interrupt Vector Data Register is loaded with data, the UltraSPARC IIi core

must not receive another interrupt until it empties the register. Loading interrupt

data into an Interrupt Vector Data Register sets the Interrupt Vector Receive Register

“Busy” bit. This bit indicates to the UltraSPARC IIi IO that it must neither send

another interrupt to the UltraSPARC IIi core, nor load an Interrupt Vector Data

Register until this bit is cleared. The “Busy” bit can also be cleared by software.

After the UltraSPARC IIi core receives the interrupt, an interrupt trap is generated if

IE bit of PSTATE Register is set to 1. The trap type for the interrupt trap is 0x60.

Table 11-4 Summary of Interrupts

RIC pin Interrupt Int/Ext Source
INT_NUM
(from RIC)

Type Offset Priority

SB0_INTREQ7 PCI A Slot 0, INTA# Ext PCI 0x07 Level 0x00 7

SB0_INTREQ5 PCI A Slot 0, INTB# Ext PCI 0x05 Level 0x01 5

SB2_INTREQ5 PCI A Slot 0, INTC# Ext PCI 0x15 Level 0x02 5

SB0_INTREQ2 PCI A Slot 0, INTD# Ext PCI 0x02 Level 0x03 2

SB1_INTREQ7 PCI A Slot 1, INTA# Ext PCI 0x0F Level 0x04 7

SB1_INTREQ5 PCI A Slot 1, INTB# Ext PCI 0x0D Level 0x05 5

SB3_INTREQ5 PCI A Slot 1, INTC# Ext PCI 0x1D Level 0x06 5

SB1_INTREQ2 PCI A Slot 1, INTD# Ext PCI 0x0A Level 0x07 2

SB2_INTREQ7 PCI A Slot 2, INTA# Ext PCI 0x17 Level 0x08 6

(no RIC support) PCI A Slot 2, INTB# Ext PCI 0x38 Level 0x09 5

(no RIC support) PCI A Slot 2, INTC# Ext PCI 0x10 Level 0x0A 2

SB2_INTREQ2 PCI A Slot 2, INTD# Ext PCI 0x12 Level 0x0B 1

(no RIC support) PCI A Slot 3, INTA# Ext PCI 0x18 Level 0x0C 6

(no RIC support) PCI A Slot 3, INTB# Ext PCI 0x39 Level 0x0D 4

(no RIC support) PCI A Slot 3, INTC# Ext PCI 0x00 Level 0x0E 2

SB3_INTREQ2 PCI A Slot 3, INTD# Ext PCI 0x1A Level 0x0F 1

SB0_INTREQ6 PCI B Slot 0, INTA# Ext PCI 0x06 Level 0x10 6

SB0_INTREQ4 PCI B Slot 0, INTB# Ext PCI 0x04 Level 0x11 4

SB0_INTREQ3 PCI B Slot 0, INTC# Ext PCI 0x03 Level 0x12 3

SB0_INTREQ1 PCI B Slot 0, INTD# Ext PCI 0x01 Level 0x13 1

SB1_INTREQ6 PCI B Slot 1, INTA# Ext PCI 0x0E Level 0x14 6

SB1_INTREQ4 PCI B Slot 1, INTB# Ext PCI 0x0C Level 0x15 4
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SB1_INTREQ3 PCI B Slot 1, INTC# Ext PCI 0x0B Level 0x16 3

SB1_INTREQ1 PCI B Slot 1, INTD# Ext PCI 0x09 Level 0x17 1

SB2_INTREQ6 PCI B Slot 2, INTA# Ext PCI 0x16 Level 0x18 6

SB2_INTREQ4 PCI B Slot 2, INTB# Ext PCI 0x14 Level 0x19 4

SB2_INTREQ3 PCI B Slot 2, INTC# Ext PCI 0x13 Level 0x1A 3

SB2_INTREQ1 PCI B Slot 2, INTD# Ext PCI 0x11 Level 0x1B 1

SB3_INTREQ6 PCI B Slot 3, INTA# Ext PCI 0x1E Level 0x1C 6

SB3_INTREQ4 PCI B Slot 3, INTB# Ext PCI 0x1C Level 0x1D 4

SB3_INTREQ3 PCI B Slot 3, INTC# Ext PCI 0x1B Level 0x1E 3

SB3_INTREQ1 PCI B Slot 3, INTD# Ext PCI 0x19 Level 0x1F 1

SCSI_INT SCSI Ext OBIO 0x20 Level 0x20 3

ETHERNET_INT Ethernet Ext OBIO 0x21 Level 0x21 3

PARALLEL_INT Parallel Port Ext OBIO 0x22 Level 0x22 2

AUDIO_INT Audio Record Ext OBIO 0x24 Level 0x23 8

SB3_INTREQ7 Audio Playback Ext OBIO 0x1F Level 0x24 7

POWER_FAIL_INT Power Fail Ext OBIO 0x25 Level 0x25 8

KEYBOARD_INT Kbd/Mouse/Serial Ext OBIO 0x28 Level 0x26 7

FLOPPY_INT Floppy Ext OBIO 0x29 Level 0x27 8

SPARE_INT Spare Hardware Ext OBIO 0x2A Level 0x28 2

SKEY_INT Keyboard Ext OBIO 0x2B Level 0x29 4

SMOU_INT Mouse Ext OBIO 0x2C Level 0x2A 4

SSER_INT Serial Ext OBIO 0x2D Level 0x2B 7

reserved 0x2C-2D

Uncorrectable ECC Int ECC Level 0x2E 8

Correctable ECC Int ECC Level 0x2F 8

PCI Bus Error Int PBM Level 0x30 8

reserved Int 0x31-32

GRAPHIC1_INT Graphics Ext UPA64S 0x23 Pulse From INR 5

GRAPHIC2_INT Graphics Ext UPA64S 0x26 Pulse From INR 5

No interrupt Ext None 0x3F N/A N/A N/A

Table 11-4 Summary of Interrupts (Continued)
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11.9 Interrupt Global Registers
To expedite interrupt processing, a separate set of global registers is implemented in

UltraSPARC IIi. As described in Section 11.10.5, Interrupt Vector Receive on page 120,

the processor takes an implementation-dependent interrupt_vector trap after receiving

an interrupt packet. Software uses a number of scratch registers while determining

the appropriate handler and constructing the interrupt state.

UltraSPARC IIi provides a separate set of eight Interrupt Global Registers (IG) that

replace the eight programmer-visible global registers during interrupt processing.

When an interrupt_vector trap is taken, the hardware selects the interrupt global

registers by setting the PSTATE.IG field. The PSTATE extension is described in

Section 14.5.9, PSTATE Extensions: Trap Globals on page 193. The previous value of

PSTATE is restored from the trap stack by a DONE or RETRY instruction on exit

from the interrupt handler.

11.10 Interrupt ASI Registers

Note – MEMBAR #Sync is generally needed after stores to interrupt ASI registers.

Caution – Using ASI 0x76/77/7E/7F with VA[40:39]==00 and a VA[15:0] matching

any of the PA[15:0] listed for the CSR addresses in noncacheable space, other than

0x00, 0x18, 0x20, 0x38, 0x40, 0x50, 0x60, or 0x70, can cause a load to return data, and

a store to modify, the corresponding CSR. The list of addresses is in the DMA Error
Registers on page 316.

11.10.1 Outgoing Interrupt Vector Data<2:0>

Name: Outgoing Interrupt Vector Data Registers (Privileged)

ASI_SDB_INTR_W (data 0): ASI== 0x77, VA<63:0>==0x40

ASI_SDB_INTR_W (data 1): ASI== 0x77, VA<63:0>==0x50

ASI_SDB_INTR_W (data 2): ASI== 0x77, VA<63:0>==0x60
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Data: Interrupt data

Compatibility Note – UltraSPARC IIi does not send interrupts to any devices. A

write to these registers has no effect.

Non-privileged access to this register causes a privileged_action trap.

11.10.2 Interrupt Vector Dispatch

Name: ASI_SDB_INTR_W (interrupt dispatch) (Privileged, write-only)

ASI: 0x77, VA<63:19>==0, VA<18:14>== target MID, VA<13:0>==0x70

UltraSPARC IIi does not send interrupts to any devices. A write to this register has

no effect.

A read from this ASI causes n data_access_exception trap.

Non-privileged access to this register causes a privileged_action trap.

11.10.3 Interrupt Vector Dispatch Status Register

Name: ASI_INTR_DISPATCH_STATUS (Privileged, read-only)

ASI: 0x48, VA<63:0>==0

NACK: Cleared at the start of every interrupt dispatch attempt; set when a dispatch

has failed.

BUSY: Set if there is an outstanding dispatch.

Table 11-5 Outgoing Interrupt Vector Data Register Format

Bits Field Use RW

<63:0> Data Data W

Table 11-6 Interrupt Dispatch Status Register Format

Bits Field Use RW

<63:2> Reserved — R

<1> NACK Always 0. R

<0> BUSY Always 0. R
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Compatibility Note – UltraSPARC IIi does not send interrupts to any devices. A

read of this register always returns zeros.

Writes to this ASI cause a data_access_exception trap.

Non-privileged access to this register causes a privileged_action trap.

11.10.4 Incoming Interrupt Vector Data<2:0>

Name: Incoming Interrupt Vector Data Registers (Privileged)

ASI_SDB_INTR_R (data 0): ASI== 0x7F, VA<63:0>==0x40

ASI_SDB_INTR_R (data 1): ASI== 0x7F, VA<63:0>==0x50

ASI_SDB_INTR_R (data 2): ASI== 0x7F, VA<63:0>==0x60

Data: Interrupt data

Compatibility Note – UltraSPARC IIi only supports the interrupt data that were

present in prior UltraSPARC-based systems; that is, bits 10:0 (INR) of

ASI_SDB_INTR(0). All other bits are read as 0.

Non-privileged access to this register causes a privileged_action trap

11.10.5 Interrupt Vector Receive

Name: ASI_INTR_RECEIVE (Privileged)

ASI: 0x49, VA<63:0>==0

Table 11-7 Incoming Interrupt Vector Data Register Format

Bits Field Use RW

<63:0> Data Data R
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BUSY: This bit is set when an interrupt vector is received.

MID<4:0>: Module ID of interrupter. Always 0 on UltraSPARC IIi.

Note – The BUSY bit must be cleared by software writing zero.

The status of an incoming interrupt can be read from ASI_INTR_RECEIVE. The

BUSY bit is cleared by writing a zero to this register.

Non-privileged access to this register causes a privileged_action trap.

11.11 Software Interrupt (SOFTINT) Register
In order to schedule interrupt vectors for later processing, each processor can send

signals to itself by setting bits in the SOFTINT Register.

SOFTINT: When set, bits<15:1> cause interrupts at levels IRL<15:1> respectively.

TICK_INT: When the TICK_CMPR’s INT_DIS field is cleared (that is, the TICK

interrupt is enabled) and the 63-bit TICK_Compare Register’s TICK_CMPR field

matches the TICK Register’s counter field, the TICK_INT field is set and a software

interrupt is generated. See also Section 14.1.8, TICK Register on page 179 and

Section 14.5.1, Per-Processor TICK Compare Field of TICK Register on page 191.

The SOFTINT register (ASR 16
16

) is used for communication from (TL > 0) Nucleus

code to (T=0) kernel code. Non privileged accesses to this register cause a

privileged_opcode trap. Interrupt packets and other service requests can be scheduled

Table 11-8 Interrupt Vector Receive Register Format

Bits Field Use RW

<63:6> Reserved — R

<5> BUSY Set when an interrupt vector is received RW

<4:0> MID<4:0> Always 0 R

Table 11-9 SOFTINT Register Format

Bits Field Use RW

<15:1> SOFTINT<15:1> When set, bits<15:1> cause interrupts at levels IRL<15:1>

respectively.

RW

<0> TICK_INT Timer interrupt RW
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in queues or mailboxes in memory by the nucleus, which then sets SOFTINT<n> to

cause an interrupt at level <n>. Setting SOFTINT<n> is done via a write to the

SET_SOFTINT register (ASR 14
16

) with bit <n> corresponding to the interrupt level

set. Note that the value written to the SET_SOFTINT register is effectively ORd into

the SOFTINT register. This action allows the interrupt handler to set one or more bits

in the SOFTINT register with a single instruction. Read accesses to the

SET_SOFTINT register cause an illegal_instruction trap. Non-privileged accesses to this

register cause a privileged_opcode trap. When the nucleus returns, if (PSTATE.IE=1)

and (PIL < n), the processor receives the highest priority interrupt IRL<n> of the

asserted bits in SOFTINT<15:0>.

The processor then takes a trap for the interrupt request, the nucleus sets the return

state to the interrupt handler at that PIL, and returns to TL0. In this manner, the

nucleus can schedule services at various priorities and process them according to

their priority.

When all interrupts scheduled for service at level n have been serviced, the kernel

writes to the CLEAR_SOFTINT register (ASR 15
16

) with bit n set, to clear that

interrupt. Note that the complement of the value written to the CLEAR_SOFTINT

register is effectively ANDd with the SOFTINT register. This allows the interrupt

handler to clear one or more bits in the SOFTINT register with a single instruction.

Read accesses to the CLEAR_SOFTINT register cause an illegal_instruction trap. Non

privileged write accesses to this register cause a privileged_opcode trap.

The timer interrupt TICK_INT is equivalent to SOFTINT<14> and has the same

effect.

Note – To avoid a race condition between the kernel clearing an interrupt and the

nucleus setting it, the kernel should reexamine the queue for any valid entries after

clearing the interrupt bit.

Table 11-10 SOFTINT ASRs

ASR
Value

ASR
Name/Syntax

Access Description

14
16

SET_SOFTINT W Set bit(s) in Soft Interrupt register

15
16

CLEAR_SOFTINT W Clear bit(s) in Soft Interrupt register

16
16

SOFTINT_REG RW Per-processor Soft Interrupt register
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CHAPTER 12

Instruction Set Summary

The UltraSPARC IIi CPU implements both the standard SPARC-V9 instruction set

and a number of implementation-dependent extended instructions. Standard

SPARC-V9 instructions are documented in The SPARC Architecture Manual, Version 9.

UltraSPARC IIi extended instructions are documented in Chapter 13, VIS™ and
Additional Instructions.”

Table 12-1 lists the complete UltraSPARC IIi instruction set. A check (✓) in the “Ext”

column indicates that the instruction is an UltraSPARC IIi extension; the absence of a

check indicates a SPARC-V9 core instruction. The “Ref” column lists the section

number that contains the instruction documentation. SPARC-V9 core instructions are

documented in The SPARC Architecture Manual, Version 9; UltraSPARC IIi extensions

are documented in this manual.

Note – The first printing of The SPARC Architecture Manual, Version 9 contains two

sections numbered A.31; the subsequent sections in Appendix A are misnumbered.

For convenience, Table 12-1 on page 123 of this manual follows this incorrect

numbering scheme. When The SPARC Architecture Manual, Version 9 is corrected,

Table 12-1 will be changed to match the correct numbering.

Table 12-1 Complete UltraSPARC IIi Instruction Set

Opcode Description Ext Ref

ADD (ADDcc) Add (and modify condition codes) V9, App.A
1

ADDC (ADDCcc) Add with carry (and modify condition codes) V9, App.A

ALIGNADDRESS Calculate address for misaligned data access ✓ Section 13.4.5

ALIGNADDRESSL Calculate address for misaligned data access (little-endian) ✓ Section 13.4.5

AND (ANDcc) And (and modify condition codes) V9, App.A

ANDN (ANDNcc) And not (and modify condition codes) V9, App.A
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ARRAY{8,16,32} 3-D address to blocked byte address conversion ✓
Section 13.4.1

0

Bicc Branch on integer condition codes V9, App.A

BLD 64-byte block load ✓
Section 13.4.1

0

BPcc Branch on integer condition codes with prediction V9, App.A

BPr Branch on contents of integer register with prediction V9, App.A

BST 64-byte block store ✓ Section 13.5.3

CALL Call and link V9, App.A

CASA Compare and swap word in alternate space V9, App.A

CASXA Compare and swap doubleword in alternate space V9, App.A

DONE Return from trap V9, App.A

EDGE{8,16,32}{L} Edge boundary processing {little-endian} ✓ Section 13.4.8

FABS(s,d,q) Floating-point absolute value V9, App.A

FADD(s,d,q) Floating-point add V9, App.A

FALIGNDATA Perform data alignment for misaligned data ✓ Section 13.4.5

FANDNOT1{s} Negated src1 AND src2 (single precision) ✓ Section 13.4.6

FANDNOT2{s} src1 AND negated src2 (single precision) ✓ Section 13.4.6

FAND{s} Logical AND (single precision) Section 13.4.6

FBPfcc Branch on floating-point condition codes with prediction V9, App.A

FBfcc Branch on floating-point condition codes V9, App.A

FCMP(s,d,q) Floating-point compare V9, App.A

FCMPE(s,d,q) Floating-point compare (exception if unordered) V9, App.A

FCMPEQ{16,32} Four 16-bit/two 32-bit compare; set integer dest if src1 = src2 ✓ Section 13.4.7

FCMPGT{16,32} Four 16-bit/two 32-bit compare; set integer dest if src1 > src2 ✓ Section 13.4.7

FCMPLE{16,32} Four 16-bit/two 32-bit compare; set integer dest if src1 <= src2 ✓ Section 13.4.7

FCMPNE{16,32} Four 16-bit/two 32-bit compare; set integer dest if src1 != src2 ✓ Section 13.4.7

FDIV(s,d,q) Floating-point divide V9, App.A

FdMULq Floating-point multiply double to quad V9, App.A

FEXPAND Four 8-bit to 16-bit expand ✓ Section 13.4.3

FiTO(s,d,q) Convert integer to floating-point V9, App.A

FLUSH Flush instruction memory V9, App.A

Table 12-1 Complete UltraSPARC IIi Instruction Set (Continued)

Opcode Description Ext Ref
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FLUSHW Flush register windows V9, App.A

FMOV(s,d,q) Floating-point move V9, App.A

FMOV(s,d,q)cc Move floating-point register if condition is satisfied V9, App.A

FMOV(s,d,q)r
Move floating-point register if integer register contents satisfy

condition
V9, App.A

FMUL(s,d,q) Floating-point multiply V9, App.A

FMUL8SUx16
Signed upper 8- × 16-bit partitioned product of corresponding

components
✓ Section 13.4.4

FMUL8ULx16
Unsigned lower 8- × 16-bit partitioned product of corresponding

components
✓ Section 13.4.4

FMUL8x16 8- × 16-bit partitioned product of corresponding components ✓ Section 13.4.4

FMUL8x16AL 8- × 16-bit lower α partitioned product of 4 components ✓ Section 13.4.4

FMUL8x16AU 8- × 16-bit upper α partitioned product of 4 components ✓ Section 13.4.4

FMULD8SUx16
Signed upper 8- × 16-bit multiply → 32-bit partitioned product of

components
✓ Section 13.4.4

FMULD8ULx16
Unsigned lower 8- × 16-bit multiply → 32-bit partitioned product

of components
✓ Section 13.4.4

FNAND{s} Logical NAND (single precision) ✓ Section 13.4.6

FNEG(s,d,q) Floating-point negate ✓ Section 13.4.6

FNOR{s} Logical NOR (single precision) ✓ Section 13.4.6

FNOT1{s} Negate (1’s complement) src1 (single precision) ✓ Section 13.4.6

FNOT2{s} Negate (1’s complement) src2 (single precision) ✓ Section 13.4.6

FONE{s} One fill (single precision) ✓ Section 13.4.6

FORNOT1{s} Negated src1 OR src2 (single precision) ✓ Section 13.4.6

FORNOT2{s} src1 OR negated src2 (single precision) ✓ Section 13.4.6

FOR{s} Logical OR (single precision) ✓ Section 13.4.6

FPACKFIX Two 32-bit to 16-bit fixed pack ✓ Section 13.4.3

FPACK{16,32} Four 16-bit/two 32-bit pixel pack ✓ Section 13.4.3

FPADD{16,32}{s} Four 16-bit/two 32-bit partitioned add (single precision) ✓ Section 13.4.2

FPMERGE Two 32-bit pixel to 64-bit pixel merge ✓ Section 13.4.3

FPSUB{16,32}{s} Four 16-bit/two 32-bit partitioned subtract (single precision) ✓ Section 13.4.2

FsMULd Floating-point multiply single to double V9, App.A

FSQRT(s,d,q) Floating-point square root V9, App.A

Table 12-1 Complete UltraSPARC IIi Instruction Set (Continued)

Opcode Description Ext Ref
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FSRC1{s} Copy src1 (single precision) ✓ Section 13.4.6

FSRC2{s} Copy src2 (single precision) ✓ Section 13.4.6

F(s,d,q)TO(s,d,q) Convert between floating-point formats V9, App.A

F(s,d,q)TOi Convert floating point to integer V9, App.A

F(s,d,q)TOx Convert floating point to 64-bit integer V9, App.A

FSUB(s,d,q) Floating-point subtract V9, App.A

FXNOR{s} Logical XNOR (single precision) ✓ Section 13.4.6

FXOR{s} Logical XOR (single precision) ✓ Section 13.4.6

FxTO(s,d,q) Convert 64-bit integer to floating-point V9, App.A

FZERO{s} Zero fill (single precision) ✓ Section 13.4.6

ILLTRAP Illegal instruction V9, App.A

IMPDEP1 Implementation-dependent instruction V9, App.A

IMPDEP2 Implementation-dependent instruction V9, App.A

JMPL Jump and link V9, App.A

LDD Load doubleword V9, App.A

LDDA Load doubleword from alternate space V9, App.A

LDDA 128-bit atomic load ✓ Section 13.6.1

LDDF Load double floating-point V9, App.A

LDDFA Load double floating-point from alternate space V9, App.A

LDDFA Zero-extended 8-/16-bit load to a double precision FP register ✓ Section 13.5.2

LDF Load floating-point V9, App.A

LDFA Load floating-point from alternate space V9, App.A

LDFSR Load floating-point state register lower V9, App.A

LDQF Load quad floating-point V9, App.A

LDQFA Load quad floating-point from alternate space V9, App.A

LDSB Load signed byte V9, App.A

LDSBA Load signed byte from alternate space V9, App.A

LDSH Load signed halfword V9, App.A

LDSHA Load signed halfword from alternate space V9, App.A

LDSTUB Load-store unsigned byte V9, App.A

LDSTUBA Load-store unsigned byte in alternate space V9, App.A

Table 12-1 Complete UltraSPARC IIi Instruction Set (Continued)

Opcode Description Ext Ref
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LDSW Load signed word V9, App.A

LDSWA Load signed word from alternate space V9, App.A

LDUB Load unsigned byte V9, App.A

LDUBA Load unsigned byte from alternate space V9, App.A

LDUH Load unsigned halfword V9, App.A

LDUHA Load unsigned halfword from alternate space V9, App.A

LDUW Load unsigned word V9, App.A

LDUWA Load unsigned word from alternate space V9, App.A

LDX Load extended V9, App.A

LDXA Load extended from alternate space V9, App.A

LDXFSR Load extended floating-point state register V9, App.A

MEMBAR Memory barrier V9, App.A

MOVcc Move integer register if condition is satisfied V9, App.A

MOVr Move integer register on contents of integer register V9, App.A

MULScc Multiply step (and modify condition codes) V9, App.A

MULX Multiply 64-bit integers V9, App.A

NOP No operation V9, App.A

OR (ORcc) Inclusive-or (and modify condition codes) V9, App.A

ORN (ORNcc) Inclusive-or not (and modify condition codes) V9, App.A

PDIST Distance between 8 8-bit components ✓ Section 13.4.9

POPC Population count V9, App.A

PREFETCH
2

Prefetch data V9, App.A

PREFETCHA
2

Prefetch data from alternate space V9, App.A

PST Eight 8-bit/4 16-bit/2 32-bit partial stores ✓ Section 13.5.1

RDASI Read ASI register V9, App.A

RDASR Read ancillary state register V9, App.A

RDCCR Read condition codes register V9, App.A

RDFPRS Read floating-point registers state register V9, App.A

RDPC Read program counter V9, App.A

RDPR Read privileged register V9, App.A

RDTICK Read TICK register V9, App.A

Table 12-1 Complete UltraSPARC IIi Instruction Set (Continued)

Opcode Description Ext Ref
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RDY Read Y register V9, App.A

RESTORE Restore caller’s window V9, App.A

RESTORED Window has been restored V9, App.A

RETRY Return from trap and retry V9, App.A

RETURN Return V9, App.A

SAVE Save caller’s window V9, App.A

SAVED Window has been saved V9, App.A

SDIV (SDIVcc) 32-bit signed integer divide (and modify condition codes) V9, App.A

SDIVX 64-bit signed integer divide V9, App.A

SETHI Set high 22 bits of low word of integer register V9, App.A

SHUTDOWN Power-down support ✓ Section 13.6.2

SIR Software-initiated reset V9, App.A

SLL Shift left logical V9, App.A

SLLX Shift left logical, extended V9, App.A

SMUL (SMULcc) Signed integer multiply (and modify condition codes) V9, App.A

SRA Shift right arithmetic V9, App.A

SRAX Shift right arithmetic, extended V9, App.A

SRL Shift right logical V9, App.A

SRLX Shift right logical, extended V9, App.A

STB Store byte V9, App.A

STBA Store byte into alternate space V9, App.A

STBAR Store barrier V9, App.A

STD Store doubleword V9, App.A

STDA Store doubleword into alternate space V9, App.A

STDF Store double floating-point V9, App.A

STDFA Store double floating-point into alternate space V9, App.A

STDFA 8-/16-bit store from a double precision FP register ✓ Section 13.5.2

STF Store floating-point V9, App.A

STFA Store floating-point into alternate space V9, App.A

STFSR Store floating-point state register V9, App.A

STH Store halfword V9, App.A

Table 12-1 Complete UltraSPARC IIi Instruction Set (Continued)

Opcode Description Ext Ref
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2.
UltraSPARC-I does not implement the PREFETCH and PREFETCHA instructions.

STHA Store halfword into alternate space V9, App.A

STQF Store quad floating-point V9, App.A

STQFA Store quad floating-point into alternate space V9, App.A

STW Store word V9, App.A

STWA Store word into alternate space V9, App.A

STX Store extended V9, App.A

STXA Store extended into alternate space V9, App.A

STXFSR Store extended floating-point state register V9, App.A

SUB (SUBcc) Subtract (and modify condition codes) V9, App.A

SUBC (SUBCcc) Subtract with carry (and modify condition codes) V9, App.A

SWAP Swap integer register with memory V9, App.A

SWAPA Swap integer register with memory in alternate space V9, App.A

TADDcc

(TADDccTV)
Tagged add and modify condition codes (trap on overflow) V9, App.A

TSUBcc

(TSUBccTV)
Tagged subtract and modify condition codes (trap on overflow) V9, App.A

Tcc Trap on integer condition codes V9, App.A

UDIV (UDIVcc) Unsigned integer divide (and modify condition codes) V9, App.A

UDIVX 64-bit unsigned integer divide V9, App.A

UMUL (UMULcc) Unsigned integer multiply (and modify condition codes) V9, App.A

WRASI Write ASI register V9, App.A

WRASR Write ancillary state register V9, App.A

WRCCR Write condition codes register V9, App.A

WRFPRS Write floating-point registers state register V9, App.A

WRPR Write privileged register V9, App.A

WRY Write Y register V9, App.A

XNOR (XNORcc) Exclusive-nor (and modify condition codes) V9, App.A

XOR (XORcc) Exclusive-or (and modify condition codes) V9, App.A

1. Reference is to Appendix A of The The SPARC Architecture Manual, Version 9.

Table 12-1 Complete UltraSPARC IIi Instruction Set (Continued)

Opcode Description Ext Ref
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CHAPTER 13

VIS™ and Additional Instructions

13.1 Introduction
The UltraSPARC IIi CPU extends the standard SPARC-V9 instruction set with new

classes of instructions that enhance graphics functionality (see Section 13.4, Graphics
Instructions), and improve the efficiency of memory accesses (see Section 13.5,

Memory Access Instructions). These are collectively known as the VIS Instruction Set,

or VIS.

13.2 Graphics Data Formats
Graphics instructions are optimized for short integer arithmetic, where the overhead

of converting to and from floating-point is significant. Image components may be 8

or 16 bits; intermediate results are 16 or 32 bits.

13.2.1 8-Bit Format

Pixels consist of four unsigned 8-bit integers contained in a 32-bit word. Typically,

they represent intensity values for an image (e.g. α, B, G, R). UltraSPARC IIi

supports

■ Band interleaved images, with the various color components of a point in the image

stored together, and

■ Band sequential images, with all of the values for one color component stored

together.
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13.2.2 Fixed Data Formats

The fixed 16-bit data format consists of four 16-bit signed fixed-point values

contained in a 64-bit word. The fixed 32-bit format consists of two 32-bit signed fixed

point-values contained in a 64-bit word. Fixed data values provide an intermediate

format with enough precision and dynamic range for filtering and simple image

computations on pixel values. Conversion from pixel data to fixed data occurs

through pixel multiplication. Conversion from fixed data to pixel data is done with

the pack instructions, which clip and truncate to an 8-bit unsigned value.

Conversion from 32-bit fixed to 16-bit fixed is also supported with the FPACKFIX

instruction. Rounding can be performed by adding 1 to the round bit position.

Complex calculations needing more dynamic range or precision should be

performed using floating-point data.

These formats are shown in Figure 13-1.

Figure 13-1 Graphics Fixed Data Formats

Note – Sun frame buffer pixel component ordering is: α, B, G, R.

13.3 Graphics Status Register (GSR)
The GSR is accessed with implementation-dependent RDASR and WRASR

instructions using ASR 13
16

Fixed32

31 23 15 7

Pixel

Fixed16 int frac int frac int frac int frac

int frac int frac

024 16 8

63 47 31 15 048 32 16

63 31 032
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.

Figure 13-2 RDASR Format

Figure 13-3 WRASR Format

Accesses to this register cause an fp_disabled trap if either PSTATE.PEF or FPRS.FEF

is zero.

Figure 13-4 GSR Format (ASR 10
16

)

scale_factor: Shift count in the range 0..15, used by PACK instructions for pixel

formatting.

alignaddr_offset: Least significant three bits of the address computed by the last

ALIGNADDRESS or ALIGNADDRESS_LITTLE instruction. See Section 13.4.5,

Alignment Instructions on page 148.

Table 13-1 Graphics Status Register Opcodes

opcode op3 reg field operation

RDASR 10 1000 rs1 = 19 Read GSR

WRASR 11 0000 rd = 19 Write GSR

Table 13-2 GSR Instruction Syntax

Suggested Assembly Language Syntax

rd %gsr, reg
rd

wr reg
rs1

, reg_or_imm , %gsr

10 op3 —rd rs1

31 141924 18 13 02530 29

i=0

12

10 op3 simm13rd rs1

31 141924 18 13 02530 29 12

i=1

10 op3 —rd rs1 i=0 rs2

5 4

alignaddr_offset

63 02

scale_factor

3

—

67
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Traps

fp_disabled

13.4 Graphics Instructions
All instruction operands are in floating-point registers, unless otherwise specified.

This arrangement provides the maximum number of registers (32 double-precision)

and the maximum instruction parallelism (for example, UltraSPARC IIi is four scalar

for floating-point/graphics code only). Pixel values are stored in single-precision

floating point registers and fixed values are stored in double-precision floating-point

registers, unless otherwise specified.

13.4.1 Opcode Format

The graphics instruction set maps to the opcode space reserved for the

Implementation-Dependent Instruction 1 (IMPDEP1) instructions.

Figure 13-5 Graphics Instruction Format (3)

13.4.2 Partitioned Add/Subtract Instructions

Table 13-3 Partitioned Add/Subtract Instruction Opcodes

opcode opf operation

FPADD16 0 0101 0000 Four 16-bit add

FPADD16 S 0 0101 0001 Two 16-bit add

FPADD32 0 0101 0010 Two 32-bit add

FPADD32S 0 0101 0011 One 32-bit add

FPSUB16 0 0101 0100 Four 16-bit subtract

10 110110 rs2rd rs1

31 141924 18 13 02530 29 4

opf
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Figure 13-6 Partitioned Add/Subtract Instruction Format (3)

Description

The standard versions of these instructions perform four 16-bit or two 32-bit

partitioned adds or subtracts between the corresponding fixed point values

contained in the source operands (rs1, rs2). For subtraction, rs2 is subtracted from

rs1. The result is placed in the destination register (rd).

The single precision version of these instructions (FPADD16S, FPSUB16S,

FPADD32S, FPSUB32S) perform two (16-bit) or one (32-bit) partitioned adds or

subtracts.

Note – For good performance, do not use the result of a single FPADD as part of a

64-bit graphics instruction source operand in the next instruction group. Similarly,

do not use the result of a standard FPADD as a 32-bit graphics instruction source

operand in the next instruction group.

FPSUB16S 0 0101 0101 Two 16-bit subtract

FPSUB32 0 0101 0110 Two 32-bit subtract

FPSUB32S 0 0101 0111 One 32-bit subtract

Table 13-4 Partitioned Add/Subtract Instruction Syntax

Suggested Assembly Language Syntax

fpadd16 fregrs1, fregrs2, fregrd

fpadd16s fregrs1, fregrs2, fregrd

fpadd32 fregrs1, fregrs2, fregrd

fpadd32s fregrs1, fregrs2, fregrd

fpsub16 fregrs1, fregrs2, fregrd

fpsub16s fregrs1, fregrs2, fregrd

fpsub32 fregrs1, fregrs2, fregrd

fpsub32s fregrs1, fregrs2, fregrd

Table 13-3 Partitioned Add/Subtract Instruction Opcodes (Continued)

opcode opf operation

10 110110 rs2rd rs1

31 141924 18 13 02530 29 4
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5



136 UltraSPARC IIi User’s Manual • July 1999

Traps

fp_disabled

13.4.3 Pixel Formatting Instructions

Figure 13-7 Pixel Formatting Instruction Format (3)

Description

The PACK instructions convert to a lower precision fixed or pixel format. Input

values are clipped to the dynamic range of the output format. Packing applies a

scale factor from GSR.scale_factor to allow flexible positioning of the binary point.

Table 13-5 Pixel Formatting Instruction Opcode Format

opcode opf operation

FPACK16 0 0011 1011 Four 16-bit packs

FPACK32 0 0011 1010 Two 32-bit packs

FPACKFIX 0 0011 1101 Four 16-bit packs

FEXPAND 0 0100 1101 Four 16-bit expands

FPMERGE 0 0100 1011 Two 32-bit merges

Table 13-6 Pixel Formatting Instruction Syntax

Suggested Assembly Language Syntax

fpack16 fregrs2, fregrd

fpack32 fregrs1, fregrs2, fregrd

fpackfix fregrs2, fregrd

fexpand fregrs2, fregrd

fpmerge fregrs1, fregrs2, fregrd

10 11 0110 rs2rd rs1

31 141924 18 13 02530 29 4

opf
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Note – For good performance, do not use the result of an FPACK as part of a 64-bit

graphics instruction source operand in the next three instruction groups. Do not use

the result of FEXPAND or FPMERGE as a 32-bit graphics instruction source operand

in the next three instruction groups.

Traps
fp_disabled

13.4.3.1 FPACK16

FPACK16 takes four 16-bit fixed values in rs2, scales, truncates and clips them into

four 8-bit unsigned integers and stores the results in the 32-bit rd register.

Figure 13-8 FPACK16 Operation
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This operation, illustrated in Figure 13-8, is carried out as follows:

1. Left shift the value in rs2 by the number of bits in the GSR.scale_factor, while

maintaining clipping information.

2. Truncate and clip to an 8-bit unsigned integer starting at the bit immediately to

the left of the implicit binary point (i.e. between bits 7 and 6 for each 16-bit word).

Truncation is performed to convert the scaled value into a signed integer (that is,

round toward negative infinity). If the resulting value is negative (that is, the MSB

is set), zero is delivered as the clipped value. If the value is greater than 255, then

255 is delivered. Otherwise the scaled value is the final result.

3. Store the result in the corresponding byte in the 32-bit rd register.

13.4.3.2 FPACK32

FPACK32 takes two 32-bit fixed values in rs2, scales, truncates and clips them into

two 8-bit unsigned integers. The two 8-bit integers are merged at the corresponding

least significant byte positions of each 32-bit word in rs1 left shifted by 8 bits. The 64-

bit result is stored in the rd register. This allows two pixels to be assembled by

successive FPACK32 instructions using three or four pairs of 32-bit fixed values.

This operation, illustrated in Figure 13-9, is carried out as follows:

1. Left shift each 32-bit value in rs2 by the number of bits in the GSR.scale_factor,
while maintaining clipping information.

2. For each 32-bit value, truncate and clip to an 8-bit unsigned integer starting at the

bit immediately to the left of the implicit binary point (i.e. between bits 23 and 22

of each 32-bit word). Truncation is performed to convert the scaled value into a

signed integer (that is, round toward negative infinity). If the resulting value is

negative (that is, the MSB is set), zero is delivered as the clipped value. If the

value is greater than 255, then 255 is delivered. Otherwise the scaled value is the

final result.

3. Left shift each 32-bit values in rs1 by 8 bits.

4. Merge the two clipped 8-bit unsigned values into the corresponding least

significant byte positions in the left-shifted rs2 value.

5. Store the result in the rd register.
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Figure 13-9 FPACK32 Operation

13.4.3.3 FPACKFIX

FPACKFIX takes two 32-bit fixed values in rs2, scales, truncates and clips them into

two 16-bit signed integers, then stores the result in the 32-bit rd register.

This operation, illustrated in Figure 13-10, is carried out as follows:

1. Left shift each 32-bit value in rs2 by the number of bits in the GSR.scale_factor,
while maintaining clipping information.

2. For each 32-bit value, truncate and clip to a 16-bit signed integer starting at the bit

immediately to the left of the implicit binary point (i.e. between bits 16 and 15 of

each 32-bit word). Truncation is performed to convert the scaled value into a

3

rs2

rd

7

2 0
5

implicit binary pt

0
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3 0

GSR.scale_factor 0110

rs2

rd

723 15314763
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signed integer (i.e. rounds toward negative infinity). If the resulting value is less

than -32768, -32768 is delivered as the clipped value. If the value is greater than

32767, 32767 is delivered. Otherwise the scaled value is the final result.

3. Store the result in the 32-bit rd register.

Figure 13-10 FPACKFIX Operation

13.4.3.4 FEXPAND

FEXPAND takes four 8-bit unsigned integers in rs2, converts each integer to a 16-bit

fixed value, and stores the four 16-bit results in the rd register.

This operation, illustrated in Figure 13-11, is carried out as follows:

1. Left shift each 8-bit value by 4 and zero-extend the results to a 16-bit fixed value.

3
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rd
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1 0
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2. Stores the results in the rd register.

Figure 13-11 FEXPAND Operation

13.4.3.5 FPMERGE

FPMERGE interleaves four corresponding 8-bit unsigned values in rs1 and rs2, to

produce a 64-bit value in the rd register. This instruction converts from packed to

planar representation when it is applied twice in succession; for example:

R1G1B1A1, R3G3B3A3 → R1R3G1G3B1B3 → R1R2R3R4B1B2B3B4

FPMERGE also converts from planar to packed when it is applied twice in

succession; for example:

R1R2R3R4, B1B2B3B4 → R1B1R2B2R3B3R4B4 → R1G1B1A1R2G2B2A2

1
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Figure 13-12 FPMERGE Operation

13.4.4 Partitioned Multiply Instructions

Figure 13-13 Partitioned Multiply Instruction Format (3)

Table 13-7 Partitioned Multiply Instruction Opcodes

opcode opf operation

FMUL8x16 0 0011 0001 8- × 16-bit partitioned product

FMUL8x16AU 0 0011 0011 8- × 16-bit upper α partitioned product

FMUL8x16AL 0 0011 0101 8- × 16-bit lower α partitioned product

FMUL8SUx16 0 0011 0110 upper 8- × 16-bit partitioned product

FMUL8ULx16 0 0011 0111 lower unsigned 8- × 16-bit partitioned product

FMULD8SUx16 0 0011 1000 upper 8- × 16-bit partitioned product

FMULD8ULx16 0 0011 1001 lower unsigned 8- × 16-bit partitioned product

6 3

rs1

rd
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1
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The following sections describe the variations of partitioned multiply.

Note – For good performance, do not use the result of a partitioned multiply as a

32-bit graphics instruction source operand in the next three instruction groups.

Traps

fp_disabled

Note – When software emulates an 8-bit unsigned by 16-bit signed multiply, the

unsigned value must be zero-extended and the 16-bit value must be sign-extended

before the multiplication.

13.4.4.1 FMUL8x16

FMUL8x16 multiplies each unsigned 8-bit value (i.e., a pixel) in rs1 by the

corresponding (signed) 16-bit fixed-point integers in rs2; it rounds the 24-bit product

(assuming a binary point between bits 7 and 8) and stores the upper 16 bits of the

result into the corresponding 16-bit field in the rd register. Figure 13-14 illustrates the

operation.

Table 13-8 Partitioned Multiply Instruction Syntax

Suggested Assembly Language Syntax

fmul8x16 fregrs1, fregrs2, fregrd

fmul8x16au fregrs1, fregrs2, fregrd

fmul8x16al fregrs1, fregrs2, fregrd

fmul8sux16 fregrs1, fregrs2, fregrd

fmul8ulx16 fregrs1, fregrs2, fregrd

fmuld8sux16 fregrs1, fregrs2, fregrd

fmuld8ulx16 fregrs1, fregrs2, fregrd

23 8 07

integer fraction

instruction field implicit binary point

f x 2-8
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Note – This instruction treats the pixel values as fixed-point with the binary point to

the left of the most significant bit. Typically, this operation is used with filter

coefficients as the fixed-point rs2 value and image data as the rs1 pixel value.

Appropriate scaling of the coefficient allows various fixed-point scaling to be

realized.

Figure 13-14 FMUL8x16 Operation

13.4.4.2 FMUL8x16AU

FMUL8x16AU is similar to FMUL8x16, except that one 16-bit fixed-point value is

used for all four multiplies. This value is the most significant 16 bits of the 32-bit rs2
register, which is typically an α value. The operation is illustrated in Figure 13-15 on

page 145.
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Figure 13-15 FMUL8x16AU Operation

13.4.4.3 FMUL8x16AL

FMUL8x16AL is similar to FMUL8x16AU, except that the least significant 16 bits of

the 32-bit rs2 register are used for the α value.

Figure 13-16 FMUL8x16AL Operation
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13.4.4.4 FMUL8SUx16

FMUL8SUx16 multiplies the upper 8 bits of each 16-bit signed value in rs1 by the

corresponding signed 16-bit fixed-point signed integer in rs2. It rounds the 24-bit

product (to the nearest integer assuming a boundary point between 7 and 8) and

stores the upper 16 bits of the result into the corresponding 16-bit field of the rd
register. If the product lies exactly mid- way between two integers, the result is

rounded towards positive infinity. Figure 13-17 illustrates the operation.

Figure 13-17 FMUL8SUx16 Operation

13.4.4.5 FMUL8ULx16

FMUL8ULx16 multiplies the unsigned lower 8 bits of each 16-bit value in rs1 by the

corresponding fixed point signed integer in rs2. Each 24-bit product is sign-extended

to 32 bits. The upper 16-bits of the sign extended value are rounded to the nearest

integer and stored in the corresponding 16 bits of the rd register. In the case that the

result is exactly half way between two integers, the result is rounded towards

positive infinity. The operation is illustrated in Figure 13-18.

Code Example 13-1 16-bit x 16-bit → 16-bit Multiply

fmul8sux16 %f0, %f2, %f4
fmul8ulx16 %f0, %f2, %f6
fpadd16 %f4, %f6, %f8
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Figure 13-18 FMUL8ULx16 Operation

13.4.4.6 FMULD8SUx16

FMULD8SUx16 multiplies the upper 8 bits of each 16-bit signed value in rs1 by the

corresponding signed 16-bit fixed point signed integer in rs2. The 24-bit product is

shifted left by 8-bits to make up a 32-bit result. The result is stored in the

corresponding 32-bit of the destination rd register. The operation is illustrated in

Figure 13-19.

Figure 13-19 FMULD8SUx16 Operation
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13.4.4.7 FMULD8ULx16

FMULD8ULx16 multiplies the unsigned lower 8 bits of each 16-bit value in rs1 by

the corresponding fixed point signed integer in rs2. Each 24-bit product is sign-

extended to 32 bits and stored in the rd register. Figure 13-20 illustrates the operation.

Figure 13-20 FMULD8ULx16 Operation

Code Example 13-2 16-bit x 16-bit → 32-bit Multiply

13.4.5 Alignment Instructions

fmuld8sux16%f0, %f2, %f4
fmuld8ulx16%f0, %f2, %f6
fpadd32 %f4, %f6, %f8

Table 13-9 Alignment Instruction Opcodes

opcode opf operation

ALIGNADDRESS 0 0001 1000 Calculate address for misaligned data access

ALIGNADDRESS_LITTLE 0 0001 1010 Calculate address for misaligned data access,

little-endian

FALIGNDATA 0 0100 1000 Perform data alignment for misaligned data

3

rd
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2
3 07

rs2

**sign-extended sign-extended

0
6
3
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Figure 13-21 Alignment Instruction Format (3)

Description

ALIGNADDRESS adds two integer registers, rs1 and rs2, and stores the result, with

the least significant 3 bits forced to zero, in the integer rd register. The least

significant 3 bits of the result are stored in the GSR.alignaddr_offset field.

ALIGNADDRESS_LITTLE is the same as ALIGNADDRESS, except that the 2’s

complement of the least significant 3 bits of the result is stored in

GSR.alignaddr_offset.

Note – ALIGNADDRL is used to generate the opposite-endian byte ordering for a

subsequent FALIGNDATA operation.

FALIGNDATA concatenates two 64-bit floating-point registers, rs1 and rs2, to form a

16-byte value; it stores the result in the 64-bit floating-point rd register. The

concatenated value contains rs1 is its upper half and rs2 in its lower half. Bytes in

this value are numbered from most significant to least significant, with the most

significant byte being byte 0. Eight bytes are extracted from this value, where the

most significant byte of the extracted value is the byte whose number is specified by

the GSR.alignaddr_offset field.

A byte-aligned 64-bit load can be performed as shown in Code Example 13-3.

Code Example 13-3 Byte-Aligned 64-bit Load

Table 13-10 Alignment Instruction Syntax

Suggested Assembly Language Syntax

alignaddr regrs1, regrs2, regrd

alignaddrl regrs1, regrs2, regrd

faligndata fregrs1, fregrs2, fregrd

alignaddr Address, Offset, Address
ldd [Address], %f0
ldd [Address + 8], %f4
faligndata %f0, %f4, %f8

10 110110 rs2rd rs1

31 141924 18 13 02530 29 4

opf

5



150 UltraSPARC IIi User’s Manual • July 1999

Traps

fp_disabled

Note – For good performance, do not use the result of FALIGN as a 32-bit graphics

instruction source operand in the next instruction group.

13.4.6 Logical Operate Instructions

Table 13-11 Logical Operate Instructions

opcode opf operation

FZERO 0 0110 0000 Zero fill

FZEROS 0 0110 0001 Zero fill, single precision

FONE 0 0111 1110 One fill

FONES 0 0111 1111 One fill, single precision

FSRC1 0 0111 0100 Copy src1

FSRC1S 0 0111 0101 Copy src1, single precision

FSRC2 0 0111 1000 Copy src2

FSRC2S 0 0111 1001 Copy src2, single precision

FNOT1 0 0110 1010 Negate (1’s complement) src1

FNOT1S 0 0110 1011 Negate (1’s complement) src1, single precision

FNOT2 0 0110 0110 Negate (1’s complement) src2

FNOT2S 0 0110 0111 Negate (1’s complement) src2, single precision

FOR 0 0111 1100 Logical OR

FORS 0 0111 1101 Logical OR, single precision

FNOR 0 0110 0010 Logical NOR

FNORS 0 0110 0011 Logical NOR, single precision

FAND 0 0111 0000 Logical AND

FANDS 0 0111 0001 Logical AND, single precision

FNAND 0 0110 1110 Logical NAND

FNANDS 0 0110 1111 Logical NAND, single precision

FXOR 0 0110 1100 Logical XOR

FXORS 0 0110 1101 Logical XOR, single precision
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Figure 13-22 Logical Operate Instruction Format (3)

FXNOR 0 0111 0010 Logical XNOR

FXNORS 0 0111 0011 Logical XNOR, single precision

FORNOT1 0 0111 1010 Negated src1 OR src2

FORNOT1S 0 0111 1011 Negated src1 OR src2, single precision

FORNOT2 0 0111 0110 Src1 OR negated src2

FORNOT2S 0 0111 0111 Src1 OR negated src2, single precision

FANDNOT1 0 0110 1000 Negated src1 AND src2

FANDNOT1S 0 0110 1001 Negated src1 AND src2, single precision

FANDNOT2 0 0110 0100 Src1 AND negated src2

FANDNOT2S 0 0110 0101 Src1 AND negated src2, single precision

Table 13-12 Logical Operate Instruction Syntax

Suggested Assembly Language Syntax

fzero freg
rd

fzeros freg
rd

fone freg
rd

fones freg
rd

fsrc1 fregrs1, fregrd

fsrc1s fregrs1, fregrd

fsrc2 fregrs2, fregrd

fsrc2s fregrs2, fregrd

fnot1 fregrs1, fregrd

fnot1s fregrs1, fregrd

fnot2 fregrs2, fregrd

fnot2s fregrs2, fregrd

for fregrs1, fregrs2, fregrd

fors fregrs1, fregrs2, fregrd

Table 13-11 Logical Operate Instructions (Continued)

opcode opf operation

10 11 0110 rs2rd rs1

31 141924 18 13 02530 29 4
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Description

The standard 64-bit version of these instructions perform one of sixteen 64-bit logical

operations between rs1 and rs2. The result is stored in rd. The 32-bit (single-

precision) version of these instructions performs 32-bit logical operations.

Note – For good performance, do not use the result of a single logical as part of a

64-bit graphics instruction source operand in the next instruction group. Similarly,

do not use the result of a standard logical as a 32-bit graphics instruction source

operand in the next instruction group.

Traps

fp_disabled

fnor fregrs1, fregrs2, fregrd

fnors fregrs1, fregrs2, fregrd

fand fregrs1, fregrs2, fregrd

fands fregrs1, fregrs2, fregrd

fnand fregrs1, fregrs2, fregrd

fnands fregrs1, fregrs2, fregrd

fxor fregrs1, fregrs2, fregrd

fxors fregrs1, fregrs2, fregrd

fxnor fregrs1, fregrs2, fregrd

fxnors fregrs1, fregrs2, fregrd

fornot1 fregrs1, fregrs2, fregrd

fornot1s fregrs1, fregrs2, fregrd

fornot2 fregrs1, fregrs2, fregrd

fornot2s fregrs1, fregrs2, fregrd

fandnot1 fregrs1, fregrs2, fregrd

fandnot1s fregrs1, fregrs2, fregrd

fandnot2 fregrs1, fregrs2, fregrd

fandnot2 fregrs1, fregrs2, fregrd

Table 13-12 Logical Operate Instruction Syntax (Continued)

Suggested Assembly Language Syntax
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13.4.7 Pixel Compare Instructions

Figure 13-23 Pixel Compare Instruction Format (3)

Description

Four 16-bit or two 32-bit fixed-point values in rs1 and rs2 are compared. The 4-bit or

2-bit results are stored in the corresponding least significant bits of the integer rd
register. Bit zero of rd corresponds to the least significant 16-bit or 32-bit graphics

compare result.

Table 13-13 Pixel Compare Instruction Opcodes

opcode opf operation

FCMPGT16 0 0010 1000 Four 16-bit compare; set rd if src1 > src2

FCMPGT32 0 0010 1100 Two 32-bit compare; set rd if src1 > src2

FCMPLE16 0 0010 0000 Four 16-bit compare; set rd if src1 ≤ src2

FCMPLE32 0 0010 0100 Two 32-bit compare; set rd if src1 ≤ src2

FCMPNE16 0 0010 0010 Four 16-bit compare; set rd if src1 ≠ src2

FCMPNE32 0 0010 0110 Two 32-bit compare; set rd if src1 ≠ src2

FCMPEQ16 0 0010 1010 Four 16-bit compare; set rd if src1 = src2

FCMPEQ32 0 0010 1110 Two 32-bit compare; set rd if src1 = src2

Table 13-14 Pixel Compare Instruction Syntax

Suggested Assembly Language Syntax

fcmpgt16 fregrs1, fregrs2, regrd

fcmpgt32 fregrs1, fregrs2, regrd

fcmple16 fregrs1, fregrs2, regrd

fcmple32 fregrs1, fregrs2, regrd

fcmpne16 fregrs1, fregrs2, regrd

fcmpne32 fregrs1, fregrs2, regrd

fcmpeq16 fregrs1, fregrs2, regrd

fcmpeq32 fregrs1, fregrs2, regrd

10 11 0110 rs2rd rs1

31 141924 18 13 02530 29 4
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For FCMPGT, each bit in the result is set if the corresponding value in rs1 is greater

than the value in rs2. Less-than comparisons are made by swapping the operands.

For FCMPLE, each bit in the result is set if the corresponding value in rs1 is less than

or equal to the value in rs2. Greater-than-or-equal comparisons are made by

swapping the operands.

For FCMPEQ, each bit in the result is set if the corresponding value in rs1 is equal to

the value in rs2.

For FCMPNE, each bit in the result is set if the corresponding value in rs1 is not

equal to the value in rs2.

Traps

fp_disabled

13.4.8 Edge Handling Instructions

Figure 13-24 Edge Handling Instruction Format (3)

Table 13-15 Edge Handling Instruction Opcodes

opcode opf operation

EDGE8 0 0000 0000 Eight 8-bit edge boundary processing

EDGE8L 0 0000 0010 Eight 8-bit edge boundary processing, little-endian

EDGE16 0 0000 0100 Four 16-bit edge boundary processing

EDGE16L 0 0000 0110 Four 16-bit edge boundary processing, little-endian

EDGE32 0 0000 1000 Four 32-bit edge boundary processing

EDGE32L 0 0000 1010 Two 32-bit edge boundary processing, little-endian

10 11 0110 rs2rd rs1

31 141924 18 13 02530 29 4
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Description

These instructions are used to handle the boundary conditions for parallel pixel scan

line loops, where src1 is the address of the next pixel to render and src2 is the

address of the last pixel in the scan line.

EDGE8L, EDGE16L, and EDGE32L are little-endian versions of EDGE8, EDGE16 and

EDGE32. They produce an edge mask that is bit reversed from their big-endian

counterparts, but are otherwise the same. This makes the mask consistent with the

mask generated by the graphics compare operations (see Section 13.4.7, Pixel
Compare Instructions on page 153) on little-endian data.

A 2- (EDGE32), 4- (EDGE16), or 8-bit (EDGE8) pixel mask is stored in the least

significant bits of rd. The mask is computed from left and right edge masks as

follows:

1. The left edge mask is computed from the 3 least significant bits (LSBs) of rs1 and

the right edge mask is computed from the 3 LSBs of rs2, according to Table 13-17
(Table 13-18 for little-endian byte ordering).

2. If 32-bit address masking is disabled (PSTATE.AM = 0, 64-bit addressing) and the

upper 61 bits of rs1 are equal to the corresponding bits in rs2, rd is set equal to the

right edge mask ANDed with the left edge mask.

3. If 32-bit address masking is enabled (PSTATE.AM = 1, 32-bit addressing) is set

and the bits <31:3> of rs1 are equal to the corresponding bits in rs2, rd is set to the

right edge mask ANDd with the left edge mask.

4. Otherwise, rd is set to the left edge mask.

The integer condition codes are set the same as a SUBCC instruction with the same

operands. End of scan line comparison tests may be performed using edge with an

appropriate conditional branch instruction.

Table 13-16 Edge Handling Instruction Syntax

Suggested Assembly Language Syntax

edge8 reg
rs1

, reg
rs2

, reg
rd

edge8l reg
rs1

, reg
rs2

, reg
rd

edge16 reg
rs1

, reg
rs2

, reg
rd

edge16l reg
rs1

, reg
rs2

, reg
rd

edge32 reg
rs1

, reg
rs2

, reg
rd

edge32l reg
rs1

, reg
rs2

, reg
rd
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Traps

None

Table 13-17 Edge Mask Specification

Edge Size A2..A0 Left Edge Right Edge

8 000 1111 1111 1000 0000

8 001 0111 1111 1100 0000

8 010 0011 1111 1110 0000

8 011 0001 1111 1111 0000

8 100 0000 1111 1111 1000

8 101 0000 0111 1111 1100

8 110 0000 0011 1111 1110

8 111 0000 0001 1111 1111

16 00x 1111 1000

16 01x 0111 1100

16 10x 0011 1110

16 11x 0001 1111

32 0xx 11 10

32 1xx 01 11

Table 13-18 Edge Mask Specification (Little-Endian)

Edge Size A2..A0 Left Edge Right Edge

8 000 1111 1111 0000 0001

8 001 1111 1110 0000 0011

8 010 1111 1100 0000 0111

8 011 1111 1000 0000 1111

8 100 1111 0000 0001 1111

8 101 1110 0000 0011 1111

8 110 1100 0000 0111 1111

8 111 1000 0000 1111 1111

16 00x 1111 0001

16 01x 1110 0011

16 10x 1100 0111
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13.4.9 Pixel Component Distance (PDIST)

:

Figure 13-25 Pixel Component Distance Format (3)

Description

Eight unsigned 8-bit values are contained in the 64-bit rs1 and rs2 registers. The

corresponding 8-bit values in rs1 and rs2 are subtracted (i.e., rs1 – rs2). The sum of

the absolute value of each difference is added to the integer in the 64-bit rd register.

The result is stored in rd. Typically, this instruction is used for motion estimation in

video compression algorithms.

Note – For good performance, the rd operand of PDIST should not reference the

result of a non PDIST instruction in the previous two instruction groups.

Traps

fp_disabled

16 11x 1000 1111

32 0xx 11 01

32 1xx 10 11

Table 13-19 Pixel Component Distance Opcode

opcode opf operation

PDIST 0 0011 1110 distance between 8 8-bit components

Table 13-20 Pixel Component Distance Syntax

Suggested Assembly Language Syntax

pdist fregrs1, fregrs2, fregrd

Table 13-18 Edge Mask Specification (Little-Endian) (Continued)

Edge Size A2..A0 Left Edge Right Edge

10 11 0110 rs2rd rs1

31 141924 18 13 02530 29 4
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13.4.10 Three-Dimensional Array Addressing Instructions

Figure 13-26 Three-Dimensional Array Addressing Instruction Format (3)

Description

These instructions convert three dimensional (3D) fixed-point addresses contained in

rs1 to a blocked-byte address; they store the result in rd. Fixed-point addresses

typically are used for address interpolation for planar reformatting operations.

Blocking is performed at the 64-byte level to maximize external cache block reuse,

and at the 64k-byte level to maximize TLB entry reuse, regardless of the orientation

of the address interpolation. These instructions specify an element size of 8

(ARRAY8), 16 (ARRAY16) or 32 bits (ARRAY32). The rs2 operand specifies the

power-of-two size of the X and Y dimensions of a 3D image array. The legal values

for rs2 and their meanings are shown in Table 13-23. Illegal values produce

undefined results in the rd register.

Table 13-21 Three-Dimensional Array Addressing Instruction Opcodes

opcode opf operation

ARRAY8 0 0001 0000 Convert 8-bit 3-D address to blocked byte address

ARRAY16 0 0001 0010 Convert 16-bit 3-D address to blocked byte address

ARRAY32 0 0001 0100 Convert 32-bit 3-D address to blocked byte address

Table 13-22 Three-Dimensional Array Addressing Instruction Syntax

Suggested Assembly Language Syntax

array8 regrs1, regrs2, regrd

array16 regrs1, regrs2, regrd

array32 regrs1, regrs2, regrd

10 11 0110 rs2rd rs1

31 141924 18 13 02530 29 4
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Figure 13-27 shows the format of rs1.

Figure 13-27 Three Dimensional Array Fixed-Point Address Format

The integer parts of X, Y, and Z are converted to the blocked-address formats of

Figure 13-28, Figure 13-29, and Figure 13-30, as appropriate.

Figure 13-28 Three Dimensional Array Blocked-Address Format (Array8)

Figure 13-29 Three Dimensional Array Blocked-Address Format (Array16)

Table 13-23 Allowable values for rs2

rs2
Value

Number of Elements

0 64

1 128

2 256

3 512

4 1,024

5 2,048

Z fraction X fractionZ integer Y integer

63 334454 43 32 055 10

X integer

11

Y fraction

2122

2 0

X

4

YZ

Lower

9 5

X

13

YZ

Middle

17 17

X

17

YZ

Upper

+ isrc2+ 2 isrc2
20

+ 2 isrc2

0

03 1

X

5

YZ

Lower

10 6

X

14

YZ

Middle

18 18

X

18

YZ

Upper

+ isrc2+ 2 isrc2
21

+ 2 isrc2
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Figure 13-30 Three Dimensional Array Blocked-Address Format (Array32)

The bits above Z upper are set to zero. The number of zeros in the least significant

bits is determined by the element size. An element size of eight bits has no zeros, an

element size of 16-bits has one zero, and an element size of 32-bits has two zeros.

Bits in X and Y above the size specified by rs2 are ignored.

Note – To maximize reuse of E-cache and TLB data, software should block array

references for large images to the 64 kB level. This means processing elements within

a 32x64x64 block.

The following code fragment shows assembly of components along an interpolated

line at the rate of one component per clock on UltraSPARC IIi:

Code Example 13-4 Assembly of Components along an Interpolated Line

Traps

None

add Addr, DeltaAddr, Addr
array8 Addr, %g0, bAddr
ldda [bAddr] ASI_FL8_PRIMARY, data
faligndata data, accum, accum

00

04 2

X

6

YZ

Lower

11 7

X

15

YZ

Middle

19 19

X

19

YZ

Upper

+ isrc2+ 2 isrc2
22

+ 2 isrc2
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13.5 Memory Access Instructions

13.5.1 Partial Store Instructions

Figure 13-31 Partial Store Format (3)

Table 13-24 Partial Store Opcodes

Opcode imm_asi ASI Value Operation

STDFA ASI_PST8_P C0
16

Eight 8-bit conditional stores to primary address space

STDFA ASI_PST8_S C1
16

Eight 8-bit conditional stores to secondary address space

STDFA ASI_PST8_PL C8
16

Eight 8-bit conditional stores to primary address space,

little-endian

STDFA ASI_PST8_SL C9
16

Eight 8-bit conditional stores to secondary address space,

little-endian

STDFA ASI_PST16_P C2
16

Four 16-bit conditional stores to primary address space

STDFA ASI_PST16_S C3
16

Four 16-bit conditional stores to secondary address space

STDFA ASI_PST16_P

L

CA
16

Four 16-bit conditional stores to primary address space,

little-endian

STDFA ASI_PST16_S

L

CB
16

Four 16-bit conditional stores to secondary address

space, little-endian

STDFA ASI_PST32_P C4
16

Two 32-bit conditional stores to primary address space

STDFA ASI_PST32_S C5
16

Two 32-bit conditional stores to secondary address space

STDFA ASI_PST832_P

L

CC
16

Two 32-bit conditional stores to primary address space,

little-endian

STDFA ASI_PST32_S

L

CD
16

Two 32-bit conditional stores to secondary address space,

little-endian

Table 13-25 Partial Store Syntax

Suggested Assembly Language Syntax

stda freg
rd

, [ reg
rs1

] reg
rs2

, imm_asi

11 11 0111 rs2rd rs1

31 141924 18 13 02530 29 4

imm_asi

5

i=0

12
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Description

The partial store instructions are selected by using one of the partial store ASIs with

the STDA instruction.

Two 32-bit, four 16-bit or eight 8-bit values from the 64-bit rd register are

conditionally stored at the address specified by rs1 using the mask specified by rs2.

The value in rs2 has the same format as the result generated by the pixel compare

instructions (see Section 13.4.7, Pixel Compare Instructions on page 153). The most

significant bit of the mask (not the entire register) corresponds to the most

significant part of the rs1 register. The data is stored in little-endian form in memory

if the ASI name has a “_LITTLE” suffix; otherwise, it is big-endian.

Note – If the byte ordering is little-endian, the byte enables generated by this

instruction are swapped with respect to big-endian.

Traps

fp_disabled

mem_address_not_aligned

data_access_exception

PA_watchpoint

VA_watchpoint

illegal_instruction (when i = 1, no immediate mode is supported. This is not checked if

there is a data_access_exception for a non-STDFA opcode).

13.5.2 Short Floating-Point Load and Store Instructions

Table 13-26 Short Floating-Point Load and Store Instruction

Opcode imm_asi
ASI
Value

Operation

LDDFA

STDFA

ASI_FL8_P D0
16

8-bit load/store from/to primary address space

LDDFA

STDFA

ASI_FL8_S D1
16

8-bit load/store from/to secondary address space

LDDFA

STDFA

ASI_FL8_PL D8
16

8-bit load/store from/to primary address space, little-

endian
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Figure 13-32 Format (3) LDDFA

Figure 13-33 Format (3) STDFA

LDDFA

STDFA

ASI_FL8_SL D9
16

8-bit load/store from/to secondary address space, little-

endian

LDDFA

STDFA

ASI_FL16_P D2
16

16-bit load/store from/to primary address space

LDDFA

STDFA

ASI_FL16_S D3
16

16-bit load/store from/to secondary address space

LDDFA

STDFA

ASI_FL16_P

L

DA
16

16-bit load/store from/to primary address space, little-

endian

LDDFA

STDFA

ASI_FL16_S

L

DB
16

16-bit load/store from/to secondary address space, little-

endian

Table 13-27 Short Floating-Point Load and Store Instruction Syntax

Suggested Assembly Language Syntax

ldda [reg_addr] imm_asi, fregrd

ldda [reg_plus_imm] %asi, fregrd

stda fregrd, [reg_addr] imm_asi

stda fregrd, [reg_plus_imm] %asi

Table 13-26 Short Floating-Point Load and Store Instruction

Opcode imm_asi
ASI
Value

Operation

11 11 0011 rs2rd rs1

4

imm_asi

5

i=0

11 11 0011rd rs1

31 141924 18 13 02530 29

simm_13i=1

12

11 11 0111 rs2rd rs1

4

imm_asi

5

i=0

11 11 0111rd rs1

31 141924 18 13 02530 29

simm_13i=1

12
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Description

Short floating-point load and store instructions are selected by using one of the short

ASIs with the LDDA and STDA instructions.

These ASIs allow 8- and 16-bit loads or stores to be performed to the floating-point

registers. Eight-bit loads can be performed to arbitrary byte addresses. For sixteen

bit loads, the least significant bit of the address must be zero, or a mem_not_aligned
trap is taken. Short loads are zero-extended to the full floating point register. Short

stores access the low order 8 or 16 bits of the register.

Little-endian ASIs transfer data in little-endian format in memory; otherwise,

memory is assumed to big-endian. Short loads and stores typically are used with the

FALIGNDATA instruction (see Section 13.4.5, Alignment Instructions on page 148) to

assemble or store 64 bits of non-contiguous components.

Traps

fp_disabledPA_watchpoint

VA_watchpoint

mem_address_not_aligned (Checked for opcode implied alignment if the opcode is not

LDFA or STDFA)

13.5.3 Block Load and Store Instructions

Table 13-28 Block Load and Store Instruction Opcodes

Opcode imm_asi ASI Value Operation

LDDFA

STDFA

ASI_BLK_AIUP 70
16

64-byte block load/store from/ to primary

address space, user privilege

LDDFA

STDFA

ASI_BLK_AIUS 71
16

64-byte block load/store from/ to secondary

address space, user privilege

LDDFA

STDFA

ASI_BLK_AIUPL 78
16

64-byte block load/store from/ to primary

address space, user privilege, little-endian

LDDFA

STDFA

ASI_BLK_AIUSL 79
16

64-byte block load/store from/ to secondary

address space, user privilege, little-endian

LDDFA

STDFA

ASI_BLK_P F0
16

64-byte block load/store from/to primary

address space

LDDFA

STDFA

ASI_BLK_S F1
16

64-byte block load/store from/ to secondary

address space
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Figure 13-34 Format (3) LDDFA:

Figure 13-35 Format (3) STDFA:

Description

Block load and store instructions are selected by using one of the block transfer ASIs

with the LDDA and STDA instructions. These ASIs allow block loads or stores to be

performed to the same address spaces as normal loads and stores. Little-endian ASIs

LDDFA

STDFA

ASI_BLK_PL F8
16

64-byte block load/store from/to primary

address space, little-endian

LDDFA

STDFA

ASI_BLK_SL F9
16

64-byte block load/store from/to secondary

address space, little-endian

STDFA ASI_BLK_COMMIT_P E0
16

64-byte block commit store to primary address

space

STDFA ASI_BLK_COMMIT_S E1
16

64-byte block commit store to secondary address

space

Table 13-29 Block Load and Store Instruction Syntax

Suggested Assembly Language Syntax

ldda [ reg_addr ] imm_asi , freg
rd

ldda [ reg_plus_imm ] %asi, freg
rd

stda freg
rd

, [ reg_addr ] imm_asi

stda freg
rd

, [ reg_plus_imm ] %asi

Table 13-28 Block Load and Store Instruction Opcodes

Opcode imm_asi ASI Value Operation

11 11 0011 rs2rd rs1

4

imm_asi

5

i=0

11 11 0011rd rs1

31 141924 18 13 02530 29

simm_13i=1

12

11 11 0111 rs2rd rs1

4

imm_asi

5

i=0

11 11 0111rd rs1

31 141924 18 13 02530 29

simm_13i=1

12
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access data in little-endian format, otherwise the access is assumed to be big-endian.

The byte swapping is performed separately for each of the eight double-precision

registers used by the instruction. Endianness does not matter if these instructions are

being used for block copy.

Block stores with commit force the data to be written to memory and invalidate

copies in all caches, if present. As a result, block commit stores maintain coherency

with the I-cache unlike other stores. They do not, however, flush instructions that

have already been fetched into the pipeline. Execute a FLUSH, DONE, or RETRY

instruction to flush the pipeline before executing the modified code.

LDDA with a block transfer ASI loads 64 bytes of data from a 64-byte aligned

memory area into eight double-precision floating-point registers specified by fregrd.

The lowest addressed eight bytes in memory are loaded into the lowest numbered

double-precision rd register. An illegal_instruction trap is taken if the floating-point

registers are not aligned on an eight-double-precision register boundary. The least

significant 6 bits of the address must be zero or a mem_address_not_aligned trap is

taken.

STDA with a block transfer ASI stores data from eight double-precision floating-

point registers specified by rs1 to a 64 byte aligned memory area. The lowest

addressed eight bytes in memory are stored from the lowest numbered double

precision freg. An illegal_instruction trap is taken if the floating-point registers are not

aligned on an eight register boundary. The least significant 6 bits of the address must

be zero, or a mem_address_not_aligned trap is taken.

Traps

fp_disabled

illegal_instruction (nonaligned rd. Not checked if opcode is not LDFA or STDFA)

data_access_exception

mem_address_not_aligned (Checked for opcode implied alignment if the opcode is not

LDFA or STDFA)

PA_watchpoint

VA_watchpoint

Note – These instructions are used for transferring large blocks of data (more than

256 bytes); for example, BCOPY and BFILL. On UltraSPARC IIi they do not allocate

in the D-cache or E-cache on a miss. UltraSPARC IIi updates the E-cache on a hit.

BLD does not provide register dependency interlocks like ordinary load instructions.
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Before referencing BLD data, a second BLD (to a different set of registers) or a

MEMBAR #Sync must be performed. If a second BLD is used to synchronize against

returning data, the UltraSPARC CPU continues execution before all data has been

returned. The programmer is then responsible for scheduling instructions so

registers are only used when they become valid.

To determine when data is valid, the programmer must count instruction groups

containing FP operation instructions (not FP loads or stores). The lowest number

register being loaded by the first BLD may be referenced in the first instruction

group following the second BLD, using an FP operation instruction only.

The second lowest number register may be referenced in the second instruction

group containing an FP operation instruction, and so on. The best case grouping of

FP operations should be assumed, that is, issuing any M-Class FP operation in the

same group as any possible A-Class FP operation. (The UltraSPARC IIi CPU can

issue two FP operation instructions simultaneously, assuming they are in different

classes).

If this BLD/BLD synchronization mechanism is used, the initial reference to the BLD

data must be an FP operation instruction (not a FP store), and only instruction

groups with FP operation instructions are counted when determining BLD data

availability.

If these rules are violated, data from before or after the BLD may be returned.

If a MEMBAR #Sync is used to synchronize on BLD data, there are no restrictions on

data usage, although this will cause lower performance. No other MEMBARs can be

used to provide data synchronization for BLD.

FP operation instructions can be issued in a single group with FP stores. If BLD/

BLD synchronization is used, FP operations and FP stores can be interlaced. This

allows an FP operation to reference the returning data before using the data in any

FP store (normal store, or block store).

Typically, the FP operation instruction is a FMOVD or FALIGNDATA.

The UltraSPARC CPU also continues execution, without register interlocks, before

all of the store data for BSTs is transferred from the register file.

If store data registers are overwritten before the next block store or MEMBAR #Sync

instruction, the following rule must be observed: The first register can be

overwritten in the same instruction group as the BST, the second register can be

overwritten in the instruction group following the block store, and so on. If this rule

is violated, the store may use the old or the new overwritten data.

When determining correctness for a code sample, be aware that UltraSPARC

implementations may interlock more than required above, for instance there may be

partial register interlocks. (for instance on the lowest-numbered register).
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Code that does not meet the above constraints may appear to work on a particular

platform because of implemenation-dependent timing that causes additional

dependencies or delays to be created.

However, for portability across all UltraSPARC implementations, all of the above

rules must be followed.

There must be a MEMBAR #Sync or a trap following a BST before executing a

DONE, RETRY, or WRPR to PSTATE instruction. If this is rule is violated,

instructions after the DONE, RETRY, or WRPR to PSTATE may not see the effects of

the updated PSTATE.

BLD does not follow memory model ordering with respect to stores. In particular,

read-after-write and write-after-read hazards to overlapping addresses are not

detected. The side effects bit associated with the access is ignored (see Section 15.2,

Translation Table Entry (TTE) on page 197). If ordering with respect to earlier stores is

important (for example, a block load that overlaps previous stores), then there must

be an intervening MEMBAR #StoreLoad or stronger MEMBAR. If ordering with

respect to later stores is important (e.g. a block load that overlaps a subsequent

store), then there must be an intervening MEMBAR #LoadStore or reference to the

block load data. This restriction does not apply when a trap is taken, so the trap

handler need not consider pending block loads. If the BLD overlaps a previous or

later store and there is no intervening MEMBAR, trap, or data reference, the BLD

may return data from before or after the store.

Compatibility Note – Prior UltraSPARCs may have provided the first two registers

at the same time. If code depends upon this unsupported behavior it must be

modified for UltraSPARC IIi.

BST does not follow memory model ordering with respect to loads, stores or flushes.

In particular, read-after-write, write-after-write, flush after write and write-after-read

hazards to overlapping addresses are not detected. The side effects bit associated

with the access is ignored. If ordering with respect to earlier or later loads or stores

is important then there must be an intervening reference to the load data (for earlier

loads), or appropriate MEMBAR instruction. This restriction does not apply when a

trap is taken, so the trap handler does not have to worry about pending block stores.

If the BST overlaps a previous load and there is no intervening load data reference or

MEMBAR #LoadStore instruction, the load may return data from before or after

the store and the contents of the block are undefined. If the BST overlaps a later load

and there is no intervening trap or MEMBAR #StoreLoad instruction, the contents

of the block are undefined. If the BST overlaps a later store or flush and there is no

intervening trap or MEMBAR #StoreStore instruction, the contents of the block

are undefined.

Block load and store operations do not obey the ordering restrictions of the currently

selected processor memory model (TSO, PSO, or RMO); block operations always

execute under an RMO memory ordering model. Explicit MEMBAR instructions are
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required to order block operations among themselves or with respect to normal

loads and stores. In addition, block operations do not conform to dependence order

on the issuing processor; that is, no read-after-write or writer-after-read checking

occurs between block loads and stores. Explicit MEMBARs are required to enforce

dependence ordering between block operations that reference the same address.

Typically, BLD and BST are used in loops where software can ensure that there is no

overlap between the data being loaded and the data being stored. The loop is

preceded and followed by the appropriate MEMBARs to ensure that there are no

hazards with loads and stores outside the loops. Code Example 13-5 on page 170

illustrates the inner loop of a byte-aligned block copy operation.

Note that the loop must be unrolled twice to achieve maximum performance. All FP

registers are double-precision. Eight versions of this loop are needed to handle all

the cases of double word misalignment between the source and destination.
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Code Example 13-5 Byte-Aligned Block Copy Inner Loop

loop:

faligndata %f0, %f2, %f34

faligndata %f2, %f4, %f36

faligndata %f4, %f6, %f38

faligndata %f6, %f8, %f40

faligndata %f8, %f10, %f42

faligndata %f10, %f12, %f44

faligndata %f12, %f14, %f46

addcc l0, -1, l0

bg,pt l1

fmovd %f14, %f48

(end of loop handling)

l1:ldda [regaddr] ASI_BLK_P, %f0

stda %f32, [regaddr] ASI_BLK_P

faligndata %f48, %f16, %f32

faligndata %f16, %f18, %f34

faligndata %f18, %f20, %f36

faligndata %f20, %f22, %f38

faligndata %f22, %f24, %f40

faligndata %f24, %f26, %f42

faligndata %f26, %f28, %f44

faligndata %f28, %f30, %f46

addcc l0, -1, l0

be,pnt done

fmovd %f30, %f48

ldda [regaddr] ASI_BLK_P, %f16

stda %f32, [regaddr] ASI_BLK_P

ba loop

faligndata %f48, %f0, %f32

done: (end of loop processing)
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13.6 Additional Instructions

13.6.1 Atomic Quad Load

Figure 13-36 Format (3) LDDA

Description

These ASIs are used with the LDDA instruction to atomically read a 128-bit data

item. They are intended to be used by the TLB miss handler to access TSB entries

without requiring locks. The data is placed in an even/odd pair of 64-bit integer

registers. The lowest address 64-bits is placed in the even register; the highest

address 64-bits is placed in the odd register. The reference is made from the nucleus

context. In addition to the usual traps for LDDA using a privileged ASI, a

data_access_exception trap is taken for a noncacheable access, or use with any

instruction other than LDDA. A mem_address_not_aligned trap is taken if the access is

not aligned on a 128-bit boundary.

Table 13-30 Atomic Quad Load Opcodes

Opcode imm_asi ASI Value Operation

LDDA ASI_NUCLEUS_QUAD_LDD 24
16

128-bit atomic load

LDDA ASI_NUCLEUS_QUAD_LDD_L 2C
16

128-bit atomic load, little
endian

Table 13-31 Atomic Quad Load Syntax

Suggested Assembly Language Syntax

ldda [ reg_addr ] imm_asi , reg
rd

ldda [ reg_plus_imm ] %asi,  reg
rd

11 01 0011 rs2rd rs1

4

imm_asi

5

i=0

11 01 0011rd rs1

31 141924 18 13 02530 29

simm_13i=1

12
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Traps

fp_disabled

PA_watchpoint

VA_watchpoint

mem_address_not_aligned (Checked for opcode implied alignment if the opcode is not

LDFA or STDFA)

data_access_exception

13.6.2 SHUTDOWN

Figure 13-37 SHUTDOWN Instruction Format (3)

Description

The EPA Energy Star specification requires a system standby power consumption of

less than 30 W (excluding the system monitor).

To enter SHUTDOWN mode, UltraSPARC IIi software saves everything to disk and

the power supply is turned off. A timer turns the power back on after 30 minutes.

UltraSPARC IIi does not support the full feature set of some earlier PCI-based

UltraSPARC systems, principally to avoid the circuit complexity of maintaining

memory refresh while the processor is shut down.

Table 13-32 SHUTDOWN Opcode

opcode opf operation

SHUTDOWN 0 1000 0000 Shutdown to enter power down mode

Table 13-33 SHUTDOWN Syntax

Suggested Assembly Language Syntax

shutdown

10 11 0110 —— —

31 141924 18 13 02530 29 4

opf

5
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Invoking the SHUTDOWN instruction causes all processor, cache and memory state

to be lost. A power-on reset (POR) must be used restart the processor. A status bit

indicates the reason for the POR. This instruction stops all internal clocks, achieving

the lowest possible power consumption while the power supply is on.

To leave the system and external cache interface in a clean state, the SHUTDOWN

instruction waits for all outstanding transactions to be completed before sending a

shutdown signal to the internal clock generator. The internal clock generator asserts

the internal reset for 19 clocks to force the chip into a safe state, and then stops the

internal clock and the PLL. The internal clock is left in the high state. All external

signals should be left in the normal reset state.

An external power-down signal (EPD) is activated by the clock generator at the same

time as the internal reset. This signal is used to put the E-cache RAMs in standby

mode.

This is a privileged instruction; an attempt to execute it while in non-privileged

mode causes a privileged_opcode trap.

Compatibility Note – When the processor is reset, UPA64S, PCI, and APB are also

reset.

Traps

privileged_opcode
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CHAPTER 14

Implementation Dependencies

14.1 SPARC-V9 General Information

14.1.1 Level-2 Compliance (Impdep #1)

The UltraSPARC IIi CPU is designed to meet Level-2 SPARC-V9 compliance. It

■ Correctly interprets all non-privileged operations, and

■ Correctly interprets all privileged elements of the architecture.

Note – System emulation routines (for example, quad-precision floating-point

operations) shipped with UltraSPARC IIi also must be Level-2 compliant.

14.1.2 Unimplemented Opcodes, ASIs, and ILLTRAP

SPARC-V9 unimplemented, reserved, ILLTRAP opcodes, and instructions with

invalid values in reserved fields (other than reserved FPops or fields in graphics

instructions that reference floating-point registers and the reserved field in the Tcc

instruction) encountered during execution cause an illegal_instruction trap. The reserved
field in the Tcc instruction is not checked because SPARC-V8 did not reserve this

field. Reserved FPops and invalid values in reserved fields in graphics instructions

that reference floating-point registers cause an fp_exception_other (with

FSR.ftt=unimplemented_FPop) trap. Unimplemented and reserved ASI values cause a

data_access_exception trap.
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14.1.3 Trap Levels (Impdep #37, 38, 39, 40, 114, 115)

UltraSPARC IIi supports five trap levels; that is, MAXTL=5. Normal execution is at

TL0. Traps at MAXTL–1 cause the CPU to enter RED_state. If a trap is generated

while the CPU is operating at TL = MAXTL, the CPU will enter error_state and

generate a Watchdog Reset (WDR). CWP updates for window traps that cause entry

to error_state are the same as when error_state is not entered.

A processor normally executes at trap level 0 (execute_state, TL0). The trap handling

mechanism in SPARC-V9 differs from SPARC-V8 when a trap or error condition is

encountered at TL0. In SPARC-V8, the CPU enters trap state and system (privileged)

software must save enough processor state to guarantee that any error condition

detected while in the trap handler will not put the CPU into error_state (that is,

cause a reset). Then the trap routine is entered to process the erroneous condition.

Upon completion of trap processing, the state of the CPU is restored before

returning to the offending code or terminating the process. This time-consuming

operation is necessary because SPARC-V8 does not support nested traps.

In SPARC-V9, a trap makes the CPU enter the next higher trap level, which is a very

fast and efficient process because there is one set of trap state registers for each trap

level. After saving the most important machine states (PC, next PC, PSTATE) on the

trap stack at this level, the trap (or error) condition is processed.

For a complete description of traps and RED_state handling, see Section 17.4,

Machine State after Reset and in RED_state on page 261.

Note – The RED_state trap vector address (RSTVaddr) is 256 MB below the top of

the virtual address space; this is, at virtual address FFFF FFFF F000 0000
16

, which is

passed through to physical address 1FF F000 0000
16

in RED_state. UltraSPARC IIi

has a second RSTV available — see RED_state Trap Vector on page 260.

14.1.4 Alternate RSTV support

UltraSPARC IIi has a pin to select a second RSTV to allow use of PC compatible

SuperIO chips on a PCI bus. See Section 17.2.7.3, Reset_Control Register
(0x1FE.0000.F020) on page 257 and Section 17.3.2, RED_state Trap Vector on page 260.

14.1.5 Trap Handling (Impdep #16, 32, 33, 35, 36, 44)

UltraSPARC IIi supports precise trap handling for all operations except for deferred

or disrupting traps from hardware failures encountered during memory accesses.

These failures are discussed in Section 16.2, Deferred Errors on page 232 and
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Section 16.3, Disrupting Errors on page 234. UltraSPARC IIi implements precise traps,

interrupts, and exceptions for all instructions, including long latency floating-point

operations. Five traps levels are supported, which allows graceful recovery from

faults. The trap levels are shown in Figure 14-1. UltraSPARC IIi can efficiently

execute kernel code even in the event of multiple nested traps, promoting processor

efficiency while dramatically reducing the system overhead needed for trap

handling. Three sets of alternate globals are selected for different kinds of traps:

■ MMU globals for memory faults

■ Interrupt globals, and

■ Alternate globals for all other exceptions.

This further increases OS performance, providing fast trap execution by avoiding the

need to save and restore registers while processing exceptions.

Figure 14-1 Nested Trap Levels

All traps supported in UltraSPARC IIi are listed in Table 6-12 on page 54.

14.1.6 SIGM Support (Impdep #116)

UltraSPARC IIi initiates a Software-Initiated Reset (SIR) by executing a SIGM

instruction while in privileged mode. When in non-privileged mode, SIGM behaves

as a NOP. See also Section 17.2.3, Watchdog Reset (WDR) and error_state on page 253.

Level 0: Normal Program Execution

Level 1: System Calls, Interrupt Handlers, Emulation

Level 2: Exceptions in Common OS Routines

Level 3: Page Fault Handlers

Level 4: RED_state Handler
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14.1.7 44-bit Virtual Address Space

UltraSPARC IIi supports a 44-bit subset of the full 64-bit virtual address space.

Although the full 64 bits are generated and stored in integer registers, legal

addresses are restricted to two equal halves at the extreme lower and upper portions

of the full virtual address space. Virtual addresses between 0000 0800 0000 0000
16

and FFFF F7FF FFFF FFFF
16

inclusive lie within a “VA Hole,” are termed “out-of-

range,” and are illegal. Prior UltraSPARC implementations introduced the additional

restriction on software to not use pages within 4 GB of the VA hole as instruction

pages to avoid problems with prefetching into the VA hole. UltraSPARC IIi assumes

that this convention is followed for similar reasons. Note that there are no trap

mechanisms to detect a violation of this convention. Address translation and MMU

related descriptions can be found in Section 4.2, Virtual Address Translation on

page 23.

Figure 14-2 UltraSPARC IIi’s 44-bit Virtual Address Space, with Hole (Same as
Figure 4-2 on page 25)

Note – Throughout this document, when virtual address fields are specified as 64-

bit quantities, they are assumed to be sign-extended based on VA<43>.

A number of state registers are affected by the reduced virtual address space. TBA,

TPC, TNPC, VA and PA watchpoint, and DMMU SFAR registers are 44-bits, sign-

extended to 64-bits on read accesses. No checks are done when these registers are

written by software. It is the responsibility of privileged software to properly update

these registers.

FFFF FFFF FFFF FFFF

FFFF F800 0000 0000

0000 0000 0000 0000

0000 07FF FFFF FFFF

Out of Range VA
(VA “Hole”)

FFFF F7FF FFFF FFFF

0000 0800 0000 0000

FFFF F801 0000 0000

0000 07FE FFFF FFFF

See Note (1)

See Note (1)

Note (1): Prior implementations restricted use of this region to data only.
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An out of range address during an instruction access causes an

instruction_access_exception trap if PSTATE.AM is not set.

If the target address of a JMPL or RETURN instruction is an out-of-range address

and PSTATE.AM is not set, a trap is generated with the PC = the address of the

JMPL or RETURN instruction and the trap type in the I-MMU SFSR register. This

instruction_access_exception trap is lower priority than other traps on the JMPL or

RETURN (illegal_instruction due to nonzero reserved fields in the JMPL or RETURN,

mem_address_not_aligned trap, or window_fill trap), because it really applies to the

target. The trap handler can determine the out-of-range address by decoding the

JMPL instruction from the code.

All other control transfer instructions trap on the PC of the target instruction along

with different status in the I-MMU SFSR register. Because the PC is sign-extended to

64 bits, the trap handler must adjust the PC value to compute the faulting address by

XORing ones into the upper 20 bits. See also Section 15.9.4, I-/D-MMU Synchronous
Fault Status Registers (SFSR) on page 216 and Section 15.9.5, I-/D-MMU Synchronous
Fault Address Registers (SFAR) on page 218.

When a trap occurs on the delay slot of a taken branch or call whose target is out-of-

range, or the last instruction below the VA hole, UltraSPARC IIi records the fact that

nPC points to an out of range instruction. If the trap handler executes a DONE or

RETRY without saving nPC, the instruction_access_exception trap is taken when the

instruction at nPC is executed. If nPC is saved and subsequently restored by the trap

handler, the fact that nPC points to an out of range instruction is lost. To guarantee

that all out of range instruction accesses cause traps, software should not map

addresses within 231 bytes of either side of the VA hole as executable.

An out of range address during a data access results in a data_access_exception trap if

PSTATE.AM is not set. Because the D-MMU SFAR contains only 44 bits, the trap

handler must decode the load or store instruction if the full 64-bit virtual address is

needed. See also Section 15.9.4, I-/D-MMU Synchronous Fault Status Registers (SFSR)
on page 216 and Section 15.9.5, I-/D-MMU Synchronous Fault Address Registers (SFAR)
on page 218.

14.1.8 TICK Register

UltraSPARC IIi implements a 63-bit TICK counter. For the state of this register at

reset, see Table 17-1 on page 256.

Table 14-1 TICK Register Format

Bits Field Use RW

<63> NPT Non-privileged Trap enable RW

<62:0> counter Elapsed CPU clock cycle counter RW
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NPT: Non-privileged Trap enable. If set, an attempt by non-privileged software to

read the TICK register causes a privileged_action trap. If clear, nonprivileged software

can read this register with the RDTICK instruction. This register can only be written

by privileged software. A write attempt by nonprivileged software causes a

privileged_action trap.

counter: 63-bit elapsed CPU clock cycle counter.

Note – TICK.NPT is set and TICK.counter is cleared after both a Power-On-Reset

(POR) and an Externally Initiated Reset (XIR).

14.1.9 Population Count Instruction (POPC)

The population count instruction is emulated in software rather that being executed

in hardware.

14.1.10 Secure Software

To establish an enhanced security environment, it may be necessary to initialize

certain processor states between contexts. Examples of such states are the contents of

integer and floating-point register files, condition codes, and state registers. See also

Section 14.2.2, Clean Window Handling (Impdep #102).

14.1.11 Address Masking (Impdep #125)

When PSTATE.AM=1, the CALL, JMPL, and RDPC instructions and all traps

transmit zero in the high-order 32-bits of the PC to their specified destination

registers.
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14.2 SPARC-V9 Integer Operations

14.2.1 Integer Register File and Window Control

Registers (Impdep #2)

UltraSPARC IIi implements an eight window 64-bit integer register file; that is,

NWINDOWS = 8. UltraSPARC IIi truncates values stored in the CWP, CANSAVE,

CANRESTORE, CLEANWIN, and OTHERWIN registers to three bits. This includes

implicit updates to these registers by SAVE(D) and RESTORE(D) instructions. The

upper two bits of these registers read as zero.

14.2.2 Clean Window Handling (Impdep #102)

SPARC-V9 introduced the concept of “clean window” to enhance security and

integrity during program execution. A clean window is defined to be a register

window that contains either all zeroes or addresses and data that belong to the

current context. The CLEANWIN register records the number of available clean

windows.

When a SAVE instruction requests a window, and there are no more clean windows,

a clean_window trap is generated. System software must then initialize all registers in

the next available window, or windows, to zero before returning to the requesting

context.

14.2.3 Integer Multiply and Divide

Integer multiplications (MULScc, SMUL{cc}, MULX) and divisions (SDIV{cc},

UDIV{cc}, UDIVX) are executed directly in hardware.

Multiplications are done 2 bits at a time with early exit when the final result is

generated. Divisions use a 1-bit non-restoring division algorithm.

Note – For best performance, the smaller of the two operands of a multiply should

be the rs1 operand.



182 UltraSPARC IIi User’s Manual • July 1999

14.2.4 Version Register (Impdep #2, 13, 101, 104)

Consult the product data sheet for the content of the Version Register for an

implementation. For the state of this register after resets, see Table 17-5 on page 261.

manuf: 16-bit manufacturer code, 0017
16

(TI JEDEC number), that identifies the

manufacturer of an UltraSPARC IIi CPU.

impl:1 6-bit implementation code, 0010
16

, that uniquely identifies an UltraSPARC IIi-

class CPU. Table 14-3 shows the VER.impl values for each UltraSPARC IIi model.

mask: 8-bit mask set revision number that identifies the mask set revision of this

UltraSPARC IIi. This is subdivided into a 4 bit major mask number <31:28> and a 4-

bit minor mask number <27:24>. The major number starts at zero and is incremented

for each all-layer mask revision. The minor number starts at zero for each major

revision, and is incremented for each less-than-all-layer mask revision.

maxtl: Maximum number of supported trap levels beyond level 0; the same as the

largest possible value for the TL register; for UltraSPARC IIi, maxtl=5

maxwin: Maximum index number available for use as a valid CWP value. The value

is NWINDOWS–1; for UltraSPARC IIi maxwin=7.

Table 14-2 Version Register Format

Bits Field Use RW

<63:48> manuf Manufacturer identification R

<47:32> impl Implementation identification R

<31:24> mask Mask set version R

<23:16> Reserved — R

<15:8> maxtl Maximum trap level supported R

<7:5> Reserved — R

<4:0> maxwin Maximum number of windows of integer register file. R

Table 14-3 VER.impl Values by UltraSPARC IIi Model

UltraSPARC-I UltraSPARC-II

VER.impl 0010
16

0011
16
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14.3 SPARC-V9 Floating-Point Operations

14.3.1 Subnormal Operands & Results; Non-standard

Operation

UltraSPARC IIi handles some cases of subnormal operands or results directly in

hardware and traps on the rest. In the trapping cases, an fp_exception_other (with

FSR.ftt=2, unfinished_FPop) trap is signalled and these operations are handled in

system software. The unfinished trapping cases are listed in Table 14-4, and

Table 14-5.

Because trapping on subnormal operands and results can be costly, UltraSPARC IIi

supports the non-standard result option of the SPARC-V9 architecture. If FSR.NS = 1,

subnormal operands or results encountered in trapping cases are flushed to zero and

the unfinished_FPop floating-point trap type are not taken.

14.3.1.1 Subnormal Operands

If FSR.NS=1, the subnormal operands of these operations are replaced by zeroes

with the same sign. An inexact exception is signalled in this case, which causes an

fp_exception_ieee_754 trap if enabled by FSR.TEM. If FSR.NS=0, subnormal operands

generate traps according to Table 14-4 on page 183. E
R

is the biased exponent of the

result before rounding.

Table 14-4 Subnormal Operand Trapping Cases (NS=0)

Operations One Subnormal Operand
Two Subnormal
Operands

F(sd)TO(ix)

F(sd)TO(ds)

FSQRT(sd)

Unfinished trap always

—

FADD/SUB(sd)

FSMULD
Unfinished trap always

Unfinished trap

always

FMUL(sd)

FDIV(sd)

Unfinished trap if no overflow and:

-25 < E
R

(SP);

-54 < E
R

(DP)

Unfinished trap

always
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14.3.1.2 Subnormal Results

If FSR.NS=1, the subnormal results are replaced by zero with the same sign.

Underflow and inexact exceptions are signalled in this case. This will cause an

fp_exception_ieee_754 trap if enabled by FSR.TEM (only ufc will be set in FSR.cexc
when underflow trap is enabled, otherwise only nxc will be set when inexact trap is

enabled). If FSR.NS=0, then subnormal results generate traps according to

Table 14-5. For FDTOS and FADD, E
R

is the biased exponent of the result before

rounding. For multiply, E
R

is the biased sum of the exponents plus one. For divide,

E
R

is the biased difference of the exponents of the operands.

14.3.2 Overflow, Underflow, and Inexact Traps (Impdep

#3, 55)

UltraSPARC IIi implements precise floating-point exception handling. Underflow is

detected before rounding. Prediction of overflow, underflow and inexact traps for

divide and square root is used to simplify the hardware.

For divide, pessimistic prediction occurs when underflow/overflow can not be

determined from examining the source operand exponents. For divide and square

root, pessimistic prediction of inexact occurs unless one of the operands is a zero,

NAN or infinity. When pessimistic prediction occurs and the exception is enabled,

an fp_exception_other (with FSR.ftt=2, unfinished_FPop) trap is generated. System

software will properly handle these cases and resume execution. If the exception is

not enabled, the actual result status is used to update the aexec bits of the fsr.

Note – Major performance degradation may be observed while running with the

inexact exception enabled.

Table 14-5 Subnormal Result Trapping Cases (NS=0)

Operations Trap

FDTOS

FADD/SUB(sd)

FMUL(sd)

Unfinished trap if:

-25 < E
R

< 1 (SP)

-54 < E
R

< 1 (DP)

FDIV(sd)

Unfinished trap if:

-25 < E
R

≤ 1 (SP)

-54 < E
R

≤ 1 (DP)
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14.3.3 Quad-Precision Floating-Point Operations

(Impdep #3)

All quad-precision floating-point instructions, listed in Table 14-6, cause an

fp_exception_other (with FSR.ftt=3, unimplemented_FPop) trap. These operations are

emulated in system software.

14.3.4 Floating Point Upper and Lower Dirty Bits in

FPRS Register

The FPRS_dirty_upper (DU) and FPRS_dirty_lower (DL) bits in the Floating-Point

Registers State (FPRS) Register are set when an instruction that modifies the

corresponding upper and lower half of the floating-point register file is dispatched.

Floating-point register file modifying instructions include floating-point operate,

graphics, floating-point loads and block load instructions.

Table 14-6 Unimplemented Quad-Precision Floating-Point Instructions

Instruction Description

F{s,d}TOq Convert single-/double- to quad-precision floating-point

F{i,x}TOq Convert 32-/64-bit integer to quad-precision floating-point

FqTO{s,d} Convert quad- to single-/double-precision floating-point

FqTO{i,x} Convert quad-precision floating-point to 32-/64-bit integer

FCMP{E}q Quad-precision floating-point compares

FMOVq Quad-precision floating-point move

FMOVqcc Quad-precision floating-point move, if condition is satisfied

FMOVqr
Quad-precision floating-point move if register match

condition

FABSq Quad-precision floating-point absolute value

FADDq Quad-precision floating-point addition

FDIVq Quad-precision floating-point division

FdMULq Double- to quad-precision floating-point multiply

FMULq Quad-precision floating-point multiply

FNEGq Quad-precision floating-point negation

FSQRTq Quad-precision floating-point square root

FSUBq Quad-precision floating-point subtraction
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The FPRS.DU and FPRS.DL may be set pessimistically, even though the instruction

that modified the floating-point register file is nullified.

14.3.5 Floating-Point Status Register (FSR) (Impdep #13,

19, 22, 23, 24)

UltraSPARC IIi supports precise-traps and implements all three exception fields

(TEM, cexc, and aexc) conforming to IEEE Standard 754-1985. The state of the FSR

after reset is documented in Table 17-5 on page 261.

u: Unused field, read as 0.

Note – The LD{X}FSR instruction should write zeroes to the u fields; undefined

values (read as 0) of these fields are stored by the ST{X}FSR instruction.

Table 14-7 Floating-Point Status Register Format

Bits Field Use RW

<63:38> Reserved — R

<37:36> fcc3 Floating-point condition code (set 3) RW

<35:34> fcc2 Floating-point condition code (set 2) RW

<33:32> fcc1 Floating-point condition code (set 1) RW

<31:30> RD Rounding direction RW

<29:28> u Unused R

<27:23> TEM IEEE-754 trap enable mask RW

<22> NS Non-standard floating-point results R

<21:20> Reserved — R

<19:17> ver FPU version number R

<16:14> ftt Floating-point trap type RW

<13:> qne
Floating-point deferred-trap queue (FQ) not

empty
RW

<12> u Unused R

<11:10> fcc0 Floating-point condition code (set 0) RW

<9:5> aexc Accumulated outstanding exceptions RW

<4:0> cexc Current outstanding exceptions RW
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fcc3, fcc2, fcc1, fcc0: Four sets of 2-bit floating-point condition codes, which are

modified by the FCMP{E} (and LD{X}FSR) instructions. The FBfcc, FMOVcc, and

MOVcc instructions use one of these condition code sets to determine conditional

control transfers and conditional register moves.

Note – fcc0 is the same as the fcc in SPARC-V8.

RD: IEEE Std. 754-1985 Rounding Direction.

TEM: 5-bit trap enable mask for the IEEE-754 floating-point exceptions. If a floating-

point operate instruction produces one or more exceptions, the corresponding cexc/

aexc bits are set and an fp_exception_ieee_754 (with FSR.ftt=1, IEEE_754_exception)
exception is generated.

NS: When this field = 0, UltraSPARC IIi produces IEEE-754 compatible results. In

particular, subnormal operands or results may cause a trap. When this field=1,

UltraSPARC IIi may deliver a non-IEEE-754 compatible result. In particular,

subnormal operands and results may be flushed to zero. See Table 14-4 and Table 14-5
on page 184.

ver: his field identifies a particular implementation of the UltraSPARC IIi FPU

architecture.

ftt: The 3-bit floating point trap type field is set whenever an floating-point

instruction causes the fp_exception_ieee_754 or fp_exception_other traps.

Table 14-8 Floating-Point Rounding Modes

RD Round Toward

0 Nearest (even if tie)

1 0

2 +∞

3 –∞

Table 14-9 Floating-Point Trap Type Values

ftt Floating-Point Trap Type Trap Signalled

0 None —

1 IEEE_754_exception fp_exception_ieee_754

2 unfinished_FPop fp_exception_other

3 unimplemented_FPop fp_exception_other

4 sequence_error fp_exception_other
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Note – UltraSPARC IIi neither detects nor generates the hardware_error or

invalid_fp_register trap types directly in hardware.

Note – UltraSPARC IIi does not contain an FQ. An attempt to read the FQ with a

RDPR instruction causes an illegal_instruction trap.

Note – SPARC-V8-compatible programs should set the least significant bit of the

floating-point register number to zero for all double-precision instructions. Violation

of this SPARC-V8 architectural constraint may result in unexpected program

behavior.

qne: This bit is not used, because UltraSPARC IIi implements precise floating-point

exceptions.

aexc: 5-bit accrued exception field accumulates IEEE 754 exceptions while floating-

point exception traps are disabled (that is, FSR.TEM=0).

cexc: 5-bit current exception field indicates the most recently generated IEEE 754

exceptions.

14.4 SPARC-V9 Memory-Related Operations

14.4.1 Load/Store Alternate Address Space (Impdep #5,

29, 30)

Supported ASI accesses are listed in Section 6.3, Alternate Address Spaces on page 39.

5 hardware_error —

6 invalid_fp_register —

7 reserved —

Table 14-9 Floating-Point Trap Type Values (Continued)

ftt Floating-Point Trap Type Trap Signalled
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14.4.2 Load/Store ASR (Impdep #6,7,8,9, 47, 48)

Supported ASRs are listed in Section 6.5, Ancillary State Registers on page 51.

14.4.3 MMU Implementation (Impdep #41)

UltraSPARC IIi memory management is based on software-managed instruction and

data Translation Lookaside Buffers (TLBs) and in-memory Translation Storage

Buffers (TSBs) backed by a Software Translation Table. See Chapter 4, Overview of I
and D-MMUs for more details.

14.4.4 FLUSH and Self-Modifying Code (Impdep #122)

FLUSH is needed to synchronize code and data spaces after code space is modified

during program execution. FLUSH is described in Section 8.3.2, Memory
Synchronization: MEMBAR and FLUSH on page 70. On UltraSPARC IIi, the FLUSH

effective address is translated by the D-MMU. As a result, FLUSH can cause a

data_access_exception (the page is mapped with side effects or no fault only bits set,

virtual address out of range, or privilege violation) or a data_access_MMU_miss trap.

For a data_access_exception, the trap handler can decode the FLUSH instruction, and

perform a Done to be consistent with the normal SPARC-V9 behavior of no traps on

FLUSH. For a data_access_MMU_miss, the trap handler should do the normal TLB

miss processing and perform a RETRY if the page can be mapped in the TLB,

otherwise perform a DONE.

Note – SPARC-V9 specifies that the FLUSH instruction has no latency on the issuing

processor. In other words, a store to instruction space prior to the FLUSH instruction

is visible immediately after the completion of FLUSH. MEMBAR #StoreStore is

required to ensure proper ordering in multi-processing system when the memory

model is not TSO. When a MEMBAR #StoreStore , FLUSH sequence is performed,

UltraSPARC IIi guarantees that earlier code modifications will be visible across the

whole system.

14.4.5 PREFETCH{A} (Impdep #103, 117)

For UltraSPARC-I, PREFETCH{A} instructions with fcn=0..4 are treated as NOPs.

For UltraSPARC-II, PREFETCH{A} instructions with fcn=0..4 have the meanings

given in Table 14-10.
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PREFETCH{A} instructions with fcn=5..15 cause an illegal_instruction trap.

PREFETCH{A} instructions with fcn=16..31 are treated as NOPs.

14.4.6 Non-faulting Load and MMU Disable (Impdep

#117)

When the data MMU is disabled, accesses are assumed to be non-cacheable

(TTE.PC=0) and with side-effect (TTE.E=1). Non-faulting loads encountered when

the MMU is disabled cause a data_access_exception trap with SFSR.FT=2 (speculative

load to page with side-effect attribute).

14.4.7 LDD/STD Handling (Impdep #107, 108)

LDD and STD instructions are directly executed in hardware.

Note – LDD/STD are deprecated in SPARC-V9. In UltraSPARC IIi it is more

efficient to use LDX/STX for accessing 64-bit data. LDD/STD take longer to execute

than two 32-/64-bit loads/stores.

14.4.8 FP mem_address_not_aligned (Impdep #109, 110,

111, 112)

LDDF{A}/STDF{A} cause an LDDF/STDF_ mem_address_not_aligned trap if the

effective address is 32-bit aligned but not 64-bit (doubleword) aligned.

LDQF{A}/STQF{A} are not directly executed in hardware; they cause an

illegal_instruction trap.

Table 14-10 PREFETCH{A} Variants (UltraSPARC-II)

fcn Prefetch Function Action

0 Prefetch for several reads
Generate P_RDS_REQ if desired line is not present in

E-cache
1 Prefetch for one read

4 Prefetch page

2 Prefetch for several writes Generate P_RDO_REQ if desired line is not present in

E-cache in either E or M state3 Prefetch for one write
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14.4.9 Supported Memory Models (Impdep #113, 121)

UltraSPARC IIi supports all three memory models (TSO, PSO, RMO). See

Section 20.2, Supported Memory Models on page 322.

14.4.10 I/O Operations (Impdep #118, 123)

I/O spaces and their accesses are specified in Section 8.3.7, I/O (PCI or UPA64S) and
Accesses with Side-effects on page 76.

14.5 Non-SPARC-V9 Extensions

14.5.1 Per-Processor TICK Compare Field of TICK

Register

The SPARC-V9 TICK register is used for fine-grain measurements of time in

processor cycles. The TICK Compare field (TICK_CMPR) of the TICK Register

provides added functionality for thread scheduling on a per-processor basis. Non

privileged accesses to this register will cause a privileged_opcode trap. See Table 17-5 on

page 261 for a list of resets states.

INT_DIS: If set, TICK_INT interrupt generation is disabled.

TICK_CMPR: Writes to the TICK_Compare Register load a value for comparison to

the TICK register bits <62:0>. When these values match and (INT_DIS=0) a

TICK_INT is posted in the SOFTINT register. This has the effect of posting a level-14

interrupt to the processor when the processor has (PSTATE.PIL < D
16

) and

(PSTATE.IE=1). The level-14 interrupt handler must check both SOFTINT<14> and

TICK_INT. This function is independent on each processor.

Table 14-11 TICK_compare Register Format

Bits Field Use RW

<63> INT_DIS TICK_INT interrupt enable RW

<62:0> TICK_CMPR Compare value for TICK interrupts RW
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14.5.2 Cache Sub-system

UltraSPARC IIi contains one or more levels of cache. The cache sub-system

architecture is described in Chapter 3, Cache Organization.

14.5.3 Memory Management Unit

UltraSPARC IIi implements a multi-level memory management scheme. The MMU

architecture is described in Chapter 4, Overview of I and D-MMUs.”

14.5.4 Error Handling

UltraSPARC IIi implements a set of programmer-visible error and exception

registers. These registers and their usage are described in Chapter 16, Error Handling.

14.5.5 Block Memory Operations

UltraSPARC IIi supports 64-byte block memory operations utilizing a block of eight

double-precision floating point registers as a temporary buffer. See Section 13.5.3,

Block Load and Store Instructions on page 164.

14.5.6 Partial Stores

UltraSPARC IIi supports 8-/16-/32-bit partial stores to memory. See Section 13.5.1,

Partial Store Instructions on page 161.

14.5.7 Short Floating-Point Loads and Stores

UltraSPARC IIi supports 8-/16-bit loads and stores to the floating-point registers.

See Section 13.5.2, Short Floating-Point Load and Store Instructions on page 162.

14.5.8 Atomic Quad-load

UltraSPARC IIi supports 128-bit atomic load operations to a pair of integer registers.

See Section 13.6.1, Atomic Quad Load on page 171.
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14.5.9 PSTATE Extensions: Trap Globals

UltraSPARC IIi supports two additional sets of eight 64-bit global registers: interrupt

globals and MMU globals. These additional registers are called the “trap globals.”

Two 1-bit fields, PSTATE.IG and PSTATE.MG, have been added to the PSTATE

register to select which set of global registers to use. The PSTATE.IG and

PSTATE.MG bits are also stored with the rest of the PSTATE register in the TSTATE

register when a trap is taken. See Chapter 11, Interrupt Handling for a description of

the trap global registers. See Table 17-5 on page 261 for the states of these bits on

reset.

Note – Exiting RED_state by writing 0 to PSTATE.RED in the delay slot of a JMPL

instruction is not recommended. A noncacheable instruction prefetch may be made

to the JMPL target, which may be in a cacheable memory area. This may result in a

bus error on some systems, which causes an instruction_access_error trap. The trap can

be masked by setting the NCEEN bit in the ESTATE_ERR_EN register to zero, but

this will mask all non-correctable error checking. Exiting RED_state with DONE or

RETRY avoids this problem.

UltraSPARC IIi provides Interrupt and MMU global register sets in addition to the

two global register sets specified by SPARC-V9. The currently active set of global

registers is specified by the AG, IG and MG bits according to Table 14-13 on page 194.

Table 14-12 Extended PSTATE Register

Bits Field Use RW

<11> IG Interrupt globals enable RW

<10> MG MMU globals enable RW

<9> CLE Current little endian enable RW

<8> TLE Trap little endian enable RW

<7:6> MM Memory Model RW

<5> RED RED_state enable RW

<4> PEF Floating point enable RW

<3> AM 32-bit address mask enable RW

<2> PRIV Privileged mode RW

<1> IE Interrupt enable RW

<0> AG Alternate global enable RW
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Note – The IG and MG fields are saved on the trap stack along with the rest of the

PSTATE register.

When an interrupt_vector trap (trap type=60
16

) is taken, UltraSPARC IIi selects the

Interrupt Global registers by setting IG and clearing AG and MG. When a

fast_instruction_access_MMU_miss, fast_data_access_MMU_miss,

fast_data_access_protection, data_access_exception, or instruction_access_exception trap is

taken, UltraSPARC IIi selects the MMU Global Registers by setting MG and clearing

AG and IG. When any other type of trap occurs, UltraSPARC IIi selects the Alternate

Global Registers by setting AG and clearing IG and MG. Note that global register

selection is the same for traps that enter RED_state.

Executing a DONE or RETRY instruction restores the previous {AG, IG, MG} state

before the trap is taken. These three bits can also be set or cleared by writing to the

PSTATE register with a WRPR instruction.

Note – The AG, IG, and MG bits are mutually exclusive. Attempting to set a

reserved encoding using a WRPR to PSTATE generates an illegal_instruction trap.

UltraSPARC IIi does not check for a reserved encoding in TSTATE. This causes

undefined results when a DONE or RETRY is executed.

Table 14-13 PSTATE Global Register Selection Encoding

AG IG MG Globals in Use

0 0 0 Normal

0 0 1 MMU

0 1 0 Interrupt

0 1 1 Reserved

1 0 0 Alternate

1 0 1 Reserved

1 1 0 Reserved

1 1 1 Reserved
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14.5.10 Interrupt Vector Handling

Processors and I/O devices can interrupt a selected processor by assembling and

sending an interrupt packet consisting of three 64-bit interrupt data words. This

allows hardware interrupts and cross calls to have the same hardware mechanism

and to share a common software interface for processing. Interrupt vectors are

described in Chapter 11, Interrupt Handling.

14.5.11 Power Down Support and the SHUTDOWN

Instruction

UltraSPARC IIi supports power down mode to reduce power requirements during

idle periods. A privileged instruction, SHUTDOWN, has been added to facilitate a

software-controlled power down of the CPU and system. Power down support and

the SHUTDOWN instruction are described in Section 13.6.2, SHUTDOWN on

page 172.

14.5.12 UltraSPARC IIi Instruction Set Extensions

(Impdep #106)

The UltraSPARC IIi CPU extends the standard SPARC-V9 instruction set with three

new classes of instructions. These are designed to support power down mode (see

Section 13.6.2, SHUTDOWN on page 172), enhance graphics functionality (see

Section 13.4, Graphics Instructions), and improve the efficiency of memory accesses

(see Section 13.5, Memory Access Instructions).

Unimplemented IMPDEP1 and IMPDEP2 opcodes encountered during execution

cause an illegal_instruction trap.

14.5.13 Performance Instrumentation

UltraSPARC IIi performance instrumentation is described in Section B.4, Performance
Instrumentation Counter Events on page 389.

14.5.14 Debug and Diagnostics Support

UltraSPARC IIi support for debug and diagnostics is described in Appendix A,

Debug and Diagnostics Support.
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CHAPTER 15

MMU Internal Architecture

15.1 Introduction
This chapter provides detailed information about the UltraSPARC IIi Memory

Management Unit. It describes the internal architecture of the MMU and how to

program it.

15.2 Translation Table Entry (TTE)
The Translation Table Entry, illustrated in Figure 15-1, is the UltraSPARC IIi

equivalent of a SPARC-V8 page table entry; it holds information for a single page

mapping. The TTE is broken into two 64-bit words, representing the tag and data of

the translation. Just as in a hardware cache, the tag is used to determine whether

there is a hit in the TSB. If there is a hit, the data is fetched by software.

Figure 15-1 Translation Table Entry (TTE) (from TSB)
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G: Global. If the Global bit is set, the Context field of the TTE is ignored during hit

detection. This allows any page to be shared among all (user or supervisor) contexts

running in the same processor. The Global bit is duplicated in the TTE tag and data

to optimize the software miss handler.

Context: The 13-bit context identifier associated with the TTE.

VA_tag<63:22>: Virtual Address Tag. The virtual page number. Bits 21 through 13

are not maintained in the tag, since these bits are used to index the smallest direct-

mapped TSB of 64 entries.

Note – Software must sign-extend bits VA_tag<63:44> to form an in-range VA.

V: Valid: If the Valid bit is set, the remaining fields of the TTE are meaningful. Note

that the explicit Valid bit is redundant with the software convention of encoding an

invalid TTE with an unused context. The encoding of the context field is necessary to

cause a failure in the TTE tag comparison, while the explicit Valid bit in the TTE data

simplifies the TLB miss handler.

Size: The page size of this entry, encoded as shown in the following table

.

NFO: No-Fault-Only. If this bit is set, loads with

ASI_PRIMARY_NO_FAULT{_LITTLE}, ASI_SECONDARY_NO_FAULT{_LITTLE}

are translated. Any other access will trap with a data_access_exception trap (FT=10
16

).

The NFO-bit in the I-MMU is read as zero and ignored when written. If this bit is set

before loading the TTE into the TLB, the iTLB miss handler should generate an error.

IE: Invert Endianness. If this bit is set, accesses to the associated page are processed

with inverse endianness from what is specified by the instruction (big-for-little and

little-for-big). See Section 15.6, ASI Value, Context, and Endianness Selection for
Translation on page 208 for details. In the I-MMU this bit is read as zero and ignored

when written.

Table 15-1 Size Field Encoding (from TTE)

Size<1:0> Page Size

00 8 kB

01 64 kB

10 512 kB

11 4 MB
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Note – This bit is intended to be set primarily for noncacheable accesses. The

performance of cacheable accesses will be degraded as if the access had missed the

D-cache.

Soft<5:0>, Soft2<8:0>: Software-defined fields, provided for use by the operating

system. The Soft and Soft2 fields may be written with any value; they read as zero.

Diag: Used by diagnostics to access the redundant information held in the TLB

structure. Diag<0>=Used bit, Diag<3:1>=RAM size bits, Diag<6:4>=CAM size bits.

(Size bits are 3-bit encoded as 000=8K, 001=64K, 011=512K, 111=4M.) The size bits

are read-only; the Used bit is read/write. All other Diag bits are reserved.

PA<40:13>: The physical page number. Page offset bits for larger page sizes

(PA<15:13>, PA<18:13>, and PA<21:13> for 64 kB, 512 kB, and 4 MB pages,

respectively) are stored in the TLB and returned for a Data Access read, but ignored

during normal translation.

L: Lock. If this bit is set, the TTE entry will be “locked down” when it is loaded into

the TLB; that is, if this entry is valid, it will not be replaced by the automatic

replacement algorithm invoked by an ASI store to the Data In register. The lock bit

has no meaning for an invalid entry. Arbitrary entries may be locked down in the

TLB. Software must ensure that at least one entry is not locked when replacing a TLB

entry, otherwise the last TLB entry will be replaced.

CP, CV: The cacheable-in-physically-indexed-cache and cacheable-in-virtually-

indexed-cache bits determine the placement of data in UltraSPARC IIi caches,

according to Table 15-2. The MMU does not operate on the cacheable bits, but merely

passes them through to the cache subsystem. The CV-bit in the I-MMU is read as

zero and ignored when written.

Note – Erratum 58 describes the restricted use of Diag<0>, the Used bit.

E: Side-effect. If this bit is set, speculative loads and FLUSHes will trap for addresses

within the page, noncacheable memory accesses other than block loads and stores

are strongly ordered against other E-bit accesses, and noncacheable stores are not

Table 15-2 Cacheable Field Encoding (from TSB)

Cacheable
{CP, CV}

Meaning of TTE When Placed in:

iTLB
(I-cache PA-Indexed)

dTLB
(D-cache VA-Indexed)

0x Non-cacheable Non-cacheable

10 Cacheable E-cache, I-cache Cacheable E-cache only

11 Cacheable E-cache, I-cache Cacheable E-cache, D-cache



200 UltraSPARC IIi User’s Manual • July 1999

merged. This bit should be set for pages that map I/O devices having side-effects.

Note, however, that the E-bit does not prevent normal instruction prefetching. The

E-bit in the I-MMU is read as zero and ignored when written.

Note – The E-bit does not force an uncacheable access. It is expected, but not

required, that the CP and CV bits will be set to zero when the E-bit is set.

P: Privileged. If the P bit is set, only the supervisor can access the page mapped by

the TTE. If the P bit is set and an access to the page is attempted when

PSTATE.PRIV=0, the MMU will signal an instruction_access_exception or

data_access_exception trap (FT=1
16

).

W: Writable. If the W bit is set, the page mapped by this TTE has write permission

granted. Otherwise, write permission is not granted and the MMU will cause a

data_access_protection trap if a write is attempted. The W-bit in the I-MMU is read as

zero and ignored when written.

G: Global. This bit must be identical to the Global bit in the TTE tag. Similar to the

case of the Valid bit, the Global bit in the TTE tag is necessary for the TSB hit

comparison, while the Global bit in the TTE data facilitates the loading of a TLB

entry.

Compatibility Note – Referenced and Modified bits are maintained by software.

The Global, Privileged, and Writable fields replace the 3-bit ACC field of the

SPARC-V8 Reference MMU Page Translation Entry.

15.3 Translation Storage Buffer (TSB)
The TSB is an array of TTEs managed entirely by software. It serves as a cache of the

Software Translation Table, used to quickly reload the TLB in the event of a TLB

miss. The discussion in this section assumes the use of the hardware support for TSB

access described in Section 15.3.1, Hardware Support for TSB Access on page 201,

although the operating system is not required to make use of this support hardware.

Inclusion of the TLB entries in the TSB is not required; that is, translation

information may exist in the TLB that is not present in the TSB.

The TSB is arranged as a direct-mapped cache of TTEs. The UltraSPARC IIi MMU

provides precomputed pointers into the TSB for the 8 kB and 64 kB page TTEs. In

each case, N least significant bits of the respective virtual page number are used as

the offset from the TSB base address, with N equal to log base 2 of the number of

TTEs in the TSB.
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A bit in the TSB register allows the TSB 64 kB pointer to be computed for the case of

common or split 8 kB/64 kB TSB(s).

No hardware TSB indexing support is provided for the 512 kB and 4 MB page TTEs.

Since the TSB is entirely software managed, however, the operating system may

choose to place these larger page TTEs in the TSB by forming the appropriate

pointers. In addition, simple modifications to the 8 kB and 64 kB index pointers

provided by the hardware allow formation of an M-way set-associative TSB,

multiple TSBs per page size, and multiple TSBs per process.

The TSB exists as a normal data structure in memory, and therefore may be cached.

Indeed, the speed of the TLB miss handler relies on the TSB accesses hitting the

level-2 cache at a substantial rate. This policy may result in some conflicts with

normal instruction and data accesses, but the dynamic sharing of the level-2 cache

resource should provide a better overall solution than that provided by a fixed

partitioning.

Figure 15-2 shows both the common and shared TSB organization. The constant N is

determined by the Size field in the TSB register; it may range from 512 bytes to

64 kB.

Figure 15-2 TSB Organization

15.3.1 Hardware Support for TSB Access

The MMU hardware provides services to allow the TLB miss handler to efficiently

reload a missing TLB entry for an 8 kB or 64 kB page. These services include:

■ Formation of TSB Pointers based on the missing virtual address.

■ Formation of the TTE Tag Target used for the TSB tag comparison.

■ Efficient atomic write of a TLB entry with a single store ASI operation.

■ Alternate globals on MMU-signalled traps.
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A typical TLB miss and refill sequence is as follows:

1. A TLB miss causes either an instruction_access_MMU_miss or a

data_access_MMU_miss exception.

2. The appropriate TLB miss handler loads the TSB Pointers and the TTE Tag Target

with loads from the MMU alternate space.

3. Using this information, the TLB miss handler checks to see if the desired TTE

exists in the TSB. If so, the TTE Data is loaded into the TLB Data In register to

initiate an atomic write of the TLB entry chosen by the replacement algorithm.

4. If the TTE does not exist in the TSB, the TLB miss handler jumps to a more

sophisticated (and slower) TSB miss handler.

The virtual address used in the formation of the pointer addresses comes from the

Tag Access register, which holds the virtual address and context of the load or store

responsible for the MMU exception. See Section 15.9, MMU Internal Registers and ASI
Operations on page 213. (Note that there are no separate physical registers in

UltraSPARC IIi hardware for the Pointer registers, but rather they are implemented

through a dynamic re-ordering of the data stored in the Tag Access and the TSB

registers.)

Pointers are provided by hardware for the most common cases of 8 kB and 64 kB

page miss processing. These pointers give the virtual addresses where the 8 kB and

64 kB TTEs would be stored if either is present in the TSB.

N is defined to be the TSB_Size field of the TSB register; it ranges from 0 to 7. Note

that TSB_Size refers to the size of each TSB when the TSB is split.

For a shared TSB (TSB register split field=0):

8K_POINTER = TSB_Base<63:13+N>  VA<21+N:13>  0000

64K_POINTER = TSB_Base<63:13+N>  VA<24+N:16>  0000

For a split TSB (TSB register split field=1):

8K_POINTER = TSB_Base<63:14+N>  0  VA<21+N:13>  0000

64K_POINTER = TSB_Base<63:14+N>  1  VA<24+N:16>  0000

For a more detailed description of the pointer logic with pseudo-code and hardware

implementation, see Section 15.11.3, TSB Pointer Logic Hardware Description on

page 228.

The TSB Tag Target (described in Section 15.9, MMU Internal Registers and ASI
Operations on page 213) is formed by aligning the missing access VA (from the Tag

Access register) and the current context to positions found in the description of the

TTE tag. This allows an XOR instruction for TSB hit detection.

These items must be locked in the TLB to avoid an error condition: TLB-miss

handler, TSB and linked data, asynchronous trap handlers and data.
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These items must be locked in the TSB (not necessarily the TLB) to avoid an error

condition: TSB-miss handler and data, interrupt-vector handler and data.

15.3.2 Alternate Global Selection During TLB Misses

In the SPARC-V9 normal trap mode, the software is presented with an alternate set

of global registers in the integer register file. UltraSPARC IIi provides an additional

feature to facilitate fast handling of TLB misses. For the following traps, the trap

handler is presented with a special set of MMU globals:

fast_{instruction,data}_access_MMU_miss, {instruction,data}_access_exception, and

fast_data_access_protection. The privileged_action and *mem_address_not_aligned traps use

the normal alternate global registers.

Compatibility Note – The UltraSPARC IIi MMU performs no hardware table

walking. The MMU hardware never directly reads or writes to the TSB.

15.4 MMU-Related Faults and Traps
Table 15-3 lists the traps recorded by the MMU.

1
Contents undefined if instruction_access_exception is due to virtual address out of range.

Table 15-3 MMU Traps

Trap Name Trap Cause

Registers Updated
(Stored State in MMU)

I-SFSR
I-Tag

Access
D-SFSR,

SFAR
D-Tag

Access

fast_instruction_access_MMU_miss iTLB miss ✓

instruction_access_exception Several (see below) ✓ ✓
1

fast_data_access_MMU_miss dTLB miss ✓

data_access_exception Several (see below) ✓ ✓

fast_data_access_protection Protection violation ✓ ✓

privileged_action Use of privileged ASI ✓

*_watchpoint Watchpoint hit ✓

*_mem_address_not_aligned Misaligned mem op ✓
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Note – The fast_instruction_access_MMU_miss, fast_data_access_MMU_miss, and

fast_data_access_protection traps are generated instead of instruction_access_MMU_miss,
data_access_MMU_miss, and data_access_protection traps, respectively.

15.4.1 Instruction_access_MMU_miss Trap

This trap occurs when the I-MMU is unable to find a translation for an instruction

access; that is, when the appropriate TTE is not in the iTLB.

15.4.2 Instruction_access_exception Trap

This trap occurs when the I-MMU is enabled and one of the following happens:

■ The I-MMU detects a privilege violation for an instruction fetch; that is, an

attempted access to a privileged page when PSTATE.PRIV=0.

■ Virtual address out of range and PSTATE.AM is not set. See Section 14.1.7, 44-bit
Virtual Address Space on page 178. Note that the case of JMPL/RETURN and

branch-CALL-sequential are handled differently. The contents of the I-Tag Access

Register are undefined in this case, but are not needed by software.

15.4.3 Data_access_MMU_miss Trap

This trap occurs when the MMU is unable to find a translation for a data access; that

is, when the appropriate TTE is not in the data TLB for a memory operation.

15.4.4 Data_access_exception Trap

This trap occurs when the D-MMU is enabled and one of the following events (the

D-MMU does not prioritize these) occurs.

■ The D-MMU detects a privilege violation for a data or FLUSH instruction access;

that is, an attempted access to a privileged page when PSTATE.PRIV=0

■ A speculative (non-faulting) load or FLUSH instruction issued to a page marked

with the side-effect (E-bit)=1

■ An atomic instruction (including 128-bit atomic load) issued to a memory address

marked uncacheable in a physical cache; that is, with CP=0
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■ An invalid LDA/STA ASI value, invalid virtual address, read to write-only

register, or write to read-only register, but not for an attempted user access to a

restricted ASI (see the privileged_action trap described below)

■ An access (including FLUSH) with an ASI other than

ASI_{PRIMARY,SECONDARY}_NO_FAULT{_LITTLE} to a page marked with the

NFO (no-fault-only) bit

■ Virtual address out of range (including FLUSH) and PSTATE.AM is not set. See

Section 4.2, Virtual Address Translation on page 23

The data_access_exception trap also occurs when the D-MMU is disabled and one the

following occurs.

■ Speculative (non-faulting) load or FLUSH instruction issued when

LSU_Control_Register.DP=0

■ An atomic instruction (including 128-bit atomic load) is issued using the

ASI_PHYS_BYPASS_EC_WITH_EBIT{_LITTLE} ASIs. In this case SFSR.FT=04
16

15.4.5 Data_access_protection Trap

This trap occurs when the MMU detects a protection violation for a data access. A

protection violation is defined to be an attempted store to a page without write

permission.

15.4.6 Privileged_action Trap

This trap occurs when an access is attempted using a restricted ASI while in non-

privileged mode (PSTATE.PRIV=0).

15.4.7 Watchpoint Trap

This trap occurs when watchpoints are enabled and the D-MMU detects a load or

store to the virtual or physical address specified by the VA Data Watchpoint Register

or the PA Data Watchpoint Register, respectively. See Section A.5, Watchpoint Support
on page 368.

15.4.8 Mem_address_not_aligned Trap

This trap occurs when a load, store, atomic, or JMPL/RETURN instruction with a

misaligned address is executed. The LSU signals this trap, but the D-MMU records

the fault information in the SFSR and SFAR.



206 UltraSPARC IIi User’s Manual • July 1999

15.5 MMU Operation Summary
Table 15-6 on page 208 summarizes the behavior of the D-MMU; Table 15-6 on

page 208 summarizes the behavior of the I-MMU for normal (non-UltraSPARC IIi-

internal) ASIs using tabulated abbreviations. In each case, and for all conditions, the

behavior of the MMU is given by one of the abbreviations in Table 15-4. Table 15-5
lists abbreviations for ASI types.

::

Note – The “*_LITTLE” versions of the ASIs behave the same as the big-endian

versions with regard to the MMU table of operations.

Table 15-4 Abbreviations for MMU Behavior

Abbreviation Meaning

ok Normal Translation

dmiss data_access_MMU_miss trap

dexc data_access_exception trap

dprot data_access_protection trap

imiss instruction_access_MMU_miss trap

iexc instruction_access_exception trap

Table 15-5 Abbreviations for ASI Types

Abbreviation Meaning

NUC ASI_NUCLEUS*

PRIM Any ASI with PRIMARY translation, except *NO_FAULT”

SEC Any ASI with SECONDARY translation, except *NO_FAULT”

PRIM_NF ASI_PRIMARY_NO_FAULT*

SEC_NF ASI_SECONDARY_NO_FAULT*

U_PRIM ASI_AS_IF_USER_PRIMARY*

U_SEC ASI_AS_IF_USER_SECONDARY*

BYPASS
ASI_PHYS_* and also other ASIs that require the MMU to perform a bypass

operation (such as D-cache access)
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Other abbreviations include “W” for the writable bit, “E” for the side-effect bit, and

“P” for the privileged bit.

The tables do not cover the following cases:

■ Invalid ASIs, ASIs that have no meaning for the opcodes listed, or non-existent

ASIs; for example, ASI_PRIMARY_NO_FAULT for a store or atomic; also, access

to UltraSPARC IIi internal registers other than LDXA, LDFA, STDFA or STXA,

except for I-cache diagnostic accesses other than LDDA, STDFA or STXA; see

Section 6.3.2, UltraSPARC IIi (Non-SPARC-V9) ASI Extensions on page 41; the

MMU signals a data_access_exception trap (FT=08
16

) for this case

■ Attempted access using a restricted ASI in non-privileged mode; the MMU

signals a privileged_action exception for this case

■ An atomic instruction (including 128-bit atomic load) issued to a memory address

marked uncacheable in a physical cache (that is, with CP=0), including cases in

which the D-MMU is disabled; the MMU signals a data_access_exception trap

(FT=04
16

) for this case

■ A data access (including FLUSH) with an ASI other than

ASI_{PRIMARY,SECONDARY}_NO_FAULT{_LITTLE} to a page marked with the

NFO (no-fault-only) bit; the MMU signals a data_access_exception trap (FT=10
16

)

for this case

■ Virtual address out of range (including FLUSH) and PSTATE.AM is not set; the

MMU signals a data_access_exception trap (FT=20
16

) for this case
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See Section 6.3, Alternate Address Spaces on page 39 for a summary of the

UltraSPARC IIi ASI map.

15.6 ASI Value, Context, and Endianness
Selection for Translation
The MMU uses a two-step process to select the context for a translation:

1. The ASI is determined (conceptually by the Integer Unit) from the instruction,

trap level, and the processor endian mode

Table 15-6 D-MMU Operations for Normal ASIs

Condition Behavior

Opcode
PRIV
Mode

ASI W
TLB
Miss

E=0
P=0

E=0
P=1

E=1
P=0

E=1
P=1

Load

0
PRIM, SEC — dmiss ok dexc ok dexc

PRIM_NF, SEC_NF — dmiss ok dexc dexc dexc

1

PRIM, SEC, NUC — dmiss ok ok

PRIM_NF, SEC_NF — dmiss ok dexc

U_PRIM, U_SEC — dmiss ok dexc ok dexc

FLUSH
0 — dmiss ok dexc dexc dexc

1 — dmiss ok ok dexc dexc

Store or

Atomic

0 PRIM, SEC
0 dmiss dprot dexc dprot dexc

1 dmiss ok dexc ok dexc

1

PRIM, SEC, NUC
0 dmiss dprot dprot

1 dmiss ok ok

U_PRIM, U_SEC
0 dmiss dprot dexc dprot dexc

1 dmiss ok dexc ok dexc

— 0 BYPASS — privileged_action

— 1 BYPASS —
Bypass. No traps when D-MMU enabled,

PRIV=1.

Table 15-7 I-MMU Operations for Normal ASIs

Condition Behavior

PRIV Mode TLB Miss P=0 P=1

0 imiss ok iexc

1 imiss ok
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2. The context register is determined directly from the ASI.

The ASI value and endianness (little or big) are determined for the I-MMU and D-

MMU respectively according to Table 15-8 and Table 15-9 on page 210.

Note – The secondary context is never used to fetch instructions. The I-MMU uses

the value stored in the D-MMU Primary Context register when using the Primary

Context identifier; there is no I-MMU Primary Context register.

Note – The endianness of a data access is specified by three conditions: the ASI

specified in the opcode or ASI register, the PSTATE current little endian bit, and the

D-MMU invert endianness bit. The D-MMU invert endianness bit does not affect the

ASI value recorded in the SFSR, but does invert the endianness that is otherwise

specified for the access.

Note – The D-MMU Invert Endianness (IE) bit inverts the endianness for all

accesses to translating ASIs, including LD/ST/Atomic alternates that have specified

an ASI. That is, LDXA [%g1]ASI_PRIMARY_LITTLE will be big-endian if the IE bit

is on. Accesses to non-translating ASIs are not affected by the D-MMUs IE bit. See

Section 6.3, Alternate Address Spaces on page 39 for information about non-translating

ASIs

Table 15-8 ASI Mapping for Instruction Accesses

Condition for Instruction Access Resulting Action

PSTATE.TL Endianness ASI Value (in SFSR)

0 Big ASI_PRIMARY

> 0 Big ASI_NUCLEUS
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1
Accesses to non-translating ASIs are always made in “big endian” mode, regardless of the setting of D-MMU.IE. See Section 6.3, Alter-
nate Address Spaces on page 39 for information about non-translating ASIs.

The context register used by the data and instruction MMUs is determined from the

following table. A comprehensive list of ASI values can be found in the ASI map in

Section 6.3, Alternate Address Spaces on page 39. The context register selection is not

affected by the endianness of the access.

Table 15-9 ASI Mapping for Data Accesses

Condition for Data Access Access Processed with:

Opcode
PSTATE.

TL
PSTATE.

CLE
D-MMU.

IE
Endianness

ASI Value
(Recorded in SFSR)

LD/ST/Atomic/FLUSH

0

0
0 Big ASI_PRIMARY

1 Little

1
0 Little ASI_PRIMARY_LITTLE

1 Big

> 0

0
0 Big ASI_NUCLEUS

1 Little

1
0 Little ASI_NUCLEUS_LITTLE

1 Big

LD/ST/Atomic Alternate

with specified ASI not
ending in “_LITTLE”

Don’t

care

Don’t

care

0 Big
1

Specified ASI value from

immediate field in opcode or

ASI register1 Little
1

LD/ST/Atomic Alternate

with specified ASI

ending in ‘_LITTLE”

Don’t

care

Don’t

care

0 Little Specified ASI value from

immediate field in opcode or

ASI register1 Big

Table 15-10 I-MMU and D-MMU Context Register Usage

ASI Value Context Register

ASI_*NUCLEUS*
1

1. Any ASI name containing the string “NUCLEUS”.

Nucleus (0000
16

hard-wired)

ASI_*PRIMARY*
2

2. Any ASI name containing the string “PRIMARY”.

Primary

ASI_*SECONDARY*
3

3. Any ASI name containing the string “SECONDARY”.

Secondary

All other ASI values (Not applicable, no translation)
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15.7 MMU Behavior During Reset, MMU
Disable, and RED_state
During global reset of the UltraSPARC IIi CPU, the following actions occur:

■ No change occurs in any block of the D-MMU.

■ No change occurs in the data path or TLB blocks of the I-MMU.

■ The I-MMU resets its internal state machine to normal (non-suspended)

operation.

■ The I-MMU and D-MMU Enable bits in the LSU Control Register (see Section A.6,

LSU_Control_Register on page 370) are set to zero.

On entering RED_state, the I-MMU and D-MMU Enable bits in the

LSU_Control_Register are set to zero.

Either MMU is defined to be disabled when its respective MMU Enable bit equals 0;

also, the I-MMU is disabled whenever the CPU is in RED_state. The D-MMU is

enabled or disabled solely by the state of the D-MMU Enable bit.

When the D-MMU is disabled it truncates all accesses, behaving as if

ASI_PHYS_BYPASS_EC_WITH_EBIT had been used, notably with side effect bit (E-

bit)=1, P=0 and CP=0. Other attribute bit settings can be found in Section 15.10,

MMU Bypass Mode on page 226. However, if a bypass ASI is used while the D-MMU

is disabled, the bypass operation behaves as it does when the D-MMU is enabled;

that is, the access is processed with the E and CP bits as specified by the bypass ASI.

When the I-MMU is disabled, it truncates all instruction accesses and passes the

physically-cacheable bit (CP=0) to the cache system. The access will not generate an

instruction_access_exception trap.

When disabled, both the I-MMU and D-MMU correctly perform all LDXA and STXA

operations to internal registers, and traps are signalled just as if the MMU were

enabled. For instance, if a *NO_FAULT load is issued when the D-MMU is disabled,

the D-MMU signals a data_access_exception trap (FT=02
16

), since accesses when the

D-MMU is disabled have E=1.

Note – While the D-MMU is disabled, data in the D-cache can be accessed only

using load and store alternates to the UltraSPARC IIi internal D-cache access ASI.

Normal loads and stores bypass the D-cache. Data in the D-cache cannot be accessed

using load or store alternates that use ASI_PHYS_*.
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Note – No reset of the MMU is performed by a chip reset or by entering RED_state.

Before the MMUs are enabled, the operating system software must explicitly write

each entry with either a valid TLB entry or an entry with the valid bit set to zero.

The operation of the I-MMU or D-MMU in enabled mode is undefined if the TLB

valid bits have not been set explicitly beforehand.

15.8 Compliance with the SPARC-V9 Annex F
The UltraSPARC IIi MMU complies completely with the SPARC-V9 MMU

Requirements described in Annex F of the The SPARC Architecture Manual, Version 9.

Table 15-11 shows how various protection modes can be achieved, if necessary,

through the presence or absence of a translation in the I- or D-MMU. Note that this

behavior requires specialized TLB miss handler code to guarantee these conditions.

Table 15-11 MMU Compliance w/SPARC-V9 Annex F Protection Mode

Condition
Resultant

Protection ModeTTE in
D-MMU

TTE in
I-MMU

Writable Attribute
Bit

Yes No 0 Read-only

No Yes Don’t Care Execute-only

Yes No 1 Read/Write

Yes Yes 0 Read-only/Execute

Yes Yes 1 Read/Write/Execute
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15.9 MMU Internal Registers and ASI
Operations

15.9.1 Accessing MMU Registers

All internal MMU registers can be accessed directly by the CPU through

UltraSPARC IIi-defined ASIs. Several of the registers have been assigned their own

ASI because these registers are crucial to the speed of the TLB miss handler.

Allowing the use of %g0 for the address reduces the number of instructions to

perform the access to the alternate space (by eliminating address formation).

See Section 15.10, MMU Bypass Mode on page 226 for details on the behavior of the

MMU during all other UltraSPARC IIi ASI accesses. For instance, to facilitate an

access to the D-cache, the MMU performs a bypass operation.

Caution – STXA to an MMU register requires either a MEMBAR #Sync , FLUSH,

DONE, or RETRY before the point that the effect must be visible to load / store /

atomic accesses. Either a FLUSH, DONE, or RETRY is needed before the point that

the effect must be visible to instruction accesses: MEMBAR #Sync is not sufficient.

In either case, one of these instructions must be executed before the next non-

internal store or load of any type and on or before the delay slot of a DCTI of any

type. This is necessary to avoid corrupting data.

If the low order three bits of the VA are non-zero in a LDXA/STXA to/from these

registers, a mem_address_not_aligned trap occurs. Writes to read-only, reads to write-

only, illegal ASI values, or illegal VA for a given ASI may cause a

data_access_exception trap (FT=08
16

). (The hardware detects VA violations in only an

unspecified lower portion of the virtual address.)

Caution – UltraSPARC IIi does not check for out-of-range virtual addresses during

an STXA to any internal register; it simply sign extends the virtual address based on

VA<43>. Software must guarantee that the VA is within range.

Writes to the TSB register, Tag Access register, and PA and VA Watchpoint Address

Registers are not checked for out-of-range VA. No matter what is written to the

register, VA<63:43> will always be identical on a read.
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15.9.2 I-/D-TSB Tag Target Registers

The I- and D-TSB Tag Target registers are simply respective bit-shifted versions of

the data stored in the I- and D-Tag Access registers. Since the I- or D-Tag Access

registers are updated on I- or D-TLB misses, respectively, the I- and D-Tag Target

registers appear to software to be updated on an I or D TLB miss.

Figure 15-3 MMU Tag Target Registers (Two Registers)

I/D Context<12:0>: The context associated with the missing virtual address.

I/D VA<63:22>: The most significant bits of the missing virtual address.

Table 15-12 UltraSPARC IIi MMU Internal Registers and ASI Operations

I-MMU
ASI

D-MMU
ASI

VA<63:0> Access Register or Operation Name

50
16

58
16

0
16

Read-only I-/D-TSB Tag Target Registers

— 58
16

8
16

Read/Write Primary Context Register

— 58
16

10
16

Read/Write Secondary Context Register

50
16

58
16

18
16

Read/Write I-/D-Synchronous Fault Status Registers

— 58
16

20
16

Read-only D Synchronous Fault Address Register

50
16

58
16

28
16

Read/Write I-/D-TSB Registers

50
16

58
16

30
16

Read/Write I-/D-TLB Tag Access Registers

— 58
16

38
16

Read/Write Virtual Watchpoint Address

— 58
16

40
16

Read/Write Physical Watchpoint Address

51
16

59
16

0
16

Read-only I-/D-TSB 8K Pointer Registers

52
16

5A
16

0
16

Read-only I-/D-TSB 64K Pointer Registers

— 5B
16

0
16

Read-only D-TSB Direct Pointer Register

54
16

5C
16

0
16

Write-only I-/D-TLB Data In Registers

55
16

5D
16

0
16

..1F8
16

Read/Write I-/D-TLB Data Access Registers

56
16

5E
16

0
16

..1F8
16

Read-only I-/D-TLB Tag Read Register

57
16

5F See 15.9.10 Write-only I-/D-MMU Demap Operation

63 61 47 4160 48 42 0

Context000 — VA<63:22>
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15.9.3 Context Registers

The context registers are shared by the I- and D-MMUs. The Primary Context

Register is defined as shown in Figure 15-4

Figure 15-4 D-MMU Primary Context Register

PContext: Context identifier for the primary address space.

The Secondary Context register is defined in Figure 15-6

.

Figure 15-5 D-MMU Secondary Context Register

SContext: Context identifier for the secondary address space.

The Nucleus Context register is hardwired to zero:

Figure 15-6 D-MMU Nucleus Context Register

Compatibility Note – The single context register of the SPARC-V8 Reference MMU

has been replaced in UltraSPARC IIi by the three context registers shown in Figures

15-4, 15-5, and 15-6.

Note – A STXA to the context registers requires either a MEMBAR #Sync , FLUSH,

DONE, or RETRY before the point that the effect must be visible to data accesses.

Either a FLUSH, DONE, or RETRY is needed before the point that the effect must be

visible to instruction accesses: MEMBAR #Sync is not sufficient. In either case, one

of these instructions must be executed before the next translating or bypass store or

load of any type. This is necessary to avoid corrupting data.

63 13 12 0

— PContext

63 13 12 0

— SContext

63 0

0000000000000000000000000000000000000000000000000000000000000000



216 UltraSPARC IIi User’s Manual • July 1999

15.9.4 I-/D-MMU Synchronous Fault Status Registers

(SFSR)

The I- and D-MMU each maintain their own SFSR register, which is defined as

follows:

Figure 15-7 I- and D-MMU Synchronous Fault Status Register Format

ASI: The ASI field records the 8-bit ASI associated with the faulting instruction. This

field is valid for both D-MMU and I-MMU SFSRs and for all traps in which the FV

bit is set. JMPL and RETURN mem_address_not_aligned traps set the default ASI, as

does a trapping non-alternate load or store; that is, to ASI_PRIMARY for

PSTATE.CLE=0, or to ASI_PRIMARY_LITTLE otherwise.

FT: The Fault Type field indicates the exact condition that caused the recorded fault,

according to Table 15-13. In the D-MMU the Fault Type field is valid only for

data_access_exception traps; there is no ambiguity in all other MMU trap cases. Note

that the hardware does not priority-encode the bits set in the fault type register; that

is, multiple bits may be set. The FT field in the D-MMU SFSR reads zero for traps

other than data_access_exception. The FT field in the I-MMU SFSR always reads zero

for instruction_access_MMU_miss, and either 01
16

, 20
16

, or 40
16

for

instruction_access_exception, as all other fault types do not apply.

Table 15-13 MMU Synchronous Fault Status Register FT (Fault Type) Field

FT<6:0> Fault Type

01
16

Privilege violation

02
16

Speculative Load or Flush instruction to page marked with E-bit. This bit is zero for

internal ASI accesses.

04
16

Atomic (including 128-bit atomic load) to page marked uncacheable. This bit is zero

for internal ASI accesses, except for atomics to DTLB_DATA_ACCESS_REG (5D
16

), or

DTLB_DATA_IN_REG (5C
16

), or DTLB_TAG_READ_REG (5E
16

) which update

according to the TLB entry accessed.

08
16

Illegal LDA/STA ASI value, VA, RW, or size. Excludes cases where 02
16

and 04
16

are

set.

10
16

Access other than non-faulting load to page marked NFO. This bit is zero for internal

ASI accesses.

20
16

VA out of range (D-MMU and I-MMU branch, CALL, sequential)

40
16

VA out of range (I-MMU JMPL or RETURN)

63 2324 15 1316 14 7 5 3 16 4 2 0

— ASI — FT E W O F
VW

C
T

P
R
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E: reports the side-effect bit (E) associated with the faulting data access or FLUSH

instruction; set by FLUSH or translating ASI accesses (see Section 6.3, Alternate
Address Spaces on page 39) mapped by the TLB with the E bit set and

ASI_PHYS_BYPASS_EC_WITH_EBIT{_LITTLE} ASIs (15
16

and 1D
16

). Other cases

that update the SFSR (including bypass or internal ASI accesses) set the E bit to 0. It

always reads as 0 in the I-MMU.

CT: Context register selection, as described in the following table; the context is set

to 11
2

when the access does not have a translating ASI (see Section 6.3, Alternate
Address Spaces on page 39).

PR: Privilege; set if the faulting access occurred while in Privileged mode; this field

is valid for all traps in which the Fault Valid (FV) bit is set

W: Write; set if the faulting access indicated a data write operation (a store or atomic

load/store instruction); always reads as 0 in the I-MMU SFSR

OW: Overwrite; set to one when the MMU detects a fault, if the Fault Valid bit has

not been cleared from a previous fault; otherwise, it is set to zero

FV: Fault Valid; set when the MMU detects a fault; cleared only on an explicit ASI

write of 0 to the SFSR register; when FV is not set, the values of the remaining fields

in the SFSR and SFAR are undefined

The SFSR and the Tag Access registers both maintain state concerning a previous

translation causing an exception. The update policy for the SFSR and the Tag Access

registers is shown in Table 15-6 on page 208.

Note – A fast_{instruction,data}_access_MMU_miss trap does not cause the SFSR or

SFAR to be written. In this case the D-SFAR information can be obtained from the D

Tag Access register.

Table 15-14 MMU SFSR Context ID Field Description

Context ID I-MMU Context D-MMU Context

00 Primary Primary

01 Reserved Secondary

10 Nucleus Nucleus

11 Reserved Reserved
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15.9.5 I-/D-MMU Synchronous Fault Address Registers

(SFAR)

15.9.5.1 I-MMU Fault Address

There is no I-MMU Synchronous Fault Address register. Instead, software must read

the TPC register appropriately as discussed here.

For instruction_access_MMU_miss traps, TPC contains the virtual address that was not

found in the I-MMU TLB.

For instruction_access_exception traps, “privilege violation” fault type, TPC contains

the virtual address of the instruction in the privileged page that caused the

exception.

For instruction_access_exception traps, “VA out of range” fault types, note that the TPC

in these cases contains only a 44-bit virtual address, which is sign-extended based on

bit VA<43> for read. Therefore, use the following methods to compute the virtual

address that was out of range:

■ For the branch, CALL, and sequential exception case, the TPC contains the lower

44 bits of the virtual address that is out of range. Because the hardware sign-

extends a read of the TPC register based on VA<43>, the contents of the TPC

register XORd with FFFF F000 0000 0000
16

will give the full 64-bit out-of-range

virtual address.

■ For the JMPL or RETURN exception case, the TPC contains the virtual address of

the JMPL or RETURN instruction itself. Software must disassemble the

instruction to compute the out-of-range virtual address of the target.

15.9.5.2 D-MMU Fault Address

The Synchronous Fault Address register contains the virtual memory address of the

fault recorded in the D-MMU Synchronous Fault Status register. There is no I-SFAR,

since the instruction fault address is found in the trap program counter (TPC). The

SFAR can be considered an additional field of the D-SFSR.

Figure 15-8 illustrates the D-SFAR.

Figure 15-8 D-MMU Synchronous Fault Address Register (SFAR) Format

63 0

Fault Address (VA<63:0>)
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Fault Address: is the virtual address associated with the translation fault recorded in

the D-SFSR. this field is valid only when the D-SFSR Fault Valid (FV) bit is set. This

field is sign-extended based on VA<43>, so bits VA<63:44> do not correspond to the

virtual address used in the translation for the case of a VA-out-of-range

data_access_exception trap (for this case, software must disassemble the trapping

instruction).

15.9.6 I- and D- Translation Storage Buffer (TSB)

Registers

The TSB registers provide information for the hardware formation of TSB pointers

and tag target, to assist software in handling TLB misses quickly. If the TSB concept

is not employed in the software memory management strategy, and therefore the

pointer and tag access registers are not used, then the TSB registers need not contain

valid data.

Figure 15-9 illustrates the TSB register.

Figure 15-9 I-TSB and D-TSB Register Format

I/D TSB_Base<63:13>: provides the base virtual address of the Translation Storage

Buffer. Software must ensure that the TSB Base is aligned on a boundary equal to the

size of the TSB, or both TSBs in the case of a split TSB.

Caution – Stores to the TSB registers are not checked for out-of-range violations.

Reads from these registers are sign-extended based on TSB_Base<43>.

Split: When Split=1, the TSB 64 kB Pointer address is calculated assuming separate

(but abutting and equally-sized) TSB regions for the 8 kB and the 64 kB TTEs. In this

case, TSB_Size refers to the size of each TSB, and therefore the TSB 8 kB Pointer

address calculation is not affected by the value of the Split bit. When Split=0, the

TSB 64 kB Pointer address is calculated assuming that the same lines in the TSB are

shared by 8 kB and 64 kB TTEs, called a “common TSB” configuration.

Caution – In the “common TSB” configuration (TSB.Split=0), 8 kB and 64 kB page

TTEs can conflict, unless the TLB miss handler explicitly checks the TTE for page

size. Therefore, do not use the common TSB mode in an optimized handler. For

example, suppose an 8K page at VA=2000
16

and a 64K page at VA=10000
16

both exist,

which is a legal situation. These both want to exist at the second TSB line (line 1),

63 3 2 0

TSB_Base<63:13> (virtual) TSB_Size

13 12

Split —

11
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and have the same VA tag of 0. Therefore, there is no way for the miss handler to

distinguish these TTEs based on the TTE tag alone, and unless it reads the TTE data,

it may load an incorrect TTE.

I/D TSB_Size: The Size field provides the size of the TSB according to the following:

■ Number of entries in the TSB (or each TSB if split)=512 × 2
TSB_Size

.

■ Number of entries in the TSB ranges from 512 entries at TSB_Size=0 (8 kB

common TSB, 16 kB split TSB), to 64 kB entries at TSB_Size=7 (1 MB common

TSB, 2 MB split TSB).

Note – Any update to the TSB register immediately affects the data that is returned

from later reads of the Tag Target and TSB Pointer registers.

15.9.7 I-/D-TLB Tag Access Registers

In each MMU the Tag Access register is used as a temporary buffer for writing the

TLB Entry tag information. The Tag Access register may be updated during either of

the following operations:

1. When the MMU signals a trap due to a miss, exception, or protection. The MMU

hardware automatically writes the missing VA and the appropriate Context into

the Tag Access register to facilitate formation of the TSB Tag Target register. See

Table 15-6 on page 208 for the SFSR and Tag Access register update policy.

2. An ASI write to the Tag Access register. Before an ASI store to the TLB Data

Access registers, the operating system must set the Tag Access register to the

values desired in the TLB Entry. Note that an ASI store to the TLB Data In register

for automatic replacement also uses the Tag Access register, but typically the

value written into the Tag Access register by the MMU hardware is appropriate.

Note – Any update to the Tag Access registers immediately affects the data that is

returned from subsequent reads of the Tag Target and TSB Pointer registers.

The TLB Tag Access Registers are defined Figure 15-10

:

Figure 15-10 I/D MMU TLB Tag Access Registers

63 0

VA<63:13> Context<12:0>

13 12
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I/D VA<63:13>: The 51-bit virtual page number. Note that writes to this field are not

checked for out-of-range violation, but sign extended based on VA<43>.

Caution – Stores to the Tag Access registers are not checked for out-of-range

violations. Reads from these registers are sign-extended based on VA<43>.

I/D Context<12:0>: is the 13-bit context identifier. This field reads zero when there is

no associated context with the access.

15.9.8 I-TSB and D-TSB 8 kB/64 kB Pointer and Direct

Pointer Registers

These registers are provided to help the software determine the location of the

missing or trapping TTE in the software-maintained TSB. The TSB 8 kB and 64 kB

Pointer registers provide the possible locations of the 8 kB and 64 kB TTE,

respectively. The Direct Pointer register is mapped by hardware to either the 8 kB or

64 kB Pointer register in the case of a fast_data_access_protection exception according

to the known size of the trapping TTE. In the case of a 512 kB or 4 MB page miss, the

Direct Pointer register returns the pointer as if the miss were from an 8 kB page.

The TSB Pointer registers are implemented as a re-order of the current data stored in

the Tag Access register and the TSB register. If the Tag Access register or TSB register

is updated through a direct software write (via a STXA instruction), then the Pointer

registers values will be updated as well.

The bit that controls selection of 8K or 64K address formation for the Direct Pointer

register is a state bit in the D-MMU that is updated during a data_access_protection
exception. It records whether the page that hit in the TLB was an 64K page or a non-

64K page, in which case 8K is assumed.

The I-/D-TSB 8 kB/64 kB Pointer registers are defined as follows:

Figure 15-11 I-MMU and D-MMU TSB 8 kB/64 kB Pointer and D-MMU Direct Pointer
Register

VA<63:0>: is the full virtual address of the TTE in the TSB, as determined by the

MMU hardware. Described in Section 15.3.1, Hardware Support for TSB Access on

page 201. Note that this field is sign-extended based on VA<43>.

63 0

VA<63:0>



222 UltraSPARC IIi User’s Manual • July 1999

15.9.9 I-TLB and D-TLB Data-In/Data-Access/Tag-Read

Registers

Access to the TLB is complicated due to the need to provide an atomic write of a

TLB entry data item (tag and data) that is larger than 64 bits, the need to replace

entries automatically through the TLB entry replacement algorithm as well as

provide direct diagnostic access, and the need for hardware assist in the TLB miss

handler. Table 15-15 shows the effect of loads and stores on the Tag Access register

and the TLB.

The Data In and Data Access registers are the means of reading and writing the TLB

for all operations. The TLB Data In register is used for TLB-miss and TSB-miss

handler automatic replacement writes; the TLB Data Access register is used for

operating system and diagnostic directed writes (writes to a specific TLB entry).

Both types of registers have the same format, as follows:

Figure 15-12 MMU I-/D-TLB Data In/Access Registers

Table 15-15 Effect of Loads and Stores on MMU Registers

Software Operation Effect on MMU Physical Registers

Load/Store Register TLB tag TLB data Tag Access Register

Load

Tag Read
No effect.

Contents returned
No effect No effect

Tag Access No effect No effect
No effect.

Contents returned

Data In Trap with data_access_exception

Data

Access
No effect

No effect.

Contents returned
No effect

Store

Tag Read Trap with data_access_exception

Tag Access No effect No effect
Written with store

data

Data In

TLB entry determined by

replacement policy written with

contents of Tag Access Register

TLB entry determined by

replacement policy written

with store data

No effect

Data

Access

TLB entry specified by STXA

address written with contents of

Tag Access Register

TLB entry specified by STXA

address written with store data
No effect

TLB miss No effect No effect

Written with VA

and

context of access

63 0

PA<40:13> G

13 7 1

W

2

P

3

E

4

CV

5

CP

6

LSoft

1241 4050

Diag

4959

Soft2

5861

IE
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NFOSize
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Refer to the description of the TTE data in Section 15.2, Translation Table Entry (TTE)
on page 197, for a complete description of the above data fields.

Operations to the TLB Data In register require the virtual address to be set to zero.

The format of the TLB Data Access register virtual address is as follows:

Figure 15-13 MMU TLB Data Access Address, in Alternate Space

TLB Entry: The TLB Entry number to be accessed, in the range 0..63.

The format for the Tag Read register is as follows:

Figure 15-14 I-/D-MMU TLB Tag Read Registers

I/D VA<63:13>: is the 51-bit virtual page number. Page offset bits for larger page

sizes are stored in the TLB and returned for a Tag Read register read, but ignored

during normal translation; that is, VA<15:13>, VA<18:13>, and VA<21:13> for 64 kB,

512 kB and 4 MB pages, respectively. Note that this field is sign-extended based on

VA<43>.

I/D Context<12:0>: is the 13-bit context identifier.

An ASI store to the TLB Data Access register initiates an internal atomic write to the

specified TLB Entry. The TLB entry data is obtained from the store data, and the TLB

entry tag is obtained from the current contents of the TLB Tag Access register.

An ASI store to the TLB Data In register initiates an automatic atomic replacement of

the TLB Entry pointed to by the current contents of the TLB Replacement register

“Replace” field. The TLB data and tag are formed as in the case of an ASI store to the

TLB Data Access register described above.

Caution – Stores to the Data In register are not guaranteed to replace the previous

TLB entry causing a fault. In particular, to change an entry’s attribute bits, software

must explicitly demap the old entry before writing the new entry; otherwise, a

multiple match error condition can result.

An ASI load from the TLB Data Access register initiates an internal read of the data

portion of the specified TLB entry.

63 0

000

9 8 3 2

TLB Entry—

63 0

VA<63:13> Context<12:0>

13 12
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An ASI load from the TLB Tag Read register initiates an internal read of the tag

portion of the specified TLB entry.

ASI loads from the TLB Data In register are not supported.

15.9.10 I-/D-MMU Demap

Demap is an MMU operation, as opposed to a register operation as described above.

The purpose of Demap is to remove zero, one, or more entries in the TLB. Two types

of Demap operation are provided: Demap page, and Demap context. Demap page

removes zero or one TLB entry that matches exactly the specified virtual page

number. Demap page may in fact remove more than one TLB entry in the condition

of a multiple TLB match, but this is an error condition of the TLB and has undefined

results. Demap context removes zero, one, or many TLB entries that match the

specified context identifier.

Demap is initiated by a STXA with ASI=57
16

for I-MMU demap or 5F
16

for D-MMU

demap. It removes TLB entries from an on-chip TLB. UltraSPARC IIi does not

support bus-based demap. Figure 15-15 shows the Demap format:

Figure 15-15 MMU Demap Operation Format

VA<63:12>: The virtual page number of the TTE to be removed from the TLB; This

field is not used by the MMU for the Demap Context operation, but must be in-

range. The virtual address for demap is checked for out-of-range violations, in the

same manner as any normal MMU access.

Type: The type of demap operation, as described in Table 15-16

Context ID: Context register selection, as described in Table 15-17; Use of the reserved
value causes the demap to be ignored.

Table 15-16 MMU Demap operation Type Field Description

Type Field Demap Operation

0 Demap Page

1 Demap Context

0000Context

012
Address

Data

3463 13

ignored

7 56

Type

063

VA<63:13>

—
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Ignored: This field is ignored by hardware. (The common case is for the demap

address and data to be identical.)

A demap operation does not invalidate the TSB in memory. It is the responsibility of

the software to modify the appropriate TTEs in the TSB before initiating any Demap

operation.

Note – A STXA to the data demap registers requires either a MEMBAR #Sync ,

FLUSH, DONE, or RETRY before the point that the effect must be visible to data

accesses. A STXA to the I-MMU demap registers requires a FLUSH, DONE, or

RETRY before the point that the effect must be visible to instruction accesses; that is,

MEMBAR #Sync is not sufficient. In either case, one of these instructions must be

executed before the next translating or bypass store or load of any type. This action

is necessary to avoid corrupting data.

The demap operation does not depend on the value of any entry’s lock bit; that is, a

demap operation demaps locked entries just as it demaps unlocked entries.

The demap operation produces no output.

15.9.11 I-/D-Demap Page (Type=0)

Demap Page removes the TTE (from the specified TLB) matching the specified

virtual page number and context register. The match condition with regard to the

global bit is the same as a normal TLB access; that is, if the global bit is set, the

contexts need not match.

Virtual page offset bits <15:13>, <18:13>, and <21:13>, for 64 kB, 512 kB, and 4 MB

page TLB entries, respectively, are stored in the TLB, but do not participate in the

match for that entry. This is the same condition as for a translation match.

Note – Each Demap Page operation removes only one TLB entry. A demap of a

64 kB, 512 kB, or 4 MB page does not demap any smaller page within the specified

virtual address range.

Table 15-17 MMU Demap Operation Context Field Description

Context ID Field Context Used in Demap

00 Primary

01 Secondary

10 Nucleus

11 Reserved
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15.9.12 I-/D-Demap Context (Type=1)

Demap Context removes all TTEs having the specified context from the specified

TLB. If the TTE Global bit is set, the TTE is not removed.

15.10 MMU Bypass Mode
In a bypass access, the D-MMU sets the physical address equal to the truncated

virtual address; that is, PA<40:0>=VA<40:0>. The physical page attribute bits are set

as shown in Table 15-18.

Bypass applies to the I-MMU only when it is disabled. See Section 15.7, MMU
Behavior During Reset, MMU Disable, and RED_state on page 211 for details on the use

of bypass when either MMU is disabled.

Compatibility Note – In UltraSPARC IIi the virtual address is longer than the

physical address; thus, there is no need to use multiple ASIs to fill in the high-order

physical address bits, as is done in SPARC-V8 machines.

15.11 TLB Hardware

15.11.1 TLB Operations

The TLB supports exactly one of the following operations per clock cycle:

■ Normal translation. The TLB receives a virtual address and a context identifier as

input and produces a physical address and page attributes as output.

Table 15-18 Physical Page Attribute Bits for MMU Bypass Mode

ASI
Physical Page Attribute Bits

CP IE CV E P W NFO Size

ASI_PHYS_USE_EC

ASI_PHYS_USE_EC_LITTLE
1 0 0 0 0 1 0 8 KB

ASI_PHYS_BYPASS_EC_WITH_EBIT

ASI_PHYS_BYPASS_EC_WITH_EBIT_LITTLE
0 0 0 1 0 1 0 8 KB
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■ Bypass. The TLB receives a virtual address as input and produces a physical

address equal to the truncated virtual address page attributes as output.

■ Demap operation. The TLB receives a virtual address and a context identifier as

input and sets the Valid bit to zero for any entry matching the demap page or

demap context criteria. This operation produces no output.

■ Read operation. The TLB reads either the CAM or RAM portion of the specified

entry. (Since the TLB entry is greater than 64 bits, the CAM and RAM portions

must be returned in separate reads. See Section 15.9.9, I-TLB and D-TLB Data-In/
Data-Access/Tag-Read Registers on page 222.

■ Write operation. The TLB simultaneously writes the CAM and RAM portion of

the specified entry, or the entry given by the replacement policy described in

Section 15.11.2.

■ No operation. The TLB performs no operation.

15.11.2 TLB Replacement Policy

The dTLB and iTLB support a replacement algorithm based upon three status bits in

each TLB entry, Locked, Used, and Valid. When software does a write of the I-TLB or

the D-TLB Data In registers, using ASI 0x54 or 0x5C, the entry used for the write is

selected depending upon the state of these bits.

The Valid bit is set when the TLB entry has valid data in it. The Used bit is set to 1

each time the entry is accessed for a translation. The Locked bit is set to lock the

entry in the TLB.

Ordinarily the exact behavior of the Used bits is not of interest to software, and is

only of interest in understanding the hardware. When there are no freely-available

TLB entries (that is, with Valid == 0 or Used == 0), the hardware initiates a “Uclear”

command to clear all the used bits in the TLB.

The TLB replacement algorithm begins with entry 0 and ends with entry 63. This

selection algorithm is described in the following steps.

1. The first invalid entry is replaced, otherwise,

2. Use the first valid entry that is neither used nor locked, otherwise,

3. Use the first valid entry that is used but not locked, otherwise,

4. If all entries are valid, used, and locked, use table entry 63.

The exact LRU selection algorithm:

if (there exists x : x.v == 0) {

first such x;

} elseif (there exists y: y.u == 0 && y.l == 0) {

first such y;
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} elseif (there exists z: z.l == 0) {

first such z;

} else {

entry 63;

}

A hardware “uclear”, a clear of all the Used bits, can be triggered in just about any

TLB cycle, even if the TLB is doing a write, for example. A uclear is triggered when:

all entries are valid, and all entries have Lock==1 and Used==1,

So, for example, locking an entry that never gets the Used bit set, does not inhibit

the uclear operation.

Any entry may have its lock bit set by software. However, the operation of the TLB

is undefined if all entries have their lock bit set.

Due to the implementation of the UltraSPARC IIi pipeline, the MMU can and will set

a TLB entry’s used bit as if the entry were hit when the load or store is an annulled

or mispredicted instruction. This can be considered to cause a very slight

performance degradation in the replacement algorithm, although it may also be

argued that it is desirable to keep these extra entries in the TLB.

See Erratum 58: on page 454.

There is a case to consider in “lock-step” applications. An attempt by software to set

the Used bit to 1 could result in an indeterminate value in this bit. This could cause

“lock-step” CPUs to get out of sync., since the Used bit manipulations have to be

exactly the same for two CPUs to operate identically.

Software should never write Used==1 (bit 0 of the Diag field, which is bit 41 of the

Data In register), using Data In writes. This is because if a clear of the Used bits is

being done in the same cycle by hardware, the results are indeterminate.

It appears there is no such constraint on Data Access writes.

15.11.3 TSB Pointer Logic Hardware Description

The hardware diagram in Figure 15-16 on page 229 and the code fragment in

Code Example 15-1 on page 230 describe the generation of the 8 kB and 64 kB pointers

in more detail.
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Figure 15-16 Formation of TSB Pointers for 8 kB and 64 kB TTEs
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Code Example 15-1 Pseudo-code for UltraSPARC IIi D-MMU Pointer Logic

int64 GenerateTSBPointer(

int64 va, // Missing virtual address

PointerType type, // 8K_POINTER or 64K_POINTER

int64 TSBBase, // TSB Register<63:13> << 13

Boolean split, // TSB Register<12>

int TSBSize) // TSB Register<2:0>

{

int64 vaPortion;

int64 TSBBaseMask;

int64 splitMask;

// TSBBaseMask marks the bits from TSB Base Reg

TSBBaseMask = 0xffffffffffffe000 <<

(split? (TSBSize + 1) : TSBSize);

// Shift va towards lsb appropriately and

// zero out the original va page offset

vaPortion = (va >> ((type == 8K_POINTER)? 9: 12)) &

0xfffffffffffffff0;

if (split) {

// There’s only one bit in question for split

splitMask = 1 << (13 + TSBSize);

if (type == 8K_POINTER)

// Make sure we’re in the lower half

vaPortion &= ~splitMask;

else

// Make sure we’re in the upper half

vaPortion |= splitMask;

}

return (TSBBase & TSBBaseMask) | (vaPortion &
~TSBBaseMask);

}
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CHAPTER 16

Error Handling

This chapter describes error detection, correction, and error reporting mechanisms

used in UltraSPARC IIi.

UltraSPARC IIi provides error checking for all memory access paths between the

CPU, external cache (E-cache) and DRAM as well as for PCI data and address

transfers. In particular:

■ Memory accesses are protected by ECC.

■ E-cache accesses are protected by parity checking.

■ PCI data and address transfers are protected by parity checking.

■ UPA64S address and data transfers do not employ error checking.

Errors are reported as system fatal errors, deferred traps or disrupting traps. System

fatal errors are reported when the system must be reset before continuing. Deferred

traps are reported for non-recoverable failures that require immediate attention

without system reset. Disrupting traps are used to report errors that do not affect

processor execution but which may need logging.

Non-fatal hardware errors may generate interrupts, set status register bits, or take no

action.

Error information is logged in the Asynchronous Fault Address Register,

Asynchronous Fault Status Register and the SDBH Error Register. See ECU
Asynchronous Fault Status Register on page 243 and SDBH Error Register on page 247.

Errors are logged even if their corresponding traps are disabled.
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16.1 System Fatal Errors
When an E-cache tag parity or system address parity error occurs, system coherency

is lost and the system should be reset. When these errors occur and the

corresponding error trap is enabled in the E-cache Error Enable Register, software

should cause a power on reset. See E-cache Error Enable Register on page 242.

Compatibility Note – UltraSPARC automatically caused the reset through the UPA.

The UltraSPARC IIi CPU currently does not cause an automatic reset.

16.2 Deferred Errors
Deferred errors may corrupt the processor state, and are normally irrecoverable.

Such errors lead to termination of the currently executing process or result in a

system reset if the system state has been corrupted. Software can detect this

corrupted system state by interrogating error logging information.

A membar #Sync instruction provides an error barrier for deferred errors. It ensures

that deferred errors from earlier accesses will not be reported after the membar. A

membar #Sync should be used during context switching to provide error isolation

between processes.

Note – After a deferred trap, the contents of TPC and TNPC are undefined (except

for the special peek sequence described below). They do NOT generally contain the

oldest non-executed instruction and its next PC. As a result, execution can not

normally be resumed from the point that the trap is taken. Instruction access errors

are reported before executing the instruction that caused the error, but TPC does not

necessarily point to the corrupted instruction. Errors due to fetching user code after

a DONE/RETRY are always reported after the DONE or RETRY. This guarantees

that system code will not be aborted by a user mode instruction access.

When a deferred error occurs and the corresponding error trap is enabled in the E-

cache Error Enable Register (see E-cache Error Enable Register on page 242), an

instruction_access_error or data_access_error trap is generated. Deferred errors include:

■ Data parity error during access from E-cache excluding writeback or copyback.

■ Uncorrectable ECC error (UE) in memory access. Uncorrectable ECC errors on

cache fills will be reported for any ECC error in the cache block, not just the

referenced word.
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■ Time-out or bus error during a read access from the PCI bus.

When a deferred error occurs, trap handler execution is delayed until all outstanding

accesses are completed. This delay avoids entering RED_state due to multiple errors.

Any subsequent errors detected during this waiting period will be properly logged.

Errors that occur after the trap handler begins will be due to an access from inside

the trap handle.

The instruction and data caches are disabled by clearing the IC and DC bits in the

LSU control register. This is because corrupted data may be placed in the cache if the

access was cacheable. The caches must be reenabled by software after flushing to

remove the corrupted data. In case of an instruction error, the instruction returned to

the CPU is marked for termination (to be aborted). This means that a bad instruction

will not create programmer-visible side effects.

16.2.1 Probing PCI during boot using deferred errors

Intentional peeks and pokes to test presence and operation of devices are

recoverable only if performed as follows.

■ The access should be preceded and followed by membar #Sync instructions.

■ The destination register of the access may be destroyed, but no other state will

be corrupted.

■ If TPC is pointing to the membar #Sync following the access, then the

data_access_error trap handler knows that a recoverable error has occurred and

resumes execution after setting a status flag.

■ The trap handler will have to set TNPC to TPC + 4 before resuming, because

the contents of TNPC are otherwise undefined.

16.2.2 General software for handling deferred errors

The following is a possible sequence for handling deferred errors within the trap

handler.

1. Log the errors.

2. Reset the error logging bits in AFSR and SDB error registers if needed. Perform a

membar #sync to complete internal ASI stores.

3. Panic if AFSR.PRIV is set and not performing an intentional peek/poke,

otherwise try to continue.
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4. Displacement flush the entire E-cache. This action will remove corrupted data

from the I-cache, D-cache, and E-cache. This step is not necessary for known non-

cacheable accesses.

5. Re-enable I and D caches by setting the IC and DC bits of the LSU control register.

Perform a membar #sync to complete internal ASI stores.

6. Abort the current process.

7. If uncorrectable ECC error, and no other processes share the data, perform a block

store to the block address in AFAR to reset ECC. Perform a membar #sync to

complete the block store.

8. Resume execution.

16.3 Disrupting Errors
Disrupting errors are single-bit ECC Errors (which are corrected by the hardware) or

E-cache data parity errors during write back. Disrupting errors should be handled

by logging the error and resuming execution.

Recoverable ECC errors result from detection of a single-bit ECC error during a

system transaction. Memory read errors are logged in the Asynchronous Fault Status

Register (and possibly in the Asynchronous Fault Address Register). If the

Correctable_Error (CEEN) trap is enabled in the E-cache Error Enable Register, a

corrected_ECC_error trap is generated. This trap has trap type TT==0x63 and priority

33.

E-cache data parity errors are discussed in E-cache Data Parity Error on page 235. An

E-cache data parity error during writeback is recoverable because the processor is

not reading the affected data. As a result, UltraSPARC IIi takes a disrupting

data_access_error trap with priority 33 instead of a deferred trap. This avoids panics

when the system displaces corrupted user data from the cache.

Note – To prevent multiple traps from the same error, software should not re-enable

interrupts until after the disrupting error status bit in AFSR is cleared.
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16.4 E-cache, Memory, and Bus Errors

16.4.1 E-cache Tag Parity Error

Tag parity errors from internal or snoop transactions cause a system fatal error as

described in System Fatal Errors on page 232.

The E-cache Tag RAM is protected by parity. Data stored in the E-cache Tag RAM

includes 16 bits of E-cache tag, 2 bits of E-cache state, and 4 bits of parity. This is

reduced, compared to UltraSPARC-I. (to save pins)

There are 2 parity bits for 16 bits of data.

■ Parity<0>: E-cache Tag <7:0>

■ Parity<1>: E-cache state[1:0] & E-cache Tag <13:8>

UltraSPARC IIi is normally enabled to trap if it detects an E-cache tag parity error.

16.4.2 E-cache Data Parity Error

The E-cache data bus connects the UltraSPARC IIi processor and E-cache data

SRAM. The 64-bit wide data bus is protected by byte parity. Parity check failures on

this bus can be caused by faulty devices or interconnects.

UltraSPARC IIi performs parity checking during;

1. Processor reads from E-cache

2. Reads due to snooping (copyback) and victimization (writeback).

A parity error detected during an E-cache data access can cause UltraSPARC IIi to

trap.

An E-cache data parity error detected during an instruction access causes an

instruction_access_error deferred trap. An E-cache parity error detected during a data

read access causes a data_access_error deferred trap. When multiple errors occur, the

trap type corresponds to the first detected error.

If an E-cache data parity error occurs while snooping, a bad ECC error is generated

and sent to the requester. This causes an instruction/data_access_error trap at the

master that requested the data. The slave processor logs error information that can

be read by the master during error handling. The processor being snooped is not

interrupted by this error condition.
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Compatibility Note – If an E-cache data parity error occurs during a write-back,

uncorrectable ECC is not forced to memory. However, the error information is

logged in the AFSR and a disrupting data_access_error trap is generated.

16.4.3 DRAM ECC Error

UltraSPARC IIi supports ECC generation and checking for all accesses to and from

the DRAM. Correctable errors (CE) are fixed and the data transfer continues.

Uncorrectable ECC errors on cache fills are reported for any ECC error in the cache

block, not just for the referenced word.

An uncorrectable error detected during an instruction access causes an

instruction_access_error deferred trap. An uncorrectable error detected during a data

access causes a data_access_error deferred trap. When multiple errors occur, the trap

type corresponds to the first detected error.

16.4.4 CE/UE

If the Memory Control Unit detects a CE, data is corrected before it is used. This is

done in these cases:

■ PCI DMA reads from memory

■ PCI DMA partial line writes to memory

DMA ECC errors are reported to the processor via interrupt as long as ECC checking

and ECC interrupt are both enabled. Error information is logged in the DMA UE or

CE AFSR/AFAR.

Processor UEs and CEs are reported via trap, and are separately maskable.

16.4.5 Timeout

An attempted read of an unsupported or nonexistent device results in a timeout

(TO). For example, a TO results from a read of a PCI bus address unmapped to a PCI

device. Writes to non-mapped PCI addresses are reported via a late interrupt.
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16.4.6 PCI Timeout

A timeout is sent (TO in Section 16.6.2, ECU Asynchronous Fault Status Register on

page 243) to the UltraSPARC IIi core under a variety of PIO read error cases. If no

device is mapped (or responds) to the PCI address the transaction is terminated with

a master-abort and the UltraSPARC IIi RMA Status bit is set.

If a device terminates a PIO read with too many retries (disconnect with no data

transfer) UltraSPARC IIi stops retrying the access and causes a TO. A maximum of

512 retries (according to the contents of the PCI Configuration Space Retry Limit

Counter Register) are allowed, although this limit can be disabled.

PCI has no timeout mechanism analogous to the S-Bus timeout. However, the PCI

specification does recommend that all targets issue a retry when more that 16 PCI

clocks will be consumed waiting for the first data transfer. When a device claims the

transaction but never signals that it is ready to transfer data, the system hangs. This

situation only occurs because of a device hardware error.

16.4.7 PCI Data Parity Error

PCI requires all devices to generate parity for the address/data and cmd/byte

enable busses. A single even parity bit is used for 32 bits of address/data and 4-bit

cmd/byte enable bus.

This section covers only parity errors on data phases, address parity errors are

covered in PCI Address Parity Error on page 239.

Reporting of parity errors may be disabled using the PER bit described in section

Section 19.3.1.3, PCI Configuration Space Command Register on page 291.

Setting PER enables UltraSPARC IIi to report PIO data parity errors to the processor

and DMA data parity errors to the bus master. When a data parity error is detected

or signalled, UltraSPARC IIi does not terminate the transaction prematurely but

attempts to take it to completion.

If PER is enabled, a parity error detected on PIO read is reported with a BERR to the

UltraSPARC IIi core, along with setting the DPE and DPD bits described in PCI
Configuration Space Status Register on page 292. The PCI signal ‘PERR#’ is also

asserted,

Compatibility Note – If PER is disabled, UltraSPARC IIi does not set DPE if it

detects a parity error on PIO reads. This is inconsistent with the PCI 2.1 spec.
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A parity error signalled via PERR# on a PIO write is logged if PER is enabled. In this

case the DPD bit and the PCI PIO Write AFSR P_PERR/S_PERR bits are set in the

PCI Configuration Space Status Register, the PCI PIO Write AFAR is loaded with the

PIO address, and an interrupt is generated.

A parity error detected during a DMA write is logged if PER is enabled. The DPE bit

in the PCI Configuration Space Status Register is set, and PERR# is asserted to the

bus master. Subsequent action taken by the master is device dependent.

Compatibility Note – If PER is disabled, UltraSPARC IIi does not set DPE if it

detects a parity error on DMA writes. This is inconsistent with the PCI 2.1 spec.

Data parity is not checked during DMA reads. Also, since UltraSPARC IIi is not the

bus master, PERR# is ignored.

Note, however, that parity includes CBE#, which is driven to UltraSPARC IIi, and

part of the parity bit generation. It is an interesting part of the protocol that parity

includes bits (CBE#/AD) driven by two different parties. If the CBE# is only wrong

to UltraSPARC IIi for a DMA read, the parity error goes unreported.

16.4.8 PCI Target-Abort

If an error occurs during an access of a PCI device, the device may terminate the

transaction with a target-abort. Examples of causes of this result are unsupported

byte enables, an address parity error, and device-specific errors. Any data that may

have been transferred during the transaction before the target-abort occurred is

corrupt and must not be used by the recipient.

A PIO read terminated with a target-abort results in a Bus Error (BERR in ECU
Asynchronous Fault Status Register on page 243) to the UltraSPARC IIi core and the

RTA bit being set in the PCI Configuration Space Status Register.

A PIO write that is terminated with a target-abort results in an asynchronous error.

The P_TA/S_TA bit is set in the PCI PIO Write AFSR and the physical address

loaded into the PCI PIO Write AFAR. The RTA bit in the PCI Configuration Space

Status Register is also set for writes.

UltraSPARC IIi issues a target-abort upon detecting an address parity error, taking

an IOMMU address translation error, and detecting a UE ECC error. The STA bit is

set in the PCI Configuration Space Status Register but in all cases it is the

responsibility of the bus master to report the error to system software (using SERR#

or a device-specific interrupt).
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16.4.9 DMA ECC Errors

The PCI DMA UE/CE AFSR/AFAR registers log DMA errors.

1. If UE interrupts are enabled, an interrupt is posted when UltraSPARC IIi detects a

UE.

2. A UE on any of the data for a DMA read (up to a 64 byte prefetch if from

memory) causes a target-abort to the PCI master device as soon as possible. This

may be before the DMA read operation reaches the data transfer cycle with the

UE data.

3. During DMA writes of less than 16 bytes, good data and check bits are provided

for all 16 bytes when completing a Read-Modify-Write to memory. If a DMA

transaction does not overwrite, or only partially overwrites, the UE data, note

that bad data may then appear as good in memory.

16.4.10 IOMMU Translation Error

The IOMMU translates the PCI DMA address to a physical page address and checks

for access violations. The IOMMU can detect the “access to a invalid page” and

“access with protection violation” errors.

An invalid error occurs when the DMA page address lacks a valid physical page

mapped to it. A protection error occurs when the PCI master attempts to write to a

page that is marked as read-only. Both errors are reported with a target-abort to the

device.

Compatibility Note – A new feature for UltraSPARC IIi, is that the VA of the

offending DMA access is logged in the PCI DMA UE AFSR and AFAR, with the a bit

set for identification as a DMA translation error.

Additional reporting of translation errors by the initiating PCI master is device

dependent.

16.4.11 PCI Address Parity Error

PCI Address parity errors may be reported during PIO operations and detected or

reported during DMA transfers. The PCI mechanism for reporting address parity

errors is the “System Error”. Address parity error reporting can be disabled

(together with all parity error reporting) using the PER PCI Configuration Space

Command Register bit.
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After detecting a DMA address parity error, UltraSPARC IIi first sets the DPE bit in

the PCI Configuration Space Status Register. If PER is enabled, it then issues a

target-abort to the master, and generates a PCI Error interrupt with the PCI_SERR bit

in the PCI Control and Status Register set.

If both PER and SERR_EN are enabled in the PCI Configuration Space Command

Register, UltraSPARC IIi also asserts SERR# on the bus and sets the SSE bit in the

PCI Configuration Space Status Register.

When a PIO address parity error is reported by a device via a SERR# assertion,

UltraSPARC IIi reports the system error as described in PCI System Error on

page 240. Upon detecting the address parity error the target device has the options:

1. Not claiming the transaction, causing a TO trap to UltraSPARC IIi core

2. Issuing a target-abort, resulting in an BERR trap to UltraSPARC IIi core for reads

and an asynchronous error interrupt for writes

3. Completing the cycle as if there were no error and either generating a system

error or an interrupt at some later time

16.4.12 PCI System Error

The PCI System Error (PCI bus SERR# assertion) may occur on address parity errors

as well as on device specific fatal errors. The assertion of SERR# can be disabled by

the SERR_EN PCI Configuration Space Command Register bit.

Any PCI device may assert SERR# at any time but only UltraSPARC IIi can detect

and report it to system software. SERR# assertion causes a PCI Error Interrupt and

sets the PCI_SERR bit in the PCI Control and Status Register.

Devices that assert the SERR# must set their SSE Status register bit. Multiple system

errors generated before the system software clears the PCI CSR do not cause

additional interrupts, so it is important that software check all device PCI

Configuration Space Status registers.

16.5 Summary of Error Reporting
Register abbreviations are: PCI CSR for the PCI Control/Status Register, and PCI

Status for the PCI Configuration space Status register. AFR indicates both an AFSR

and an AFAR.
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Table 16-1 Summary of Error Reporting

Transaction Error Type CPU Response Error Register(s) PCI Bus

Fetch, LD/ST,

PCI DMA,

Writeback

E$Tag/Data Ram

Parity Error

ETP/EDP/WP/CP

(ECU AFSR), Trap

ECU AFRs -

PIO Read

Data parity BERR (ECU AFSR),

Trap

PCI CSR, PCI Status,

ECU AFRs

Complete

Transaction

Master-abort TO (ECU AFSR), Trap PCI Status,

ECU AFRs

Master-abort

Target-abort BERR (ECU AFSR),

Trap

PCI Status,

ECU AFRs

Target-abort

Retry Limit TO (ECU AFSR), Trap PCI Status,

ECU AFRs

Cease Retries

PIO Write

Master-abort PCI Error Interrupt PCI PIO Write AFRs,

PCI Status

Master-abort

Target-abort PCI Error Interrupt PCI PIO AFRs,

PCI Status

Target-abort

Retry Limit PCI Error Interrupt PCI PIO AFRs Cease Retries

Data Parity PCI Error Interrupt PCI PIO AFRs,

PCI Status

Complete

Transaction

Any PIO
Address Parity

Error

- - Device

dependent

DMA Read

UE-ECC PCI UE Interrupt PCI DMA UE AFRs, PCI

Status

Target-abort

CE-ECC PCI CE Interrupt PCI DMA CE AFRs Complete

Transaction

Ecache Data Parity CP (ECU AFSR), Trap ECU AFSR Complete

Transaction

DMA Write

UE-ECC
1

1. Less than 16-byte aligned write to DRAM only

PCI UE Interrupt PCI DMA UE AFRs Complete

Transaction

CE-ECC PCI CE Interrupt PCI DMA CE AFRs Complete

Transaction

Data Parity - PCI Status Complete

Transaction,

PERR#

Any DMA

Address Parity PCI Error Interrupt PCI Status Target-abort

Translation Error PCI UE Interrupt PCI Status,

PCI DMA UE AFRs

IOMMU Control Reg

Target-abort

PCI System

Error

SERR# assertion PCI Error Interrupt PCI CSR, PCI Status -
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Unreported Errors

Some error conditions are not reported by the system. The following list gives

examples of these errors:

■ A write to a non-supported address.

■ A write to a read-only register in UltraSPARC IIi is ignored.

■ A non-cached write to memory.

■ A read from a write-only register in UltraSPARC IIi returns unknown data.

This list may not be exhaustive.

16.6 E-cache Unit (ECU) Error Registers

Note – MEMBAR #Sync is generally needed after stores to error ASI registers.

16.6.1 E-cache Error Enable Register

Name: ASI_ESTATE_ERROR_EN_REG

ASI_ESTATE_ERROR_EN_REG: ASI== 0x4B, VA<63:0>==0x0

EPEN: Additional enable on ETP and EDP errors. See NCEEN.

UEEN: Additional enable on UE errors. See NCEEN.

Table 16-2 E-cache Error Enable Register Format

Bits Field Use Reset RW

<63:4> Reserved — 0 R0

<4> EPEN Trap on ETP, EDP, WP, CP 0 RW

<3> UEEN Trap on UE 0 RW

<2> Reserved 0 RW

<1> NCEEN
Trap on TO, BERR, ETP, EDP, WP, CP,

UE
0 RW

<0> CEEN Trap on correctable memory read error 0 RW
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NCEEN: If set, an uncorrectable error, time-out, bus error, SDB or E-cache data

parity error causes an {instruction, data}_access_error trap and an E-cache tag parity

error should cause a system fatal error; otherwise, the error is logged in the AFSR

and ignored.

CEEN: If set, a correctable error detected during a memory read access causes a

correctable_ECC_error disrupting trap; otherwise, the error is logged in the AFSR and

ignored.

Examples:

■ Disable all traps: [4:0] = xxx00

■ Disable SRAM parity, Disable ECC, Enable Bus traps: [4:0] = 00x10

■ Disable SRAM parity, Enable ECC, Enable Bus traps: [4:0] = 01x11

■ Enable SRAM parity, Enable ECC, Enable Bus traps: [4:0] = 11x11

16.6.2 ECU Asynchronous Fault Status Register

The Asynchronous Fault Status Register (AFSR) logs all errors that occurred since its

fields were last cleared. The AFSR is updated according to the policy described in

Overwrite Policy on page 249.

The AFSR is logically divided into four fields:

■ Bit <32>, the accumulating multiple-error (ME) bit, is set when multiple errors

with the same sticky error bit have occurred except for correctable errors.

Multiple errors of different types are indicated by setting more than one of the

sticky error bits.

■ Bit <31>, the accumulating privilege-error (PRIV), is set when an error occurs

from an access generated by code executing with PSTATE.PRIV = 1. If this bit is

set, system state has been corrupted.

■ Bits <30:20> are sticky error bits that record the most recently detected errors.

These sticky bits accumulate errors detected since the last write that cleared this

register.

■ Bits <17:16>, <7:0> contain the tag and data parity syndromes respectively.

Syndrome bits are endian-neutral, that is, bit 0 corresponds to bits<7:0> of the E-

cache data bus (i.e. bytes whose least significant four address bits are 0xf). The

syndrome fields have the status of the first occurrence of the highest priority error

related to that field. If no status bit is set that corresponds to that field, the

contents of the syndrome field will be zero.

The AFSR must be explicitly cleared by software; it is not cleared automatically

during a read. Writes to the AFSR sticky bits (<32:20>) with particular bits set clear

the corresponding bits in the AFSR. Bits associated with disrupting traps must be

cleared before re-enabling interrupts to prevent multiple traps for the same error.

Writes to the AFSR sticky bits with particular bits clear will not affect the
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corresponding bits in the AFSR. If software attempts to clear error bits at the same

time as an error occurs, the clear will be performed before applying logging the new

error status. The syndrome field is read only and writes to this field are ignored.

Name: ASI_ASYNC_FAULT_STATUS

ASI_ASYNC_FAULT_STATUS: ASI== 0x4C, VA<63:0>==0x0

.

Table 16-3 Asynchronous Fault Status Register

Bits Field Use Reset RW

<63:33> Reserved — 0 R

<32> ME Multiple Error of same type occurred 0 RW1C

<31> PRIV Privileged code access error(s) has occurred 0 RW1C

<30> Reserved Read as 0 0 R0

<29> ETP Parity error in E-cache Tag SRAM 0 RW1C

<28> Reserved Read as 0 0 R0

<27> TO Time-Out from PCI PIO load or Inst. fetch 0 RW1C

<26> BERR Bus Error from PCI PIO load or Inst. fetch 0 RW1C

<25> Reserved Read as 0 0 R0

<24> CP PCI DMA E-cache Parity error 0 RW1C

<23> WP Data parity error from E-cache SRAMs for Write-

back (victim)
0 RW1C

<22> EDP Data parity error from E-cache SRAMs 0 RW1C

<21> UE Uncorrectable ECC error (E_SYND in SDB

registers)
0 RW1C

<20> CE Correctable memory read ECC error (E_SYND in

SDB registers)
0 RW1C

<19:18> Reserved Read as 0 0 R0

<17:16> ETS E-cache Tag parity Syndrome 0 R

<15:8> Reserved Read as 0 0 R0

<7:0> P_SYND Parity Syndrome 0 R
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.

16.6.3 ECU Asynchronous Fault Address Register

This register is valid when one of the Asynchronous Fault Status Register (AFSR)

error status bits that capture address is set (for example, for correctable or

uncorrectable memory ECC error, bus time-out or bus error). The address

corresponds to the first occurrence of the highest priority error in AFSR that captures

address See AFAR Overwrite Policy on page 249. Address capture is reenabled by

clearing all corresponding error bits in AFSR. If software attempts to write to these

bits at the same time as an error that captures address occurs, the error address is

stored.

Name: ASI_ASYNC_FAULT_ADDRESS

ASI_ASYNC_FAULT_ADDRESS: ASI== 0x4D, VA<63:0>==0x0

Table 16-4 E-cache Data Parity Syndrome Bit Orderings

Byte address E- cache data bus bits Syndrome Bit

0x7 <7:0> 0

0x6 <15:8> 1

0x5 <23:16> 2

0x4 <31:24> 3

0x3 <39:32> 4

0x2 <47:40> 5

0x1 <55:48> 6

0x0 <63:56> 7

Always 0 15:8

Table 16-5 E-cache Tag Parity Syndrome Bit Orderings

E-cache Tag bus bits Syndrome Bit

<7:0> 0

<15:8> 1

Always 0 3:2
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PA: Address information for the most recently captured error

Compatibility Note – UltraSPARC IIi does not Target Abort on a a parity error

resulting from a DMA read of E-cache. UltraSPARC caused a UE at the receiver of

the data. Currently it is only reported with the same priority/trap as WP (but CP bit

set).

Table 16-6 Asynchronous Fault Address Register

Bits Field Use RW

<63:41> Reserved — R0

<40:3> PA<40:3> Physical address of faulting transaction RW

<2:0> Reserved — R0

Table 16-7 Error Detection and Reporting in AFAR and AFSR

Error Type PA SYNDROME 5 Trap
PRIV
captured?

Trap Type 6 Updated
status

SW Cache
flush

Uncorrectable

ECC

Y E_SYND
3

3. E_SYND i s ECC syndrome; P_SYND i s parity syndrome; ETS i s E-cache Tag Parity Syndrome

Deferred Y I
4
, D

4. I is instruction_access_error trap; D is data_access_error trap; C is corrected_ECC_error trap; POR is power-on reset trap

UE Yes if

cacheable

Correctable ECC Y E_SYND Disrupting N C CE No

E$ parity:

UltraSPARC IIi

LD/Fetch

N
2

2. No address captured on parity errors.

P_SYND Deferred Y I, D EDP Yes

E$ parity:

writeback

N P_SYND Disrupting N D WP No

E$ parity: DMA

read

N P_SYND Disrupting N D CP No

Bus Error
1

1. PCI transactions can cause Bus Error and Time-out. See Summary of Error Reporting on page 240.

Y — Deferred Y I, D BERR Never for

Cacheable

Time-out Y — Deferred Y I, D TO Never for

Cacheable

Tag parity N ETS Deferred N I, D ETP power on

clear
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Compatibility Note – UltraSPARC IIi causes a Deferred Trap similarly to

UltraSPARC for ETS, without a system reset. Software can determine if a system

reset is necessary.

16.6.4 SDBH Error Register

Compatibility Note – The SDB name is inherited from UltraSPARC. It logs

information about memory errors caused by the CPU core. Only the SDBH register is

used. Current Solaris software interrogates if SDBL is non-zero, and ORs in a 1 to the

logged pa[3] (which is always zero on UltraSPARC, but valid on UltraSPARC IIi).

For implementation efficiency, the UltraSPARC Data Buffer (SDB) error and control

registers were physically separated into upper half and lower half registers.

Separate ASIs are used for reading (0x7F) and writing (0x77) the SDB registers.

If software attempts to clear these bits at the same time as an error occurs, the

appropriate error bit is set to avoid losing error information.

On UltraSPARC IIi, writes to SDBL registers have no effect, and reads of SDBL

registers always return zeros.

Name: ASI_SDBH_ERROR_REG_WRITE

ASI 0x77, VA<63:0>==0x0

Name: ASI_SDBH_ERROR_REG_READ

ASI 0x7F, VA<63:0>==0x0

E_SYNDR: ECC syndrome for correctable error from system. In case of multiple

outstanding errors, only the first is recorded.

Table 16-8 SDBH Error Register Format

Bits Field Use Reset RW

<63:10> Reserved — 0 R0

<9> UE If set, UE has occurred 0 RW1C

<8> CE If set, CE has occurred 0 RW1C

<7:0> E_SYNDR ECC syndrome from system. - R
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Bits <9:8> are sticky error bits that record the most recently detected errors. These

bits accumulate errors detected since the last write that cleared this register.

The SDB error registers are not cleared automatically during a read. Writes to these

registers with bit-8 or bit-9 set clear the corresponding bits in the error register.

Writes to the error register with particular bits clear will not affect the corresponding

bits in the error register. The syndrome field is read only and writes to this field are

ignored.

Note – A recorded correctable error may be overwritten by an uncorrectable error.

16.6.5 SDBL Error Register

Name: ASI_SDBL_ERROR_REG_WRITE

ASI 0x77, VA<63:0>==0x18

Name: ASI_SDBL_ERROR_REG_READ

ASI 0x7F, VA<63:0>==0x18

Writes have no effect, Reads return 0. This property allows existing US-I and US-II

software to work without change.

16.6.6 SDBH Control Register

Name: ASI_SDBH_CONTROL_REG_WRITE

ASI 0x77, VA<63:0>==0x20

Name: ASI_SDBH_CONTROL_REG_READ

ASI 0x7F, VA<63:0>==0x20

Table 16-9 SDBH Control Register Format

Bits Field Use Reset RW

<63:17> Reserved — 0 R

<16:13> Undefined Reserved - R

<12:9> VERSION Always 0 0 R

<8> F_MODE Force ECC error 0 RW

<7:0> FCBV Force check bit vector 0 RW
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VERSION: reads as 0 on UltraSPARC IIi.

F_MODE: If set, the contents of the FCBV field are sent with the

out-going transaction, instead of the generated ECC.

FCBV: Force check bit vector.

16.6.7 SDBL Control Register

Name: ASI_SDBL_CONTROL_REG_WRITE

ASI 0x77, VA<63:0>==0x38

Name: ASI_SDBL_CONTROL_REG_READ

ASI 0x7F, VA<63:0>==0x38

Writes have no-effect, Reads return 0. This allows existing US-I and US-II software to

work without change.

16.6.8 PCI Unit Error Registers

See DMA Error Registers on page 316 and PCI PIO Write Asynchronous Fault Status/
Address Registers on page 284.

16.7 Overwrite Policy
This section describes the overwrite policy for error bits when multiple errors

conditions have occurred. Errors are captured in the order that they are detected, not

necessarily in program order.

If an error occurs while error bits are being cleared by software, the overwrite

control includes the effect of the software clear. For example, if ETP were set (which

blocks E-cache tag syndrome updates) and software clears the ETP bit at the same

time as an E-cache tag parity error occurs, the E-cache tag syndrome is updated.

16.7.1 AFAR Overwrite Policy

The Priority for AFAR updates is UE > CE > {TO, BE}
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The physical address of the first error within a class (UE, CE, {TO, BE}) is captured in

the AFAR until the associated error status bit is cleared in AFSR, or an error from a

higher priority class occurs. A CE error overwrites prior TO or BE errors. A UE error

overwrites prior CE, TO and BE errors.

16.7.2 AFSR Parity Syndrome (P_SYND) Overwrite

Policy

Parity information for the first occurrence of any error is captured in the P_SYND

field of the AFSR. Error logging is re-enabled by clearing the EDP, CP, and WP fields.

Any set bits in these fields inhibit update to the P_SYND field.

16.7.3 AFSR E-cache Tag Parity (ETS) Overwrite Policy

Parity information for the first occurrence of any error is captured in the ETS field of

the AFSR register. Error logging in this field can be re-enabled by clearing the ETP

field.

16.7.4 SDB ECC Syndrome (E_SYND) Overwrite Policy

Priority for E_SYND updates is: UE > CE

The ECC syndrome of the first error within a class (UE, CE) is captured in the

E_SYND field of the SDB Error Register until the associated error status bit is cleared

in the SDB error register or an error from a higher priority class occurs. A UE error

overwrites prior CE errors.
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CHAPTER 17

Reset and RED_state

17.1 Overview
A reset is anything that causes an entry to RED_state. UltraSPARC IIi system resets

are generated either from signals sourced from the external system or from resets

generated and observed only by the UltraSPARC IIi core. In addition to forcing entry

to RED_state, various resets cause different effects in initializing processor state.

The power supply, push-button, scan interface, software, error conditions, and

power management logic can create externally sourced resets. Their signals are

converted into power-on-reset (POR) or externally initiated reset (XIR) signals that

pass to the core with different levels of effect on the system. Information from

peripheral logic is stored in UltraSPARC IIi’s Reset_Control register for software to

determine the cause of the external reset. Software-Initiated Reset (SIR) and

Watchdog Reset (WDR) resets result from core conditions and are generated and

observed only by the processor core. Resets are used to force all or part of the system

into a known state. UltraSPARC IIi distributes the resets to all subsystems, including

the UPA64S device and the primary PCI bus reset. If APB is present, it propagates

this reset to the secondary PCI buses.

Resets in general drive the processor into RED_state—described in Section 17.3,

RED_state—with the exceptions described in that section.



252 UltraSPARC IIi User’s Manual • July 1999

Figure 17-1 Reset Block Diagram

The assertion of RST_L is asynchronous to UPA clock. PCI specifies an

asynchronous, monotonic, deassertion for RST_L.

Note – Most existing UPA64S devices can tolerate an asynchronous deassertion of

UPA_RESET_L (the UPA spec says it should be a synchronous deassertion).

17.2 Resets

17.2.1 Power-on Reset (POR) and Initialization

A Power-on Reset occurs when the POR signal is asserted and stays until the CPU

voltages reach their operating specifications and POR becomes inactive. When the

POR pin is active, all other resets and traps are ignored. Power-on Reset has a trap

type of 001
16

at physical address offset 20
16

. Any pending external transactions are

cancelled.
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After a Power-on Reset, software must initialize values specified as unknown in

Section 17.4, Machine State after Reset and in RED_state. In particular, the Valid and

LRU bits in the I-cache (Section A.7, I-cache Diagnostic Accesses on page 373), the

Valid bits in the D-cache (D-cache Diagnostic Accesses on page 378), and all E-cache

tags and data (E-cache Diagnostics Accesses on page 380) must be cleared before

enabling the caches. The iTLB and dTLB also must be initialized as described in

Section 15.7, MMU Behavior During Reset, MMU Disable, and RED_state on page 211.

Reset priorities from highest to lowest are: POR, XIR, WDR, SIR. See the following

sections for explanations of each reset.

Note – Each register must be initialized before it is used. For example, CWP must

be initialized before accessing any windowed registers, since the CWP register

selects which register window to access. Failure to initialize registers or states

properly prior to use may result in unpredicted or incorrect results.

17.2.2 Externally Initiated Reset (XIR)

An Externally Initiated Reset is sent to the CPU via the XIR pin; it causes a

SPARC-V9 XIR, which has a trap type of 003
16

at physical address offset 60
16

. It has

higher priority than all other resets except POR. XIR is used for system debug.

17.2.3 Watchdog Reset (WDR) and error_state

A SPARC-V9 processor enters error_state when a trap occurs and TL = MAXTL. The

processor signals itself internally to take a watchdog_reset (WDR) trap at physical

address offset 40
16

. This reset affects only one processor, rather than the entire

system. CWP updates due to window traps that cause watchdog traps are the same

as the no watchdog trap case.

17.2.4 Software-Initiated Reset (SIR)

A Software-Initiated Reset is invoked by a SIR instruction within the processor core.

This processor reset has a trap type of 004
16

at physical address offset 80
16

and affects

only the processor, not IO or the external system. A Signal Monitor (SIGM)

instruction generates an SIR trap on the local processor.
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17.2.5 Hardware Reset Sources

The RIC chip detects five different resets: POWER_OK from the power supply, Push-

button PowerOnReset, Push-button XIR, Scan PowerOnReset, and ScanXIR. RIC

chip combines the 5 reset conditions into 3 signals to the UltraSPARC IIi. Based on

these signals from RIC, UltraSPARC IIi will set bits in the Reset_Control Register to

allow software identify the source of reset. If the RIC IC is not used, other logic

should perform a similar power-up reset function.

17.2.5.1 Power Supply

After the system power supply is turned on and before its output stabilizes, it drives

the POWER_OK signal inactive to put the system in a reset state. When the supply

voltage reaches a level that can power a functional system within specifications, the

power supply sets POWER_OK active.

RIC chip uses this signal to generate power-on-reset (POR) during the period

POWER_OK is inactive to reset the system. It extends the reset period for 20K cycles

at 7.159Mhz (approximately. 2.8ms) after the POWER_OK signal becomes active.

The extra time is needed to allow the PLL circuitry on UltraSPARC IIi to stabilize.

RIC chip asserts SYS_RESET_L to UltraSPARC IIi during the whole reset period.

After the deassertion of SYS_RESET_L, UltraSPARC IIi keeps RST_L (the reset signal

for peripheral logic) asserted for 1666668 processor clocks which represents at least

5.5 ms at 300 MHz.

17.2.5.2 Push-button Power On Reset

Two alternative external push-buttons allow user-triggered system resets: Push-

button POR and Push-button XIR. Push-button POR has the same effect as a POR

from the power supply. The only difference between these two resets is the resultant

status bits in the UltraSPARC IIi Reset_Control Register and the state of refresh

(unchanged with Push-Button POR). The B_POR bit is set to indicate that the reset is

caused by push-button POR.

17.2.5.3 Push-button XIR

Push-button XIR allows a user-reset of part of the processor without resetting the

whole system. UltraSPARC IIi sets the B_XIR bit in the Reset_Control Register when

a Push-button XIR is detected. XIR affects the UltraSPARC core only without

affecting the rest of the system, such as UltraSPARC IIi IO, memory and I/O devices.
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The effect of XIR on the UltraSPARC processor is different from that of POR—see

Section 17.2.1, Power-on Reset (POR) and Initialization, Section 17.2.2, Externally
Initiated Reset (XIR), and Table 17-5.

Note – Do not assert Button POR and Button XIR while coming out of a system

reset (power on condition). This action activates a special test mode used for

acquiring test patterns and this mode runs a shortened reset sequence.

17.2.6 Software Reset

17.2.6.1 Software Power On Reset

Software can also generate a POR-equivalent reset by setting the SOFT_POR bit in

the UltraSPARC IIi Reset_Control Register. This reset is different from the SIR

supported in the UltraSPARC core.

Note – As for prior UltraSPARC-based systems, refresh is not disabled

17.2.6.2 Soft XIR

Software can also issue XIR to the processor by setting the SOFT_XIR bit in the

UltraSPARC IIi Reset_Control Register. SOFT XIR has the same effect as other XIRs.

Once set the bit remains set until software clears it. This allow software to discover

what caused a previous XIR.

17.2.6.3 Error Reset

None

17.2.6.4 Wake-up Reset

Compatibility Note – There is no Wakeup Reset support for power management,

unlike that in prior UltraSPARC-based systems.
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UltraSPARC IIi, in common with UltraSPARC, can enter power-down mode by

executing a SHUTDOWN instruction but refresh is stopped in this condition.

Providing a reset is the only way to leave power-down mode and resume normal

operation but UltraSPARC IIi does not automatically generate this reset.

17.2.7 Effects of Resets

The effects of Resets are visible to software. Reset operation also provides

sequencing to ensure proper hardware operation. For example, all busses are

tristated at power up.

17.2.7.1 Major Activities as a Function of Reset

17.2.7.2 Bus Conditions at Power up

UPA64S Address Bus

This bus is always driven

Table 17-1 Effects of Resets

Reset
Sources

Bit Set
Mem.
Refresh 2

2. NC = No Change.

Reset
PCI
Devices

Reset
UPA64S

Effect on
UltraSPARC IIi
CPU/PCI

POWER_OK POR Disable Yes Yes POR

Push-button

POR
B_POR NC Yes Yes POR

Push-button

XIR
1

1. causes jump to XIR trap vector

B_XIR NC No No XIR

Soft POR SOFT_POR NC Yes Yes POR

Soft XIR SOFT_XIR NC No No XIR
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UPA64S 64 bit Data Bus

This bus is shared by the UPA64S (graphics) interface and the memory transceiver

ICs and it tristates on POR. The Fast Frame Buffer (FFB) ICs asynchronously tristate

their data busses at reset.

Memory Data Bus

Driven by DRAM and the memory XCVR chips. The RAS* and CAS* signals driven

by UltraSPARC IIi are asynchronously deasserted. UltraSPARC IIi cause the XCVR to

tristate its data output pins during reset.

PCI

UltraSPARC IIi IO asynchronously tristates this bus. It also asynchronously deasserts

control signals.

17.2.7.3 Reset_Control Register (0x1FE.0000.F020)

The UltraSPARC IIi Reset_Control indicates the source of a reset and provides

control of software reset generation.

Only one of the reset bits is set. If multiple resets occur simultaneously, the following

priority order is used:

Table 17-2 Reset_Control Register

Field Bits Value Description Type

Reserved 63:32 0 Reserved R0

POR 31 *
1

1. The highest priority reset source has its bit set. Only the bits marked with “*” are set.

Set if the last reset was due to the assertion of

Sys_Reset_L

R/W1C

SOFT_POR 30 * Setting to 1 causes a POR reset; stays set until

software clears it

R/W

SOFT_XIR 29 * Setting to 1 causes an XIR trap; stays set until

software clears it

R/W

B_POR 28 * Set if the last reset was due to the assertion of

P_Reset_L

R/W1C

B_XIR 27 * Set if the last reset was due to the assertion of an

X_Reset_L

R/W1C

Reserved 26:0 0 Reserved R0
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1. POR

2. B_POR

3. SOFT_POR

4. B_XIR

5. SOFT_XIR

POR - Power On Reset This bit is set if the last reset was due to the assertion of

SYS_RESET_L pin and occurs whenever the machine power cycles.

SOFT_POR - Soft Power On Reset Writing a 1 to this bit has the same effect as

power-on reset, except that a different status bit in the Reset_Control Register is set.

Memory refresh is not affected. Writing a 0 to this bit clears it and has no other

effect.

SOFT_XIR - Soft Externally Initiated Reset Writing a 1 to this bit causes the

UltraSPARC IIi to send a XIR trap to the UltraSPARC IIi core. Writing a 0 to this bit

clears it and has no other effect.

B_POR - Button Reset This bit is set as a result of a “button” reset which is caused

by an external switch and the subsequent assertion of the P_RESET_L pin. It can also

be caused by scan in the RIC chip. Memory refresh is not affected. The actions and

results of this reset are identical to that of Power-on Reset, except for a different

status bit being set.

B_XIR - XIR Button Reset This bit is set as a result of a “button” XIR Reset caused

by an external switch asserting the X_RESET_L signal pin. This bit can also be set by

scan in the RIC chip. The actions and results of this reset are identical to that of

SOFT_XIR, except that a different status bit is set.

17.3 RED_state

17.3.1 Description of RED_state

RED_state is an acronym for Reset, Error, and Debug State. It serves two mutually

exclusive purposes:

■ Indication, during trap processing, that there are no more available trap levels—

that is, if another nested trap is taken, the processor will enter error_state and

halt. RED_state provides system software with a restricted execution environment

■ Provision of an execution environment for all reset processing
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This state is entered under any of the occurrences:

■ Trap taken when TL = MAXTL - 1

■ Reset requests: POR, XIR, WDR

■ Reset request: SIR if TL < MAXTL (If TL = MAXTL, the processor enters

error_state)

■ Implementation-dependent trap, internal_processor_error exception, or

catastrophic_error exception

■ Setting of PSTATE.RED by system software

RED_state is indicated by the PSTATE.RED bit being set, regardless of the value of

TL. Executing a DONE or RETRY instruction in RED_state restores the stacked copy

of the PSTATE register,which clears the PSTATE.RED flag if it was cleared for the

stacked copy. System software can also set or clear the PSTATE.RED flag with a

WRPR instruction, which also forces the processor to enter or exit RED_state

respectively. In this case, the WRPR instruction should be placed in the delay slot of

a jump, so that the PC can be changed in concert with the state change.

Note – Setting TL = MAXTL using a WRPR instruction neither sets RED_state nor

alters any other machine state. Ther values of RED_state and TL are independent.

A reset or trap that sets PSTATE.RED (including a trap in RED_state) clears the

LSU_Control_Register, including the enable bits for the I-cache, D-cache, I-MMU,

D-MMU, and virtual and physical watchpoints.

The default access in RED_state is noncacheable, so the system must contain some

noncacheable scratch memory. The D-cache, watchpoints, and D-MMU can be

enabled by software in RED_state, but any trap that occurs will disable them again.

The I-MMU and consequently the I-cache are always disabled in RED_state. This

overrides the enable bits in the LSU_Control_Register.

When PSTATE.RED is explicitly set by a software write, there are no side effects

other than disabling the I-MMU. Software may need to create the effects that are

normally created when resets or traps cause the entry to RED_state.

The caches continue to snoop and maintain coherence if DVMA or other processors

are still issuing cacheable accesses.

Note – Exiting RED_state by writing 0 to PSTATE.RED in the delay slot of a JMPL is

not recommended. A noncacheable instruction prefetch may be made to the JMPL

target, which may be in a cacheable memory area. This may result in a bus error on

some systems, which will cause an instruction_access_error trap. The trap can be

masked by setting the NCEEN bit in the ESTATE_ERR_EN Register to zero, but this

will mask all non-correctable error checking. Exiting RED_state with DONE or

RETRY will avoid this problem.
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Note – While in RED_state, the Return Address Stack (RAS) is still active, and

instruction fetches following JMPL, RETURN, DONE, or RETRY instructions use the

address from the top of the RAS. Unless it is re-initialized with a series of CALLs,

the RAS contains virtual addresses obtained prior to entry into RED_state. When

these are passed through the now disabled I-MMU, invalid addresses may result.

Note that this effect includes the predicted use of these four instructions. If such

accesses cannot be tolerated, software should fill the RAS with valid addresses using

CALL instructions before using a JMPL, RETURN, DONE, or RETRY instruction in

RED_state. Note that the RAS is cleared after Power-on Reset. Section 21.2.10, Return
Address Stack (RAS) on page 335 discusses the RAS in detail. The following code

fragment fills the RAS with valid addresses:

mov %o7,%g1
set 4,%g2
1:call 2f
subcc %g2,1,%g2
2:bnz 1b
mov %g1,%o7

There are other cases that use RAS for prefetch. For instance, immediately after

writing to the LSU control register to enable the IMMU. The RAS should be

initialized for this case as well.

Be sure there are no JMPs in the initial trap address tables. Software should use

branch instructions to go to an area where the RAS can be initialized, before using a

JMP to get a long displacement.

17.3.2 RED_state Trap Vector

When a SPARC-V9 processor processes a reset or trap that enters RED_state, it

takes a trap at an offset relative to the RED_state_trap_ vector base address

(RSTVaddr). The trap offset depends on the type of RED mode trap and takes

the values:

■ POR 0x20

■ EIR 0x30

■ TL5 0x40

■ SIR 0x80

■ other 0x50

in UltraSPARC IIi the RSTV base address is given in Table 17-3.
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UltraSPARC IIi has a pin to select a second RSTV to allow use of PC compatible

SuperIO chips on a PCI bus. The second RSTV base address is given in Table 17-4.

17.4 Machine State after Reset and in
RED_state
Table 17-5 shows core CPU state created as a result of any reset, or after entering

RED_state. See Section 6.4, Summary of CSRs mapped to the Noncacheable address space
on page 47 for pointers to the reset state of the MCU and PCI areas.

Table 17-3 RSTV Base Address

Virtual Address 16 Equivalent Physical Address 16 PA[40:0]

FFFF FFFF F000 0000 1FF F000 0000

Table 17-4 Second RSTV Base Address

Virtual Address 16 Equivalent Physical Address 16 PA[40:0]

FFFF FFFF FFFF 0000 1FF FFFF 0000

Table 17-5 Machine State After Reset and in RED_state

Name Fields POR WDR XIR SIR RED_state ‡

Integer registers Unknown Unchanged

Floating Point registers Unknown Unchanged

RSTV value
VA=FFFF FFFF F000 0000

16
, PA=1FF F000 0000

16

VA=FFFF.FFFF.FFFF.00
16

; PA=1FF.FFFF.00
16

nn

PC

nPC

RSTV | 20
16

RSTV | 24
16

RSTV | 40
16

RSTV | 44
16

RSTV | 60
16

RSTV | 64
16

RSTV | 80
16

RSTV | 84
16

RSTV | A0
16

RSTV | A4
16

PSTATE

MM

RED

PEF

AM

PRIV

IE

AG

CLE

TLE

IG

MG

0 (TSO)

1 (RED_state)

1 (FPU on)

0 (Full 64-bit address)

1 (Privileged mode)

0 (Disable interrupts)

1 (Alternate globals selected)

0 (current little endian)

0 (trap little endian)

0 (Interrupt globals not selected)

0 (MMU globals not selected)

TBA<63:15> Unknown Unchanged

Y Unknown Unchanged
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PIL Unknown Unchanged

CWP Unknown Unchanged except for register window traps

TT[TL] 1 trap type 3 4 trap type

CCR Unknown Unchanged

ASI Unknown Unchanged

TL MAXTL min(TL+1, MAXTL)

TPC[TL]

TNPC[TL]

Unknown

Unknown

PC

nPC

PC

Unknown

PC

nPC

PC

nPC

TSTATE

CCR

ASI

PSTATE

CWP

PC

nPC

Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

CCR

ASI

PSTATE

CWP

PC

nPC

TICK
NPT

counter

1

Restart at 0

Unchanged

count

Unchanged

Restart at 0

Unchanged

count

CANSAVE Unknown Unchanged

CANRESTORE Unknown Unchanged

OTHERWIN Unknown Unchanged

CLEANWIN Unknown Unchanged

WSTATE
OTHER

NORMAL

Unknown

Unknown

Unchanged

Unchanged

VER

MANUF

IMPL

MASK

MAXTL

MAXWIN

0017
16

UltraSPARC-I=0010
16

UltraSPARC-II=0011
16

mask-dependent

5

7

FSR all 0 Unchanged

FPRS all Unknown Unchanged

Non-SPARC-V9 ASRs

SOFTINT Unknown Unchanged

TICK_COMPARE
INT_DIS

TICK_CMPR

1 (off)

Unknown

Unchanged

Unchanged

PERF_CONTROL

S1

S0

UT (trace user)

ST (trace

system)

PRIV (priv

access)

Unknown

Unknown

Unknown

Unknown

Unknown

Unchanged

Unchanged

Unchanged

Unchanged

Unchanged

PERF_COUNTER Unknown Unchanged

Table 17-5 Machine State After Reset and in RED_state (Continued)

Name Fields POR WDR XIR SIR RED_state ‡
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GSR Unknown Unchanged

Non-SPARC-V9 ASIs

UPA_PORT_ID *

FC

ECC_VALID

ONEREAD

PINT_RDQ

PREQ_DQ

PREQ_RQ

UPACAP

ID

FC
16

0

1

1

0

1

1B
16

TBD

UPA_CONFIG
ELIM

MID

0

0

Unchanged

0

LSU_CONTROL all 0 (off) 0 (off)

DISPATCH CONTROL 0 Unchanged

VA_WATCHPOINT Unknown Unchanged

PA_WATCHPOINT Unknown Unchanged

I-& D-MMU_SFSR,

ASI

FT

E

CTXT

PRIV

W

OW(overwrite)

FV (SFSR

valid)

Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

Unknown

0

Unchanged

Unchanged

Unchanged

Unchanged

Unchanged

Unchanged

Unchanged

Unchanged

D-MMU_SFAR Unknown Unchanged

UDBH_ERR,

UDBL_ERR

UE

CE

E_SYNDR

Unknown

Unknown

Unknown

Unchanged

Unchanged

Unchanged

UDBH_CONTROL,

UDBL_CONTROL

FMODE

FCBV

Unknown

Unknown

Unchanged

Unchanged

INTR_DISPATCH
NACK

BUSY

Unknown

0

Unchanged

Unchanged

INTR_RECEIVE BUSY 0 Unchanged

MID Unknown Unchanged

ESTATE_ERR_EN

ISAPEN

(sys addr err)

NCEEN (non

CE)

CEEN (CE)

0 (off)

0 (off)

0 (off)

Unchanged

Unchanged

Unchanged

AFAR PA Unknown Unchanged

AFSR all Unchanged Unchanged

Table 17-5 Machine State After Reset and in RED_state (Continued)

Name Fields POR WDR XIR SIR RED_state ‡
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‡
Processor states are updated according to this table only when RED_state is entered on a reset or trap. If software explicitly sets
PSTATE.RED to 1, it must create the appropriate states itself.

Other UltraSPARC IIi Specific States

Processor and E-cache tags and data Unknown Unchanged

Cache snooping Enabled

Instruction Buffers Empty

Load/Store Buffers, all outstanding

accesses
Empty Unchanged Empty

iTLB, dTLB

Mappings

E-bit (side-

effect)

NC-bit

(noncacheable)

Unknown

1

1

Unchanged

1

1

RAS all RSTV | 20
16

Unchanged

Table 17-5 Machine State After Reset and in RED_state (Continued)

Name Fields POR WDR XIR SIR RED_state ‡
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CHAPTER 18

MCU Control and Status Registers

The MCU control and status registers program the operation of the shared memory

and UPA64S interfaces which are integrated into the UltraSPARC IIi CPU.

Register Access

Register accesses should always be of eight bytes at a time. The physical addresses

for the MCU control and status registers are shown in Table 18-1.

Reads of any size up to eight byte to any register are supported regardless of

whether reads of that size makes sense.

Writes of any size up to eight bytes are also supported regardless of whether writes

of that size makes sense. Writes of any size may corrupt unwritten bits in the register.

(that is., writes may result in all eight bytes being written regardless of the indicated

write size.)

Software must ensure that only the proper-sized—that is, equal to the register size—

accesses are used. No hardware checking is performed. Block (64-byte) access

erroneously causes a UPA64S or PCI transaction with an undefined address.

Misaligned access due to not setting the “E” bit correctly in the TTE also yields

unpredictable results.

Table 18-1 MCU CSRs

PA Register Name Associated I/O Port

1FE.0000.F000 FFB_Config FFB

1FE.0000.F010 Mem_Control0 Memory Control Unit

1FE.0000.F018 Mem_Control1 Memory Control Unit
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Note – Register bits that are designated as read only (RO) are not affected by writes.

No errors are reported. Fields with reserved definitions should not be used. Some

combinations of bits are not valid. Disable refresh before changing memory control

registers.

Compatibility Note – Prior UltraSPARC-based systems used other hardware and

programming models to control the UPA and memory interfaces.

Reset

Memory Control registers are reset to their initial values only during PowerOnReset

(POR). POR is often generated by logic connected to the POWER_OK signal from the

power supply. Refreshing operates continuously during and after other reset

conditions.

The SYS_RESET signal is asserted by the system POR condition. The P_RESET signal

is asserted for many reasons and does not affect many of the memory control

register bit values.

Table headings with POR mean the register is affected by SYS_RESET only. Table

headings with Reset mean the register is affected by SYS_RESET or P_RESET.

Resets are described more fully in Section 17.2, Resets on page 252.

18.1 FFB_Config Register

Table 18-2 FFB_Config Register—0x1FE.0000.F000

Field Bits Description Reset Type

Reserved 63:28 0 RO

SPRQS 27:24 Slave P_request queue size. Initialize to max size

in 2 Cycle Packets of the corresponding slave

request queue.

1 R/W

Reserved 23:15 0 RO

Oneread 14 Always set to ‘one’;. UPA slave interface does

not support multiple outstanding reads.

1 RO

Reserved 13:0 0 RO
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The Data Queue Size is not tracked separately, and the UPA64S device must be able

to receive 64 bytes per allowed outstanding request.

18.2 Mem_Control0 Register

)

ECCEnable

This instruction enables the MCU to perform single-bit detect and correct, and

notification of single or multi-bit errors to the ECU and PBM, for possible logging

and trap/interrupt generation. In general this should always be set to 1, unless

DIMMs that do not support check bits are used.

There are further enables for ECC related trap and interrupt generation in the ECU

and PBM. See Section 16.6.1, E-cache Error Enable Register on page 242 and DMA UE/

CE interrupt mapping registers in Partial Interrupt Mapping Registers on page 303 and

ERRINT_EN in PCI Control/Status Register on page 283.

Table 18-3 Mem_Control0 Register—0x1FE.0000.F010

Field Bits Description POR Type

Reserved 63:32 0 RO

RefEnable 31 Refresh enable 0 R/W

Reserved 30:29 0 RO

ECCEnable 28 Enable all ECC functions 0 R/W

Trace_Delay 27 SME1430: short trace enable 0 R/W

Reserved 27 SME1040 0 R/W

FFBwrToDRAMrdDly 26:25 SME1430: memdata bus

turnaround

0 R/W

Reserved 24:13 SME1430 RO

Reserved 26:13 SME1040 0 RO

11-bit Column Address 12 Enables 11-bit column address

mode.

0 R/W

DIMMPairPresent<3:0> 11:8 Determines which DIMM pairs to

refresh.

0xF R/W

RefInterval<7:0> 7:0 Interval between refreshes. Each

encoding is 32 processor clocks

0x30 R/W
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Trace Delay (SME1430 only)

Trace_Delay is defined in mem_control1<27>. Set to 1 for SME1040 type timing. Set to

0 for shorter trace delays. This bit defaults to 0 at power-up. The impact on

programming is shown in the Mem_Control1 Register RCD field—see page 274 and the

FFBwrToDRAMrdDly section below.

FFBwrToDRAMrdDly (SME1430 only)

FFBwrToDRAMrdDly is defined in mem_control1<26:25>. An FFB write operation

followed by a DRAM read operation is optimized by using this 2-bit field. This bit

field value is adjusted according to CPU clock rate and DRAM speed.

FFBwrToDRAMrdDly value adjusts the delay in the initiation of a DRAM read after

an FFB write operation so that there is no collision on the memory bus between data

returning from DRAM and data written to the FFB. The value “11” gives the smallest

delay whereas the value “00” gives the largest delay. Table 18-4 shows the use of

FFBwrToDRAMrdDly for various configurations of processor frequency and setting

of CASRW.

RefEnable

Main memory is composed of dynamic RAMs, which require periodic “refreshing”

to maintain the contents of the memory cells. RefEnable == 1 is used to enable

refresh of main memory. RefEnable == 0 disables refresh in memory.

Table 18-4 Use of FFBwrToDRAMrdDly

Processor
Frequency

CASRW Trace_Delay=0 Trace_Delay=1

360 4 01
1

1. requires 50 ns DRAMs

na
2

2. not applicable or valid

5 01 10

400 4 11
1

na

5 11 11

440 5 10
1

na

6 10 10

480 5 10
1

na

6 11 11
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POR is the only reset condition that clears RefEnable (and initializes the rest of the

Mem_Control0/1). SOFT_POR, B_POR, B_XIR, and SOFT_XIR leave RefEnable

unchanged and refresh continues normally.

Any refresh operation in progress is aborted at the time of clearing this bit. The

truncated memory signals in this case could lead to loss of data.

11-bit Column Address

The default memory addressing only supports 10-bit column address DRAMs. An

additional mode was added to support a 11-bit column address. Since the total

available address bits in the memory controller is constant (1 Gbyte max.

addressable), the maximum number of DIMM pairs in this mode is cut in half. See

Chapter 7, UltraSPARC IIi Memory System.

DIMMPairPresent<3:0>

Indicates the presence/absence of DIMMS to enable performance degradation

caused by refreshing unpopulated DIMMs to be eliminated. One bit position

corresponds to each DIMM bank. “DIMM pair 0” corresponds to

“DimmPairPresent[0],” and so on. A zero indicates not present, a 1 indicates present.

These bits are set by software after probing. Note that in 11-bit Column Address

mode, only DIMM Pair 0 and 2 can be marked present. Pairs 1 and 3 should always

be marked not present when in 11-bit column addressing mode.

Note – Refresh must be disabled first by clearing the RefEnable bit before changing

the memory controller register values. Refresh may be enabled again simultaneously

with writing DIMMPairPresent and RefInterval. Failure to follow this rule may

result in unpredictable behavior.

Table 18-5 Various Memory Configurations

DIMM size Base device No. of devices
System memory
min/max config

8 MB 1M x 4 18 16 MB/64 MB

16 MB 2M x 8 9 32 MB/128 MB

32 MB 4M x 4 18 64 MB/256 MB

64 MB 4M x 4(banked) 36 128 MB/512 MB

64 MB 8M x 8 9 128 MB/512 MB
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RefInterval

RefInterval specifies the interval time between refreshes, in quanta of 32 CPU clocks.

SW should program RefInterval according to Table 18-6. Values given are in

hexadecimal and derived from this formula:

that is: (32 * frequency * 1000) / (2048 * 32 * DIMM pairs).

This data is based on using 16 MB(2048 rows/32ms) EDO drams only; this

configuration matches the composite DIMM specification. See Table 18-6.

18.3 Mem_Control1 Register
Memory Control Register 1 contains fields that control the read, write, and refresh

timing for the DRAM DIMMs. They allow software to optimize the memory access

timing for a particular system frequency.

The contents of Memory Control Register 1 can be changed as required by an

electrical tuning of memory timing often based on SPICE analysis. The

Mem_Control1 register bits are listed in Table 18-7.

128 MB 8M x 8(banked) 18 256 MB/1 GB

128 MB 16M x 4 18 256 MB/1 GB

256 MB 16M x 4(banked) 36 512 MB/1 GB

Table 18-6 Refresh Period (in 32x CPU clock periods) as a Function of Frequency

Total
DIMM
pairs
enabled

CPU Frequency in MHz

125–
166

167–
200

201–
224

225–
250

251–
270

271–
300

301–
330

331–
360

361–
400

401–
440

441–
450

451–
480

1 0x51 0x61 0x6C 0x7A 0x83 0x92 0xA1 0xAF 0xC3 0xD6 0xDB 0xEA

2 0x28 0x30 0x37 0x3D 0x41 0x49 0x50 0x57 0x61 0x6B 0x6D 0x75

3 0x1B 0x20 0x25 0x28 0x2B 0x30 0x35 0x3A 0x41 0x47 0x49 0x4E

4 0x14 0x18 0x1D 0x1E 0x20 0x24 0x28 0x2B 0x30 0x35 0x36 0x3A

Table 18-5 Various Memory Configurations (Continued)

DIMM size Base device No. of devices
System memory
min/max config

refValue
refreshPeriod

numberOfRows ClockPeriod× 32× numberOfPairs×
---------------------------------------------------------------------------------------------------------------------------------------------=
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Even though many bits are set by reset, it is good practice to have the boot PROM

program all memory control register bits when initializing the system.

AMDC- Advance Memdata Clock

This instruction moves the relative timing between a transceiver clock transition and

the point at which the processor latches read data driven by that transceiver (using

the MEMDATA bus)

This timing adjustment allows for earlier data clocking for slower clock cycles.

(advance) or for later data clocking for fast clock cycles.

Delaying this clocking by a cycle (relative to the recommended values) may be

useful if timing is critical but it reduces hold time margin.

Table 18-7 Mem_Control1 Register—0x1FE.0000.F018

Field Bits POR State Description Type

Reserved 63:32 0 reserved. Read as zero, write 0 RO

AMDC<3> 31 0 SME1430 Advance Memdata Clock R/W

ARDC<3> 30 0 SME1430 Advance Read Data Clock R/W

Reserved 31:30 0 SME1040 reserved; read as zero, write 0 RO

AMDC<2:0> 29:27 0 Advance Memdata Clock R/W

ARDC<2:0> 26:24 0 Advance Read Data Clock R/W

CSR
1

1. Bit definitions differ between SME1430 and SME1040. See bit-definition sections that follow

23:21 2 CAS to RAS delay for CBR refresh cycles. R/W

CASRW
1, 2

2. Originally had separate fields for CAS during reads and CAS during writes. However, memory timing is op-
timal if writes and reads use the same CAS width. Additionally, an errata caused the read CAS width to be
used in one part of the write control logic. Both fields are now given the same name, and must be programmed
to the same value. Results are undefined if they are different.

20:18 2 CAS length for read/write R/W

RCD
1

17:15 4 RAS to CAS Delay R/W

CP 14:12 2 CAS Precharge R/W

RP
1

11:9 4 RAS Precharge R/W

RAS
1

8:6 5 Length of RAS for Refresh R/W

CASRW
1, 2

5:3 2 Must be same as 20:18 R/W

RSC
2

2:0 0 RAS after CAS hold time R/W
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ARDC- Advance Read Data Clock

Maintaining a minimum EDO DRAM CAS cycle is difficult if the DIMM loading is

widely variable. Light loading on the CAS and DATA lines can make the data

disappear before it is clocked and produce a hold-time problem.

The system board reference design specifies buffering to make the RAS/CAS/WE

delays independent of the number of DIMMs in circuit. However, the ADDR and

DATA delays do vary with DIMM population.

If necessary, this field can be used to advance the clock that latches read data in the

transceivers. This may be necessary when only one or two DIMM pairs are

populated. It can also be used to delay the clock for heavily loaded DIMM

populations.

Current simulations indicate that the ARDC value need not be varied for the

supported range and combinations of DIMM configurations.

Table 18-8 AMDC Timing Arguments—Mem_Control1<31>,<29:27>

Argument SME1040 SME1430 Timing

0000 0 0 default MemData clocking

0001 1 1 CPU clocks of sampling delay

0010 2 2 CPU clocks of sampling delay

0011 3 3 CPU clocks of sampling delay

0100 4 4 CPU clocks of sampling advancement

0101 3 3 CPU clocks of sampling advancement

0110 2 2 CPU clocks of sampling advancement

0111 1 1 CPU clocks of sampling advancement

1000–1010 reserved reserved

1011 reserved 5 CPU clocks of sampling advancement

1100–1111 reserved reserved

Table 18-9 ARDC Timing Arguments—Mem_Control1<30>, <26:24>

Argument SME1040 SME1430 Timing

0000 0 0
default DRAM Read data clocking based on CAS

assertion time

0001 1 1 CPU clocks of sampling delay

0010 2 2 CPU clocks of sampling delay
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CSR - CAS before RAS delay timing

This Instruction controls the CAS assertion to RAS assertion delay for CAS before

RAS (CBR) refresh cycles

CASRW- CAS assertion for read/write cycles

CASRW controls the minimum CAS assertion time for reads and writes.

0011 3 3 CPU clocks of sampling delay

0100 4 4 CPU clocks of sampling advancement

0101 3 3 CPU clocks of sampling advancement

0110 2 2 CPU clocks of sampling advancement

0111 1 1 CPU clocks of sampling advancement

1000 reserved 8 CPU clocks of sampling advancement

1001 reserved 7 CPU clocks of sampling advancement

1010 reserved 6 CPU clocks of sampling advancement

1011 reserved 5 CPU clocks of sampling advancement

1100–1111 reserved reserved

Table 18-10 CSR Delay Timing—Mem_Control1<23:21>

Argument SME1040 SME1430 Timing

000 3 3 CPU clocks between CAS and RAS assertions

001 4 4 CPU clocks between CAS and RAS assertions

010 5 5 CPU clocks between CAS and RAS assertions

011 6 6 CPU clocks between CAS and RAS assertions

100 7 7 CPU clocks between CAS and RAS assertions

101 8 8 CPU clocks between CAS and RAS assertions

110 reserved 2 CPU clocks between CAS and RAS assertions

111 reserved reserved

Table 18-9 ARDC Timing Arguments—Mem_Control1<30>, <26:24> (Continued)

Argument SME1040 SME1430 Timing
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There were originally separate fields for CAS during reads and CAS during writes.

However, memory timing is optimal if writes and reads use the same CAS width.

Additionally, an erratum caused the read CAS width to be used in one part of the

write control logic. Both fields are now given the same name, and must be

programmed to the same value. Results are undefined if they are different.

RCD - RAS to CAS Delay

RCD controls the RAS to CAS delay during the initial part of the read or write

memory cycle.

In the SME1430, the RCD operation is determined by the RCD and Trace_Delay

(Mem_Control1<27>) values.

Table 18-11 CASRW Assertion Time—Mem_Control1<20:18> (same settings at <5:3>)

Argument SME1040 SME1430 Timing

000 3 reserved clocks for which CAS is in low state

001 4 4 clocks for which CAS is in low state

010 5 5 clocks for which CAS is in low state

011 reserved 6 clocks for which CAS is in low state

100–111 reserved reserved

Table 18-12 RCD Delay Timing—Mem_Control1<17:15>

Argument SME1040
SME1430

Timing
Trace_Delay=1 Trace_Delay=0

000 6 13 13

CPU clocks between RAS and

CAS assertion

001 7 17 17

010 8 20 19

011 11 11 12

100 12 19 18

101 14 14 14

110 15 15 15

111 reserved reserved reserved
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CP - CAS Precharge

CP controls the CAS precharge time in between page cycles. The argument in this

field must equal the common argument in each CASRW field.

(Mem_Control1<20:18> and Mem_Control1<5:3>)

RP - RAS Precharge

RP controls the RAS precharge time between memory cycles.

RAS

RAS is used to control the length of time that RAS is asserted during refresh cycles.

Table 18-13 CP – CAS Precharge Time—Mem_Control1<14:12>

Argument SME1040 SME1430 Timing

000 3 reserved CPU clocks of CAS Precharge

001 4 4 CPU clocks of CAS Precharge

010 5 5 CPU clocks of CAS Precharge

011 reserved 6

100–111 reserved reserved

Table 18-14 RP Timing—Mem_Control1<11:9>

Argument SME1040 SME1430 Timing

000 8 12

CPU clocks of RAS Precharge

001 9 13

010 10 21

011 11 17

100 12 19

101 14 14

110 15 15

111 reserved 16
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RSC-RAS after CAS delay timing

RSC controls time to deassert RAS after CAS at the end of a memory cycle.

18.4 Programming Mem_Control1
Table 18-17 gives program values to support one, two, three, or four DIMM pairs,

with one or two banks of DRAM on each DIMM. These values are given as a

function of the internal CPU operating frequency.

These tabulated values depend upon the conditions:

Table 18-15 RAS Duration Time—Mem_Control1<8:6>

Argument SME1040 SME1430 Timing

000 13 20

CPU clocks of RAS assertion.

001 15 15

010 18 18

011 22 22

100 23 23

101 24 24

110 reserved 27

111 reserved 31

Table 18-16 RSC – RAS Deassert Time—Mem_Control1<2:0>

Argument SME1040 SME1430 Timing

000 4 4 CPU clocks RAS asserted after CAS

001 5 5 CPU clocks RAS asserted after CAS

010 6 6 CPU clocks RAS asserted after CAS

011 7 7 CPU clocks RAS asserted after CAS

100 8 8 CPU clocks RAS asserted after CAS

101 9 9 CPU clocks RAS asserted after CAS

110 reserved 10 CPU clocks RAS asserted after CAS

111 reserved reserved
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■ The system board meeting the min/max delay specifications for RAS/CAS/

MEMADDR/DATA/MEMDATA, and all transceiver control and clock signals;

■ The design specifications for max skew between RAS/CAS/MEMADDR/

DATA being met.

■ The specified DIMMs being used. (buffered CAS/WE/ADDR)

Memory Control Register programming may also be used to utilize memory

subsystems whose performance lies outside the suggested design specifications.

Because all skew and hold time relationships for the DRAMs are not programmable,

it is recommended that all designs meet the etch length specifications and employ

DIMMs that meet the composite specification.

It is possible that alternate values may give higher performance from 50 ns DRAM.

The minimum CAS cycle with this programming is 26.5 ns (13.25 ns CAS assertion)

at 300 Mhz.

Table 18-17 Mem_Control1 hexadecimal values as a function of CPU frequency

CPU Frequency in
MHz

SME10402

2. Excepting the 334 to 360 MHz range, SME1040 programming for 50 and 60 ns DRAMs is currently
the same. Either DRAM rating can be used with the same performance.

SME14303

3. Speeds above 440 MHz have not been tested.

60 ns DRAM 50 ns DRAM 60 ns DRAM 50 ns DRAM

480 5E28.25D3 4E69.AF93

450 to 479 544E.B9DA 4E69.A792

401 to 449 544C.B9DD 410A.AD54

361 to 400 0C4B.2794 0005.92CB

334 to 360 0C4A.AB14 0645.9ACB 0C4A.AB14 0645.9ACB

271 to 333 0645.9ACB 0645.9ACB – –

225 to 270 0626.168A 0626.168A – –

167 to 224 3800.8241 3800.8241 – –

125 to 166 3E00.8000 3E00.8000 – –

0-1
1

1. This programming is included for emulation. The PLLs should be bypassed, and an external means
of supplying DRAM refresh should be provided.

3D00.0000 5D00.0000 – –
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Figure 18-1 Mem_Control1 Register Bit Allocation

Initialization of the Mem_Control registers should be performed in accordance with

the probing algorithm described in Section A.10, Memory Probing and Initialization on

page 383.

Note – The Mem_Control register must be initialized before any memory operation,

including refresh. Before modifying the register, software must complete and inhibit

all memory references and disable refresh. Wait 100 clock periods after disabling

refresh to guarantee completion of any refresh in progress.

18.5 UPA Configuration Register
The UPA_CONFIG register can be accessed at ASI 0x4A, VA==0. This is a 64-bit

register; non-64-bit aligned accesses cause a mem_address_not_aligned trap.

Much of the UltraSPARC-I and UltraSPARC-II functionality in this register is

removed.

UltraSPARC IIi uses a register in the Memory Control Unit to restrict the number of

outstanding UP64S slave requests, instead of this register.

The new ELIM field is copied from UltraSPARC-II.

Figure 18-2 UPA_CONFIG Register Format

7 323
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ARDC

CSR CASRW RCD

3

3

2 1 0

CP

2 01

RP RAS RSCCASRW
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ELIM: This field can be used to zero upper bits of the E-cache tag address, if more

address pins are used on the tag RAM than necessary. It can also be used to force the

use of a smaller E-cache size than is supplied with the UltraSPARC IIi system.

Resets to 000. Must be set to a size not bigger than the E-cache data SRAMs

provide, otherwise incorrect E-cache operation will result.

000 has no effect on the E-cache tag address.

111 and 110 zero the 3 MSBs to create a 256-kilobyte E-cache, regardless of the

SRAM size or connections to the E-tag.

101 allows a 512-kilobyte E-cache, if the SRAMs used are sized appropriately

Otherwise, the E-cache is the size allowed by the SRAMs.

100 allows a 1-Mbyte E-cache

011 allows a 2-Mbyte E-cache, the largest supported by UltraSPARC IIi

Behavior for other encodings is Reserved.

PCON[7:0]: Unused on UltraSPARC IIi; Read as 0

MID[4:0]: Module (processor) ID register; Read as 0

PCAP[16:0]: Read as 0 on UltraSPARC IIi

Resets are described more fully in Section 17.
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CHAPTER 19

UltraSPARC IIi PCI Control and
Status

19.1 Terms and Abbreviations Used
R -Read only

R0 -Read zero always

W -Write only

R/W -Read / Write

R/W1C -Read / Write with 1 to clear

In this section, unless otherwise noted, all references to UltraSPARC IIi and its

registers refer to UltraSPARC IIi’s functional IO, as opposed to the UltraSPARC IIi

core. The term UltraSPARC IIi IO is sometimes used to emphasize this point.

Caution – Registers that are designated write only may be read, but the data

returned is undefined. and no error is reported for the access. Software should never

rely on the value returned. Writes to read only registers also have no effect with no

error reported.
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19.2 Access Restrictions
Register accesses to UltraSPARC IIi IO can be in any size from one byte to 8 bytes.

Sizes and locations for the registers are given in the following sections.

Reads of any size up to 8 bytes to any register are supported regardless of whether

reads of that size makes sense. Writes of any size up to 8 bytes are also supported

regardless of whether writes of that size makes sense. Writes of any size may corrupt

unwritten bits in the register (that is, writes may result in all 8 bytes being written

regardless of the indicated write size).

Software must ensure that only the proper sized accesses are used. No hardware

checking is performed. Block (64 byte) access to UltraSPARC IIi IO registers cause a

PCI or UPA64S transaction to an unspecified address.

Misaligned access due to not correctly setting the “E” bit in the TTE also yields

unpredictable results.

19.3 PCI Bus Module Registers
These registers control aspects of UltraSPARC IIi’s PCI operations that are not

defined by the PCI specification. The registers defined by the PCI specification are

listed in Table 19-12 on page 289.

Table 19-1 PBM Registers

Register PA Access Size

PCI Control/Status Register 0x1FE.0000.2000 8 bytes

PCI PIO Write AFSR 0x1FE.0000.2010 8 bytes

PCI PIO Write AFAR 0x1FE.0000.2018 8 bytes

PCI Diagnostic Register 0x1FE.0000.2020 8 bytes

PCI Target Address Space Register 0x1FE.0000.2028 8 bytes

PCI DMA Write Synchronization Register 0x1FE.0000.1C20 8 bytes

PIO Data Buffer Diagnostics Access 0x1FE.0000.5000 -

0x1FE.0000.5038
8 bytes

DMA Data Buffer Diagnostics Access 0x1FE.0000.5100 -

0x1FE.0000.5138
8 bytes

DMA Data Buffer Diagnostics Access (72:64) 0x1FE.0000.51C0 8 bytes
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Compatibility Note – APB has a similar additional state for each of its PCI busses.

See the APB User’s Manual for details.

Note – The bit definitions that follow assume “big-endian” type accesses.

19.3.0.1 PCI Control/Status Register

Table 19-2 PCI Control and Status Register

Field Bits Description
POR
state

RW

Reserved 63:37 Reserved, read as 0 0 R0

PCI_MRLM_EN 36 1 = enable the generation of PCI Memory Read

Line for Block loads, and Memory Read Multiple

for 8 byte loads and noncacheable instruction

fetch.

0 = force use of PCI Memory Read for all PIO

reads.

1 provides a performance benefit due to APB

prefetch capability for these commands

0 RW

Reserved 35 Read as 0 0 R0

PCI_SERR 34
Set when SERR# signal is asserted on the PCI bus

0 R/

W1C

Reserved 33:22 Reserved, Read as 0, 0 R0

ARB_PARK 21 PCI bus arbitration parking enable.

0 = UltraSPARC IIi parks when idle

1 = previous bus owner parked (including

UltraSPARC IIi)

0 RW

CPU_PRIO
1

20 UltraSPARC IIi arbitration priority

0 = no extra priority for CPU

1 = CPU will be granted every other bus cycle if

requested.

0 RW

ARB_PRIO
1

19:16 Slot arbitration priority (1 bit per slot)

0 = no extra priority

1 = slot will be granted every other bus cycle if

requested.

0 RW

Reserved 15:9 Reserved, read as 0. 0 R0

ERRINT_EN 8 Enable PCI error interrupt.

0 = PCI error interrupt disabled

1 = PCI error interrupt enabled

0 RW
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Recommended value is 0x10.0020.0101 for systems, using APB:

■ PCI_MRLM_EN==1

■ PCI_SERR==0

■ ARB_PARK==1

■ CPU_PRIO=0

■ ARB_PRIO=0

■ ERRINT_EN=1

■ RETRY_WAIT_EN=0

■ ARB_EN=1

19.3.0.2 PCI PIO Write Asynchronous Fault Status/Address Registers

The PCI PIO Write AFSR/AFARs record error information related to PIO writes to

PCI slave devices. Only asynchronous errors reported through interrupts are

recorded in these registers. Asynchronous errors include any PIO write access

terminated by Master Abort, Target Abort, or excessive retries, as well as any PIO

write during which a parity error was signaled on the PCI bus.

Although status bits for Master Abort, Target Abort and Parity Error exist in the PCI

Configuration Registers for each PBM, they are duplicated in these registers to allow

software to identify the chronological order of multiple errors and to associate an

address with each one.

RETRY_WAIT_E

N

7 Two flow control mechanisms exist for DMA.

1 = Retry if a prior DMA write is still completing.

0 = Wait if possible (some cases still retry because

of unavailability of address registers).

Because of the inability to provide fairness with

the retry protocol, overall system performance is

generally better with 0.

0 RW

Reserved 6:4 Reserved, read as 0. 0 R0

ARB_EN<3:0> 3:0 PCI arbitration enable. One independent bit for

each supported device on the bus.

0 = Bus requests from corresponding PCI device

are ignored

1 = Bus requests from corresponding PCI device

are honored.

0 RW

1. Software must ensure that at most one bit of {CPU_PRIO, ARB_PRIO[3:0]} is set to 1. The result of setting mul-
tiple bits is undefined and can potentially result in some PCI devices being unfairly starved.

Table 19-2 PCI Control and Status Register (Continued)

Field Bits Description
POR
state

RW
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This register contains primary error status bits <63:60> and secondary error status

bits <59:56>.Only one of the primary error status bits can be set at any time. Primary

error status can be set only when

■ None of the primary error conditions exists prior to this error or

■ A new error is detected at the same time as software is clearing the primary

error; “at the same time” means on coincident clock cycles. Setting takes

precedence over clearing.

Secondary bits are set whenever a primary bit is set. The secondary bits are

cumulative and always indicate that information has been lost because no address

information has been captured. Setting of the primary error bits is independent.

The AFAR and bits <47:37> of AFSR log the address and status of the primary PCI

PIO error. A new PCI PIO error is not logged into these bits until software clears the

primary error to make the AFAR and part of the AFSR available for logging the new

error.

An interrupt is generated whenever

■ a primary error is logged, and

■ the PBM Error Interrupt is enabled by its mapping register, and

■ ERRINT_EN is set in the PCI Control/Status Register

Table 19-3 PCI PIO Write AFSR

Field Bits Description
POR
state

RW

P_MA 63 Set if primary error detected is Master Abort 0 R/W1C

P_TA 62 Set if primary error detected is Target Abort 0 R/W1C

P_RTRY 61 Set if primary error detected is excessive retries 0 R/W1C

P_PERR 60 Set if primary error detected is parity error 0 R/W1C

S_MA 59 Set if secondary error detected is Master Abort 0 R/W1C

S_TA 58 Set if secondary error detected is Target Abort 0 R/W1C

S_RTRY 57 Set if secondary error detected is excessive retries 0 R/W1C

S_PERR 56 Set if secondary error detected is parity error 0 R/W1C

Reserved 55:48 Reserved, read as 0 0 R0

BYTEMASK 47:32
47:40 are always 0. 39:32 map identify the bytes

stored, modulo 8 bytes. Bit 32 is byte 0.
0 R

BLK 31 Set to 1 if failed primary transfer was a block write 0 R

Reserved 30:0 Reserved, read as 0 0 R0
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Note – The logged PA may point to the error PA + 4, if the PIO write is more than 4

bytes and the error is not on the last data beat of the PCI transaction.

19.3.0.3 PCI Diagnostic Register

19.3.0.4 PCI Target Address Space Register

The PCI Target Address Space Register selectively enables 512 MByte regions as

target PCI addresses for UltraSPARC IIi.

Table 19-4 PCI PIO Write AFAR

Field Bits Description POR state RW

Reserved 63:41 Reserved, read as 0. 0 R0

PA 40:2 Physical address of error transaction. Undefined R

0 1:0 Always zero 0 R0

Table 19-5 PCI Diagnostic Register

Field Bits Description
POR
state

RW

Reserved 63:7 Reserved, read as 0. 0 R0

DIS_RETRY 6 Disable retry limit.

When set to 1, UltraSPARC IIi does not abort PIO

operations after 512 retries, but continues indefinitely.

0 RW

Reserved 5:4 Reserved. 0 R0

I_PIO_A_PAR 3 Invert PIO address parity

0 = Correct parity asserted

1 = Incorrect parity asserted for all PCI PIO address

phases.

0 RW

I_PIO_D_PAR 2 Invert PIO data parity

0 = Correct parity asserted

1 = Incorrect parity asserted for all PCI PIO write data

phases.

0 RW

I_DMA_D_PAR 1 Invert DMA data parity

0 = Correct parity asserted

1 = Incorrect parity asserted for all PCI DMA read data

phases.

0 RW

LPBK_EN 0 Not supported. Read as 0 0 R0
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UltraSPARC IIi examines single-cycle PCI addresses and responds as a target if

address[31:28] select an enabled region. Dual-cycle addresses are not selectively

enabled as a target for UltraSPARC IIi. Only address[63:50]==0x3FFF indicates that

UltraSPARC IIi is the target.

Note that more than one region can be enabled, and holes are allowed. No other PCI

device should be enabled to respond to the UltraSPARC IIi target address space.

19.3.0.5 PCI DMA Write Synchronization Register

Normally, interrupt delivery to the UltraSPARC IIi core activates a Drain/Empty

protocol to APB, to guarantee that any DMA writes received by APB prior to the

interrupt arrival complete to memory. If another bus bridge exists behind APB, this

procedure is insufficient. Software must execute a PIO load to the far side of that bus

bridge,, to flush any of its posted DMA writes to APB, and then do a read of this

register to synchronize with the posted writes in APB.

Completion of the load instruction (with load-use dependency or MEMBAR)

signifies that synchronization is complete.

Table 19-6 PCI Target Address Space Register

Field Bits Description
POR
state

RW

Reserved 63:8 Reserved, read as 0. 0 R0

EF_enable 7 Respond to 0xE000.0000-0xFFFF.FFFF 0 RW

CD_enable 6 Respond to 0xC000.0000-0xDFFF.FFFF 0 RW

AB_enable 5 Respond to 0xA000.0000-0xBFFF.FFFF 0 RW

89_enable 4 Respond to 0x8000.0000-0x9FFF.FFFF 0 RW

67_enable 3 Respond to 0x6000.0000-0x7FFF.FFFF 0 RW

45_enable 2 Respond to 0x4000.0000-0x5FFF.FFFF 0 RW

23_enable 1 Respond to 0x2000.0000-0x3FFF.FFFF 0 RW

01_enable 0 Respond to 0x0000.0000-0x1FFF.FFFF 0 RW

Table 19-7 PCI DMA Write Synchronization Register

Field Bits Description RW

Reserved 63:0 Reserved, read as 0. R0
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19.3.0.6 PIO Data Buffer Diagnostic Access

The PIO R/W Data Buffer Diagnostics Access provides direct PIO accesses to 8

entries of PIO data RAM.

Note – Generally, usage must be a Write then a Read of a single entry. The Write

uses a PIO Data Buffer entry, so it is not possible to write all entries then read all

entries.

19.3.0.7 DMA Data Buffer Diagnostic Access

The DMA Data Buffer Diagnostics Access provides direct PIO accesses to 8 entries of

DMA data RAM.

The (72:64) register is loaded as a side-effect of every read of one of the previous

eight addresses. The data loaded is bits [72:64] of the relevant data buffer. On writes

to the previous eight addresses, the contents of this register is used to write bits

[72:64] of the relevant data buffer.

19.3.0.8 DMA Data Buffer Diagnostics Access

Table 19-8 PIO Data Buffer Diagnostics Access

Field Bits Description Type

Data 63:0 PIO read/write buffer data RW

Table 19-9 DMA Data Buffer Diagnostics Access

Field Bits Description Type

Data 63:0 DMA read/write buffer data RW

Table 19-10 DMA Data Buffer Diagnostics Access (72:64)

Field Bits Description Type

Data 63:8 Reserved. Undefined data when read. R

Data 7:0 DMA read/write buffer data RW
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19.3.1 PCI Configuration Space

The PBM contains a configuration header whose format is specified by the PCI

Specification. The registers in the configuration header are accessed through PCI

Configuration Address Space. The PBM is considered to be device 0 and function 0

on bus 0.

Note – The PCI Configuration Address Space is little-endian. When accessing

configuration space registers, software should take advantage of one of the SPARC

V9 little-endian support mechanisms to get proper byte ordering. These mechanisms

include little-endian ASIs or MMU support for marking pages little-endian. A load

or store instruction of the same size as the register, for example, a byte or a halfword,

should always be used.

The configuration header registers are defined by the PCI specification and PCI

System Design Guide and are listed in Table 19-12. Some of the registers are not

implemented in UltraSPARC IIi – indicated by shading in the table. The rule used is

that any optional register for which equivalent information exists elsewhere is not

implemented.

Table 19-11 PBM PCI Configuration Space

Register PA

PBM Configuration Space.

(Bus 0, Device 0, Function 0)

0x1FE.0100.0000 -

0x1FE.0100.00FF

Table 19-12 Configuration Space Header Summary

Register PA[40:0] Size

Required PCI Device Configuration Header:

Vendor ID 0x1FE.0100.0000 2 bytes

Device ID 0x1FE.0100.0002 2 bytes

Command 0x1FE.0100.0004 2 bytes

Status 0x1FE.0100.0006 2 bytes

Revision ID 0x1FE.0100.0008 1 byte

Programming I/F Code 0x1FE.0100.0009 1 byte

Sub-class Code 0x1FE.0100.000A 1 byte

Base Class Code 0x1FE.0100.000B 1 byte

Cache Line Size 0x1FE.0100.000C 1 byte

Latency Timer 0x1FE.0100.000D 1 byte
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Note – Table 19-12 lists the logical size for each register but PIO access to the

registers can be in any size from 1 to 8 bytes.

19.3.1.1 PCI Configuration Space Vendor ID

Read only; VendorID<15:0> = 0x108E

Header Type 0x1FE.0100.000E 1 byte

BIST 0x1FE.0100.000F 1 byte

Base Address 0x1FE.0100.0010-

0x1FE.0100.0027

Varies

Reserved 0x1FE.0100.0028-

0x1FE.0100.002F

n/a

Expansion ROM 0x1FE.0100.0030 4 bytes

Reserved 0x1FE.0100.0034-

0x1FE.0100.003B

n/a

Interrupt Line 0x1FE.0100.003C 1 byte

Interrupt Pin 0x1FE.0100.003D 1 byte

MIN_GNT 0x1FE.0100.003E 1 byte

MAX_LAT 0x1FE.0100.003F 1 byte

Optional Bridge Configuration Header:

Bus Number 0x1FE.0100.0040 1 byte

Subordinate Bus Number 0x1FE.0100.0041 1 byte

Reserved 0x1FE.0100.0042-

0x1FE.0100.00FF

n/a

Disconnect Counter Unspecified 1 byte

Bridge Command/Status Unspecified 4 bytes

Bridge Memory Base Address Unspecified 4 bytes

Bridge Memory Limit Address Unspecified 4 bytes

DOS Read Attributes Unspecified 2 bytes

DOS Write Attributes Unspecified 2 bytes

Bridge I/O Base Address Unspecified 2 bytes

Bridge I/O Limit Address Unspecified 2 bytes

Table 19-12 Configuration Space Header Summary (Continued)

Register PA[40:0] Size
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19.3.1.2 PCI Configuration Space Device ID

Read only; DeviceID<15:0> = 0xA000

Compatibility Note – This device ID is different from that of prior PCI-based

UltraSPARC systems.

19.3.1.3 PCI Configuration Space Command Register

Table 19-13 Command Register

Field Bits Description
POR
state

RW

Reserved 15:10 Reserved, read as 0. 0 R0

FAST_EN 9 Enable fast back-to-back cycles to different

targets.

Hardwired to 0 (disabled).

0 R0

SERR_EN 8 Enable driving of SERR# pin. 0 RW

WAIT 7 Enable use of address/data stepping

Hardwired to 0 (disabled).

0 R0

PER 6 Enable reporting of parity errors 0 RW

VGA 5 Enable VGA palette snooping

Hardwired to 0 (disabled).

0 R0

MWI 4 Enables use of Memory Write & Invalidate

Hardwired to 0 (disabled).

0 R0

SPCL 3 Enables monitoring of special cycles

Hardwired to 0 (disabled).

0 R0

MSTR 2 Enables ability to be bus master

Hardwired to 1 (enabled).

1 R1

MEM 1 Enables response to PCI MEM cycles

Hardwired to 1 (enabled).

1 R1

IO 0 Enables response to PCI I/O cycles.

Hardwired to 0 (disabled).

0 R0
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19.3.1.4 PCI Configuration Space Status Register

19.3.1.5 PCI Configuration Space Revision ID Register

Read only; RevisionID<7:0> = 0x00; this register always reads as 0

19.3.1.6 PCI Configuration Space Programming I/F Code Register

Read only; ProgrammingIFCode<7:0> = 0x00

19.3.1.7 PCI Configuration Space Sub-class Code Register

Read only; SubclassCode<7:0> = 0x00 (specifies host bridge device)

Table 19-14 Status Register

Field Bits Description
POR
state

RW

DPE 15 Set if PBM detects a parity error 0 R/W1C

SSE 14 Set if PBM signalled a system error.

(detects address parity error).

0 R/W1C

RMA 13 Set if PBM receives a master-abort 0 R/W1C

RTA 12 Set if PBM receives a target-abort 0 R/W1C

STA 11 Set if PBM generates target-abort 0 R/W1C

DVSL 10:9 Timing of DEVSEL#.

Hardwired to 01 (medium speed response)

1 R01

DPD 8 Set when parity error occurs while PBM is

bus master, if PER in command register also

set.

0 R/W1C

FASTCAP 7 Indicates ability to accept fast back-to-back

cycles as target, when the back-to-back

transactions are not to the same target.

Hardwired to 1 (allowed)

1 R1

UDF_SUPPORT 6 User Definable Feature Support

Hardwired to 0 (no user definable features)

0 R0

66MHZ_CAPABLE 5 Indicates ability to run at 66MHz clock

speed. Hardwired to 1 (66MHz capable) for

PBM.

1 R1

Reserved 4:0 Reserved, read as 0 0 R0
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19.3.1.8 PCI Configuration Space Base Class Code Register

Read only; BaseClassCode<7:0> = 0x06 (specifies bridge device)

19.3.1.9 PCI Configuration Space Latency Timer Register

This 8-bit read/write register specifies the value of the latency timer for the PBM as

a bus master. Only the top five bits are implemented, giving a timer granularity of 8

PCI clocks. The bottom three bits read as 0 and should be written as 0. The

maximum PIO transfer is 64 bytes, so the latency timer may apply for transfers that

insert many wait states to slow targets.

Compatibility Note – A value of 0 means there is no latency timeout.

19.3.1.10 PCI Configuration Space Header Type Register

Table 19-15 Latency Timer Register

Field Bits Description
POR
state

RW

LAT_TMR_HI 7:3 Programmable portion of latency timer. 0 RW

LAT_TMR_LO 2:0 Read only portion of latency timer.

Hardwired to 0.

0 R0

Table 19-16 Header Type Register

Field Bits Description RW

MULTI_FUNC 7 Indicates whether the PBM is a multi-function

PCI device.

Hardwired to 0 (not multi-function).

R0

HDR_TYPE 6:0 Defines layout of configuration header bytes

0x10-0x3F.

Hardwired to 0 (the only defined value in PCI

specification)

R0
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19.3.1.11 PCI Configuration Space Bus Number

This 8-bit read/write register specifies the number of the PCI bus on which this

bridge is found. Although programmable, it is not used. UltraSPARC IIi always

assumes it is on bus 0 when decoding a PIO PA to determine whether to create Type

0 or Type 1 configuration cycles.

19.3.1.12 PCI Configuration Space Subordinate Bus Number

This 8-bit read/write register specifies the highest subordinate bus number beneath

this bridge. Although programmable, it has no effect on UltraSPARC IIi.

19.3.1.13 PCI Configuration Space Unimplemented Registers

The following registers are defined in the PCI Specification or PCI System Design

Guide, but are not implemented in UltraSPARC IIi’s PBM for the indicated reasons.

Cache Line Size The cache line size is fixed at 64-bytes.

BIST Built-In-Self-Test is not implemented in UltraSPARC IIi.

Base Address Registers The bridge has neither memory nor I/O space. Its

configuration space is accessible only from the host and is hard-mapped.

Interrupt Line, Interrupt Pin Do not apply; interrupt lines are handled by the RIC

ASIC.

Min_Gnt, Max_Lat There is no regular traffic pattern to programmed I/O. Values of

zero (true) indicate there are no stringent requirements.

Table 19-17 Bus Number Register

Field Bits Description
POR
state

RW

BUS 7:0 Bus number 0 RW

Table 19-18 Subordinate Bus Number Register

Field Bits Description
POR
state

RW

SUB_BUS 7:0 Highest subordinate bus number 0 RW
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19.3.2 IOMMU Registers

19.3.2.1 IOMMU Control Register

The Control Register affects diagnostic mode, IOMMU TSB size and page size.

Table 19-19 IOMMU Registers

Register Offset Access Size

IOMMU Control Register 0x1FE.0000.0200 8 bytes

IOMMU TSB Base Address Reg. 0x1FE.0000.0208 8 bytes

IOMMU Flush Register 0x1FE.0000.0210 8 bytes

IOMMU Virtual Addr. Diag. Reg. 0x1FE.0000.A400 8 bytes

IOMMU Tag Compare Diag. 0x1FE.0000.A408 8 bytes

IOMMU LRU Queue Diag. 0x1FE.0000.A500 -

0x1FE.0000.A57F

8 bytes

IOMMU Tag Diag. 0x1FE.0000.A580 -

0x1FE.0000.A5FF

8 bytes

IOMMU Data RAM Diag. 0x1FE.0000.A600 -

0x1FE.0000.A67F

8 bytes

Table 19-20 IOMMU Control Register

Field Bits Description
POR
state

Type

RESERVED 63:24 Reserved, read as zeros 0 R0

ERRSTS 26:25 If ERR is set, indicates the type of error logged in

the IOMMU state.

0 R/

W1C

ERR 24 Set when IOMMU is written with an ERR 0 R/

W1C

LRU_LCKEN 23 LRU Lock Enable Bit. When set, only the IOMMU

entry specified by the Lock Pointer can be replaced.

0 RW

LRU_LCKPTR 22:19 LRU Lock Pointer. Works in conjunction with the

LRU Lock Enable bit to limit IOMMU replacement

to a single entry.

RW RW

TSB_SIZE 18:16 IOMMU TSB table size. Number of 8 byte entries:

0=1K, 1=2K, 2=4K, 3=8K,

4=16K, 5=32K, 6=64K, 7=128K.

0 RW

RESERVED 15:3 Reserved, read as zeros 0 R0
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Compatibility Note – ERR and ERRSTS are not present in prior PCI-based

UltraSPARC systems.

Address space size and TSB offset are affected by TSB_SIZE and TBW_SIZE as

shown in Table 19-21.

TBW_SIZE
1

2 Assumed page size during IOMMU TSB lookup.

0 = 8K page

1 = 64K page

0 RW

MMU_DE 1 Diagnostic mode enable, when set it enables the

diagnostic mode. See description of IOMMU tag

diagnostics.

0 RW

MMU_EN 0 IOMMU enable bit, when set it enables the

translation.

0 RW

1. If DMA mappings are always 8K pages, or mixed 8K and 64K pages, set this bit to ‘0’ so that the index is con-
structed for 8K lookup. If all DMA mappings are to 64K pages, set this bit to ‘1’ so that the index is based on
64K pages. When this bit is ‘0’, a 64K mapping should be placed in all eight TSB entries in which it is indexed.

Table 19-21 Address Space Size And Base Address Determination.

TBW_SIZE == 0 TBW_SIZE == 1

TSB_SIZE VA Space Size TSB Index VA Space Size TSB_Index

0 8 MB VA<22:13>,000 64 MB VA<25:16>,000

1 16 MB VA<23:13>.000 128 MB VA<26:16>,000

2 32 MB VA<24:13>,000 256 MB VA<27:16>,000

3 64 MB VA<25:13>,000 512 MB VA<28:16>,000

4 128 MB VA<26:13>,000 1 GB VA<29:16>,000

5 256 MB VA<27:13>,000 2 GB VA<30:16>,000

6 512 MB VA<28:13>,000 not allowed
1

1. Hardware does not prevent illegal combinations from being programmed. If an illegal combination
is programmed into the IOMMU, all translation requests will be rejected as invalid.

--

7 1GB VA<29:13>,000 not allowed
1

--

Table 19-20 IOMMU Control Register (Continued)

Field Bits Description
POR
state

Type
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IOMMU locking

For diagnostics and debugging, the IOMMU has the capability of restricting itself to

use just a single entry of the IOMMU. This is controlled by the LRU_LCKEN and

LRU_LCKPTR fields of the IOMMU Control Register. To properly turn locking on

the following sequence is required:

■ Set MMU_EN to 0

■ Set LRU_LCKEN to 1 (must be a separate PIO write)

■ Set LRU_LCKPTR to desired value (may be combined with previous PIO)

■ Set MME_DE to 1 (may be combined with previous PIO)

■ Invalidate all IOMMU entries

■ Set MMU_EN to 1 and MMU_DE to 0.

To unlock the IOMMU:

■ Set LRU_LCKEN to 0

19.3.2.2 IOMMU TSB Base Address Register

The IOMMU TSB Base Address Register contains the pointer to the first-entry of the

IOMMU TSB table. Together with part of the virtual address it uniquely identifies

the address from which hardware should fetch the TTE from the IOMMU TSB table.

The IOMMU TSB table has to be aligned on an 8K boundary. The lower order 13 bits

are assumed to be 0x0 during IOMMU TSB table lookup. Tables larger than 8K bytes

are only constrained to be on 8K boundaries rather than having to be size aligned.

19.3.2.3 Flush Address Register

This is a write-only pseudo-register to allow software perform address-based flush

of a mapping from IOMMU. The data written to this address contains the page

number to be flushed. A IOMMU entry with matched page number is invalidated.

Table 19-22 IOMMU TSB Base Address Register

Field Bits Description Type

RESERVED 63:41 Reserved, read as zeros R0

ZERO 40:13 Bits 40:34 of the TSB physical address are always

zero

R0

TSB_BASE 33:13 Bits [33:13] of the TSB physical address.

33:30 should always be zero, since only 1-Gbyte

of physical memory is supported.

RW

RESERVED 12:0 Reserved, read as zeros R0
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Note – No hardware mechanisms exist to solve the potential race between a DMA

translation needing a IOMMU entry and the write to the Flush Address Register

intended to flush that entry. Software must manage the interlock by guaranteeing

that no DMA transfers can involve the page being flushed.

19.3.2.4 IOMMU TAG Diagnostics Access

The IOMMU Tag Diagnostics Access provides a diagnostics path to the 16-entry

IOMMU Tag when the MMU_DE bit in the IOMMU Control Register is turned on.

Note – Diagnostic accesses should ensure that multiple match conditions are not

generated. The result of multiple matches is unpredictable.

Table 19-23 Flush Address Register

Field Bits Description Type

RESERVED 63:32 Reserved, write has no effect W

FLUSH_VPN 31:13 31:16 = virtual page number if 64K page; bits

15:13 are don’t care
31:13 = virtual page number if 8K page

W

RESERVED 12:0 Reserved, write has no effect W

Table 19-24 IOMMU Tag Diagnostics Access

Field Bits Description Type

RESERVED 63:25 Reserved, read as zeros R0

ERRSTS 24:23 Error Status:

00 = Reserved

01 = Invalid Error

10 = Reserved

11 = UE Error on TTE read

RW

ERR 22 When set to 1, indicates that there is an error

associated with this IOMMU entry. The specific

error is indicated by the ERRSTS field.

RW

W 21 Writable bit. when set, the page mapped by the

IOMMU has write permission granted.

RW

S 20 Stream bit. (unused) RW

SIZE 19 Page Size, 0=8K and 1=64K. RW

VPN 18:0 VPN[31:13] RW
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Compatibility Note – Unlike prior PCI-based UltraSPARC systems, UltraSPARC IIi

arbitrates between IOMMU CSR access and DMA access. This property may allow

software more flexibility.

19.3.2.5 IOMMU Data RAM Diagnostic Access

The IOMMU Data Diagnostics Access provides direct PIO accesses to 16 entries of

IOMMU Data RAM. The MMU_DE bit in the IOMMU Control Register must be

turned on to perform the accesses. Table 19-25 shows the information included in the

returned data.

Compatibility Note – The Used bit does not exist in prior PCI-based UltraSPARC

systems, and is used by the pseudo-LRU replacement algorithm.

19.3.2.6 Virtual Address Diagnostic Register

This register is used to set up the virtual address for the IOMMU compare

diagnostic. The virtual address is written to this register and enables the compare

results to be read from the IOMMU.

Table 19-25 IOMMU Data RAM Diagnostics Access

Field Bits Description Type

RESERVED 63:31 Reserved, read as zeros R0

V 30 Valid bit, when set, the TLB data field is

meaningful

RW

U 29 Used bit. Affects the LRU replacement. RW

C 28 Cacheable bit. 1=Cacheable access, 0=Non-

cacheable.

RW

PA[40:34] 27:21 Not stored. All 1’s if Noncacheable, All 0’s if

Cacheable.

R

PA[33:13] 20:0 21-bit Physical Page Number RW
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19.3.2.7 IOMMU Tag Compare Diagnostic Access

Note – The IOMMU Tag Compare Diagnostics Access provides the diagnostics path

to the 16-entry IOMMU Tag Comparator when the MMU_DE bit in the IOMMU

Control Register is turned on. Bit 0 represents the comparison result of the first

IOMMU Tag entry, and bit 15 represents the last.

19.3.3 Interrupt Registers

Interrupts load the Interrupt Vector Data registers with the data shown in

Figure 19-1. See Section 11.10.4, Incoming Interrupt Vector Data<2:0> on page 120.

.

Figure 19-1 Interrupt Vector Data Registers Contents

Table 19-26 Virtual Address Diagnostic Register

Field Bits Description Type

RESERVED 63:32 Reserved, read as 0. R0

VPN 31:13 Virtual page number. R/W

RESERVED 12:00 Reserved, read as 0. R0

Table 19-27 IOMMU Tag Comparator Diagnostics Access

Field Bits Description Type

RESERVED 63:16 Reserved, read as zeros R0

COMP 15:0 IOMMU tag comparator output for each entry. R

0

63 1110

0 INR

0

Interrupt Rcv Data 0:

 1:

2:

0
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INR is an 11 bit interrupt number that indicates the source of the interrupt. Where

possible, the interrupt is precise (that is, it points to only one interrupt source). This

singularity permits the dispatch of the proper interrupt service routine without any

register polling.

Bits [11] through [63]of the first word are guaranteed to be 0 for all UltraSPARC IIi

IO generated interrupts. Words 1 and 2 of the interrupt packet are also guaranteed to

be 0.

Each interrupt source has a mapping register, containing the INR value used for the

interrupt. The INR has two parts: IGN and INO. The Interrupt Group Number (IGN)

is the upper 5 bits of the INR, and for most interrupts is 0x1f.

Compatibility Note – The IGN on UltraSPARC IIi is not programmable for the

Partial Interrupt Mapping Registers, and is fixed to 0x1f.

The lower 6 bits of the INR are the Interrupt Number Offset (INO). This value is

hardcoded by UltraSPARC IIi for each interrupt source, as shown in Table 19-28, and

is read-only in the mapping register. For PCI slot interrupt mapping registers,

INO<1:0> is always read as 00.

For Graphics (FFB) and UPA64S expansion interrupts, the full 11-bit INR field is

writable, and under software control.

Table 19-28 Interrupt Number Offset Assignments

INO (binary) INO (hex) Interrupt Source

0bssnn 00-1F PCI Bus b Slot ss Interrupt nn

b = 0 for bus A, 1 for bus B

ss = 00-11 for bus A or B slots,

nn = 00-11 for INTA#,INTB#,INTC#,INTD#

100000 20 SCSI

100001 21 Ethernet

100010 22 Parallel port

100011 23 Audio Record

100100 24 Audio Playback

100101 25 Power Fail

100110 26 Keyboard/mouse/serial

100111 27 Floppy

101000 28 Reserved (spare HW int)

101001 29 Keyboard

101010 2A Mouse
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Each interrupt source has an associated state register that can be either of type

“level” or of type “pulse.”

In the level sensitive case, the state register has two bits and there are three valid

states: IDLE, RECEIVED, and PENDING.

■ IDLE: No interrupt in progress.

■ RECEIVED: An Interrupt has been detected and will be delivered to the processor

if the valid bit is set in the mapping register.

■ PENDING: Interrupt has been delivered to the UltraSPARC IIi core. Any

subsequent detection of the same interrupt is ignored until software resets the

state machine back to IDLE.

Software can set the state register for each level sensitive interrupt to any of these

states using the Clear Interrupt Registers.

In the pulse case, the state register consists of a single bit, with two states: IDLE and

RECEIVED. These states have the same meaning as those for the level sensitive case.

There is no PENDING state, so the state machine transitions from RECEIVED back

to IDLE when the interrupt is dispatched to a processor.

Diagnostic access is provided to allow software to read the state register for all

interrupt sources.

Compatibility Note – There is no RECEIVED state for DMA CE, DMA UE, or PCI

Error Interrupts. They cause their interrupt FSMs to go from the IDLE to the

PENDING state directly, when present and enabled.

101011 2B Serial

101100 2C Reserved

101101 2D Reserved

101110 2E DMA UE

101111 2F DMA CE

110000 30 PCI Bus Error

110001 31 Reserved

110010 32 Reserved

111111 3F Reserved

Table 19-28 Interrupt Number Offset Assignments (Continued)

INO (binary) INO (hex) Interrupt Source
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19.3.3.1 Partial Interrupt Mapping Registers

The offset of each partial Interrupt Mapping Register can be derived from the

associated INO. There are two cases:

PCI Interrupts: IMR address = 0x1FE.0000.0C00 + (INO & 0x3C) << 1

OBIO Interrupts:IMR address = 0x1FE.0000.1000 + (INO & 0x1F) << 3

Table 19-29 Partial Interrupt Mapping Registers

Register PA Access Size

PCI Bus A Slot 0 Int Mapping Reg 0x1FE.0000.0C00 8 bytes

PCI Bus A Slot 1 Int Mapping Reg 0x1FE.0000.0C08 8 bytes

PCI Bus A Slot 2 Int Mapping Reg 0x1FE.0000.0C10 8 bytes

PCI Bus A Slot 1 Int Mapping Reg 0x1FE.0000.0C18 8 bytes

PCI Bus B Slot 0 Int Mapping Reg 0x1FE.0000.0C20 8 bytes

PCI Bus B Slot 1 Int Mapping Reg 0x1FE.0000.0C28 8 bytes

PCI Bus B Slot 2 Int Mapping Reg 0x1FE.0000.0C30 8 bytes

PCI Bus B Slot 3 Int Mapping Reg 0x1FE.0000.0C38 8 bytes

SCSI Int Mapping Reg 0x1FE.0000.1000 8 bytes

Ethernet Int Mapping Reg 0x1FE.0000.1008 8 bytes

Parallel Port Int Mapping Reg 0x1FE.0000.1010 8 bytes

Audio Record Int Mapping Reg 0x1FE.0000.1018 8 bytes

Audio Playback Int Mapping Reg 0x1FE.0000.1020 8 bytes

Power Fail Int Mapping Reg 0x1FE.0000.1028 8 bytes

Kbd/mouse/serial Int Mapping Reg 0x1FE.0000.1030 8 bytes

Floppy Int Mapping Reg 0x1FE.0000.1038 8 bytes

Spare HW Int Mapping Reg 0x1FE.0000.1040 8 bytes

Keyboard Int Mapping Reg 0x1FE.0000.1048 8 bytes

Mouse Int Mapping Reg 0x1FE.0000.1050 8 bytes

Serial Int Mapping Reg 0x1FE.0000.1058 8 bytes

Reserved 0x1FE.0000.1060 8 bytes

Reserved 0x1FE.0000.1068 8 bytes

DMA UE Int Mapping Reg 0x1FE.0000.1070 8 bytes

DMA CE Int Mapping Reg 0x1FE.0000.1078 8 bytes

PCI Error Int Mapping Reg 0x1FE.0000.1080 8 bytes
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The format for each partial interrupt mapping register is shown in Table 19-30

Note that these registers have only 1 RW bit defined per address.

19.3.3.2 Full Interrupt Mapping Registers

There are only two full Interrupt Mapping Registers in UltraSPARC IIi. See

Table 19-31.

The format for the full Interrupt Mapping Registers, shown in Table 19-32, is the

same as that of the partial Interrupt Mapping Registers, except for the INR field.

Table 19-30 Format of Partial Interrupt Mapping Registers

Field Bits Description
POR
state

Type

Reserved 63:32 Reserved, read as 0 0 R0

V 31 Valid bit

When set to 0, interrupt will not be dispatched to

CPU. Has no other impact on interrupt state.

0 R/W

Reserved 30:11 Reserved, read as 0 0 R0

IGN 10:6 Read as 0x1f 0x1F R

INO 5:0 Interrupt Number Offset

The value of this field is hardwired for each

mapping register, as shown in Table 19-28

- R

Table 19-31 Full Interrupt Mapping Registers

Register PA Access Size

On board graphics Int Mapping Reg 0x1FE.0000.1098 and

0x1FE.0000.6000
1

1. Accesses to either of these addresses behave identically; in other words, the registers are double
mapped.

8 bytes

Expansion UPA64S Int Mapping Reg 0x1FE.0000.10A0 and

0x1FE.0000.8000

8 bytes
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19.3.3.3 Clear Interrupt Registers

The address of each Clear Interrupt Register can be derived from the associated

INO. There are two cases:

PCI Interrupts: CIR address = 0x1FE.0000.1400 + (INO & 0x1F) << 3

OBIO Interrupts: CIR address = 0x1FE.0000.1800 + (INO & 0x1F) << 3

The graphics and UPA expansion interrupts do not have associated Clear Interrupt

Registers because they are pulse type interrupts that are automatically cleared when

sent.

Table 19-32 Format of Full Interrupt Mapping Registers

Field Bits Description
POR
state

Type

Reservd 63:32 Reserved, read as 0 0 R0

V 31 Valid bit

When set to 0, interrupt will not be dispatched to

CPU. Has no other impact on interrupt state.

0 R/

W

Reservd 30:11 Reserved, read as 0 0 R0

INR 10:0 Interrupt Number - R/

W

Table 19-33 Clear Interrupt Pseudo Registers

Register PA Access Size

PCI Bus A Slot 0 Clear Int Regs 0x1FE.0000.1400 -

0x1FE.0000.1418

8 bytes

PCI Bus A Slot 1 Clear Int Regs 0x1FE.0000.1420 -

0x1FE.0000.1438

8 bytes

PCI Bus A Slot 2 Clear Int Regs 0x1FE.0000.1440 -

0x1FE.0000.1458

8 bytes

PCI Bus A Slot 3 Clear Int Regs 0x1FE.0000.1460 -

0x1FE.0000.1478

8 bytes

PCI Bus B Slot 0 Clear Int Regs 0x1FE.0000.1480 -

0x1FE.0000.1498

8 bytes

PCI Bus B Slot 1 Clear Int Regs 0x1FE.0000.14A0 -

0x1FE.0000.14B8

8 bytes

PCI Bus B Slot 2 Clear Int Regs 0x1FE.0000.14C0 -

0x1FE.0000.14D8

8 bytes
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One such register exists per interrupt source. The lower 2 bits of the data word

written to this register specify the operation as shown in Table 19-34. All other bits

should be written as 0 to guarantee future compatibility.

PCI Bus B Slot 3 Clear Int Regs 0x1FE.0000.14E0 -

0x1FE.0000.14F8

8 bytes

SCSI Clear Int Reg 0x1FE.0000.1800 8 bytes

Ethernet Clear Int Reg 0x1FE.0000.1808 8 bytes

Parallel Port Clear Int Reg 0x1FE.0000.1810 8 bytes

Audio Record Clear Int Reg 0x1FE.0000.1818 8 bytes

Audio Playback Clear Int Reg 0x1FE.0000.1820 8 bytes

Power Fail Clear Int Reg 0x1FE.0000.1828 8 bytes

Kbd/mouse/serial Clear Int Reg 0x1FE.0000.1830 8 bytes

Floppy Clear Int Reg 0x1FE.0000.1838 8 bytes

Spare HW Clear Int Reg 0x1FE.0000.1840 8 bytes

Keyboard Clear Int Reg 0x1FE.0000.1848 8 bytes

Mouse Clear Int Reg 0x1FE.0000.1850 8 bytes

Serial Clear Int Reg 0x1FE.0000.1858 8 bytes

Reserved 0x1FE.0000.1860 8 bytes

Reserved 0x1FE.0000.1868 8 bytes

DMA UE Clear Int Reg 0x1FE.0000.1870 8 bytes

DMA CE Clear Int Reg 0x1FE.0000.1878 8 bytes

PCI Async Error Clear Int Reg 0x1FE.0000.1880 8 bytes

Table 19-34 Clear Interrupt Register

Field Bits Description Type

RESERVED 63:02 Reserved. W

STATE 01:00 State bits for the interrupt state machine

associated with this interrupt. The following

values may be written:

00 - Set state machine to IDLE state

01 - Set state machine to RECEIVED state

10 - Reserved

11 - Set state machine to PENDING state

W

Table 19-33 Clear Interrupt Pseudo Registers (Continued)

Register PA Access Size
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Note – The Interrupt Clear Registers are write only. To determine the current

interrupt state, use the interrupt state diagnostic registers instead.

19.3.3.4 Interrupt State Diagnostic Registers

The Interrupt State Diagnostic Register bit assignments are shown in Table 19-36 and

in Table 19-37.

The locations of each set of state bits can also be derived from the associated INO

(except for Graphics and UPA expansion interrupts, for which the INO is fully

programmable):

Code Example 19-1 State Bit Locations from INO

The Graphics and UPA64S expansion interrupts are pulse type interrupts; all others

are level type interrupts.

Table 19-35 Interrupt State Diagnostic Registers

Register PA Access Size
POR
state

Type

PCI Int State Diag Reg 0x1FE.0000.A800 8 bytes 0 R

OBIO and Misc Int State Diag Reg 0x1FE.0000.A808 8 bytes 0 R

Register: if (INO & 0x20) then OBIO Int Diag Reg else PCI Int Diag Reg

Bits: Int Diag Reg [ ((INO & 0x1F)<<1)+1 : ((INO & 0x1F)<<1) ]

Table 19-36 Level Interrupt State Assignment

Field Description

INT_STATE<1:0> 00 - IDLE state; no interrupt received or pending.

01 - RECEIVED state; interrupt detected, but not dispatched.

11 - PENDING state; interrupt is received and dispatched.

10 - Illegal state.

Table 19-37 Pulse Interrupt State Assignment

Field Description

INT_STATE<0> 0 - IDLE state; no interrupt received

1 - RECEIVED state; interrupt detected, but not dispatched.
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Definitions of the registers are shown in a general way in the table below. Refer to

Code Example 19-1 above for specific bit positions. As an example, the bit position for

PCI Bus B Slot 1, INTB# is <43:42>.

.

Table 19-38 PCI Interrupt State Diagnostic Register Definition

Bits Description

7:0 PCI Bus A Slot 0 INT# DCBA

15:8 PCI Bus A Slot 1 INT# DCBA

23:16 PCI Bus A Slot 2 INT# DCBA

31:24 PCI Bus A Slot 3 INT# DCBA

39:32 PCI Bus B Slot 0 INT# DCBA

47:40 PCI Bus B Slot 1 INT# DCBA

55:48 PCI Bus B Slot 2 INT# DCBA

63:56 PCI Bus B Slot 3 INT# DCBA

Table 19-39 OBIO and Misc Int Diag Reg Definition

Bits Description

1:0 SCSI Int State

3:2 Ethernet Int State

5:4 Parallel Port Int State

7:6 Audio Record Int State

9:8 Audio Playback Int State

11:10 Power Fail Int State

13:12 Kbd/mouse/serial Int State

15:14 Floppy Int State

17:16 Spare HW Int State

19:18 Keyboard Int State

21:20 Mouse Int State

23:22 Serial Int State

29:28 DMA UE Int State

31:30 DMA CE Int State

33:32 PCI Error Int State

35:34 Reserved (return 0 on read)

37:36 Reserved (return 0 on read)
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Compatibility Note – Note the “Graphics Int State” and Expansion UPA64S Int

State” bits are moved from bits 38 and 39 (position in prior UltraSPARC systems) to

bits 34 and 35 respectively.

19.3.4 PCI INT_ACK Generation

UltraSPARC IIi can generate an interrupt acknowledge in response to a PCI

Interrupt.

Name: ASI_INT_ACK (Privileged)

ASI: 0x7F, VA<63:32>==0x1FF VA<31:0>== (any address to PCI)

,

BUSY: This bit is set when an interrupt vector is received.

DATA<7:0>: Data returned on PCI byte 0 during INT_ACK cycle.

Non-privileged access to this register causes a privileged_action trap.

The address generated on the PCI bus is equal to VA[31:0])

VA[23:21] should be set to specific values when the APB MAP_INTACK_A/B

functions are enabled, to control the forwarding of the INT_ACK to the A or B bus.

The particular VA[23:21] depends on the way IO space is divided, since the same

mapping register is used in APB for IO space, and MAP_INTACK_A/B forwarding.

VA[23:21] are don't care if the APB ROUTE_INTACK_A/B functions are used to

hardwire the INT_ACK forwarding. All other VA[31:24],[20:0] can be random values;

zeros are recommended.

34 Graphics Int State

35 Expansion UPA64S Int State

63:36 Reserved (return 0 on read)

Table 19-40 PCI INT_ACK Register Format

Bits Field Use RW

<7:0> DATA<7:0> INT_ACK data from PCI R

Table 19-39 OBIO and Misc Int Diag Reg Definition (Continued)

Bits Description
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If software does anything other than a byte/halfword/word load with

ASI_INT_ACK, UltraSPARC IIi/APB operation is undefined. A byte load should be

correct for most systems.

All error logging and events for PCI loads apply equally to this INT_ACK cycle

generated by UltraSPARC IIi.

19.4 PCI Address Space
PCI devices can be connected directly to the UltraSPARC IIi PCI bus.

UltraSPARC IIi can also be used with an external PCI bridge, the Advanced PCI

Bridge (APB), that can connect to separate PCI A and PCI B PCI buses.

UltraSPARC IIi support of multiple PCI buses includes interrupt management and

flexible address mapping.

APB provides a generalized address decode facility and a flexible target address

space definition for DMA. Both PCI A and B can each support four PCI devices.

There are no separate UltraSPARC IIi CSRs for the A and B buses created by APB

but only the single set of CSRs for the PCI bus connected to UltraSPARC IIi

19.4.1 PCI Address Space—PIO

Several regions of UltraSPARC IIi’s physical address space are used to access devices

on the PCI bus that it supports.

For the non-block transfers, any legal combination of bits in the bytemask may be set

(that is, arbitrary bytemasks for writes, aligned 1, 2, 4, 8 or 16 byte bytemasks for

reads), within the size restrictions listed below. The PCI byte enables generated by

UltraSPARC IIi are identical to those generated by the UltraSPARC core.

The PCI specification, version 2.1 requires AD[1:0] to point to the first byte enable

for I/O writes. This requirement is not met by UltraSPARC IIi during:

■ compression of byte or halfword stores (Ebit==0) or

■ use of the PSTORE instruction to generate random byte enables.

Generally, software should use only normal, non-compressed loads and stores to

I/O space, and UltraSPARC IIi meets the AD[1:0] requirement for those instructions.

Also note that UltraSPARC IIi can generate multiple data beat Configuration Read or

Writes.
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Note – All PCI address spaces use little-endian address byte ordering. Any accesses

made to a PCI address space should use one of the SPARC V9 little-endian support

mechanisms to get proper byte ordering. These mechanisms include little-endian

ASIs or MMU support for marking pages little-endian

19.4.1.1 PCI Configuration Space

PCI configuration cycles can be generated by UltraSPARC IIi in response to PIO

reads and writes to addresses in the PCI Configuration Space. UltraSPARC IIi

generates both Type 0 and Type 1 configuration cycles. Type 0 configuration cycles

are used to configure devices on the UltraSPARC IIi primary PCI bus, including

APB. Type 1 configuration cycles are used to configure devices on secondary PCI

busses via APB.

UltraSPARC IIi does not implement either of the two means of generating PCI

configuration cycles defined by the PCI Specification but instead uses the following

means.

An UltraSPARC IIi PIO causes a type 0 configuration cycle on the primary PCI bus if

PA[32:24] equals 0x001 and PA[23:16] (Bus Number) equals 0, and the Device

Number is not 0. A Device Number of 0 designates the PBM itself, and the

configuration cycle does not appear on the PCI bus.

Figure 19-2 shows how address bits 15:0 map to the PCI configuration cycle address.

Table 19-41 Physical Address Space to PCI Space Mappings

PCI Address Space PA[40:0]
CPU Commands
Supported

PCI Commands Generated

PCI Configuration

Space

0x1FE.0100.0000-

0x1FE.01FF.FFFF

NC read (any)

NC write (any)

Configuration Read

Configuration Write

(may also be Special Cycle)

PCI Bus I/O Space 0x1FE.0200.0000-

0x1FE.02FF.FFFF

NC read (any)

NC write (any)

I/O Read

I/O Write

Do not use 0x1FE.0300.0000-

0x1FE.FFFF.FFFF

May wrap to Configuration

or I/O Space behavior

PCI Bus Memory

Space

0x1FF.0000.0000-

0x1FF.FFFF.FFFF

NC read (4 byte)

NC read (8 byte)

NC Block read

NC write

NC Block write

NC Instruction fetch

Memory Read

Memory Read Multiple

Memory Read Line

Memory Write

Memory Write

Memory Read
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Figure 19-2 Type 0 Configuration Address Mapping

The UltraSPARC IIi PCI bus has no IDSEL# pins so device IDSEL# lines must be

resistively tied to individual AD[31:11] lines. It is recommended that slot 0 be device

1, tied to AD[12]; slot 1 be device 2; tied to AD[13], and so on.

Compatibility Note – The UltraSPARC IIi PCI bus is hardwired to Bus

Number == 0

A type 1 configuration cycle is generated when the bus number field of the

configuration space address is not zero ( that is, the UltraSPARC IIi Bus Number).

The type 1 configuration cycle address is constructed from the configuration space

address as shown in Figure 19-3.

Figure 19-3 Type 1 Configuration Address Mapping
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Note – APB looks at type 0 and type 1 configuration cycle addresses, and either

routes type 1 transactions to one of the secondary busses, or to its own configuration

space. See the APB User’s Manual for details.

Compatibility Note – UltraSPARC IIi aliases Functions 1-7 of its PCI Configuration

space to its Function 0 PCI Configuration space. (Bus 0, Device 0). The PCI

specification requires that zeros be returned and stores ignored. Since this address

space is only accessible to UltraSPARC IIi PIO instructions, specifically boot PROM

code, this aliasing should not be problematic because the boot PROM should never

reference the UltraSPARC IIi Function 1-7 addresses (see Type 0 Configuration Address
Mapping on page 312 for the address decode scheme).

19.4.1.2 PCI I/O Space

PCI I/O cycles are generated by UltraSPARC IIi in response to PIO reads and writes

to addresses in one of the PCI I/O Spaces (one for each bus). For each access to I/O

space, an I/O Read or I/O Write command is issued on the appropriate PCI bus. Bits

31:24 of the address on the PCI bus will be 0, and bits 23:0 will be a copy of physical

address bits 23:0.

Note – It is expected that all PCI resources will be mapped by software into PCI

Memory space, and not PCI I/O space. UltraSPARC IIi does provide a larger I/O

space than did prior PCI-based UltraSPARC systems, so that devices that do use I/O

space can be mapped to separate 8K pages for easier driver maintenance.

19.4.1.3 PCI Memory Space

PCI Memory cycles are generated by UltraSPARC IIi in response to PIO reads and

writes to addresses in one of the PCI Memory Spaces.

As a bus master, UltraSPARC IIi will never generate Dual-Address-Cycles; all PCI

addresses generated will be bits [31:0] of the 41 bit UltraSPARC IIi physical address.

The memory command used for the PCI transaction depends on the PIO transaction

type, as shown inTable 19-41.

For PCI transactions with multiple data phases, UltraSPARC IIi will always use

Linear Incrementing mode as defined by the PCI specification. Cache Line Toggle

Mode is not used.
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Compatibility Note – Unlike prior PCI-based UltraSPARC systems, UltraSPARC IIi

does not use bit 31 of the PCI address for outgoing memory transactions, or bit 17

for outgoing IO transactions. APB also similarly preserves bits 31 and 17.

19.4.2 PCI Address Space—DMA

19.4.2.1 PCI Configuration Space

UltraSPARC IIi does not respond to any Configuration Read or Configuration Write

cycles. UltraSPARC IIi/APB is the central resource for each PCI bus, and is expected

to be the only device generating configuration cycles.

UltraSPARC IIi PIO accesses to target configuration registers within the PBM are

serviced without generating a configuration cycle on the PCI bus.

Peer-to-peer transfers between two PCI devices on the same bus using Configuration

Read or Configuration Write commands cannot be prohibited by UltraSPARC IIi or

APB, but are not expected to occur, since UltraSPARC IIi/APB are the only devices

that can drive the IDSEL# lines correctly.

19.4.2.2 PCI I/O Space

UltraSPARC IIi does not respond to I/O Read or I/O Write commands on the PCI

bus.

Peer-to-peer transfers between two PCI devices on the same bus using I/O Read or

I/O Write commands cannot be prohibited by UltraSPARC IIi, but they are not

expected to occur, since all PCI resources are intended to be mapped into Memory

Space.

19.4.2.3 PCI Memory Space

DMA, DMA (IOMMU bypass), and PCI peer-to-peer activity occurs in PCI Memory

Space.The final destination and address translation of a PCI Memory transaction is

based on these functions:

■ Addressing mode used: 64-bit (DAC) vs. 32-bit (SAC)

■ Whether the PCI address[31:29] is enabled as UltraSPARC IIi address space, by

the PCI Target Address Space Register.

■ Value of MMU_EN in the IOMMU Control Register
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■ Value of PCI address bits <63:50> in DAC mode

Table 19-42 shows the various ways that UltraSPARC IIi deals with PCI addresses as

a PCI target device.

Pass-through

In pass-through mode, physical addr<40:32> = 0x000, physical addr<31:0> =

PCI_Addr<31:0>. Pass-through transfers always generate cacheable transactions.

Compatibility Note – Unlike prior PCI-based UltraSPARC systems, Pass-through

does not zero PCI_Addr[31]

IOMMU Translation mode

In IOMMU translation mode, the physical address is obtained by performing a

virtual to physical translation through the IOMMU. The value of the C bit in the TTE

for the virtual page determines whether the transaction generated is cacheable or

non-cacheable.

PCI peer-to-peer mode

In peer-to-peer mode, two devices on the same PCI bus transfer data without any

involvement from UltraSPARC IIi. There is no address translation involved – the

master device simply puts out the PCI address to which the target device has been

mapped. If no device has been mapped there, the PCI master device terminates its

cycle with a Master-Abort.

Table 19-42 PCI DMA Modes of Operation

Mode
Target
Space Hit

MMU_EN Addr<63:50> Result

SAC no X N/A PCI peer-to-peer

(Ignored by UltraSPARC IIi)

SAC yes 0 N/A Pass-through

SAC yes 1 N/A IOMMU Translation (DMA)

DAC X X 0x0000-

0x3FFE

Ignored by UltraSPARC IIi

DAC X X 0x3FFF Bypass (DMA)
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Bypass mode

In bypass mode, the physical address<33:0> = PCI_Addr<33:0>. Whether a

cacheable or non-cacheable transaction is made is determined by the value of

PCI_Addr<34>; a 0 in this bit specifies a cacheable transaction.

Compatibility Note – Prior PCI-based UltraSPARC systems used PCI_Addr<40>,

but note that [40:34] are all 1’s for UPA64S addresses.

19.4.2.4 Memory Burst Order

In all cases, UltraSPARC IIi only supports bursts as a target device in Linear

Incrementing mode. If any of the reserved burst orders are used, UltraSPARC IIi will

issue a target disconnect after the first data phase.

19.4.3 DMA Error Registers

19.4.3.1 DMA UE Asynchronous Fault Status/Address Register

UltraSPARC IIi IO logs any uncorrectable ECC error that it detects in the DMA UE

AFSR/AFAR.

Uncorrectable errors can result from DMA read or DMA partial writes when

memory does not Read-Modify-Write because it does not see an entire 16-bytes of

write data. IOMMU errors can result from any DMA operation.

This register contains primary error status bits <63:61> and secondary error status

bits <60:58>. Only one of the primary error status bits can be set at any time. Primary

error status can only be set when:

■ None of the primary error conditions exists prior to this error or

Table 19-43 DMA Error Registers

Register PA Access Size

DMA UE AFSR 0x1FE.0000.0030 8 bytes

DMA CE AFSR 0x1FE.0000.0040 8 bytes

DMA UE/CE AFAR
0x1FE.0000.0038 or

0x1FE.0000.0048
8 bytes
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■ A new error is detected at the same time as software is clearing the primary error;

“at the same time” means on coincident clock cycles. Setting takes precedence

over clearing.

Secondary bits are set whenever a primary bit is set. The secondary bits are

cumulative and always indicate that information has been lost because no address

information has been captured. Setting of the primary error bits is independent.

Compatibility Note – A PCI DMA UE interrupt is generated whenever a primary

DMA UE or Translation Error bit is set, even if by a CSR write. Ensure that software

clears the AFSR before clearing the interrupt state and re-enabling the PCI Error

Interrupt. (This behavior is similar to that of the ECU AFSR)

.

Table 19-44 DMA UE AFSR

Field Bits Description
POR
state

Type

Reserved 63 Read as 0 0 R0

P_DRD 62 Set if primary DMA UE or TE is caused by PCI read 0 R/

W1C

P_DWR 61 Set if primary DMA UE or TE is caused by PCI write 0 R/

W1C

Reserved 60 Reserved, read as 0 0 R0

S_DRD 59 Set if secondary DMA UE or TE is caused by PCI read. 0 R/

W1C

S_DWR 58 Set if secondary DMA UE or TE is caused by PCI

write

0 R/

W1C

S_DTE 57 Set if secondary error is PCI DMA Translation Error 0 R/

W1C

P_DTE 56 Set if primary error is PCI DMA Translation Error 0 R/

W1C

Reserved 55:48 Read as 0 0 R0

BYTEMASK 47:32 0x00FF or 0xFF00, depending on [29] ==0 or 1 00FF R

DW_OFFSET 31:29 DMA UE/CE AFAR bits [5:3] 0 R

Reserved 28:24 Read as 0 0 R0

BLK 23 Set if primary error is caused by PCI read 0 R

Reserved 22:0 Reserved, read as 0 0 R0
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The AFAR and bits <47:23> of AFSR log the address and status of the primary DMA

UE or error. A new DMA UE error is not logged into these bits until software clears

the primary error to make the AFAR and part of the AFSR available to log the new

error.

UltraSPARC IIi extension to DMA UE AFSR operation

To facilitate debug, errors due to invalid TTE entries in the IOMMU TSB or write

protection errors are also logged in the DMA UE AFSR and AFAR. See the shaded

entries in AFSR Table 19-44.

Compatibility Note – This feature is absent in prior PCI-based UltraSPARC

systems but should be compatible with existing Solaris code.

The DWR, DRD bits, and a new bit, DTE, are set for this new case. Software should

also get an error report from the DMA master that receives the Target Abort. This

action provides the advantage of getting t the VA of the error in the DMA UE AFAR.

Since this error indicates a software problem with the IOMMU TSB, software should

be able to sort out the two possible error indications.

Note that the STA bit in the PCI Configuration Space Status register is also set, since

UltraSPARC IIi generated a Target Abort.

19.4.3.2 DMA UE/CE Asynchronous Fault Address Register

The AFAR and bits <47:23> of AFSR log the address and status of the primary DMA

UE or IOMMU error, and of the primary DMA CE.

After logging an address associated with a primary DMA UE, a further DMA UE

error is not logged until software clears the DMA UE AFSR primary UE or IOMMU

error bits, to make the AFAR and part of the AFSR available to log a new error.

This AFAR is also used for primary DMA CE address logging. Further DMA CE are

not logged into these bits until software clears the primary error to make the AFAR

and part of the AFSR available to log a new error. DMA UE or IOMMU errors,

however, can always overwrite a value saved by a DMA CE primary error.The PA of

the TTE entry is saved on Invalid, Protection (IOMMU miss), and TTE UE errors. If

the Protection error had an IOMMU hit, the translated PA from the IOMMU is saved

instead. This may occur if a prior DMA read caused the IOMMU entry to be

installed.
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19.4.3.3 DMA CE Asynchronous Fault Status/Address Register

UltraSPARC IIi logs the correctable ECC error in the DMA CE AFSR/AFAR.

Correctable errors can occur during DMA read or DMA partial write operations.

This register contains primary error status bits <63:61> and secondary error status

bits <60:58>. Only one of the primary error status bits can be set at any time. Primary

error status can be set only when:

■ None of the primary error conditions exists prior to this error or
■ A new error is detected at the same time as software is clearing the primary error;

“at the same time” means on coincident clock cycles. Setting takes precedence

over clearing.

Secondary bits are set whenever a primary bit is set. The secondary bits are

cumulative and always indicate that information has been lost because no address

information has been captured. Setting of the primary error bits is independent.

Compatibility Note – A DMA CE interrupt is generated whenever a primary DMA

CE bit is set, even if by a CSR write. Ensure that software clears the AFSR before it

clears the interrupt state and re-enables the PCI Error Interrupt. (This behavior is

similar to that of the ECU AFSR).

Table 19-45 DMA UE/CE AFAR

Field Bits Description
POR
state

Type

Reserved 63:41 Reserved, read as 0. 0 R0

UE/CE_PA 40:0 Physical address of error transaction. 0 R

0 2:0 Always 0 0 R0

Table 19-46 DMA CE AFSR

Field Bits Description
POR
state

Type

Reserved 63 Reserved, read as 0 0 R0

P_DRD 62 Set if primary DMA CE is caused by PCI read 0
R/

W1C

P_DWR 61 Set if primary DMA CE is caused by PCI write 0
R/

W1C

Reserved 60 Reserved, read as 0 0 R0

S_DRD 59 Set if secondary DMA CE is caused by PCI read. 0
R/

W1C
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S_DWR 58 Set if secondary DMA CE is caused by PCI write 0
R/

W1C

Reserved 57:56 Reserved, read as 0 0 R0

E_SYND 55:48 DMA CE Syndrome bits, logged on primary error. 0 R

BYTEMASK 47:32 0x00FF or 0xFF00, depending on [29] ==0 or 1 00FF R

DW_OFFSET 31:29 DMA UE/CE AFAR bits [5:3] 0 R

Reserved 28:24 Read as 0 0 R0

BLK 23 Set if primary error is caused by PCI read 0 R

Reserved 22:00 Reserved, read as 0 0 R0

Table 19-46 DMA CE AFSR (Continued)

Field Bits Description
POR
state

Type
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CHAPTER 20

SPARC-V9 Memory Models

20.1 Overview
SPARC-V9 defines the semantics of memory operations for three memory models.

From strongest to weakest, they are Total Store Order (TSO), Partial Store Order

(PSO), and Relaxed Memory Order (RMO). The differences in these models lie in the

freedom an implementation is allowed in order to obtain higher performance during

program execution. The purpose of the memory models is to specify any constraints

placed on the ordering of memory operations in uniprocessor and shared-memory

multi-processor environments. UltraSPARC IIi supports all three memory models.

Although a program written for a weaker memory model potentially benefits from

higher execution rates, it may require explicit memory synchronization instructions

to function correctly if data is shared. MEMBAR is a SPARC-V9 memory

synchronization primitive that enables a programmer to control explicitly the

ordering in a sequence of memory operations. Processor consistency is guaranteed in

all memory models.

The current memory model is indicated in the PSTATE.MM field. It is unaffected by

normal traps, but is set to TSO (PSTATE.MM=0) when the processor enters

RED_state.

A memory location is identified by an 8-bit Address Space Identifier (ASI) and a 64-

bit virtual address. The 8-bit ASI may be obtained from a ASI register or included in

a memory access instruction. The ASI is used to distinguish between and provide an

attribute for different 64-bit address spaces. For example, the ASI is used by the

UltraSPARC IIi MMU and memory access hardware to control virtual-to-physical

address translations, access to implementation-dependent control and data registers,

and for access protection. Attempts by non-privileged software (PSTATE.PRIV=0) to

access restricted ASIs (ASI<7>=0) cause a privileged_action trap.
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Memory is logically divided into real memory (cached) and I/O memory (non-

cached with and without side-effects) spaces. Real memory spaces can be accessed

without side-effects. For example, a read from real memory space returns the

information most recently written. In addition, an access to real memory space does

not result in program-visible side-effects. In contrast, a read from I/O space may not

return the most recently written information and may result in program-visible side-

effects.

20.2 Supported Memory Models
The following sections contain brief descriptions of the three memory models

supported by UltraSPARC IIi. These definitions are for general illustration. Detailed

definitions of these models can be found in The SPARC Architecture Manual, Version 9.

The definitions in the following sections apply to system behavior as seen by the

programmer. A description of MEMBAR can be found in Section 8.3.2, Memory
Synchronization: MEMBAR and FLUSH on page 70.

Note – Stores to UltraSPARC IIi Internal ASIs, block loads, and block stores are

outside the memory model; that is, they need MEMBARs to control ordering. See

Instruction Prefetch to Side-Effect Locations on page 77 and Section 13.5.3, Block Load
and Store Instructions on page 164.

Note – Atomic load-stores are treated as both a load and a store and can only be

applied to cacheable address spaces.

20.2.1 TSO

UltraSPARC IIi implements the following programmer-visible properties in Total

Store Order (TSO) mode:

■ Loads are processed in program order; that is, there is an implicit MEMBAR

#LoadLoad between them.

■ Loads may bypass earlier stores. Any such load that bypasses such earlier stores

must check (snoop) the store buffer for the most recent store to that address. A

MEMBAR #Lookaside is not needed between a store and a subsequent load at

the same noncacheable address.

■ A MEMBAR #StoreLoad must be used to prevent a load from bypassing a prior

store, if Strong Sequential Order is desired.
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■ Stores are processed in program order.

■ Stores cannot bypass earlier loads.

■ Accesses with the E-bit set (that is, those having side-effects) are all strongly

ordered with respect to each other.

■ An E-cache update is delayed on a store hit until all outstanding stores reach

global visibility. For example, a cacheable store following a noncacheable store is

not globally visible until the noncacheable store has reached global visibility;

there is an implicit MEMBAR #MemIssue between them.

20.2.2 PSO

UltraSPARC IIi implements the following programmer-visible properties in Partial

Store Order (PSO) mode:

■ Loads are processed in program order; that is, there is an implicit MEMBAR

#LoadLoad between them.

■ Loads may bypass earlier stores. Any such load that bypasses such earlier stores

must check (snoop) the store buffer for the most recent store to that address. For

SPARC-V9 compatibility, a MEMBAR #Lookaside should be used between a

store and a subsequent load to the same non-cacheable address.

■ Stores cannot bypass earlier loads.

■ Stores are not ordered with respect to each other. A MEMBAR must be used for

stores if stronger ordering is desired. A MEMBAR #MemIssue is needed for

ordering of cacheable after non-cacheable stores.

■ Non-cacheable accesses with the E-bit set (that is, those having side-effects) are all

strongly ordered with respect to each other, but not with non-E-bit accesses.

Note – The behavior of partial stores to noncacheable addresses (pages with the

TTE.CP=0) is dependent on the system and I/O device implementation.

UltraSPARC IIi generates a P_NCWR_REQ operation with a byte mask

corresponding to the rs2 mask of the partial store instruction. If the system

interconnect or I/O device is unable to perform the write operation of the bytes

specified by the byte mask, an error is not signaled back to the processor.

20.2.3 RMO

UltraSPARC IIi implements the following programmer-visible properties in Relaxed

Memory Order (RMO) mode:

■ There is no implicit order between any two memory references, either cacheable

or non-cacheable, except that non-cacheable accesses with the E-bit set (that is,

those having side-effects) are all strongly ordered with respect to each other.
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■ A MEMBAR must be used between cacheable memory references if stronger

order is desired. A MEMBAR #MemIssue is needed for ordering of cacheable

after non-cacheable accesses. A MEMBAR #Lookaside should be used between

a store and a subsequent load at the same noncacheable address.
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CHAPTER 21

Code Generation Guidelines

21.1 Hardware / Software Synergy
One of the goals set for UltraSPARC IIi was for the processor to execute SPARC-V8

binaries efficiently, providing approximately three times the performance of existing

machines running the same code. A significantly larger performance gain can be

obtained if the code is re-compiled using a compiler specifically designed for

UltraSPARC IIi. Several features are provided on UltraSPARC IIi that can only be

taken advantage of by using modern compiler technology. This technology was not

available previously, mainly because the hardware support was not sufficient to

justify its development.

21.2 Instruction Stream Issues

21.2.1 UltraSPARC IIi Front End

The front end of the processor consists of the Prefetch Unit, the I-cache, the next field

RAM, the branch and set prediction logic, and the return address stack. The role of

the front end is to supply as many valid instructions as possible to the grouping

logic and eventually to the functional units (the ALUs, floating-point adder, branch

unit, load/store pipe, etc.).
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21.2.2 Instruction Alignment

21.2.2.1 I-cache Organization

The 16 Kb I-cache is organized as a 2-way set associative cache, with each set

containing 256 eight-instruction lines (Figure 21-1). The 14 bits required to access any

location in the I-cache are composed of the 13 least significant address bits (since the

minimum page size is 8K, these 13 bits are always part of the page offset and need

not be translated) and one bit used to predict the associativity number (way) in

which instructions reside. Out of a line of 8 instructions, up to 4 instructions are sent

to the instruction buffer, depending on the address. If the address points to one of

the last three instructions in the line, only that instruction and the ones (0-2) until the

end of the line are selected (for simplicity and timing considerations, hardware

support for getting instructions from two adjacent lines was not included).

Consequently, on average for random accesses, 3.25 instructions are fetched from the

I-cache. For sequential accesses, the fetching rate (4 instructions per cycle) equals or

exceeds the consuming rate of the pipeline (up to 4 instructions per cycle).

Figure 21-1 I-cache Organization

21.2.2.2 Branch Target Alignment

Given the restriction mentioned above regarding the number of instructions fetched

from an I-cache access, it is desirable to align branch targets so that enough

instructions are fetched to match the number of instructions issued in the first group

of the branch target. For instance, if the compiler scheduler indicates that the target

can only be grouped with one more instruction, the target should be placed

32 bytes

8 instructions

SET 0

SET 1

256 LINEs
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anywhere in the line except in the last slot, since only one instruction would be

fetched in that case. If the target is accessed from more than one place, it should be

aligned so that it accommodates the largest possible group. If accesses to the I-cache

are expected to miss, it may be desirable to align targets on a 16-byte (even 32-byte)

boundary so that 4 instructions are forwarded to the next stage. Such an alignment

can at least assure that four (eight for 32-byte alignment) instructions can be

processed between cache misses, assuming that the code does not branch out of the

sequence of instructions (which is generally not the case for integer programs).

21.2.2.3 Impact of the Delay Slot on Instruction Fetch

If the last instruction of a line is a branch, the next sequential line in the I-cache must

be fetched even if the branch is predicted taken, since the delay slot must be sent to

the grouping logic. This leads to inefficient fetches, since an entire E-cache access

must be dedicated to fetching the missing delay slot. Take care not to place delayed

CTIs (control transfer instructions) that are predicted taken at the end of a cache line.

21.2.2.4 Instruction Alignment for the Grouping Logic

UltraSPARC IIi can execute up to four instructions per cycle. The first three

instructions in a group occupy slots that in most cases are interchangeable with

respect to resources. Only special cases of instructions that can only be executed in

IEU
1

followed by IEU
0

candidates violate this interchangeability (described in

Section 22.5, Integer Execution Unit (IEU) Instructions on page 348). The fourth slot

can only be used for PC-based branches or for floating-point instructions.

Consequently, in order to get the most performance out of UltraSPARC IIi, the code

should be organized so that either a floating-point operation (FPOP) or a branch is

aligned with the fourth slot. For floating-point code, it should be relatively easy for

the compiler to take advantage of the added execution bandwidth provided by the

fourth slot. For integer code, aligning the branch so that it is issued fourth in a group

must be balanced with other factors that may be more important, such as not placing

a branch at the end of a cache line. Moreover if dependency analysis shows that a

group of four instructions could be issued, but the fourth instruction is not a branch

or an FPop while one of the first three is a branch, before switching the two

instructions (assuming no data dependency), the compiler must evaluate the

following trade-off:

■ Moving the fourth instruction ahead of the branch (cross-block scheduling) and

generating possible compensation code for the alternate path.

■ Breaking the group and scheduling the ALU instruction with the next group.

Notice that this may not lengthen the critical path (in terms of number of cycles

executed) if the next group can accommodate this extra instruction without

adding any new group.
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21.2.2.5 Impact of Instruction Alignment on PDU

There is one branch prediction entry for every two instructions in the I-cache. Each

entry, consisting of a two-bit field, indicates if the branch is predicted taken or not-

taken (the state machine is described in Section 21.2.6). In addition to the branch

prediction field, there is a next field associated with every four instructions. The next

field contains the index of the line and the associativity number (or way) of the line

that should be fetched next. For sequential code, the next field points to the next line

in the I-cache. If a predicted taken branch is among the four instructions, the next

field contains the index of the target of the branch.

The following cases represent situations when the prediction bits and/or the next

field do not operate optimally:

1. When the target of a branch is word 1 or word 3 of an I-cache line (Figure 21-2)

and the fourth instruction to be fetched (instruction 4 and 6 respectively) is a

branch, the branch prediction bits from the wrong pair of instructions are used.

Figure 21-2 Odd Fetch to an I-cache Line

2. If a group of four instructions (instructions 0-3 or instructions 4-7) contains two

branches and can be entered at a different position than the beginning of the

group (other than instruction 0 and 4 respectively), the next field will contain the

update from the latest branch taken in this group of four instructions, which may

not be the one associated with the branch of interest (Figure 21-3).

Figure 21-3 Next Field Aliasing Between Two Branches

3. Since there is one set of prediction bits for every two instructions, it is possible to

have two branches (a CTI couple) sharing prediction bits. Under normal

circumstances, the bits are maintained correctly; however, the bits may be

updated based on the wrong branch if the second branch in the CTI couple is the

target of another branch (Figure 21-4).

0 1 2 3 4 5 6 7

Odd Fetches

Next FieldBranch Branch

Entry Point Entry Point
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Figure 21-4 Aliasing of Prediction Bits in a Rare CTI Couple Case

As stated in Chapter 22, Grouping Rules and Stalls, if the addresses of the instructions

in a group cross a 32-byte boundary, an implicit branch is “forced” between

instructions at address 31 and 32 (low order bits). That rule has a performance

impact only if a branch is in that specific group. Care should be taken not to place a

branch in a group that crosses this boundary. Figure 21-5 shows an example of this

rule. A group containing instructions I0 (branch), I1, I2, and I3 will be broken,

because an artificial branch is forced after address 31 and there is already a branch in

the group.

Figure 21-5 Artificial Branch Inserted after a 32-byte Boundary

21.2.3 I-cache Timing

If accesses to the I-cache hit, the pipeline rarely starves for instructions. Only in

pathological cases is the PDU unable to provide a sufficient number of instructions

to keep the functional units busy. For example, a taken branch to a taken branch

sequence without any instructions between the branches (except for the delay slot)

could only be executed at a peak rate of two instructions per cycle. Otherwise, up to

4 instructions are sent to the D Stage to be decoded and eventually dispatched in the

G Stage and executed starting in the E Stage.

An I-cache miss does not necessarily result in bubbles being inserted into the

pipeline. Part of the I-cache miss processing, or even all of it, can be overlapped with

the execution of instructions that are already in the instruction buffer and are

waiting to be grouped and executed. Moreover, since the operation of the PDU is

somewhat separated from the rest of the pipeline, the I-cache miss may have

occurred when the pipeline was already stalled (for example, due to a multi-cycle

integer divide, floating-point divide dependency, dependency on load data that

missed the D-cache, etc.). This means that the miss (or part of it) may be transparent

to the pipeline.

Branch Branch Prediction

Entry Point

I3 I1 I2 I3

..30 ..31 ..0 ..1 ..2

Group Break Forced

Branch
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When an I-cache miss is detected, normal instruction fetching is disabled and a

request is sent to the E-cache for the line that is missing in the I-cache. A full line of

eight instructions (32 bytes) is brought into the processor in two parts (the interface

to the E-cache is 16-bytes wide). The critical part (that is, the 16 bytes containing the

instruction that caused the miss) is brought in first. If a predicted taken branch is in

the second 16-byte block brought into the I-cache, there will be a one cycle delay

before the next fetch (this is the time needed to compute the next address).

Because of the possibility of stalling the processor for in the case when the pipeline

is waiting for new instructions, it is desirable to try to make routines fit in the

I-cache and avoid hot spots (collisions). UltraSPARC IIi provides instrumentation to

profile a program and detect if instruction accesses generate a cache miss or a cache

hit. For example, one can program performance counters to monitor I-cache accesses

and I-cache misses. Then, by checkpointing the counters before and after a large

section of code, combined with profiling the section of code, one can determine if the

frequently executed functions generally hit or miss the I-cache. Instrumentation can

be used in a similar manner to determine if a trap handler generally resides in the

I-cache or causes a cache miss.

21.2.4 Executing Code Out of the E-cache

When frequently executed routines do not fit in the I-cache, it is possible to organize

the code so that the main routines reside in the much larger E-cache and do not

significantly affect the execution time. As an example we look at fpppp. Of the

fourteen floating-point programs in SPECfp92, fpppp shows the highest I-cache miss

rate (about 21%) per cache access, or about 6.0% per instruction. For comparison, the

next highest is doduc with about a 3% miss per cache access, 1% per instruction. Even

though the I-cache miss rate is significant, UltraSPARC IIi is barely affected by it (the

impact is on CPI only 0.0084). It performs so well for the reasons:

■ The code is organized as a large sequential block.

■ Branches are predicted very well (over 90%).

■ The instruction buffer almost always contains several instructions when an

I-cache miss occurs (an average of about 6.6).

■ The instruction buffer is filled faster (up to 4 instructions per cycle) than it is

emptied.

All these factors contribute to reducing the apparent I-cache miss latency to 0.14

cycles on average for fpppp; that is, on average, the pipeline is stalled for 0.14 cycles

when an I-cache miss occurs.

The effectiveness of the instruction buffer and the prefetcher on fpppp demonstrated

that techniques (such as loop unrolling) that create large sequential blocks of code

can be used efficiently on UltraSPARC IIi, even if these blocks do not fit in the
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I-cache. On the other hand, for code properly scheduled to take advantage of the

four issue slots on UltraSPARC IIi, the rate of instruction “consumption” may easily

exceed the rate of instruction fetching, thus making I-cache misses more apparent.

21.2.5 uTLB and iTLB Misses

The one-entry uTLB contains the virtual page number and the associated physical

page number of the line accessed last. If the line currently accessed is to the same

page, the instructions from that line are simply forwarded to the next stage. If the

line is from a different virtual page, the translation is obtained from the iTLB a cycle

later. The cost of crossing a page boundary is thus one cycle (the smallest possible

page size, 8K bytes, is assumed). This may or may not translate into a one cycle

penalty for the whole processor. For a tight loop with code spanning over two pages,

this cost may be significant, especially if the instruction buffer is empty at the time of

the page crossing. For this reason, it is desirable to position short loops within a

page (avoid page crossing).

An iTLB miss is handled by software through the use of the TSB, and takes about 32

cycles. Consequently, an iTLB miss may be very costly in terms of idle processor

cycles. In order to minimize the frequency of iTLB misses, UltraSPARC IIi provides a

large number of entries (64) in the iTLB and allows pages as large as 4Mbytes to be

used. Nonetheless, techniques that allocate pages based on profiling are encouraged

to further decrease the iTLB miss cost.

21.2.6 Branch Prediction

UltraSPARC IIi predicts the outcome of branches and fetches the next instructions

likely to be executed based on that outcome. While this is all done dynamically in

hardware, the compiler has an impact on the initialization of the state machine. The

static bit provided by BPcc and FBPfcc instructions is used to set the state machine in

either the likely taken state or the likely not taken state (Figure 21-6). For branches

without prediction (Bicc, FBfcc), UltraSPARC IIi initializes the state machine to

likely not taken. Notice that a branch initialized to likely taken does not produce a

correct next field for the immediately following I-cache fetch, since it takes one extra

cycle to generate the correct address (branch offset added to the PC). This results in

two lost cycles for fetching instructions, which does not necessarily lead to a

pipeline stall. This penalty is much less than the mispredicted branch penalty (four

cycles) that would occur if the branch prediction bit was always ignored and a static

prediction were used (for example, always taken). The state machine representing

the algorithm used for branch prediction is represented in Figure 21-6. Note that this

figure is identical to that shown in Figure A-14 on page 378.
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Figure 21-6 Dynamic Branch Prediction State Diagram

For loops in steady state, the algorithm is designed so that it requires two mis-

predictions in order for the prediction to be changed from taken to not taken. Each

loop exit will thus cause a single misprediction (versus two for a one-bit dynamic

scheme).

21.2.6.1 Impact of the Annulled Slot

Grouping rules in Chapter 22, Grouping Rules and Stalls, describe how UltraSPARC IIi

handles instructions following an annulling branch. In connection with these

instructions, pay regard to the rules:

■ Avoid scheduling multicycle instructions in the delay slot (for example, IMUL,

IDIV, etc.).

■ Avoid scheduling long latency instructions such as FDIV if the branch is

predicted to be not-taken for a significant portion of the time (since they affect the

timing of the non-taken stream).

■ Avoid scheduling an instruction that would stall dispatching owing to a load-use

dependency.

■ Avoid scheduling WR(PR, ASR), SAVE, SAVED, RESTORE, RESTORED,

RETURN, RETRY, and DONE in the delay slot and in the first three groups

following an annulling branch.

21.2.6.2 Conditional Moves vs. Conditional Branches

The MOVcc and MOVR instructions provide an alternative to conditional branches

for executing short code segments. UltraSPARC IIi differentiates the two as follows:

PT/ANT

PT/AT PNT/ATST LT LNT SNTPT,AT

PT/ANT

PNT/AT

PNT/ANT
PNT/ANT

Initialization

PT: Predicted Taken
PNT: Predicted Not Taken
AT: Actual Taken
ANT: Actual Not Taken

ST: Strongly Taken
LT: Likely Taken
SNT: Strongly Not Taken
LNT: Likely Not Taken
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■ Conditional branches: the branches are always resolved in the C stage. Distancing

the SETcc from Bicc does not gain any performance. The penalty for a

mispredicted branch is always four cycles. SETcc, Bicc, and the delay slot can be

grouped together (Figure 21-7).

Figure 21-7 Handling of Conditional Branches

■ Conditional moves: MOVcc and MOVR are dispatched as single instruction

groups. Consequently, SETcc and MOVcc (or MOVR) cannot be grouped together

(vs. SETcc and Bicc). Also, a use of the destination register for the MOVcc follows

the same rule as a load-use (breaks group plus a bubble). Figure 21-8 shows a

typical example.

Figure 21-8 Handling of MOVCC

The use of FMOVR is more constrained than MOVcc. Besides having to wait for the

load buffer to be empty, FMOVR and any younger IEU instructions must be

separated by one group, even if there is no dependency between the IEU instruction

and FMOVR.

Assuming that a specific branch can only be predicted with 50% accuracy (basically,

it is not predicted), the compiler must balance the two cycle penalty on average for

the mispredicted branch case against the ability to schedule other instructions

around MOVcc (the SETcc cycle and the two groups after MOVcc, since MOVcc is a

single instruction group). The need for multiple MOVcc instructions to guard

multiple operations also must be taken into account.

21.2.7 I-cache Utilization

Grouping blocks that are executed frequently can effectively increase the apparent

size of the I-cache. Cache studies show that, often, half of the I-cache entries are

never executed. Placing rarely executed code out of a line containing a frequently

executed block (identified by profiling) achieves a better I-cache utilization.
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21.2.8 Handling of CTI couples

UltraSPARC IIi handles CTI couples by taking a “false” trap on the second CTI. It

processes the first CTI, executes instructions until the second CTI reaches the N
3

stage, squashes all instructions executed after the first CTI, and executes instructions

starting with the second CTI. Nine cycles are lost when CTI couples are encountered,

which should discourage their use.

21.2.9 Mispredicted Branches

The dynamic branch prediction mechanism used for UltraSPARC IIi can generally

achieve a success rate of 87% for integer programs and around 93% for floating-

point programs (SPEC92). Correctly predicted conditional branches allow the

processor to group instructions from adjacent basic blocks and continue progress

speculatively until the branch is resolved. The capability of executing instructions

speculatively is a significant performance boost for UltraSPARC IIi. On the other

hand, when a branch is mispredicted, up to 18 instructions can be cancelled; This is

the case when two instructions from the current group are cancelled along with four

groups of four instructions, as shown in Figure 21-9—costly but, fortunately, this one

case is very rare.

Figure 21-9 Cost of a Mispredicted Branch (Shaded Area)

Figure 21-9 shows how expensive badly behaved branches are for UltraSPARC IIi.

Special effort should be made to predict branches that follow highly predictable

branches based on profiling, and to combining conditions to make branches more

predictable. Finally, if two or more branches are found to be correlated, it may be

advantageous to duplicate common blocks to obtain separate branch predictions for

hard-to-predict branches. For example in Figure 21-10, if the outcome of branch A,

that is executed before branch B, has an impact on the direction of branch B, then it

is preferable to split the code and duplicate the branch.
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Figure 21-10 Branch Transformation to Reduce Mispredicted Branches

The technique, shown in Figure 21-10, can be generalized to N levels, where N
branches are correlated and become more predictable. The above technique may lead

to unrolling of loops that were previously identified as bad candidates because of

the unpredictable behavior of their conditional branches.

21.2.10 Return Address Stack (RAS)

In order to speed up returns from subroutines invoked through CALL instructions,

UltraSPARC IIi dedicates a 4-deep stack to store the return address. Each time a

CALL is detected, the return address is pushed onto this RAS (Return Address

Stack). Each time a return is encountered, the address is obtained from the top of the

stack and the stack is popped. UltraSPARC IIi considers a return to be a JMPL or

RETURN with rs1 equal to %o7 (normal subroutine) or %i7 (leaf subroutine). The

RAS provides a guess for the target address, so that prefetching can continue even

though the address calculation has not yet been performed. JMPL or RETURN

instructions using rs1 values other than %o7or %i7 , and DONE or RETRY

instructions also use the value on the top of the RAS for continuing prefetching, but

they do not pop the stack. See Section 17.1, Overview on page 251 for information

about the contents of the RAS during RED_state processing.

branch A

block 1 block 2

block 3

branch B
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21.3 Data Stream Issues

21.3.1 D-cache Organization

The D-cache is a 16K byte, direct mapped, virtually indexed, physically tagged

(VIPT), write-through, non-allocating cache. It is logically organized as 512 lines of

32 bytes. Each line contains two 16-byte sub-blocks (see Figure 21-11).

Figure 21-11 Logical Organization of D-cache

21.3.2 D-cache Timing

The latency of a load to the D-cache depends on the opcode. For unsigned loads,

data can be used two cycles after the load. For instance, if the first two instructions

in the instruction buffer are a load and an instruction dependent on that load, the

grouping logic will break the group after the load and a bubble will be inserted in

the pipeline the following cycle. Code compiled for an earlier SPARC processor with

a load use penalty of one cycle will show a penalty of about.one CPI just for this

rule; thus, it is very important to separate loads from their use.

16 bytes 16 bytes

sub-block 0 sub-block 1

512 lines
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21.3.2.1 Signed Loads

All signed loads smaller than 64 bits must be separated from their use by three

cycles; otherwise, an extra bubble is inserted in the pipeline to force the separation

between the load and its use. Floating-point loads are not sign extended, so they

have a latency of two cycles.

Once a signed load (smaller than 64 bits) is encountered in the instruction stream, all

subsequent consecutive loads (signed or unsigned) also return data in three cycles;

otherwise, there would be a collision between two loads returning data. As soon as

a cycle without a load appears in the pipeline, the latency of loads is brought back to

two cycles.

Note – The SPARC-V8 LD instruction is replaced with LDUW in SPARC-V9; the

new instruction does not require sign extension.

21.3.3 Data Alignment

SPARC-V9 requires that all accesses be aligned on an address equal to the size of the

access. Otherwise a mem_address_not_aligned trap is generated. This is especially

important for double precision floating-point loads, which should be aligned on an

8-byte boundary. If misalignment is determined to be possible at compile time, it is

better to use two LDF (load floating-point, single precision) instructions and avoid

the trap. UltraSPARC IIi supports single-precision loads mixed with double-

precision operations, so that the case above can execute without penalty (except for

the additional load). If a trap does occur, UltraSPARC IIi dedicates a trap vector for

this specific misalignment, which reduces the overall penalty of the trap.

Grouping load data is desirable, since a D-cache sub-block can contain either four

properly aligned single-precision operands or two properly aligned double-precision

operands (eight and four respectively for a D-cache line). As we shall see later, this

is desirable not only for improving the D-cache hit rate (by increasing its utilization

density), but also for D-cache misses where, for sequential accesses, one out of two

requests to the E-cache can be eliminated. Grouping load data beyond a D-cache

sub-block is also desirable, since an E-cache line contains four D-cache sub-blocks

(for a total of 64 bytes). Thus, sequential accesses can guarantee that only one

E-cache miss will occur for loads that access up to four consecutive D-cache sub-

blocks (two D-cache lines). Section 21.3.6 discusses how code scheduled for

accessing data directly out of the E-cache can hide the extra latency introduced by

D-cache misses.
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Data alignment (right justification) for byte, halfword, and word accesses does not

add latency to the loads unless superseded by the sign rule described in

Section 21.3.2.1, Signed Loads. This is true whether the load goes to the register file or

to internal pipeline bypasses.

21.3.4 Direct-Mapped Cache Considerations

A direct-mapped cache is more susceptible to collisions than a set-associative cache.

It is possible to organize data at compile time so that collisions are minimized,

however. For frequently executed loops, the compiler should organize the data so

that all accesses within the loop are mapped to different cache lines, unless the

access is to a line that is already mapped and the access is to the same physical line.

For UltraSPARC IIi, this means that accesses should differ in the virtual address bits

VA<13:5>. Hot spots can be detected by configuring the on-chip counters to

accumulate D-cache accesses and D-cache misses. The counters can be turned on/off

before/after the load of interest, or around a series of loads where hot spots are

suspected to occur.

21.3.5 D-cache Miss, E-cache Hit Timing

Under normal circumstances (for example, no snoops, no arbitration conflict for the

E-cache bus), loads that hit the E-cache are returned N cycles later than loads that hit

the D-cache, where N is determined by the E-cache SRAM mode. Table 21-1 shows

the latency for all supported SRAM Modes. (See Section 1.3.3.1, E-Cache SRAM
Modes on page 6 for more information.

If such a load (D-cache miss, E-cache hit) is immediately followed by a use, the

group is broken and an (N+1)-cycle stall occurs; Pipeline Example 21-1 illustrates this

situation. (The figure shows a 8-cycle stall, which is consistent with 2–2 mode;

2–2–2 mode incurs a 10-cycle stall.)

Table 21-1 D-cache Miss, E-cache Hit Latency Depends on SRAM Mode

SRAM Modes

2-2-2 2–2

No. of Cycles 9 7
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Pipeline Example 21-1 D-cache Miss, E-cache Hit (2–2 mode shown)

Because of the high penalty associated with a load miss for code scheduled based on

loads hitting the D-cache, UltraSPARC IIi provides hardware support for non-

blocking loads through a load buffer that allows code scheduling based on External
Cache (E-cache) hits.

21.3.6 Scheduling for the E-cache

Some applications have a working set that is too large to fit within the D-cache (they

cause many capacity misses); others use data in patterns that generate many conflict-

misses. Compilers c an schedule these applications to “bypass” the D-cache and

access the data out of the E-cache.

Loads that miss the D-cache do not necessarily stall the pipeline (non-blocking

loads). Instead, they are sent to the load buffer, where they wait for the data to be

returned from the E-cache. The pipeline stalls only when an instruction that is

dependent on the non-blocking load enters the pipeline before the load data is

returned.

21.3.6.1 Mixing D-cache Misses and D-cache Hits

The UltraSPARC IIi “golden rule” is that all load data are returned in order. For

instance if a load misses the D-cache, enters the load buffer, and is followed by a

load that hits the D-cache, the data for the second (younger) load is not accessible. In

this case, the younger load also must enter the load buffer; it will access the D-cache

array only after the older load (D-cache miss) does so. If the load buffer is not empty,

the D-cache array access is decoupled from the D-cache tag access; that is, it is

performed some cycles after the tag access.

Note – Accessing blocked data in the D-cache while there is a load in the load buffer

and scheduling the code so that operations can be performed on the blocked load

data is not supported on UltraSPARC IIi. Data is always returned and operated upon

in order.

on page 340 clarifies what is not supported without stalls on UltraSPARC IIi.

load r
1

F D G E C N
1

Q Q Q Q Q Q
use r

1
F D G G E E E E E E E E E C N

1
N

2
N

3

W

Group Break (N+1)-Cycle Stall Execution Resumes
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Pipeline Example 21-2 Load Hit Bypassing Load Miss (Not Supported on UltraSPARC IIi)

In , the first ADD stalls the pipeline until both the load miss and the load hit are

handled. If the ADDs are interchanged, the first ADD can proceed as soon as the

load miss is handled.

As a rule, if load latencies are expected to be a problem, the compiler should always

schedule the use of loads in the same order that the loads appear in the program.

While blocking part of an array in the D-cache and operating on the data during a

previous D-cache miss may help reduce register pressure (three extra registers could

be made available for an inner loop), the added complexity needed to handle

conflicts in accessing the D-cache array offsets the potential benefits (for example,

adding a port to the D-cache vs. adding a bubble on collisions).

21.3.6.2 Loads to the Same D-cache Sub-block

When a load enters the load buffer, the memory location loaded is compared to all

other (older) loads in the buffer. If the other loads are to the same 16-byte sub-block,

the entering load is marked as a hit, since by the time it accesses the D-cache array,

the sub-block will be present (Pipeline Example 21-3). The detection of a hit eliminates

a transaction to the E-cache, which results in making more slots available for other

clients of the E-cache bus (I-cache, store buffer, snoops). Thus, it helps to organize

the code so that data is accessed sequentially. This may involve interchanging loops

so that array subscripts are incremented by one between each load access.

ld [%l1+%g0],%l6 (D-cache miss)
ld [%l2+%g0],%l7 (D-cache hit)
add %l7,%g1,%g2 (use of D-cache hit)
add %l6,%g1,%g3 (use of D-cache miss)
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Pipeline Example 21-3 Interleaved D-cache Hits and Misses to Same Sub-block

UltraSPARC IIi can access the E-cache only every other cycle. This still provides an

average of 8 bytes per cycle, but only in 16-byte chunks.

21.3.6.3 Mixing Independent Loads and Stores

Note – The bus turnaround penalty is two cycles for systems running in 2-2-2 mode

only; systems running in 2–2 mode incur no turnaround penalty.

Mixing reads and writes from and to the E-cache results in a penalty, caused by the

difference in timing between reads and writes and also the bus turnaround time.

UltraSPARC IIi automatically tends to separate loads and stores through the use of

the load buffer and store buffer. The loads are given access to the E-cache, even if

older stores have been waiting to access it. Only when the number of stores passes

the “high-water mark” (5 stores) does the store buffer have priority. The code can be

organized to further minimize the number of bus turnaround cycles. shows how

loads and stores can be grouped so that only one turn-around penalty occurs (for a

given state of the load buffer and store buffer). This can be accomplished with the

help of a memory reference analyzer (Section 21.3.9, Non-Faulting Loads” covers this

in more detail).

Code Example 21-1 Avoiding Bus Turnaround Penalties (1–1–1 mode only)

.align start 16 bytes
ld [start],%f0 (D-cache miss)
ld [start + 8],%f2 (D-cache hit)
ld [start + 16],%f4 (D-cache miss)
ld [start + 24],%f6 (D-cache hit)

ld [addr1],%l1 ld[addr1],%l1
st [addr2],%l2 ld[addr3],%l3
ld [addr3],%l3 st[addr2],%l2
st [addr4],%l4 st[addr4],%l4

2 Penalties 1 Penalty
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21.3.6.4 Using LDDF to Load Two Single-Precision Operands/Cycle

UltraSPARC IIi supports single cycle 8-byte data transfers into the floating-point

register file for LDDF. Wherever possible, applications that use single-precision

floating-point arithmetic heavily should organize their code and data to replace two

LDFs with one LDDF. This reduces the load frequency by approximately one half,

and cuts execution time considerably.

21.3.7 Store Buffer Considerations

The store buffer on UltraSPARC IIi is designed so that stores can be issued even

when the data is not ready. More specifically, a store can be issued in the same group

as the instruction producing the result. The address of a store is buffered until the

data is eventually available. Once in the store buffer, the store data is buffered until

it can be sent “quietly” (that is, without interfering with other instructions) to the

D-cache, the E-cache, I/0 devices, or the frame buffer (for noncacheable stores).

To increase the throughput to the E-cache, which results in decreasing the frequency

of the store buffer full condition, UltraSPARC IIi collapses two stores to the same 16

bytes of memory into one store. Since compression only occurs among two adjacent

entries in the store buffer, the code should be organized so that multiple stores to the

same “region” in memory are issued sequentially (increasing or decreasing order).

21.3.8 Read-After-Write and Write-After-Read Hazards

A Read-After-Write (RAW) hazard occurs when a load to the same address as an

older outstanding store is issued. UltraSPARC IIi does not provide direct by-passing

from intermediate stages of the store buffer to the various pipes that may result in

pipeline stalls.

Most RAW hazards can be eliminated by proper register allocation and by

eliminating spurious loads. Disassembled traces of various programs showed that

most RAWs were “false” RAWs, and can be eliminated. However, some RAWs were

“true” RAWs; they occur because two data structures point to the same memory

location (through array indexes or pointers) without having knowledge that there

could be a match between them. In order to simplify the hardware, the full 40

physical address bits are not used when comparing the address of the memory

location requested by the load with the addresses associated with the stores in the

store buffer. The rules are:

■ The physical tag of the address is ignored

■ If the load hits the D-cache, bits <13:0> of the address are used for comparison

(byte granularity)
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■ If the load misses the D-cache, bits <13:4> of the address are used for comparison

(sub-block granularity)

In order to cover both cache hits and cache misses, one should try to avoid RAWs

based on a 16-byte boundary (using bits <13:4>). Even if a RAW occurs, the pipeline

is not stalled until a use of the load data enters the pipeline (similar to the way loads

are handled during D-cache misses). Code Example 21-2 shows an example of back-to-

back instructions causing a RAW hazard and a load-use. In the best scenario (that is,

when the store buffer and load buffer are empty) the RAW hazard stalls the pipe for

8 cycles (versus one cycle for the normal load-use stall). This is mainly due to the

fact that the store data enters the store buffer late in the pipe and that the load buffer

must wait until the data is in the D-cache before it can access it.

Code Example 21-2 RAW Hazard Penalty

Under the Relaxed Memory Order (RMO) mode, stores can pass younger loads if a

MEMBAR instruction has not been issued to prevent it. UltraSPARC IIi provides

hardware detection of Write-After-Read (WAR) hazards so that a store to the same

memory address as an older outstanding load does not pass that load. If a WAR

hazard is detected, the store waits in the store buffer until the older load completes.

The CPI penalties resulting from this only have a second-order effect on

performance. The store buffer may fill up (rare), or an extra RAW hazard could be

generated because stores stay in the store buffer longer.

21.3.9 Non-Faulting Loads

The ability to move instructions “up” in the instruction stream beyond conditional

branches can effectively hide the latencies of long operations. This also increases the

number of candidate instructions that the compiler can schedule without conflicts.

SPARC-V9 provides non-faulting loads (equivalent to silent loads used for Multiflow

TRACE and Cydrome Cydra-5), so that loads can be moved ahead of conditional

control structures that guard their use. Non-faulting loads execute as any other

loads, except that catastrophic errors, such as segmentation fault conditions, do not

cause the program to terminate. The hardware and software (trap handler) cooperate

so that the load appears to complete normally with a zero result. In order to

minimize page faults when a speculative load references a NULL pointer (address

zero), system software should map low addresses (especially address zero) to a page

of all zeros and use the Non-Faulting Only (NFO) page attribute bit.

st %l1,[addr1]
ld [addr1],%l2
add %l2,%l3,%l4

RAW Hazard
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Simulations of general code percolation for UltraSPARC IIi have shown that there is

much to be gained by using non-faulting loads. For integer programs the average

group size (AGS) sent down the pipeline is 33% larger when code motion is allowed

across one branch (using speculative loads) and 50% larger when instructions can be

moved ahead of two branches.
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CHAPTER 22

Grouping Rules and Stalls

22.1 Introduction
This chapter explains in detail how to group instructions to obtain maximum

throughput in UltraSPARC IIi. The following subsections explain the formatting

conventions that make it easier to understand this information.

22.1.1 Textual Conventions

Rules are presented that consider instructions in three different ways:

Instructions: Actual SPARC-V9 and UltraSPARC IIi machine instructions are always

written in Mixed Case BODY FONT. Examples are:

■ FdMULq (Floating-point multiply double to quad—SPARC-V9)

■ LDDF (Load Double Floating-Point Register—SPARC-V9)

■ SHUTDOWN (Power Down Support—UltraSPARC IIi)

Instruction Families:

These are Groups of related SPARC-V9 instructions, introduced (but not described)

in The SPARC Architecture Manual, Version 9. Instruction families are always written

in Mixed Case Bold Face Body Font. Examples are:

■ BPcc (Branch on Integer Condition Codes with Prediction) consists of the

following instructions: BPA, BPCC, BPCS, BPE, BPG, BPGE, BPGU, BPL, BPLE, BPLEU,

BPN, BPNE, BPNEG, BPPOS, BPVC, and BPVS.
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■ FMOVcc (Move Floating-Point Register on Condition) consists of the following

instructions: FMOV{s,d,q}A, FMOV{s,d,q}CC, FMOV{s,d,q}CS, FMOV{s,d,q}E,

FMOV{s,d,q}G, FMOV{s,d,q}GE, FMOV{s,d,q}GU, FMOV{s,d,q}L, FMOV{s,d,q}LE,

FMOV{s,d,q}LEU, FMOV{s,d,q}N, FMOV{s,d,q}NE, FMOV{s,d,q}NEG, FMOV{s,d,q}POS,

FMOV{s,d,q}VC, and FMOV{s,d,q}VS.

Instruction Classes: These are groups of SPARC-V9 and UltraSPARC IIi instructions

that have similar effects. Instruction classes are always written in lower case italic

body font. Examples are:

■ setcc (any instruction that sets the condition codes)

■ alu (any instruction processed in the Arithmetic and Logic Unit)

22.1.2 Example Conventions

Instructions are shown with offsets between their stages, to indicate the amount of

latency that normally occurs between the instructions. The following instruction

pair—Pipeline Example 22-4—has one cycle of latency:

This instruction pair shown in Pipeline Example 22-5 has no latency.

22.2 General Grouping Rules
Up to four instructions can be dispatched in one cycle, subject to availability from

the instruction buffer, execution resources, and instruction dependencies.

UltraSPARC IIi has input (read-after-write) and output (write- after-write)

dependency constraints, but no anti-dependency (write-after-read) constraints on

instruction grouping.

Instructions belong to one or more of the following categories:

■ Single group

Pipeline Example 22-4 Instruction with one cycle of latency

ADD  i1, i2, i6 G E C N
1

N
2

N
3

W

SLL i6, 2, i8 G E C N
1

N
2

N
3

W

Pipeline Example 22-5 Instruction with no latency

alu → r6 G E C N
1

N
2

N
3

W

store → r6 G E C N
1

N
2

N
3

W
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■ IEU

■ Control transfer

■ Load/store

■ Floating-point/graphics

Note – CALL, RETURN, JMPL, BPr, PST and FCMP{LE,NE,GT,EQ}{16,32} belong to multiple

categories.

22.3 Instruction Availability
Instruction dispatch is limited to the number of instructions available in the

instruction buffer. Several factors limit instruction availability. UltraSPARC IIi

fetches up to four instructions per clock from an aligned group of eight instructions.

When the fetch address (modulo 32) is equal to 20, 24, or 28, then three, two, or one

instruction(s) respectively are added to the instruction buffer. The next cache line

and set are predicted using a next field and set predictor for each aligned four

instructions in the instruction cache. When a set or next field mispredict occurs,

instructions are not added to the instruction buffer for two clocks.

When an I-cache miss occurs, instructions are added to the instruction buffer as data

is returned from the E-cache.

22.4 Single Group Instructions
Certain instructions are always dispatched by themselves to simplify the hardware.

These instructions are: LDD(A), STD(A), block load instructions (LDDF{A} with an ASI

of 70
16

, 71
16

, 78,
16

79
16

, F0
16

, F1
16

, F8
16

, F9
16

), ADDC{cc}, SUBC{cc}, {F}MOVcc, {F}MOVr,

SAVE, RESTORE, {U,S}MUL{cc), MULX, MULScc, {U,S}DIV{X}, {U,S}DIVcc, LDSTUB{A}, SWAP{A},

CAS{X}A, LD{X}FSR, ST{X}FSR, SAVED, RESTORED, FLUSH{W}, ALIGNADDR, RETURN, DONE,

RETRY, WR{PR}, RD{PR}, Tcc, SHUTDOWN, and the second control transfer instruction of

a DCTI couple.
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22.5 Integer Execution Unit (IEU)
Instructions
IEU instructions can be dispatched only if they are in the first three instruction slots.

A maximum of two IEU instructions can be executed in one cycle. There are two IEU

pipelines: IEU
0

and IEU
1
. The two data paths are slightly different, and some IEU

instructions can be dispatched only to a particular pipeline. The following

instructions can dispatched to either IEU pipeline: ADD, AND, ANDN, OR, ORN, SUB,

XOR, XNOR and SETHI. These instructions can be grouped together or with older IEU
0

or IEU
1

specific instructions.

The IEU
0

data path has dedicated hardware for shift instructions: SLL{X}, SRL{X}.

SRA{X}. Two shift instructions cannot be grouped together. Shift instructions can be

grouped with older IEU
1

specific instructions, but they cannot be grouped with older

non-specific IEU instructions. See Pipeline Example 22-6.

The IEU
1

datapath has dedicated hardware for the condition-code-setting

instructions: (TADDcc{TV}, TSUBcc{TV}, ADDcc, ANDcc, ANDNcc, ORcc, ORNcc, SUBcc,

XORcc, XNORcc), EDGE and ARRAY. CALL, JMPL, BPr, PST and FCMP{LE,NE,GT,EQ}{16,32}

also require the IEU
1

data path (besides counting as CTI, store, or floating-point

instructions respectively), since they must access the integer register file. Two

instructions requiring the use of IEU
1

cannot be grouped together; for example, only

one instruction that sets the condition codes can be dispatched per cycle. An IEU
1

instruction can be grouped with older shift instructions and non-specific IEU

instructions.

Note – For UltraSPARC IIi, a valid control transfer instruction (CTI) that was

fetched from the end of a cache line is not dispatched until its delay slot also has

been fetched.

22.5.1 Multi-Cycle IEU Instructions

Some integer instructions execute for several cycles and sometimes prevent the

dispatch of subsequent instructions until they complete.

Pipeline Example 22-6 Showing allowable grouping of shift instructions

ADD  i1, i2, i6 G E C N
1

N
2

N
3

W

SLL i6, 2, i8 G E C N
1

N
2

N
3

W
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MULScc inserts one bubble after it is dispatched.

SDIV{cc} inserts 36 bubbles, UDIV{cc} inserts 37 bubbles, and {U,S}DIVX inserts 68

bubbles after they are dispatched.

MULX, and {U,S}MUL{cc} delay dispatching subsequent instructions for a variable

number of clocks, depending on the value of the rs1 operand. Four bubbles are

inserted when the upper 60 bits of rs1 are zero, or for signed multiplies when the

upper 60 bits of rs1 are one. Otherwise, an additional bubble is inserted each time

the upper 60 bits of rs1 are not all zeros (or all ones for signed multiplies) after

arithmetic right shifting rs1 by two bits. This implies a maximum of 18 bubbles for

SMUL{cc}, 19 bubbles for UMUL{cc}, and 34 bubbles for MULX.

WR{PR} inserts four bubbles after it is dispatched. RDPR from the CANSAVE,

CANRESTORE, CLEANWIN, OTHERWIN, FPRS, and WSTATE registers, and RD

from any register are not dispatchable until four clocks after the instruction reaches

the first slot of the instruction buffer.

Writes to the TICK, PSTATE, and TL registers and FLUSH{W} instructions cause a

pipeline flush when they reach the W Stage, effectively inserting nine bubbles.

22.5.2 IEU Dependencies

Instructions that have the same destination register (in the same register file) cannot

be grouped together, unless the destination register is %g0. Pipeline Example 22-7
gives such an instance.

:

Instructions that reference the result of an IEU instruction cannot be grouped with

that IEU instruction, unless the result is being stored in %g0 See

Pipeline Example 22-8.

There are two exceptions to this rule: Integer stores can store the result of an IEU

instruction other than FCMP{LE,NE,GT,EQ}{16,32} and be in the same group—see

Pipeline Example 22-9:

Pipeline Example 22-7 Instructions with the same destination cannot be grouped
together

alu → i6 G E C N
1

N
2

N
3

W

load → i6 G E C N
1

N
2

N
3

W

Pipeline Example 22-8 Instructions cannot be grouped with the IEU instruction whose
result they reference, unless stored in %g0

alu → i6 G E C N
1

N
2

N
3

W

LDX [i6+i1], i8 G E C N
1

N
2

N
3

W
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Also, BPicc or Bicc can be grouped with an older instruction that sets the condition

codes as in Pipeline Example 22-10.

Instructions that read the result of a MOVcc or MOVr cannot be in the same group or

the following group; see Pipeline Example 22-11.

Instructions that read the result of an FCMP{LE,NE,GT,EQ}{16,32} (including stores)

cannot be in the same group or in the two following groups. STD is treated as

dependent on earlier FCMP instructions, regardless of the actual registers

referenced—Pipeline Example 22-12.

In some cases, UltraSPARC IIi prematurely dispatches an instruction that uses the

result of an FCMP{LE,NE,GT,EQ}{16,32}; it then cancels the instruction in the W Stage

and refetches it. This effectively inserts nine bubbles into the pipe. To avoid this,

software should explicitly force the use instruction to be in the third group or later

after the FCMP{LE,NE,GT,EQ}{16,32}.

MULX, {U,S}MUL{cc}, MULScc, {U,S}DIV{X}, {U,S}DIVcc, and STD cannot be in the two

groups following an FCMP{LE,NE,GT,EQ}{16,32}—see Pipeline Example 22-13.

Pipeline Example 22-9 Exception to rule of Pipeline Example 22-8

alu → r6 G E C N
1

N
2

N
3

W

store → r6 G E C N
1

N
2

N
3

W

Pipeline Example 22-10 Grouping BPicc or Bicc instructions

Group1
seticc G E C N

1
N

2
N

3
W

BPicc G E C N
1

N
2

N
3

W

Pipeline Example 22-11 Grouping for instructions that read results of MOVcc or MOVr

MOVcc %xcc, 0, i6 G E C N
1

N
2

N
3

W

LDX  [i6+i1], i8 G E C N
1

N
2

N
3

W

Pipeline Example 22-12 Rule for instructions that read the result of an
FCMP{LE,NE,GT,EQ}{16,32}

FCMPLE32 f2, f4, i6 G E C N
1

N
2

N
3

W

LDX [i6+i1], i8 G E C N
1

N
2

N
3

W

Pipeline Example 22-13 MULX cannot be in the two groups following
FCMP{LE,NE,GT,EQ}{16,32}

FCMPLE32 f2, f4, i6 G E C N
1

N
2

N
3

W

MUL  i8,i7,i9 G E C N
1

N
2

N
3

W
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FMOVr cannot be in the same group or in the group following an IEU instruction,

even if it does not reference the result of the IEU instruction. It cannot be in the same

group (Pipeline Example 22-14) or the next two groups (Pipeline Example 22-15)

following an FCMP{LE,NE,GT,EQ}{16,32}.

22.6 Control Transfer Instructions
One Control Transfer Instruction (CTI) can be dispatched per group. The following

control transfer instructions are not single group instructions: CALL, BPcc, Bicc,

FB(P)fcc, BPr, and JMPL. CALL and JMPL are always dispatched as the oldest

instruction in the group; that is, a group break is forced before dispatching these

instructions.

DONE, RETRY, and the second instruction of a delayed control transfer instruction

(DCTI) couple flush the pipe when they reach the W Stage, effectively inserting nine

bubbles into the pipe. The pipeline is flushed even if the second DCTI is annulled.

22.6.1 Control Transfer Dependencies

UltraSPARC IIi can group instructions following a control transfer with the control

transfer instruction. Instructions following the delay slot come from the predicted

instruction stream. Examples for a branch predicted taken and a branch predicted

not taken are shown in Pipeline Example 22-16 and Pipeline Example 22-17 respectively.

Pipeline Example 22-14 FMOVr i5,i7 must be at least two groups ahead of an IEU
instruction

ADD  i1, i2, i6 G E C N
1

N
2

N
3

W

FMOVr i5,i7 G E C N
1

N
2

N
3

W

Pipeline Example 22-15 FMOVr cannot be in the next two groups following an
FCMP{LE,NE,GT,EQ}{16,32}

FCMPLE16 → i6 G E C N
1

N
2

N
3

W

FMOVr i5 G E C N
1

N
2

N
3

W
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If the delay slot of a DCTI is aligned on a 32-byte address boundary (that is, the

DCTI is the last instruction in a cache line and the delay slot contains the first

instruction in the next cache line), then the DCTI cannot be grouped with instructions

pcfrom the predicted stream.—Pipeline Example 22-18.

If the second instruction of the predicted stream is aligned on a 32-byte address

boundary, then the DCTI cannot be grouped with that instruction—

Pipeline Example 22-19

The delay slot of a DCTI cannot be grouped with instructions from the predicted

stream of another DCTI following the delay slot—Pipeline Example 22-20.

Pipeline Example 22-16 Branch predicted taken

Group 1

setcc G E C N
1

N
2

N
3

W

BPcc G E C N
1

N
2

N
3

W

FADD (delay slot) G E C N
1

N
2

N
3

W

FMUL (branch target) G E C N
1

N
2

N
3

W

Pipeline Example 22-17 Branch predicted not taken

Group 1

setcc G E C N
1

N
2

N
3

W

BPcc G E C N
1

N
2

N
3

W

FADD (delay slot) G E C N
1

N
2

N
3

W

FDIV (sequential) G E C N
1

N
2

N
3

W

Pipeline Example 22-18 Case when DCTI cannot be grouped with instructions from the
predicted stream

Group 1

setcc G E C N
1

N
2

N
3

W

BPcc G E C N
1

N
2

N
3

W

FADD (32-byte aligned) G E C N
1

N
2

N
3

W

Group 2 FMUL (branch target) G E C N
1

N
2

N
3

W

Pipeline Example 22-19 Cannot group DCTI with second instruction of predicted stream
if it is on a 32-byte boundary

Group 1

BPcc G E C N
1

N
2

N
3

W

ADD (delay slot) G E C N
1

N
2

N
3

W

FADD G E C N
1

N
2

N
3

W

Group 2 FMUL (32-byte aligned) G E C N
1

N
2

N
3
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When a control transfer is mispredicted, the instruction buffer and instructions

younger than the delay slot in the pipe are flushed, effectively inserting four bubbles

in the pipe. An FDIV or FSQRT in the mispredicted stream causes dependent

instructions in the correct branch stream to stall until the FDIV or FSQRT reaches the

W
1

Stage
1
. Pipeline Example 22-21 shows the case If the branch in the previous

example was predicted not taken but actually were taken.

If an annulling branch is predicted not taken, the delay slot is still dispatched.

Multicycle instructions (except load instructions) run to completion, even if the

delay slot instruction is annulled—Pipeline Example 22-22.

The imul unit is busy for the duration of the multiply.

An annulled delay slot, other than a load, affects subsequent dependency checking

until the delay slot reaches the W
1

Stage—Pipeline Example 22-23.

Pipeline Example 22-20 Cannot group DCTI delay slot with instructions from predicted
stream of following DCTI

Group 1 FADD (delay slot 1) G E C N
1

N
2

N
3

W

BPcc G E C N
1

N
2

N
3

W

ADD (delay slot 2) G E C N
1

N
2

N
3

W

Group 2 FMUL (branch target) G E C N
1

N
2

N
3

W

1. The W
1

Stage is a virtual stage that is normally not visible to the programmer.

Pipeline Example 22-21 Stall after mispredicted control transfer

Group
1

setcc G E C N
1

N
2

N
3

W

BPcc (mispredicted) G E C N
1

N
2

N
3

W

FADD (delay slot) G E C N
1

N
2

N
3

W

FMUL → f0 (sequential) G E C N
1

N
2

N
3

W W
1

Group
2 FMUL f0,f0,f0 (branch target) G E

Pipeline Example 22-22 Multicycle instructions complete when delay-slot instruction is
annulled

BPcc, a (not taken) G E C N
1

N
2

N
3

W

imul (delay slot) G E E E E E E . . .

Pipeline Example 22-23 Annulled delay-slot affects subsequent dependency checking

Group 1

BPcc, a (not taken) G E C N
1

N
2

N
3

W

FDIV → f0 (delay
slot)

G E C N
1

N
2

N
3

W W
1
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In the example above, the FADD instruction is stalled in issue until the FDIV
instruction completes.

A predicted annulled load does not affect dependency checking after it is

dispatched—Pipeline Example 22-24.

An annulled load use or floating-point use is treated as a dependent instruction until

the N
2

Stage of the branch—Pipeline Example 22-25.

If the annulling branch is grouped with a delay slot containing a load use, the group

will pay the full load use penalty even if the load use is annulled. This is because the

branch is not resolved until the use stall is released.

WR{PR}, SAVE, SAVED, RESTORE, RESTORED, RETURN, RETRY, and DONE are stalled in the

G-stage until earlier annulling branches are resolved, even if they are not in the

delay slot. This means that they cannot be dispatched in the same group or the first

three groups following an annulling branch instruction; see Pipeline Example 22-26.

Group 2
FADD f0,f0,f1
(sequential)

G

Pipeline Example 22-24 Predicted annulled load does not affect dependency
checking after dispatch

Group 1

BPcc, a (predicted not
taken)

G E C N
1

N
2

N
3

W

fld → f0 (delay slot) G E C N
1

N
2

N
3

W

Group 2
FADD f0,f0,f1
(sequential)

G E C N
1

N
2

N
3

W

Pipeline Example 22-25 Use treated as a dependent instruction

Group 1 FADD f7,f7,f6 G E C N
1

N
2

N
3

W

Bcc, a (not taken) G E C N
1

N
2

N
3

W

bubble(2)

Group 2 FADD f6,f7,f8 G flushed

Group 3 FADD f6,f7,f8 G E C N
1

N
2

Pipeline Example 22-23 Annulled delay-slot affects subsequent dependency checking
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LDD{A}, LDSTUB{A}, SWAP{A} and CAS{X}A are stalled in the G-stage if there is a

delayed control transfer instruction in the E Stage or C Stage; see

Pipeline Example 22-27.

22.7 Load / Store Instructions
Load / store instructions can be dispatched only if they are in the first three

instruction slots. One load/store instruction can be dispatched per group. Load /

store instructions other than single group are: LD{SB,SH,SW,UB,UH,UW,X}{A}, LD{D}F{A},

ST{B,H,W,X}{A}, STF{A}, STDF{A}, JMPL, MEMBAR, STBAR, PREFETCH{A}.

LDD{A}, STD{A}, LDSTUB{A}, SWAP{A} will not dispatch younger instructions for one

clock after they are dispatched. CAS{X}A will not dispatch younger instructions for

two clocks after they are dispatched.

Loads are not stalled on a cache miss, instead they are enqueued in the load buffer

until data can be returned. Load data is returned in the order that loads are issued,

so a cache miss forces subsequent load hits to be enqueued until the older load miss

data is available.

Stores are not stalled on a cache miss. Stores are enqueued in the store buffer until

data can be written to the E-cache SRAM for cacheable accesses, to PCI or UPA64S

for noncacheable accesses, or to the internal register for internal ASIs. Store data is

written in the order that stores are issued, so a cache miss forces subsequent store

hits to remain enqueued until the older store miss data is written out.

Pipeline Example 22-26 Some instructions cannot be dispatched within three groups
of an annulling branch instruction

Bicc, a G E C N
1

N
2

N
3

W

SAVE G E C N
1

N
2

Pipeline Example 22-27 Instructions that stall for delayed control transfer instruction

Bicc G E C N
1

N
2

N
3

W

Bubble(2)

LDD G E C N
1

N
2
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22.7.1 Load Dependencies and Interaction with Cache

Hierarchy

Instructions that reference the result of a load instruction cannot be grouped with

the load instruction or in the following group unless the register is %g0; see
Pipeline Example 22-28.

Single-precision floating-point loads lock the double register containing the single

precision rd for data dependency checking—Pipeline Example 22-29.

Instructions other than floating-point loads that have the same destination register

as an outstanding load are treated the same as a source register dependency—

Pipeline Example 22-30.

When an instruction referencing a load result enters the E Stage and the data is not

yet returned, all instructions in the E Stage and earlier will be stalled. If there are

multiple load uses, then all E-Stage and earlier instructions will be stalled until loads

that have dependencies return data. E-Stage stalls can occur when referencing the

result of a signed integer load, a load that misses the D-cache or a D-cache load hit

whose data is delayed following one of the two previous cases.

Pipeline Example 22-28 Grouping instructions that reference the result of a load
instruction

LDDF [r1], f6 (not enqueued) G E C N
1

N
2

N
3

W

Bubble(1)

FMULd  f4, f6, f8 G E C N
1

N
2

N
3

Pipeline Example 22-29 Single-precision floating-point loads

LDF [r1], f6 (not enqueued) G E C N
1

N
2

N
3

W

Bubble(1)

FMULs f7, f7, f8 G E C N
1

N
2

N
3

Pipeline Example 22-30 Instructions other than floating-point loads

load i6 (not enqueued) G E C N
1

N
2

N
3

W

ADD i2, i1, i6 G E C N
1

N
2

N
3
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22.7.1.1 Delayed Return Mode

Signed integer loads that hit the D-cache cause UltraSPARC IIi to enter delayed

return mode. In delayed return mode, an extra clock of delay is added to all

returning load data. UltraSPARC IIi remains in delayed return mode until some load

other than a signed integer D-cache hit can return data in the normal time without

colliding with a delayed return mode load.

22.7.1.2 Cache Timing

The following example illustrates D-cache hit timing. The first load causes

UltraSPARC IIi to enter delayed return mode, returning data in the N
1

Stage. The

second load is also in delayed return mode returning data in its N
1

Stage, otherwise

it would collide with the first load data. The group containing the third load and the

first ADD (which references the first load data) is stalled in the E Stage for one clock

until both load uses by the first ADD have returned data. Since the third load is

stalled in E, its normal C Stage data return will not collide with a previous delayed

return mode load. This allows the last ADD to avoid an E Stage stall. If the third

load were not grouped with the first ADD, it would not be stalled in the E Stage, and

the last ADD would be dispatched one clock earlier. The third load causes the

pipeline to exit delayed return mode.

22.7.1.3 Block Memory Accesses

Unlike other loads, block loads do not lock all of their destination registers. If there

are two block loads outstanding, any instruction except a block store is held in the

G-stage until the first block load leaves the load buffer. A block load leaves the load

buffer when its first word of data has returned.

Pipeline Example 22-31 Illustrating D-cache hit timing

Group
1 LDSB [i1], i6 (D-cache hit) G E C N

1
N

2
N

3
W

Group
2 LDB [i3], i7 (D-cache hit) G E C N

1
N

2
N

3
W

Bubble(1)

Group
3 LDB [i7], i4 (D-cache hit) G E E C N

1

Group
4 ADD i6,i7,i8 G E E C N

1
N

2

Stall

Bubble(2))

Group
5 ADD i4,i5,i91ta G E C
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22.7.1.4 Read-After-Write and Interaction with Store Buffer

If a load hits the D-cache and overlaps a store in the store buffer, the load does not

return data until two clocks after the store updates the D-cache. The overlap check is

pessimistic, because only the lower 14 bits of the effective memory address are

checked. If a store is issued one clock earlier than an overlapping load that hits the

D-cache, the load data is returned seven clocks later than normal. If a load misses

the D-cache and if bits 13..4 of the load’s effective memory address are the same as a

store in the store buffer, the load data is not returned until six clocks after the store

leaves the store buffer. If a store is issued one clock earlier than a D-cache miss load

and bits 13..4 of the address are the same, the load data is returned six clocks later

than a normal D-cache miss load.

MEMBAR #StoreLoad or #MemIssue blocks younger loads from returning data

until three clocks after no older stores are outstanding (see Section 22.7.2, Store
Dependencies on page 359). In the best case, a load use is stalled in the E Stage until

15 clocks after the previous store is dispatched.

22.7.1.5 Other Timing Issues

LD{X}FSR blocks dispatch of younger floating-point / graphics instructions that

reference floating-point registers, FB{P}fcc, MOVfcc, ST{X}FSR, and LD{X}FSR instructions

until four clocks after the data is returned in delayed return mode, and five clocks

after the load data is returned otherwise. For example, if there are no outstanding

load misses from the D-cache:

LDD{A} instructions are held in the G-stage until three clocks after the N
3

Stage, or

until older loads have returned data. If LDD{A} is dispatched and a miss occurs on an

N
2

Stage or earlier load, the instruction will be canceled in the W Stage and fetched

again. It will then be held in the G-stage until three clocks after older loads have

returned data.

FLUSH{W}, {F}MOVr, MOVcc, RDFPRS, STD{A}, loads and stores from an internal ASI (4x-

6x, 76, 77), SAVE, RESTORE, RETURN, DONE, RETRY, WRPR, and MEMBAR #Sync
instructions cannot be dispatched until three clocks after older loads have returned

data. The instruction is stalled in the G-stage until the N
3

Stage of the earliest

outstanding load, if the load is not enqueued. For example:

Pipeline Example 22-32 LD{X}FSR blocks FP instruction issue.

LDFSR (D-cache hit) G E C N
1

N
2

N
3

W W
1

W
2

FMULS f7,f7,f8 G
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LD{SB,SH,SW,UB,UH,UW,X}{A}, LD{D}F{A}, LDD{A}, LDSTUB{A}, SWAP{A}, CAS{X}A, LD{X}FSR,

MEMBAR #MemIssue and MEMBAR #StoreLoad are held in the G-stage if there are

already nine outstanding loads. A load is considered outstanding from the clock that

it enters the E Stage through the clock that it returns data.

22.7.2 Store Dependencies

A store is considered outstanding from the clock that it enters the E-stage until two

clocks after the data leaves the store buffer. Data leaves the store buffer when the

write is issued to the E-cache SRAM for cacheable accesses, to PCI or UPA64S for

noncacheable accesses, and to internal register for internal ASI. If there is no extra

delay, a noncacheable store or cacheable store that misses the D-cache is outstanding

for ten clocks after it is dispatched. An internal ASI or cacheable store that hits the

D-cache is outstanding for eleven clocks after it is dispatched. If the last two stores

in the store buffer are writing to the same 8-byte block and both are ready to go to

the E-cache, the store buffer compresses the two entries into one. This reduces the

number of outstanding stores by one. Compression is repeated as long as the last

two entries are ready to go and are compressible. There is additional compression of

sequential 8-byte stores tp UPA64S.

ST{B,H,W,X}{A}, STF{A}, STDF{A}, STD{A}, LDSTUB{A}, SWAP{A}, CAS{X}A, FLUSH, STBAR,

MEMBAR #StoreStore , and MEMBAR #LoadStore are not dispatched if there are

already eight outstanding stores. A block store counts as eight outstanding stores

when it is dispatched.

If bits 13..4 of a store’s effective memory address are the same as an older load in the

load buffer, the store remains outstanding until four clocks after the load is not

outstanding.

See Event Ordering on UltraSPARC IIi on page 429 for other details of event ordering.

LDSTUB, SWAP, CAS{X}A, store to internal ASI, block store, FLUSH, and MEMBAR #Sync
instructions are not dispatched until no older stores are outstanding. The maximum

rate of internal ASI stores or atomics is one every 12 clocks.

ST{X}FSR cannot be dispatched in the two groups following another ST{X}FSR.

PDIST cannot be dispatched in the group after a floating-point store or when a block

store is outstanding.

Pipeline Example 22-33 Some instructions must wait three clocks from data return of
prior loads

load (not enqueued) G E C N
1

N
2

N
3

W

SAVE G E C N
1
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22.8 Floating-Point and Graphic Instructions
Floating-point and graphics instructions that reference floating-point registers are

divided into two classes: A and M. Two of these instructions can be dispatched

together only if they are in different classes.

A Class:

F{i,x}TO{s,d}, F{s,d}TO{d,s}, F{s,d}TO{i,x}, FABS{s,d}, FADD{s,d}, FALIGNDATA, FAND{s},

FANDNOT1{s}, FANDNOT2{s}, FCMP{E}{s,d}, FEXPAND, FMOVr{s,d}, FMOV{s,d}cc, FNAND{s},

FNEG{s,d}, FNOR{s}, FNOT1{s}, FNOT2{s}, FONE{s}, FOR{s}, FORNOT1{s}, FORNOT2{s},

FPADD{16,32}{s}, FPMERGE, FPSUB{16,32}{s}, FSRC1{s}, FSRC2{s}, FSUB{s,d}, FXNOR{s}, FXOR{s},

and FZERO{s}.

M Class:

FCMP{LE,NE,GT,EQ}{16,32}, FDIST, FDIV{s,d}, FMUL{d}8SUx16, FMUL{d}8ULx16, FMUL{s,d},

FMUL8x16{AL,AU}, FPACK{16,32,FIX}, FsMULd, and FSQRT{s,d}.

FDIV{s,d}, FSQRT{s,d}, and FCMP{LE,NE,GT,EQ}{16,32} instructions break the group; that is,

no earlier instructions are dispatched with these instructions.

22.8.1 Floating-Point and Graphics Instruction

Dependencies

Instructions that have the same destination register (in the same register file) cannot

be grouped together. For example:

FBfcc cannot be grouped with an older FCMP{E}{s,d}, even if they reference different

floating-point condition codes. For example:

Pipeline Example 22-34 Instructions with the same destination register cannot be
grouped

FADD f 2, f2, f6 G E C N
1

N
2

N
3

W

LDF [r0+r1], f6 G E C N
1

N
2

N
3

W

Pipeline Example 22-35 These two instructions cannot be grouped

FCMP  fcc0, f2, f4 G E C N
1

N
2

N
3

W

FBfcc fcc1, target G E C N
1

N
2

N
3

W
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It is possible, however, for an FCMP{E}{s,d} to be grouped with an older FBfcc in the

same group. For example:

An FMOVcc that references the same condition code set by a FCMP{E}{s,d} cannot be in

the same or the following group. For example:

FMOVcc cannot be in the same group as FCMP{E}{s,d}, because they are both A-Class

floating-point instructions.

MOVcc based on a floating-point condition code can be in the same group as an

FCMP{E}{s,d}, however, if they reference different condition codes. For example:

Latencies between dependent floating-point and graphics instructions are shown in

Table 22-2 on page 365. Latencies depend on the instruction generating the result (use

the left column of the table to select a row) and the operation using the result (use

the top row of the table to select a column). For example, Pipeline Example 22-39:

Pipeline Example 22-36 FCMP{E}{s,d} can be grouped with an older FBfcc

FBfcc G E C N
1

N
2

N
3

W

FCMP G E C N
1

N
2

N
3

W

Pipeline Example 22-37 Grouping for FMOVcc that references the same condition code
set by a FCMP{E}{s,d}

FCMP fcc0, f2, f4 G E C N
1

N
2

N
3

W

FMOVcc fcc0, f6, f8 G E C N
1

N
2

N
3

W

Pipeline Example 22-38 MOVcc can be grouped with an FCMP{E}{s,d} if FP
condition codes are different

FCMP fcc0, f2, f4 G E C N
1

N
2

N
3

W

MOVcc fcc1, f6, f8 G E C N
1

N
2

N
3

W

Pipeline Example 22-39 Groupings also depend upon latency of the instruction
producing a result for a subsequent operation

FADDs f2, f3, f0 G E C N
1

N
2

N
3

W

FMULs f6, f1, f2 G E C N
1

N
2

N
3

FADDs f2, f3, f0 G E C N
1

N
2

N
3

W

FMOVs f6,f1,f2 G E C N
1

N
2
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FDIV{s,d}, FSQRT{s,d}, block load, block store, ST{X}FSR, and LD{X}FSR instructions wait in

the G-stage for the remaining latency of the previous divide or square root, even if

there is no data dependency. An FGA or FGM instruction (see Table 22-2) that first

enters the G-stage one cycle before an FDIV or FSQRT dependent instruction would

be released will be held for one clock, regardless of data dependency.

FDIV and FSQRT use the floating-point multiplier for final rounding, so an M-Class

operation cannot be dispatched in the third clock before the divide is finished. A

load use stall that occurs in the third or fourth clock before normal divide

completion will delay completion by a corresponding amount.

FDIV and FSQRT stall earlier instructions with the same rd (including floating-point

loads) for the same time as a source register dependency.

Graphics instructions, FdTOi, FxTOs, FdTOs, FDIVs, and FSQRTs lock the double-

precision register containing the single-precision result for data dependency

checking. For example:

Floating-point stores other than ST{X}FSR can store the result of a floating-point or

graphics instruction other than FDIV or FSQRT and be in the same group. For

example:

Floating-point stores of the result of an FDIV or FSQRT are treated the same as a

dependent floating-point instruction.

ST(X)FSR cannot be dispatched in the two groups following a floating-point or

graphics instruction that references the floating-point registers. For example:

Pipeline Example 22-40 Group separation because of dependency checking of prior
result

FORs f2, f4, f0 G E C N
1

N
2

N
3

W

FANDs f1, f1, f1 G E C N
1

N
2

N
3

W

Pipeline Example 22-41 Most FP stores can be in the same group

FADDs f2, f5, f6 G E C N
1

N
2

N
3

W

STF f6, [address] G E C N
1

N
2

N
3

W

Pipeline Example 22-42 ST(X)FSR cannot be in two groups following a reference to the FP
registers

FMULd G E C N
1

N
2

N
3

W

STFSR G E C N
1

N
2

N
3
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To simplify critical timing paths, floating-point operations are usually stalled in the

G-stage until earlier floating-point operations with a different precision complete,

regardless of data dependency. This behavior is described more precisely in the

following two rules. Floating-point loads and stores are independent of these mixed

precision rules.

A floating-point or graphics instruction that follows an FMOV, FABS, FNEG of

different precision breaks the group, even if there is no data dependency. For

example:

A floating-point or graphics instruction following an operation other than FMOV,

FABS, FNEG, FDIV, FSQRT of different precision is stalled until the N
2

Stage of the

earlier operation, even if there is no data dependency. For example:

As an exception to the previous rule, FDIV or FSQRT can be grouped with an older

operation of different precision, but are stalled until the N
2

Stage of the earlier

operation otherwise.

For the preceding two rules, all graphics instructions, FDIVs, FSQRTs, FdTOi, FsTOx,

FiTOd, FxTOs, FsTOd, FdTOs, and FsMULd are considered to be double, even though a

single-precision register is referenced. For example, the following instructions can be

grouped together:

Pipeline Example 22-43 Group separation for instructions following FMOV, FABS,
FNEG, of differing precision

FMOVs G E C N
1

N
2

N
3

W

FMULd G E C N
1

N
2

N
3

W

Pipeline Example 22-44 Stall for instructions following other instructions of differing
precision

FADDs f2, f5, f0 G E C N
1

N
2

N
3

W

FMULd f2, f2, f2 G E C N
1

N
2

Pipeline Example 22-45 Instructions grouped because graphics instruction is considered
as double

FORs f2, f4, f0 G E C N
1

N
2

N
3

W

FANDs f2, f2, f2 G E C N
1

N
2

N
3

W
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22.8.2 Floating-Point and Graphics Instruction Latencies

Table 22-2 on page 365 documents the latencies for floating-point and graphics

instructions. For table entries containing two numbers, premature dispatching

occurs when the destination and source precision are different, but both are treated

as double because of a graphics or mixed-precision floating-point instruction. To

avoid the pipe flush overhead, software should explicitly force the use instruction to

be at least the latency number of groups after the source instruction. Mixed precision

bypassing is unlikely to occur with floating-point data. Software scheduling is only

needed for initializing the PDIST rd register and for graphics instructions single

results used as part of a double-precision graphics source operand, or vice versa.

The table uses the following abbreviations:

Table 22-1 Abbreviations Used in Table 22-2

Abbrev. Meaning

FGA Graphics A-Class instruction

FGM Graphics M-Class instruction

FPA Floating-point A-Class instruction

FPM Floating-point M-Class instruction
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Table 22-2 Latencies for Floating-Point and Graphics Instructions

Result used by → FPA or FPM FGA FGM

Result
generated
by:
↓

FADD{s,d}

FSUB{s,d}

F{s,d}TO{i,x}

F{i,x}TO{d,s}

F{s,d}TO{d,s}

FCMP{s,d}

FCMPE{s,d}

FMUL{s,d}

FsMULd

FDIV{s,d}

FSQRT{s,d}

FMOVr{s,d}

FMOVcc{s,d}

FMOV{s,d}

FABS{s,d}

FNEG{s,d}

FPADD{16,32}{s}

FPSUB{16,32}{s}

FALIGNDATA

FPMERGE

FEXPAND

FPACK{16,32,FIX}

FMUL8x16{AL,A

U}

FMUL{d}8ULx16

FMUL{d}8SUx16

PDIST{rs1, rs2}

FCMPLE{16,32}

FCMPNE{16,32}

FCMPGT{16,32}

FCMPEQ{16,32}

PDIST

{rd}

FPA or
FPM

FADD{s,d}

FSUB{s,d}

F{s,d}TO{i,x}

F{i,x}TO{d,s}

F{s,d}TO{d,s}

FMUL{s,d}

FsMULd

3[4]
1

1. Latency numbers enclosed in square brackets ([ ]) indicate cases where the hardware may prematurely dis-
patch a dependent instruction from the G-stage, cancel it in the W Stage, and then refetch it. This effectively
inserts nine bubbles into the pipe.

4 4 [2]
1

FDIVs, FSQRTs 12[13]
1

13 13 13

FDIVd, FSQRTd 22[23]
1

23 23 23

FGA

FMOV{s,d}

FABS{s,d}

FNEG{s,d}

1 1 1 [2]
1

FMOVr{s,d}

FMOVcc{s,d}
2 2 2 [2]

1

FPADD{16,32}{s}

FPSUB{16,32}{s}

FALIGNDATA

FPMERGE

FEXPAND

2 1 1[2]
1

[2]
1

FGM

FPACK{16,32,FIX} 4 3 1[4]
1

[2]
1

FMUL8x16{AL,A

U}

FMUL{d}8ULx16

FMUL{d}8SUx16

PDIST

4 3 3[4]
1

1
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APPENDIX A

Debug and Diagnostics Support

A.1 Overview
All debug and diagnostics accesses are double-word aligned, 64-bit accesses. Non-

aligned accesses cause a mem_address_not_aligned trap. Accesses must use LDXA/

STXA/LDFA/STDFA instructions, except for the instruction cache ASIs which must

use LDDA/STDA/STDFA. Using another type of load or store causes a

data_access_exception trap (with SFSR.FT=8, Illegal ASI size). An Attempt to access

these registers in non-privileged mode causes a data_access_exception trap (with

SFSR.FT=1, privilege violation). User accesses can be made through system calls to

these facilities. See Section 15.9.4, I-/D-MMU Synchronous Fault Status Registers
(SFSR) on page 216 for SFSR details.

Caution – A STXA to any internal debug or diagnostic register requires a MEMBAR

#Sync before another load instruction is executed. The MEMBAR #Sync must also

be done on or before the delay slot of a delayed control transfer instruction of any

type. This condition is not only to guarantee that the result of the STXA is seen; the

STXA may corrupt the load data if there is not an intervening MEMBAR #Sync .

A.2 Diagnostics Control and Accesses
The UltraSPARC IIi diagnostics control and data registers are accessed through

RDASR/WRASR or through load/store alternate instructions.
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A.3 Dispatch Control Register
ASR 0x12: The Dispatch Control Register, ASR 0x12, enables performance features

related to instruction dispatch, and also controls the output of internal signals to

UltraSPARC IIi SYSADR[14:0] pins to help in chip debug and instrumentation.

For a more detailed description, see Section I.1.2, Dispatch Control Register on

page 434.

A.4 Floating-Point Control
Two state bits (PSTATE.PEF and FPRS.FEF) in the SPARC-V9 architecture provide

the means to disable direct floating-point execution. If either field is cleared, an

fp_disabled trap is taken when a floating-point instruction is encountered.

Note – Graphics instructions that use the floating-point register file and instructions

that read or update the Graphic Status Register (GSR) are treated as floating-point

instructions. They cause an fp_disabled trap if either PSTATE.PEF or FPRS.FEF is

cleared. See Section 13.4, Graphics Instructions on page 134 for more information.

A.5 Watchpoint Support
UltraSPARC IIi implements “break before” watchpoint traps; instruction execution is

stopped immediately before the watchpoint memory location is accessed. TABLE A-1
on page 369 lists ASIs that are affected by the two watchpoint traps. For 128-bit

atomic load and 64-byte block load and store, a watchpoint trap is generated only if

the watchpoint overlaps the lowest addressed 8 bytes of the access.

Note – In order to avoid trapping indefinitely, software should emulate the

instruction at the watched address and execute a DONE instruction or turn off the

watchpoint before exiting a watchpoint trap handler.
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A.5.1 Instruction Breakpoint

There is no hardware support for instruction breakpoint in UltraSPARC IIi. The TA

(Trap Always) instruction can be used to set program breakpoints.

A.5.2 Data Watchpoint

Two 64-bit data watchpoint registers provide the means to monitor data accesses

during program execution. When virtual/physical data watchpoint is enabled, the

virtual/physical addresses of all data references are compared against the content of

the corresponding watchpoint register. If a match occurs, a VA_/PA_watchpoint trap is

signalled before the data reference instruction is completed. The virtual address

watchpoint trap has higher priority than the physical address watchpoint trap.

Separate 8-bit byte masks allow watchpoints to be set for a range of addresses. Zero

bits in the byte mask causes the comparison to ignore the corresponding bytes in the

address. These watchpoint byte masks and the watchpoint enable bits reside in the

LSU_Control_Register. See Section A.6, LSU_Control_Register on page 370 for a

complete description.

TABLE A-1 ASIs Affected by Watchpoint Traps

ASI Type ASI Range D-MMU
Watchpoint if
Matching VA

Watchpoint if
Matching PA

Translating ASIs 04
16

..11
16

,

18
16

..19
16

,

24
16

..2C
16

,

70
16

..71
16

,

78
16

..79
16

,

80
16

..FF
16

On

Off

Y

N

Y

Y

Bypass ASIs 14
16

..15
16

,

1C
16

..1D
16

— N Y

Nontranslating ASIs 45
16

..6F
16

,

76
16

..77
16

,

7E
16

..7F
16

— N N
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A.5.3 Virtual Address (VA) Data Watchpoint Register

Figure A-1 VA Data Watchpoint Register Format (ASI 58
16

, VA=38
16

)

DB_VA: The 64-bit virtual data watchpoint address

Note – UltraSPARC-I and UltraSPARC-II support a 44-bit virtual address space.

Software must write a sign-extended 64-bit address into the VA watchpoint register.

The watchpoint address is sign-extended to 64 bits from bit 43 when read.

A.5.4 Physical Address Data Watchpoint Register

Figure A-2 PA Data Watchpoint Register Format (ASI 58
16

, VA=40
16

)

DB_PA: The 41-bit physical data watchpoint address

Note – UltraSPARC-I and UltraSPARC-II support a 41-bit physical address space.

Software must write a zero-extended 64-bit address into the watch point register.

A.6 LSU_Control_Register
ASI 45

16
, VA=00

16

Name: ASI_LSU_CONTROL_REGISTER

The LSU_Control_Register contains fields that control several memory-related

hardware functions in UltraSPARC IIi. These include I-cache, D-cache, MMUs, bad

parity generation, and watchpoint setting. See also Table 17-5 on page 261 for the

state of this register after reset or RED_state trap.

63 23 044 43

—DB_VA

63 23 041 40

—DB_PA
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Figure A-3 LSU_Control_Register Access Data Format (ASI 45
16

)

A.6.1 Cache Control

IC:L SU.I-cache_enable; if cleared, misses are forced on I-cache accesses with no

cache fill.

DC:L SU.D-cache_enable; if cleared, misses are forced on D-cache accesses with no

cache fill. A FLUSH, DONE, or RETRY instruction is needed after software changes

this bit to ensure the new information is used.

A.6.2 MMU Control

IM: LSU.enable_I-MMU; if cleared, the I-MMU is disabled (pass-through mode).

DM: LSU.enable_D-MMU; if cleared, the D-MMU is disabled (pass-through mode).

Note – When the MMU/TLB is disabled, a VA is passed through to a PA. Accesses

are assumed to be non-cacheable with side-effects.

A.6.3 Parity Control

FM<7:0>: LSU.parity_mask; if set, UltraSPARC IIi writes generate incorrect parity on

the E-cache data bus for bytes corresponding to this mask. The parity_mask

corresponds to the eight bytes of the E-cache data bus.

Note – The parity mask is endian-neutral.

63 1920 4 0

— FMPR IC

1

DC

2

IM

3

DM

40

PM

33 32

VM

25 24

PW

23

VR

22

VW

21

—

4144

—

43

—

42

—
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A.6.4 Watchpoint Control

Watchpoint control is further discussed in Section A.5, Watchpoint Support on

page 368.

A.6.4.1 Virtual Address Data Watchpoint Enable

VR, VW: LSU.virtual_address_data_watchpoint_enable; if VR/VW is set, a data

read/write that matches the (range of) addresses in the virtual watchpoint register

causes a watchpoint trap. Both VR and VW may be set to place a watchpoint for

either a read or write access.

A.6.4.2 Virtual Address Data Watchpoint Byte Mask

VM<7:0> LSU.virtual_address_data_watchpoint_mask; the

virtual_address_data_watch_point_register contains the virtual address of a 64-bit

word to be watched. The 8-bit virtual_address_data_watch_point_mask controls

which bytes within the 64-bit word should be watched. If all eight bits are cleared,

the virtual watchpoint is disabled. If watchpoint is enabled and a data reference

overlaps any of the watched bytes in the watchpoint mask, a virtual watchpoint trap

is generated.

TABLE A-2 LSU Control Register: Parity Mask Examples

Parity
Mask

Addr of Bytes
Affected

7654 3210

00
16

0000 0000

01
16

0000 0000

22
16

0010 0010

FF
16

1111 1111

TABLE A-3 LSU Control Register: VA/PA Data Watchpoint Byte Mask Examples

Watchpoint
Mask

Addr of Bytes Watched

7654 3210

00
16

Watchpoint disabled
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A.6.4.3 Physical Address Data Watchpoint Enable

PR, PW: LSU.physical_address_data_watchpoint_enable; if PR/PW is set, a data

read/write that matches the (range of) addresses in the physical watchpoint register

causes a watchpoint trap. Both PR and PW may be set to place a watchpoint on

either a read or write access.

A.6.4.4 Physical Address Data Watchpoint Byte Mask

PM<7:0>: LSU.physical_address_data_watchpoint_mask; the

physical_address_data_watch_point_register contains the physical address of a 64-

bit word to be watched. The 8-bit physical_address_data_watch_point_mask

controls which bytes within the 64-bit word should be watched. If all eight bits are

cleared, the physical watchpoint is disabled. If the watchpoint is enabled and a data

reference overlaps any of the watched bytes in the watchpoint mask, a physical

watchpoint trap is generated.

A.7 I-cache Diagnostic Accesses
The instruction cache (I-cache) utilizes the Dynamic Set Prediction technique to

realize a set-associative cache with a direct-mapped physical RAM design. The

direct-mapped RAM core is logically divided into two sets. Rather than using the tag

to determine which set contains the requested instructions, a set prediction from the

last access to the I-cache is used to access the instructions for the current fetch.

01
16

0000 0001

32
16

0011 0010

FF
16

1111 1111

TABLE A-3 LSU Control Register: VA/PA Data Watchpoint Byte Mask Examples

Watchpoint
Mask

Addr of Bytes Watched

7654 3210
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Figure A-4 Simplified I-cache Organization (Only 1 Set Shown)

Each set of the I-cache is divided into four fields per entry:

■ The instruction field contains eight 32-bit instructions.

■ The tag field contains a 28-bit physical tag and a valid bit.

■ The pre-decode field contains eight 4-bit information packets about the

instructions stored.

■ The next field contains the LRU bit, next address, branch and set predictions.

There is one physical LRU bit per I-cache line (that is, 16 instructions) but it is

logically replicated for each set. There are four 2-bit dynamic branch prediction

(BRPD) fields, one for each two adjacent instructions. Two sets of set prediction

and next address fields, one for each four instructions.

Note – To simplify the implementation, read access to the instruction cache fields

(ASIs 60
16

..6F
16

) must use the LDDA instruction instead of LDXA or LDDFA. Using

another type of load causes a data_access_exception trap (with SFSR.FT=8, Illegal ASI

size). LDDA updates two registers. The useful data is in the odd register, the

contents of the even register are undefined.

A.7.1 I-cache Instruction Fields

ASI 66
16

, VA<63:14>=0, VA<13>=IC_set, VA<12:3>=IC_addr, VA<2:0>=0

Name: ASI_ICACHE_INSTR

Figure A-5 I-cache Instruction Access Address Format (ASI 66
16

)

IC_set: This 1-bit field selects a set (2-way associative).

instructionpre-decodeBRPDsp
8×32b8×4b4×2b2×11b

Cache

tag
28b

valid
1b

LRU
1b

next
2×1b

 Lines

63 23 0

— —IC_set IC_addr

121314
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IC_addr: This 10-bit index <12:3> selects an aligned pair of 32-bit instructions.

Figure A-6 I-cache Instruction Access Data Format (ASI 66
16

)

IC_instr: two 32-bit instruction fields

A.7.2 I-cache Tag/Valid Fields

ASI 67
16

, VA<63:14>=0, VA<13>=IC_set, VA<12:5>=IC_addr, VA<4:0>=0

Name: ASI_ICACHE_TAG

Figure A-7 I-cache Tag/Valid Access Address Format (ASI 67
16

)

IC_set: This 1-bit field selects a set (2-way associative).

IC_addr: This 8-bit index (VA<12:5>) selects a cache tag.

Figure A-8 I-cache Tag/Valid Field Data Format (ASI 67
16

)

Undefined: The values of these bits are undefined on reads and must be masked off

by software.

IC_valid: The 1-bit valid field

IC_tag: The 28-bit physical tag field (PA<40:13> of the associated instructions)

A.7.3 I-cache Predecode Field

ASI 6E
16

, VA<63:14>=0, VA<13>=IC_set, VA<12:5>=IC_addr, VA<4:3>=IC_line,

VA<2:0>=0

63 0

IC_instr 0

3233

IC_instr 1

63 45 0

— —IC_set IC_addr

121314

63 0

Undefined IC_valid IC_tag

353637 78

Undefined
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Name: ASI_ICACHE_PRE_DECODE

Figure A-9 I-cache Predecode Field Access Address Format (ASI 6E
16

)

IC_set: This 1-bit field selects a set (2-ways).

IC_addr: This 8-bit index (i.e. addr <12:5>) selects an IC_Line.

IC_line: For LDDA accesses, this 2-bit field selects a pair of pre-decode fields in a 64-

bit-aligned instruction pair. For STXA accesses, the least significant bit is ignored.

The most significant bit selects four pre-decode fields in a 128-bit-aligned instruction

quad.

Figure A-10 I-cache Predecode Field LDDA Access Data Format (ASI 6E
16

)

Figure A-11 I-cache Predecode Field STXA Access Data Format (ASI 6E
16

)

Undefined: The value of these bits are undefined on reads and must be masked off

by software.

IC_pdec: The two 4-bit pre-decode fields. The encodings are:

■ Bits<3:2> = 00 CALL, BPA, FBA, FBPA or BA

■ Bits<3:2> = 01 Not a CALL, JMPL, BPA, FBA, FBPA or BA

■ Bits<3:2> = 10 Normal JMPL (do not use return stack)

■ Bits<3:2> = 11 Return JMPL (use return stack)

■ Bit<1>If clear, indicates a PC-relative CTI.

■ Bit<0>If set, indicates a STORE.

Note – The predecode bits are not updated when instructions are loaded into the

cache with ASI_ICACHE_INSTR. They are only accurate for instructions loaded by

instruction cache miss processing.

63 23 0

— —IC_set IC_addr

121314 45

IC_line

63 0

Undefined IC_pdec 0

8 34

IC_pdec 1

7

63 0

Undefined IC_pdec 2

8 34

IC_pdec 3

7

IC_pdec 1IC_pdec 0

12 1116 15
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A.7.4 I-cache LRU/BRPD/SP/NFA Fields

ASI 6F
16

, VA<63:14>=0, VA<13>=IC_set, VA<12:3>=IC_addr, VA<2:0>=0

Name: ASI_ICACHE_PRE_NEXT_FIELD

Figure A-12 I-cache LRU/BRPD/SP/NFA Field Access Address Format (ASI 6F
16

)

Stores to ASI_ICACHE_PRE_NEXT_FIELD are undefined unless the instruction

cache is disabled via the IC bit of the LSU control register (see LSU_Control_Register
on page 370).

IC_set: This 1-bit field selects a set (2-way associative).

IC_addr: This 8-bit index (addr <12:5>) selects an IC_Line.

IC_line: This 1-bit field selects two BRPD and one NFA fields for four 128-bit

aligned instructions.

Figure A-13 I-cache LRU/BRPD/SP/NFA Field LDDA Access Data Format (ASI 6F
16

)

Undefined, und: The value of these bits are undefined on reads and must be masked

by software.

IC_lru: selects the least recently accessed set of the line corresponding to IC_addr.

There is only one physical LRU bit per IC_addr value (i.e. cache line). The IC_lru

field can be read for each value of IC_set and IC_line, but can only be written when

IC_set is zero.

Note – The LRU bit is not updated when instructions are accessed with

ASI_ICACHE_INSTR.

IC_brpd<1:0>: Two 2-bit dynamic branch prediction fields. The encodings are

■ IC_brpd<1>If set, strong prediction

■ IC_brpd<0>If set, taken prediction

63 34 0

— —IC_set IC_addr

121314 5

IC_line

63 910 0

Undefined IC_nfa

22

IC_spIC_lru

25 78

und.

122324

IC_brpd 0 IC_brpd 1

11
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During I-cache miss processing, IC_brpd is initialized to likely-taken if either of the

corresponding instructions is a branch with static prediction bit set; otherwise,

IC_brpd is set to likely-not-taken. The prediction bits are subsequently updated

according to the dynamic branch history of the corresponding instructions, as shown

in Figure A-14. (Note: This figure is identical to Figure 21-6.)

Figure A-14 Dynamic Branch Prediction State Diagram

IC_sp 1-bit Set-Prediction (SP) field; selects the next set from which to fetch

IC_nfa1 1-bit Next-Field-Address field (NFA<10:0> = VA<13:3>); selects the next

line from which to fetch and the instruction offset within that line

Note – The branch prediction, set prediction and next field address fields are not

updated when instructions are loaded into the cache with ASI_ICACHE_INSTR.

When a cache line is brought into the I-cache, the corresponding IC_sp fields are

initialized to the same set as the currently missed line. The corresponding IC_nfa

fields are initialized to the next sequential sub-block.

A.8 D-cache Diagnostic Accesses
Two D-cache ASI accesses are supported: data (ASI 46

16
) and tag/valid (ASI 47

16
).

PT/ANT

PT/AT PNT/ATST LT LNT SNTPT,AT

PT/ANT

PNT/AT

PNT/ANT
PNT/ANT

Initialization

PT: Predicted Taken
PNT: Predicted Not Taken
AT: Actual Taken
ANT: Actual Not Taken

ST: Strongly Taken
LT: Likely Taken
SNT: Strongly Not Taken
LNT: Likely Not Taken
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A.8.1 D-cache Data Field

ASI 46
16

, VA<63:14>=0, VA<13:3>=DC_addr, VA<2:0>=0

Name: ASI_DCACHE_DATA

Figure A-15 D-cache Data Access Address Format (ASI 46
16

)

DC_addr: This 11-bit index <13:3> selects a 64-bit data field (16KB).

Figure A-16 D-cache Data Access Data Format (ASI 46
16

)

DC_data: 64-bit data

A.8.2 D-cache Tag/Valid Fields

ASI 47
16

, VA<63:14>=0, VA<13:5>=DC_addr, VA<4:0>=0

Name: ASI_DCACHE_TAG

Figure A-17 D-cache Tag/Valid Access Address Format (ASI 47
16

)

DC_addr: This 9-bit index <13:5> selects a tag/valid field (512 tags).

Figure A-18 D-cache Tag/Valid Access Data Format (ASI 47
16

)

DC_tag: The 28-bit physical tag (PA<40:13> of the associated data).

63 23 0

— —DC_addr

1314

63 0

DC_data

63 45 0

— —DC_addr

1314

63 12 0

— DC_validDC_tag

2930
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DC_valid: The 2-bit valid field, one for each sub-block (32b block, 16b sub-block).

Bit<1> corresponds to the highest addressed 16 bytes, bit<0> to the lowest addressed

16 bytes.

A.9 E-cache Diagnostics Accesses

Compatibility Note – Because of the smaller external cache data and tag, some

adjustments are made to these diagnostic accesses.

Separate ASIs are provided for reading (0x7E) and writing (0x76) the E-cache tags

and data.

Note – During E-cache diagnostics accesses, the VA is passed through to the PA

without page mapping. To avoid undesired modifications of the E-cache state, Take

care when using ldxa/stxa instructions with these ASIs to prevent cacheable

instruction prefetch PA<17:6> that matches the PA<17:6> of the E-cache diagnostic

access. It is permissible, however, for the E-cache state to change; there is no

hardware conflict involved.

Caution – Using ASI 0x76/77/7E/7F with VA[40:39]==00 and a VA[15:0] matching

any of the PA[15:0] listed for the CSR addresses in noncacheable space, other than

0x00, 0x18, 0x20, 0x38, 0x40, 0x50, 0x60, or 0x70, can cause a load to return data, and

a store to modify, the corresponding CSR. The list of addresses is in Section 19.4.3,

DMA Error Registers on page 316. These ASIs are protected by privilege bit/trap so

as not to provide an unprotected back-door access.

A.9.1 E-cache Data Fields
■ ASI 0x76 (WRITING) or 0x7E (READING), VA<63:41>==0, VA<40:39>==1,

■ VA<38:18>==0, VA<17:3>==EC_addr, VA<2:0>==0 (0.25MB)

■ VA<38:19>==0, VA<18:3>==EC_addr, VA<2:0>==0 (0.5MB)

■ VA<38:20>==0, VA<19:3>==EC_addr, VA<2:0>==0 (1 MB)

■ VA<38:21>==0, VA<20:3>==EC_addr, VA<2:0>==0 (2 MB)

Name: ASI_ECACHE_W (0x76), ASI_ECACHE_R (0x7E
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Figure A-19 E-cache Data Access Address Format

EC_addr: A 15-bit index <17:3> selects a 64-bit data field from a 0.25 MB E-cache. A

16-bit index <18:3> selects a 64-bit data field from a 0.5 MB E-cache. A 17-bit index

<19:3> selects a 64-bit data field from a 1 MB E-cache. An 18-bit index <20:3> selects

a 64-bit data field from a 2 MB E-cache.

Figure A-20 E-cache Data Access Data Format

EC_data: 64-bit data

A.9.2 E-cache Tag/State/Parity Field Diagnostic

Accesses
■ ASI 0x76 (WRITING) or 0x7E (READING), VA<63:41>==0, VA<40:39>==2,

■ VA<38:18>==0, VA<17:6>==EC_addr, VA<5:0>==0 (0.25MB)

■ VA<38:19>==0, VA<18:6>==EC_addr, VA<5:0>==0 (0.5MB)

■ VA<38:20>==0, VA<19:6>==EC_addr, VA<5:0>==0 (1 MB)

■ VA<38:21>==0, VA<20:6>==EC_addr, VA<5:0>==0 (2 MB)

■ Name: ASI_ECACHE_W (0x76), ASI_ECACHE_R (0x7E)

Figure A-21 E-cache Tag Access Address Format

If read, the contents of the E-cache tag/state/parity fields in the selected E-cache line

are stored in the E-cache_tag_data_register. This register can be read by an LDA with

ASI_ECACHE_TAG_DATA; its contents are written to the destination register.

63 23 0

— —EC_addr

202138394041

—01

63 0

EC_data

63 56 0

— —EC_addr

212238394041

—10
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If written, the content of the E-cache_tag_data_register is written to the selected E-

cache tag/state/parity fields. The content of the E-cache_tag_data_register are

previously updated with STA at ASI_ECACHE_TAG_DATA.

Note – Software must ensure that the two-step operations are done atomically; e.g.,

LDXA ASI_ECACHE (TAG) and LDXA ASI_ECACHE_TAG_DATA, STXA

ASI_ECACHE_TAG_DATA and STXA ASI_ECACHE (TAG).

Note – The destination register of a LDXA ASI_ECACHE (TAG) is undefined. It is

recommended to use %g0as the destination for this ASI access. Similarly, the

contents of the destination register in STXA ASI_ECACHE (TAG) is ignored, but the

contents of the E-cache_tag_data_register are written to the selected E-cache line.

A.9.3 E-cache Tag/State/Parity Data Accesses

ASI 0x4E, VA<63:0>==0

Name: ASI_ECACHE_TAG_DATA

Figure A-22 E-cache Tag Access Data Format

EC_tag:14-bit physical tag field

■ EC_tag<13:0>==00, PA<29:18> of associated data. Note EC_tag<13:12> always

read as 0’s. (The actual SRAM contents are returned, but UltraSPARC IIi

always forces 0’s on all tag writes)

EC_state: 2-bit E-cache state field. Encodings are

■ EC_state<1:0> == 00 Invalid

■ EC_state<1:0> == 01 Not Used

■ EC_state<1:0> == 10 Exclusive

■ EC_state<1:0> == 11 Modified

EC_parity: 2-bit E-cache tag (odd) parity field

■ EC_parity<1>Parity of EC_state<1:0], EC_tag<13:8>

63 1314 0

— EC_tagEC_state

15161729

EC_parity

12 11

00
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Tag parity on normal operation is computed using the actual PA<31:30>. If that

PA<31:30> ==01 or 10 (greater than the supported DRAM) a tag parity error is

created.

■ EC_parity<0>Parity of EC_tag<7:0>

A.10 Memory Probing and Initialization
The Memory Controller in the UltraSPARC IIi processor is changed between the

SME1040 and SME1430 CPUs. See Chapter 18, MCU Control and Status Registers for

detailed information.

A.10.1 Initialization

The following steps must be performed before any access can be made to memory.

1. Determine the operating frequency of the system, then initialize the

Mem_Control1 register with the appropriate values for the given operating

frequency. See Section 18.3, Mem_Control1 Register on page 270.

2. Enable refresh by setting the RefEnable bit in the Mem_Control0 register. See

Section 18.2, Mem_Control0 Register on page 267. This action supplies the DRAMs

with their required minimum of eight RAS cycles to initialize their internal

circuitry before they can be accessed. Refresh is turned on by setting the

RefEnable bit in the Mem_Control0 register. ()RefInterval should be set to a value

assuming a full memory system (see RefInterval table). Also, the

DIMMPairPresent bits should all be set to 1.

After the probing step, RefInterval and DIMMPairPresent can be set to the proper

values (must first turn off RefEnable). After setting the RefEnable, wait at least

(8 DIMMs)*(8 refreshes)*(RefInterval)*(32 clocks)*(clock period) seconds

before beginning the probing step.

A.10.2 Memory Probing

The only way to determine the number and size of DIMMs in the system is by

probing. That is, writing to certain memory locations, and reading back to determine

the effects of those writes.
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This section describes an algorithm for DIMM probing that is based upon the

behavior of the hardware and the supported DIMM configurations. The algorithm

employs the fact that writes to non-existent addresses can “wrap around” and

overwrite data in a valid location (assuming that a DIMM is present). The algorithm

described in the following sections specifies these addresses. The data pattern that is

written to each location should contain a unique bit-signature, rather than consisting

of all 0’s or all 1’s.

All addresses for block write/read within a DIMM slot are specified below as

PA[26:0]. PA[29:27] are varied for probing different DIMM slots/banks.

Perform the two steps below for PA[29:27] = 000, 001, 010, 011, in 10-bit column

address mode. This covers a single bank in all four DIMM-pair slots/banks.

A.10.3 Detection of DIMM presence

To check whether a DIMM-pair is present or not, perform a write to a block of

memory beginning at 0x000_0000, then read back from this location. If incorrect data

is returned and/or an ECC error is generated, then there is no DIMM-pair at this

location. Skip to the next DIMM-pair.

The data pattern written to each location should contain a unique bit-signature,

rather than consisting of all 0s or all 1s.

A.10.4 Determination of DIMM pair Size

To determine the base size of the existing DIMMs, write to 0x100_0000, then read

from 0x000_0000. If the read does not return the data initially written to 0x000_0000,

DIMM size is 8 MB. This is because an 8 MB DIMM only has 24 address bits and the

write to 0x100_0000 wrapped to overwrite the contents of 0x000_0000.

Perform a write to 0x200_0000, then read from 0x000_0000. If the read does not

return the data written to 0x000_0000, the DIMM is of 16-MB capacity. This is

because 16 MB DIMM only has 25 valid address bits, so the write to 0x200_0000

wrapped and overwrote the contents of 0x000_0000.

If the correct data is returned, write to 0x400_0000 and read back from 0x000_0000. If

the read does not return the data originally written into 0x000_0000, this indicates a

32 MB DIMM. The 32 MB DIMM has 26 valid address bits so the write to 0x400_0000

wrapped and overwrote the contents of 0x000_0000.

If the correct data is returned in 10-bit column address mode, this indicates a 64 MB

DIMM—The largest possible using 10-bit column address mode.
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If in 11-bit column address mode, and the correct data is returned, write to

0x800_0000. Read back from 0x000_0000. If the read fails to return the data originally

written into 0x000_0000, this indicates a 64 MB DIMM. A 64 M-byte DIMM has 27

bits of valid address, so the write to 0x800_0000 wrapped around and overwrote the

contents of 0x000_0000.

Return of correct data indicates a 128 MB DIMM—the largest possible in 11-bit

column address mode.

Repeat with PA[29]==1 to check for a second bank on each DIMM.

A.10.5 Determination of DIMM pair size equivalence

For each DIMM pair, the above process should be repeated with PA[4]==1. The size

of the other DIMM in the pair should be the same. If not, the smaller result must be

used.

A.10.6 11-bit Column Address Mode

The DIMMs may have 11-bit column addresses, in which case they may be twice as

large as previously indicated. 11-bit column addresses are supported with a mode

bit in the Mem_Control0 CSR. It should only be enabled if all DIMMs have 11-bit

column addresses.

Only DIMM pairs 0 and 2 are used in 11-bit column address mode.

After determining which DIMMs are present, the boot PROM should determine if

DIMM pairs 0 and 2 have 11-bit column addresses, and, if so, enable that mode.

Since column address bit [10] is always PA[14], 11-bit column addresses can be

detected by the same algorithm used above to detect DIMM presence,. Instead of

toggling high order PA bits, PA[14] is toggled while all other bits are kept constant

(the PA to use depends on the DIMM pair being tested).

If toggling PA[14] causes overwrite while the 11-bit column address mode is

enabled, then the DRAMs in that DIMM should be assumed to be 10-bit column

address DIMMs, and the mode not used.

Ideally, the PA[14] test should be used on every DIMM (2 in each pair) by toggling

PA[4] also, to guarantee that matching DIMMs have been inserted before 11-bit

column address mode is allowed.

If enabled, the sizes of DIMM pair 0 and 2 are doubled if they exist, and pair 1 and

3 should be ignored because they should not exist.
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A.10.7 Banked DIMMs

The probing algorithm should also toggle PA[29] to determine if banked DIMMs are

present, as above.

A.10.8 Completion of probing

Write RefInterval and DIMMPairPresent with the appropriate values after the

probing is finished. After the probing step is performed, then the physical memory

space available in the machine is known. The boot processor can then initialize data

and ECC in the entire memory space with known values using block writes. After

this step is performed, the memory system is ready for operation.
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APPENDIX B

Performance Instrumentation

B.1 Overview
Two performance events can be measured simultaneously in UltraSPARC IIi. The

Performance Control Register (PCR) controls event selection and filtering (that is,

counting user and/or system level events) for a pair of 32-bit Performance

Instrumentation Counters (PICs).

B.2 Performance Control and Counters
The 64-bit PCR and PIC are accessed through read/write Ancillary State Register

instructions (RDASR/WRASR). PCR and PIC are located at ASRs 16 (10
16

) and 17

(11
16

) respectively. Access to the PCR is privileged. Non privileged accesses cause a

privileged_opcode trap. Non-privileged access to PICs may be restricted by setting the

PCR.PRIV field while in privileged mode. When PCR.PRIV=1, an attempt by non-

privileged software to access the PICs causes a privileged_action trap. Event

measurements in non-privileged and/or privileged modes can be controlled by

setting the PCR.UT and PCR.ST fields.

Two 32-bit PICs each accumulate over 4 billion events before wrapping around.

There is no special handling or notification when the counters wrap. Extended event

logging may be accomplished by periodically reading the contents of the PICs before

each overflows. Additional statistics can be collected using the two PICs over

multiple passes of program execution.
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Two events can be measured simultaneously by setting the PCR.select fields together

with the PCR.UT and PCR.ST fields. The selected statistics are reflected during

subsequent accesses to the PICs. The difference between the values read from the

PIC on two subsequent reads reflects the number of events that occurred between

them. Software may only rely on read-to-read counts of the PIC for accurate timing

and not on write-to-read counts. See also Table 17-5 on page 261 for the state of these

registers after reset.

Figure B-1 Performance Control Register (PCR)

S1|S0: Two four-bit fields; each selects a performance instrumentation event from

the list in Section B.4.5, PCR.S0 and PCR.S1 Encoding on page 392. The event selected

by S0 is counted in PIC.D0; the event selected by S1 is counted in PIC.D1.

UT: User_trace; if set, events in non-privileged (user) mode are counted. This may be

set along with PCR.ST to count all selected events.

ST: System_trace; if set, events in privileged (system) mode are counted. This may

be set along with PCR.UT to count all selected events.

PRIV: Privileged; if set, non-privileged access to the PIC will cause a privileged_action
trap.

Figure B-2 Performance Instrumentation Counters (PIC)

D1|D0: A pair of 32-bit counters; D0 counts the events selected by PCR.S0; D1

counts the events selected by PCR.S1.

B.3 PCR/PIC Accesses
An example of the operational flow in using the performance instrumentation is

shown in Figure B-3.
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Figure B-3 PCR/PIC Operational Flow

B.4 Performance Instrumentation Counter
Events

B.4.1 Instruction Execution Rates

Cycle_cnt [PIC0,PIC1]: accumulated cycles; this counter is similar to the SPARC-V9

TICK register, except that cycle counting is controlled by the PCR.UT and PCR.ST

fields.

Instr_cnt [PIC0,PIC1]: the number of instructions completed; annulled, mispredicted

or trapped instructions are not counted.

start

set up PCR

end

sel → PCR.sel

accumulate stat

PIC[PCR.sel] → Rd

in PIC

accumulate stat
in PIC

context switch to B

PCR → [saveA1]
PIC → [saveA2]

switch to context B

context switch to A

[saveA1] → PCR

[saveA2] → PIC

PIC[PCR.sel] → Rd

back to context A

accumulate stat
in PIC

PIC[PCR.sel] → Rd

[0,1] → PCR.UT/ST
[0,1] → PCR.PRIV PIC[PCR.sel] → Rd

PIC[PCR.sel] → Rd
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Using the two counters to measure instruction completion and cycles allows

calculation of the average number of instructions completed per cycle.

B.4.2 Grouping (G) Stage Stall Counts

These are the major cause of pipeline stalls (bubbles) from the G Stage of the

pipeline. Stalls are counted for each clock for which the associated condition is true.

Dispatch0_IC_miss [PIC0]: I-buffer is empty from I-cache miss. This includes

E-cache miss processing if an E-cache miss also occurs.

Dispatch0_mispred [PIC1]: I-buffer is empty from Branch misprediction. Branch

misprediction kills instructions after the dispatch point, so the total number of

pipeline bubbles is approximately twice as big as measured from this count.

Dispatch0_storeBuf [PIC0]: Store buffer can not hold additional stores, and a store

instruction is the first instruction in the group.

Dispatch0_FP_use [PIC1]: The first instruction in the group depends on an earlier

floating point result that is not yet available, but only while the earlier instruction is

not stalled for a Load_use (see Section B.4.3). Thus, Dispatch0_FP_use and Load_use

are mutually exclusive counts.

Some less common stalls (see Chapter 22, Grouping Rules and Stalls) are not counted

by any performance counter. This situation includes one cycle stalls for an FGA/

FGM instruction entering the G stage following an FDIV or FSQRT.

B.4.3 Load Use Stall Counts

Stalls are counted for each clock that the associated condition is true.

Load_use [PIC0]: An instruction in the execute stage depends on an earlier load

result that is not yet available. This stalls all instructions in the execute and grouping

stages.

Load_use also counts cycles when no instructions are dispatched due to a one cycle

load-load dependency on the first instruction presented to the grouping logic.

There are also overcounts due to, for example, mispredicted CTIs and dispatched

instructions that are invalidated by traps.

Load_use_RAW [PIC1]: There is a load use in the execute stage and there is a read-

after-write hazard on the oldest outstanding load. This indicates that load data is

being delayed by completion of an earlier store.
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Some less common stalls (see Chapter 22, Grouping Rules and Stalls) are not counted

by any performance counter, including:

■ Stalls associated with WRPR/RDPR and internal ASI loads

■ MEMBAR stalls

■ One cycle stalls due to bad prediction around a change to the Current Window

Pointer (CWP)

B.4.4 Cache Access Statistics

I-, D-, and E-cache access statistics can be collected. Counts are updated by each

cache access, regardless of whether the access will be used.

IC_ref [PIC0]: I-cache references; I-cache references are fetches of up to four

instructions from an aligned block of eight instructions. I-cache references are

generally prefetches and do not correspond exactly to the instructions executed.

IC_hit [PIC1]: I-cache hits

DC_rd [PIC0]: D-cache read references (including accesses that subsequently trap);

non d-cacheable accesses are not counted. Atomic, block load, “internal,” and

“external” bad ASIs, quad precision LDD, and MEMBARs also fall into this class.

Atomic instructions, block loads, “internal” and “external” bad ASIs, quad LDD,

and MEMBARs also fall into this class.

DC_rd_hit [PIC1]: D-cache read hits are counted in one of two places:

■ When they access the D-cache tags and do not enter the load buffer (because it is

already empty)

■ When they exit the load buffer (due to a D-cache miss or a non-empty load buffer)

Loads that hit the D-cache may be placed in the load buffer for a number of reasons

— because of a non-empty load buffer, for example. Such loads may be turned into

misses if a snoop occurs during their stay in the load buffer (due to an external

request or to an E-cache miss). In this case they do not count as D-cache read hits.

See Section 21.3, Data Stream Issues on page 336.

DC_wr [PIC0]: D-cache write references (including accesses that subsequently trap);

non D-cacheable accesses are not counted.

DC_wr_hit [PIC1]: D-cache write hits

EC_ref [PIC0]: total E-cache references; non-cacheable accesses are not counted.

EC_hit [PIC1]: total E-cache hits.

EC_write_hit_RDO [PIC0]: E-cache hits that do a read for ownership of a UPA

transaction.
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EC_wb [PIC1]: E-cache misses that do writebacks

EC_snoop_inv [PIC0]: E-cache invalidates from the following UPA transactions:

S_INV_REQ, S_CPI_REQS_INV_REQ, S_CPI_REQS_INV_REQ, S_CPI_REQ

EC_snoop_cb [PIC1]: E-cache snoop copy-backs from the following UPA

transactions: S_CPB_REQ, S_CPI_REQ, S_CPD_REQ, S_CPB_MSI_REQ

EC_rd_hit [PIC0]: E-cache read hits from D-cache misses

EC_ic_hit [PIC1]: E-cache read hits from I-cache misses

The E-cache write hit count is determined by subtracting the read hit and the

instruction hit count from the total E-cache hit count. The E-cache write reference

count is determined by subtracting the D-cache read miss (D-cache read references

minus D-cache read hits) and I-cache misses (I-cache references minus I-cache hits)

from the total E-cache references. Because of store buffer compression, this value is

not the same as D-cache write misses.

Note – A block memory access is counted as a single reference. Atomics count the

read and write individually.

B.4.5 PCR.S0 and PCR.S1 Encoding

TABLE B-1 PiC.S0 Selection Bit Field Encoding

S0 Value PIC0 Selection

0000 Cycle_cnt

0001 Instr_cnt

0010 Dispatch0_IC_miss

0011 Dispatch0_storeBuf

1000 IC_ref

1001 DC_rd

1010 DC_wr

1011 Load_use

1100 EC_ref

1101 EC_write_hit_RDO

1110 EC_snoop_inv

1111 EC_rd_hit
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TABLE B-2 PIC.S1 Selection Bit Field Encoding

S1 Value PIC1 Selection

0000 Cycle_cnt

0001 Instr_cnt

0010 Dispatch0_mispred

0011 Dispatch0_FP_use

1000 IC_hit

1001 DC_rd_hit

1010 DC_wr_hit

1011 Load_use_RAW

1100 EC_hit

1101 EC_wb

1110 EC_snoop_cb

1111 EC_ic_hit
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APPENDIX C

IEEE 1149.1 Scan Interface

C.1 Introduction
UltraSPARC IIi provides an IEEE Std 1149.1-1990-compliant test access port (TAP)

and boundary scan architecture. The primary use of 1149.1 scan interface is for

board-level interconnect testing and diagnosis.

The IEEE 1149.1 test access port and boundary scan architecture consists of three

major parts:

■ Test access port controller

■ Instruction register

■ Test data registers (numerous; public and private)

For information about how to obtain a copy of IEEE Std 1149.1-1990, see Bibliography.

C.2 Interface
The IEEE Std 1149.1-1990 serial scan interface is composed of a set of pins and a TAP

controller state machine that responds to the pins. The five wire IEEE 1149.1

interface is used in UltraSPARC IIi. TABLE C-1 describes the five pins.
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C.3 Test Access Port Controller
The Test Access Port (TAP) controller is a 16-state synchronous finite state machine.

Transitions between states occur only at the rising edge of TCK in response to the

TMS signal, or when TRST_L is asserted

TABLE C-1 IEEE 1149.1 Signals

Signal I/O Description

TDO O Test data out. This is the scan shift output signal from either the instruction

register or one of the test data registers.

TDI I Test data input. This forms the scan shift in signal for the instruction and

various test data registers.

TMS I This signal is used to sequence the TAP state machine through the appropriate

sequences. Holding this signal high for at least five clock cycles will force the

TAP to the TEST-LOGIC-RESET state.

TCK I Test clock. The inputs TDI and TMS are sampled on the rising edge of TCK

and the TDO output becomes valid after the falling edge of TCK.

TRST_L I The IEEE 1149.1 logic is asynchronously reset when TRST_L goes low.
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.

Figure C-1 TAP Controller State Diagram
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Figure C-1 shows the state machine diagram. The values shown adjacent to state

transitions represents the value of TMS required at the time of a rising edge of TCK

for the transition to occur. Note that the IR states select the instruction register and

DR states refer to states that may select a test data register, depending on the active

instruction.

C.3.1 TEST-LOGIC-RESET

The TAP controller enters the TEST-LOGIC-RESET state when the TRST_L pin is

asserted or when the TMS signal is held high for at least five clock cycles, regardless

of the original state of the controller. It remains in this state while TMS is held high.

In this state the test logic is disabled and the instruction register is initialized to

select the Device ID register.

C.3.2 RUN-TEST/IDLE

RUN-TEST/IDLE is an intermediate controller state between scan operations. If no

instruction is selected, all test data registers retain their current states.

Once the state machine enters this state, it remains there for as long as TMS is held

low.

C.3.3 SELECT-DR-SCAN

SELECT-DR-SCAN is a temporary state in which all test data registers retain their

previous states.

C.3.4 SELECT-IR-SCAN

SELECT-IR-SCAN is another temporary state in which all test data registers retain

their previous states.

C.3.5 CAPTURE IR/DR

In this state, the selected register, which can be either an instruction register or a

data register, loads data into its parallel input.
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For the instruction register, this corresponds to sampling the eight bits of status

information and loading the constant ‘01’ pattern into the two least significant bit

locations.

C.3.6 SHIFT IR/DR

In this state, the IR/DR shift towards their serial output during each rising edge of

TCK.

C.3.7 EXIT-1 IR/DR

This state is a temporary controller state in which the IR/DR retain their previous

states.

C.3.8 PAUSE IR/DR

This state is a temporary controller state in which the IR/DR retain their previous

states. It is provided to temporarily halt data-shifting through the instruction

register or the test data register—without having to stop TCK.

C.3.9 EXIT-2 IR/DR

This state is a temporary controller state in which the IR/DR retain their previous

states.

C.3.10 UPDATE IR/DR

Data is latched on to the parallel output of the IR/DR from the shift-register path

during this controller state.

The data held at the previous outputs of the instruction register or test data register

only changes in this controller state.
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C.4 Instruction Register
The instruction register is used to select the test to be performed and the test data

register to be accessed.

This register is 8-bits wide and consists of a serial-input/serial-output shift-register

that has parallel inputs and a parallel output stage. The parallel outputs are loaded

during the UPDATE-IR state with the instruction shifted into the shift register stage.

This method ensures that the instruction only changes synchronously at the end of

an instruction register shift or on entry to the TEST-LOGIC-RESET state. The

behavior of the instruction register in each controller state is shown in TABLE C-2.

At the start of an instruction register shift, that is, during the CAPTURE-IR state, a

constant ‘01’ pattern loads into the least-significant two bits to aid fault isolation in

the board-level serial test data path.

C.5 Instructions
The UltraSPARC IIi 8-bit instruction register (IR) implements public and private

instructions. Out of the 256 encodings possible, there are 75 valid instructions. All

invalid encodings default to the BYPASS instruction as defined in IEEE Std 1149.1-

1990. The public instructions implemented are: BYPASS, IDCODE, EXTEST,

SAMPLE and INTEST. Private instructions are used in manufacturing and should not
be used before consulting your SPARC sales representative. The instruction

encodings and the test data register selected is presented in TABLE C-3.

TABLE C-2 Instruction Register Behavior

Controller State Shift Register Parallel Output

TEST-LOGIC-RESET Undefined Set to 00
16

(select Device ID

register for shift)

CAPTURE IR Load 01 into IR <1:0> Retain last state

SHIFT IR Shift towards serial output Retain last state

UPDATE IR Retain last state Load from shift-register stage

All other states Retain last state Retain last state
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C.5.1 Public Instructions

C.5.1.1 BYPASS

The BYPASS instruction selects the BYPASS register as the active test data register.

C.5.1.2 SAMPLE/PRELOAD

SAMPLE/PRELOAD selects the active test data register to be the boundary scan

register. Without disturbing normal processor operation, this instruction enables the

I/O pin states to be observed or a value to be shifted in to the boundary scan chain.

C.5.1.3 EXTEST

EXTEST selects the boundary scan register to be the active test data register and is

used to perform board level interconnect testing. In this condition the boundary scan

chain drives the processor pins and UltraSPARC IIi cannot function normally.

TABLE C-3 IEEE 1149.1 Instruction Encodings

Instruction IR encoding Scan Chain

BYPASS FF
16

bypass

IDCODE FE
16

id register

EXTEST 00
16

boundary

SAMPLE 07
16

boundary

INTEST 01
16

boundary

PLLMODE 9F
16

pll mode

CLKCTRL 9D
16

clock control

RAMWCP BD
16

ram control

POWERCUT 8E
16

N/A

HIGHZ FD
16

bypass

INTEST2 8F
16

boundary

FULLSCAN 40
16

..7F
16

internal
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C.5.1.4 INTEST

This instruction selects the boundary scan register to be the active test data register.

allowing it to be used as a virtual low-speed functional tester. The on-chip clock is

derived from TCK and is issued in the Run-Test/Idle state of the TAP controller.

C.5.1.5 IDCODE

IDCODE selects the ID register for shifting.

C.5.2 Private Instructions

All private instructions: PLLMODE, CLKCTRL, RAMWCP, POWERCUT, HIGHZ,

INTEST2, and all versions of FULLSCAN should not be used before consulting your

SPARC sales representative. Improper use of any private instructions can

permanently damage UltraSPARC IIi and render it inoperative.

C.6 Public Test Data Registers

C.6.1 Device ID Register

The 32-bit Device ID register is loaded with the UltraSPARC IIi ID upon entering the

CAPTURE-DR TAP state when the ID instruction is active or during the TEST-

LOGIC-RESET state. Figure C-2 shows the structure of the Device ID Register.

Figure C-2 Device ID Register

The device ID is loaded into the register on the rising edge of TCK in the Capture-

DR state. The value of ID<27:0> is fixed at 4668045F
16

and the version number,

ID<31:28>, changes as specified in IEEE Std 1149.1-1990.
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C.6.2 Bypass Register

This register provides a single bit delay between TDI and TDO. During the

CAPTURE-DR controller state, and if it is selected by the current instruction, the

bypass register loads a logical zero.

C.6.3 Boundary Scan Register

The Boundary Scan Register allows for testing circuitry external to the device; for

example:

■ testing the interconnect by setting defined values at the device periphery – using

the EXTEST instruction

■ sampling and examination of pin states without disturbing the system – using the

SAMPLE/PRELOAD instruction

■ testing device function itself – using the INTEST instruction

The boundary scan register for UltraSPARC IIi is 770 bits long. The mapping

between register bits and the pin signals is described in a Boundary Scan

Description Language (BSDL) file available from your SPARC sales representative.

Note – It is recommended that transitions from the Capture-DR TAP controller state

to the Shift-DR controller state progress through the Exit1-DR, Pause-DR, and Exit2-

DR states. A direct progression from Capture-DR to Shift-DR is not recommended

when the boundary scan register is selected.

C.6.4 Private Data Registers

Private data registers should not be accessed before consulting your SPARC sales

representative.
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APPENDIX D

ECC Specification

D.1 ECC Code
The 64-bit ECC code specification can be found in Shigeo Kaneda’s correspondence

note: “A Class of Odd-Weight-Column SEC-DED-SbED Codes for Memory System
Applications”, IEEE Transactions on Computers, August 1984.

TABLE D-1 shows the syndrome table for the ECC code, followed by the Verilog

code for error detection, correction, and syndrome generation.

.

TABLE D-1 Syndrome table for ECC SEC/S4ED code .

SYND bits

0 1 2 3

7
6
5
4

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

0 0 0 0 * C4 C5 D C6 D D T C7 D D T D T T Q

0 0 0 1 C0 D D 00 D 25 M D D 05 17 D 08 D D 12

0 0 1 0 C1 D D 01 D 29 36 D D M 21 D 13 D D 09

0 0 1 1 D 32 33 D 42 D D M 47 D D M D T T D

0 1 0 0 C2 D D 10 D 27 07 D D M 19 D 02 D D 14

0 1 0 1 D 57 61 D 59 Q D M 63 D Q M D M M D

0 1 1 0 D M 04 D 39 D D 22 M D D 30 D 16 24 D

0 1 1 1 T D D M D M 54 D D 50 M D T D D M

1 0 0 0 C3 D D 15 D 31 M D D 38 23 D 03 D D 11
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Code Example D-1 describes the check bit generation equations in the most concise

way

.

1 0 0 1 D 37 M D M D D 18 06 D D 26 D 20 28 D

1 0 1 0 D 49 53 D 51 Q D M 55 D Q M D M M D

1 0 1 1 T D D M D M 62 D D 58 M D T D D M

1 1 0 0 D 40 45 D 34 D D T 35 D D T D M M D

1 1 0 1 T D D T D M 48 D D 52 M D M D D M

1 1 1 0 T D D T D M 56 D D 60 M D M D D M

1 1 1 1 Q 44 41 D 46 D D M 43 D D M D M M Q

Code Example D-1 Description of ECC checkbit Generation Equations

function [7:0] get_ecc8;
input [63:0] data;
begin

get_ecc8[7:0] = {
^(64'h9494884855bb7b6c & data[63:0]),
^(64'h49494494bb557b8c & data[63:0]),
^(64'h6161221255eede93 & data[63:0]),
^(64'h16161161ee55de23 & data[63:0]),
^(64'h55bb7b6c94948848 & data[63:0]),
^(64'hbb557b8c49494494 & data[63:0]),
^(64'h55eede9361612212 & data[63:0]),
^(64'hee55de2316161161 & data[63:0]) };

end
endfunction

TABLE D-1 Syndrome table for ECC SEC/S4ED code (Continued).

SYND bits

0 1 2 3

7
6
5
4

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1
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APPENDIX E

UPA64S interface

E.1 UPA64S Bus
The UPA64S bus transfers data in a packetized mode between UltraSPARC IIi and

system DRAM. In addition it is used to transfer data to a connected UPA64S device,

for example, a Fast Frame Buffer (FFB).

E.1.1 Data Bus (MEMDATA)

MEMDATA is a 72-bit bidirectional bus between UltraSPARC IIi and the memory

transceivers. Bits[63:0] are also used to connect to a UPA64S device.

The transaction set supports block transfers of 64 bytes; and quadword noncached

transfers of 1 to 16 bytes, qualified with a 16-bit bytemask. Data transfers are 8 bytes

per UPA clock cycle on MEMDATA[63:0].

Figure E-1 illustrates how data and ECC bytes are arranged and addressed within a

doubleword.

Figure E-1 Data Byte Addresses Within a Dword

07815162324313239404748555663

Byte 0 Byte 1 Byte 7Byte 6Byte 2 Byte 3 Byte 4 Byte 5Dword Bytes
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E.1.2 SYSADDR Bus

UltraSPARC IIi directly sends a request to the UPA64S slave, using SYSADDR and

ADR_VLD, which are always driven.

E.2 UPA64S Transaction Overview
■ P_REQ transaction request from UltraSPARC IIi to the UPA64S device on the

SYSADDR bus; these transactions initiate activity.

■ P_REPLY by UPA64S device is generated in response to a previous P_REQ

transaction; indicates read data available, or write data consumed.

■ S_REPLY by the UltraSPARC IIi CPU initiates transfer of data.

E.2.1 NonCachedRead (P_NCRD_REQ)

Noncached Read; generated by UltraSPARC IIi for a load or instruction fetch to

noncached UPA64S address.

1, 2, 4, 8, and 16 bytes are read with this transaction, and the byte location is

specified with a bytemask. The address is aligned on a 16-byte boundary. The

bytemask is aligned on a natural boundary that matches the total data size.

One P_NCRD_REQ may be outstanding to UPA64S device at a time. The next

P_NCRD_REQ request can be sent on the cycle after the P_RASB reply.

Data is transferred with S_SRS reply.

E.2.2 NonCachedBlockRead (P_NCBRD_REQ)

Noncached Block Read Request; 64 bytes of non-cached data is read with this

transaction generated by UltraSPARC IIi for block read of a non-cached UPA64S

address space.

Similar to P_NCRD_REQ except that there is no bytemask; the data is aligned on a

64-byte boundary (PA<5:4> = 016).

Data is delivered with S_SRB reply.
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E.2.3 NonCachedWrite (P_NCWR_REQ)

Noncached Write; generated by UltraSPARC IIi to write a non-cached address

UPA64S space.

The address is aligned on 16-byte boundary. An arbitrary number of 0-16 bytes can

be written as specified by a 16-bit bytemask to slave devices that support writes with

arbitrary byte masks (mainly graphics devices). A bytemask of all zeros indicates a

no-op at the slave.

S_SWS is used to transfer the data. When UltraSPARC IIi drives the S_REPLY, it

considers the transaction completed and decrements the count of outstanding

requests for flow control.

E.2.4 NonCachedBlockWrite (P_NCBWR_REQ)

Noncached Block Write Request; 64 bytes of noncached data is written by

UltraSPARC IIi with this transaction; generated for block store to a non-cached

UPA64S address.

Similar to P_NCWR_REQ except that there is no bytemask; the data is aligned on a

64-byte boundary (PA<5:4> = 016).

Data is transferred with S_SWB reply.

E.3 P_REPLY and S_REPLY

E.3.1 P_REPLY

The UPA64S device drives P_REPLY<1:0> to UltraSPARC IIi. All P_REPLYs are

generated as an acknowledgment by the UPA64S device in response to a request

previously sent by the UltraSPARC IIi CPU.
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TABLE E-2 shows the encodings for the transactions defined in TABLE E-1.

E.3.2 S_REPLY

S_REPLY is a 3-bit signal between UltraSPARC IIi and the UPA64S device.

TABLE E-4 specifies the S_REPLY encoding.

S_REPLY takes a single UPA clock cycle, and initiates data transfer on MEMDATA.

The encoding for S_IDLE is 00. (also driven during reset).

TABLE E-3 specifies the S_REPLY types. The following rules apply to S_REPLY

generation:

■ The S_REPLY is strongly ordered with respect to requests.

TABLE E-1 P_REPLY Type Definitions

Type Definition

P_IDLE Idle. The default state of the wires when there is no reply to be given.

P_RASB Read Ack single and Block. 16 or 64 bytes of data are ready in its output data queue

for the P_NCRD_REQ | P_NCBRD_REQ request sent to it, and there is room in its

input request queue for another P_REQ. The UltraSPARC IIi CPU knows, from

programmable registers, the depth of the queues on the UPA64S device, and does not

cause the queues to be overflowed, or underflowed.

P_WAS Write Ack Single; reply to P_NCWR_REQ request for single writes

The UPA64S port acknowledges that the 16 bytes of data placed in its input data

queue has been absorbed, and there is room for writing another 16 bytes of data into

the input data queue, and there is room in its input request queue for another slave

P_REQ for data.

P_WAB Write Ack Block; reply to P_NCBWR_REQ for block write; the UPA64S slave port

acknowledges that the 64 bytes of data placed in its input data queue has been

absorbed, and there is room for writing another 64 bytes of data into the input data

queue, and there is room in its input request queue for another slave P_REQ for data.

TABLE E-2 P_REPLY<1:0> Encoding

P_REPLY Name Reply to Transaction

P_IDLE Idle Default State 00

P_WAB Write ACK Block P_NCBWR_REQ 01

P_WAS Write ACK Single P_NCWR_REQ 10

P_RASB Read ACK Single/Block P_NCRD_REQ,

P_NCBRD_REQ
11
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■ The S_REPLY timing to the source and sink of data is shown in Figure E-2 and

Figure E-3.The UPA64S device drives the data 2 UPA clock cycles after receiving

S_SRS | S_SRB. UPA64S receives data 1 UPA clock cycle after S_SWS | S_SWB

■ The S_REPLY read data timing after receiving a P_REPLY from is shown in

Figure E-4. The minimum number of clock cycles between the P_REPLY and the

S_REPLY is two; that is, this number represents the earliest time after receiving

P_REPLY that S_REPLY can be sent to get the data.

■ S_REPLY can be pipelined such that the MEMDATA bus can be kept continually

busy without any dead cycles on the MEMDATA bus, as long as the same source

is driving the data

■ If sources are switched, one dead cycle is required on the MEMDATA bus; this

allows the first source to switch off before the next source can drive the data. The

earliest that the next source can drive the data is in the cycle following the dead

cycle; thus, the pipelining of data accompanying S_REPLY types is adjusted

accordingly with one extra bubble for the dead cycle.

■ The ordering of S_REPLY for delivering data to a UPA64S device is shown in

Figure E-5.

TABLE E-3 S_REPLY Type Definitions

Type Definition

S_IDLE Idle. The default state; indicates no reply.

S_SRS Read Single Ack; the output data queue of the UPA64S device drives 16 bytes of read

data in response to P_RAS reply.

S_SRB Read Block Ack; the output data queue of the UPA64S device drives 64 bytes of

read data in response to P_RAB reply from it.

S_SWB Write Block Ack; the input data queue of the UPA64S device accepts a 64 bytes of

data.

S_SWS Write Single Ack; the input data queue of the UPA64S device accepts 16 bytes of data.

TABLE E-4 S_REPLY Encoding

S_REPLY Name Reply to Transaction

S_IDLE Idle Default State 000

S_SWS Slave Write Single P_NCWR_REQ 100

S_SWB Slave Write Block P_NCBWR_REQ 101

S_SRS Slave Read Single P_NCRD_REQ 110

S_SRB Slave Read Block P_NCBRD_REQ 111
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E.3.3 P_REPLY and S_REPLY Timing

The following figures show the control of data flow on the MEMDATA bus due to

S_REPLY and P_REPLY.

Figure E-2 S_REPLY Timing: UPA64S device Sourcing Block

Figure E-3 S_REPLY Timing: UPA64S device Sinking Block

S_REPLY

Data on Bus

S_SRB

D[0] D[1] D[2] D[3]

2 clocks

S_REPLY to Data Sink

Data on Bus

S_SWB

D[0] D[1] D[2] D[3]

1 clock
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Figure E-4 P_REPLY to S_REPLY Timing

Figure E-5 S_REPLY Pipelining

E.4 Issues with Multiple Outstanding
Transactions

E.4.1 Strong Ordering

All prior 16-byte noncacheable stores (P_NCWR_REQ) must complete before

completing a P_NCRD_REQ. This condition is necessary to meet a software

requirement that all noncacheable operations can be strongly ordered. The E-bit

feature of UltraSPARC IIi does not wait for prior noncacheable operations to

complete (as do MEMBARs).

S_REPLY to Data Sink

Data on Bus

S_SWB

D[0] D[1] D[2] D[3]

1 clock

S_REPLY to Data Source

P_REPLY from Slave P_RASB

S_SRB

min 2 clocks

2 clocks

NCWR1

S_REPLY to UltraSPARC IIi

P_REQ

Data on Bus

NCWR1 NCWR2 NCWR2 NCBRD3 NCBRD3

S_SWS S_SWS S_SRB

D[1] D[2] D[3]
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While a 16-byte noncacheable load is outstanding (P_NCRD_REQ), UltraSPARC IIi

will not issue any more transactions, so the reverse case—completing noncacheable

loads before noncacheable stores—does not occur.

E.4.2 Limiting the Number of Transactions

UltraSPARC IIi can limit the total number of outstanding transactions, and

additionally, can limit the amount of outstanding data creating by outstanding

stores.

E.4.3 S_REPLY assertion

The assertion of S_REPLYs must guarantee that there is at least one dead cycle

between different drivers (for example, port and memory). No dead cycle is required

for multiple packets from the same driver.

E.5 UPA64S Packet Formats

E.5.1 Request Packets

The SYSADDR bus is a 29-bit transaction request bus. The request packet comprises

58 bits and is carried on the SYSADDR bus in two successive UPA64S clock cycles.

Figure E-6 Packet Format: Noncached P_REQ Transactions

Physical Address<16:4>
12

ByteMask<15:0>

0

28

13

Transaction Type<3:0>

Physical Address<38:14>

28

0

24
25

First Cycle Second Cycle
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E.5.2 Packet Description

E.5.2.1 Transaction Type

This 4-bit field encodes the transaction type, as shown in TABLE E-5.

E.5.2.2 Physical Address PA<38:4>

Bits PA<38:4> of the 39-bit physical address space accessible to UltraSPARC IIi.

The low order 4 bits PA<3:0> of the physical address are implied in the bytemask in

P_NCRD_REQ and P_NCWR_REQ transactions. All other transactions transfer 64-

byte blocks and do not need PA<3:0>, since it is 0
16

.

E.5.2.3 Bytemask<15:0>

Bytemask is only available for P_NCRD_REQ and P_NCWR_REQ. This 16-bit field

indicates valid bytes on MEMDATA. The bytemask can be 1-, 2-, 4-, 8- and 16-byte

for non-cached read requests; arbitrary bytemasks are allowed for slave writes. An all-

zero bytemask indicates a no-op at the slave.

Bytemask<0> corresponds to byte 0 (bits <63:56> in cycle 0 on the 64-bit data bus.

TABLE E-5 Transaction Type Encoding

Transaction Type Name Type<3:0>

P_NCRD_REQ NonCachedRead 0101

P_NCBRD_REQ NonCachedBlockRead 0110

P_NCBWR_REQ NonCachedBlockWrite 0111

P_NCWR_REQ NonCachedWrite 1110
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Figure E-7 UPA64s Transactions Flowchart—Address Bus
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Figure E-8 UPA64s Transactions Flowchart—Data Bus
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APPENDIX F

Pin and Signal Descriptions

Consult the relevant data sheets for detailed information about the electrical and

mechanical characteristics of the processor, including pin and pad assignments.

Bibliography on page 465 describes the available data sheets and how to obtain them.
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APPENDIX G

ASI Names

G.1 Introduction
This Appendix lists the names and suggested macro syntax for all supported

Address Space Identifiers.

Table G-1 ASI registers and ASI Names—listed alphabetically

ASI Name or Macro Syntax Description Value

ASI_AFAR Asynchronous fault address register 4D
16

ASI_AFSR Asynchronous fault status register 4C
16

ASI_AIUP Primary address space, user privilege 10
16

ASI_AIUPL Primary address space, user privilege, little endian 18
16

ASI_AIUS Secondary address space, user privilege 11
16

ASI_AIUSL Secondary address space, user privilege, little endian 19
16

ASI_AS_IF_USER_PRIMARY Primary address space, user privilege 10
16

ASI_AS_IF_USER_PRIMARY_LITTLE Primary address space, user privilege, little endian 18
16

ASI_AS_IF_USER_SECONDARY Secondary address space, user privilege 11
16

ASI_AS_IF_USER_SECONDARY_LITTLE Secondary address space, user privilege, little endian 19
16

ASI_BLK_AIUP
Primary address space, block load/store, user

privilege
70

16

ASI_BLK_AIUPL
Primary address space, block load/store, user

privilege, little endian
78

16

ASI_BLK_AIUS
Secondary address space, block load/store, user

privilege
71

16
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ASI_BLK_AIUSL
Secondary address space, block load/store, user

privilege, little endian
79

16

ASI_BLK_COMMIT_P Primary address space, block store commit operation E0
16

ASI_BLK_COMMIT_PRIMARY Primary address space, block store commit operation E0
16

ASI_BLK_COMMIT_S
Secondary address space, block store commit

operation
E1

16

ASI_BLK_COMMIT_SECONDARY
Secondary address space, block store commit

operation
E1

16

ASI_BLK_P Primary address space, block load/store F0
16

ASI_BLK_PL
Primary address space, block load/store, little

endian
F8

16

ASI_BLK_S Secondary address space, block load/store F1
16

ASI_BLK_SL
Secondary address space, block load/store, little

endian
F9

16

ASI_BLOCK_AS_IF_USER_PRIMAR Y
Primary address space, block load/store, user

privilege
70

16

ASI_BLOCK_AS_IF_USER_PRIMARY_LI TTLE
Primary address space, block load/store, user

privilege, little endian
78

16

ASI_BLOCK_AS_IF_USER_SECONDAR Y
Secondary address space, block load/store, user

privilege
71

16

ASI_BLOCK_AS_IF_USER_SECONDAR Y_LITTLE
Secondary address space, block load/store, user

privilege, little endian
79

16

ASI_BLOCK_PRIMARY Primary address space, block load/store F0
16

ASI_BLOCK_PRIMARY_LITTLE
Primary address space, block load/store, little

endian
F8

16

ASI_BLOCK_SECONDARY Secondary address space, block load/store F1
16

ASI_BLOCK_SECONDARY_LITTLE
Secondary address space, block load/store, little

endian
F9

16

ASI_D-MMU D-MMU Tag Target Register 58
16

ASI_DCACHE_DAT A D-cache data RAM diagnostics access 46
16

ASI_DCACHE_DATA D-cache data RAM diagnostics access 46
16

ASI_DCACHE_TAG D-cache tag/valid RAM diagnostics access 47
16

ASI_DMMU D-MMU PA Data Watchpoint Register 58
16

ASI_DMMU D-MMU Secondary Context Register 58
16

ASI_DMMU D-MMU Synch. Fault Address Register 58
16

Table G-1 ASI registers and ASI Names—listed alphabetically (Continued)

ASI Name or Macro Syntax Description Value
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ASI_DMMU D-MMU Synch. Fault Status Register 58
16

ASI_DMMU D-MMU Tag Target Register 58
16

ASI_DMMU D-MMU TLB Tag Access Register 58
16

ASI_DMMU D-MMU TSB Register 58
16

ASI_DMMU D-MMU VA Data Watchpoint Register 58
16

ASI_DMMU I/D MMU Primary Context Register 58
16

ASI_DMMU_DEMAP DMMU TLB demap 5F
16

ASI_DMMU_TSB_64KB_PTR_RE G D-MMU TSB 64K Pointer Register 5A
16

ASI_DMMU_TSB_64KB_PTR_REG D-MMU TSB 64K Pointer Register 5A
16

ASI_DMMU_TSB_8KB_PTR_REG D-MMU TSB 8K Pointer Register 59
16

ASI_DMMU_TSB_DIRECT_PTR_REG D-MMU TSB Direct Pointer Register 5B
16

ASI_DTLB_DATA_ACCESS_REG D-MMU TLB Data Access Register 5D
16

ASI_DTLB_DATA_IN_REG D-MMU TLB Data In Register 5C
16

ASI_DTLB_TAG_READ_REG D-MMU TLB Tag Read Register 5E
16

ASI_ECACHE_R E-cache data RAM diagnostic read access 7E
16

ASI_ECACHE_R E-cache tag/valid RAM diagnostic read access 7E
16

ASI_ECACHE_TAG_DATA E-cache tag/valid RAM data diagnostic access 4E
16

ASI_ECACHE_W E-cache data RAM diagnostic write access 76
16

ASI_ECACHE_W E-cache tag/valid RAM diagnostic write access 76
16

ASI_EC_R E-cache data RAM diagnostic read access 7E
16

ASI_EC_R E-cache tag/valid RAM diagnostic read access 7E
16

ASI_EC_TAG_DATA E-cache tag/valid RAM data diagnostic access 4E
16

ASI_EC_W E-cache data RAM diagnostic write access 76
16

ASI_EC_W E-cache tag/valid RAM diagnostic write access 76
16

ASI_ESTATE_ERROR_EN_REG E-cache error enable register 4B
16

ASI_Fl16_P
Primary address space, one 16-bit floating-point

load/store
D2

16

ASI_FL16_PL
Primary address space, one 16-bit floating-point

load/store, little endian
DA

16

ASI_FL16_PRIMARY
Primary address space, one 16-bit floating-point

load/store
D2

16

ASI_FL16_PRIMARY_LITTLE
Primary address space, one 16-bit floating-point

load/store, little endian
DA

16

Table G-1 ASI registers and ASI Names—listed alphabetically (Continued)

ASI Name or Macro Syntax Description Value
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ASI_FL16_S
Secondary address space, one 16- bit floating-point

load/store
D3

16

ASI_FL16_SECONDARY
Secondary address space, one 16- bit floating-point

load/store
D3

16

ASI_FL16_SECONDARY_LITTLE
Secondary address space, one 16- bit floating-point

load/store, little endian
DB

16

ASI_FL16_SL
Secondary address space, one 16- bit floating-point

load/store, little endian
DB

16

ASI_FL8_P
Primary address space, one 8-bit floating-point load/

store
D0

16

ASI_FL8_PL
Primary address space, one 8-bit floating-point load/

store, little endian
D8

16

ASI_FL8_PRIMARY
Primary address space, one 8-bit floating-point load/

store
D0

16

ASI_FL8_PRIMARY_LITTLE
Primary address space, one 8-bit floating-point load/

store, little endian
D8

16

ASI_FL8_S
Secondary address space, one 8-bit floating-point

load/store
D1

16

ASI_FL8_SECONDARY
Secondary address space, one 8-bit floating-point

load/store
D1

16

ASI_FL8_SECONDARY_LITTLE
Secondary address space, one 8-bit floating-point

load/store, little endian
D9

16

ASI_FL8_SL
Secondary address space, one 8-bit floating-point

load/store, little endian
D9

16

ASI_ICACHE_INSTR I-cache instruction RAM diagnostic access 66
16

ASI_ICACHE_NEXT_FIELD I-cache next-field RAM diagnostics access 6F
16

ASI_ICACHE_PRE_DECODE I-cache pre-decode RAM diagnostics access 6E
16

ASI_ICACHE_TAG I-cache tag/valid RAM diagnostic access 67
16

ASI_IC_INSTR I-cache instruction RAM diagnostic access 66
16

ASI_IC_NEXT_FIELD I-cache next-field RAM diagnostics access 6F
16

ASI_IC_PRE_DECODE I-cache pre-decode RAM diagnostics access 6E
16

ASI_IC_TAG I-cache tag/valid RAM diagnostic access 67
16

ASI_IMMU I-MMU Synchronous Fault Status Register 50
16

ASI_IMMU I-MMU Tag Target Register 50
16

ASI_IMMU I-MMU TLB Tag Access Register 50
16

ASI_IMMU I-MMU TSB Register 50
16

Table G-1 ASI registers and ASI Names—listed alphabetically (Continued)

ASI Name or Macro Syntax Description Value
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ASI_IMMU_DEMAP I-MMU TLB demap 57
16

ASI_IMMU_TSB_64KB_PTR_REG I-MMU TSB 64KB Pointer Register 52
16

ASI_IMMU_TSB_8KB_PTR_REG I-MMU TSB 8KB Pointer Register 51
16

ASI_INTR_DISPATCH_STATUS Interrupt vector dispatch status 48
16

ASI_INTR_RECEIVE Interrupt vector receive status 49
16

ASI_ITLB_DATA_ACCESS_REG I-MMU TLB Data Access Register 55
16

ASI_ITLB_DATA_IN_REG I-MMU TLB Data In Register 54
16

ASI_ITLB_TAG_READ_RE G I-MMU TLB Tag Read Register 56
16

ASI_ITLB_TAG_READ_REG I-MMU TLB Tag Read Register 56
16

ASI_LSU_CONTROL_REG Load/store unit control register 45
16

ASI_N Implicit address space, nucleus privilege, TL > 0, 04
16

ASI_NL
Implicit address space, nucleus privilege, TL > 0,

little endian
0C

16

ASI_NUCLEUS Implicit address space, nucleus privilege, TL > 0, 04
16

ASI_NUCLEUS_LITTLE
Implicit address space, nucleus privilege, TL > 0,

little endian
0C

16

ASI_NUCLEUS_QUAD_LDD Cacheable, 128-bit atomic LDDA 24
16

ASI_NUCLEUS_QUAD_LDD_L Cacheable, 128-bit atomic LDDA, little endian 2C
16

ASI_NUCLEUS_QUAD_LDD_LITTLE Cacheable, 128-bit atomic LDDA, little endian 2C
16

ASI_P Implicit primary address space 80
16

ASI_PHYS_BYPASS_EC_WITH_EBIT Physical address, noncacheable, with side-effect 15
16

ASI_PHYS_BYPASS_EC_WITH_EBIT_L
Physical address, noncacheable, with side-effect,

little endian
1D

16

ASI_PHYS_BYPASS_EC_WITH_EBIT_LITTLE
Physical address, noncacheable, with side-effect,

little endian
1D

16

ASI_PHYS_USE_EC Physical address, external cacheable only 14
16

ASI_PHYS_USE_EC_L
Physical address, external cacheable only, little

endian
1C

16

ASI_PHYS_USE_EC_LITTLE
Physical address, external cacheable only, little

endian
1C

16

ASI_PL Implicit primary address space, little endian 88
16

ASI_PNF Primary address space, no fault 82
16

ASI_PNFL Primary address space, no fault, little endian 8A
16

ASI_PRIMARY Implicit primary address space 80
16

Table G-1 ASI registers and ASI Names—listed alphabetically (Continued)
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ASI_PRIMARY_LITTLE Implicit primary address space, little endian 88
16

ASI_PRIMARY_NO_FAULT Primary address space, no fault 82
16

ASI_PRIMARY_NO_FAULT_LITTLE Primary address space, no fault, little endian 8A
16

ASI_PST16_PL
Primary address space,4 16-bit partial store, little

endian
CA

16

ASI_PST16_PRIMARY Primary address space,4 16-bit partial store C2
16

ASI_PST16_PRIMARY_LITTLE
Primary address space,4 16-bit partial store, little

endian
CA

16

ASI_PST16_S Secondary address space,4 16-bit partial store C3
16

ASI_PST16_SECONDARY Secondary address space,4 16-bit partial store C3
16

ASI_PST16_SECONDARY_LITTLE
Secondary address space,4 16-bit partial store, little

endian
CB

16

ASI_PST16_SL
Secondary address space,4 16-bit partial store, little

endian
CB

16

ASI_PST32_P Primary address space, 2 32-bit partial store C4
16

ASI_PST32_PL
Primary address space, 2 32-bit partial store, little

endian
CC

16

ASI_PST32_PRIMARY Primary address space, 2 32-bit partial store C4
16

ASI_PST32_PRIMARY_LITTLE
Primary address space, 2 32-bit partial store, little

endian
CC

16

ASI_PST32_S Secondary address space, 2 32-bit partial store C5
16

ASI_PST32_SECONDARY Secondary address space, 2 32-bit partial store C5
16

ASI_PST32_SECONDARY_LITTLE
Secondary address space, 2 32-bit partial store, little

endian
CD

16

ASI_PST32_SL
Secondary address space, 2 32-bit partial store, little

endian
CD

16

ASI_PST8_P Primary address space, 8 8-bit partial store C0
16

ASI_PST8_PL
Primary address space, 8 8-bit partial store, little

endian
C8

16

ASI_PST8_PRIMARY Primary address space, 8 8-bit partial store C0
16

ASI_PST8_PRIMARY_LITTLE
Primary address space, 8 8-bit partial store, little

endian
C8

16

ASI_PST8_S Secondary address space, 8 8-bit partial store C1
16

ASI_PST8_SECONDARY Secondary address space, 8 8-bit partial store C1
16

Table G-1 ASI registers and ASI Names—listed alphabetically (Continued)
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ASI_PST8_SECONDARY_LITTLE
Secondary address space, 8 8-bit partial store, little

endian
C9

16

ASI_PST8_SL
Secondary address space, 8 8-bit partial store, little

endian
C9

16

ASI_PSY16_P Primary address space,4 16-bit partial store C2
16

ASI_S Implicit secondary address space 81
16

ASI_SECONDARY Implicit secondary address space 81
16

ASI_SECONDARY_LITTLE Implicit secondary address space, little endian 89
16

ASI_SECONDARY_NO_FAULT Secondary address space, no fault 83
16

ASI_SECONDARY_NO_FAULT_LITTLE Secondary address space, no fault, little endian 8B
16

ASI_SL Implicit secondary address space, little endian 89
16

ASI_SNF Secondary address space, no fault 83
16

ASI_SNFL Secondary address space, no fault, little endian 8B
16

ASI_UDB L_CONTROL_R External UDB Control Register, read low 7F
16

ASI_UDBH_CONTROL_R External UDB Control Register, read high 7F
16

ASI_UDBH_CONTROL_REG_READ External UDB Control Register, read high 7F
16

ASI_UDBH_CONTROL_REG_WRITE External UDB Control Register, write high 77
16

ASI_UDBH_ERROR_R External UDB Error Register, read high 7F
16

ASI_UDBH_ERROR_REG_READ External UDB Error Register, read high 7F
16

ASI_UDBH_ERROR_REG_WRITE External UDB Error Register, write high 77
16

ASI_UDBL_CONTROL_REG_READ External UDB Control Register, read low 7F
16

ASI_UDBL_CONTROL_REG_WRITE External UDB Control Register, write low 77
16

ASI_UDBL_ERROR_R External UDB Error Register, read low 7F
16

ASI_UDBL_ERROR_REG_READ External UDB Error Register, read low 7F
16

ASI_UDBL_ERROR_REG_WRITE External UDB Error Register, write low 77
16

ASI_UDB_CONTROL_W External UDB Control Register, write high 77
16

ASI_UDB_CONTROL_W External UDB Control Register, write low 77
16

ASI_UDB_ERROR_W External UDB Error Register, write high 77
16

ASI_UDB_ERROR_W External UDB Error Register, write low 77
16

ASI_UDB_INTR_R Incoming interrupt vector data register 0 7F
16

ASI_UDB_INTR_R Incoming interrupt vector data register 1 7F
16

ASI_UDB_INTR_R Incoming interrupt vector data register 2 7F
16
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ASI_UDB_INTR_W Interrupt vector dispatch 77
16

ASI_UDB_INTR_W Outgoing interrupt vector data register 0 77
16

ASI_UDB_INTR_W Outgoing interrupt vector data register 1 77
16

ASI_UDB_INTR_W Outgoing interrupt vector data register 2 77
16

ASI_UPA_CONFIG_REG UPA configuration register 4A
16

Table G-1 ASI registers and ASI Names—listed alphabetically (Continued)
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APPENDIX H

Event Ordering on UltraSPARC IIi

H.1 Highlight of US-IIi specific issues
The UltraSPARC IIi CPU meets the requirements of the SPARC V-9 and SUN4U

memory models.

Some important points that may not be obvious:

■ The membar instruction cannot be used to guarantee that a noncacheable store

has completed to a device.

However, a feature of the UltraSPARC IIi CPU is that explicit membar instructions

can be used to guarantee that PCI activity has progressed to the primary PCI

buses. However progress to the UPA64S interface cannot be guaranteed with

membars.

■ A single cacheable mutex semaphore should not be used to control shared access

to a PCI device when shared access involves the processor and a PCI DMA

master. A robust solution might use a passed token instead in a a single reader

and single-writer lock exchange. This solution meets the PCI producer/consumer

model.

There is a lack of SMP-like ordering because a PCI DMA master can short-circuit

the global ordering mechanism by direct peer-to-peer access to the device on its

local bus.

This could allow the PCI DMA master to issue stores to the device that jump

ahead of uncompleted activity from the processor. This issue exists because of the

hierarchy of buses in the PCI domain, and also because of the fact that the

membar instruction cannot guarantee the completion of a noncacheable store.
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■ A single cacheable mutex semaphore is ideal for controlling similarly shared

access to cacheable memory or the UPA64S interface, since the PCI DMA master

cannot jump ahead of any globally ordered CPU activity, and SMP-like global

ordering is enforced with the ordering point inside UltraSPARC IIi.

■ The SUN4U architecture has no mechanism for ordering PCI PIO and DMA

activity. DMA event completion is ordered with interrupts, or possibly with a

cacheable semaphore as noted above.

H.2 Review of SPARC V9 load/store
ordering
The SPARC V9 Architecture began with a straightforward set of “sequencing”

memory barrier instructions (membars) to be used by software to guarantee that

prior program order loads and/or stores would be globally ordered after future

program order loads and/or stores, for a single processor.

This global order could be considered “created” when the system could guarantee

that the loads and stores would eventually complete at their final destination with

effects consistent with this global order.

This known global ordering of events is necessary in multi-processor systems when

processors share access to common resources. The formal definition of order is more

abstract than this description but this language follows the behavior of typical

hardware implementations.

Complicating the issue for performance reasons, implementations typically

introduce additional queues for noncacheable operations that can operate in parallel

to the ordering mechanisms for cacheable operations. Requiring the membars to

order both cacheable and noncacheable events was believed to create a performance

problem, since some membars exist implicitly for certain memory models.

Consequently, V9 organized that the sequencing membars apply separately within

the cacheable and noncacheable domains.

To order between domains, without the additional overhead of Membar #Sync, a

Membar #MemIssue instruction was created.

Membar #Sync is additionally constrained to guarantee that the effects of any

exceptions have been ordered.

According to V9:
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“All memory reference operations appearing prior to the MEMBAR #MemIssue

must have been performed before any memory operation after the MEMBAR

#MemIssue may be initiated.”

The word “performed” may have been purposely chosen to be nebulous!

This instruction is known as a “completion” membar, and the apparent implication

was that subsequent load/stores would be stalled until prior loads were completed,

and prior stores were completed to the destination (device). However, the SUN4U

architecture recognized store “completion” as a possible performance problem. and

relaxed the definition to mean that load/store issue would be stalled until all prior

loads and stores had been globally ordered.

This global order would be preserved out to the device, which was responsible for

completing them in that order. No side-effects between devices were allowed, so this

model meets the overall goals.

If knowledge of store completion to the device were really necessary for some

reason, perhaps because of side-effects, SUN4U requires software to issue a load to

that device (into some implementation-specific address) and wait for its completion.

The device is responsible for completing the effects of all prior load/stores before

completing that load.

In short, the SUN4U requirement for a Membar #MemIssue is the same as that for a

sequencing Membar with #StoreStore, #StoreLoad, #LoadLoad, #LoadStore all set,

but with the effects applied across both cacheable and noncacheable domains.

The UltraSPARC I and II CPUs actually implement a more conservative approach to

the explicitly coded sequencing Membars. The sequencing effect applies equally

against cacheable and noncacheable loads and stores. (This is not true for the

implicit sequencing membars in the memory models).

With PSTATE.MM==TSO, UltraSPARC I and II CPUs guarantee that all stores, both

cacheable and noncacheable, are ordered globally so as to complete in program

order. This is described as an implicit Membar #MemIssue in the appropriate User’s

Manual.

With PSTATE.MM==PSO or RMO store ordering is not necessarily preserved,

notably between cacheable and noncacheable stores, and between cacheable block

store commits and other cacheable stores.

Note that global ordering may also be important in all memory models if

noncacheable loads have side-effects.

For the noncacheable domain, the DMMU supports a bit per page mapping called

the E-bit, that has the same architecturally specified effect as having a membar with

all the sequencing bits set, between loads and stores. That is, a strong sequential

order is created and preserved out to devices. However, the E-bit only orders load/

store within the noncacheable domain.
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H.2.1 Ordering load/store Activity Out To The Primary

PCI bus

This activity is not a requirement of the software model, but it is a design feature

that might be minimally useful in debug situations.

UltraSPARC I and II membars only guarantee that PIO stores have completed as far

as the processor data bus system, not to the SBUS or any PCI bus. As noted the

global order created is preserved from that point on.

Since the software model has no ordering between DMA and PIO on the PCI bus,

there should not be any case of software using a membar #sync for guaranteeing

some ordering of events on the PCI bus.

The SUN4U software model description states:

“There are times that it is desirable to know if an I/O access has completed....”

“Any store queue must have an address associated with it that can be read by a

processor to see if previously issued stores have completed, this may be the address

of a safe-to-read status or control register...”

“Code that wishes to see if the path from the processor to a device has been cleared

can do so by reading the synchronization address associated with the buffer closest

to the target device.”

UltraSPARC IIi also does not guarantee that writes to UPA64S have completed all

the way to the UPA64S interface with a membar #sync. Since UPA64S is a single

master interface, no multi-master order issues exist. The software model instead uses

loads to determine store completion all the way to the UPA64S internals.
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APPENDIX I

Observability Bus

The UltraSPARC IIi CPU implements an observability bus to assist in bringing up the

processor and its associated systems. The bus can also be used for performance

monitoring and instrumentation.

I.1 Theory of Operation

I.1.1 Muxing

At any one time, one group of 15 signals out of five possible groups—75 total

signals—is selected for output to the SYSADR[14:0] pins of UltraSPARC IIi. This

selection is controlled by an ASR register.

Since SYSADR is used for UPA64S addresses, the observability information is not

available for the two UPA clocks—eight processor clocks for the SME1430 CPU, six

for the SME1040 CPU—of an UPA64S address packet, and for one more UPA clock

after that—four processor clocks for the SME1430 CPU, three for the SME1040 CPU.

This period is indicated by the assertion of ADR_VLD for the first four processor

clocks of the period for the SME1430 CPU (the first three for the SME1040 CPU).

After the twelve processor clocks have expired in the SME1430 CPU’s case—nine for

the SME1040 CPU’s, SYSADR[14:0] can again change state every processor clock

instead of being aligned to UPA clocks.

To avoid sending CPU-frequency signals to UPA64S during normal operation,

program the select to choose all 1’s. This selection also limits EMI by disabling the

test L5CLK outputs (CPU and PCI) on UltraSPARC IIi.

The first group (group 0) is chosen to be the most useful debug group, since this is

the default group selected upon POR. There is no overlap of signals between groups.
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I.1.2 Dispatch Control Register

The Dispatch Control Register, ASR 0x12, enables some performance features related

to instruction dispatch, and controls the output of internal signals to UltraSPARC IIi

SYSADR[14:0] pins for help in chip debug and instrumentation.

Figure I-1 Dispatch Control Register (ASR 0x12)

GS<2:0>: Group select bits. Selects the group of signals driven out on

SYSADR<14:0> during cycles not used by UPA64S address packets. All unused

encodings cause undefined results; zero after POR.

MVX: IEU.movx_enable—Controls a performance enhancement (compared to US-I)

for movx instructions. If set, stops movx instruction dispatch if there is a valid load

instruction in the E-stage. (performance enhancement); zero after POR.

MS: IEU.multi_scalar—Multi-Scalar Dispatch Control. If cleared, instruction

dispatch is forced to a single instruction per group; zero after POR.

Recommended initialization for normal system operation is 0x3D.

I.1.3 Timing

All signals appear on the pins three stages after they are valid within

UltraSPARC IIi. Each signal is buffered with a rising-edge-triggered D-flip-flop.

TABLE I-1 Group Select Bits

GS<2:0> Group

000 0

001 1

010 2

011 3

100 4

111 ALL1

63 03

MS

12

rsvdMVX

6

GS
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Figure I-2 Diagram of Observability Bus Logic.

I.1.4 Signal List

Groups are divided roughly into:

■ Group 0: Primary pipe pins

■ Group 1: Program counter

■ Group 2: Prefetch unit.

■ Group 3: Load-store unit, E-cache unit.

■ Group 4: Special Purpose Register block signals

■ ALL1: Bus is driven high at all times

I.1.4.1 Group 0

Primary pipeline signals (default group)

■ obs_tap_bus_0[2:0]= num_complete = f(tr.trctrl.trpc.trap_*_ins_comp_w).

The number of instructions completed in W, from zero through four inclusive.

Help instructions are counted only once, but they differ in the exact cycle that

gets counted because of the way the valid bits behave for different instructions.

For example, CASA is counted on W1 of the help==00 cycle, while MULX is

counted on W1 of the help==11 cycle.

■ obs_tap_bus_0[4:3] = ieu_dispatched_g[3:0] compressed to 2 bits

The number of instructions dispatched into the pipeline by G-logic.

d
q

d
q

logic

obs_tap_bus_N[]

signal

Block SPR

d
q

I/O Cell
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0==no instructions dispatched

0x1 == one instruction dispatched

0x2 == two instructions dispatched

0x3 == three or four instructions dispatched.

■ obs_tap_bus_0[5]= lsu_stall_v4_e

Stall the e-stage of the pipe when an instruction requires data from an earlier

load operation that is not yet available. Can happen due to D$ miss, read-after-

write hazard, sign extension on a D$ hit, load buffer not empty, etc.

■ obs_tap_bus_0[6]= flop(tr_microtrap_n3 | ieu_flush_n3)

Indicates a flush or microtrap is being taken.

obs_tap_bus_0[6] and obs_tap_bus_0[8] should not be active together and

should always be followed by bit 7 going active two to many cycles later

before either go active again. Both should be single cycle pulses.

■ obs_tap_bus_0[7]= flop(ieu_done || ieu_retry)

Indicates that trap logic is delivering a PC (and NPC for retries) from which to

begin fetching after POR, traps, DONE/RETRY inst flushes, microtraps, etc.

■ obs_tap_bus_0[8]= flop(ieu_traptaken_n3)

The trap unit has determined that an N3 instruction should trap, and signals

the pipeline to take the trap.

obs_tap_bus_0[6] and obs_tap_bus_0[8] should not be active together and

should always be followed by bit 7 going active 2 to many cycles later before

either go active again. Both should be single cycle pulses.

■ obs_tap_bus_0[9]= finish_fpop

A floating point operation has come off the queue.

(‘FGC.c_f1_write[0] | fdiv_finish)

■ obs_tap_bus_0[10]= finish_load (NEEDS FIX IN RTL--LOGIC IN EX)

A floating point operation has come off the queue

■ obs_tap_bus_0[11]= pdu_bad_pred_c

This C-stage signal is asserted when the direction of a conditional branch has

been mispredicted or the target address of a register-indirect jump (JMPL or

RETURN) has been mispredicted.

Note: obs_tap_bus_2[5] (pdu_br_resol_c) should be asserted at the same time.

■ obs_tap_bus_0[14:12]= E$ arbitration

// ecache fills or ownership etag/edata writes

((dxfsm_ecache_req & ~dxfsm_ecache_busy) ? 3’d1 : 3’d0) |

// copybacks or invalidates
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((snp_ecache_req & ~snp_ecache_busy) ? 3’d2 : 3’d0) |

// writebacks or block stores

((trfsm_ecache_req & ~trfsm_ecache_busy) ? 3’d3 : 3’d0) |

// data back for noncacheable loads or the sdb data transfer nc stores

((nc_ecache_req & ~nc_ecache_busy) ? 3’d4 : 3’d0) |

// noncacheable or cacheable loads/bloads, asi stores to sdb/ecache

(ldb_win ? 3’d5 : 3’d0) |

// noncacheable or cacheable stores/bstores, asi loads to sdb/ecache

(stb_win ? 3’d6 : 3’d0) |

// tag checks for stb

(sttag_win ? 3’d7 : 3’d0);

I.1.4.2 Group 1

Program counter

■ obs_tap_bus_1[11:0]= pc[13:2].

These are bits [13:2] (the word address) of the D-stage “fetch PC”. (LSB of the

virtual page number + page offset).

RTL use: In the D-stage, this PC (bits [43:13]) is being translated by the ITLB. It

is also the PC that will be enqueued in the GPCQ (G-stage PC Queue) in the

next cycle (when the associated instructions are enqueued in the IBuffer), if this

fetch starts a new PC segment.

■ obs_tap_bus_1[12]= pfc_utlb_miss

■ This D-stage signal is asserted when the fetch PC crosses a page boundary (e.g. by

jumping to a different page), the prefetcher stalls 1 cycle to wait for the ITLB

translation.

■ obs_tap_bus_1[13]= function of (pfc_va_valid, pfc_cancel_itlb)

■ When this signal is asserted in the D2 stage, the results (hit/miss/exception and

the physical address) of the ITLB translation performed the previous cycle (D

stage) are valid and used.

■ obs_tap_bus_1[14]= function of (pfc_imu_exc, pfc_imu_miss)

This signal is asserted in the D2 stage (when a uTLB miss has occurred in D,

forcing the prefetcher to stall for the ITLB translation) if the VA translation has

caused an exception (caused an ITLB miss or an ITLB access exception, or the
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VA is illegal--in the “hole”). This signal is already qualified by the “cancel”

signal, pdu_cancel_itlbt, so that it will not be asserted if the translation will not

actually be needed.

I.1.4.3 Group 2

Prefetch unit, caches

■ obs_tap_bus_2[1:0] = pdu_i*_valid (compressed to 2 bits)

Encoded count of number of valid instructions in the IBuffer.

0==no instructions dispatched, 0x1 == one instruction dispatched, 0x2 == two

instructions dispatched, 0x3 == three or four instructions dispatched.

■ obs_tap_bus_2[2] = fetch_stall = pfc_ignore_fetch || ibcm_full || gpcq_qfull

If this D-stage signal is asserted, no instructions will be enqueued in the IBuffer

next cycle. It will be asserted if the IBuffer or GPCQ is full, or for prefetch stall

events: NFA-PC mismatches, SP mispredictions, uTLB misses, branch

mispredictions, or cache stalls (for E-cache accesses, snoops, ASI accesses, or

flushes).

■ obs_tap_bus_2[3] = pfc_non_fetch

Asserted when the instruction prefetcher is stalled because the I-cache is busy

(for an E-cache fetch, a snoop, ASI access, or flush).

■ obs_tap_bus_2[4] = pdu_br_taken_c

When obs_tap_bus_2[5] (pdu_br_resol_c) is asserted (i.e. a branch is resolved),

this C-stage signal is asserted when a conditional branch (Bicc, BPcc, FBfcc,

FBPfcc) is taken.

■ obs_tap_bus_2[5] = pdu_br_resol_c

Asserted when a DCTI (Bicc, BPcc, FBfcc, FBPfcc, JMPL, RETURN) reaches the

C stage.

Note: obs_tap_bus_0[11] (pdu_bad_pred_c) should only be asserted when this

signal is asserted. obs_tap_bus_2[4] is only valid when this signal is asserted.

■ obs_tap_bus_2[6] = pc.pcgen_ctl.pfc_spmiss_d

This D-stage signal is asserted when a “Set misprediction” (SP miss) occurs

(that is, when the instructions were fetched from the wrong bank of the I-

cache, so the prefetcher must redo the fetch). This should cause the prefetcher

to stall for 2 cycles.

Note: as a result, obs_tap_bus_2[2] (fetch stall) should be asserted in the same

cycle.

■ obs_tap_bus_2[7] = imux_pcmiss_d1_f
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This D-stage signal is asserted when there is an NFA-PC mismatch (that is,

when the “next fetch address” from the NFRAM, used for the F-stage I-cache

fetch, mismatches with the actual fetch PC, so the prefetcher must redo the

fetch). This is sometimes referred to as a “PC miss”. The prefetcher should stall

for 2 cycles.

Note: as a result, obs_tap_bus_2[2] (fetch stall) should be asserted in the same

cycle.

■ obs_tap_bus_2[8] = ibd_pcrel_taken_d

D-stage decode signal for the instructions from the current I-cache (or E-cache)

fetch. Indicates that there is a PC-relative branch in the current fetch that is

predicted-taken.

■ obs_tap_bus_2[9] = ibd_regbr_d

D-stage decode signal for the instructions from the current I-cache (or E-cache)

fetch. Indicates that there is a register-indirect jump (JMPL or RETURN) in the

current fetch.

■ obs_tap_bus_2[10] = (copy of obs_tap_bus_2[0])

■ obs_tap_bus_2[11] = iblock.icc_update_icache

This signal is asserted when the I-cache or NFRAM should be updated for a

cache fill (it is a component of the RAM write-enables).

■ obs_tap_bus_2[12] = imu_stop

IMU has encountered an exception, and will be suspended until told by the

pipeline that the exception has been cleared by the instruction being annulled

or flushed as it goes down the pipe, or reaching W stage and causing a trap.

The imu_stop is cleared whether the instruction causes a trap or not. If

imu_stop is left high and the CPU is hung, check for PDU waiting on a request

to the ECU. Otherwise, look for cases of the exception instruction getting

annulled or flushed without notifying the IMU.

■ obs_tap_bus_2[13]= write D$

Active when any byte of D$ is being modified, either from a store or D$ fill.

For D$ misses, the D$ and D$ tags are written assuming that the data is a hit in

the E$. If there is an E$ miss, the D$ will be updated properly when the data

for the E$ miss is returned from the system.

■ obs_tap_bus_2[14]= lsu_tag2_we

D$ tag write enable.

I.1.4.4 Group 3

Load-store unit, E$ unit
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■ obs_tap_bus_3[3:0]= Snoop information

{ecu_pd_snoop_req, pdu_busy, ecu_ls_snoop_req, lsu_ec_dcache_busy};

■ obs_tap_bus_3[7:4]= E$ request/cancel information

If there is a read and it is not one of the following, it is the PDU (cacheable or

noncacheable). Block loads and stores that hit the ecache will be distinctive by

their OE/WE pattern (incrementing addresses).

{ecu_ls_cancel_all, ecu_pd_cancel_all, ecu_ls_cancel_tag, ecu_ls_clear_tag};

■ obs_tap_bus_3[8]= enq_n1

Load buffer gets an entry enqueued. Often an n1-stage load cannot return data

and must be put on the load buffer.

■ obs_tap_bus_3[9]= ldb_zero_entries

The load buffer is empty.

■ obs_tap_bus_3[10]= raw_hit_target_n1

The D$ access has hit. This is a “raw” signal and is based on the current state

of the D$. It is possible that older loads in the Load Buffer can “adjust” the

load/store in n1-stage into either a hit or miss based on how these older loads

will change the state of the D$ by bringing in new data/overwriting old data.

■ obs_tap_bus_3[11]= lsu_use_other

lsu_use_other indicates from where load data is returning. If asserted, data is

coming from the “other” bus. If deasserted, data is coming directly from the

D$. The “other” bus transfers data for:

■ D$ misses

■ NC loads

■ diagnostic loads (load alternates) of external resources (e.g. SDB registers, E$

data RAM, E$ tag RAM)

■ loads (again, load alternates) of internal resources (e.g. I$, DMMU, IMMU, D$,

ECU internal registers, etc.).

In addition, it also carries data on D$ hits for signed loads (ldsb/ldsba, ldsh/

ldsha, ldsw/ldswa) one cycle delayed. If a subsequent load is attempting to

return data in the cycle following the signed load’s D$ hit, it is forced to use

the “other” bus and to be delayed one cycle as well (this scenario is often

referred to as “delayed return mode”).

■ obs_tap_bus_3[12]= lsu_stb_dec_count

An entry is dequeueing from the store buffer. This signal is asserted the cycle

after the Store Buffer valid bit is deasserted. For writes to the E$, this is the

cycle that the address is being driven from UltraSPARC IIi to the E$ RAMs.

■ obs_tap_bus_3[13]= stb_block_ldb_ec_req
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Store buffer gets priority over the load buffer for E$ request signals.

No Load requests to the E$ can be made in this cycle, because the Store Buffer

has assumed priority to “drain” as it has hit a “high watermark” in the number

of entries it contains.

■ obs_tap_bus_3[14]= sab_addr_valid[0]

Valid bit for store buffer entry 0. (Store buffer is not empty.)

I.1.4.5 Group 4

Information from EX on CWP state and changes.

■ obs_tap_bus_4[7:0]= spr_cwpread_g[7:0]

■ obs_tap_bus_4[10:8]= sprcntl_cwp_muxsel_g[2:0]

■ obs_tap_bus_4[14:11] {sprcntl_cwpchange_e, sprcntl_cwpchange_c,

sprcntl_cwpchange_n1, sprcntl_cwpchange_n3}

I.1.4.6 ALL1

When this group is chosen the observability bus is driven high at all times. This

reduces the power consumption of UltraSPARC IIi since the pins are not toggling.

The CPU and PCI test L5CLK’s are also disabled.

Note – The ALL1 group is not the default group. If this feature is required in the

system level environment the boot/initialization code must set GS bits accordingly.

I.1.5 Other UltraSPARC IIi Debug Features

In addition to the observability bus, the default value of the ECAD (address to the

data SRAMS) is pdu_pa[21:4], which is the PDU’s prefetch address
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APPENDIX J

List of Compatibility Notes

The following text is a list of the comp[atibility notes that appear through the body

of this manual. The page number for the original compatibility note in the body of

the manual appears at the end of each entry in this list

Note 1: A read of any addresses labelled “Reserved” above returns zeros, and writes have

no effect. 50

Note 2: If Configuration cycles are generated with compressed (E-bit==0) byte or halfword

stores, or with random byte enable patterns using the PSTORE instruction,

UltraSPARC IIi does not guarantee that AD[1:0] points to the first byte with a BE

asserted.

Also, while not addressed by the PCI 2.1 specification UltraSPARC IIi can generate
multi-databeat configuration reads and writes. 83

Note 3: There are no time out errors during table walk for the UltraSPARC IIi IOM. 102

Note 4: Bits in the DMA UE AFSR/AFAR are set, and the PA of the TTE entry is saved on

Invalid, Protection (IOM miss), and TTE UE errors. This should aid debugging of

software errors. If the Protection error had an IOM hit, the translated PA from the

IOM is saved instead of the PA of the TTE entry. This may occur if a prior DMA read
caused the IOM entry to be installed. 102

Note 5: Prior PCI-based UltraSPARC systems implemented a true LRU scheme. 103

Note 6: The IGN on UltraSPARC IIi is not programmable, and fixed to 0x1F. 108

Note 7: UltraSPARC IIi does not send interrupts to any devices. A write to these registers

has no effect. 119

Note 8: UltraSPARC IIi does not send interrupts to any devices. A read of this register

always returns zeros. 120

Note 9: UltraSPARC IIi only supports the interrupt data that were present in prior

UltraSPARC-based systems; that is, bits 10:0 (INR) of ASI_SDB_INTR(0). All other

bits are read as 0. 120
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Note 10: Prior UltraSPARCs may have provided the first two registers at the same time. If

code depends upon this unsupported behavior it must be modified for

UltraSPARC IIi. 168

Note 11: When the processor is reset, UPA64S, PCI, and APB are also reset. 173

Note 12: Referenced and Modified bits are maintained by software. The Global, Privileged,

and Writable fields replace the 3-bit ACC field of the SPARC-V8 Reference MMU

Page Translation Entry. 200

Note 13: The UltraSPARC IIi MMU performs no hardware table walking. The MMU hardware

never directly reads or writes to the TSB. 203

Note 14: The single context register of the SPARC-V8 Reference MMU has been replaced in

UltraSPARC IIi by the three context registers shown in Figures 15-4, 15-5, and 15-6.

215

Note 15: In UltraSPARC IIi the virtual address is longer than the physical address; thus, there

is no need to use multiple ASIs to fill in the high-order physical address bits, as is

done in SPARC-V8 machines. 226

Note 16: UltraSPARC automatically caused the reset through the UPA. The UltraSPARC IIi

CPU currently does not cause an automatic reset. 232

Note 17: If an E-cache data parity error occurs during a write-back, uncorrectable ECC is not

forced to memory. However, the error information is logged in the AFSR and a

disrupting data_access_error trap is generated. 236

Note 18: If PER is disabled, UltraSPARC IIi does not set DPE if it detects a parity error on PIO

reads. This is inconsistent with the PCI 2.1 spec. 237

Note 19: If PER is disabled, UltraSPARC IIi does not set DPE if it detects a parity error on

DMA writes. This is inconsistent with the PCI 2.1 spec. 238

Note 20: A new feature for UltraSPARC IIi, is that the VA of the offending DMA access is

logged in the PCI DMA UE AFSR and AFAR, with the a bit set for identification as a

DMA translation error. 239

Note 21: UltraSPARC IIi does not Target Abort on a a parity error resulting from a DMA read

of E-cache. UltraSPARC caused a UE at the receiver of the data. Currently it is only

reported with the same priority/trap as WP (but CP bit set). 246

Note 22: UltraSPARC IIi causes a Deferred Trap similarly to UltraSPARC for ETS, without a

system reset. Software can determine if a system reset is necessary. 246

Note 23: The SDB name is inherited from UltraSPARC. It logs information about memory

errors caused by the CPU core. Only the SDBH register is used. Current Solaris

software interrogates if SDBL is non-zero, and ORs in a 1 to the logged pa[3] (which

is always zero on UltraSPARC, but valid on UltraSPARC IIi). 247
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Note 24: There is no Wakeup Reset support for power management, unlike that in prior

UltraSPARC-based systems. 255

Note 25: Prior UltraSPARC-based systems used other hardware and programming models to

control the UPA and memory interfaces. 266

Note 26: APB has a similar additional state for each of its PCI busses. See the APB User’s

Manual for details. 283

Note 27: This device ID is different from that of prior PCI-based UltraSPARC systems. 291

Note 28: A value of 0 means there is no latency timeout. 293

Note 29: ERR and ERRSTS are not present in prior PCI-based UltraSPARC systems. 296

Note 30: Unlike prior PCI-based UltraSPARC systems, UltraSPARC IIi arbitrates between

IOMMU CSR access and DMA access. This property may allow software more

flexibility. 299

Note 31: The Used bit does not exist in prior PCI-based UltraSPARC systems, and is used by

the pseudo-LRU replacement algorithm. 299

Note 32: The IGN on UltraSPARC IIi is not programmable for the Partial Interrupt Mapping

Registers, and is fixed to 0x1f. 301

Note 33: There is no RECEIVED state for DMA CE, DMA UE, or PCI Error Interrupts. They

cause their interrupt FSMs to go from the IDLE to the PENDING state directly, when

present and enabled. 302

Note 34: Note the “Graphics Int State” and Expansion UPA64S Int State” bits are moved from

bits 38 and 39 (position in prior UltraSPARC systems) to bits 34 and 35 respectively.
309

Note 35: The UltraSPARC IIi PCI bus is hardwired to Bus
Number == 0 312

Note 36: UltraSPARC IIi aliases Functions 1-7 of its PCI Configuration space to its Function 0

PCI Configuration space. (Bus 0, Device 0). The PCI specification requires that zeros

be returned and stores ignored. Since this address space is only accessible

toUltraSPARC IIi PIO instructions, specifically boot PROM code, this aliasing should

not be problematic because the boot PROM should never reference the

UltraSPARC IIi Function 1-7 addresses (see Type 0 Configuration Address Mapping on
page 312 for the address decode scheme). 313

Note 37: Unlike prior PCI-based UltraSPARC systems, UltraSPARC IIi does not use bit 31 of

the PCI address for outgoing memory transactions, or bit 17 for outgoing IO

transactions. APB also similarly preserves bits 31 and 17. 314

Note 38: Unlike prior PCI-based UltraSPARC systems, Pass-through does not zero

PCI_Addr[31] 315
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Note 39: Prior PCI-based UltraSPARC systems used PCI_Addr<40>, but note that [40:34] are

all 1’s for UPA64S addresses. 316

Note 40: A PCI DMA UE interrupt is generated whenever a primary DMA UE or Translation

Error bit is set, even if by a CSR write. Ensure that software clears the AFSR before

clearing the interrupt state and re-enabling the PCI Error Interrupt. (This behavior is

similar to that of the ECU AFSR) 317

Note 41: This feature is absent in prior PCI-based UltraSPARC systems but should be

compatible with existing Solaris code. 318

Note 42: A DMA CE interrupt is generated whenever a primary DMA CE bit is set, even if by

a CSR write. Ensure that software clears the AFSR before it clears the interrupt state

and re-enables the PCI Error Interrupt. (This behavior is similar to that of the ECU
AFSR). 319

Note 43: Because of the smaller external cache data and tag, some adjustments are made to

these diagnostic accesses. 380
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APPENDIX K

Errata

K.1 Overview.
This document contains a list of errata for 1.2 and above of the UltraSPARC IIi CPU.

K.2 Errata Created by UltraSPARC-I
Erratum 32: Load from ITLB or DTLB may return wrong data if the load is after a store

instruction to ITLB or DTLB that traps

The following is required to occur:

■ Store to ASIs ASI_ITLB_DATA_ACCESS_REG or ASI_DTLB_DATA_ACESS_REG

(ITLB or DTLB entries) traps.

■ Load from ASIs ASI_ITLB_DATA_ACCESS_REG or

ASI_DTLB_DATA_ACESS_REG (ITLB or DTLB entries).

■ No intervening store instructions between the above Store and Load.
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For example:

In the IMU/DMU, the address of the internal register to be written by a store is

latched after the store is dispatched. A wait state is entered until the time the data is

actually written. If this instruction traps, the control logic does not reset and remain

in this wait state. A subsequent load from TLB entries can be corrupted by this wait

state, resulting in the use of the internal address associated with the prior store

instead of that from the load. However, this wait state is cleared by any store

instruction.

Hence the problem does not exist if a store is executed between the trapping store

and the load.

Software workaround: Add a Store instruction to any address space before loads

from ITLB or DTLB, if none already exists.

Erratum 45: DONE/RETRY/SAVED/RESTORED with illegal fcn field executed in nonprivileged

mode take privileged_opcode trap rather than illegal_instruction trap.

The following instruction conditions generate a privileged_opcode trap rather than

the specified illegal_instruction trap.

DONE for fcn = 2..31 executed in nonprivileged mode

RETRY for fcn = 2..31 executed in nonprivileged mode

SAVED for fcn = 2..31 executed in nonprivileged mode

RESTOREDfor fcn = 2..31 executed in nonprivileged mode

Software workaround: The opcode can be recognized by software to emulate the

proper illegal_instruction behavior. This can be done with SPARC code in the

privileged_opcode trap handler that does the following:

PRIVILEGED_OPCODE_HANDLER:

        rdpr    %tpc, %g1

        ld      [%g1], %g2

        setx    0xc1f80000, %g3, %g4

        and     %g4, %g2, %g4 ! %g4 has op/op3 of trapping instr.

stx %reg,[..]ASI

....

space

ldx [..]ASI %reg

;if this instruction traps for some reason
ASI for ITLB 0x55 and for DTLB 0x5d

;the instructions dispatched following store

;does not contain any st or st to alternate
instruction

;Reads TLB entry ASIs 0x55, 0x56 (for ITLB
;ASI 0x5d, 0x5e (for DTLB)
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        setx    0x3e000000, %g3, %g6

        and     %g6, %g2, %g6

        srl     %g6,  25, %g6 ! %g6 has fcn of trapping instr.

check_illegal_saved_restored:

        setx    0x81880000, %g3, %g5

        subcc   %g4, %g5, %g0 ! saved/restored opcode?

        bne     check_illegal_done_retry

        subcc   %g6, 2, %g0 ! illegal fcn value?

        bge     ILLEGAL_HANDLER

        nop

check_illegal_done_retry:

        setx    0x81f00000, %g3, %g5

        subcc   %g4, %g5, %g0 ! done/retry opcode?

        bne     not_illegal

        subcc   %g6, 2, %g0 ! illegal fcn value?

        bge      ILLEGAL_HANDLER

        nop

not_illegal:

        <handle privileged_opcode exception as desired here>

Erratum 47: JMPL instruction at boundary of Virtual address hole sign-extends %rd.

Virtual addresses between:

0x0000 0800 0000 0000 and 0XFFFF F7FF FFFF FFFF

inclusive, are termed out of range. This range is referred to as the Virtual address

hole and is described in Section 4.2, Virtual Address Translation on page 23; also see

Section 14.1.7, 44-bit Virtual Address Space on page 178.

The following instruction sequence causes %rd to be loaded with the wrong value:

pc = 0x000007FF.FFFFFFFC jmpl address, %rd

pc = 0x00000800.00000000

The %rd is saved as: 0xFFFF F800 0000 0000 , when it should be the first address in

the Virtual address hole: 0x0000 0800 0000 0000 .

The failure would be that an erroneous jmpl at the boundary (which should trap if

the correct return address were used) would create a valid instead of invalid return

address. This valid return address would not trap as a “VA hole” PC.

Software workaround: US-I errata require the OS to not map the 4 GB of instruction

space immediately above and below the VA hole, so the OS would not map the

following 4 GB ranges:

lower range: 0x0000 07FF 0000 0000 to 0x0000 07FF FFFF FFFF
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upper range: 0xFFFF F800 0000 0000 to 0xFFFF F800 FFFF FFFF

Since the instruction address at the boundary is never mapped, a valid instruction is

never executed at that PC.

Erratum 48: DONE/RETRY with TL=0 causes a privileged rather than an illegal instruction trap.

The SPARC Architecture Manual, Version 9 says an illegal instruction trap should be

taken. Instead, a privileged trap is taken.

Erratum 49: ASI’s 0x5c/5d/5e all cause ft[2] in the DMMU SFSR to be set according to the tlb

entry.

The UltraSPARC I/II User’s Manual says that the ft[2] bit of the D-MMU

Synchronous Fault Status Register (loaded on traps) is set for Atomics (including

128-bit atomic load) to page marked uncacheable, and that the bit is zero for internal

ASI accesses, except for atomics to DTLB_DATA_ACCESS_REG (0x5D), which

update according to the TLB entry accessed. (See Section 15.4.4, Data_access_exception
Trap on page 204 and Table 15-13 on page 216).

The correction to the documentation is that all ASIs which access the D-MMU tlb

have the same behavior, that is:

0x5C    ASI_DTLB_DATA_IN_REG

0x5D    ASI_DTLB_DATA_ACCESS_REG

0x5E    ASI_DTLB_TAG_READ_REG

For instance,

swapa [%g0] 0x5e, %g0

traps with ft[3:0] = 1000, if the mapping for VA==0x0 has cp==1 and cv==1.

Erratum 50: RDPR of TPC, TNPC, or TSTATE may not bypass correctly into arithmetic

instructions that create condition codes, causing incorrect V/C bypass/use. (Z and

N are apparently always correct)

The discovered failing instruction sequence is:

rdpr %tpc, %i0
subcc %i0, %g2, %i3

The 65th bit of the ALU used in the 2nd instruction can be incorrect. This should

only affect the setting of the V and C flags by that instruction. It may also affect an

integer divide that uses the result of the rdpr.

The code above might be used when software is checking for a range of PC values

and uses the V or C flag to do a less-than, greater-than comparison. The problem

may exist for rdpr’s of other trap state.
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The problem occurs on instructions that use the first-level shortloop into the diad 65

bit ALU on operands whose results are generated from the iexe_aludp1_aluout_65_e

bus.

On second level and later conflicts the 65th bit was stripped off and shortlooped

back in as zero. Only the first level shortloop allows a one on bit 64 to be

shortlooped back into a following instruction.

The 65th bit can only be one either when information is read in from the trap_sr_e

busses and sign extended into the 65th bit, or for a shift operation.

There is a family of failures that can occur on any instruction following and using

the results of a preceding instructions usage of the trap_sr_e results bus.

The full range of rdpr/rdasr that could be of interest can be examined:

for non-zero bit 63. (fp stuff excluded)

rdpr of:

TPC, TNPC, TSTATE, TT, TICK, TBA, PSTATE, TL, PIL, CWP, CANSAVE,

CANRESTORE, CLEANWIN, OTHERWIN, WSTATE, and VER.

and rdasr of:

Y_REG, COND_CODE_REG, ASI_REG, TICK_REG, PERF_CONTROL_REG,

PERF_COUNTER, DISPATCH_CONTROL_REG, GRAPHIC_STATUS_REG,

SOFTINT_REG, TICK_CMPR_REG

Since the MSB needs to be 1, not all of the above registers can cause the error (if they

have bit 63 defined to be zero always), so apparently only

rdpr of TPC, TNPC, TSTATE, TICK, and rdasr of TICK_REG, and

PERF_COUNTER

can cause this error. It appears further that only reads from trap state are involved,

that is, TPC, TNPC, or TSTATE.

Software workaround: Inhibit use of this bypass path by feeding the result of the

rdpr through another operation before doing an instruction on it that sets condition

codes or integer divides. That is, the example at the top could become:

rdpr %tpc, %i0
mov %i0,%i0
subcc %i0, %g2, %i3

Erratum 51: IMU miss, with mispredicted CTI and delayed issue of delay slot, can cause

instruction issue to stop.

US-I, II, and IIi can stop issuing instructions (but be interruptible by XIR, and

possibly other enabled trap conditions) due to a condition created, in one case, by

this instruction sequence in an older Solaris interrupt trap handler:
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Apparently, the deadlock is most easily caused if the delay slot of the JMPL is a

MEMBAR #Sync, or any instruction that synchronizes on the load or store buffers

being empty. It appears that a delayed issue of the delay slot instruction is required,

with the delay being probably 8 cycles or more after the CTI instruction.

The relevant part of all this is just causing the delay slot instruction issue to be

delayed, in the presence of a mispredicted branch (the JMPL is mispredicted the first

time it is installed into the I-cache). So there are more scenarios possible than those

described.

The “delayed issue” requirement apparently does not include “delayed due to

fetching the delay slot instruction”.

It may also be possible to create the condition if the JMPL is replaced by other

control transfer instructions, for example, CALL or RETURN or possibly any CTI.

However, they must be mispredicted. There are a number of other conditions related

to hits on I-cache state that are also apparently required.

The easiest way to get an IMU miss, for typical code execution scenarios, is when

using a predicted VA from the Return Address Stack (RAS). This appears to be why

the JMPL sequence exposes the problem. Also, it appears that the predicted

information for the target may need to be a pc-relative branch, and that the

predicted information may need to be marked invalid in the I-cache predecode

RAM.

Note that the VAs in question are all predicted, and the combination of the predicted

VA from the RAS, and a predicted branch displacement may result in a VA that is

never mapped, rather than just temporarily in the IMU.

Since it is possible to trap out of this deadlock, it can only be detected as a

performance loss, except when pstate.ie==0 and timer interrupts cannot occur. (for

instance, in trap handlers).

Software workaround: Any code that

■ turns off pstate, that is, disabling timer interrupts, or

■ is very performance sensitive and which carries the possibility of mispredicted

JMPL or branches with delay slots whose issue can be delayed (there are many

cases; note that “delayed because not fetched yet” must also be included)

must guarantee:

STXA using ASI in the range 0x46-0x5f, 0x76 or 0x77 (possibly any

store)

<0-n instructions. Maximum n is unknown.>

JMPL

MEMBAR #Sync
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No IMU miss on any predicted path for the prefetch PCs. This must be true for

all behaviors of the RAS and the NFRAM, in generating predicted PCs, which

may not reflect real execution.

For the OS, this amounts to requiring the RAS be initialized with CALLs to its

known IMU-hitting VA space, specifically, CALLs that have return PCs 4 G-bytes

away from the boundary of its IMU-hit VA space. The 4 G-bytes requirement helps

ensure that predicted JMP targets are still within the IMU-hitting VA space.

Note that CALL instructions push onto the RAS before being issued, so it is possible

for unexpected VAs to appear on the RAS, owing to predicted CALLs pointing to old

I-cache pre-decode information.

Note that user code can still cause this IMU stop scenario. Since it is interruptible,

execution resumes at the next interrupt (or, in the worst case, at the time slice), and

the stop is not detected.

Erratum 53: Little-endian enabled integer LDD/STD do not register swap.

This applies to pages with the IE bit set in the TSB entry for that page, or to ldda/

stda used with any of the "LITTLE" ASIs... that is:

ASI_AS_IF_USER_PRIMARY_LITTLE

ASI_AS_IF_USER_SECONDARY_LITTLE

ASI_NUCLEUS_LITTLE

ASI_PRIMARY_LITTLE

ASI_SECONDARY_LITTLE

ASI_SECONDARY_NOFAULT_LITTLE

The V9 architecture requirement is given in Section 6.3.1.22 “Little-Endian

Addressing Convention” on page 69-70 of The SPARC Architecture Manual, Version 9:

doubleword or extended word: For the deprecated integer load/store double

instructions (LDD/STD), two little-endian words are accessed. The word at the

address specified in the instruction + 4 corresponds to the even register specified in

the instruction. The word at the address specified in the instruction corresponds to

the following odd-numbered register.

Instead of this requirement, US-I, II and IIi link the word address specified in the

instruction to the even register, always. The word address plus 4 is linked to the odd

register always.

Note that sections A27 and A53 of the of the The SPARC Architecture Manual, Version
9 describe the LDD/STD instructions as behaving similarly. Use the descriptions in

section 6.3.1.2.2 of the Architecture manual for the exclusion for little-endian

behavior.
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Erratum 58: Clarification on manipulation of the Used bit in iTLB and dTLB.

The dTLB and iTLB support a replacement algorithm based upon three status bits in

each TLB entry, Locked, Used, and Valid. When software does a write of the I-TLB or

the D-TLB Data In registers, using ASI 0x54 or 0x5C, the entry used for the write is

selected depending upon the state of these bits.

The Valid bit is set when the TLB entry has valid data in it. The Used bit is set to 1

each time the entry is accessed for a translation. The Locked bit is set to lock the

entry in the TLB.

Ordinarily the exact behavior of the Used bits is not of interest to software, and is

only of interest in understanding the hardware. When there are no freely-available

TLB entries (that is, with Valid == 0 or Used == 0), the hardware initiates a “Uclear”

command to clear all the used bits in the TLB.

There is a case to consider in “lock-step” applications. An attempt by software to set

the Used bit to 1 could result in an indeterminate value in this bit. This could cause

“lock-step” CPUs to get out of sync., since the Used bit manipulations have to be

exactly the same for two CPUs to operate identically.

Software should never write Used==1 (bit 0 of the Diag field, which is bit 41 of the

Data In register), using Data In writes. This is because if a clear of the Used bits is

being done in the same cycle by hardware, the results are indeterminate.

It appears there is no such constraint on Data Access writes.

The exact selection algorithm is:

if (there exists x : x.v == 0) {

first such x;

} elseif (there exists y: y.u == 0 && y.l == 0) {

first such y;

} elseif (there exists z: z.l == 0) {

first such z;

} else {

entry 63;

}

A hardware “uclear”, a clear of all the Used bits, can be triggered in just about any

TLB cycle, even if the TLB is doing a write, for example. A uclear is triggered when:

all entries are valid, and none have Lock==0 and Used==0,

So, for example, locking an entry that never gets the Used bit set, does not inhibit

the u-clear operation
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Erratum 59: Clarification on use of CP==1, CV==0 (for instance, ASI_PHYS_USE_EC) to bypass

the D-cache

The D-cache can return stale data if CP==1, CV==0 is used to bypass the cache, after

use of CP==1 and CV==1, for loads and stores to a particular address.

The D-cache should be flushed after mixing use of any CP/CV settings for a

physical address, including cacheable (DRAM) and noncacheable (IO) physical

addresses. The term “noncacheable” in the user’s manual does not refer to “non-D-

cacheable”. The term “virtually noncacheable” does refer to the “non-D-cacheable”

CP==1, CV==0 case.

CP==1, CV==1: Cacheable, Virtually-cacheable

CP==1, CV==0: Cacheable, Virtually-noncacheable

CP==0, CV==1: Not Used

The D-cache can return stale data if CP==1, CV==0 is used to bypass the cache, after

use of CP==1 and CV==1, for loads and stores to a particular address.

The D-cache should be flushed after mixing use of any CP/CV settings for a

physical address, including cacheable (DRAM) and noncacheable (IO) physical

addresses. The term “noncacheable” in the user’s manual does not refer to “non-D-

cacheable”. The term “virtually noncacheable” does refer to the “non-D-cacheable”

CP==1, CV==0 case.

CP==1, CV==1: Cacheable, Virtually-cacheable

CP==1, CV==0: Cacheable, Virtually-noncacheable

CP==0, CV==1: Not Used

CP==0, CV==0: Noncacheable

Only two entries in the D-cache need be flushed for each physical address

{VA[13]==0,PA[12:0]} and {VA[13]==1,PA[12:0]}.

Q: When I do a load with a physical address, using ASI=0x14 (ASI_PHYS_USE_EC),

causing CP==1 and CV==0, and the address hits in the D-cache, does the data come

from the D-cache instead of from the E-cache

A: Note that the manual has a caveat that is similar to this case:

If CP==0 and CV==0, which indicates a “noncacheable” access, and the address is in

the D-cache, data can be returned from the D-cache. The manual warns that the

address should be flushed from the D-cache before changing its mapping.

Similarly, if CP==1, and CV==0, and the data is in the D-cache, data may be returned

from the D-cache. However there are corner cases where it may not be returned.
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For instance, with ASI_PHYS_USE_EC, the physical PA[13] is used to index the D-

cache, where VA[13] would ordinarily be used. So the data might not be correctly

returned if the real data were in VA[13]==0, but PA[13]==1. Ordinarily the rest of the

PA bits will show a difference, so there is a miss in the D-cache, and go to the E-

cache correctly. This takes advantage of knowing that a valid PA can only exist in

one VA[13] mapping at a time in the D-cache. Note that this depends on how the

addresses were mapped earlier, when the line was installed in the D-cache.CP==0,

CV==0: Noncacheable

Only two entries in the D-cache need be flushed for each physical address

{VA[13]==0,PA[12:0]} and {VA[13]==1,PA[12:0]}.

When a load with a physical address occurs, using ASI=0x14 (ASI_PHYS_USE_EC),

causing CP==1 and CV==0, and the address hits in the D-cache, the data can come

from the D-cache instead of from the E-cache .

If CP==0 and CV==0, which indicates a “noncacheable” access, and the address is in

the D-cache, data can be returned from the D-cache. The manual warns that the

address should be flushed from the D-cache before changing its mapping.

Similarly, if CP==1, and CV==0, and the data is in the D-cache, data may be returned

from the D-cache. However there are corner cases where it may not be returned.

For instance, with ASI_PHYS_USE_EC, the physical PA[13] is used to index the D-

cache, where VA[13] would ordinarily be used. So the data might not be correctly

returned if the real data were in VA[13]==0, but PA[13]==1. Ordinarily the rest of the

PA bits will show a difference, so there is a miss in the D-cache, and a correct

reference to the E-cache. This takes advantage of knowing that a valid PA can only

exist in one VA[13] mapping at a time in the D-cache. Note that this depends on how

the addresses were mapped earlier, when the line was installed in the D-cache.

This ASI_PHYS_USE_EC load hitting on the D-cache behavior is not defined or

tested, so software should not rely on it.

When a store is done with a physical address, using ASI=0x14 (ASI_PHYS_USE_EC),

causing CP==1 and CV==0, and the address hits in the D-cache D-cache, the D-cache

apparently does get updated. However, this behavior is not verified or guaranteed.

Again, software should make sure the physical address is not in the D-cache, before

accessing that address using CP==1, CV==0, whether by a TLB mapping, or using

one of the special ASIs.

K.3 Errata created by UltraSPARC IIi
Erratum 1171: Noncacheable load/store using PA[40:0] that maps to the unused PBM PCI

Configuration Space (function!=0) can result in a deadlock.
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There are two situations:

■ The first is an “illegal” case. Noncacheable load/store with PA[40:0] in the range

0x1FE.0100.0100–0x1FE.0100.07FF, and the ASI is 0x77 or 0x7F (SDB CSRs).

Note that these PAs are unspecified in this manual. Normally, unspecified

addresses like this can alias to other CSRs—see Section 19.4.3, DMA Error
Registers on page 316—but in this case a deadlock may occur.

■ The second case is a noncacheable load or store to the range to the range

0x1FE.0100.0100–0x1FE.0100.07FF. This is the PBM’s PCI configuration space, for

function!=0. The PBM has no valid CSRs for nonzero function ID.

The 2.1 PCI specification says that references to any unused configuration space

should be a no-op.
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Glossary

This glossary defines some important words and acronyms used throughout this

manual. Italicized words within definitions are further defined elsewhere in the list.

alias Two virtual addresses are aliases of each other if they refer to the same

physical address.

ASI Abbreviation for Address Space Identifier.

clean window A clean register window is one in which all of the registers contain either zero

or a valid address from the current address space or valid data from the

current address space.

coherence A set of protocols guaranteeing that all memory accesses are globally visible to

all caches on a shared-memory bus.

consistency See coherence.

context A set of translations used to support a particular address space. See also MMU.

copyback The process of copying back a cache line in response to a hit while snooping.

CPI Cycles per instruction. The number of clock cycles it takes to execute one

instruction.

current window The block of 24 r registers to which the Current Window Pointer (CWP)

register points.

demap To invalidate a mapping in the MMU.

dispatch To issue a fetched instruction to one or more functional units for execution.

DMA Accesses by a master on the secondary bus to a target on the primary bus.

Equivalent to upstream.

E-cache, E$ refers to the external, SRAM-based, second-level cache. It is also known as

level-2 cache or L2 cache.

fccN One of the floating-point condition code fields fcc0, fcc1, fcc2, or fcc3.
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floating-point
exception An exception that occurs during the execution of an FPop instruction while the

corresponding bit in FSR.TEM is set to 1. The exceptions are: unfinished_FPop,

unimplemented_FPop, sequence_error, hardware_error, invalid_fp_register, and

IEEE_754_exception.

floating-point IEEE-754
exception A floating-point exception, as specified by IEEE Std 754-1985.

floating-point trap
type The specific type of a floating-point exception, encoded in the FSR.ftt field.

implementation-
dependent An aspect of the architecture that may legitimately vary among

implementations. In many cases, the permitted range of variation is specified

in the SPARC-V9 standard. When a range is specified, compliant

implementations shall not deviate from that range.

ISA instruction set architecture: an ISA defines instructions, registers, instruction

and data memory, the effect of executed instructions on the registers and

memory, and an algorithm for controlling instruction execution. An ISA does

not define clock cycle times, cycles per instruction, data paths, etc.

L2-cache This term is an abbreviation for level-2 cache. It refers to the external, SRAM-

based, second-level cache.

may A key word indicating flexibility of choice with no implied preference.

MMU Memory Management Unit: a mechanism that implements a policy for

address translation and protection among contexts. See also virtual address,

physical address, and context.

module A master or slave device that attaches to the shared-memory bus.

next program counter
(nPC) A register that contains the address of the instruction to be executed next, if a

trap does not occur.

non-privileged An adjective that describes (1) the state of the processor when

PSTATE.PRIV=0, i.e., non-privileged mode; (2) processor state that is accessible

to software while the processor is in either privileged mode or non-privileged
mode; e.g., non-privileged registers, non-privileged ASRs, or, in general, non-

privileged state; (3) an instruction that can be executed when the processor is

in either privileged mode or non-privileged mode.

non-privileged mode The mode in which the processor is operating when PSTATE.PRIV=0. See also

privileged.

NWINDOWS The number of register windows present in a particular implementation.

optional A feature not required for SPARC-V9 compliance.
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PCI Peripheral Component Interconnect (bus). A high-performance 32 or 64-bit bus

with multiplexed address and data lines.

physical address An address that maps real physical memory or I/O device space. See also

virtual address.

PIO Accesses by a master on the primary bus to a target on the secondary bus.

Equivalent to downstream.

prefetchable A memory location for which the system designer has determined that no

undesirable effects will occur if a PREFETCH operation to that location is

allowed to succeed. Typically, normal memory is prefetchable.

Non-prefetchable locations include those that, when read, change state or

cause external events to occur. For example, some I/O devices are designed

with registers that clear on read; others have registers that initiate operations

when read. See side effect.

privileged An adjective that describes (1) the state of the processor when

PSTATE.PRIV=1, that is, privileged mode; (2) processor state that is only

accessible to software while the processor is in privileged mode; e.g.,

privileged registers, privileged ASRs, or, in general, privileged state; (3) an

instruction that can be executed only when the processor is in privileged mode.

privileged mode The processor is operating in privileged mode when PSTATE.PRIV=1.

program counter (PC) A register that contains the address of the instruction currently being executed

by the IU.

RED_state Reset, Error, and Debug state. The processor is operating in RED_state when

PSTATE.RED=1.

restricted An adjective used to describe an address space identifier (ASI) that may be

accessed only while the processor is operating in privileged mode.

reserved Used to describe an instruction field, certain bit combinations within an

instruction field, or a register field that is reserved for definition by future

versions of the architecture. A reserved field should only be written to zero by

software. A reserved register field should read as zero in hardware; software

intended to run on future versions of SPARC-V9 should not assume that the

field will read as zero or any other particular value. Throughout this

document, figures illustrating registers and instruction encodings always

indicate reserved fields with an em dash ‘—’.

reset trap A vectored transfer of control to privileged software through a fixed-address

reset trap table. Reset traps cause entry into RED_state.

rs1, rs2, rd The integer register operands of an instruction. rs1 and rs2 are the source

registers; rd is the destination register.
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shall A key word indicating a mandatory requirement. Designers shall implement

all such mandatory requirements to ensure inter-operability with other

SPARC-V9-conformant products. The key word “must” is used

interchangeably with the key word shall.

should A key word indicating flexibility of choice with a strongly preferred

implementation. The phrase “it is recommended” is used interchangeably with

the key word should.

side effect A memory location is deemed to have side effects if additional actions beyond

the reading or writing of data may occur when a memory operation on that

location is allowed to succeed. Locations with side effects include those that,

when accessed, change state or cause external events to occur. For example,

some I/O devices contain registers that clear on read, others have registers that

initiate operations when read.

snooping The process of maintaining coherency between caches in a shared-memory bus

architecture. All cache controllers monitor (snoop) the bus to determine

whether they have a copy of a shared cache block.

speculative load A load operation (e.g., non-faulting load) that is carried out before it is known

whether the result of the operation is required. These accesses typically are

used to speed program execution. An implementation, through a combination

of hardware and system software, must nullify speculative loads on memory

locations that have side effects; otherwise, such accesses produce unpredictable

results.

supervisor software Software that executes when the processor is in privileged mode.

TLB Translation Lookaside Buffer: A hardware cache located within the MMU,

which contains copies of recently used translations. Technically, there are

separate TLBs for the instruction and data paths; the I-MMU contains the iTLB

and the D-MMU the dTLB.

TLB hit The desired translation is present in the on-chip TLB.

TLB miss The desired translation is not present in the on-chip TLB.

trap A vectored transfer of control to supervisor software through a table, the

address of which is specified by the privileged Trap Base Address (TBA)

register.

unassigned A value (for example, an ASI number), the semantics of which are not

architecturally mandated and which may be determined independently by

each implementation (preferably within any guidelines given).

undefined An aspect of the architecture that has deliberately been left unspecified.

Software should have no expectation of, nor make any assumptions about, an

undefined feature or behavior. Use of such a feature may deliver random

results, may or may not cause a trap, may vary among implementations, and

may vary with time on a given implementation.
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unimplemented An architectural feature that is not directly executed in hardware because it is

optional or is emulated in software.

unpredictable Synonymous with undefined.

unrestricted An adjective used to describe an address space identifier (ASI) that may be

used regardless of the processor mode; that is, regardless of the value of

PSTATE.PRIV.

virtual address An address produced by a processor that maps all system-wide, program-

visible memory. Virtual addresses usually are translated by a combination of

hardware and software to physical addresses, which can be used to access

physical memory.

writeback: The process of writing a dirty cache line back to memory before it is refilled.
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Index

NUMERICS
40–132Mhz PCI clock, 81

A
A Class instructions, 360

ACC field of SPARC-V8 Reference MMU PTE, 200

accesses

diagnostic ASI, 67

I/O, 71

physically noncacheable, 21

with side-effects, 68, 323

Accumulated Exception (aexc) field of FSR

register, 186, 188

active test data register, 401

address

alias, 19, 26, 39

illegal, 66

map, 36, 311, 316

physical, 23

translation, virtual-to-physical, 23, 24

Address Mask (AM), 180

field of PSTATE register, 35, 122, 155, 179, 204,

205, 207

Address Space Identifier (ASI), 35, 39, 321, 459

AFAR

ECU, 245, 249

PCI DMA UE AFSR, 317

PCI DMA UE/CE, 316, 319

PCI PIO Write, 284

AFSR

ECU, 243, 244, 249

PCI DMA CE, 316, 319

PCI DMA UE, 316

PCI PIO Write, 284

alias

address, 19, 66

boundary, 66

boundary, minimum, 66

defined, 459

of prediction bits, illustrated, 329

alignaddr_offset field of GSR register, 133, 149

ALIGNADDRESS instruction, 133, 148, 149

ALIGNADDRESS_LITTLE instruction, 133, 148,

149

aligning branch targets, 326

alignment instructions, 148

Alternate Global Registers, 194

Ancillary State Register (ASR), 51

annex register file, 16

annulled slot, 332

APB, 81

arbitration conflict, 338

Arithmetic and Logic Unit (ALU), 9, 16

ARRAY16 instruction, 158

ARRAY32 instruction, 158

ARRAY8 instruction, 158

ASI

field of SFSR register, 216

restricted, 39, 207, 321

ASI registers

alphabetic list, 421

defined, 39

SPARC version 9, 39

SPARC version 9 extensions, 41

ASI_AS_IF_USER_PRIMARY, 72, 206

ASI_AS_IF_USER_PRIMARY_LITTLE, 72
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ASI_AS_IF_USER_SECONDARY, 72, 206

ASI_AS_IF_USER_SECONDARY_LITTLE, 72

ASI_ASYNC_FAULT_ADDRESS, 245

see also AFAR, ECU

ASI_ASYNC_FAULT_STATUS, 244

 see also AFSR, ECU

ASI_BLK_COMMIT_PRIMARY, 66, 67

ASI_BLK_COMMIT_SECONDARY, 66, 67

ASI_DCACHE_DATA, 379

ASI_DCACHE_TAG, 379

ASI_ECACHE Diagnostic Accesses, 380

ASI_ECACHE_TAG_DATA, 381, 382

ASI_ESTATE_ERROR_EN_REG, 242

CEEN field, 243

NCEEN field, 243

SAPEN field, 242

UEEN field, 242

ASI_ICACHE_INSTR, 374, 376, 377, 378

ASI_ICACHE_PRE_DECODE, 376

ASI_ICACHE_PRE_NEXT_FIELD, 377

ASI_ICACHE_TAG, 375

ASI_INT_ACK, 309

ASI_INTR_DISPATCH_STATUS, 119

ASI_INTR_RECEIVE, 120

ASI_LSU_CONTROL_REGISTER, 370

ASI_NUCLEUS, 72, 206, 210

ASI_NUCLEUS_LITTLE, 72, 210

ASI_PHYS_*, 211

ASI_PHYS_BYPASS_EC_WITH_EBIT, 205, 211,

217, 226

ASI_PHYS_BYPASS_EC_WITH_EBIT_LITTLE, 205

, 226

ASI_PHYS_USE_EC, 21, 72, 226

ASI_PHYS_USE_EC_LITTLE, 72, 226

ASI_PRIMARY, 72, 210, 216

ASI_PRIMARY_LITTLE, 72, 210, 216

ASI_PRIMARY_NO_FAULT, 74, 198, 205, 206, 207

ASI_PRIMARY_NO_FAULT_LITTLE, 74, 198, 205,

207

ASI_REG Ancillary State Register (ASR), 52

ASI_SDB_INTR, 120

ASI_SDB_INTR_W, 118, 119

ASI_SDBH_CONTROL_REG, 248

ASI_SDBH_ERROR_REG, 247

ASI_SDBL_CONTROL_REG, 249

ASI_SDBL_ERROR_REG, 248

ASI_SECONDARY, 72

ASI_SECONDARY_LITTLE, 72

ASI_SECONDARY_NO_FAULT, 74, 198, 205, 206,

207

ASI_SECONDARY_NO_FAULT_LITTLE, 74, 198,

205, 207

ASIs that support atomic accesses, 72

Asynchronous Fault Address Register, see AFAR

Asynchronous Fault Status Register, see AFSR

atomic

accesses, 72

accesses, supported ASIs, 72

accesses, with non-faulting ASIs, 73

instructions in cacheable domain, 72

load-store instructions, 67

avoiding the bus turn-around penalty, 341

B
band interleaved images, 131

band sequential images, 131

Bibliography, 465

big-endian, 87

byte order, 35, 162

bit vector concatenation, xl

block

commit store, 20

copy, inner loop pseudo-code, 170

load, 357

load instructions, 1, 21, 67, 76, 164

memory access, 392

memory operations, 192

store, 357, 359

store instructions, 1, 21, 76

block-transfer ASIs, 165

board-level interconnect testing and diagnosis, 395

boundary scan, 395

chain, 401

register, 401, 402, 403

branch

mispredicted, 16

predicted not taken, 351

predicted taken, 351

prediction, 15, 331

likely not taken state, 331

likely taken state, 331

target alignment, 326

transformation to reduce mispredicted branches

illustrated, 335

bus

error, 77



Index  471

during exit from RED_state, 259

turn-around, 341

turn-around penalty, avoiding, 341

turn-around time, 341

bypass ASI, 39, 211, 369

byte granularity, 342

Byte Mask

 see UPA64S, Byte Mask

byte-twisting, 87, 88, 89

C
C stage, 333, 355, 357

cache

direct mapped, 338

flushing, 66

inclusion, 66

level-1, 65

level-2, 65

set-associative, 338

write-back, 65

Cache Access (C) Stage, 16

illustrated, 13

cache coherence protocol, 68

cache flush

software, 67

cache line

dirty, 463

invalidating, 67

cache miss, 355

impact, 2

cache timing, 357

cacheable accesses, 20, 68, 68, 355, 359

cacheable after non-cacheable accesses, 324

cacheable domain, 72

Cacheable in Physically Indexed Cache (CP) field of

TTE, 199, 323

Cacheable in Physically Indexed Cache (PC) field of

TTE, 190

Cacheable in Virtually Indexed Cache (CV) field of

TTE, 199

cacheable space, 36

 see also address map

caching

TSB, 201

CANRESTORE Register, 181, 349

CANSAVE Register, 181, 349

capacity misses, 339

CAS instruction, 73

CE, see ECC, CE

clean window, 181

defined, 459
clean_window trap, 55, 181

CLEANWIN Register, 181, 349

CLEANWIN register, 181

CLEAR_SOFTINT Ancillary State Register

(ASR), 122

CLEAR_SOFTINT register, 53, 122

code space

dynamically modified, 72

coherence

defined, 459
domain, 68

unit of, 68

coherence domain, 68

coherency, 462

cache, 68

I-Cache, 20

color

virtual, 66

concatenation of bit vectors

symbol, xl

COND_CODE_REG Ancillary State Register

(ASR), 52

condition code

generation, 16

-setting, dedicated hardware, 348

configuration

and status registers see CSR

space, see PCI, configuration space

conflict-misses, 339

consistency, 459

between code and data spaces, 72

Context

field of TTE, 198

ID (CT) field of SFSR register, 217

context, 460

defined, 459
register, 209

Control Transfer instruction (CTI), 351

conventions, textual, xxxix

fonts and symbols, xxxix

copybacks

cache line, defined, 459
corrected_ECC_error trap, 55

cost of mispredicted branch

illustrated, 334
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counter field of TICK register, 180

CPI

defined, 459
cross call, 195

cross-block scheduling, 2

CSR, 88

endianness, 88

CSRs

summary of new, 316

CTI couple, 328, 334

current

memory model, 321

window, defined, 459
Current Exception (cexc) field of FSR register, 184,

186, 188

Current Little Endian (CLE) field of PSTATE

register, 216

Current Window Pointer, 459

CWP Register, 176, 181, 253

cycles per instruction (CPI), 2, 2

D
DAC, see PCI, DAC

Data 0 (D0) field of PIC register, 388

Data 1 (D1) field of PIC register, 388

data alignment, 337

data cache see D-cache

data parity error

 see  error, PCI, DPE

Data Translation Lookaside Buffer (dTLB), 19, 253

illustrated, 4

data watchpoint, 369

physical address, 205, 370

virtual address, 205, 370

data_access_error trap, 55

data_access_exception trap, 39, 40, 41, 46, 55, 68, 72,

73, 74, 120, 162, 166, 171, 172, 175, 179, 189, 190,

194, 198, 200, 203, 204, 205, 207, 211, 213, 216,

222, 367, 374

data_access_MMU_miss trap, 189, 202, 204

data_access_protection trap, 200, 204, 205

D-cache, 16, 20, 78, 253, 338, 339, 340, 342, 358, 359,

391

access statistics, 391

array access, 339

bypassing, 339

data access address, illustrated, 379

data access data, illustrated, 379

enable bit, 20

enable field of LSU_Control_Register, 371

flush, 66

hit, 16, 357

hit rate, 337

hit timing, 357

illustrated, 4

line, 337

load hit, 358

logical organization illustrated, 336

miss, 16, 356, 392

miss load, 358

miss, E-Cache hit timing, illustrated, 339

miss, E-Cache hit timing, illustrated, 339

misses, 337, 339, 343

organization, 336

read hit, 391

sub-block, 337

tag access, 339

tag/valid access address, illustrated, 379

tag/valid access data, illustrated, 379

timing, 336

DCTI couple, 347

decode (D) Stage

illustrated, 13

decode (D) stage, 15

default byte order, 35

deferred

error, 71

trap, 78, 176

delay slot, 351, 354

and instruction fetch, 327

annulled, 353

delayed control transfer instruction (DCTI), 351

delay slot, 77, 352

delayed return mode, 357, 358

Demap Context operation, 224

demap, defined, 459
dependency

checking, 354

load use, 332

destination register, 461

diagnostic

accesses, I-Cache, 207

ASI accesses, 67

Diagnostic (Diag) field of TTE, 199

diagnostics control and data registers, 367

DIMM
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 see also Memory

requirements, 36

Direct Pointer register, 221

direct-mapped cache, 25, 338

dirty cache line, 463

Dirty Lower (DL) field of FPRS register, 185

Dirty Upper (DU) field of FPRS register, 185

disabled MMU, 190

Dispatch Control Register

MVX, 434

Dispatch Control register, 368, 434

GS, 434

MS, 434

dispatch, defined, 459

DISPATCH_CONTROL_REG register, 53

Dispatch0, 390

displacement flush, 66, 67

divider, 9

division algorithm, 181

division_by_zero trap, 55

DMA transfers, 20

D-MMU, 204, 206, 209

enable bit, 21, 211

domain, cacheable and noncacheable, 71

DONE instruction, 78, 194, 371

DPD see  errors, PCI, Data Parity error Detected

DRAM see EDO DRAM

Dual Address Cycle

 see  PCI,DAC

dynamic branch prediction state diagram,

illustrated, 332, 378

Dynamic Set Prediction, 373

dynamically modified code space, 72

E
E Stage, 357, 359

E-cache, 2, 20, 29, 67, 78, 160, 231, 253, 330, 337, 338,

339, 340, 341, 342, 347, 391

access statistics, 391

AFAR, 249

AFSR, 249

Data RAM, illustrated, 5

diagnostic access, 380

Error Enable Register, 232, 234, 242

executing code from, 330

flush, 66

line, 337

parity error, 232

scheduling, 339

SRAM, 355, 359

update, 323

E-cache Tag RAM, illustrated, 5

E-cache), 16

ECC, 405, 429, 430

 see also  AFAR, ECU or AFSR, ECU

CE, 234

multi-bit error, 232

PCI DMA CE AFSR, 316, 319

PCI DMA UE AFSR, 316, 317

PCI DMA UE/CE AFAR, 316, 319

ECU

AFAR, 245

see also E-cache

edge handling instructions, 154

edge mask encoding, 156

little-endian, 156

EDGE16 instruction, 154

EDGE16L instruction, 154, 155

EDGE32 instruction, 154

EDGE32L instruction, 154, 155

EDGE8 instruction, 154

EDGE8L instruction, 154, 155

EDO DRAM, 57

see also Memory

enable

bit, D-MMU, I-MMU, 211

D-MMU (DM) field of

LSU_Control_Register, 21, 371

Floating-Point (PEF) field of PSTATE

register, 133, 368

I-MMU (IM) field of LSU_Control_Register, 371

endianness, 198

enhanced security environment, 180

error

CE, 236

detection, 231

DMA ECC Errors, 239

E-cache Tag Parity Error, 235

instruction access error, 235, 236

IOMMU Translation Error, 239

PCI, 237

Data Parity error Detected, 237

Data Parity Error Detected (DPD), 237

DPE, 237

PER, 237

system Error, 240
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target abort, 238

reporting, 231

SDB Error Control Register, 248

summary, 240

time out, 233, 236

UE, 236

unreported, 242

error_state, 176

error_state processor state, 253

errors

instruction access error, 235

E-Stage, 16

E-stage, 16, 355, 356, 358, 359

illustrated, 13

stalls, 356

ESTATE_ERR_EN Register, 259

ESTATE_ERR_EN register, 193

exception handling, 231

execution stage see E-Stage

EXPAND instruction, 140

extended

(non-SPARC-V9) ASIs, 41

floating-point pipeline, 13

instructions, 1, 195

external

cache see E-cache

cache unit (ECU) illustrated, 4

power-down (EPD) signal, 173

Externally Initiated Reset (XIR), 180, 253

externally_initiated_reset trap, 54

F
FALIGNDATA instruction, 148, 149, 164

FAND instruction, 150

FANDNOT1 instruction, 151

FANDNOT1S instruction, 151

FANDNOT2 instruction, 151

FANDNOT2S instruction, 151

FANDS instruction, 150

Fast Back-to-Back cycles, see PCI, Fast Back-to-Back

fast_data_access_MMU_miss trap, 55, 203, 204, 217

fast_data_access_protection trap, 55, 194, 203, 204,

221

fast_instruction_access_MMU_miss trap, 55, 194,

203, 204, 217

Fault Address field of SFAR, 219

Fault Type (FT) field of SFSR register, 68, 72, 73, 74,

190, 205, 216, 367, 374

Fault Valid (FV) field of SFSR register, 217

fccN, 459

FCMPEQ instruction, 154

FCMPEQ16 instruction, 153

FCMPEQ32 instruction, 153

FCMPGT instruction, 154

FCMPGT16 instruction, 153

FCMPGT32 instruction, 153

FCMPLE instruction, 154

FCMPLE16 instruction, 153

FCMPLE32 instruction, 153

FCMPNE instruction, 154

FCMPNE16 instruction, 153

FCMPNE32 instruction, 153

Fetch (F) Stage, 15

illustrated, 13

FEXPAND instruction, 136

FEXPAND operation

illustrated, 141

FFB_Config Register, 265, 266

fill_n_normal trap, 55

fill_n_other trap, 55

floating point

and graphics instruction classes, 360

and graphics instructions, latencies, 364

condition code, 459

condition codes, 360

deferred trap queue (FQ), 188

exception handling, 184

exception, defined, 460
IEEE-754 exception, defined, 460
multiplier, 362

pipeline, 13

queue, 13

register file, 16, 17, 21

square root, 184

store, 359

trap type (FTT) field of FSR register, 187, 460

trap type, defined, 460
Floating Point and Graphics Unit (FGU), 15, 16, 17

Floating Point Condition Code (FCC)

0 (FCC0) field of FSR register, 187

1 (FCC1) field of FSR register, 187

2 (FCC2) field of FSR register, 187

3 (FCC3) field of FSR register, 187

field of FSR register in SPARC-V8, 187

Floating Point Registers State (FPRS) Register, 185

Floating Point Unit (FPU)
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illustrated, 4

flush

D-Cache, 66

displacement, 66

FLUSH instruction, 70, 72, 78, 189, 371

FMUL16x16 instruction, 142

FMUL8SUx16 operation illustrated, 146

FMUL8ULx16 operation illustrated, 147

FMUL8x16

instruction, 142

operation illustrated, 144

FMUL8x16AL

instruction, 142

operation illustrated, 145

FMUL8x16AU

instruction, 142

operation illustrated, 145

FMULD16x16 instruction, 142

FMULD8SUx16 operation illustrated, 147

FMULD8ULx16 operation illustrated, 148

FNAND instruction, 150

FNANDS instruction, 150

FNOR instruction, 150

FNORS instruction, 150

FNOT1 instruction, 150

FNOT1S instruction, 150

FNOT2 instruction, 150

FNOT2S instruction, 150

FONE instruction, 150

FONES instruction, 150

fonts

textual conventions, xl

FOR instruction, 150

Force Parity Error Mask (FM) field of

LSU_Control_Register, 371

formation of TSB pointers illustrated, 229

FORNOT1 instruction, 151

FORNOT1S instruction, 151

FORNOT2 instruction, 151

FORNOT2S instruction, 151

FORS instruction, 150

fp_disabled trap, 53, 55, 133, 134, 136, 137, 143, 150,

152, 154, 157, 162, 164, 166, 172, 368

fp_disabled_ieee_754 trap, 55

fp_exception_ieee_754 trap, 183, 187

fp_exception_other trap, 55, 175, 183, 184, 185, 187

FP_STATUS_REG Ancillary State Register

(ASR), 52

FPACK16

instruction, 136, 137

operation illustrated, 137

FPACK32

instruction, 136, 138

operation illustrated, 139

FPACKFIX

instruction, 132, 136, 139

operation illustrated, 140

FPADD16 instruction, 134

FPADD16S instruction, 134, 135

FPADD32 instruction, 134

FPADD32S instruction, 134, 135

FPMERGE

instruction, 136

operation illustrated, 142

FPRS Register, 349

FPSUB16 instruction, 134

FPSUB16S instruction, 135

FPSUB32 instruction, 135

FPSUB32S instruction, 135

FPU Enabled (FEF) field of FPRS register, 133, 368

FQ, see floating-point deferred trap queue (FQ)

frame buffer, 342

FSRC1 instruction, 150

FSRC1S instruction, 150

FSRC2 instruction, 150

FSRC2S instruction, 150

FXNOR instruction, 151

FXNORS instruction, 151

FXOR instruction, 150

FXORS instruction, 150

FZERO instruction, 150

FZEROS instruction, 150

G
G Stage, 358

global

visibility, 71

Global (G) field of TTE, 198, 200

global registers, 9

alternate, 9

interrupt, 9

MMU, 9

normal, 9

granularity

byte, 342

sub_block, 343



476 UltraSPARC IIi User’s Manual • July 1999

GRAPHIC_STATUS_REG register, 53

graphics

data format, 131

data format, 8-bit, 131

data format, fixed (16-bit), 132

instructions, 358

status Register (GSR), 132

unit (GRU) illustrated, 4

Graphics Status Register (GSR), 368

group

stage see G-stage

group break, 351

grouping rules, general, 346

grouping stage see G-stage

G-stage, 15, 354, 355, 357, 358, 359, 362

illustrated, 13

stall, 363

stall counts, 390

H
hardware

errors, fatal, 78

interrupts, 195

table walking, 203

hardware_error floating point trap type, 188, 460

hardware_error floating-point trap type, 188

high water mark, for stores, 341

I
I/O

access, 71, 76

control registers, 68

devices, 342

memory, 322

I-Cache

illustrated, 4

I-cache, 15, 19, 253, 330, 340, 371, 373

access statistics, 391

coherency, 20

diagnostic accesses, 207

disabled in RED_state, 259

Enable field of LSU_Control_Register, 371

flush, 66

hit, 19

Instruction Access Address, 374

Instruction Access Address, illustrated, 374

Instruction Access Data, 375

illustrated, 375

miss, 392

miss latency, 330

miss processing, 329, 378

organization, 326

organization illustrated, 326, 374

Predecode Field Access Address, 376

Predecode Field Access Address illustrated, 376

Predecode Field Access Data, 376

Predecode Field LDDA Access Data

illustrated, 376

Predecode Field STXA Access Data

illustrated, 376

Tag/Valid Access Address illustrated, 375

Tag/Valid Access Data illustrated, 375

Tag/Valid Field Access Address, 375

Tag/Valid Field Access Data, 375

timing, 329

utilization, 333

IEEE Std 1149.1-1990, 395

IEEE Std 754-1985, 186

IEEE_754_exception floating-point trap type, 187,

460

IEU0 pipeline, 348

IEU1 pipeline, 348

IGN, 108, 301

II-cache

miss, 347

illegal address aliasing, 66

illegal_instruction trap, 52, 53, 55, 122, 162, 166, 175,

179, 188, 190, 194, 195

ILLTRAP instructions, 175

image

compression algorithms, 1

processing, 1

I-MMU, 209

disabled, 77

disabled in RED_state, 259

Enable bit, 211

IMPDEP1 instruction, 134

impl field of VER register, 182

implementation

dependency, xxxix

dependent, 460

inclusion, 66

initialization requirements, 252

INO, 108, 301
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INR, 106

instruction

alignment for grouping logic, 327

block load, 1

block store, 1

breakpoint, 369

buffer, 15, 329, 330, 336, 346, 347, 349, 353

buffer illustrated, 4

cache see I-cache

dispatch, 347

multicycle, 353

prefetch, 72

prefetch buffers, 72

prefetch to side-effect locations, 77

prefetch, when exiting RED_state, 77

set, 123

termination, 17

instruction grouping

anti-dependency constraints, 346

input dependency constraints, 346

output dependency constraints, 346

read-after-write dependency constraints, 346

write-after-read dependency constraints, 346

write-after-write dependency constraints, 346

instruction set architecture (ISA), defined, 460
Instruction Translation Lookaside Buffer (iTLB), 19,

253

illustrated, 4

misses, 331

instruction_access_error trap, 235, 236

instruction_access_error trap, 54, 77, 193, 259

instruction_access_exception trap, 54, 179, 200, 203,

204, 211, 216

instruction_access_MMU_miss trap, 202, 204, 216,

218

integer

divider, 9

division, 181

multiplication, 181

multiplier, 9

pipeline, 13

register file, 17, 181, 348

Integer Core Register File (ICRF), 15

Integer Execution Unit (IEU), 9, 348

illustrated, 4

pipelines, 348

interleaved D-Cache hits and misses to same sub-

block, 341

interlocks, 15

internal ASI, 39, 77, 355, 358, 359

store to, 77

interrupt, 300

Clear Interrupt Register, 305

concentrator see RIC

dispatch, 116, 119

errors, 113

fsm states, 115

Full Interrupt Mapping Registers, 304

global registers (IGR), 118, 193, 194

Group Number see IGN

IGN, see IGN

Incoming Interrupt Vector Data Registers, 120

INO, see INO

INR see INR
Interrupt State Diagnostic Registers, 307, 308

Interrupt Vector Dispatch Register, 119

Interrupt Vector Receive Register, 120, 121

level, 114, 302, 307

Number Offset, see INO
packet, 195

Partial INR, 109

Partial Interrupt Mapping Registers, 303, 304

PCI INT_ACK Register, 309

PIE, 106

priorities, 110, 115

PSTATE.IE, 112

pulse, 302

RIC chip, 33, 114

SB_DRAIN, see SB_DRAIN

SB_EMPTY see SB_EMPTY
sources, 112

summary, 116

theory of operation, 110

Interrupt Disable (INT_DIS)

field of TICK register, 191

field of TICK_CMPR register, 121

Interrupt Enable (IE) field of PSTATE register, 191

Interrupt Globals (IG) field of PSTATE register, 118,

193, 194

INTERRUPT_GLOBAL_REG register, 54

interrupt_level_n trap, 55

interrupt_vector trap, 55, 118, 194

invalid_fp_register floating-point trap type, 188,

460

invalidating a cache line, 67

Invert Endianness

(IE) bit, 39

(IE)field of TTE, 198
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IOMMU, 93

block diagram, 94

bypass mode, 93, 98

CAM, 94

ERR, 95

ERRSTS, 95

S, 95

SIZE, 95

W, 95

Control Register, 96, 295

LRU_LCKEN, 295

LRU_LCKPTR, 295

MMU_DE, 296

MMU_EN, 296

TBW_SIZE, 296

TSB_SIZE, 295

DAC, 96

Data RAM Diagnostic Access, 299

Demap, 102

Flush Address Register, 297

initialization, 103

locking, 297

lookup procedure, 97

MMU_EN, 96

modes, 96

PA, 96, 299

page sizes, 93

Pass-through Mode, 98

PIO/DMA access conflicts, 101

Pseudo-LRU replacement algorithm, 103

RAM, 95

C, 96, 299

U, 96, 299

V, 96, 299

replacement policy, 103

SAC, 96

Tag Compare Diagnostic Register, 300

TAG Diagnostics Access, 298

TBW_SIZE

Translation Errors, 102, 239

Translation Storage Buffer, see TSB andIOMMU,

TSB

TSB, 93

Base Address Register, 100, 297

TSB Offset, 100

TSB_SIZE, 99

TTE, 95

CACHEABLE, 99

DATA_PA, 99

DATA_SIZE, 99

DATA_SOFT, 99

DATA_SOFT_2, 99

DATA_V, 99

DATA_W, 99

LOCALBUS, 99

STREAM, 99

VA, 95

ISA, defined, 460
Issue Barrier (MEMBAR #Sync), 71

I-Tag Access Register, 204

iTLB miss handler, 198

J
JMPL

to noncacheable target address, 77

K
kernel code, 121

L
LDD instruction, 190

LDDA instruction, 164, 165

LDDF_mem_address_not_aligned trap, 55, 190

LDQF instruction, 190

LDQFA instruction, 190

LDSTUB instruction, 73

LDUW instruction

replaces SPARC-V8 LD, 337

leaf subroutine, 335

level interrupt see Interrupt, level

level-1 cache, 19

flushing, 65

level-1 instruction cache, 373

level-2 cache, 20, 65

see alsoE-cache

little endian, 87, 155

ASIs, 90, 164

byte order, 35, 162

load

buffer, 2, 16, 17, 70, 78, 339, 340, 341, 355, 357,

359, 391

buffer illustrated, 4
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hit bypassing load miss—not supported on

UltraSPARC-I, 340

latencies, 340

outstanding, 359

store Unit (LSU), 205

store Unit (LSU) illustrated, 4

to the same D-Cache sub-block, 340

use dependency, 332

use stall, 362

use, stall counts, 390

loads, always execute in order, 339

Lock (L) field of TTE, 199

loop unrolling, 335

LSU_Control_Register, 19, 20, 21, 211, 259, 369, 370,

370

illustrated, 371

M
M Class instructions, 360

mandatory SPARC-V9 ASRs, 52

manuf field of VER register, 182

mask field of VER register, 182

MAXTL, 176, 253

maxtl field of VER register, 182

maxwin field of VER register, 182

mem_address_not_aligned trap, 278

mem_address_not_aligned trap, 55, 162, 164, 166,

171, 172, 179, 203, 205, 213, 216, 337, 367

Mem_Control0, 265

11-bit Column Address, 269

accessing, 266

ECCEnable, 267

RefEnable, 268

RefInterval, 270

SIMMPresent, 269

Mem_Control1, 265, 278

accessing, 266

ARDC- Advance Read Data Clock, 272

CASRW- CAS assertion for read/write

cycles, 273

CP - CAS Precharge, 275

CSR - CAS before RAS delay timing, 273

RAS assertion, 275

RCD - RAS to CAS Delay, 274

RP - RAS Precharge, 275

RSC-RAS after CAS delay timing, 276

suggested values, 277, 278

MEMBAR #LoadLoad, 70, 322, 323

MEMBAR #LoadStore, 70, 70, 168, 359

MEMBAR #Lookaside, 68, 71, 322, 323, 324

MEMBAR #Lookaside vs MEMBAR #StoreLoad, 68

MEMBAR #MemIssue, 69, 71, 323, 324, 358, 359

MEMBAR #StoreLoad, 68, 70, 70, 79, 168, 322, 358,

359

MEMBAR #StoreStore, 71, 168, 189, 359

and STBAR, 71

MEMBAR #Sync, 39, 67, 69, 71, 77, 78, 167, 168, 213,

215, 225, 358, 359

MEMBAR examples

and memory ordering, 69

MEMBAR instruction, 69, 70, 77, 118, 324

MEMDATA

 see Memory

 see UPA64S, MEMDATA

Memory

detecting 11-bit column addresses, 386

memory, 57

access instructions, 161

address map, 61, 64

addressing, 60, 63

block diagram, 58, 59

detecting 11-bit column addresses, 385

detecting DIMM pair Size, 385

detecting DIMM size, 384

DIMM requirements, 36

ECC, 405, 429, 430

mapped I/O control registers, 68

model, 168, 321

ordering, 68, 69

probing, 383

RASX_L mapping, 60, 64

synchronization, 70

Memory Interface Unit (MIU) illustrated, 4

Memory Management Unit (MMU), 16, 23, 197, 460

illustrated, 4

software view, 26

Memory Model (MM) field of PSTATE register, 321

minimum alias boundary, 66

mispredicted

branch, 16

control transfer, 353

miss handler

iTLB, 198

Translation Lookaside Buffer (TLB), 67

missing TLB entry, 201

MMU
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behavior during RED_state, 211

behavior during reset, 211

bypass mode, 35, 226

defined, 460
demap, 224

demap context operation, 224, 226

demap operation format illustrated, 224

demap page operation, 224, 225

disabled, 190

dTLB Tag Access Register illustrated, 220

D-TSB Register illustrated, 219

generated traps, 203

global registers, 193, 194, 203

Globals (MG) field of PSTATE register, 193, 194

iTLB Tag Access Register illustrated, 220

I-TSB Register illustrated, 219

page sizes, 23

requirements, compliance with SPARC-V9, 212

Synchronous Fault Address Register (SFAR)

illustrated, 218

MMU_GLOBAL_REG register, 54

module, 460

Mondo vector  see interrupt

MOVX_ENABLE, 434

MUL8SUx16 instruction, 146

MUL8ULx16 instruction, 146

MUL8x16 instruction, 143

MUL8x16AL instruction, 145

MUL8x16AU instruction, 144

MULD8SUx16 instruction, 147

MULD8ULx16 instruction, 148

multicycle instructions, 353

Multiflow TRACE and Cydrome Cydra-5, 343

multiple bit ECC error, 232

see also ECC, UE

multiplication algorithm, 181

multiplier, 9

Multi-Scalar Dispatch Control, 434

M-way set-associative TSB, 201

N
N1 stage, 16, 357

N1 stage illustrated, 13

N2 stage, 17, 354, 358

N2 stage illustrated, 13

N2 stage stall, 363

N3 stage, 17, 334, 358

N3 stage illustrated, 13

NCEEN bit of ESTATE_ERR_EN register, 77

nested traps

in SPARC-V9, 176

not supported in SPARC-V8, 176

next

field aliasing between branches, illustrated, 328

program counter, defined, 460
NFO bit in MMU, 74

NFO page attribute bit, 343

NO_FAULT ASI, 74

No-Fault Only (NFO) field of TTE, 198, 207

nonallocating cache, 336

nonblocking loads, 339

noncacheable, 20

accesses, 20, 68, 69, 355, 359

instruction prefetch, 77

space, 36

stores, 342

noncacheable space

 see also address map

Noncorrectable Error Enable (NCEEN) field of

ESTATE_ERR_EN register, 193, 259

nonfaulting ASIs, and atomic accesses, 73

nonfaulting load, 73, 74, 190, 204, 343

and TLB miss, 74

nonprivileged

defined, 460
mode, 460

Trap (NPT) field of TICK register, 180

nonrestricted ASI, 39

Non-Standard (NS) field of FSR register, 183, 184,

187

nontranslating ASI, 39, 369

normal ASI, 39

normal memory, 461

notational conventions see conventions, textual

Notes

bad TSB size/address combinations, 100

clearing the interrupt busy bit, 121

CSR aliasing with illegal addresses, 51

CSR endianness, 283, 289

CSR/DMA arbitration for IOMMU, 299

disabling refresh, 269

E-cache diagnostic access, 380

ECC check bit equation, 406

emulation, 277

endianness, 311
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illegal address can alias to CSRs, 380

initializing memory control registers, 278

Interrupt Clear Registers, 307

Interrupt XMIT state if Valid not enabled, 115

IOMMU ERR and ERRSTS Control Register

bits, 296

IOMMU multiple matches illegal, 298

IOMMU not true LRU, 103

IOMMU page sizes, 296

IOMMU Used bit, 299

MEMBAR #Sync after stores to CSRs, 242

no individual subsystem resets, 173

no SDB asic, 247

no timeouts possible for IOMMU tablewalk, 102

no UE forced on writeback parity error, 236

no Wakeup Reset support, 255

no zeroing of incoming PCI AD bits, 315

no zeroing of outgoing PCI AD bits, 314

one-hot PCI ARB_PRIO needed, 284

PCI Bus Number, 312

PCI Configuration cycles with random byte

enables, 83

PCI DAC, 316

PCI DMA CE Interrupt, 319

PCI DMA to UPA64S, 87

PCI DMA UE AFSR/AFAR loaded on IOMMU

errors, 239

PCI DMA UE AFSR/AFAR loaded oni IOMMU

errors, 318

PCI Memory Space, 313

PCI parity errors and PER, 237

PCI PIO data buffer diagnostic access, 288

PCI PIO Write AFAR, 286

potential race between IOMMU flush and

DMA, 298

PSTATE.IE used to inhibit V8 style

interrupts, 112

reading PCI configuration space registers, 290

re-enabling interrupts, 234

sequential action for E-cache diagnostic

access, 382

short reset mode, 255

some interrupts skip RECEIVED state in

fsm., 302

specifying CAS for memory read/write, 271

TPC, TNPC undefined after deferred trap, 232

UE AFSR/AFSAR loaded on IOMMU

translation errors, 102

UE can over CE in ECU AFSR, 248

unimplemented reserved addresses (CSRs), 51

nPC, 460
nPC Register, 179

Nucleus code, 121

nucleus context, 171

Nucleus Context Register, 215

NWINDOWS, 181, 182

defined, 460

O
Observability Bus group select, 434

odd fetch to an I-Cache line illustrated, 328

optional, 460

ordering

between cacheable accesses after noncacheable

accesses, 71

DMA writes and Interrupts, 107

 see also PCI, DMA Write Synchronization

Register

 see also SB_DRAIN or SB_EMPTY

OTHERWIN Register, 181, 349

out of range

violation, 219, 221, 224

virtual address, 178

virtual address, as target of JMPL or

RETURN, 179

virtual addresses, 24

virtual addresses, during STXA, 213

outstanding

loads, 359

store, 359

overflow exception, 184

Overwrite (OW) field of SFSR register, 217

P
P_NCWR_REQ, 323

P_REPLY

 see UPA64S,P_REPLY

PA Data Watchpoint Register, 205

illustrated, 370

PA Watchpoint Address Register, 213

PA_watchpoint trap, 55, 162, 164, 166, 172, 369

pack instructions, 132, 133, 136

page

number, physical, 23
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number, virtual, 23

offset, 23

Size (Size) field of TTE, 198

size, encoding in Translation Table Entry

(TTE), 198

parity

error, 78

Parity Error Enable

 see  error, PCI, PER or E-cache, Error Enable

Register

Partial Interrrupt Number Register, see interrupt,

partial INR

partial store

ASI, 162

instruction, 161, 162, 192

to noncacheable address, 323

Partial Store Order (PSO) memory model, 321, 323

partitioned multiply instructions, 142

PBM, see PCI, PBM

PC, 461

PC Ancillary State Register (ASR), 52

PCI

address spaces, 37, 310, 316

Address/Data Stepping, 82

arbiter, 85

ARB_PARK, 85

ARB_PRIO, 85

Bus Parking, 85

byte-twisting, 88, 89

 see also little-endian

Cache-line Wrap Addressing Mode, 82

commands generated, 85

commands ignored, 86

Configuration cycles, 83, 312

address, 311

Type 0, 311

Type 1, 311, 312

configuration cycles

Type 0, 83

Type 1, 83

Configuration Space, 289, 311, 314

Base Class Code Register, 293

Bus Number, 294

Command Register, 291

Device ID, 291

header registers, 81, 289

Header Type Register, 293

Latency Timer Register, 293

Programming I/F Code Register, 292

Revision ID Register, 292

Status Register, 292, 318

Sub-class Code Register, 292

Subordinate Bus Number, 294

Unimplemented Registers, 294

Vendor ID, 290

Control/Status Register, 283

DAC, 96, 315

Data Parity error Detected see errors

Diagnostic Register, 286

disconnects, 83

DMA CE AFSR, 316, 319

DMA Data Buffer Diagnostic Access, 288

DMA Data Buffer Diagnostics Access

(72:64), 288

DMA UE AFSR, 316, 317

DMA UE/CE AFAR, 316, 319

DMA Write Synchronization Register, 287

Dual Address Cycle

 see PCI,DAC

Fast Back-to-Back cycles, 81, 84

features, supported, 81

features, unsupported, 82

I/O Space, 313, 314

IDSEL#, 312

interface, 81

interrupts

 see interrupt

IOMMU

bypass mode, 316

pass-through, 315

peer-to-peer mode, 315

Register, 295

translation mode, 315

 see also IOMMU

Linear Incrementing addressing mode, 83

little endian, 88

LOCK unsupported, 82

master-aborts, 83

Memory Space, 314

memory space, 313

PBM, 81

PBM, control and status registers, 282

peer to peer mode, 81

PIO Data Buffer Diagnostic Access, 288

PIO Write AFAR, 284, 286

PIO Write AFSR, 284, 285

prefetch effects, 87

retries, 82
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SAC, 96, 315

Single Address Cycle see PCI,SAC

special cycles, 83

subtractive decode, 82

system error, 240

target abort, 83, 238

Target Address Space Register, 286

time out, 237

transactions, 85

Type 0, see PCI, configuration cycles

Type 1, see PCI, configuration cycles

PContext field, 215

PCR

Cycle_cnt function, 389

DC_hit function, 391

DC_ref function, 391

Dispatch0_dyn_use function, 390

Dispatch0_ICmiss function, 390

Dispatch0_mispred function, 390

Dispatch0_static_use function, 390

EC_hit function, 392

EC_ref function, 391

EC_snoop_inv function, 392

EC_snoop_wb function, 392

EC_wb function, 392

EC_write_hit_clean function, 391

IC_hit function, 391

IC_ref function, 391

Instr_cnt function, 389

PCR/PIC operational flow

illustrated, 389

PDIST instruction, 157

peer to peer mode  see PCI, peer to peer mode

PERF_CONTROL_REG ASR, 53

PERF_COUNTER register, 53

performance

Control Register (PCR), 387

Control Register (PCR) illustrated, 388

counters, for monitoring I-Cache accesses and

misses, 330

instrumentation, 387

Instrumentation Counter (PIC), 387

Instrumentation Counter (PIC) illustrated, 388

physical address (PA), 23, 459, 463

data watchpoint, 370

Data Watchpoint Read Enable (PR) field of

LSU_Control_Register, 373

Data Watchpoint Write Enable (PW) field of

LSU_Control_Register, 373

defined, 461
field of TTE, 199

space, accessing, 35

space, size, 1

Physical Address Data Watchpoint Read Enable

(PR) field of LSU_Control_Register, 373

physical memory, 463

physical page

attribute bits, MMU bypass mode, 226

number, 23

physically indexed, physically tagged (PIPT)

cache, 19, 20

physically noncacheable accesses, 21

PIE, see interrupt, PIE

pipeline, 2, 3

9-stage, 13

decoupling, 78

extended floating-point, 13

floating-point, 13

flushing, 20

integer, 13

stages (detailed) illustrated, 14

stages illustrated, 13

stall, 15, 78

pixel

compare instructions, 153

data, operations on, 1

ordering, 132

PMERGE instruction, 141

population count (POPC) instruction, 180

power down mode, 195

power on reset (POR), 35, 180, 252, 253, 260, 410

power_on_reset trap, 54

precise traps, 78, 176, 177

prefetch

and Dispatch Unit (PDU), 15, 16

and Dispatch Unit (PDU), illustrated, 4

unit, 2

PREFETCH instructions, 189

prefetchable, defined, 461
Primary Context Register, 209, 215

privilege violation, 218

privileged, 203

(P) field of TTE, 200

(PR) field of SFSR register, 217

(PRIV) field of PCR register, 53, 387, 388

(PRIV) field of PSTATE register, 72, 200, 204,

205, 321, 460, 463

defined, 461
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mode, 461

Privileged (PRIV) field of PSTATE register, 461

privileged_action trap, 52, 53, 55, 72, 119, 120, 180,

203, 205, 207, 208, 321, 387

privileged_opcode trap, 53, 55, 121, 122, 173, 191,

387

probing the address space, 38

processor

front end components, 325

interrupt level (PIL), 122

interrupt level (PIL) field of PSTATE

register, 122, 191

memory model, 168

program

counter, defined, 461
order, 70

PROM, 88

instruction fetches, 90

protection violation, 205

PSO

memory model, 191

mode, 68, 69, 70

PSTATE, 168

global register selection encodings, 194

register, 193, 194, 349

Q
quad-precision floating-point instructions, 185

queue

floating-point, 13

Not Empty (qne) field of FSR register, 188

R
rd, 461

read after write

(RAW) hazard, 342

interaction with store buffer, 358

real memory, 322

Red Mode Trap Vector, 34, 176

RED_state, 20, 21, 77, 176, 194, 211, 212, 233, 259,

260, 461

default memory model, 321

defined, 461
exiting, 77, 193, 259

MMU behavior, 211

RED_state_exception trap, 54

Reference MMU, 26

specification, 23

register

(R) Stage, 16

file

annex, 16

floating point, 16, 17, 21

integer, 17

SFAR, 205

SFSR, 205

stage illustrated, 13

window, 9

Relaxed Memory Order (RMO), 343

memory model, 321, 323

requirements, initialization, 252

reserved

fields in opcodes, 175

instruction field, defined, 461
instructions, 175

reset, 259

B_POR, 254, 258

B_XIR, 254, 258

block diagram, 252

bus conditions, 256

effects, 256

memory control initialization, 383

POR, 173, 258

POWER_OK, 254

priorities, 259

Push-button Power On Reset, 254

Push-button XIR, 254

Reset Error, and Debug (RED) field of PSTATE

register, 77, 193, 259, 461

Reset_Control Register, 254, 257

SHUTDOWN, 173

SIR, 251

SOFT_POR, 255, 258

SOFT_XIR, 255, 258

Software Power On Reset, 255

Software-Initiated Reset, 251

trap, defined, 461
WDR (Watchdog Reset), 251

Reset, Error, and Debug (RED) field of PSTATE

register

 see  reset, Reset, Error, and Debug (RED) field of

PSTATE register

Reset_Control Register

 see reset, Reset_Control Register
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restricted

ASI see ASI, restricted

ASI, defined, 461
RETRY instruction, 78, 194, 371

Return Address Stack (RAS), 335

after Power-On Reset, 260

in RED_state, 260

RIC chip, 33, 114

RISC architecture, 1

RMO

memory model, 191

mode, 68, 69, 70

RMTV, 34, 176

Rounding Direction (RD) field of FSR register, 187

rs1, 461

rs2, 461

RSTVaddr, 176, 260

S
S_REPLY

 see UPA64S, S_REPLY

SAVE instruction, 181

SB_DRAIN, 108

see also ordering

SB_EMPTY, 107, 108

Scalable Processor Architecture see  SPARC

scalarity, 3

scale_factor field of GSR register, 133, 136, 138, 139

scheduling, 191

SContext field, 215

SDB, 231

SDB Error Control Register, 248

SDB Error Register, 231

Secondary Context Register, 215

secure environment, 180

Select Code 0 (S0) field of PCR register, 388

Select Code 1 (S1) field of PCR register, 388

self-modifying code, 72, 189

and FLUSH, 72

sequence_error floating-point trap type, 187, 460

serial scan interface, 395

SET_SOFTINT (ASR) register, 53, 122

SET_SOFTINT Register, 122

set-associative cache, 338

SFAR register, 205

SFSR register, 205

shall expressing requirement, 462

shared

cache block, 462

TSB, 202

shift instructions—dedicated hardware, 348

short floating point

load instruction, 162, 192

store instruction, 162, 192

should expressing requirement, 462

SHUTDOWN instruction, 173, 195

side effect, 68, 462

accesses, 76

attribute, 190

attribute, and noncacheability, 69

bit, 79

defined, 462
field of SFSR register, 217

field of TTE, 190, 199

sign extended virtual address fields, 25

signal monitor (SIGM) instruction, 177, 253

in non-privileged mode, 177

signed loads, 337

silent loads—equivalent to non-faulting loads, 343

single bit ECC error  see  ECC,CE

snoop, 71, 259, 338, 340, 391

defined, 462
hits, 459

store buffer ———, 322

SOFTINT (ASR) register, 121, 191

SOFTINT_REG Ancillary State Register (ASR), 53,

122

software

cache flush, 67

defined (Soft) field of TTE, 199

defined (Soft2) field of TTE, 199

Initiated Reset (SIR), 177, 253

Interrupt (SOFTINT) field of SOFTINT

register, 121

Interrupt (SOFTINT) register, 121

pipelining, 2

Translation Table, 25, 189, 200

software_initiated_reset trap, 54

source register, 461

dependency, 362

SPARC, xxxviii

Architecture Manual, Version 9, xxxviii

brief history, xxxviii

International, address of, xxxix

V8 compatibility, 71

V8 Reference MMU, 23, 26
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V9 compliance, 175, 460

V9, architecture, xxxviii

V9, UltraSPARC extensions, xxxix

speculative load, 68, 190, 204

defined, 462
support for, 2

to page marked with E-bit, 68

spill_n_normal trap, 55

spill_n_other trap, 55

split field of TSB register, 202, 219

spurious loads

eliminating, 342

SRAM, 11, 29

STA, 318

stable storage, 66, 67

STBAR (SPARC-V8), 70

equivalent to MEMBAR #StoreStore, 71

STD instruction, 190

STDA instruction, 164, 165

STDF_mem_address_not_aligned trap, 55, 190

steady state loops, 332

store

block commit, 20

buffer, 16

delayed by load, 79

dependency, 359

high-water mark, 341

outstanding, 359

store buffer, 2, 17, 70, 78, 340, 341, 342, 343, 355,

358, 359

compression, 68, 79, 359, 392

compression—disabled for noncacheable

accesses, 76

full condition, 342

illustrated, 4

merging, 76

snooping, 322, 323

virtually tagged, 71

STQF instruction, 190

STQFA instruction, 190

strong

ordering, 68

sequential order, 322

sub-block granularity, 343

superscalar processor, 1

supervisor software, defined, 462
supported traps, 54

SWAP instruction, 73

Synchronous Fault Address Register (SFAR), 218

Synchronous Fault Status Register (SFSR), 216

illustrated, 216

SYSADDR bus, 408, 414

 see also UPA64S

system

PROM  see PROM

Trace (ST) field of PCR register, 388

T
Tag Access Register, 202, 220, 222

tag_overflow trap, 55

TAP, 395

controller, 396

controller, state diagram illustrated, 397

controller, state machine, 395

TBW_SIZE, see IOMMU, TBW_SIZE

Tcc instruction, reserved fields, 175

TCK IEEE 1149.1 signal, 396

TDI IEEE 1149.1 signal, 396

TDO IEEE 1149.1 signal, 396

terminated

instruction, 17

Test Access Port see TAP

textual conventions see conventions, textual

thread scheduling, 191

three-dimensional array addressing

instructions, 158

Tick Compare… see TICK_CMPR…
Tick Interrupt… see TICK_INT…
TICK register, 349

illustrated, 179

TICK_CMPR field of TICK register, 121, 191

TICK_CMPR_REG register, 53

TICK_INT, 122, 191

field of SOFTINT register, 121

TICK_REG Ancillary State Register (ASR), 52

time out, see error, time out

TL Register, 349

TLB, 160, 189

bypass operation, 227

data, 19

Data Access register, 222, 223

Data In register, 202, 222, 223, 224

defined, 462
demap operation, 227

hit, 16, 25, 462

instruction, 19
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miss, 16, 25, 200, 462

and non-faulting load, 74

handler, 67, 171, 198, 201, 202, 213

operations, 226

read operation, 227

reset, 212

Tag Read register, 224

translation operation, 226

write operation, 227

see also IOMMU, TLB

TMS IEEE 1149.1 signal, 396

Total Store Order (TSO) memory model, 321, 322

translating ASI, 39, 369

Translation Lookaside Buffer see TLB

Translation Storage Buffer see TSB

Translation Table Entry see TTE

trap

defined, 462
global registers, 193

MMU generated, 203

registers, 9

resolution, 17

stack, 176, 194

state registers, 176

Trap Base Address (TBA) register, 462

Trap Enable Mask (TEM) field of FSR register, 183,

184, 186, 187, 188

trap_instruction trap, 55

TRST_L IEEE 1149.1 signal, 396

TSB, 25, 171, 189, 198, 200, 219, 331

caching, 201

locked items, 203

miss handler, 202

offset, see IOMMU, TSB Offset

organization, 201

pointer logic, 228

Pointer register, 221

Register, 201

Tag Target register, 202, 214

see also IOMMU, TSB

TSB_Base, 219

TSB_Base field of TSB Register, 219

TSB_Size field of TSB register, 202, 220

TSO

memory model, 191

mode, 68, 70

ordering, 68

TSTATE, 194

TTE, 197, 204

illustrated, 197

see also IOMMU, TTE

U
UART, 68

UE, see ECC, UE

UltraSPARC extensions to SPARC-V9, xxxix

UltraSPARC-I

architecture, overview, 1

Data Buffer (UDB), illustrated, 5

extended instructions, 195

internal ASIs, 77

internal registers, 207

subsystem, illustrated, 5

trap levels illustrated, 177

UltraSPARC-I

block diagram, 4

UltraSPARC-IIi, 20

unassigned, defined, 462
undefined, 462

underflow exception, 184

unfinished_FPop floating-point trap type, 183, 184,

187, 460

unimplemented, 463

instructions, 175

unimplemented_FPop floating-point trap type, 185,

187, 460

unit of coherence, 68

Universal Asynchronous Receiver Transmitter

(UART), 68

unpredictable, 463

unrestricted, 463

UPA_CONFIG register, 278

ELIM, 279

MID, 279

PCAP, 279

UPA64S

byte addresses within quadword, 407

Byte Mask

byte mask, 415

dead cycle, 414

interface, description, 33

MEMDATA, 412

dead cycle, 411

P_NCBRD_REQ, 408, 415

P_NCBWR_REQ, 409, 415

P_NCRD_REQ, 408, 410, 413, 414, 415
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P_NCWR_REQ, 409, 413, 415

P_REPLY, 409, 412

definitions, 410

encoding, 410

P_IDLE, 410

P_RASB, 408, 410

P_WAB, 410

P_WAS, 410

timing, 412

packet format, 414

S_REPLY, 410, 411, 412

assertion, 414

definitions, 411

encodings, 411

rules, 410

S_IDLE, 410, 411

S_RBU, 408, 411

S_SRS, 411

S_WAB, 411

strongly ordered by request, 410

timing, 412

S_SRS, 411

SYSADDR bus, 408

transaction types, 415

user thread

termination, 78

User Trace (UT) field of PCR register, 387, 388, 389

UserTrace (UT) field of PCR register, 388

V
VA Data Watchpoint register, 205, 370

illustrated, 370

VA out of range, 218

VA Watchpoint Address Register, 213

VA_tag field of TTE, 198

VA_watchpoint trap, 55, 162, 164, 166, 172, 369

Valid (V) field of TTE, 198

Version (ver) field of FSR register, 187

virtual address

defined, 463
fields, sign extended, 25

out of range, 24

see also VA…
space illustrated, 25, 178

space, size, 1

Virtual Address Data Watchpoint Read Enable (VR)

field of LSU_Control_Register, 372

Virtual Address Data Watchpoint Write Enable

(VW) field of LSU_Control_Register, 372

virtual color, 66

virtual noncacheable accesses, 20

virtual page number, 23

virtual to physical address

mapping, 35

translation, 23, 321

translation illustrated, 24

translation, IOMMU, 97

virtual_address_data_watchpoint_mask, 372

virtually cacheable, 66

virtually indexed, physically tagged (VIPT), 336

virtually indexed, physically tagged (VIPT)

cache, 19

virtually noncacheable, 66

virtually tagged store buffers, 71

W
W Stage, 349, 350, 351, 358

W1 Stage virtual stage, 353

Watchdog Reset (WDR), 176, 253

watchdog_reset trap, 54

watchpoint trap, 205, 368

window_fill trap, 179

Writable (W) field of TTE, 200

Write (W) field of SFSR register, 217

Write (W) Stage, 17

illustrated, 13

Write-After-Read (WAR) hazard, 343

writeback, defined, 463
write-through cache, 336

WSTATE Register, 349

X
X1 Stage, 16

illustrated, 13

X2 Stage, 17

illustrated, 13

X3 Stage, 17

illustrated, 13
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Y
Y_REG Ancillary State Register (ASR), 52
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