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Motivation 

  Multicore revolution has produced wide variety of architectures 
  Compilers alone fail to fully exploit multicore resources 
  Hand-tuning has become infeasible 
  We need a better solution! 
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Contributions 

  We have created an automatic stencil tuner (auto-tuner) that 
achieves up to 5.4x speedups over naïvely threaded stencil code 

  We have developed an “Optimized Stream” benchmark for 
determining a system’s highest attainable memory bandwidth 

  We have bound stencil performance using the Roofline Model and 
in-cache performance 
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Outline 

  Stencil Code Overview 
  Cache-based Architectures 
  Auto-tuning Description 
  Stencil Auto-tuning Results 
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Stencil Code Overview 

  For a given point, a stencil is a fixed 
subset of nearest neighbors 

  A stencil code updates every point in a 
regular grid by “applying a stencil” 

  Used in iterative PDE solvers like 
Jacobi, Multigrid, and AMR 

  Also used in areas like image 
processing and geometric modeling 

  This talk will focus on three stencil 
kernels: 
  3D 7-point stencil 
  3D 27-point stencil 
  3D Helmholtz kernel 

Adaptive Mesh Refinement (AMR) 

3D 7-point stencil 

(x,y,z) 

x+1 

x-1 

y-1 
y+1 

z-1 

z+1 

3D regular grid 
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6 

Arithmetic Intensity 

  AI is rough indicator of whether kernel is memory or compute-bound 
  Counting only compulsory misses: 

  Stencil codes usually (but not always) bandwidth-bound 
  Long unit-stride memory accesses 
  Little reuse of each grid point 
  Few flops per grid point 

  Actual AI values are typically lower (due to other types of cache 
misses) 

(Ratio of flops to DRAM bytes) 

Arithmetic Intensity Computation 
Bound 

Memory 
Bound O(n) O(log n) O(1) 

DGEMM FFT Stencil, 
SpMV 
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Outline 
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  Stencil Code Overview 
  Cache-based Architectures 
  Auto-tuning Description 
  Stencil Auto-tuning Results 
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Cache-Based Architectures 

Intel Nehalem AMD Barcelona 

Sun Niagara2 8 

Intel Clovertown 

IBM Blue Gene/P 
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Cache-Based Architectures 

Intel Nehalem AMD Barcelona 

Sun Niagara2 9 

Intel Clovertown 

IBM Blue Gene/P 

PowerPC SPARC 

x86 

ISA 
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Cache-Based Architectures 

Intel Nehalem AMD Barcelona 

Sun Niagara2 10 

Intel Clovertown 

IBM Blue Gene/P 

Dual Issue/ 
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Cache-Based Architectures 

Intel Nehalem AMD Barcelona 

Sun Niagara2 11 

Intel Clovertown 

IBM Blue Gene/P 

Socket/Core/ 
Thread Count 

2 sockets x 
4 cores x 
1 thread 

2 sockets x 
4 cores x 
2 threads 

2 sockets x 
4 cores x 
1 thread 

1 socket x 
4 cores x 
1 thread 

2 socket x 
8 cores x 
8 threads 
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Cache-Based Architectures 

Intel Nehalem AMD Barcelona 

Sun Niagara2 12 
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IBM Blue Gene/P 

Total HW 
Thread Count 

8 16 8 

4 128 
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Cache-Based Architectures 

Intel Nehalem AMD Barcelona 

Sun Niagara2 13 
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Stream Copy 
Bandwidth 

(GB/s) 

7.2 35.3 15.2 

12.8 24.9 
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Cache-Based Architectures 

Intel Nehalem AMD Barcelona 

Sun Niagara2 14 

Intel Clovertown 

IBM Blue Gene/P 

Peak DP 
Computation 

Rate 
(GFlop/s) 

85.3 85.3 73.6 

13.6 18.7 
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Outline 
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  Stencil Code Overview 
  Cache-based Architectures 
  Auto-tuning Description 
  Stencil Auto-tuning Results 
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General Compiler Deficiencies 

  Historically, compilers have had problems with domain-specific 
transformations: 
  Register allocation (explicit temps) 
  Loop unrolling 
  Software pipelining 
  Tiling 
  SIMDization 
  Common subexpression elimination 
  Data structure transformations 
  Algorithmic transformations 

  Compilers typically use heuristics (not actual runs) to determine the 
best code for a platform 
  Difficult to generate optimal code across many diverse multicore 

architectures 

Domain-specific Hard 

Easy 
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Rise of Automatic Tuning 

  Auto-tuning became popular because: 
  Domain-specific transformations could be included 
  Runs experiments instead of heuristics 
  Diversity of systems (and now increasing core counts) made 

performance portability vital 
  Auto-tuning is: 

  Portable (to an extent) 
  Scalable 
  Productive (if tuning for multiple architectures) 
  Applicable to many metrics of merit (e.g. performance, power efficiency) 

  We let the machine search the parameter space intelligently to find 
a (near-)optimal configuration 

  Serial processor success stories: FFTW, Spiral, Atlas, OSKI, 
others… 
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Outline 
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  Stencil Code Overview 
  Cache-based Architectures 
  Auto-tuning Description 

  Identify motif-specific optimizations 
  Generate code variants based on these optimizations 
  Traverse parameter space for best configuration 

  Stencil Auto-tuning Results 



EECS 
Electrical Engineering and 

Computer Sciences BERKELEY PAR LAB 

Problem Decomposition 

Thread Blocking 

CY 

C
Z 

CX 

TY TX 

•  Exploit caches shared 
among threads within a 
core 

(across an SMP) 

Register Blocking 

RY 

TY 

C
Z 

TX 

RX 
RZ 

•  Loop unrolling in any of 
the three dimensions 
• Makes DLP/ILP explicit 

  This decomposition is universal across all examined architectures 
  Decomposition does not change data structure 
  Need to choose best block sizes for each hierarchy level 
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•  Allows for domain 
decomposition and 
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Data Allocation 
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NUMA-Aware Allocation 
•  Ensures that the data is co-
located on same socket as the 
threads processing it 

Poor Data 
Placement 

Thread 0 

Thread 1 

Thread n 

…

Array Padding 
•  Alters the data placement so 
as to minimize conflict misses 
•  Tunable parameter 

Conflict 
Misses 
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Bandwidth Optimizations 

21 

Software Prefetching 

…
 

A[i-1] 
A[i] 

A[i+1] 

A[i+dist-1] 
A[i+dist] 

A[i+dist+1] 

…
 

Processing 

Retrieving 
from DRAM 

•  Helps mask memory latency by 
adjusting look-ahead distance 
•  Can also tune number of 
software prefetch requests 

Write 
Array 

DRAM 

Read 
Array 

Chip 

8 B/point read 

8 B/point write 

8 B/point read 

Cache Bypass 
•  Eliminates cache line fills on a 
write miss 
•  Reduces memory traffic by 50% 
on write misses! 
•  Only available on x86 machines 

Low Memory 
Bandwidth 

Unneeded 
Write 

Allocation 
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In-Core Optimizations 

22 

Register Blocking 

RY 
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Functional 
Unit Usage 

Explicit SIMDization 

Legal 
and 
fast 

Alignment 16B 8B 16B 8B 16B 

Legal 
but 

slow 

x86 SIMD 

•  Single instruction processes 
multiple data items 
•  Non-portable code 

Compiler not 
exploiting the 

ISA 
Common Subexpression 

Elimination 
•  Reduces flops by removing 
redundant expressions 
•  icc and gcc often fail to do this 

c = a+b; 
d = a+b; 
e = c+d; 

c = a+b; 
e = c+c; Unneeded flops 

are being 
performed 
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Outline 
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  Stencil Code Overview 
  Cache-based Architectures 
  Auto-tuning Description 

  Identify motif-specific optimizations 
  Generate code variants based on these optimizations 
  Traverse parameter space for best configuration 

  Stencil Auto-tuning Results 
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Stencil Code Evolution 

Naïve 
Code 

Hand-
tuned 
Code 

Perl 
Code 

Generator 

Intelligent 
Code 

Generator 

Kaushik Shoaib 

  Hand-tuned code only performs well on a single platform 
  Perl code generator can produce many different code variants for 

performance portability 
  Intelligent code generator can take pseudo-code and specified set of 

transformations to produce code variants 
  Type of domain-specific compiler 
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Outline 
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  Stencil Code Overview 
  Cache-based Architectures 
  Auto-tuning Description 

  Identify motif-specific optimizations 
  Generate code variants based on these optimizations 
  Traverse parameter space for best configuration 

  Stencil Auto-tuning Results 
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Traversing the Parameter Space 

  We introduced 9 different optimizations, each of which has its own set 
of parameters 

  Exhaustive search is impossible 
  To make problem tractable, we: 

•  Used expert knowledge to order the optimizations 
•  Applied them consecutively 

  Every platform had its own set of best parameters 
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Outline 
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  Stencil Code Overview 
  Cache-based Architectures 
  Auto-tuning Description 
  Stencil Auto-tuning Results 

  3D 7-Point Stencil (Memory-Intensive Kernel) 
  3D 27-Point Stencil (Compute-Intensive Kernel) 
  3D Helmholtz Kernel 
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3D 7-Point Stencil Problem 

  The 3D 7-point stencil performs: 
  8 flops per point 
  16 or 24 Bytes of memory traffic per point  

  AI is either 0.33 or 0.5 (w/ cache bypass) 
  This kernel should be memory-bound on most 
     architectures: 

  We will perform a single out-of-place sweep of this stencil over a 
2563 grid 
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Naïve Stencil Code 

  We wish to exploit multicore resources 
  First attempt at writing parallel stencil code: 

  Use pthreads 
  Parallelize in least contiguous grid dimension 
  Thread affinity for scaling: multithreading, then multicore, then 

multisocket 

x 

y 

z (unit-stride) 

2563 regular grid 

Thread 0 

Thread 1 

Thread n 

…
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Naive 

Perf. Limit (blue=comp., red=bandwidth) 
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Naive 

+Explicit SW Prefetching 

+Register Blocking 

+Core Blocking 

+Array Padding 

+NUMA-Aware Allocation 

+Cache Bypass 

+Explicit SIMDization 

2nd greedy search 

+Thread Blocking 

Perf. Limit (blue=comp., red=bandwidth) 
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Scalability? 

Intel Nehalem AMD Barcelona 

Sun Niagara2 32 

Intel Clovertown 

IBM Blue Gene/P 
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for 
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4.5x 
for 
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How much improvement is there? 
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How well can we do? 

34 
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Outline 
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  Stencil Code Overview 
  Cache-based Architectures 
  Auto-tuning Description 
  Stencil Auto-tuning Results 

  3D 7-Point Stencil (Memory-Intensive Kernel) 
  3D 27-Point Stencil (Compute-Intensive Kernel) 
  3D Helmholtz Kernel 
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3D 27-Point Stencil Problem 

  The 3D 27-point stencil performs: 
  30 flops per point 
  16 or 24 Bytes of memory traffic per point  

  AI is either 1.25 or 1.88 (w/ cache bypass) 
  CSE can reduce the flops/point 
  This kernel should be compute-bound on most 
     architectures: 

  We will perform a single out-of-place sweep of this stencil over a 
2563 grid 
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How well can we do? 
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(3D 27-Point Stencil) 
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Outline 
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  Stencil Code Overview 
  Cache-based Architectures 
  Auto-tuning Description 
  Stencil Auto-tuning Results 

  3D 7-Point Stencil (Memory-Intensive Kernel) 
  3D 27-Point Stencil (Compute-Intensive Kernel) 
  3D Helmholtz Kernel 
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3D Helmholtz Kernel Problem 

  The 3D Helmholtz kernel is very different from the previous kernels: 
  Gauss-Seidel Red-Black ordering 
  25 flops per stencil 
  7 arrays (6 are read only, 1 is read and write) 
  Many small subproblems- no longer one large problem 

  Ideal AI is about 0.20 
  This kernel should be memory-bound on most architectures: 
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3D Helmholtz Kernel Problem 

  Chombo (an AMR framework) deals with many small subproblems 
of varying dimensions 

  To mimic this, we varied the subproblem sizes: 

  We also varied the total memory footprint: 

  We also introduced a new parameter- the number of threads per 
subproblem 
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Single Iteration 

  1-2 threads per problem is optimal in cases where load balancing is 
not an issue 

  If this trend continues, load balancing will be an even larger issue in 
the manycore era 
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Multiple Iterations 

  This is performance of 163 subproblems in a 0.5 GB memory footprint 
  Performance gets worse with more threads per subproblem 
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Conclusions 

  Compilers alone achieves poor performance 
  Typically achieve a low fraction of peak performance 
  Exhibit little parallel scaling 

  Autotuning is essential to achieving good performance 
  1.9x-5.4x speedups across diverse architectures 
  Automatic tuning is necessary for scalability 
  With few exceptions, the same code was used 

  Ultimately, we are limited by the hardware 
  We can only do as well as Stream or in-core performance 
  The memory wall will continue to push stencil codes to be bandwidth-

bound 
  When dealing with many small subproblems, fewer threads per 

subproblem performs best 
  However, load balancing becomes a major issue 
  This is an even larger problem for the manycore era 
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Future Work 

  Better Productivity: 
  Current Perl scripts are primitive 
  Need to develop an auto-tuning framework that has semantic 

knowledge of the stencil code (S. Kamil) 
  Better Performance: 

  We currently do no data structure changes other than array padding 
  May be beneficial to store the grids in a recursive format using space-

filling curves for better locality (S. Williams?) 
  Better Search: 

  Our current search method does require expert knowledge to order the 
optimizations appropriately 

  Machine learning offers the opportunity for tuning with little domain 
knowledge and many more parameters (A. Ganapathi) 

48 



EECS 
Electrical Engineering and 

Computer Sciences BERKELEY PAR LAB 

Acknowledgements 

  Kathy and Jim for sure-handed guidance and knowledge during all 
these years 

  Sam Williams for always being available to discuss research (and 
being an unofficial thesis reader) 

  Rajesh Nishtala for being a great friend and officemate 
  Jon Wilkening for being my outside thesis reader 
  The Bebop group, including Shoaib Kamil, Karl Fuerlinger, and Mark 

Hoemmen 
  The scientists at LBL, including Lenny Oliker, John Shalf, Jonathan 

Carter, Terry Ligocki, and Brain Van Straalen 
  The members of the Parlab and Radlab, including Dave Patterson 

and Archana Ganapathi 
  Many others that I don’t have space to mention here… 

  I’ll miss you all!  Please contact me anytime. 
49 



EECS 
Electrical Engineering and 

Computer Sciences BERKELEY PAR LAB 

Supplemental Slides 

50 



EECS 
Electrical Engineering and 

Computer Sciences BERKELEY PAR LAB 

Applications of this work 

  Lawrence Berkeley Laboratory (LBL) is using stencil auto-tuning as 
a building block of its Green Flash supercomputer (Google: Green 
Flash LBL) 

  Dr. Franz-Josef Pfreundt (head of IT at Fraunhofer-ITWM) used 
stencil tuning to improve the performance of oil exploration code 
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3D Helmholtz Kernel Problem 
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