Auto-tuning Stencil Codes for Cache-Based Multicore
Platforms

Kaushik Datta

ST NEFLELEL]

1]

h,
Y
4

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-177
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-177.html

December 17, 2009

Copyright © 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Auto-tuning Stencil Codes for Cache-Based Multicore Platforms
by

Kaushik Datta

B.S. (Rutgers University) 1999
M.S. (University of California, Berkeley) 2005

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy
in
Computer Science
in the

GRADUATE DIVISION
of the
UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Katherine A. Yelick, Chair
Professor James Demmel
Professor Jon Wilkening

Fall 2009

The dissertation of Kaushik Datta is approved:

Chair Date

Date

Date

University of California, Berkeley

Auto-tuning Stencil Codes for Cache-Based Multicore Platforms

Copyright 2009
by
Kaushik Datta

Abstract
Auto-tuning Stencil Codes for Cache-Based Multicore Platforms
by
Kaushik Datta
Doctor of Philosophy in Computer Science
University of California, Berkeley
Professor Katherine A. Yelick, Chair

As clock frequencies have tapered off and the number of cores on a chip has
taken off, the challenge of effectively utilizing these multicore systems has become
increasingly important. However, the diversity of multicore machines in today’s
market compels us to individually tune for each platform. This is especially true
for problems with low computational intensity, since the improvements in memory
latency and bandwidth are much slower than those of computational rates.

One such kernel is a stencil, a regular nearest neighbor operation over the points
in a structured grid. Stencils often arise from solving partial differential equations,
which are found in almost every scientific discipline. In this thesis, we analyze three
common three-dimensional stencils: the 7-point stencil, the 27-point stencil, and the
Gauss-Seidel Red-Black Helmholtz kernel.

We examine the performance of these stencil codes over a spectrum of multicore
architectures, including the Intel Clovertown, Intel Nehalem, AMD Barcelona, the
highly-multithreaded Sun Victoria Falls, and the low power IBM Blue Gene/P. These
platforms not only have significant variations in their core architectures, but also
exhibit a 32x range in available hardware threads, a 4.5x range in attained DRAM
bandwidth, and a 6.3x range in peak flop rates. Clearly, designing optimal code for
such a diverse set of platforms represents a serious challenge.

Unfortunately, compilers alone do not achieve satisfactory stencil code perfor-
mance on this varied set of platforms. Instead, we have created an automatic stencil
code tuner, or auto-tuner, that incorporates several optimizations into a single soft-
ware framework. These optimizations hide memory latency, account for non-uniform

memory access times, reduce the volume of data transferred, and take advantage of

special instructions. The auto-tuner then searches over the space of optimizations,
thereby allowing for much greater productivity than hand-tuning. The fully auto-
tuned code runs up to 5.4x faster than a straightforward implementation and is more
scalable across cores.

By using performance models to identify performance limits, we determined that
our auto-tuner can achieve over 95% of the attainable performance for all three
stencils in our study. This demonstrates that auto-tuning is an important technique

for fully exploiting available multicore resources.

Professor Katherine A. Yelick
Dissertation Committee Chair

To Sorita and my family.

Contents

List of Figures

List of Tables

List of symbols

1

Introduction
1.1 The Rise of Multicore Microprocessors
1.2 Performance Portability Challenges
1.3 Auto-tuning
1.4 Thesis Contributions,
1.5 Thesis Outline
Stencil Description
2.1 What are stencils?
2.1.1 Stencil Dimensionality
2.1.2 Common Stencil Iteration Types
2.1.3 Common Grid Boundary Conditions
2.1.4 Stencil Coefficient Types
2.2 Exploiting the Matrix Properties of Iterative Solvers.
2.2.1 Dense Matrix
2.2.2 Sparse Matrixo
2.2.3 Variable Coefficient Stencil
2.2.4 Constant Coefficient Stencil
225 SUMMATY
2.3 Tuned Stencils in this Thesis
2.3.1 3D 7-Point and 27-Point Stencils
2.3.2 Helmholtz Kernel
2.4 Other Stencil Applications
2.4.1 Simulation of Physical Phenomena
2.4.2 Image Smoothing
2.5 SUMMATY . . . o o o e e

i

vi

viii

ix

QU W N~ =

3 Experimental Setup
3.1 Architecture Overview
3.1.1 Intel Xeon E5355 (Clovertown)
3.1.2 Intel Xeon X5550 (Nehalem)
3.1.3 AMD Opteron 2356 (Barcelona)
3.1.4 IBM Blue Gene/Po
3.1.5 Sun UltraSparc T2+ (Victoria Falls)
3.2 Consistent Scaling Studies
3.3 Parallel Programming Models
3.3.1 Pthreads
332 OpenMP
333 MPI
3.4 Programming Languages
3.5 Compilers
3.6 Performance Measurement
3.7 Summary ...
Stencil Code and Data Structure Transformations
4.1 Problem Decomposition
4.1.1 Core Blocking oo
4.1.2 Thread Blocking
4.1.3 Register Blocking oo
4.2 Data Allocationo
4.2.1 NUMA-Aware Allocation
4.2.2 Array Padding
4.3 Bandwidth Optimizations
4.3.1 Software Prefetching
4.3.2 Cache Bypass
4.4 In-core Optimizations
4.4.1 Register Blocking and Instruction Reordering
4.4.2 SIMDization
4.4.3 Common Subexpression Elimination
4.5 SUMMAryo
Stencil Auto-Tuning
5.1 Auto-tuning Overview
5.2 Auto-tuners vs. General-Purpose Compilers
5.3 Code Generation
5.4 Parameter Space
5.4.1 Selection of Parameter Ranges
5.4.2 Online vs. Offfine Tuning
5.4.3 Parameter Space Search

5.5 SUMMATY . . . o v o e e

1ii

6 Stencil Performance Bounds Based on the Roofline Model

Roofline Model Overview
Locality Bounds
Communication Bounds L.
Computation Bounds
Roofline Models and Performance Expectations

6.1
6.2
6.3
6.4
6.5

6.6

6.5.1
6.5.2
6.5.3
6.5.4
6.5.5

Intel Clovertown
Intel Nehalem
AMD Barcelona

IBM Blue Gene/P
Sun Niagara

SUMMATY . . . o v v v o e e

7 3D 7-Point Stencil Tuning

Description
Optimization Parameter Ranges
Parameter Space Search L.
Performance

7.1
7.2
7.3
7.4

7.5
7.6

74.1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6

Intel Clovertown,
Intel Nehalem 0L
AMD Barcelona
IBM Blue Gene/Po
Sun Niagara
Performance Summary

Comparison of Best Parameter Configurations
Conclusions

8 3D 27-Point Stencil Tuning

Description Lo
Optimization Parameter Ranges and Parameter Space Search
Performance

8.1
8.2
8.3

8.4
8.5

9.1
9.2
9.3

8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.3.6

Intel Clovertown
Intel Nehalem
AMD Barcelona
IBM Blue Gene/P
Sun Niagara
Performance Summary oL

Comparison of Best Parameter Configurations
Conclusions

3D Helmholtz Kernel Tuning

Description
Optimization Parameter Ranges
Parameter Space Search

v

9.4 Single Iteration Performance
9.4.1 Fixed Memory Footprint
9.4.2 Varying Memory Footprints

9.5 Multiple Iteration Performance

9.6 Conclusions

10 Related and Future Work
10.1 Multiple Iteration Grid Traversal Algorithms
10.1.1 Naive Tiling
10.1.2 Time Skewing
10.1.3 Circular Queueo
10.1.4 Cache Oblivious Traversal/Recursive Data Structures
10.2 Stencil Compilers
10.3 Statistical Machine Learning
10.4 Summary

11 Conclusion
Bibliography

A Supplemental Optimized Stream Data

118
118
121
122
125

126
126
127
128
129
130
131
132
134

135

137

144

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6

5.1

6.1
6.2

7.1
7.2
7.3

8.1
8.2
8.3

9.1
9.2

Architectural Trends

Lower Dimensional Stencils
Stencil Memory Layouts
Visualization of the 7-Point and 27-Point Stencils
Stencil Iteration Typeso
Common Boundary Conditions
2D Numbered Grid
Cell-centered versus Face-centered Grids

Architecture Diagrams
Shared and Distributed Memory Subgrid Distributions

Hierarchical Grid Decomposition
Loop Unroll and Jam Example
Array Paddingo
SIMD Load Alignment
Common Subexpression Elimination Visualization
Common Subexpression Elimination Code

Visualization of Iterative Greedy Search

Optimized Stream Results
Roofline Models

Individual Performance Graphs for the 7-Point Stencil
Summary Performance Graphs for the 7-Point Stencil
Best Parameter Configuration Test for the 7-Point Stencil

Individual Performance Graphs for the 27-Point Stencil
Summary Performance Graphs for the 27-Point Stencil
Best Parameter Configuration Test for the 27-Point Stencil

Helmholtz Kernel Performance for a Fixed 2 GB Memory Footprint .
Helmholtz Kernel Performance for Varied Memory Footprints

vi

10
13
16
19
25

31
38

45
49
50
54
95
57

67

74
78

87
93
96

103
107
110

119
121

vii

9.3 Helmholtz Kernel Performance for Many Iterations 123
10.1 Visualization of Common Grid Traversal Algorithms. 127
A.1 Clovertown Optimized Stream Results 145
A.2 Nehalem Optimized Stream Results 146
A.3 Barcelona Optimized Stream Results 147

A.4 Blue Gene/P Optimized Stream Results 148

viil

List of Tables

2.1
2.2
2.3
2.4

3.1
3.2

5.1

6.1
6.2
6.3

7.1
7.2
7.3

8.1

9.1
9.2
9.3

Structured Matrix with Unpredictable Non-Zeros 20
Structured Matrix with Predictable Non-Zeros 21
Continuum from Sparse Matrix-Vector Multiply to Stencils 22
Grid Descriptions for a Single Helmholtz Subproblem 24
Architecture Summary 30
Comparison of Performance Units 42
7-Point and 27-Point Stencil PERL Code Generators 61
Stencil Kernel Arithmetic Intensities 71
Comparison of Stream and Optimized Stream Benchmarks 75
In-Cache Performance for the 7-Point and 27-Point Stencils 76
7-Point and 27-Point Stencil Optimization Parameter Ranges 83
Stencil Iterative Greedy Optimization Search 86
Tuning and Parallel Scaling Speedups for the 7-Point Stencil 95
Tuning and Parallel Scaling Speedups for the 27-Point Stencil 109
Helmholtz Problem Counts for Varying Memory Footprints 116
GSRB Helmholtz Kernel Optimization Parameter Ranges 117
Helmholtz Iterative Greedy Optimization Search 118

1X

List of symbols

AMR
AST
ATLAS
BGP
CFD
CFL
CMT
CPU
CSE
CSR
DLP
DP
DRAM
DSP
ELL
FFT
FFTW
FLAME
FLOP
FMA
FMM
FSB
GPGPU

Adaptive Mesh Refinement

Abstract Syntax Tree

Automatically Tuned Linear Algebra Software
Blue Gene/P

Computational Fluid Dynamics
Courant-Friedrichs-Lewy Stability Condition
Chip MultiThreading

Central Processing Unit

Common Subexpression Elimination
Compressed Sparse Row

Data-Level Parallelism

Double Precision

Dynamic Random Access Memory

Digital Signal Processing

Efficiency-Level Language

Fast Fourier Transform

Fastest Fourier Transform in the West
Formal Linear Algebra Method Environment
Floating Point Operation

Fused Multiply-Add

Fast Multipole Method

Frontside Bus

General Purpose Graphics Processor Unit

GSRB
HPC
HT
ILP
ISA
KCCA
MCH
MCM
NUMA
OSKI
PDE
PERL
PLL
QPI
SEJITS
SIMD
SML
SMP
SMT
SPTRAL

SVM
TLB
TLP
UMA
VF

Gauss-Seidel Red Black

High Performance Computing

HyperTransport

Instruction-Level Parallelism

Instruction Set Architecture

Kernel Canonical Correlation Analysis

Memory Controller Hub

Multi-chip Module

Non-Uniform Memory Access

Optimized Sparse Kernel Interface

Partial Differential Equation

Practical Extraction and Report Language
Productivity-Level Language

QuickPath Interconnect

Selective Embedded Just-In-Time Specialization
Single Instruction Multiple Data

Statistical Machine Learning

Symmetric Multiprocessor

Simultaneous Multithreading

Signal Processing Implementation Research for Adapt-

able Libraries _
Support Vector Machines

Translation Lookaside Buffer
Thread-Level Parallelism
Uniform Memory Access

Victoria Falls

xi
Acknowledgments

First, I would like to thank my advisor, Kathy Yelick. From the struggles at
the beginning of my graduate career until now, she has always supported me, and
for that I am ever thankful. Her wonderful guidance and knowledge have led me to
where I am now.

I owe an equally large debt of gratitude to Jim Demmel, whose incisive questions
and attention to detail have always forced me to think deeply about the subject at
hand. I hope to carry this mode of thinking into my future endeavors.

I also thank Jon Wilkening and Ras Bodik for serving on my qualifying exam
committee, despite the fact that it was rendered almost useless by the impending
and unforeseen multicore revolution. Well, unforeseen by me at least. I appreciate
that Jon was on my thesis committtee as well.

Sam Williams has been one of the truly inspirational figures during the latter
half of my graduate career. His combination of knowledge, diligence, enthusiasm,
and humility is rare. I thank him for all his wonderful suggestions and for serving as
an unofficial thesis reader. This thesis is that much better for it.

I also appreciate the friendship of Rajesh Nishtala, who has not only served as
a peer with whom to discuss research, but also a friend who brought some much
needed levity to our office. Ultra high school will have to live on without us.

I can’t thank the members of the Bebop group enough, especially Shoaib Kamil,
Karl Fuerlinger, and Mark Hoemmen. I have learned so much from all of you, and
am constantly amazed by the level of the discussions and the quality of the research.
I often wonder about how I entered the group.

The scientists at Lawrence Berkeley National Laboratory propelled my career by
teaching me how to write high-quality papers quickly. Certainly, Lenny Oliker, John
Shalf, and Jonathan Carter are masters of this craft, and I appreciate that they took
me under their wing. Thanks also go to Terry Ligocki and Brian Van Straalen, who
took time from their busy schedules to teach me the basics of AMR. I hope that my
work points you in the right direction for tuning these codes for the manycore era.

The Berkeley Par Lab has also been instrumental to my achievements by providing

me with a wider forum of people with whom to discuss parallel computing. The

xii

feedback that I've received from other members, as well as at the retreats, has been
invaluable. In particular, I would like to thank Jon Kuroda and Jeff Anderson-Lee
for maintaining (and resurrecting) hardware so that I could collect the data in this
thesis. I am sure they will be as happy as I am when I submit it. I also thank
Archana Ganapathi, who introduced me to the now ubiquitous world of machine
learning.

In a simpler world, when we talked about mega-flops instead of giga-flops, I was
a member of the Berkeley Titanium project. This is where I was introduced to the
wonderful world of high-performance computing and learned much about many of
the topics in this thesis. While [am indebted to everyone in the group, special thanks
go to Paul Hilfinger, Dan Bonachea, and Jimmy Su.

On a more personal front, I am forever grateful to my parents and my family
for their continued love and support, despite the extended duration of my California
“trip”. Thank you for your patience.

Finally, T wish to thank Sorita. You, more than anyone, have spurred me to
finish— even when the finish line looked like a dot. You are my love, my light, and
my life.

I would like to thank the Argonne Leadership Computing Facility at Argonne
National Laboratory for use of their Blue Gene/P cluster. That laboratory is sup-
ported by the Office of Science of the U.S. Department of Energy under contract
DE-AC02-06CH11357. I would like to also express my gratitude to Sun for its ma-
chine donations. Finally, thanks to Microsoft, Intel, and U.C. Discovery for providing
funding (under Awards #024263, #024894, and #DIG07-10227, respectively) and

usage of the Nehalem computer used in this study.

Chapter 1

Introduction

1.1 The Rise of Multicore Microprocessors

Until recently, the computer industry produced single core chips with ever-increasing
clock rates. Furthermore, advances such as multiple instruction issue, deep pipelines,
out-of-order execution, speculative execution, and prefetching also increased the
throughput per clock cycle, but at the cost of building more complex and power-
inefficient chips. However, these two trends continued to ensure that buying a new
computer would result in better performance while preserving the sequential pro-
gramming model [2].

As we see in Figure 1.1, these two trends stopped in 2004. A paradigm shift
occurred in the microprocessor industry, as it was forced to completely redesign its
chips due to heat density and power constraints. This power wall meant that the path
toward even higher clock rate, more complicated single core chips was impeded. As a
result, the industry retreated towards having multiple simpler, lower frequency cores
on a chip. While these “multicore” chips were able to address the issues resulting
from the power wall, the multiple cores forced the software industry to switch from a
sequential to a parallel programming model. This was a drastic shift, and one that the
industry is still grappling with today. However, now that explicit parallelism is being
exposed in software, it has become easier to start thinking about the much higher
degrees of parallelism that will be required in the approaching “manycore” era. The

machines in the manycore realm will have hundreds to thousands of threads, but will

1.E+07 Architectural Trends
$
1.E+06 : : <
¢ Transistors (in Thousands) . $ 3
= Frequency (MHz) DT < 94
1.E+05 Power (W)
® Cores
1.E+04
1.E+03
1.E+02
1.E+01 . .
« D °
1.E+00 -
1.E-01 T T T T T T T

1970 1975 1980 1985 1990 1995 2000 2005 2010

Figure 1.1: This graph shows that while the growth in transistors (and thus Moore’s
Law [36]) continues unabated, clock speed and power stabilized in 2004. This is the
same time that multicore chips first started appearing. This data was collected by
Herb Sutter, Kunle Olukotun, Christopher Batten, Krste Asanovi¢, and Katherine
Yelick.

utilize much simpler, lower-frequency cores to attain large power and performance
benefits. Thus, we need to start designing codes now that can handle increasing

amounts of parallelism [44].

1.2 Performance Portability Challenges

Unfortunately, merely writing explicitly parallel code is not enough. We will see in
Chapters 7 and 8 that naively threaded programs, even for very simple kernels, fail to
effectively utilize a multicore machine’s resources. This can be largely attributed to
the complexity of current hardware and software and the inability of general purpose
compilers to handle that complexity. These compilers have two major limitations
that cause codes to underperform. First, in order to hasten compilation time, they
almost always rely on heuristics, not experiments, to determine the optimal values of

needed parameters. We will see in Section 3.1 that today’s multicore platforms are

sufficiently diverse and complex that heuristics no longer suffice. Second, software is
often written with complex data and control structures so that these compilers also
fail to infer the legal domain-specific transformations that are needed to produce
the largest performance gains. However, this is to be expected, given some of the
challenging algorithmic and data structure changes that may be required.

One solution to this problem is to hand-tune the relevant computational kernel
for a given platform; this would allow the programmer to specify the domain-specific
transformations that the compiler alone was unable to exploit. While this may work
in the short term, as soon as the tuned code needs to be ported, possibly to a different
architecture with more cores, it will likely need to be retuned. In Sections 7.5 and 8.4,
we show that that the best code and runtime parameters for one multicore machine
often do not correspond to good performance on other machines. In fact, a stencil
code tuned for one platform, if ported to another platform without further tuning,
may achieve less than half of the new platform’s best performance. This assumes
that there is enough parallelism in the code to keep all of the new platform’s threads

busy and load balanced. If this is not true, then the performance drops even further.

1.3 Auto-tuning

A better solution is to automatically tune, or auto-tune, the relevant kernel. This
does require a significant one-time cost to the programmer, but once the auto-tuner
is constructed, it shifts the burden of tuning from the programmer to the machine.
As a result, it is highly portable. Moreover, it increases programmer productivity
when the one-time cost to build the auto-tuner can be amortized by running across
several different machines.

There are other advantages to auto-tuning. Auto-tuners can be designed to han-
dle any core count, thereby making them scalable. This will be a valuable asset in
the manycore era. Furthermore, auto-tuners can also be constructed for maximizing
metrics other than performance (e.g. power efficiency), thus also making them flexi-

ble. Due to all of these reasons, auto-tuning has already had several previous success
stories, including: FFTW [20], SPIRAL [41], OSKI [54], and ATLAS [55].

1.4 Thesis Contributions

In this thesis, we construct auto-tuners for codes that perform relatively sim-
ple, but common, nearest-neighbor, or stencil, computations. The following are our

primary contributions.

e We have identified a set of new and known optimizations specifically for sten-
cil codes, including: core blocking, thread blocking, register blocking, NUMA-
aware data allocation, array padding, software prefetching, cache bypass, SIMD-
ization, and common subexpression elimination. Collectively, they are designed
to optimize the data allocation, memory bandwidth, and computational rate

of stencil codes.

e Based on these optimizations, we have developed three stencil auto-tuners that
can achieve substantially better performance than naively threaded stencil code
across a wide variety of cache-based multicore machines. After full tuning, we
realized speedups of 1.9x—5.4x over the performance of a naively threaded code
for the 3D 7-point stencil, between 1.8 x-3.8x for the 3D 27-point stencil, and
between 1.3x-2.5x for the 3D Helmholtz kernel with a 2 GB fixed memory
footprint.

e We have developed an “Optimized Stream” benchmark that uses many of the
same optimizations as in the stencil auto-tuners to achieve the best possible
streaming memory bandwidth from a given machine. It is able to achieve
bandwidths between 0.3%-13% higher than those attained from the untuned
“Stream” benchmark [35]. The Optimized Stream benchmark is also one piece
of the Roofline model [58], and thus allows us to place a performance “roofline”

on bandwidth-bound kernels.

e We have analyzed the performance of our auto-tuner against the bandwidth and
computational limits of each machine. For the 7-point stencil, we are able to
achieve between 74%-95% of the attainable bandwidth for the memory-bound
machines, as well as 100% of the in-cache performance for the compute-bound

IBM Blue Gene/P. For the 27-point stencil, we realized between 85%—100%

of the in-cache performance for the compute-bound architectures, 89% of the
attainable bandwidth for the bandwidth-bound Intel Clovertown, and 65% of
both attainable bandwidth and computation on the AMD Barcelona. Finally,
for a single iteration of the Helmholtz kernel, we performed at between 89%—
100% of the peak attainable bandwidth. Therefore, in almost all cases, we are
able to effectively exploit either the bandwidth or computational resources of

the machine.

e In Chapter 9, we no longer tuned a single large problem. Instead, we auto-
tuned many small subproblems that mimicked the behavior of the Adaptive
Mesh Refinement (AMR) code that this kernel was ported from. In order to
tune these multiple subproblems well, we introduced the adjustable threads per
subproblem parameter. Fewer threads per subproblem corresponded to coarse-
grained parallelism, while more threads per subproblem meant fine-grained
parallelism. We discovered that utilizing fewer threads per problem usually
performed best, but also introduced load balancing issues. If future manycore
architectures do not provide better support for fine-grained parallelism, load

balancing will be an even larger issue than it is today.

1.5 Thesis Outline

The following is an outline of the thesis:

Chapter 2 gives an overall description of stencils, along with examples from some
of the many applications from which they arise. Stencils are also described as a very
specific, but efficient, form of sparse matrix-vector multiply.

Chapter 3 goes into depth about each of the cache-based multicore machines that
were employed in this study. We also discuss some of the experimental details that
are used in the later chapters, including the choice of compilers, the manner in which
threads are assigned to cores, and how timing data is collected.

Chapter 4 introduces the stencil-specific optimizations that were used in this
study. These optimizations are grouped into four rough categories: problem decom-

position, data allocation, bandwidth optimizations, and in-core optimizations.

Chapter 5 subsequently explains how these optimizations were combined into
a stencil auto-tuner, including details about code generation and parameter space
searching.

Chapter 6 details how the Roofline model [58] provides performance bounds for
stencil codes. The Roofline model is a general model that incorporates both band-
width and computation limits into its performance predictions.

Chapters 7, 8, and 9 then discuss the tuning and resulting performance of the 7-
point stencil, 27-point stencil, and the Helmholtz kernel, respectively. Together, these
three stencils are representative of many real-world stencil codes. By understanding
how we were able to achieve good performance for these stencils, similar techniques
can be applied to many more stencil codes.

Chapters 10 discusses related and future work, and we conclude in chapter 11.

Chapter 2

Stencil Description

2.1 What are stencils?

Partial differential equation (PDE) solvers are employed by a large fraction of
scientific applications in such diverse areas as diffusion, electromagnetics, and fluid
dynamics. These applications are often implemented using iterative finite-difference
techniques that sweep over a spatial grid, performing nearest neighbor computations
called stencils. In a stencil operation, each point in a regular grid is updated with
weighted contributions from a subset of its neighbors in both time and space— thereby
representing the coefficients of the PDE for that data element. These coefficients
may be the same at every grid point (a constant coefficient stencil) or not (a variable
coefficient stencil). Stencil operations are often used to build solvers that range
from simple Jacobi iterations to complex multigrid [6] and adaptive mesh refinement
(AMR) methods [3].

Stencil calculations perform sweeps through data structures that are typically
much larger than the capacity of the available data caches. In addition, the amount
of data reuse is limited to the number of points in the stencil, which is typically small.
The upshot is many (but not all) of that these computations achieve a low fraction of
theoretical peak performance, since data from main memory cannot be transferred
fast enough to avoid stalling the computational units on modern microprocessors.
Reorganizing these stencil calculations to take full advantage of memory hierarchies

has been the subject of much investigation over the years. These have principally

N QU

(a) 1D 5-Point Stencil (b) 2D 5-Point Stencil

Figure 2.1: A visualization of two lower dimensional stencils. In (a), we show a one-
dimensional five-point stencil, where the center point is both being read and written.
In (b), we show a two-dimensional five-point stencil, where again the center point is
read and written.

focused on tiling optimizations [43, 42, 32| that attempt to exploit locality by per-
forming operations on cache-sized blocks of data before moving on to the next block.
However, a study of stencil optimization [27] on (single-core) cache-based platforms
found that these tiling optimizations were primarily effective when the problem size
exceeded the on-chip cache’s ability to exploit temporal recurrences. We will show
shortly that for lower dimensional stencils, modern microprocessors have caches large
enough to exploit these temporal recurrences. For stencils with dimensionality higher

than two, however, tiling optimizations are still effective and needed.

2.1.1 Stencil Dimensionality
1D and 2D Stencils

In Figure 2.1, we show two examples of simple lower dimensional stencils. While
lower dimensional stencils are fairly common, they are likely to be less amenable to
tuning as well as heavily bandwidth-bound.

First, we know from previous work [28] that the lower the stencil dimensionality,
the less likely it is to be affected by capacity cache misses [24]. This is because the
required working set size is smaller. If we examine Figure 2.2(a), we see the conven-
tional memory layout for a 2D 5-point stencil like the one in Figure 2.1(b). If NX
is the unit-stride grid dimension of the 2D grid, then for the 5-point stencil, the first
and last stencil points are separated by (2 x NX) doubles in the read array. When

streaming through memory, by the time the last stencil point is read in, all the pre-

<—— working set size —>
<— NX—>

read_array[] @\\hé' 2] o]

write_array[] o

(a) Memory layout for the 2D 5-point stencil

< working set size >

<— NX >< NX*NY —;
read_array] [®— N‘ 2] o]
write_array[] Ll

(b) Memory layout for the 3D 7-point stencil

Figure 2.2: A visualization of the memory layout for two stencils of different dimen-
sionality. In (a), we see that the first and last stencil points of the 2D 5-point stencil
are separated by (2 x N X) doubles, where N X is the unit-stride dimension of the 2D
grid. In (b), the distance between the first and last stencil points for the 3D 7-point
stencil is much larger— specifically, (2 x NX x NY') doubles, where NX and NY are
the contiguous and middle dimensions of the 3D grid, respectively.

vious stencil points will still be in cache since the working set is miniscule compared
to the last-level cache of current multicore processors. To make this concrete, the
working set when performing a 2D five-point stencil on a 2562 grid is about 4 KB. In
comparison, the last-level caches of the machines in this thesis range from 2-8 MB.
By avoiding capacity misses, 2D stencils will not benefit from cache tiling optimiza-
tions like core blocking, which we will introduce in Section 4.1.1. In this respect, 2D
stencil codes have less headroom for performance improvement than codes that do
incur capacity misses.

Second, the number of flops performed per point also usually decreases with lower
stencil dimensionality. This is simply because there are fewer dimensions in which
stencil points can occur. However, regardless of dimensionality, the memory traffic
for each grid point remains constant. Therefore, for the same number of grid points,
there are fewer flops performed for lower dimensional stencils. Consequently, these
stencils are more susceptible to bandwidth limitations.

While the performance of lower dimensional stencil codes can be improved through

10

a4
’

- weight point by a

: ‘O\ D weight point by 8
\(f > . .
; i D weight point by y
RANE I
X weight point by &
\//(u:it stride) - gntp Y
(a) (b)
The 7-point stencil shown The 27-point stencil shown
as three adjacent planes. as three adjacent planes.

Figure 2.3: A visual representation of the 3D 7-point and 27-point stencils, both of
which are shown as three adjacent planes. These stencils are applied to each point
of a 3D grid (not shown), where the result of each stencil calculation is written to
the red center point. Note: the color of each stencil point represents the weighting
factor applied to that point.

tuning, they are heavily bandwidth-bound and typically do not benefit from cache
tiling. As a result, the achievable speedup is fairly constrained compared to 3D

stencils. In this thesis, we do not tune 1D and 2D stencils.

3D Stencils

The focus of this thesis is on 3D stencils, two of which are shown in Figure 2.3.
The 7-point stencil, shown in Figure 2.3(a), weights the center point by some constant
a and the sum of its six neighbors (two in each dimension) by a second constant (.
Naively, a 7-point stencil sweep can expressed as a triply nested 27k loop over the

following computation:
Bijr=0Ajk+B(Aistjn+ Aijork + Aijr—1 + Aivaj + Aijrrk + Aijrr) (2.1)

where each subscript represents the 3D index into array A or B.

The 27-point 3D stencil, as shown in Figure 2.3(b), is similar to the 7-point stencil,
but with additional points to include the edge and corner points of a 3x3x3 cube
surrounding the center grid point. It also introduces two additional constants— 7, to

weight the sum of the edge points, and §, to weight the sum of the corner points.

11

These two stencils are the focus of our tuning in Chapters 7 and 8, and they will also
be discussed in further detail later in this chapter.

Unlike the lower dimensional stencils that were just discussed, the required work-
ing set size for 3D stencils is much greater than 1D or 2D stencils. We see in Fig-
ure 2.2(b) that if NX and NY are the contiguous and middle dimensions of our 3D
grid, respectively, then for the 3D 7-point stencil, the first and last points will be
separated by (2 x NX x NY') doubles in the read array. This is significantly larger
than the (2 x N.X) separation for the 2D 5-point stencil, since the distance is now in
terms of planes, not pencils. For example, if we performed a sweep of the 3D 7-point
stencil over a 2562 grid, the working set is about 1 MB, which is approximately 250 x
the working set size for the 2D analog problem. Consequently, cache capacity misses
are far more likely, but optimizations like core blocking should now be effective.

Furthermore, the number of flops per grid point will be higher in 3D codes as
well. As we will discuss later, the 3D 7-point stencil in Figure 2.3(a) performs eight
flops per point, since the center point is weighted by « and each of the six nearest
neighbors is weighted by (3. More generally, this stencil gives one weight («) to the
center point, and a separate weight () to each of the two neighboring stencil points
in each dimension. Thus, the d-dimensional analog of this stencil will perform (2d+2)
flops per point, which increases linearly with dimensionality.

The increase in flop count is even more dramatic when we alter the dimensionality
of the 3D 27-point stencil, displayed in Figure 2.3(b). This stencil has four weights
associated with it— one each for the one center point («), six face points (3), twelve
edge points (), and eight corner points (§). The full computation requires 30 flops
per grid point. More generally, the d-dimensional analog of this stencil utilizes (d+1)
weights and performs (3¢ + d) flops per point. In this case, the flops per point rise
exponentially with dimensionality.

Due to the occurrence of capacity misses and the greater number of flops per
point, we anticipate that a larger number of transformations (including cache block-
ing and computational optimizations) will be effective for 3D stencils than for lower
dimensional stencils. We also expect that the resulting speedups will be larger as

well.

12

Higher-Dimensional Stencils

For higher dimensional stencils, the points that were made for three-dimensional
stencils are further amplified. If we continue storing the structured grid data in
the usual manner (shown in Figure 2.2), then the distance in memory between the
first and last point will again be multiplied by the size of another dimension. If
we naively stream through memory without any tiling optimizations, the required
working set will almost definitely be larger than the available last-level cache. We

should also expect more flops per point, given that there are more dimensions present.

Lattice Methods

Lattice methods are still structured grid codes, but instead of a single unknown per
point, many can be present. Whether lattice methods should be considered very high
dimensional stencils or a separate category unto themselves is debatable. However,
we would be remiss if they were not mentioned. One example of a lattice method is
a plasma turbulence simulation that was tuned by Williams et al [56]. This lattice
Boltzmann application coupled computational fluid dynamics (CFD) with Maxwell’s
equations, resulting in a momentum distribution, a magnetic distribution, and three
macroscopic quantities being stored per point. In total, each point required reading
73 doubles and updating 79 doubles, while performing approximately 1300 flops.
This resulted in complex data structures and memory access patterns, as well as
significant memory capacity requirements, so proper tuning (especially at the data

structure level) was critical.

2.1.2 Common Stencil Iteration Types

This subsection goes into depth about three common stencil iteration types: Ja-
cobi, Gauss-Seidel, and Gauss-Seidel Red-Black iterations.
Jacobi

As shown in Figure 2.4(a), Jacobi iterations are essentially out-of-place sweeps.

In order to perform Jacobi iterations, there is at least one read grid and one write

13

Read Grid Write Grid Read and Write Grid Read and Write Grid

(c) Gauss-Seidel

(a) Jacobi Iteration (b) Gauss-Seidel Iteration Red-Black lteration

Figure 2.4: A visual representation of the some of the common iteration types that
occur with stencil codes. In a Jacobi iteration, a stencil is applied to each point
in the read grid, and the result is written to the corresponding point in the write
grid. The Gauss-Seidel iteration is similar, except that there is only a single grid,
and therefore the iteration is in-place. The Gauss-Seidel Red-Black iteration is also
in-place, but all the points of one color are updated before the points of the other
color are updated.

grid, but no grids are both read and written. We sweep through these grids by
first incrementing the unit-stride index, then incrementing the middle index, and
finally incrementing the least-contiguous index. Essentially, we stream consecutively
through memory.

The power of Jacobi sweeps lies in the fact that it is easily parallelizable; any point
in the write grid(s) can be computed independently of any other point, so they can be
updated in an embarrassingly parallel fashion. Thus, since all partitioning schemes
produce the same correct result, we are free to choose the one that performs best.
Another benefit of the Jacobi iteration is that on x86 architectures, we can use the
cache bypass optimization (discussed in Section 4.3.2) to reduce the memory traffic
on a write miss by half by eliminating the cache line read. Most stencil codes are
bandwidth-bound, so this has the potential to generate large performance speedups.
The major drawback to the Jacobi iteration is that it requires that we store distinct
read and write arrays, which increases both storage and bandwidth requirements.

When we perform 7-point stencil and 27-point stencil updates in Chapters 7
and 8, respectively, we will be performing a single Jacobi sweep. This allows us great

flexibility in how we parallelize the problems.

14

Gauss-Seidel

Gauss-Seidel iterations, shown in Figure 2.4(b), are in-place sweeps. Zero or more
read-only grids may be present, but the write grid must also be read from first. One
consequence of this fact is that almost all the computed stencils will include some
points that were already updated during the current sweep and others that were not.
This means that there is an inherent dependency chain that needs to be respected
if we wish to replicate the same final answer. Unfortunately, this significantly limits
the amount of available parallelism in the sweep. It also causes different traversals
through the grid to generate different (but valid) results. The major benefit to Gauss-
Seidel sweeps is that the write grid is also read from, thereby reducing the need for

additional arrays and the memory traffic associated with them.

Gauss-Seidel Red-Black

Gauss-Seidel Red-Black (GSRB) iterations are similar to Gauss-Seidel sweeps in
that while read-only grids may be present, the write grid must be read from first.
In order to deal with the limited parallelism that is exposed when consecutively
updating each point (like in Gauss-Seidel sweeps), GSRB updates only every other
point. For instance, in Figure 2.4(c), a black grid point will only be updated when
the red points that it depends on have all been updated. Once the needed black
points are ready, we can again start updating the red points, and so on. This type
of sweep has similar parallelism characteristics to Jacobi, since any of the points of
a single color can be updated independently of any other. Thus, the partitioning of
this sweep among threads can be arbitrary.

If we define a GSRB sweep as performing a single update for both the red and
black grid points, then a naive GSRB implementation will sweep over the grid twice,
likely requiring twice the memory traffic of a Jacobi or Gauss-Seidel sweep. However,
we can minimize the required memory traffic by having a leading “wavefront” for the
red points and a trailing wavefront for the black points. Assuming the last-level
cache is sufficiently large, this would update both sets of points while only reading
them from memory once.

The Helmholtz kernel, discussed in Chapter 9, will perform GSRB sweeps over

15

each subproblem.

Numerical Convergence Properties

While the numerical convergence properties of these iterative methods are gen-
erally out of the scope of this thesis, they are a major concern for tuning real-world
stencil codes, and thus we touch upon them here. Out of the three iteration types
just discussed, the Jacobi iteration is typically the slowest to converge. A superfi-
cial explanation for this is because every point is updated with old (i.e. not updated
during the current iteration) grid point values. This is rectified by performing Gauss-
Seidel sweeps, since most points are calculated from some old and some new values.
Indeed, in most cases, Gauss-Seidel shows better convergence than Jacobi. However,
the best convergence usually comes from GSRB; one GSRB step can decrease the
error as much as two Jacobi steps. This is a general phenomenon for matrices arising
from approximating differential equations with finite difference approximations [14].

It is important to note that when solving a linear system, it is possible that one
step of Jacobi could reduce the error more than one step of GSRB. This is because
the amount of convergence depends both on the problem and the iterative method.
In most cases, though, GSRB will converge fastest and Jacobi slowest.

Ultimately, many iterative solvers attempt to reduce the problem error (or resid-
ual) below a certain threshold. In order to decide how to minimize the time needed
to reach this level of convergence, we need to understand how many iterations a
given solver will require (based on its numerical properties), as well as how long each

iteration will take (based on numerical, hardware and software properties).

2.1.3 Common Grid Boundary Conditions

Another concern with structured grid codes is how to deal with boundary con-
ditions. Here we discuss two common boundary conditions and how to deal with

them.

16

G[G[G[G[G J”\

G G

G G

G G

G|G|G|G|G

(a) (b)
A 2D grid with ghost A 2D grid with periodic
cells for storing boundary conditions

boundary conditions. and no extra cells.

Figure 2.5: In (a), we show a 3x3 grid with surrounding ghost cells (marked with a
“G”) that are used to store boundary conditions. In (b), we show a 3x3 grid which
does not require ghost cells because it has periodic boundary conditions.

Constant Boundaries

There are two main types of constant boundary conditions. In the first case, the
points along the boundary do not change with time, but do change depending on
position. In this case, we can use ghost cells (like in Figure 2.5(a)) to store these
values before any stencil computations begin. Once the ghost cells are initialized,
they do not need to be altered for the rest of the problem. In this thesis, all three
3D stencil kernels have this type of boundary condition. However, the ghost cells
constime a non-trivial amount of memory for 3D grids. Suppose that we have an N3
grid that is surrounded by ghost cells. Then, the resulting grid has (N + 2)3 cells. If
N = 16, then ghost cells represent an astounding 30% of all grid cells. However, if
N = 32, then the percentage drops to 17%.

The second case is if the boundary value does not change with time or position.
In this case, the entire boundary can be represented by a single constant scalar
throughout the course of the problem. Consequently, we no longer need to have

individual ghost cells like the previous case.

Periodic Boundaries

Another common boundary condition is to have periodic boundaries, as shown in
Figure 2.5(b). For points along the boundary, this means that they have additional
neighbors that wrap around the grid. For example, the left neighbor of the upper left

17

point is the upper right point, while the upper neighbor is the lower left point. While
periodic boundaries can be represented using ghost cells that are updated after each
iteration, in many cases no ghost cells are used at all. Instead, the required values
are merely read from the side of the grid. This helps lower the memory footprint of

the grid as well as bandwidth requirements.

2.1.4 Stencil Coefficient Types
Constant Coeflicients

In the stencils we have thus far discussed, we have usually assumed that the
stencil coefficients are constant. For instance, in Figure 2.3, the color of each stencil
point represents whether that point is weighted by the constant coefficient «, 3, 7, or
0. Many finite difference calculations employ constant coefficient stencils like these.

When the coefficient values are constant scalars, they do not need to be con-
tinually read from memory for every new stencil. Instead, they can be hard-coded
into the inner loop of the stencil code, and then kept in registers during the actual
computation. This results in a large reduction in potential storage requirements
and memory traffic. Furthermore, if these coefficients are simple integer values, the
compiler may even be able to further optimize parts of the computation.

In many ways, the constant coefficient stencil is an ideal scenario. Consequently,
if we can expose the appropriate properties in an iterative solver’s underlying matrix
so as to generate a constant coefficient stencil, we will always do so. In Section 2.2,
we will specify these properties.

The 7-point and 27-point stencils that we tune in Chapters 7 and 8, respectively,

both have constant coefficients.

Variable Coefficients

However, the stencil coefficients need not be constant. As we will examine in
Section 2.2, the iterative solver’s underlying matrix may not have the appropriate
properties for it. In such a case, we may still be able to utilize a variable coefficient
stencil, where the stencil weights change from one grid point to another. Unlike

constant coefficient stencils, we now need to store these weights in separate grids.

18

When performing our calculations, we will stream through these grids along with
our original grid of unknowns. This will create extra DRAM traffic, but we will
show in Section 2.2.3 that this is still preferable to performing a sparse matrix-vector
multiply.

The Helmholtz kernel that we will tune in Chapter 9 employs a variable coefficient

stencil.

2.2 Exploiting the Matrix Properties of Iterative

Solvers

Thus far, we have discussed various stencil characteristics, but we have not men-
tioned the origins of stencils in any detail. This section explains how both variable
and constant coefficient stencils can arise from iterative solvers.

Imagine that we have a structured grid like the one shown in Figure 2.6. This
grid is a simple two-dimensional grid with periodic boundary conditions in both
dimensions. Now, let us suppose that we would like to apply an iterative solver to
this grid. In most cases, this solver will require that every point in the structured grid
be updated with some linear combination of other grid points. In order to generally
represent this linear transformation, we can create a matrix that stores the weights
that each point contributes to every point in the grid. In order to create this matrix,
we first need to select an ordering of the grid points. In our case, the simplest way
to proceed is to choose a natural row-wise ordering, where we first order the top row
from left to right, then the second row in a similar manner, and so on. The numbers
inside each grid point of Figure 2.6 show such an ordering [30].

We can now create a matrix A that represents the linear transformation performed
by the iterative solver. The amount that point j will be weighted by when calculating

the new value of point ¢ is given by matrix element A;;.

2.2.1 Dense Matrix

At this juncture, a critical question is how best to store this matrix. At the most

general level, we can store A as a dense matrix. However, for a n x n square grid

19

G

Figure 2.6: A 3x3 numbered grid with periodic boundary conditions in both the
horizontal and vertical directions. The grid points are numbered in a natural row-
wise ordering.

~[s]=
o [uro
©|o|w

with no extra ghost cells, the resulting matrix A will have dimensions of n? x n?.
Thus, the 3 x 3 grid from Figure 2.6 would be stored as a 9 x 9 matrix. Despite
the large size of A in a dense matrix format, most iterative solvers only reference a
few grid points in updating each point, so we expect A to be sparse (i.e. most of the
elements are zero). Therefore, storing A in a dense matrix would be inefficient in

terms of both storage and flops.

2.2.2 Sparse Matrix

A better choice would be some sort of sparse matrix format. Let us assume that
there are nnz non-zeros in the A matrix, each of which will be stored as an 8 Byte
double-precision number. In addition, the matrix indices will be stored as 4 Byte
integers. Given this, if we choose the commonly-used Compressed Sparse Row (CSR)
format [53] to store A, we will require about 12nnz+4n? Bytes of storage and perform
approximately 2nnz flops. This is much better than the 8n* Bytes of storage and
2n* flops required by the dense format. While the CSR format does perform indirect
accesses into the matrix, it should still be orders of magnitude faster than the dense

format for sufficiently large and sparse matrices.

2.2.3 Variable Coefficient Stencil

Sparse matrices are a general way to represent the linear transformation per-
formed by an iterative solver. However, in many cases, these iterative solvers perform
nearest neighbor operations on the structured grid. For instance, imagine that for

every point grid in Figure 2.6, we only require the values of the points immediately

2 7 —13| 8 4.2 1
9 101 20 —-31 -2
—7 14 53 5 87
—12 -15 23 17| 8
13 13 7 -9 14
—67| 5 04 3 51
-3 1 9 17 10
0.1 42 —41 2 -1
i 81 8 |32 91 71 |

20

Table 2.1: This sparse matrix has a very regular structure, but the non-zero values are
unpredictable. For readability, the matrix is divided into 3x3 submatrices and only the
non-zeros are shown.

above, below, to the left, and to the right of that point, as well as the value of the
point itself. Thus, every point will be updated with the values from five grid points,
but the weights associated with these grid points are not predictable.

The 9 x 9 matrix in Table 2.1 represents such a situation for the case of periodic
boundary conditions. Due to its regular structure, we no longer explicitly need to
store the matrix indices. Instead of storing this n? x n? matrix in a sparse format,
we can store it as five n x n grids. For a given point (7, j) from the grid in Figure 2.6,
the corresponding (7, j) point in each of these grids represents the weight associated
with point (7, 7) or any of its four neighbors. More information about these variable
coefficient stencils can be found in Section 2.1.4.

Thus, we now require 40n? Bytes of storage and perform 9n? flops. In a sparse
matrix format, we would need 64n® Bytes of storage, where the extra 24n? Bytes is
attributed to the unneeded indices of the CSR format. However, we have not altered
the flop count by changing the data structure from a sparse matrix to a variable

coefficient stencil.

2.2.4 Constant Coefficient Stencil

Finally, if we have a matrix with the same structure as Table 2.1, but also with

predictable non-zeros, we no longer need to explicitly store the non-zeros either.

21

[—4 1 1|1 1 1
1 -4 1 1 1
1 1 -4 1 1
1 -4 1 1|1
1 1 -4 1 1
11 1 —4 1
1 1 -4 1 1
1 1 1 -4 1
i 1 1|1 1 —4 |

Table 2.2: This is the matrix associated with the 2D Laplacian operator with peri-
odic boundary conditions. It has a very regular structure and the non-zero values are
predictable.

Instead of storing five separate arrays, we only need to store five separate scalar
constants! Moreover, if we wish to apply an operator like the 2D Laplacian, we
only need to store two constants. This is because the center point will always be
weighted by -4, while all of four of its neighbors will be weighted by 1. The matrix
associated with the 2D Laplacian operator with periodic boundary conditions is
shown in Table 2.2. Now, we only need to store 16 Bytes worth of data— the weight of
the stencil’s center point and the weight of its four neighbors. Moreover, this reduces
our flop count from 9n? down to 6n%. We have finally succeeded in reducing the
dense matrix representing our iterative solver down to a simple constant coefficient

stencil.

2.2.5 Summary

The above arguments for reducing storage, bandwidth, and computation require-
ments were made for two-dimensional structured grids, and are summarized in Ta-
ble 2.3. However, the corresponding savings are even more stark for three-dimensional

stencils, which are the focal point of this thesis.

Explicit Indices | Implicit Indices
Usual Sparse Variable
Explicit Non-zeros | Matrix-Vector Coefficient
Multiply Stencil
Example: Constant
Implicit Non-zeros | Laplacian of a Coefficient
General Graph Stencil

22

Table 2.3: This table displays the continuum from sparse matrix-vector multiply to
variable-coefficient stencils and finally constant-coefficient stencils.

2.3 Tuned Stencils in this Thesis

This thesis focuses on two second-order finite difference operators as well as a finite
volume operator. The finite difference operators are constant coeflicient stencils,
while the finite volume operator is a variable coefficient stencil. In this section,
we describe each in more detail, including some information on where the stencils

originate from.

2.3.1 3D 7-Point and 27-Point Stencils

The 3D 7-point and 27-point stencils, visualized in Figure 2.3, commonly arise
from the finite difference method for solving PDEs [30]. The 7-point stencil performs
eight flops per grid point, while the 27-point stencil performs 30 flops per point (with-
out any type of common subexpression elimination). Thus, the arithmetic intensity,
the ratio of flops performed for each Byte of memory traffic, is about 3.8 higher
for the 27-point stencil than the 7-point stencil. We will see in Chapter 8 that the
compute-intensive 27-point stencil will actually be limited by computation on some
multicore platforms.

The 7-point 3D stencil is fairly common, but there are many instances where
larger stencils with more neighboring points are required. One such stencil arises from
T. Kim’s work in optimizing a fluid simulation code [29]. By using a Mehrstellen
scheme [10] to generate a 3D 19-point stencil (where 0 equals zero in Figure 2.3)
instead of the usual 7-point stencil, he was able to reach the desired error reduction in

34% fewer stencil iterations. Thus, larger stencils can reduce the number of iterations

23

needed to reach a desired threshold of convergence. In this thesis, we chose to examine
the performance of the 27-point 3D stencil because it serves as a good proxy for many
of these compute-intensive stencil kernels.

In general, though, the numerical properties of the 7-point and 27-point stencils
are outside the scope of this work; we merely study and optimize their performance
across different multicore architectures. Our results will hopefully allow the reader
to judge as to whether these numeric/performance tradeoffs are worthwhile. As an
added benefit, this analysis also helps to expose many interesting features of current

multicore architectures.

2.3.2 Helmholtz Kernel

The final stencil that we tune is the Helmholtz kernel. This kernel is ported
from Chombo [9], a software framework for performing Adaptive Mesh Refinement
(AMR) [3].

The Helmholtz kernel that we tune in Chapter 9 attempts to solve for ¢ in the
equation:

L(¢) = rhs (2.2)

where rhs is a given right-hand side and L is the linear Helmholtz operator:
L =aAl — 3V - BV (2.3)

We can solve Equation 2.2 iteratively by calculating the residual, multiplying it by
A, and subtracting this quantity from our original ¢ (called ¢* below):

¢new = ¢* -)\(L(¢*) — ThS) (24)

If we perform enough iterations of Equation 2.4, we should converge (albeit
slowly) to a ¢ whose residual is below a given threshold. However, to hasten this
process, we can use solvers like multigrid [6, 52|, where these iterations can be used to
relax each multigrid level. In the case of AMR, where many small grids are present,
multigrid is applied to the entire collection of subproblems [33], while a relaxation
operator (like GSRB) is applied to each of the individual subproblems.

The power of the Helmholtz equation comes from its ability to solve time-dependent

problems implicitly within a multigrid solver. Explicit time discretization schemes

24

Single Helmholtz Subproblem

Subgrid | Read/Write | Dimensions

phi | Read and Write | (NX 4 2) x (NY +2) x (NZ +2)
aCoef0 Read Only NX x NY x NZ
bCoef0 Read Only (NX4+1)x NY x NZ
bCoefl Read Only NX x (NY +1)x NZ
bCoef2 Read Only NX x NY x (NZ +1)
lambda Read Only NX x NY x NZ

rhs Read Only NX x NY x NZ

Table 2.4: A description of the seven grids involved in a single variable-coefficient
Helmholtz subproblem. The NX, NY, and NZ grid parameters are visually displayed
in Figure 4.1.

place bounds on the size of the time step due to the Courant-Friedrichs-Lewy (CFL)
stability condition. Implicit time discretization schemes, however, have no time step
restriction, and are unconditionally stable if arranged properly.

One example of this is the parabolic heat equation. While this equation can be
solved using an explicit forward Euler scheme, the CFL condition will keep our time
steps short. The discrete Helmholtz equation, on the other hand, can apply several
different implicit schemes merely by varying « and (8 in Equation 2.3. In particular,
we can apply a backward Euler, Crank-Nicholson, or backward difference formula
through the Helmholtz equation, all of which allow for much larger time steps than
forward Euler.

A second example is the hyperbolic wave equation. Again, the CFL condition only
limits the time steps of explicit methods. For most common implicit discretizations,
each time step can again be solved implicitly using the discrete Helmholtz equation
with an appropriately tuned o and . These examples apply to more general time-
dependent parabolic and hyperbolic PDEs as well. The beauty of this approach
is that the larger the time steps, the more will be gained through an appropriate
multigrid treatment [52].

Now, if we actually discretize the Helmholtz equation (Equation 2.4), the result is
a variable coefficient stencil consisting of seven grids. Six of these grids are read only,

while the phi grid is both read and written; the dimensions of each of these grids

25

(a) Cell-centered grid (b) Face-centered grid

Figure 2.7: This diagram shows that the cell-centered grid in (a) requires far fewer
grid points than the face-centered grid in (b). The grid points in (b) are color-coded,
where the points along a cell’s horizontal edges are green and the points along the
vertical edges are in blue.

are given in Table 2.4. As this is a variable coefficient stencil, we note that the phi
array cannot be merely updated with scalar weights; there are five grids (other than
phi or rhs) that need to be referenced in order to perform this stencil calculation.

Some of the arrays in Table 2.4 require further explanation. For instance, B is
represented as three separate arrays— bCoef0, bCoef1, and bCoef2. This is because
the stencil originates from a finite volume, not finite difference, calculation. So as
to abide by certain conservation laws, B employs a face-centered, not cell-centered,
discretization. As we can see in Figure 2.7, the face-centered grid in (b) requires
many more grid points than cell-centered grid in (a). The primary reason for this is
that the face-centered discretization requires that there be a grid point along each
edge of a given cell. For instance, Figure 2.7(b) shows the points along each cell’s
horizontal edges in green and the points along the vertical edges in blue. For this
calculation, the face-centered grid points along each dimension are stored separately.
As this is a three-dimensional problem, B is thus stored as three separate arrays
(bCoef0, bCoefl, and bCoef2). In addition, each of these arrays needs a single extra
grid point in one dimension in a similar fashion to how there are four columns, but
five rows, of green points in Figure 2.7(b).

The phi array deserves some explanation as well, since i