Performance Optimizations and Bounds for Sparse Matrix-Vector Multiply

Richard Vuduc, James Demmel, Katherine Yelick
Shoaib Kamil, Rajesh Nishtala, Benjamin Lee
November 20, 2002

Berkeley Benchmarking and OPtimization (BeBOP) Project

www.cs.berkeley.edu/~richie/bebop

Computer Science Division, U.C. Berkeley
Context: Performance Tuning in the Sparse Case

- Application performance dominated by a few computational kernels

- Performance tuning today
 - Vendor-tuned libraries (e.g., BLAS) or user hand-tunes
 - Automatic tuning (e.g., PHiPAC/ATLAS, FFTW/SPIRAL/UHFFT)

- Why is tuning hard in the sparse case?
 - Sparse matrix-vector multiply (SpM × V) performance:
 less than 10% of machine peak
 - Sparse code has . . .
 - high bandwidth requirements (extra storage)
 - poor locality (indirect, irregular memory access)
 - poor instruction mix (data structure manipulation)

- Performance depends on kernel, architecture, and matrix
Example: Matrix olafu

Spy Plot: 03−olafu.rua

N = 16146
nnz = 1.0M
Kernel = SpM×V

A natural choice: blocked compressed sparse row (BCSR) storage. Is it the best choice?

Experiment: Measure performance of all block sizes for 1015156 non−zeros.
Example: Matrix olafu

Spy Plot (zoom-in): 03-olafu.rua

N = 16146
nnz = 1.0M
Kernel = SpM × V

A natural choice:
6×6 blocked compressed sparse row (BCSR) storage. Is it the best choice?

Experiment:
Measure performance of all $r \times c$ block sizes for $r, c \in \{1, 2, 3, 6\}$.
Speedups on Itanium: The Need for Search

Blocking Performance (Mflop/s) [03-olafu.rua; itanium-linux-ecc]

<table>
<thead>
<tr>
<th>row block size (r)</th>
<th>column block size (c)</th>
<th>Performance (Mflop/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.95</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1.44</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.64</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1.21</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.27</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.78</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.93</td>
</tr>
</tbody>
</table>

(Peak machine speed: 3.2 Gflop/s)
Key Questions and Conclusions

- How do we choose the best tuning parameters automatically?
 - New heuristic for choosing optimal (or near-optimal) block sizes

- What are the limits on performance for $\text{SpM} \times \text{V}$?
 - Derive performance upper bounds for blocking
 - Performance is memory-bound: reducing data structure size is critical
 - Show we can get within 20% of upper bound, placing limits on improvement from more “low-level” tuning

- Where are the new opportunities (kernels, techniques) for achieving higher performance?
 - Identify cases in which blocking does and does not work
 - Identify new kernels and opportunities for reducing memory traffic
Approach to Automatic Tuning

- For each kernel,
 - *Identify* and *generate* a space of implementations
 - *Search* to find the fastest (using models, experiments)
Approach to Automatic Tuning

- For each kernel,
 - *Identify* and *generate* a space of implementations
 - *Search* to find the fastest (using models, experiments)

- The **SPARSITY** system for SpM×V [Im & Yelick ’99]
 - **Interface**
 - Input: Your sparse matrix (CSR)
 - Output: Data structure + routine tuned to your matrix & machine
 - **Implementation space**
 - register level blocking ($r \times c$)
 - cache blocking, multiple vectors, . . .
 - **Search**
 - Off-line: benchmarking (once per architecture)
 - Run-time: estimate matrix properties (“search”) and predict best tuning parameters
Approach to Automatic Tuning

For each kernel,
- **Identify** and **generate** a space of implementations
- **Search** to find the fastest (using models, experiments)

The **SPARSITY** system for SpM×V [Im & Yelick ’99]

- **Interface**
 - Input: Your sparse matrix (CSR)
 - Output: Data structure + routine tuned to your matrix & machine

- **Implementation space**
 - **register level blocking** \((r \times c)\)
 - cache blocking, multiple vectors, ...

- **Search**
 - **Off-line: benchmarking** (once per architecture)
 - **Run-time: estimate matrix properties** (“search”) and predict best tuning parameters
Register-Level Blocking (SPARSITY)

3 x 3 Register Blocking Example

688 true non-zeros
Register-Level Blocking (SPARSITY)

- Store dense $r \times c$ blocks
 - BCSR with uniform blocks
 - Reduce storage and bandwidth requirements
- Fully unroll block multiplies
 - Improves register reuse, scheduling

3 x 3 Register Blocking Example

688 true non-zeros
Register-Level Blocking (SPARSITY)

- Store dense $r \times c$ blocks
 - BCSR with uniform blocks
 - Reduce storage and bandwidth requirements

- Fully unroll block multiplies
 - Improves register reuse, scheduling

- Fill-in zeros: trade-off extra flops for better efficiency
 - This example: 50% fill led to 1.5x speedup on Pentium III

(688 true non-zeros) + (383 explicit zeros) = 1071 nz

3 x 3 Register Blocking Example
Off-line Benchmarking [Intel Pentium III]

Register Blocking Performance (Mflop/s) [Dense (n=1000); pentium3–linux–icc]

<table>
<thead>
<tr>
<th>Row Block Size (r)</th>
<th>Column Block Size (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Top 10 codes labeled by speedup over unblocked code. Max speedup = 2.54 (2 × 10).
Search: Choosing the Block Size

- **Off-line benchmarking** (once per architecture)
 - Measure **Dense Performance** \((r,c) \)

 Performance (Mflop/s) of dense matrix in sparse \(r \times c \) blocked format, \(\forall r, c \)

- At run-time, when matrix is known:
 - Estimate **Fill Ratio** \((r,c), \forall r, c \)

 Fill Ratio \((r,c) = \frac{\text{(number of stored values)}}{\text{(number of true non-zeros)}} \)

 - Choose \(r, c \) that maximizes

 \[
 \text{Est. Performance} \ (r,c) = \frac{\text{Dense Performance} \ (r,c)}{\text{Fill Ratio} \ (r,c)}
 \]

- Convert from input format to \(r \times c \) BCSR

- **Total run-time cost:** \(\approx 40 \text{ SpM} \times \text{Vs} \)
 - (Re)building the matrix: \(\approx 35 \text{ SpM} \times \text{Vs} \)
How close are we to the speed limit?

Upper-bounds on performance: \(\frac{\text{flops}}{\text{time}} \) [Mflop/s]

- Flops \(\approx 2 \times \text{(number of true non-zeros)} \)
- Model of execution time
 - Ignore cost of non-memory ops.
 - Charge full latency \(\alpha_i \) for hits at each cache level \(i \), e.g.,

\[
T = (L1 \text{ hits})\alpha_1 + (L2 \text{ hits})\alpha_2 + (\text{mem hits})\alpha_{mem} \\
= (\text{Loads})\alpha_1 + (L1 \text{ misses}) (\alpha_2 - \alpha_1) + (L2 \text{ misses}) (\alpha_{mem} - \alpha_2)
\]

- Need **lower bound** on time, i.e., **lower bound** on misses
 - Count only compulsory misses (i.e., ignore conflict misses)
 - Account for line size

- True miss counts typically 10–20% larger than lower bound
Where in Memory is the Time Spent?

Execution Time Model (Model Hits/Misses) --- Where is the Time Spent?

Platform	L1	L2	L3	Mem
Ultra 2i | 0.2 | 0.3 | 0.1 | 0.4
Pentium III | 0.3 | 0.4 | 0.2 | 0.1
Power3 | 0.2 | 0.3 | 0.1 | 0.4
Itanium | 0.1 | 0.2 | 0.3 | 0.4
Overview of Performance Results

- Experimental setup
 - Four machines: Ultra 2i, Pentium III, Power3, Itanium
 - 44 matrices: dense, finite element, mixed, linear programming
 - Measured misses and cycles using PAPI
 - Reference: unblocked (1×1)

- Main observations
 - **SPARSITY** vs. reference: up to 2.5x faster, especially on FEM
 - Block size selection: chooses within 10% of best
 - **SPARSITY** performance typically within 20% of upper-bound
 - **SPARSITY** least effective on Power3
Performance Results: Sun Ultra 2i

Performance Summary [ultra–solaris]

- DGEMV (n=1000): 58 Mflop/s
DGEMV (n=1000): 96 Mflop/s
Performance Results: IBM Power3

Performance Summary [power3–aix]

- Analytic upper bound
- Upper bound (PAPI)
- Sparsity (exhaustive)
- Sparsity (heuristic)
- Reference

DGEMV (n=2000): 260 Mflop/s
Performance Results: Intel Itanium

Performance Summary [itanium-linux-ecc]

- Analytic upper bound
- Upper bound (PAPI)
- Sparsity (exhaustive)
- Sparsity (heuristic)
- Reference

DGEMV (n=1000): 310 Mflop/s

Performance Optimizations and Bounds for Sparse Matrix-Vector Multiply – p.17/41
Fill: Some Surprises!

- Sometimes faster to fill in many zeros

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Speedup</th>
<th>Fill ratio</th>
<th>(Size BCSR) (Size CSR)</th>
<th>Dense (Perf BCSR) (Perf CSR)</th>
<th>Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>1.09</td>
<td>1.70</td>
<td>1.26</td>
<td>1.55</td>
<td>Itanium</td>
</tr>
<tr>
<td>13</td>
<td>1.50</td>
<td>1.52</td>
<td>1.07</td>
<td>2.30</td>
<td>Pentium 3</td>
</tr>
<tr>
<td>17</td>
<td>1.04</td>
<td>1.59</td>
<td>1.23</td>
<td>1.54</td>
<td>Itanium</td>
</tr>
<tr>
<td>27</td>
<td>1.16</td>
<td>1.94</td>
<td>1.47</td>
<td>1.54</td>
<td>Itanium</td>
</tr>
<tr>
<td>27</td>
<td>1.10</td>
<td>1.53</td>
<td>1.25</td>
<td>1.23</td>
<td>Ultra 2i</td>
</tr>
<tr>
<td>29</td>
<td>1.00</td>
<td>1.98</td>
<td>1.44</td>
<td>1.89</td>
<td>Pentium 3</td>
</tr>
</tbody>
</table>
Related Work

- Automatic tuning systems
 - PHiPAC [BACD97], ATLAS [WPD01], SPARSITY [Im00]
 - FFTW [FJ98], SPIRAL [PSVM01], UHFFT [MMJ00]
 - MPI collective ops (Vadhiyar, et al. [VFD01])

- Code generation
 - Sparse compilers (Bik [BW99], Bernoulli [Sto97])
 - Generic programming (Blitz++ [Vel98], MTL [SL98], GMCL [Neu98], …)
 - FLAME [GGHvdG01]

- Sparse performance modeling and tuning
 - Temam and Jalby [TJ92]
 - Toledo [Tol97], White and Sadayappan [WS97], Pinar [PH99]
 - Navarro [NGLPJ96], Heras [HPDR99], Fraguela [FDZ99]
 - Gropp, et al. [GKKS99], Geus [GR99]

- Compilers (analysis and models)
 - CROPS (UCSD/Carter, Ferrante, et al.)
 - TUNE (Chatterjee, et al.)
Conclusions

- Tuning can be difficult, even when matrix structure is known
 - Performance is a complicated function of architecture and matrix
- New heuristic for choosing block size selects optimal implementation, or near-optimal (performance within 5–10%)
- Limits of low-level tuning for blocking are near
 - Performance is often within 20% of upper-bound, particularly with FEM matrices
- Unresolved: closing the gap on the Power3
Current and Future Work (1/2)

- Further performance improvements
 - symmetry (1.5–2x speedups)
 - diagonals, block diagonals, and bands (1.2–2x),
 - splitting for variable block structure (1.3–1.7x),
 - reordering to create dense structure (1.7x),
 - cache blocking (1.5–4x)
 - multiple vectors (2–7x)
 - and combinations . . .
 - How to choose optimizations & tuning parameters?

- Sparse triangular solve (ICS’02/POHLL)
 - hybrid sparse/dense structure (1.2–1.8x)

- Higher-level kernels that permit reuse
 - $A^T A x$ (1.5–3x)
 - $A x$ and $A^T y$ simultaneously, $A^k x$, RAR^T, . . . (future work)
Current and Future Work (2/2)

- **An automatically tuned sparse matrix library**
 - Code generation via sparse compilers (Bernoulli; Bik)
 - Plan to extend new Sparse BLAS standard by one routine to support tuning

- **Architectural issues**
 - Improvements for Power3?
 - Latency vs. bandwidth (see paper)
 - Using models to explore architectural design space
Example: No Big Surprises on Sun Ultra 2i

Blocking Performance (Mflop/s) [03–olafu.rua; ultra–solaris]

<table>
<thead>
<tr>
<th>row block size (r)</th>
<th>column block size (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1.40 1.39 1.42 1.53</td>
</tr>
<tr>
<td>3</td>
<td>1.31 1.34 1.41 1.39</td>
</tr>
<tr>
<td>2</td>
<td>1.17 1.25 1.30 1.30</td>
</tr>
<tr>
<td>1</td>
<td>1.00 1.09 1.19 1.21</td>
</tr>
</tbody>
</table>

Performance Optimizations and Bounds for Sparse Matrix-Vector Multiply – p.24/41
Define fill ratio and dense performance

\[f_A(r, c) = \frac{\text{# of stored nonzeros using } r \times c \text{ blocks}}{\text{# of true nonzeros}} \]

\[P_{\text{dense}}(r, c) = \text{Performance (Mflop/s) for dense matrix in sparse } r \times c \text{ format} \]
Define *fill ratio* and *dense performance*

$$f_A (r, c) = \frac{\# \text{ of stored nonzeros using } r \times c \text{ blocks}}{\# \text{ of true nonzeros}}$$

$$P_{\text{dense}}(r, c) = \text{Performance (Mflop/s) for dense matrix in sparse } r \times c \text{ format}$$

Off-line: For all $r \times c$, measure $P_{\text{dense}}(r, c)$ (*register profile*)
Search: Choosing the Block Size

- Define fill ratio and dense performance

\[f_A(r, c) = \frac{\text{# of stored nonzeros using } r \times c \text{ blocks}}{\text{# of true nonzeros}} \]

\[P_{\text{dense}}(r, c) = \text{Performance (Mflop/s) for dense matrix in sparse } r \times c \text{ format} \]

- Off-line: For all \(r \times c \), measure \(P_{\text{dense}}(r, c) \) (register profile)

- Run-time:
 - Compute \(f_A(r, c) \)
 - Choose \(r, c \) that maximizes

\[\frac{P_{\text{dense}}(r, c)}{f_A(r, c)} \]

- In practice, total run-time cost (incl. reorg.) is 10–30 SpM\(\times \)Vs
Cache Miss Bound Verification: Sun Ultra 2i (L2)

L2 Misses -- [ultra-solaris]

- Upper bound
- PAPI
- Lower Bound

no. of misses (millions)

matrix

Performance Optimizations and Bounds for Sparse Matrix-Vector Multiply – p.27/41
Cache Miss Bound Verification: Intel Pentium III (L1)

L1 Misses -- [pentium3–linux–icc]
Cache Miss Bound Verification: Intel Pentium III (L2)
Cache Miss Bound Verification: IBM Power3 (L1)

L1 Misses — [power3-aix]

- Upper bound
- PAPI
- Lower Bound

Matrix

- no. of misses (millions)

- 10^1
- 10^0
- 10^{-1}

- 1 4 5 7 8 9 10 12 13 15 40

Performance Optimizations and Bounds for Sparse Matrix-Vector Multiply – p.30/41
Cache Miss Bound Verification: IBM Power3 (L2)

L2 Misses -- [power3-aix]

- Upper bound
- PAPI
- Lower Bound

Matrix

No. of misses (millions)

10^1

10^0

10^{-1}

Matrix

1 4 5 7 8 9 10 12 13 15 40
Cache Miss Bound Verification: Intel Itanium (L2)

L2 Misses -- [itanium-linux-ecc]

- Upper bound
- PAPI
- Lower Bound

no. of misses (millions)

matrix
Cache Miss Bound Verification: Intel Itanium (L3)

L3 Misses -- [itanium-linux-ecc]

- Upper bound
- PAPI
- Lower Bound

no. of misses (millions)

matrix

Performance Optimizations and Bounds for Sparse Matrix-Vector Multiply – p.33/41
Latency vs. Bandwidth

Sustainable Memory Bandwidth (STREAM)

- Full-latency model

Performance Optimizations and Bounds for Sparse Matrix-Vector Multiply – p.34/41
Related Work (2/2)

- Compilers (analysis and models); run-time selection
 - CROPS (UCSD/Carter, Ferrante, et al.)
 - TUNE (Chatterjee, et al.)
 - Iterative compilation (O’Boyle, et al., 1998)
 - Broadway (Guyer and Lin, ’99)
 - Brewer (’95); ADAPT (Voss, 2000)
- Interfaces: Sparse BLAS; PSBLAS; PETSc
- Sparse triangular solve
 - SuperLU/MUMPS/SPOOLES/UMFPACK/PSPASES…
 - Approximation: Alvarado (’93); Raghavan (’98)
 - Scalability: Rothberg (’92; ’95); Gupta (’95); Li, Coleman (’88)
What is the Cost of Search?

Block Size Selection Overhead [itanium–linux–ecc]

<table>
<thead>
<tr>
<th>Matrix #</th>
<th>Cost (no. of reference SpxMVs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>.74</td>
</tr>
<tr>
<td>3</td>
<td>.74</td>
</tr>
<tr>
<td>4</td>
<td>.74</td>
</tr>
<tr>
<td>5</td>
<td>.71</td>
</tr>
<tr>
<td>6</td>
<td>.86</td>
</tr>
<tr>
<td>7</td>
<td>.85</td>
</tr>
<tr>
<td>8</td>
<td>.85</td>
</tr>
<tr>
<td>9</td>
<td>.84</td>
</tr>
<tr>
<td>10</td>
<td>.84</td>
</tr>
<tr>
<td>11</td>
<td>.80</td>
</tr>
<tr>
<td>12</td>
<td>.85</td>
</tr>
<tr>
<td>13</td>
<td>.85</td>
</tr>
<tr>
<td>14</td>
<td>.84</td>
</tr>
<tr>
<td>15</td>
<td>.76</td>
</tr>
<tr>
<td>16</td>
<td>.79</td>
</tr>
<tr>
<td>17</td>
<td>.78</td>
</tr>
<tr>
<td>18</td>
<td>.78</td>
</tr>
<tr>
<td>19</td>
<td>.76</td>
</tr>
<tr>
<td>20</td>
<td>.79</td>
</tr>
<tr>
<td>21</td>
<td>.74</td>
</tr>
<tr>
<td>22</td>
<td>.74</td>
</tr>
<tr>
<td>23</td>
<td>.74</td>
</tr>
<tr>
<td>24</td>
<td>.74</td>
</tr>
<tr>
<td>25</td>
<td>.74</td>
</tr>
<tr>
<td>26</td>
<td>.74</td>
</tr>
<tr>
<td>27</td>
<td>.74</td>
</tr>
<tr>
<td>28</td>
<td>.74</td>
</tr>
<tr>
<td>29</td>
<td>.74</td>
</tr>
<tr>
<td>30</td>
<td>.74</td>
</tr>
<tr>
<td>31</td>
<td>.74</td>
</tr>
<tr>
<td>32</td>
<td>.74</td>
</tr>
<tr>
<td>33</td>
<td>.74</td>
</tr>
<tr>
<td>34</td>
<td>.74</td>
</tr>
<tr>
<td>35</td>
<td>.74</td>
</tr>
<tr>
<td>36</td>
<td>.74</td>
</tr>
<tr>
<td>37</td>
<td>.74</td>
</tr>
<tr>
<td>38</td>
<td>.74</td>
</tr>
<tr>
<td>39</td>
<td>.74</td>
</tr>
<tr>
<td>40</td>
<td>.74</td>
</tr>
<tr>
<td>41</td>
<td>.74</td>
</tr>
<tr>
<td>42</td>
<td>.74</td>
</tr>
<tr>
<td>43</td>
<td>.74</td>
</tr>
<tr>
<td>44</td>
<td>.74</td>
</tr>
</tbody>
</table>

Performance Optimizations and Bounds for Sparse Matrix-Vector Multiply – p.36/41
Where in Memory is the Time Spent? (PAPI Data)

Execution Time Model (PAPI Hits/Misses) --- Where is the Time Spent?

- Ultra 2i (L1/L2)
- Pentium III (L1/L2)
- Power3 (L1/L2)
- Itanium (L1/L2/L3)
Performance Results: Ultra Solaris

Performance Summary [ultra-solaris]

DGEMV (n=1000): 58 Mflop/s
Performance Results: Intel Pentium III

Performance Summary [pentium3–linux–icc]

- DGEMV (n=1000): 96 Mflop/s
Performance Results: IBM Power3

Performance Summary [power3-aix]

- Analytic upper bound
- Upper bound (PAPI)
- Sparsity (exhaustive)
- Sparsity (heuristic)
- Reference

DGEMV (n=2000): 260 Mflop/s
Performance Results: Intel Itanium

Performance Summary [itanium–linux–ecc]

Analytic upper bound
Upper bound (PAPI)
Sparsity (exhaustive)
Sparsity (heuristic)
Reference

DGEMV (n=1000): 310 Mflop/s
References

