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MotivationMotivation
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Conventional Performance TuningConventional Performance Tuning
Motivation: performance of many applications 

dominated by a few kernels
Vendor or user hand tunes kernels
Drawbacks:

Very time consuming and tedious work
Even with intimate knowledge of architecture and 
compiler, performance hard to predict
Growing list of kernels to tune

Example: New BLAS Standard
Must be redone for every architecture, compiler
Compiler technology often lags architecture
Not just a compiler problem: 

Best algorithm may depend on input, so some tuning at run-time.
Not all algorithms semantically or mathematically equivalent



Automatic Performance TuningAutomatic Performance Tuning
Approach: for each kernel
1. Identify and generate a space of algorithms
2.Search for the fastest one, by running them
What is a space of algorithms?

Depending on kernel and input, may vary
instruction mix and order
memory access patterns
data structures 
mathematical formulation 

When do we search?
Once per kernel and architecture 
At compile time
At run time
All of the above



Some Automatic Tuning ProjectsSome Automatic Tuning Projects

PHIPAC (www.icsi.berkeley.edu/~bilmes/phipac) (Bilmes,Asanovic,Vuduc,Demmel)
ATLAS (www.netlib.org/atlas) (Dongarra, Whaley; in Matlab)
XBLAS (www.nersc.gov/~xiaoye/XBLAS) (Demmel, X. Li)
Sparsity (www.cs.berkeley.edu/~yelick/sparsity) (Yelick, Im)
FFTs and Signal Processing

FFTW (www.fftw.org)
Won 1999 Wilkinson Prize for Numerical Software

SPIRAL (www.ece.cmu.edu/~spiral)
Extensions to other transforms, DSPs

UHFFT 
Extensions to higher dimension, parallelism

Special session at ICCS 2001
Organized by Yelick and Demmel
www.ucalgary.ca/iccs
Proceedings available
Pointers to other automatic tuning projects at 

www.cs.berkeley.edu/~yelick/iccs-tune

http://www.icsi.berkeley.edu/~bilmes/phipac
http://www.netlib.org/atlas
http://www.nersc.gov/~xiaoye/XBLAS
http://www.cs.berkeley.edu/~yelick/sparsity
http://www.fftw.org/
http://www.ece.cmu.edu/~spiral
http://www.ucalgary.ca/iccs
http://www.cs.berkeley.edu/~yelick/iccs-tune


Tuning pays off Tuning pays off –– PHIPAC (PHIPAC (BilmesBilmes, , AsanovicAsanovic, , VuducVuduc, , DemmelDemmel))



Tuning pays off Tuning pays off –– ATLAS (ATLAS (DongarraDongarra, Whaley), Whaley)

Extends applicability of PHIPAC
Incorporated in Matlab (with rest of LAPACK)



Search for optimal register tile sizes on Sun Ultra 10Search for optimal register tile sizes on Sun Ultra 10

16 registers, but 2-by-3 tile size fastest



Search for Optimal L0 block size in dense Search for Optimal L0 block size in dense matmulmatmul

60% of peak on Pentium II-300
4% of versions exceed



High precision dense matHigh precision dense mat--vec vec multiply (XBLAS)multiply (XBLAS)



High Precision Algorithms (XBLAS)High Precision Algorithms (XBLAS)

Double-double (High precision word represented as pair of doubles)
Many variations on these algorithms; we currently use Bailey’s

Exploiting Extra-wide Registers
Suppose s(1) , … , s(n) have f-bit fractions, SUM has F>f bit fraction
Consider following algorithm for  S = Σi=1,n s(i)

Sort so that |s(1)| ≥ |s(2)|  ≥ … ≥ |s(n)|
SUM = 0, for i = 1 to n SUM = SUM + s(i), end for, sum = SUM

Theorem (D., Hida) Suppose F<2f (less than double precision)
If n ≤ 2F-f + 1, then error ≤ 1.5 ulps
If n =  2F-f + 2, then error ≤ 22f-F ulps (can be >> 1)
If n  ≥ 2F-f + 3, then error can be arbitrary (S ≠ 0 but sum = 0 )

Examples
s(i) double (f=53), SUM double extended (F=64) 
– accurate if n ≤ 211 + 1 = 2049

Dot product of single precision x(i) and y(i) 
– s(i) = x(i)*y(i)  (f=2*24=48), SUM double extended (F=64) ⇒
– accurate if n ≤ 216 + 1 = 65537



Tuning Sparse Matrix ComputationsTuning Sparse Matrix Computations



Tuning Sparse matrixTuning Sparse matrix--vector multiply vector multiply 

Sparsity
Optimizes y = A*x for a particular sparse A

Im and Yelick
Algorithm space

Different code organization, instruction mixes
Different register blockings (change data structure and fill of A)
Different cache blocking
Different number of columns of x
Different matrix orderings

Software and papers available
www.cs.berkeley.edu/~yelick/sparsity

http://www.cs.berkeley.edu/~yelick/sparsity


How How Sparsity Sparsity tunes y = A*xtunes y = A*x

Register Blocking 
Store matrix as dense r x c blocks
Precompute performance in Mflops of dense A*x for various 
register block sizes r x c
Given A, sample it to estimate Fill if A blocked for varying r x c
Choose r x c to minimize estimated running time Fill/Mflops

Store explicit zeros in dense r x c blocks, unroll

Cache Blocking 
Useful when source vector x enormous
Store matrix as sparse 2k x 2l blocks
Search over 2k x 2l cache blocks to find fastest



RegisterRegister--Blocked Performance of SPMV on Dense Matrices (up to 12x12)Blocked Performance of SPMV on Dense Matrices (up to 12x12)

333 MHz Sun Ultra IIi 800 MHz Pentium III

1.5 GHz Pentium 4

70 Mflops

35 Mflops

425 Mflops

310 Mflops

800 MHz Itanium

175 Mflops

105 Mflops

250 Mflops

110 Mflops



Which other sparse operations can we tune?Which other sparse operations can we tune?

General matrix-vector multiply A*x
Possibly many vectors x

Symmetric matrix-vector multiply A*x
Solve a triangular system of equations T-1*x
y = AT*A*x

Kernel of Information Retrieval via LSI (SVD)
Same number of memory references as A*x

y = Σi (A(i,:))T * (A(i,:) * x)
Future work

A2*x, Ak*x
Kernel of Information Retrieval used by Google
Includes Jacobi, SOR, …
Changes calling algorithm

AT*M*A
Matrix triple product
Used in multigrid solver

What does SciDAC need?



Test MatricesTest Matrices

General Sparse Matrices
Up to n=76K, nnz = 3.21M
From many application areas
1 – Dense
2 to 17 - FEM
18 to 39 - assorted
41 to 44 – linear programming
45 - LSI

Symmetric Matrices
Subset of General Matrices
1 – Dense
2 to 8 - FEM
9 to 13 - assorted

Lower Triangular Matrices
Obtained by running SuperLU on subset of General Sparse Matrices
1 – Dense
2 – 13 – FEM

Details on test matrices at end of talk



Results on Sun Ultra 1/170Results on Sun Ultra 1/170



Speedups on SPMV from Speedups on SPMV from Sparsity Sparsity on Sun Ultra 1/170 on Sun Ultra 1/170 –– 1 RHS1 RHS



Speedups on SPMV fromSpeedups on SPMV from SparsitySparsity on Sun Ultra 1/170 on Sun Ultra 1/170 –– 9 RHS9 RHS



Speed up from Cache Blocking on LSI matrix on Sun UltraSpeed up from Cache Blocking on LSI matrix on Sun Ultra



Recent Results Recent Results 
on P4 using on P4 using icc icc and and gccgcc



Speedup of SPMV fromSpeedup of SPMV from SparsitySparsity on P4/on P4/iccicc--5.0.15.0.1



Single vector speedups on P4 by matrix type Single vector speedups on P4 by matrix type –– best r x cbest r x c



Performance of SPMV fromPerformance of SPMV from SparsitySparsity on P4/on P4/iccicc--5.0.15.0.1



Sparsity Sparsity cache blocking results on P4 for LSIcache blocking results on P4 for LSI



Fill for SPMV fromFill for SPMV from SparsitySparsity on P4/on P4/iccicc--5.0.15.0.1



Multiple vector speedups on P4Multiple vector speedups on P4



Multiple vector speedups on P4 Multiple vector speedups on P4 –– by matrix typeby matrix type



Multiple Vector Performance on P4Multiple Vector Performance on P4



Symmetric Sparse MatrixSymmetric Sparse Matrix--Vector Multiply on P4 (Vector Multiply on P4 (vsvs naïve full = 1)naïve full = 1)



Sparse Triangular Solve (Sparse Triangular Solve (Matlab’s colmmd Matlab’s colmmd ordering) on P4 ordering) on P4 



AATT*A on P4 (Accesses A only once)*A on P4 (Accesses A only once)



Preliminary Results on Preliminary Results on 
Itanium using Itanium using eccecc



Speedup of SPMV from Speedup of SPMV from Sparsity Sparsity on Itanium/on Itanium/eccecc--5.0.15.0.1



Single vector speedups on Itanium by matrix typeSingle vector speedups on Itanium by matrix type



Raw Performance of SPMV fromRaw Performance of SPMV from SparsitySparsity on Itanium on Itanium 



Fill for SPMV from Fill for SPMV from Sparsity Sparsity on Itanium on Itanium 



Improvements to register block size selectionImprovements to register block size selection

Initial heuristic to determine 
best r x c block biased to 
diagonal of performance plot
Didn’t matter on Sun, does on 
P4 and Itanium since 
performance so “nondiagonally 
dominant”
Matrix 8: 

Chose   2x2 (164 Mflops) 
Better: 3x1 (196 Mflops)

Matrix 9:
Chose   2x2 (164 Mflops) 
Better: 3x1 (213 Mflops)



Multiple vector speedups on ItaniumMultiple vector speedups on Itanium



Multiple vector speedups on Itanium Multiple vector speedups on Itanium –– by matrix typeby matrix type



Multiple Vector Performance on ItaniumMultiple Vector Performance on Itanium



Speed up from Cache Blocking on LSI matrix on ItaniumSpeed up from Cache Blocking on LSI matrix on Itanium



Applications of Performance TuningApplications of Performance Tuning
(non (non SciDACSciDAC))

SUGAR – A CAD Tool for MEMS



Applications to SUGAR Applications to SUGAR –– a tool for MEMS CADa tool for MEMS CAD

Demmel, Bai, Pister, Govindjee, Agogino, Gu, …
Input: description of MicroElectroMechanical System (as netlist)
Output:

DC, steady state, modal, transient analyses to assess behavior
CIF for fabrication

Simulation capabilities
Beams and plates (linear, nonlinear, prestressed,…)
Electrostatic forces, circuits
Thermal expansion, Couette damping 

Availability
Matlab

Publicly available
www-bsac.eecs.berkeley.edu/~cfm
249 registered users, many unregistered

Web service – M & MEMS
Runs on Millennium 
sugar.millennium.berkeley.edu
Now in use in EE 245 at UCB…96 users

Lots of new features being added, including interface to measurements

http://www.cs.berkeley.edu/~demmel
http://www.cs.ucdavis.edu/~bai
http://www.eecs.berkeley.edu/~pister
http://www.ce.berkeley.edu/~sanjay
http://www.me.berkeley.edu/faculty/agogino/
http://www.math.berkeley.edu/~mgu
http://www-bsac.eecs.berkeley.edu/~cfm
http://sugar.millennium.berkeley.edu/


Micromirror Micromirror (Last, (Last, PisterPister))

Laterally actuated torsionally suspended micromirror
Over 10K dof, 100 line netlist (using subnets)
DC and frequency analysis
All algorithms reduce to previous kernels



Applications of Performance TuningApplications of Performance Tuning

Information Retrieval



Information RetrievalInformation Retrieval

Jordan
Collaboration with Intel team building probabilistic graphical models
Better alternatives to LSI for document modeling and search
Latent Dirichlet Allocation (LDA)

Model documents as union of themes, each with own word distribution
Maximum likelihood fit to find themes in set of documents, classify them
Computational bottleneck is solution of enormous linear systems
One of largest Millennium users

Identifying influential documents
Given hyperlink patterns of documents, which are most influential?
Basis of Google (eigenvector of link matrix sparse matrix vector multiply)
Applying Markov chain and perturbation theory to assess reliability

Kernel ICA
Estimate  set of sources s and mixing matrix A from samples x = A*s
New way to sample such that sources are as independent as possible
Again reduces to linear algebra kernels…

http://www.cs.berkeley.edu/~jordan


More on Kernel ICAMore on Kernel ICA

Algorithm 1
nonlinear eigenvalue problem, reduces to a sequence of many
very large generalized spd eigenproblems A – λ B 

Block structured, A dense, B block diagonal
Only smallest nonzero eigenvalue needed

Sparse eigensolver (currently ARPACK/eigs)
Use Incomplete Cholesky (IC) to get low rank approximzation to 
dense subblocks comprising A and B
Use Complete (=Diagonal) Pivoting but take only 20 << n steps
Cost is O(n)
– Evaluating matrix entries (exponentials) could be bottleneck
– Need fast, low precision exponential

Algorithm 2
Like Algorithm 1, but find all eigenvalues/vectors of A – λ B 
Use Holy Grail



Future WorkFuture Work

SciDAC 
Evaluate on SciDAC applications
Determine interfaces for integration into SciDAC applications

Further exploit Itanium, other architectures
128 (82-bit) floating point registers

9 HW formats: 24/8(v), 24/15, 24/17, 53/11, 53/15, 53/17, 64/15, 64/17
Many fewer load/store instructions

fused multiply-add instruction
predicated instructions
rotating registers for software pipelining
prefetch instructions
three levels of cache

Tune current and wider set of kernels
Improve heuristics, eg choice of r x c

Further automate performance tuning (NSF)
Generation of algorithm space generators



Background on Test MatricesBackground on Test Matrices



Sparse Matrix Benchmark Suite (1/3)Sparse Matrix Benchmark Suite (1/3)

# Matrix Name Problem Domain Dimension No. Non-zeros
1 dense Dense matrix 1,000 1.00 M
2 raefsky3 Fluid structure interaction 21,200 1.49 M
3 inaccura Accuracy problem 16,146 1.02 M
4 bcsstk35* Stiff matrix automobile frame 30,237 1.45 M
5 venkat01 Flow simulation 62,424 1.72 M
6 crystk02* FEM crystal free-vibration 13,965 969 k
7 crystk03* FEM crystal free-vibration 24,696 1.75 M
8 nasasrb* Shuttle rocket booster 54,870 2.68 M
9 3dtube* 3-D pressure tube 45,330 3.21 M
10 ct20stif* CT20 engine block 52,329 2.70 M
11 bai Airfoil eigenvalue calculation 23,560 484 k
12 raefsky4 Buckling problem 19,779 1.33 M
13 ex11 3-D steady flow problem 16,214 1.10 M
14 rdist1 Chemical process simulation 4,134 94.4 k

15 vavasis3 2-D PDE problem 41,092 1.68 M

Note: * indicates a symmetric matrix.



Sparse Matrix Benchmark Suite (2/3)Sparse Matrix Benchmark Suite (2/3)

# Matrix Name Problem Domain Dimension No. Non-zeros
16 orani678 Economic modeling 2,529 90.2 k
17 rim FEM fluid mechanics problem 22,560 1.01 M
18 memplus Circuit simulation 17,758 126 k
19 gemat11 Power flow 4,929 33.1 k
20 lhr10 Chemical process simulation 10,672 233 k
21 goodwin* Fluid mechanics problem 7,320 325 k
22 bayer02 Chemical process simulation 13,935 63.7 k
23 bayer10 Chemical process simulation 13,436 94.9 k
24 coater2 Simulation of coating flows 9,540 207 k
25 finan512* Financial portfolio optimization 74,752 597 k
26 onetone2 Harmonic balance method 36,057 228 k
27 pwt* Structural engineering 36,519 326 k
28 vibrobox* Vibroacoustics 12,328 343 k
29 wang4 Semiconductor device simulation 26,068 177 k

30 lnsp3937 Fluid flow modeling 3,937 25.4 k



Sparse Matrix Benchmark Suite (3/3)Sparse Matrix Benchmark Suite (3/3)

# Matrix Name Problem Domain Dimensions No. Non-zeros
31 lns3937 Fluid flow modeling 3,937 25.4 k
32 sherman5 Oil reservoir modeling 3,312 20.8 k
33 sherman3 Oil reservoir modeling 5,005 20.0 k
34 orsreg1 Oil reservoir modeling 2,205 14.1 k
35 saylr4 Oil reservoir modeling 3,564 22.3 k
36 shyy161 Viscous flow calculation 76,480 330 k
37 wang3 Semiconductor device simulation 26,064 177 k
38 mcfe Astrophysics 765 24.4 k
39 jpwh991 Circuit physics problem 991 6,027
40 gupta1* Linear programming 31,802 2.16 M
41 lpcreb Linear programming 9,648 x 77,137 261 k
42 lpcred Linear programming 8,926 x 73,948 247 k
43 lpfit2p Linear programming 3,000 x 13,525 50.3 k
44 lpnug20 Linear programming 15,240 x 72,600 305 k
45 lsi Latent semantic indexing 10 k x 255 k 3.7 M



Matrix #2 Matrix #2 –– raefsky3 (FEM/Fluids)raefsky3 (FEM/Fluids)



Matrix #2 (cont’d) Matrix #2 (cont’d) –– raefsky3 (FEM/Fluids)raefsky3 (FEM/Fluids)



Matrix #22 Matrix #22 -- bayer02 (chemical process simulation)bayer02 (chemical process simulation)



Matrix #22 (cont’d)Matrix #22 (cont’d)-- bayer02 (chemical process simulation)bayer02 (chemical process simulation)



Matrix #27 Matrix #27 -- pwtpwt (structural engineering)(structural engineering)



Matrix #27 (cont’d)Matrix #27 (cont’d)-- pwtpwt (structural engineering)(structural engineering)



Matrix #29 Matrix #29 –– wang4 (semiconductor device simulation)wang4 (semiconductor device simulation)



Matrix #29 (cont’d)Matrix #29 (cont’d)--wang4 (wang4 (seminconductorseminconductor device device simsim.).)



Matrix #40 Matrix #40 –– gupta1 (linear programming)gupta1 (linear programming)



Matrix #40 (cont’d) Matrix #40 (cont’d) –– gupta1 (linear programming)gupta1 (linear programming)



Symmetric Matrix Benchmark SuiteSymmetric Matrix Benchmark Suite

# Matrix Name Problem Domain Dimension No. Non-zeros

1 dense Dense matrix 1,000 1.00 M

2 bcsstk35 Stiff matrix automobile frame 30,237 1.45 M

3 crystk02 FEM crystal free vibration 13,965 969 k

4 crystk03 FEM crystal free vibration 24,696 1.75 M

5 nasasrb Shuttle rocket booster 54,870 2.68 M

6 3dtube 3-D pressure tube 45,330 3.21 M

7 ct20stif CT20 engine block 52,329 2.70 M

8 gearbox Aircraft flap actuator 153,746 9.08 M

9 cfd2 Pressure matrix 123,440 3.09 M

10 finan512 Financial portfolio optimization 74,752 596 k

11 pwt Structural engineering 36,519 326 k

12 vibrobox Vibroacoustic problem 12,328 343 k

13 gupta1 Linear programming 31,802 2.16 M



Lower Triangular Matrix Benchmark SuiteLower Triangular Matrix Benchmark Suite

# Matrix Name Problem Domain Dimension No. of non-zeros

1 dense Dense matrix 1,000 500 k

2 ex11 3-D Fluid Flow 16,214 9.8 M

3 goodwin Fluid Mechanics, FEM 7,320 984 k

4 lhr10 Chemical process simulation 10,672 369 k

5 memplus Memory circuit simulation 17,758 2.0 M

6 orani678 Finance 2,529 134 k

7 raefsky4 Structural modeling 19,779 12.6 M

8 wang4 Semiconductor device 
simulation, FEM

26,068 15.1 M



Lower triangular factor: Matrix #2 Lower triangular factor: Matrix #2 –– ex11ex11



Lower triangular factor: Matrix #3 Lower triangular factor: Matrix #3 -- goodwingoodwin



Lower triangular factor: Matrix #4 Lower triangular factor: Matrix #4 –– lhr10lhr10



Extra SlidesExtra Slides



Symmetric Sparse MatrixSymmetric Sparse Matrix--Vector Multiply on P4 (Vector Multiply on P4 (vs vs naïve symmetric = 1)naïve symmetric = 1)



Sparse Triangular Solve (Sparse Triangular Solve (mmdmmd on Aon ATT+A ordering) on P4 +A ordering) on P4 



Sparse Triangular Solve (Sparse Triangular Solve (mmdmmd on Aon ATT*A ordering ) on P4 *A ordering ) on P4 



Sparse Triangular Solve (best of 3 orderings) on P4 Sparse Triangular Solve (best of 3 orderings) on P4 



New slides from RichNew slides from Rich



Speed up from Cache Blocking on LSI matrix on P4Speed up from Cache Blocking on LSI matrix on P4



Multiple Vector Performance on P4Multiple Vector Performance on P4



Multiple vector performance on P4 Multiple vector performance on P4 –– by matrix typeby matrix type



Multiple vector speedups on P4Multiple vector speedups on P4



Single vector speedups on P4 by matrix typeSingle vector speedups on P4 by matrix type



Performance TuningPerformance Tuning
Motivation: performance of many applications 

dominated by a few kernels
MEMS CAD Nonlinear ODEs Nonlinear 
equations Linear equations Matrix multiply

Matrix-by-matrix or matrix-by-vector
Dense or Sparse

Information retrieval by LSI Compress term-
document matrix … Sparse mat-vec multiply
Information retrieval by LDA Maximum likelihood 
estimation … Solve linear systems
Many other examples (not all linear algebra)



Speed up from Cache Blocking on LSI matrix on Sun UltraSpeed up from Cache Blocking on LSI matrix on Sun Ultra



Possible ImprovementsPossible Improvements

Doesn’t work as well as on Sun 
Ultra 1/170; Why?
Current heuristic to determine 
best r x c block biased to 
diagonal of performance plot
Didn’t matter on Sun, does on 
P4 and Itanium since 
performance so “nondiagonally 
dominant”



Sparsity regSparsity reg blocking results on P4 for FEM/fluids matricesblocking results on P4 for FEM/fluids matrices

Matrix #2 (150 Mflops to 400 Mflops) Matrix #5 (50 Mflops to 350 Mflops)



Possible collaborations with IntelPossible collaborations with Intel

Getting right tools
Getting faster, less accurate transcendental functions
Provide feedback on tools
Provide tuned kernels, benchmarks, IR apps
Provide system for tuning future kernels

To provide users
To evaluate architectural designs



MillenniumMillennium



MillenniumMillennium
Cluster of clusters at UC Berkeley

309 CPU cluster in Soda Hall
Smaller clusters across campus

Made possible by Intel equipment grant
Significant other support

NSF, Sun, Microsoft, Nortel, campus
www.millennium.berkeley.edu

http://www.millennium.berkeley.edu/


Millennium TopologyMillennium Topology



Millennium Usage Oct 1 Millennium Usage Oct 1 –– 11, 200111, 2001
Snapshots of Millennium Jobs Running
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100% utilization for last few days
About half the jobs are parallel



Usage highlightsUsage highlights

AMANDA
Antarctic Muon And Neutrino Detector Array
amanda.berkeley.edu
128 scientists from 15 universities and institutes in the U.S. and Europe.

TEMPEST
EUV lithography simulations via 3D electromagnetic scattering
cuervo.eecs.berkeley.edu/Volcano/
study the defect printability on multilayer masks 

Titanium
High performance Java dialect for scientific computing
www.cs.berkeley.edu/projects/titanium
Implementation of shared address space, and use of SSE2

Digital Library Project
Large database of images
elib.cs.berkeley.edu/
Used to run spectral image segmentation algorithm for clustering, search on images

http://amanda.berkeley.edu/
http://cuervo.eecs.berkeley.edu/Volcano/
http://www.cs.berkeley.edu/projects/titanium
http://elib.cs.berkeley.edu/


Usage highlights (continued)Usage highlights (continued)

CS 267
Graduate class in parallel computing, 33 enrolled
www.cs.berkeley.edu/~dbindel/cs267ta
Homework

Disaster Response
Help find people after Sept 11, set up immediately afterwards
safe.millennium.berkeley.edu
48K reports in database, linked to other survivor databases

MEMS CAD (MicroElectroMechanical Systems Computer Aided Design)
Tool to help design MEMS systems
Used this semester in EE 245,  93 enrolled
sugar.millennium.berkeley.edu
More later in talk

Information Retrieval
Development of faster information retrieval algorithms
www.cs.berkeley.edu/~jordan
More later in talk

Many applications are part of CITRIS

http://www.cs.berkeley.edu/~dbindel/cs267ta
http://safe.millennium.berkeley.edu/
http://sugar.millennium.berkeley.edu/
http://www.cs.berkeley.edu/~jordan
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