
P A R A L L E L C O M P U T I N G L A B O R A T O R Y

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Auto-tuning Stencil Codes for
Cache-Based Multicore Platforms

Kaushik Datta
Dissertation Talk

December 4, 2009

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Motivation

  Multicore revolution has produced wide variety of architectures
  Compilers alone fail to fully exploit multicore resources
  Hand-tuning has become infeasible
  We need a better solution!

2

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Contributions

  We have created an automatic stencil tuner (auto-tuner) that
achieves up to 5.4x speedups over naïvely threaded stencil code

  We have developed an “Optimized Stream” benchmark for
determining a system’s highest attainable memory bandwidth

  We have bound stencil performance using the Roofline Model and
in-cache performance

3

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Outline

  Stencil Code Overview
  Cache-based Architectures
  Auto-tuning Description
  Stencil Auto-tuning Results

4

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Stencil Code Overview

  For a given point, a stencil is a fixed
subset of nearest neighbors

  A stencil code updates every point in a
regular grid by “applying a stencil”

  Used in iterative PDE solvers like
Jacobi, Multigrid, and AMR

  Also used in areas like image
processing and geometric modeling

  This talk will focus on three stencil
kernels:
  3D 7-point stencil
  3D 27-point stencil
  3D Helmholtz kernel

Adaptive Mesh Refinement (AMR)

3D 7-point stencil

(x,y,z)

x+1

x-1

y-1
y+1

z-1

z+1

3D regular grid

5

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

6

Arithmetic Intensity

  AI is rough indicator of whether kernel is memory or compute-bound
  Counting only compulsory misses:

  Stencil codes usually (but not always) bandwidth-bound
  Long unit-stride memory accesses
  Little reuse of each grid point
  Few flops per grid point

  Actual AI values are typically lower (due to other types of cache
misses)

(Ratio of flops to DRAM bytes)

Arithmetic Intensity Computation
Bound

Memory
Bound O(n) O(log n) O(1)

DGEMM FFT Stencil,
SpMV

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Outline

7

  Stencil Code Overview
  Cache-based Architectures
  Auto-tuning Description
  Stencil Auto-tuning Results

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Cache-Based Architectures

Intel Nehalem AMD Barcelona

Sun Niagara2 8

Intel Clovertown

IBM Blue Gene/P

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Cache-Based Architectures

Intel Nehalem AMD Barcelona

Sun Niagara2 9

Intel Clovertown

IBM Blue Gene/P

PowerPC SPARC

x86

ISA

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Cache-Based Architectures

Intel Nehalem AMD Barcelona

Sun Niagara2 10

Intel Clovertown

IBM Blue Gene/P

Dual Issue/
In-order

Superscalar/
Out-of-order

Core
Type

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Cache-Based Architectures

Intel Nehalem AMD Barcelona

Sun Niagara2 11

Intel Clovertown

IBM Blue Gene/P

Socket/Core/
Thread Count

2 sockets x
4 cores x
1 thread

2 sockets x
4 cores x
2 threads

2 sockets x
4 cores x
1 thread

1 socket x
4 cores x
1 thread

2 socket x
8 cores x
8 threads

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Cache-Based Architectures

Intel Nehalem AMD Barcelona

Sun Niagara2 12

Intel Clovertown

IBM Blue Gene/P

Total HW
Thread Count

8 16 8

4 128

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Cache-Based Architectures

Intel Nehalem AMD Barcelona

Sun Niagara2 13

Intel Clovertown

IBM Blue Gene/P

Stream Copy
Bandwidth

(GB/s)

7.2 35.3 15.2

12.8 24.9

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Cache-Based Architectures

Intel Nehalem AMD Barcelona

Sun Niagara2 14

Intel Clovertown

IBM Blue Gene/P

Peak DP
Computation

Rate
(GFlop/s)

85.3 85.3 73.6

13.6 18.7

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Outline

15

  Stencil Code Overview
  Cache-based Architectures
  Auto-tuning Description
  Stencil Auto-tuning Results

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

General Compiler Deficiencies

  Historically, compilers have had problems with domain-specific
transformations:
  Register allocation (explicit temps)
  Loop unrolling
  Software pipelining
  Tiling
  SIMDization
  Common subexpression elimination
  Data structure transformations
  Algorithmic transformations

  Compilers typically use heuristics (not actual runs) to determine the
best code for a platform
  Difficult to generate optimal code across many diverse multicore

architectures

Domain-specific Hard

Easy

16

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Rise of Automatic Tuning

  Auto-tuning became popular because:
  Domain-specific transformations could be included
  Runs experiments instead of heuristics
  Diversity of systems (and now increasing core counts) made

performance portability vital
  Auto-tuning is:

  Portable (to an extent)
  Scalable
  Productive (if tuning for multiple architectures)
  Applicable to many metrics of merit (e.g. performance, power efficiency)

  We let the machine search the parameter space intelligently to find
a (near-)optimal configuration

  Serial processor success stories: FFTW, Spiral, Atlas, OSKI,
others…

17

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Outline

18

  Stencil Code Overview
  Cache-based Architectures
  Auto-tuning Description

  Identify motif-specific optimizations
  Generate code variants based on these optimizations
  Traverse parameter space for best configuration

  Stencil Auto-tuning Results

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Problem Decomposition

Thread Blocking

CY

C
Z

CX

TY TX

•  Exploit caches shared
among threads within a
core

(across an SMP)

Register Blocking

RY

TY

C
Z

TX

RX
RZ

•  Loop unrolling in any of
the three dimensions
• Makes DLP/ILP explicit

  This decomposition is universal across all examined architectures
  Decomposition does not change data structure
  Need to choose best block sizes for each hierarchy level

19

Low Cache
Capacity

Per Thread

Poor Register
And

Functional
Unit Usage

+Y

+Z

Core Blocking

+X
(unit stride) NY

N
Z

NX

•  Allows for domain
decomposition and
cache blocking

Parallelization
and

Capacity
Misses

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Data Allocation

20

NUMA-Aware Allocation
•  Ensures that the data is co-
located on same socket as the
threads processing it

Poor Data
Placement

Thread 0

Thread 1

Thread n

…

Array Padding
•  Alters the data placement so
as to minimize conflict misses
•  Tunable parameter

Conflict
Misses

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Bandwidth Optimizations

21

Software Prefetching

…

A[i-1]
A[i]

A[i+1]

A[i+dist-1]
A[i+dist]

A[i+dist+1]

…

Processing

Retrieving
from DRAM

•  Helps mask memory latency by
adjusting look-ahead distance
•  Can also tune number of
software prefetch requests

Write
Array

DRAM

Read
Array

Chip

8 B/point read

8 B/point write

8 B/point read

Cache Bypass
•  Eliminates cache line fills on a
write miss
•  Reduces memory traffic by 50%
on write misses!
•  Only available on x86 machines

Low Memory
Bandwidth

Unneeded
Write

Allocation

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

In-Core Optimizations

22

Register Blocking

RY

TY

C
Z

TX

RX
RZ

Poor Register
And

Functional
Unit Usage

Explicit SIMDization

Legal
and
fast

Alignment 16B 8B 16B 8B 16B

Legal
but

slow

x86 SIMD

•  Single instruction processes
multiple data items
•  Non-portable code

Compiler not
exploiting the

ISA
Common Subexpression

Elimination
•  Reduces flops by removing
redundant expressions
•  icc and gcc often fail to do this

c = a+b;
d = a+b;
e = c+d;

c = a+b;
e = c+c; Unneeded flops

are being
performed

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Outline

23

  Stencil Code Overview
  Cache-based Architectures
  Auto-tuning Description

  Identify motif-specific optimizations
  Generate code variants based on these optimizations
  Traverse parameter space for best configuration

  Stencil Auto-tuning Results

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Stencil Code Evolution

Naïve
Code

Hand-
tuned
Code

Perl
Code

Generator

Intelligent
Code

Generator

Kaushik Shoaib

  Hand-tuned code only performs well on a single platform
  Perl code generator can produce many different code variants for

performance portability
  Intelligent code generator can take pseudo-code and specified set of

transformations to produce code variants
  Type of domain-specific compiler

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Outline

25

  Stencil Code Overview
  Cache-based Architectures
  Auto-tuning Description

  Identify motif-specific optimizations
  Generate code variants based on these optimizations
  Traverse parameter space for best configuration

  Stencil Auto-tuning Results

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Traversing the Parameter Space

  We introduced 9 different optimizations, each of which has its own set
of parameters

  Exhaustive search is impossible
  To make problem tractable, we:

•  Used expert knowledge to order the optimizations
•  Applied them consecutively

  Every platform had its own set of best parameters

26
Opt. #1 Parameters

O
pt

. #
2

P
ar

am
et

er
s

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Outline

27

  Stencil Code Overview
  Cache-based Architectures
  Auto-tuning Description
  Stencil Auto-tuning Results

  3D 7-Point Stencil (Memory-Intensive Kernel)
  3D 27-Point Stencil (Compute-Intensive Kernel)
  3D Helmholtz Kernel

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

3D 7-Point Stencil Problem

  The 3D 7-point stencil performs:
  8 flops per point
  16 or 24 Bytes of memory traffic per point

  AI is either 0.33 or 0.5 (w/ cache bypass)
  This kernel should be memory-bound on most
 architectures:

  We will perform a single out-of-place sweep of this stencil over a
2563 grid

28

Computation
Bound

Memory
Bound Ideal Arithmetic Intensity

0 2 1
7-point stencil 27-point stencil

Helmholtz kernel

x

y

z

(a)

x

y

z

(b)

weight point by !

weight point by "

weight point by #

weight point by $

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Naïve Stencil Code

  We wish to exploit multicore resources
  First attempt at writing parallel stencil code:

  Use pthreads
  Parallelize in least contiguous grid dimension
  Thread affinity for scaling: multithreading, then multicore, then

multisocket

x

y

z (unit-stride)

2563 regular grid

Thread 0

Thread 1

Thread n

…

29

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Naive

Perf. Limit (blue=comp., red=bandwidth)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 2 4

G
S

te
n

c
il
/s

Cores

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 4 8 16

G
S

te
n

c
il

/s

Fully Populated Cores

0.0

0.5

1.0

1.5

2.0

2.5

1 2 4 8
G

S
te

n
c

il
/s

Fully Populated Cores

0.0

0.2

0.4

0.6

0.8

1.0

1 2 4 8

G
S

te
n

c
il

/s

Cores

0.0

0.1

0.2

0.3

0.4

1 2 4 8

G
S

te
n

c
il
/s

Cores

Naïve Performance

Intel Nehalem AMD Barcelona

Sun Niagara2 30

Intel Clovertown

IBM Blue Gene/P

47% of Performance Limit
19% of Performance Limit 17% of Performance Limit

23% of Performance Limit 16% of Performance Limit

(3D 7-Point Stencil)

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Naive

+Explicit SW Prefetching

+Register Blocking

+Core Blocking

+Array Padding

+NUMA-Aware Allocation

+Cache Bypass

+Explicit SIMDization

2nd greedy search

+Thread Blocking

Perf. Limit (blue=comp., red=bandwidth)

Auto-tuned Performance

Intel Nehalem AMD Barcelona

Sun Niagara2 31

Intel Clovertown

IBM Blue Gene/P

(3D 7-Point Stencil)

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Scalability?

Intel Nehalem AMD Barcelona

Sun Niagara2 32

Intel Clovertown

IBM Blue Gene/P

1.9x
for

8 cores

4.5x
for

8 cores

4.4x
for

8 cores

3.9x
for

4 cores

8.6x
for

16 cores

Parallel Scaling
Speedup Over

Single Core
Performance

(3D 7-Point Stencil)

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

How much improvement is there?

Intel Nehalem AMD Barcelona

Sun Niagara2 33

Intel Clovertown

IBM Blue Gene/P

1.9x 4.9x 5.4x

4.4x 4.7x
Tuning

Speedup Over
Best Naïve

Performance

(3D 7-Point Stencil)

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

How well can we do?

34

(3D 7-Point Stencil)

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

%
 o

f
O

p
ti

m
iz

e
d

 S
tr

e
a

m
 B

a
n

d
w

id
th

% of In-Cache GStencil Rate

Memory-Bound Region C
o

m
p

u
te

-B
o

u
n

d
 R

e
g

io
n

Clovertown Nehalem Barcelona Blue Gene/P Niagara2

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Outline

35

  Stencil Code Overview
  Cache-based Architectures
  Auto-tuning Description
  Stencil Auto-tuning Results

  3D 7-Point Stencil (Memory-Intensive Kernel)
  3D 27-Point Stencil (Compute-Intensive Kernel)
  3D Helmholtz Kernel

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

3D 27-Point Stencil Problem

  The 3D 27-point stencil performs:
  30 flops per point
  16 or 24 Bytes of memory traffic per point

  AI is either 1.25 or 1.88 (w/ cache bypass)
  CSE can reduce the flops/point
  This kernel should be compute-bound on most
 architectures:

  We will perform a single out-of-place sweep of this stencil over a
2563 grid

36

Computation
Bound

Memory
Bound Ideal Arithmetic Intensity

0 2 1
7-point stencil 27-point stencil

Helmholtz kernel

x

y

z

(a)

x

y

z

(b)

weight point by !

weight point by "

weight point by #

weight point by $

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Naive

Perf. Limit (blue=comp., red=bandwidth)

0.0

0.1

0.2

0.3

0.4

1 2 4 8

G
S

te
n

c
il

/s

Cores

0.0

0.2

0.4

0.6

0.8

1.0

1 2 4 8

G
S

te
n

c
il
/s

Cores

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 2 4 8
G

S
te

n
c
il
/s

Fully Populated Cores

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 4 8 16

G
S

te
n

c
il
/s

Fully Populated Cores

0.00

0.02

0.04

0.06

0.08

0.10

0.12

1 2 4

G
S

te
n

c
il
/s

Cores

Naïve Performance

Intel Nehalem AMD Barcelona

Sun Niagara2 37

Intel Clovertown

IBM Blue Gene/P

(3D 27-Point Stencil)

47% of Performance Limit 33% of Performance Limit
17% of Performance Limit

35% of Performance Limit
47% of Performance Limit

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Naive

+Explicit SW Prefetching

+Register Blocking

+Core Blocking

+Array Padding

+NUMA-Aware Allocation

+Cache Bypass

+Explicit SIMDization

2nd greedy search

+Thread Blocking

+Common Subexpression Elimination

Perf. Limit (blue=comp., red=bandwidth)

0.0

0.1

0.2

0.3

0.4

1 2 4 8

G
S

te
n

c
il

/s

Cores

0.0

0.2

0.4

0.6

0.8

1.0

1 2 4 8

G
S

te
n

c
il
/s

Cores

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 2 4 8
G

S
te

n
c
il
/s

Fully Populated Cores

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 4 8 16

G
S

te
n

c
il
/s

Fully Populated Cores

0.00

0.02

0.04

0.06

0.08

0.10

0.12

1 2 4

G
S

te
n

c
il
/s

Cores

Auto-tuned Performance

Intel Nehalem AMD Barcelona

Sun Niagara2 38

Intel Clovertown

IBM Blue Gene/P

(3D 27-Point Stencil)

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

0.0

0.1

0.2

0.3

0.4

1 2 4 8

G
S

te
n

c
il

/s

Cores

0.0

0.2

0.4

0.6

0.8

1.0

1 2 4 8

G
S

te
n

c
il
/s

Cores

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 2 4 8
G

S
te

n
c
il
/s

Fully Populated Cores

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 4 8 16

G
S

te
n

c
il
/s

Fully Populated Cores

0.00

0.02

0.04

0.06

0.08

0.10

0.12

1 2 4

G
S

te
n

c
il
/s

Cores

Scalability?

Intel Nehalem AMD Barcelona

Sun Niagara2 39

Intel Clovertown

IBM Blue Gene/P

(3D 27-Point Stencil)

2.7x
for

8 cores

8.1x
for

8 cores

5.7x
for

8 cores

4.0x
for

4 cores

12.8x
for

16 cores

Parallel Scaling
Speedup Over

Single Core
Performance

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

0.0

0.1

0.2

0.3

0.4

1 2 4 8

G
S

te
n

c
il

/s

Cores

0.0

0.2

0.4

0.6

0.8

1.0

1 2 4 8

G
S

te
n

c
il
/s

Cores

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 2 4 8
G

S
te

n
c
il
/s

Fully Populated Cores

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 4 8 16

G
S

te
n

c
il
/s

Fully Populated Cores

0.00

0.02

0.04

0.06

0.08

0.10

0.12

1 2 4

G
S

te
n

c
il
/s

Cores

How much improvement is there?

Intel Nehalem AMD Barcelona

Sun Niagara2 40

Intel Clovertown

IBM Blue Gene/P

(3D 27-Point Stencil)

1.9x 3.0x 3.8x

2.9x 1.8x
Tuning

Speedup Over
Best Naïve

Performance

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

0%

20%

40%

60%

80%

100%

5% 25% 45% 65% 85% 105%

%
 o

f
O

p
ti

m
iz

e
d

 S
tr

e
a

m
 B

a
n

d
w

id
th

% of In-Cache GStencil Rate

Memory-Bound Region

C
o

m
p

u
te

-B
o

u
n

d
 R

e
g

io
n

How well can we do?

41

(3D 27-Point Stencil)

Clovertown Nehalem Barcelona Blue Gene/P Niagara2

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Outline

42

  Stencil Code Overview
  Cache-based Architectures
  Auto-tuning Description
  Stencil Auto-tuning Results

  3D 7-Point Stencil (Memory-Intensive Kernel)
  3D 27-Point Stencil (Compute-Intensive Kernel)
  3D Helmholtz Kernel

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

3D Helmholtz Kernel Problem

  The 3D Helmholtz kernel is very different from the previous kernels:
  Gauss-Seidel Red-Black ordering
  25 flops per stencil
  7 arrays (6 are read only, 1 is read and write)
  Many small subproblems- no longer one large problem

  Ideal AI is about 0.20
  This kernel should be memory-bound on most architectures:

43

Computation
Bound

Memory
Bound Ideal Arithmetic Intensity

0 2 1
7-point stencil 27-point stencil

Helmholtz kernel

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

3D Helmholtz Kernel Problem

  Chombo (an AMR framework) deals with many small subproblems
of varying dimensions

  To mimic this, we varied the subproblem sizes:

  We also varied the total memory footprint:

  We also introduced a new parameter- the number of threads per
subproblem

44

163 323 643 1283

0.5 GB 1 GB 2 GB 4 GB

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

0.00

0.02

0.04

0.06

0.08

0.10

0.12

1
6

3
2

6
4

1
2

8

1
6

3
2

6
4

1
2

8

1
6

3
2

6
4

1
2

8

1
6

3
2

6
4

1
2

8

0.5 1 2 4

G
S

te
n

c
il

/s

Mem. Footprint in GB (Cubic Grid Dim.)

Single Iteration

  1-2 threads per problem is optimal in cases where load balancing is
not an issue

  If this trend continues, load balancing will be an even larger issue in
the manycore era

45

0.00

0.05

0.10

0.15

0.20

0.25

0.30
1

6

3
2

6
4

1
2

8

1
6

3
2

6
4

1
2

8

1
6

3
2

6
4

1
2

8

1
6

3
2

6
4

1
2

8

0.5 1 2 4

G
S

te
n

c
il

/s

Mem. Footprint in GB (Cubic Grid Dim.)

1 Bandwidth Perf. Limit Threads Per Subproblem: 2 4 8 16

(3D Helmholtz Kernel)
Intel Nehalem AMD Barcelona

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Multiple Iterations

  This is performance of 163 subproblems in a 0.5 GB memory footprint
  Performance gets worse with more threads per subproblem

46

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10

G
S

te
n

c
il

/s

Iteration Count

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10

G
S

te
n

c
il
/s

Iteration Count

Computation Perf. Limit Threads Per Subproblem: 1 2 4 8 16

(3D Helmholtz Kernel)
Intel Nehalem AMD Barcelona

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Conclusions

  Compilers alone achieves poor performance
  Typically achieve a low fraction of peak performance
  Exhibit little parallel scaling

  Autotuning is essential to achieving good performance
  1.9x-5.4x speedups across diverse architectures
  Automatic tuning is necessary for scalability
  With few exceptions, the same code was used

  Ultimately, we are limited by the hardware
  We can only do as well as Stream or in-core performance
  The memory wall will continue to push stencil codes to be bandwidth-

bound
  When dealing with many small subproblems, fewer threads per

subproblem performs best
  However, load balancing becomes a major issue
  This is an even larger problem for the manycore era

47

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Future Work

  Better Productivity:
  Current Perl scripts are primitive
  Need to develop an auto-tuning framework that has semantic

knowledge of the stencil code (S. Kamil)
  Better Performance:

  We currently do no data structure changes other than array padding
  May be beneficial to store the grids in a recursive format using space-

filling curves for better locality (S. Williams?)
  Better Search:

  Our current search method does require expert knowledge to order the
optimizations appropriately

  Machine learning offers the opportunity for tuning with little domain
knowledge and many more parameters (A. Ganapathi)

48

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Acknowledgements

  Kathy and Jim for sure-handed guidance and knowledge during all
these years

  Sam Williams for always being available to discuss research (and
being an unofficial thesis reader)

  Rajesh Nishtala for being a great friend and officemate
  Jon Wilkening for being my outside thesis reader
  The Bebop group, including Shoaib Kamil, Karl Fuerlinger, and Mark

Hoemmen
  The scientists at LBL, including Lenny Oliker, John Shalf, Jonathan

Carter, Terry Ligocki, and Brain Van Straalen
  The members of the Parlab and Radlab, including Dave Patterson

and Archana Ganapathi
  Many others that I don’t have space to mention here…

  I’ll miss you all! Please contact me anytime.
49

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Supplemental Slides

50

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

Applications of this work

  Lawrence Berkeley Laboratory (LBL) is using stencil auto-tuning as
a building block of its Green Flash supercomputer (Google: Green
Flash LBL)

  Dr. Franz-Josef Pfreundt (head of IT at Fraunhofer-ITWM) used
stencil tuning to improve the performance of oil exploration code

51

EECS
Electrical Engineering and

Computer Sciences BERKELEY PAR LAB

3D Helmholtz Kernel Problem

52

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

16 32 64 128

G
S

te
n

c
il

/s

Cubic Grid Dim. (Threads/Problem)

0.00

0.02

0.04

0.06

0.08

0.10

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

16 32 64 128

G
S

te
n

c
il
/s

Cubic Grid Dim. (Threads/Problem)

Naive +NUMA-Aware +Array Padding +Core Blocking

+Register Blocking +SW Prefetching Bandwidth Perf. Limit

