
Auto-tuning Stencil Codes for Cache-Based Multicore

Platforms

Kaushik Datta

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-177

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-177.html

December 17, 2009

Copyright © 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Auto-tuning Stencil Codes for Cache-Based Multicore Platforms

by

Kaushik Datta

B.S. (Rutgers University) 1999
M.S. (University of California, Berkeley) 2005

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Katherine A. Yelick, Chair

Professor James Demmel
Professor Jon Wilkening

Fall 2009

The dissertation of Kaushik Datta is approved:

Chair Date

Date

Date

University of California, Berkeley

Auto-tuning Stencil Codes for Cache-Based Multicore Platforms

Copyright 2009

by

Kaushik Datta

1

Abstract

Auto-tuning Stencil Codes for Cache-Based Multicore Platforms

by

Kaushik Datta

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Katherine A. Yelick, Chair

As clock frequencies have tapered off and the number of cores on a chip has

taken off, the challenge of effectively utilizing these multicore systems has become

increasingly important. However, the diversity of multicore machines in today’s

market compels us to individually tune for each platform. This is especially true

for problems with low computational intensity, since the improvements in memory

latency and bandwidth are much slower than those of computational rates.

One such kernel is a stencil, a regular nearest neighbor operation over the points

in a structured grid. Stencils often arise from solving partial differential equations,

which are found in almost every scientific discipline. In this thesis, we analyze three

common three-dimensional stencils: the 7-point stencil, the 27-point stencil, and the

Gauss-Seidel Red-Black Helmholtz kernel.

We examine the performance of these stencil codes over a spectrum of multicore

architectures, including the Intel Clovertown, Intel Nehalem, AMD Barcelona, the

highly-multithreaded Sun Victoria Falls, and the low power IBM Blue Gene/P. These

platforms not only have significant variations in their core architectures, but also

exhibit a 32× range in available hardware threads, a 4.5× range in attained DRAM

bandwidth, and a 6.3× range in peak flop rates. Clearly, designing optimal code for

such a diverse set of platforms represents a serious challenge.

Unfortunately, compilers alone do not achieve satisfactory stencil code perfor-

mance on this varied set of platforms. Instead, we have created an automatic stencil

code tuner, or auto-tuner, that incorporates several optimizations into a single soft-

ware framework. These optimizations hide memory latency, account for non-uniform

memory access times, reduce the volume of data transferred, and take advantage of

2

special instructions. The auto-tuner then searches over the space of optimizations,

thereby allowing for much greater productivity than hand-tuning. The fully auto-

tuned code runs up to 5.4× faster than a straightforward implementation and is more

scalable across cores.

By using performance models to identify performance limits, we determined that

our auto-tuner can achieve over 95% of the attainable performance for all three

stencils in our study. This demonstrates that auto-tuning is an important technique

for fully exploiting available multicore resources.

Professor Katherine A. Yelick
Dissertation Committee Chair

i

To Sorita and my family.

ii

Contents

List of Figures vi

List of Tables viii

List of symbols ix

1 Introduction 1
1.1 The Rise of Multicore Microprocessors 1
1.2 Performance Portability Challenges 2
1.3 Auto-tuning . 3
1.4 Thesis Contributions . 4
1.5 Thesis Outline . 5

2 Stencil Description 7
2.1 What are stencils? . 7

2.1.1 Stencil Dimensionality . 8
2.1.2 Common Stencil Iteration Types 12
2.1.3 Common Grid Boundary Conditions 15
2.1.4 Stencil Coefficient Types . 17

2.2 Exploiting the Matrix Properties of Iterative Solvers 18
2.2.1 Dense Matrix . 18
2.2.2 Sparse Matrix . 19
2.2.3 Variable Coefficient Stencil . 19
2.2.4 Constant Coefficient Stencil 20
2.2.5 Summary . 21

2.3 Tuned Stencils in this Thesis . 22
2.3.1 3D 7-Point and 27-Point Stencils 22
2.3.2 Helmholtz Kernel . 23

2.4 Other Stencil Applications . 26
2.4.1 Simulation of Physical Phenomena 26
2.4.2 Image Smoothing . 27

2.5 Summary . 27

iii

3 Experimental Setup 29
3.1 Architecture Overview . 29

3.1.1 Intel Xeon E5355 (Clovertown) 29
3.1.2 Intel Xeon X5550 (Nehalem) 32
3.1.3 AMD Opteron 2356 (Barcelona) 33
3.1.4 IBM Blue Gene/P . 34
3.1.5 Sun UltraSparc T2+ (Victoria Falls) 34

3.2 Consistent Scaling Studies . 35
3.3 Parallel Programming Models . 36

3.3.1 Pthreads . 37
3.3.2 OpenMP . 39
3.3.3 MPI . 39

3.4 Programming Languages . 40
3.5 Compilers . 41
3.6 Performance Measurement . 41
3.7 Summary . 43

4 Stencil Code and Data Structure Transformations 44
4.1 Problem Decomposition . 45

4.1.1 Core Blocking . 46
4.1.2 Thread Blocking . 47
4.1.3 Register Blocking . 48

4.2 Data Allocation . 49
4.2.1 NUMA-Aware Allocation . 49
4.2.2 Array Padding . 50

4.3 Bandwidth Optimizations . 51
4.3.1 Software Prefetching . 51
4.3.2 Cache Bypass . 52

4.4 In-core Optimizations . 52
4.4.1 Register Blocking and Instruction Reordering 52
4.4.2 SIMDization . 53
4.4.3 Common Subexpression Elimination 55

4.5 Summary . 56

5 Stencil Auto-Tuning 58
5.1 Auto-tuning Overview . 59
5.2 Auto-tuners vs. General-Purpose Compilers 60
5.3 Code Generation . 60
5.4 Parameter Space . 63

5.4.1 Selection of Parameter Ranges 64
5.4.2 Online vs. Offline Tuning . 64
5.4.3 Parameter Space Search . 65

5.5 Summary . 68

iv

6 Stencil Performance Bounds Based on the Roofline Model 69
6.1 Roofline Model Overview . 69
6.2 Locality Bounds . 70
6.3 Communication Bounds . 72
6.4 Computation Bounds . 75
6.5 Roofline Models and Performance Expectations 77

6.5.1 Intel Clovertown . 77
6.5.2 Intel Nehalem . 79
6.5.3 AMD Barcelona . 79
6.5.4 IBM Blue Gene/P . 80
6.5.5 Sun Niagara2 . 80

6.6 Summary . 81

7 3D 7-Point Stencil Tuning 82
7.1 Description . 82
7.2 Optimization Parameter Ranges . 82
7.3 Parameter Space Search . 85
7.4 Performance . 86

7.4.1 Intel Clovertown . 88
7.4.2 Intel Nehalem . 89
7.4.3 AMD Barcelona . 90
7.4.4 IBM Blue Gene/P . 91
7.4.5 Sun Niagara2 . 92
7.4.6 Performance Summary . 93

7.5 Comparison of Best Parameter Configurations 95
7.6 Conclusions . 99

8 3D 27-Point Stencil Tuning 101
8.1 Description . 101
8.2 Optimization Parameter Ranges and Parameter Space Search 101
8.3 Performance . 102

8.3.1 Intel Clovertown . 104
8.3.2 Intel Nehalem . 104
8.3.3 AMD Barcelona . 105
8.3.4 IBM Blue Gene/P . 106
8.3.5 Sun Niagara2 . 106
8.3.6 Performance Summary . 108

8.4 Comparison of Best Parameter Configurations 110
8.5 Conclusions . 113

9 3D Helmholtz Kernel Tuning 114
9.1 Description . 114
9.2 Optimization Parameter Ranges . 115
9.3 Parameter Space Search . 117

v

9.4 Single Iteration Performance . 118
9.4.1 Fixed Memory Footprint . 118
9.4.2 Varying Memory Footprints 121

9.5 Multiple Iteration Performance . 122
9.6 Conclusions . 125

10 Related and Future Work 126
10.1 Multiple Iteration Grid Traversal Algorithms 126

10.1.1 Näıve Tiling . 127
10.1.2 Time Skewing . 128
10.1.3 Circular Queue . 129
10.1.4 Cache Oblivious Traversal/Recursive Data Structures 130

10.2 Stencil Compilers . 131
10.3 Statistical Machine Learning . 132
10.4 Summary . 134

11 Conclusion 135

Bibliography 137

A Supplemental Optimized Stream Data 144

vi

List of Figures

1.1 Architectural Trends . 2

2.1 Lower Dimensional Stencils . 8
2.2 Stencil Memory Layouts . 9
2.3 Visualization of the 7-Point and 27-Point Stencils 10
2.4 Stencil Iteration Types . 13
2.5 Common Boundary Conditions . 16
2.6 2D Numbered Grid . 19
2.7 Cell-centered versus Face-centered Grids 25

3.1 Architecture Diagrams . 31
3.2 Shared and Distributed Memory Subgrid Distributions 38

4.1 Hierarchical Grid Decomposition . 45
4.2 Loop Unroll and Jam Example . 49
4.3 Array Padding . 50
4.4 SIMD Load Alignment . 54
4.5 Common Subexpression Elimination Visualization 55
4.6 Common Subexpression Elimination Code 57

5.1 Visualization of Iterative Greedy Search 67

6.1 Optimized Stream Results . 74
6.2 Roofline Models . 78

7.1 Individual Performance Graphs for the 7-Point Stencil 87
7.2 Summary Performance Graphs for the 7-Point Stencil 93
7.3 Best Parameter Configuration Test for the 7-Point Stencil 96

8.1 Individual Performance Graphs for the 27-Point Stencil 103
8.2 Summary Performance Graphs for the 27-Point Stencil 107
8.3 Best Parameter Configuration Test for the 27-Point Stencil 110

9.1 Helmholtz Kernel Performance for a Fixed 2 GB Memory Footprint . 119
9.2 Helmholtz Kernel Performance for Varied Memory Footprints 121

vii

9.3 Helmholtz Kernel Performance for Many Iterations 123

10.1 Visualization of Common Grid Traversal Algorithms 127

A.1 Clovertown Optimized Stream Results 145
A.2 Nehalem Optimized Stream Results 146
A.3 Barcelona Optimized Stream Results 147
A.4 Blue Gene/P Optimized Stream Results 148

viii

List of Tables

2.1 Structured Matrix with Unpredictable Non-Zeros 20
2.2 Structured Matrix with Predictable Non-Zeros 21
2.3 Continuum from Sparse Matrix-Vector Multiply to Stencils 22
2.4 Grid Descriptions for a Single Helmholtz Subproblem 24

3.1 Architecture Summary . 30
3.2 Comparison of Performance Units . 42

5.1 7-Point and 27-Point Stencil PERL Code Generators 61

6.1 Stencil Kernel Arithmetic Intensities 71
6.2 Comparison of Stream and Optimized Stream Benchmarks 75
6.3 In-Cache Performance for the 7-Point and 27-Point Stencils 76

7.1 7-Point and 27-Point Stencil Optimization Parameter Ranges 83
7.2 Stencil Iterative Greedy Optimization Search 86
7.3 Tuning and Parallel Scaling Speedups for the 7-Point Stencil 95

8.1 Tuning and Parallel Scaling Speedups for the 27-Point Stencil 109

9.1 Helmholtz Problem Counts for Varying Memory Footprints 116
9.2 GSRB Helmholtz Kernel Optimization Parameter Ranges 117
9.3 Helmholtz Iterative Greedy Optimization Search 118

ix

List of symbols

AMR Adaptive Mesh Refinement

AST Abstract Syntax Tree

ATLAS Automatically Tuned Linear Algebra Software

BGP Blue Gene/P

CFD Computational Fluid Dynamics

CFL Courant-Friedrichs-Lewy Stability Condition

CMT Chip MultiThreading

CPU Central Processing Unit

CSE Common Subexpression Elimination

CSR Compressed Sparse Row

DLP Data-Level Parallelism

DP Double Precision

DRAM Dynamic Random Access Memory

DSP Digital Signal Processing

ELL Efficiency-Level Language

FFT Fast Fourier Transform

FFTW Fastest Fourier Transform in the West

FLAME Formal Linear Algebra Method Environment

FLOP Floating Point Operation

FMA Fused Multiply-Add

FMM Fast Multipole Method

FSB Frontside Bus

GPGPU General Purpose Graphics Processor Unit

x

GSRB Gauss-Seidel Red Black

HPC High Performance Computing

HT HyperTransport

ILP Instruction-Level Parallelism

ISA Instruction Set Architecture

KCCA Kernel Canonical Correlation Analysis

MCH Memory Controller Hub

MCM Multi-chip Module

NUMA Non-Uniform Memory Access

OSKI Optimized Sparse Kernel Interface

PDE Partial Differential Equation

PERL Practical Extraction and Report Language

PLL Productivity-Level Language

QPI QuickPath Interconnect

SEJITS Selective Embedded Just-In-Time Specialization

SIMD Single Instruction Multiple Data

SML Statistical Machine Learning

SMP Symmetric Multiprocessor

SMT Simultaneous Multithreading

SPIRAL Signal Processing Implementation Research for Adapt-

able Libraries
SVM Support Vector Machines

TLB Translation Lookaside Buffer

TLP Thread-Level Parallelism

UMA Uniform Memory Access

VF Victoria Falls

xi

Acknowledgments

First, I would like to thank my advisor, Kathy Yelick. From the struggles at

the beginning of my graduate career until now, she has always supported me, and

for that I am ever thankful. Her wonderful guidance and knowledge have led me to

where I am now.

I owe an equally large debt of gratitude to Jim Demmel, whose incisive questions

and attention to detail have always forced me to think deeply about the subject at

hand. I hope to carry this mode of thinking into my future endeavors.

I also thank Jon Wilkening and Ras Bodik for serving on my qualifying exam

committee, despite the fact that it was rendered almost useless by the impending

and unforeseen multicore revolution. Well, unforeseen by me at least. I appreciate

that Jon was on my thesis committtee as well.

Sam Williams has been one of the truly inspirational figures during the latter

half of my graduate career. His combination of knowledge, diligence, enthusiasm,

and humility is rare. I thank him for all his wonderful suggestions and for serving as

an unofficial thesis reader. This thesis is that much better for it.

I also appreciate the friendship of Rajesh Nishtala, who has not only served as

a peer with whom to discuss research, but also a friend who brought some much

needed levity to our office. Ultra high school will have to live on without us.

I can’t thank the members of the Bebop group enough, especially Shoaib Kamil,

Karl Fuerlinger, and Mark Hoemmen. I have learned so much from all of you, and

am constantly amazed by the level of the discussions and the quality of the research.

I often wonder about how I entered the group.

The scientists at Lawrence Berkeley National Laboratory propelled my career by

teaching me how to write high-quality papers quickly. Certainly, Lenny Oliker, John

Shalf, and Jonathan Carter are masters of this craft, and I appreciate that they took

me under their wing. Thanks also go to Terry Ligocki and Brian Van Straalen, who

took time from their busy schedules to teach me the basics of AMR. I hope that my

work points you in the right direction for tuning these codes for the manycore era.

The Berkeley Par Lab has also been instrumental to my achievements by providing

me with a wider forum of people with whom to discuss parallel computing. The

xii

feedback that I’ve received from other members, as well as at the retreats, has been

invaluable. In particular, I would like to thank Jon Kuroda and Jeff Anderson-Lee

for maintaining (and resurrecting) hardware so that I could collect the data in this

thesis. I am sure they will be as happy as I am when I submit it. I also thank

Archana Ganapathi, who introduced me to the now ubiquitous world of machine

learning.

In a simpler world, when we talked about mega-flops instead of giga-flops, I was

a member of the Berkeley Titanium project. This is where I was introduced to the

wonderful world of high-performance computing and learned much about many of

the topics in this thesis. While I am indebted to everyone in the group, special thanks

go to Paul Hilfinger, Dan Bonachea, and Jimmy Su.

On a more personal front, I am forever grateful to my parents and my family

for their continued love and support, despite the extended duration of my California

“trip”. Thank you for your patience.

Finally, I wish to thank Sorita. You, more than anyone, have spurred me to

finish– even when the finish line looked like a dot. You are my love, my light, and

my life.

I would like to thank the Argonne Leadership Computing Facility at Argonne

National Laboratory for use of their Blue Gene/P cluster. That laboratory is sup-

ported by the Office of Science of the U.S. Department of Energy under contract

DE-AC02-06CH11357. I would like to also express my gratitude to Sun for its ma-

chine donations. Finally, thanks to Microsoft, Intel, and U.C. Discovery for providing

funding (under Awards #024263, #024894, and #DIG07-10227, respectively) and

usage of the Nehalem computer used in this study.

1

Chapter 1

Introduction

1.1 The Rise of Multicore Microprocessors

Until recently, the computer industry produced single core chips with ever-increasing

clock rates. Furthermore, advances such as multiple instruction issue, deep pipelines,

out-of-order execution, speculative execution, and prefetching also increased the

throughput per clock cycle, but at the cost of building more complex and power-

inefficient chips. However, these two trends continued to ensure that buying a new

computer would result in better performance while preserving the sequential pro-

gramming model [2].

As we see in Figure 1.1, these two trends stopped in 2004. A paradigm shift

occurred in the microprocessor industry, as it was forced to completely redesign its

chips due to heat density and power constraints. This power wall meant that the path

toward even higher clock rate, more complicated single core chips was impeded. As a

result, the industry retreated towards having multiple simpler, lower frequency cores

on a chip. While these “multicore” chips were able to address the issues resulting

from the power wall, the multiple cores forced the software industry to switch from a

sequential to a parallel programming model. This was a drastic shift, and one that the

industry is still grappling with today. However, now that explicit parallelism is being

exposed in software, it has become easier to start thinking about the much higher

degrees of parallelism that will be required in the approaching “manycore” era. The

machines in the manycore realm will have hundreds to thousands of threads, but will

2

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1970 1975 1980 1985 1990 1995 2000 2005 2010

Architectural Trends

Transistors (in Thousands)
Frequency (MHz)
Power (W)
Cores

Figure 1.1: This graph shows that while the growth in transistors (and thus Moore’s
Law [36]) continues unabated, clock speed and power stabilized in 2004. This is the
same time that multicore chips first started appearing. This data was collected by
Herb Sutter, Kunle Olukotun, Christopher Batten, Krste Asanović, and Katherine
Yelick.

utilize much simpler, lower-frequency cores to attain large power and performance

benefits. Thus, we need to start designing codes now that can handle increasing

amounts of parallelism [44].

1.2 Performance Portability Challenges

Unfortunately, merely writing explicitly parallel code is not enough. We will see in

Chapters 7 and 8 that näıvely threaded programs, even for very simple kernels, fail to

effectively utilize a multicore machine’s resources. This can be largely attributed to

the complexity of current hardware and software and the inability of general purpose

compilers to handle that complexity. These compilers have two major limitations

that cause codes to underperform. First, in order to hasten compilation time, they

almost always rely on heuristics, not experiments, to determine the optimal values of

needed parameters. We will see in Section 3.1 that today’s multicore platforms are

3

sufficiently diverse and complex that heuristics no longer suffice. Second, software is

often written with complex data and control structures so that these compilers also

fail to infer the legal domain-specific transformations that are needed to produce

the largest performance gains. However, this is to be expected, given some of the

challenging algorithmic and data structure changes that may be required.

One solution to this problem is to hand-tune the relevant computational kernel

for a given platform; this would allow the programmer to specify the domain-specific

transformations that the compiler alone was unable to exploit. While this may work

in the short term, as soon as the tuned code needs to be ported, possibly to a different

architecture with more cores, it will likely need to be retuned. In Sections 7.5 and 8.4,

we show that that the best code and runtime parameters for one multicore machine

often do not correspond to good performance on other machines. In fact, a stencil

code tuned for one platform, if ported to another platform without further tuning,

may achieve less than half of the new platform’s best performance. This assumes

that there is enough parallelism in the code to keep all of the new platform’s threads

busy and load balanced. If this is not true, then the performance drops even further.

1.3 Auto-tuning

A better solution is to automatically tune, or auto-tune, the relevant kernel. This

does require a significant one-time cost to the programmer, but once the auto-tuner

is constructed, it shifts the burden of tuning from the programmer to the machine.

As a result, it is highly portable. Moreover, it increases programmer productivity

when the one-time cost to build the auto-tuner can be amortized by running across

several different machines.

There are other advantages to auto-tuning. Auto-tuners can be designed to han-

dle any core count, thereby making them scalable. This will be a valuable asset in

the manycore era. Furthermore, auto-tuners can also be constructed for maximizing

metrics other than performance (e.g. power efficiency), thus also making them flexi-

ble. Due to all of these reasons, auto-tuning has already had several previous success

stories, including: FFTW [20], SPIRAL [41], OSKI [54], and ATLAS [55].

4

1.4 Thesis Contributions

In this thesis, we construct auto-tuners for codes that perform relatively sim-

ple, but common, nearest-neighbor, or stencil, computations. The following are our

primary contributions.

• We have identified a set of new and known optimizations specifically for sten-

cil codes, including: core blocking, thread blocking, register blocking, NUMA-

aware data allocation, array padding, software prefetching, cache bypass, SIMD-

ization, and common subexpression elimination. Collectively, they are designed

to optimize the data allocation, memory bandwidth, and computational rate

of stencil codes.

• Based on these optimizations, we have developed three stencil auto-tuners that

can achieve substantially better performance than näıvely threaded stencil code

across a wide variety of cache-based multicore machines. After full tuning, we

realized speedups of 1.9×–5.4× over the performance of a näıvely threaded code

for the 3D 7-point stencil, between 1.8×–3.8× for the 3D 27-point stencil, and

between 1.3×–2.5× for the 3D Helmholtz kernel with a 2 GB fixed memory

footprint.

• We have developed an “Optimized Stream” benchmark that uses many of the

same optimizations as in the stencil auto-tuners to achieve the best possible

streaming memory bandwidth from a given machine. It is able to achieve

bandwidths between 0.3%–13% higher than those attained from the untuned

“Stream” benchmark [35]. The Optimized Stream benchmark is also one piece

of the Roofline model [58], and thus allows us to place a performance “roofline”

on bandwidth-bound kernels.

• We have analyzed the performance of our auto-tuner against the bandwidth and

computational limits of each machine. For the 7-point stencil, we are able to

achieve between 74%–95% of the attainable bandwidth for the memory-bound

machines, as well as 100% of the in-cache performance for the compute-bound

IBM Blue Gene/P. For the 27-point stencil, we realized between 85%–100%

5

of the in-cache performance for the compute-bound architectures, 89% of the

attainable bandwidth for the bandwidth-bound Intel Clovertown, and 65% of

both attainable bandwidth and computation on the AMD Barcelona. Finally,

for a single iteration of the Helmholtz kernel, we performed at between 89%–

100% of the peak attainable bandwidth. Therefore, in almost all cases, we are

able to effectively exploit either the bandwidth or computational resources of

the machine.

• In Chapter 9, we no longer tuned a single large problem. Instead, we auto-

tuned many small subproblems that mimicked the behavior of the Adaptive

Mesh Refinement (AMR) code that this kernel was ported from. In order to

tune these multiple subproblems well, we introduced the adjustable threads per

subproblem parameter. Fewer threads per subproblem corresponded to coarse-

grained parallelism, while more threads per subproblem meant fine-grained

parallelism. We discovered that utilizing fewer threads per problem usually

performed best, but also introduced load balancing issues. If future manycore

architectures do not provide better support for fine-grained parallelism, load

balancing will be an even larger issue than it is today.

1.5 Thesis Outline

The following is an outline of the thesis:

Chapter 2 gives an overall description of stencils, along with examples from some

of the many applications from which they arise. Stencils are also described as a very

specific, but efficient, form of sparse matrix-vector multiply.

Chapter 3 goes into depth about each of the cache-based multicore machines that

were employed in this study. We also discuss some of the experimental details that

are used in the later chapters, including the choice of compilers, the manner in which

threads are assigned to cores, and how timing data is collected.

Chapter 4 introduces the stencil-specific optimizations that were used in this

study. These optimizations are grouped into four rough categories: problem decom-

position, data allocation, bandwidth optimizations, and in-core optimizations.

6

Chapter 5 subsequently explains how these optimizations were combined into

a stencil auto-tuner, including details about code generation and parameter space

searching.

Chapter 6 details how the Roofline model [58] provides performance bounds for

stencil codes. The Roofline model is a general model that incorporates both band-

width and computation limits into its performance predictions.

Chapters 7, 8, and 9 then discuss the tuning and resulting performance of the 7-

point stencil, 27-point stencil, and the Helmholtz kernel, respectively. Together, these

three stencils are representative of many real-world stencil codes. By understanding

how we were able to achieve good performance for these stencils, similar techniques

can be applied to many more stencil codes.

Chapters 10 discusses related and future work, and we conclude in chapter 11.

7

Chapter 2

Stencil Description

2.1 What are stencils?

Partial differential equation (PDE) solvers are employed by a large fraction of

scientific applications in such diverse areas as diffusion, electromagnetics, and fluid

dynamics. These applications are often implemented using iterative finite-difference

techniques that sweep over a spatial grid, performing nearest neighbor computations

called stencils. In a stencil operation, each point in a regular grid is updated with

weighted contributions from a subset of its neighbors in both time and space– thereby

representing the coefficients of the PDE for that data element. These coefficients

may be the same at every grid point (a constant coefficient stencil) or not (a variable

coefficient stencil). Stencil operations are often used to build solvers that range

from simple Jacobi iterations to complex multigrid [6] and adaptive mesh refinement

(AMR) methods [3].

Stencil calculations perform sweeps through data structures that are typically

much larger than the capacity of the available data caches. In addition, the amount

of data reuse is limited to the number of points in the stencil, which is typically small.

The upshot is many (but not all) of that these computations achieve a low fraction of

theoretical peak performance, since data from main memory cannot be transferred

fast enough to avoid stalling the computational units on modern microprocessors.

Reorganizing these stencil calculations to take full advantage of memory hierarchies

has been the subject of much investigation over the years. These have principally

8

(a) 1D 5-Point Stencil (b) 2D 5-Point Stencil

Figure 2.1: A visualization of two lower dimensional stencils. In (a), we show a one-
dimensional five-point stencil, where the center point is both being read and written.
In (b), we show a two-dimensional five-point stencil, where again the center point is
read and written.

focused on tiling optimizations [43, 42, 32] that attempt to exploit locality by per-

forming operations on cache-sized blocks of data before moving on to the next block.

However, a study of stencil optimization [27] on (single-core) cache-based platforms

found that these tiling optimizations were primarily effective when the problem size

exceeded the on-chip cache’s ability to exploit temporal recurrences. We will show

shortly that for lower dimensional stencils, modern microprocessors have caches large

enough to exploit these temporal recurrences. For stencils with dimensionality higher

than two, however, tiling optimizations are still effective and needed.

2.1.1 Stencil Dimensionality

1D and 2D Stencils

In Figure 2.1, we show two examples of simple lower dimensional stencils. While

lower dimensional stencils are fairly common, they are likely to be less amenable to

tuning as well as heavily bandwidth-bound.

First, we know from previous work [28] that the lower the stencil dimensionality,

the less likely it is to be affected by capacity cache misses [24]. This is because the

required working set size is smaller. If we examine Figure 2.2(a), we see the conven-

tional memory layout for a 2D 5-point stencil like the one in Figure 2.1(b). If NX

is the unit-stride grid dimension of the 2D grid, then for the 5-point stencil, the first

and last stencil points are separated by (2×NX) doubles in the read array. When

streaming through memory, by the time the last stencil point is read in, all the pre-

9

(b) Memory layout for the 3D 7-point stencil

read_array[]

write_array[]

NX*NY NX

(a) Memory layout for the 2D 5-point stencil

read_array[]

write_array[]

NX

working set size

working set size

Figure 2.2: A visualization of the memory layout for two stencils of different dimen-
sionality. In (a), we see that the first and last stencil points of the 2D 5-point stencil
are separated by (2×NX) doubles, where NX is the unit-stride dimension of the 2D
grid. In (b), the distance between the first and last stencil points for the 3D 7-point
stencil is much larger– specifically, (2×NX ×NY) doubles, where NX and NY are
the contiguous and middle dimensions of the 3D grid, respectively.

vious stencil points will still be in cache since the working set is miniscule compared

to the last-level cache of current multicore processors. To make this concrete, the

working set when performing a 2D five-point stencil on a 2562 grid is about 4 KB. In

comparison, the last-level caches of the machines in this thesis range from 2–8 MB.

By avoiding capacity misses, 2D stencils will not benefit from cache tiling optimiza-

tions like core blocking, which we will introduce in Section 4.1.1. In this respect, 2D

stencil codes have less headroom for performance improvement than codes that do

incur capacity misses.

Second, the number of flops performed per point also usually decreases with lower

stencil dimensionality. This is simply because there are fewer dimensions in which

stencil points can occur. However, regardless of dimensionality, the memory traffic

for each grid point remains constant. Therefore, for the same number of grid points,

there are fewer flops performed for lower dimensional stencils. Consequently, these

stencils are more susceptible to bandwidth limitations.

While the performance of lower dimensional stencil codes can be improved through

10

(a)
The 7-point stencil shown
as three adjacent planes.

+Y

+Z

+X
(unit stride)

+Z

+Y
+X

(unit stride)
(b)

The 27-point stencil shown
as three adjacent planes.

weight point by α

weight point by β

weight point by γ

weight point by δ

Figure 2.3: A visual representation of the 3D 7-point and 27-point stencils, both of
which are shown as three adjacent planes. These stencils are applied to each point
of a 3D grid (not shown), where the result of each stencil calculation is written to
the red center point. Note: the color of each stencil point represents the weighting
factor applied to that point.

tuning, they are heavily bandwidth-bound and typically do not benefit from cache

tiling. As a result, the achievable speedup is fairly constrained compared to 3D

stencils. In this thesis, we do not tune 1D and 2D stencils.

3D Stencils

The focus of this thesis is on 3D stencils, two of which are shown in Figure 2.3.

The 7-point stencil, shown in Figure 2.3(a), weights the center point by some constant

α and the sum of its six neighbors (two in each dimension) by a second constant β.

Näıvely, a 7-point stencil sweep can expressed as a triply nested ijk loop over the

following computation:

Bi,j,k = αAi,j,k + β(Ai−1,j,k + Ai,j−1,k + Ai,j,k−1 + Ai+1,j,k + Ai,j+1,k + Ai,j,k+1) (2.1)

where each subscript represents the 3D index into array A or B.

The 27-point 3D stencil, as shown in Figure 2.3(b), is similar to the 7-point stencil,

but with additional points to include the edge and corner points of a 3×3×3 cube

surrounding the center grid point. It also introduces two additional constants– γ, to

weight the sum of the edge points, and δ, to weight the sum of the corner points.

11

These two stencils are the focus of our tuning in Chapters 7 and 8, and they will also

be discussed in further detail later in this chapter.

Unlike the lower dimensional stencils that were just discussed, the required work-

ing set size for 3D stencils is much greater than 1D or 2D stencils. We see in Fig-

ure 2.2(b) that if NX and NY are the contiguous and middle dimensions of our 3D

grid, respectively, then for the 3D 7-point stencil, the first and last points will be

separated by (2×NX ×NY) doubles in the read array. This is significantly larger

than the (2×NX) separation for the 2D 5-point stencil, since the distance is now in

terms of planes, not pencils. For example, if we performed a sweep of the 3D 7-point

stencil over a 2563 grid, the working set is about 1 MB, which is approximately 250×
the working set size for the 2D analog problem. Consequently, cache capacity misses

are far more likely, but optimizations like core blocking should now be effective.

Furthermore, the number of flops per grid point will be higher in 3D codes as

well. As we will discuss later, the 3D 7-point stencil in Figure 2.3(a) performs eight

flops per point, since the center point is weighted by α and each of the six nearest

neighbors is weighted by β. More generally, this stencil gives one weight (α) to the

center point, and a separate weight (β) to each of the two neighboring stencil points

in each dimension. Thus, the d-dimensional analog of this stencil will perform (2d+2)

flops per point, which increases linearly with dimensionality.

The increase in flop count is even more dramatic when we alter the dimensionality

of the 3D 27-point stencil, displayed in Figure 2.3(b). This stencil has four weights

associated with it– one each for the one center point (α), six face points (β), twelve

edge points (γ), and eight corner points (δ). The full computation requires 30 flops

per grid point. More generally, the d-dimensional analog of this stencil utilizes (d+1)

weights and performs (3d + d) flops per point. In this case, the flops per point rise

exponentially with dimensionality.

Due to the occurrence of capacity misses and the greater number of flops per

point, we anticipate that a larger number of transformations (including cache block-

ing and computational optimizations) will be effective for 3D stencils than for lower

dimensional stencils. We also expect that the resulting speedups will be larger as

well.

12

Higher-Dimensional Stencils

For higher dimensional stencils, the points that were made for three-dimensional

stencils are further amplified. If we continue storing the structured grid data in

the usual manner (shown in Figure 2.2), then the distance in memory between the

first and last point will again be multiplied by the size of another dimension. If

we näıvely stream through memory without any tiling optimizations, the required

working set will almost definitely be larger than the available last-level cache. We

should also expect more flops per point, given that there are more dimensions present.

Lattice Methods

Lattice methods are still structured grid codes, but instead of a single unknown per

point, many can be present. Whether lattice methods should be considered very high

dimensional stencils or a separate category unto themselves is debatable. However,

we would be remiss if they were not mentioned. One example of a lattice method is

a plasma turbulence simulation that was tuned by Williams et al [56]. This lattice

Boltzmann application coupled computational fluid dynamics (CFD) with Maxwell’s

equations, resulting in a momentum distribution, a magnetic distribution, and three

macroscopic quantities being stored per point. In total, each point required reading

73 doubles and updating 79 doubles, while performing approximately 1300 flops.

This resulted in complex data structures and memory access patterns, as well as

significant memory capacity requirements, so proper tuning (especially at the data

structure level) was critical.

2.1.2 Common Stencil Iteration Types

This subsection goes into depth about three common stencil iteration types: Ja-

cobi, Gauss-Seidel, and Gauss-Seidel Red-Black iterations.

Jacobi

As shown in Figure 2.4(a), Jacobi iterations are essentially out-of-place sweeps.

In order to perform Jacobi iterations, there is at least one read grid and one write

13

(a) Jacobi Iteration

Read Grid Write Grid Read and Write Grid

(b) Gauss-Seidel Iteration

Read and Write Grid

(c) Gauss-Seidel
Red-Black Iteration

Figure 2.4: A visual representation of the some of the common iteration types that
occur with stencil codes. In a Jacobi iteration, a stencil is applied to each point
in the read grid, and the result is written to the corresponding point in the write
grid. The Gauss-Seidel iteration is similar, except that there is only a single grid,
and therefore the iteration is in-place. The Gauss-Seidel Red-Black iteration is also
in-place, but all the points of one color are updated before the points of the other
color are updated.

grid, but no grids are both read and written. We sweep through these grids by

first incrementing the unit-stride index, then incrementing the middle index, and

finally incrementing the least-contiguous index. Essentially, we stream consecutively

through memory.

The power of Jacobi sweeps lies in the fact that it is easily parallelizable; any point

in the write grid(s) can be computed independently of any other point, so they can be

updated in an embarrassingly parallel fashion. Thus, since all partitioning schemes

produce the same correct result, we are free to choose the one that performs best.

Another benefit of the Jacobi iteration is that on x86 architectures, we can use the

cache bypass optimization (discussed in Section 4.3.2) to reduce the memory traffic

on a write miss by half by eliminating the cache line read. Most stencil codes are

bandwidth-bound, so this has the potential to generate large performance speedups.

The major drawback to the Jacobi iteration is that it requires that we store distinct

read and write arrays, which increases both storage and bandwidth requirements.

When we perform 7-point stencil and 27-point stencil updates in Chapters 7

and 8, respectively, we will be performing a single Jacobi sweep. This allows us great

flexibility in how we parallelize the problems.

14

Gauss-Seidel

Gauss-Seidel iterations, shown in Figure 2.4(b), are in-place sweeps. Zero or more

read-only grids may be present, but the write grid must also be read from first. One

consequence of this fact is that almost all the computed stencils will include some

points that were already updated during the current sweep and others that were not.

This means that there is an inherent dependency chain that needs to be respected

if we wish to replicate the same final answer. Unfortunately, this significantly limits

the amount of available parallelism in the sweep. It also causes different traversals

through the grid to generate different (but valid) results. The major benefit to Gauss-

Seidel sweeps is that the write grid is also read from, thereby reducing the need for

additional arrays and the memory traffic associated with them.

Gauss-Seidel Red-Black

Gauss-Seidel Red-Black (GSRB) iterations are similar to Gauss-Seidel sweeps in

that while read-only grids may be present, the write grid must be read from first.

In order to deal with the limited parallelism that is exposed when consecutively

updating each point (like in Gauss-Seidel sweeps), GSRB updates only every other

point. For instance, in Figure 2.4(c), a black grid point will only be updated when

the red points that it depends on have all been updated. Once the needed black

points are ready, we can again start updating the red points, and so on. This type

of sweep has similar parallelism characteristics to Jacobi, since any of the points of

a single color can be updated independently of any other. Thus, the partitioning of

this sweep among threads can be arbitrary.

If we define a GSRB sweep as performing a single update for both the red and

black grid points, then a näıve GSRB implementation will sweep over the grid twice,

likely requiring twice the memory traffic of a Jacobi or Gauss-Seidel sweep. However,

we can minimize the required memory traffic by having a leading “wavefront” for the

red points and a trailing wavefront for the black points. Assuming the last-level

cache is sufficiently large, this would update both sets of points while only reading

them from memory once.

The Helmholtz kernel, discussed in Chapter 9, will perform GSRB sweeps over

15

each subproblem.

Numerical Convergence Properties

While the numerical convergence properties of these iterative methods are gen-

erally out of the scope of this thesis, they are a major concern for tuning real-world

stencil codes, and thus we touch upon them here. Out of the three iteration types

just discussed, the Jacobi iteration is typically the slowest to converge. A superfi-

cial explanation for this is because every point is updated with old (i.e. not updated

during the current iteration) grid point values. This is rectified by performing Gauss-

Seidel sweeps, since most points are calculated from some old and some new values.

Indeed, in most cases, Gauss-Seidel shows better convergence than Jacobi. However,

the best convergence usually comes from GSRB; one GSRB step can decrease the

error as much as two Jacobi steps. This is a general phenomenon for matrices arising

from approximating differential equations with finite difference approximations [14].

It is important to note that when solving a linear system, it is possible that one

step of Jacobi could reduce the error more than one step of GSRB. This is because

the amount of convergence depends both on the problem and the iterative method.

In most cases, though, GSRB will converge fastest and Jacobi slowest.

Ultimately, many iterative solvers attempt to reduce the problem error (or resid-

ual) below a certain threshold. In order to decide how to minimize the time needed

to reach this level of convergence, we need to understand how many iterations a

given solver will require (based on its numerical properties), as well as how long each

iteration will take (based on numerical, hardware and software properties).

2.1.3 Common Grid Boundary Conditions

Another concern with structured grid codes is how to deal with boundary con-

ditions. Here we discuss two common boundary conditions and how to deal with

them.

16

G G G G
G G
G G
G G
G G G G G

(a)
A 2D grid with ghost

cells for storing
boundary conditions.

(b)
A 2D grid with periodic
boundary conditions
and no extra cells.

G

Figure 2.5: In (a), we show a 3×3 grid with surrounding ghost cells (marked with a
“G”) that are used to store boundary conditions. In (b), we show a 3×3 grid which
does not require ghost cells because it has periodic boundary conditions.

Constant Boundaries

There are two main types of constant boundary conditions. In the first case, the

points along the boundary do not change with time, but do change depending on

position. In this case, we can use ghost cells (like in Figure 2.5(a)) to store these

values before any stencil computations begin. Once the ghost cells are initialized,

they do not need to be altered for the rest of the problem. In this thesis, all three

3D stencil kernels have this type of boundary condition. However, the ghost cells

consume a non-trivial amount of memory for 3D grids. Suppose that we have an N3

grid that is surrounded by ghost cells. Then, the resulting grid has (N + 2)3 cells. If

N = 16, then ghost cells represent an astounding 30% of all grid cells. However, if

N = 32, then the percentage drops to 17%.

The second case is if the boundary value does not change with time or position.

In this case, the entire boundary can be represented by a single constant scalar

throughout the course of the problem. Consequently, we no longer need to have

individual ghost cells like the previous case.

Periodic Boundaries

Another common boundary condition is to have periodic boundaries, as shown in

Figure 2.5(b). For points along the boundary, this means that they have additional

neighbors that wrap around the grid. For example, the left neighbor of the upper left

17

point is the upper right point, while the upper neighbor is the lower left point. While

periodic boundaries can be represented using ghost cells that are updated after each

iteration, in many cases no ghost cells are used at all. Instead, the required values

are merely read from the side of the grid. This helps lower the memory footprint of

the grid as well as bandwidth requirements.

2.1.4 Stencil Coefficient Types

Constant Coefficients

In the stencils we have thus far discussed, we have usually assumed that the

stencil coefficients are constant. For instance, in Figure 2.3, the color of each stencil

point represents whether that point is weighted by the constant coefficient α, β, γ, or

δ. Many finite difference calculations employ constant coefficient stencils like these.

When the coefficient values are constant scalars, they do not need to be con-

tinually read from memory for every new stencil. Instead, they can be hard-coded

into the inner loop of the stencil code, and then kept in registers during the actual

computation. This results in a large reduction in potential storage requirements

and memory traffic. Furthermore, if these coefficients are simple integer values, the

compiler may even be able to further optimize parts of the computation.

In many ways, the constant coefficient stencil is an ideal scenario. Consequently,

if we can expose the appropriate properties in an iterative solver’s underlying matrix

so as to generate a constant coefficient stencil, we will always do so. In Section 2.2,

we will specify these properties.

The 7-point and 27-point stencils that we tune in Chapters 7 and 8, respectively,

both have constant coefficients.

Variable Coefficients

However, the stencil coefficients need not be constant. As we will examine in

Section 2.2, the iterative solver’s underlying matrix may not have the appropriate

properties for it. In such a case, we may still be able to utilize a variable coefficient

stencil, where the stencil weights change from one grid point to another. Unlike

constant coefficient stencils, we now need to store these weights in separate grids.

18

When performing our calculations, we will stream through these grids along with

our original grid of unknowns. This will create extra DRAM traffic, but we will

show in Section 2.2.3 that this is still preferable to performing a sparse matrix-vector

multiply.

The Helmholtz kernel that we will tune in Chapter 9 employs a variable coefficient

stencil.

2.2 Exploiting the Matrix Properties of Iterative

Solvers

Thus far, we have discussed various stencil characteristics, but we have not men-

tioned the origins of stencils in any detail. This section explains how both variable

and constant coefficient stencils can arise from iterative solvers.

Imagine that we have a structured grid like the one shown in Figure 2.6. This

grid is a simple two-dimensional grid with periodic boundary conditions in both

dimensions. Now, let us suppose that we would like to apply an iterative solver to

this grid. In most cases, this solver will require that every point in the structured grid

be updated with some linear combination of other grid points. In order to generally

represent this linear transformation, we can create a matrix that stores the weights

that each point contributes to every point in the grid. In order to create this matrix,

we first need to select an ordering of the grid points. In our case, the simplest way

to proceed is to choose a natural row-wise ordering, where we first order the top row

from left to right, then the second row in a similar manner, and so on. The numbers

inside each grid point of Figure 2.6 show such an ordering [30].

We can now create a matrix A that represents the linear transformation performed

by the iterative solver. The amount that point j will be weighted by when calculating

the new value of point i is given by matrix element Aij.

2.2.1 Dense Matrix

At this juncture, a critical question is how best to store this matrix. At the most

general level, we can store A as a dense matrix. However, for a n × n square grid

19

1 2 3
4 5 6
7 8 9

Figure 2.6: A 3×3 numbered grid with periodic boundary conditions in both the
horizontal and vertical directions. The grid points are numbered in a natural row-
wise ordering.

with no extra ghost cells, the resulting matrix A will have dimensions of n2 × n2.

Thus, the 3 × 3 grid from Figure 2.6 would be stored as a 9 × 9 matrix. Despite

the large size of A in a dense matrix format, most iterative solvers only reference a

few grid points in updating each point, so we expect A to be sparse (i.e. most of the

elements are zero). Therefore, storing A in a dense matrix would be inefficient in

terms of both storage and flops.

2.2.2 Sparse Matrix

A better choice would be some sort of sparse matrix format. Let us assume that

there are nnz non-zeros in the A matrix, each of which will be stored as an 8 Byte

double-precision number. In addition, the matrix indices will be stored as 4 Byte

integers. Given this, if we choose the commonly-used Compressed Sparse Row (CSR)

format [53] to store A, we will require about 12nnz+4n2 Bytes of storage and perform

approximately 2nnz flops. This is much better than the 8n4 Bytes of storage and

2n4 flops required by the dense format. While the CSR format does perform indirect

accesses into the matrix, it should still be orders of magnitude faster than the dense

format for sufficiently large and sparse matrices.

2.2.3 Variable Coefficient Stencil

Sparse matrices are a general way to represent the linear transformation per-

formed by an iterative solver. However, in many cases, these iterative solvers perform

nearest neighbor operations on the structured grid. For instance, imagine that for

every point grid in Figure 2.6, we only require the values of the points immediately

20

2 7 −13 8 4.2

9 101 20 −31 −2

−7 14 5.3 5 87

−12 −15 23 17 8

13 1.3 7 −9 14

−67 5 0.4 3 51

−3 1 9 17 10

0.1 42 −41 2 −1

81 8 32 91 71

Table 2.1: This sparse matrix has a very regular structure, but the non-zero values are
unpredictable. For readability, the matrix is divided into 3×3 submatrices and only the
non-zeros are shown.

above, below, to the left, and to the right of that point, as well as the value of the

point itself. Thus, every point will be updated with the values from five grid points,

but the weights associated with these grid points are not predictable.

The 9× 9 matrix in Table 2.1 represents such a situation for the case of periodic

boundary conditions. Due to its regular structure, we no longer explicitly need to

store the matrix indices. Instead of storing this n2 × n2 matrix in a sparse format,

we can store it as five n×n grids. For a given point (i, j) from the grid in Figure 2.6,

the corresponding (i, j) point in each of these grids represents the weight associated

with point (i, j) or any of its four neighbors. More information about these variable

coefficient stencils can be found in Section 2.1.4.

Thus, we now require 40n2 Bytes of storage and perform 9n2 flops. In a sparse

matrix format, we would need 64n2 Bytes of storage, where the extra 24n2 Bytes is

attributed to the unneeded indices of the CSR format. However, we have not altered

the flop count by changing the data structure from a sparse matrix to a variable

coefficient stencil.

2.2.4 Constant Coefficient Stencil

Finally, if we have a matrix with the same structure as Table 2.1, but also with

predictable non-zeros, we no longer need to explicitly store the non-zeros either.

21

−4 1 1 1 1

1 −4 1 1 1

1 1 −4 1 1

1 −4 1 1 1

1 1 −4 1 1

1 1 1 −4 1

1 1 −4 1 1

1 1 1 −4 1

1 1 1 1 −4

Table 2.2: This is the matrix associated with the 2D Laplacian operator with peri-
odic boundary conditions. It has a very regular structure and the non-zero values are
predictable.

Instead of storing five separate arrays, we only need to store five separate scalar

constants! Moreover, if we wish to apply an operator like the 2D Laplacian, we

only need to store two constants. This is because the center point will always be

weighted by -4, while all of four of its neighbors will be weighted by 1. The matrix

associated with the 2D Laplacian operator with periodic boundary conditions is

shown in Table 2.2. Now, we only need to store 16 Bytes worth of data– the weight of

the stencil’s center point and the weight of its four neighbors. Moreover, this reduces

our flop count from 9n2 down to 6n2. We have finally succeeded in reducing the

dense matrix representing our iterative solver down to a simple constant coefficient

stencil.

2.2.5 Summary

The above arguments for reducing storage, bandwidth, and computation require-

ments were made for two-dimensional structured grids, and are summarized in Ta-

ble 2.3. However, the corresponding savings are even more stark for three-dimensional

stencils, which are the focal point of this thesis.

22

Explicit Indices Implicit Indices
Usual Sparse Variable

Explicit Non-zeros Matrix-Vector Coefficient
Multiply Stencil
Example: Constant

Implicit Non-zeros Laplacian of a Coefficient
General Graph Stencil

Table 2.3: This table displays the continuum from sparse matrix-vector multiply to
variable-coefficient stencils and finally constant-coefficient stencils.

2.3 Tuned Stencils in this Thesis

This thesis focuses on two second-order finite difference operators as well as a finite

volume operator. The finite difference operators are constant coefficient stencils,

while the finite volume operator is a variable coefficient stencil. In this section,

we describe each in more detail, including some information on where the stencils

originate from.

2.3.1 3D 7-Point and 27-Point Stencils

The 3D 7-point and 27-point stencils, visualized in Figure 2.3, commonly arise

from the finite difference method for solving PDEs [30]. The 7-point stencil performs

eight flops per grid point, while the 27-point stencil performs 30 flops per point (with-

out any type of common subexpression elimination). Thus, the arithmetic intensity,

the ratio of flops performed for each Byte of memory traffic, is about 3.8× higher

for the 27-point stencil than the 7-point stencil. We will see in Chapter 8 that the

compute-intensive 27-point stencil will actually be limited by computation on some

multicore platforms.

The 7-point 3D stencil is fairly common, but there are many instances where

larger stencils with more neighboring points are required. One such stencil arises from

T. Kim’s work in optimizing a fluid simulation code [29]. By using a Mehrstellen

scheme [10] to generate a 3D 19-point stencil (where δ equals zero in Figure 2.3)

instead of the usual 7-point stencil, he was able to reach the desired error reduction in

34% fewer stencil iterations. Thus, larger stencils can reduce the number of iterations

23

needed to reach a desired threshold of convergence. In this thesis, we chose to examine

the performance of the 27-point 3D stencil because it serves as a good proxy for many

of these compute-intensive stencil kernels.

In general, though, the numerical properties of the 7-point and 27-point stencils

are outside the scope of this work; we merely study and optimize their performance

across different multicore architectures. Our results will hopefully allow the reader

to judge as to whether these numeric/performance tradeoffs are worthwhile. As an

added benefit, this analysis also helps to expose many interesting features of current

multicore architectures.

2.3.2 Helmholtz Kernel

The final stencil that we tune is the Helmholtz kernel. This kernel is ported

from Chombo [9], a software framework for performing Adaptive Mesh Refinement

(AMR) [3].

The Helmholtz kernel that we tune in Chapter 9 attempts to solve for φ in the

equation:

L(φ) = rhs (2.2)

where rhs is a given right-hand side and L is the linear Helmholtz operator:

L = α ~A~I − β~∇ · ~B~∇ (2.3)

We can solve Equation 2.2 iteratively by calculating the residual, multiplying it by

λ, and subtracting this quantity from our original φ (called φ∗ below):

φnew = φ∗ − λ(L(φ∗)− rhs) (2.4)

If we perform enough iterations of Equation 2.4, we should converge (albeit

slowly) to a φ whose residual is below a given threshold. However, to hasten this

process, we can use solvers like multigrid [6, 52], where these iterations can be used to

relax each multigrid level. In the case of AMR, where many small grids are present,

multigrid is applied to the entire collection of subproblems [33], while a relaxation

operator (like GSRB) is applied to each of the individual subproblems.

The power of the Helmholtz equation comes from its ability to solve time-dependent

problems implicitly within a multigrid solver. Explicit time discretization schemes

24

Single Helmholtz Subproblem
Subgrid Read/Write Dimensions

phi Read and Write (NX + 2)× (NY + 2)× (NZ + 2)
aCoef0 Read Only NX ×NY ×NZ
bCoef0 Read Only (NX + 1)×NY ×NZ
bCoef1 Read Only NX × (NY + 1)×NZ
bCoef2 Read Only NX ×NY × (NZ + 1)
lambda Read Only NX ×NY ×NZ

rhs Read Only NX ×NY ×NZ

Table 2.4: A description of the seven grids involved in a single variable-coefficient
Helmholtz subproblem. The NX, NY , and NZ grid parameters are visually displayed
in Figure 4.1.

place bounds on the size of the time step due to the Courant-Friedrichs-Lewy (CFL)

stability condition. Implicit time discretization schemes, however, have no time step

restriction, and are unconditionally stable if arranged properly.

One example of this is the parabolic heat equation. While this equation can be

solved using an explicit forward Euler scheme, the CFL condition will keep our time

steps short. The discrete Helmholtz equation, on the other hand, can apply several

different implicit schemes merely by varying α and β in Equation 2.3. In particular,

we can apply a backward Euler, Crank-Nicholson, or backward difference formula

through the Helmholtz equation, all of which allow for much larger time steps than

forward Euler.

A second example is the hyperbolic wave equation. Again, the CFL condition only

limits the time steps of explicit methods. For most common implicit discretizations,

each time step can again be solved implicitly using the discrete Helmholtz equation

with an appropriately tuned α and β. These examples apply to more general time-

dependent parabolic and hyperbolic PDEs as well. The beauty of this approach

is that the larger the time steps, the more will be gained through an appropriate

multigrid treatment [52].

Now, if we actually discretize the Helmholtz equation (Equation 2.4), the result is

a variable coefficient stencil consisting of seven grids. Six of these grids are read only,

while the phi grid is both read and written; the dimensions of each of these grids

25

(a) Cell-centered grid (b) Face-centered grid

Figure 2.7: This diagram shows that the cell-centered grid in (a) requires far fewer
grid points than the face-centered grid in (b). The grid points in (b) are color-coded,
where the points along a cell’s horizontal edges are green and the points along the
vertical edges are in blue.

are given in Table 2.4. As this is a variable coefficient stencil, we note that the phi

array cannot be merely updated with scalar weights; there are five grids (other than

phi or rhs) that need to be referenced in order to perform this stencil calculation.

Some of the arrays in Table 2.4 require further explanation. For instance, ~B is

represented as three separate arrays– bCoef0, bCoef1, and bCoef2. This is because

the stencil originates from a finite volume, not finite difference, calculation. So as

to abide by certain conservation laws, B employs a face-centered, not cell-centered,

discretization. As we can see in Figure 2.7, the face-centered grid in (b) requires

many more grid points than cell-centered grid in (a). The primary reason for this is

that the face-centered discretization requires that there be a grid point along each

edge of a given cell. For instance, Figure 2.7(b) shows the points along each cell’s

horizontal edges in green and the points along the vertical edges in blue. For this

calculation, the face-centered grid points along each dimension are stored separately.

As this is a three-dimensional problem, ~B is thus stored as three separate arrays

(bCoef0, bCoef1, and bCoef2). In addition, each of these arrays needs a single extra

grid point in one dimension in a similar fashion to how there are four columns, but

five rows, of green points in Figure 2.7(b).

The phi array deserves some explanation as well, since it has two extra cells in

each dimension. The extra cells in this case are simply ghost cells that store boundary

values. To be mathematically correct, these ghost cells should be updated after each

iteration. In some cases, however, it is possible to perform multiple iterations without

a ghost cell update while still preserving stability and accuracy. This is an area of

26

current research [31].

When executing a sweep of this variable coefficient stencil, we can choose any of

the iteration types displayed in Figure 2.4, but GSRB was chosen for its convergence

and parallelization properties. However, due to the number of arrays present and the

fact that we are employing a GSRB stencil, the arithmetic intensity of this kernel is

fairly low, despite performing 25 flops per point.

2.4 Other Stencil Applications

Thus far, we have discussed a few areas where stencils originate. The following

section introduces other uses of stencils, but this is far from an exhaustive list.

2.4.1 Simulation of Physical Phenomena

Stencils are often found when modeling physical phenomena. For instance, Nakano

et al used stencils as part of a molecular dynamics algorithm for realistic modeling of

nanophase materials [38]. Specifically, in order to compute the Coulomb potential,

which is very expensive due to its all to all nature, the authors decided to use the fast

multipole method (FMM). In the FMM, the Coulomb potential is computed using a

recursive hierarchy of cells. At each level of this hierarchy, the near-field contribution

to the potential energy is calculated through nearest neighbor stencil calculations.

The FMM algorithm is able to reduce this O(N2) all-to-all calculation down to a

complexity of O(N).

Stencils are also used in quantum mechanics simulations. Shimono et al [45] devel-

oped a hierarchical method that decomposed the spatial grid based on higher-order

finite differences and multigrid acceleration [6]. This method also refines adaptively

near each atom to accurately operate the ionic pseudopotentials on the electronic

wave functions. This divide-and-conquer scheme is used to iteratively and quickly

solve for the potential throughout the grid. As an added benefit, this approach

provides simple and efficient parallelization of the problem due to the short-ranged

operations involved.

A final simulation example comes from the area of earthquake modeling. Specifi-

27

cally, Dursun et al have tuned a seismic wave propagation code for x86 clusters [15].

The code employs a higher-order 3D 37-point stencil based off of the finite differ-

ence method. Such a stencil not only involves heavy computation but also large

memory requirements (since the points are not clustered around the center point).

The authors used spatial decomposition, multithreading, and SIMD (explained in

Section 4.4.2) to achieve speedups of up to 7.9×. These optimizations are a subset

of the ones we employ in this thesis, described in Chapter 4.

2.4.2 Image Smoothing

We now take a step away from simulations and instead focus on image smoothing,

a fundamental operation in computer vision and image processing. This smoothing is

often done through a bilateral filter, which tries to remove noise while not smoothing

away edge features. Consequently, a bilateral filter uses a variable coefficient stencil,

where the weights are computed as the product of a geometric spatial component

and signal difference. Kamil et al tuned this stencil kernel [26] using many of the

same techniques that we employed in this thesis.

2.5 Summary

This chapter has introduced stencils, as well as some of the issues that occur

when confronting variations in dimensionality, iteration type, boundary condition,

or coefficient type. Many of these issues will play out as we tune the three stencils

in Chapters 7, 8, and 9.

Part of this chapter was also dedicated to explaining the origins of stencils that

are used as iterative solvers. As we saw, we need to exploit the underlying matrix

structure to generate variable coefficient stencils, but we also need to take advantage

of predictable non-zeros if we wish to use constant coefficient stencils. Fortunately,

this happens fairly often, as we discovered stencils being utilized as iterative solvers

in material modeling, quantum mechanics, and seismic wave modeling codes. We

also observed a non-simulation use of stencils– performing image smoothing using

a bilateral filter. Thus, stencils are found in many scientific disciplines, and some

28

non-science ones as well. This ubiquity emphasizes the importance of achieving good

stencil code performance on multicore platforms.

29

Chapter 3

Experimental Setup

This chapter details our experimental methodology at almost every level of the

system stack. At the hardware level, we discuss specifics about the multicore plat-

forms used in our evaluations and the thread mapping policy we implemented. At

the software level, we justify our choice of parallel programming model, program-

ming language, and compiler. Finally, we also consider how we data is collected and

presented to ensure reproducibility.

3.1 Architecture Overview

We compiled data across a diverse array of cache-based multicore computers that

represent the building blocks of current and near future ultra-scale supercomputing

systems. This not only allows us to fully understand the effects of architecture, it also

demonstrates our auto-tuner’s ability to provide performance portability. Table 3.1

details the core, socket, and system configurations of the five cache-based computers

used in this work. They are also discussed below.

3.1.1 Intel Xeon E5355 (Clovertown)

Displayed in Figure 3.1(a), Clovertown was Intel’s first foray into the quad-core

arena. Reminiscent of Intel’s original dual-core designs, each socket consists of two

dual-core Xeon chips that are paired into a multi-chip module (MCM). In order for

a socket to communicate with other parts of the system, it is attached to a common

30

Core Intel Intel AMD IBM Sun
Architecture Core2 Nehalem Barcelona PowerPC 450 Niagara2

superscalar superscalar superscalar dual issue dual issueType
ooo† ooo ooo in-order in-order

ISA x86 x86 x86 PowerPC SPARC
Threads/Core 1 2 1 1 8

Process 65nm 45nm 65nm 90nm 65nm
Clock (GHz) 2.66 2.66 2.30 0.85 1.16
DP GFlop/s 10.7 10.7 9.2 3.4 1.16
L1 D-cache 32KB 32KB 64KB 32KB 8KB

private L2 cache — 256KB 512KB — —

Xeon Xeon Opteron Blue Gene/P UltraSparc
Socket E5355 X5550 2356 Compute T5140 T2+

Architecture Clovertown Nehalem Barcelona Chip Victoria Falls
Cores/Socket 4 (MCM) 4 4 4 8

shared 2×4MB
last-level cache (shared by 2)

8MB 2MB 8MB 4MB

memory HW HW HW HW Multi-
parallelism prefetch prefetch prefetch prefetch Threading

Xeon Xeon Opteron Blue Gene/P UltraSparc
System E5355 X5550 2356 Compute T5140 T2+

Architecture Clovertown Nehalem Barcelona Node Victoria Falls
Sockets/SMP 2 2 2 1 2

NUMA — X X — X
DP GFlop/s 85.3 85.3 73.6 13.6 18.7
DRAM Pin 21.33(read) 42.66(read)

Bandwidth (GB/s) 10.66(write)
51.2 21.33 13.6

21.33(write)
Flop:Byte DP Ratio 2.66 1.66 3.45 1.00 0.29
DRAM Size (GB) 16 12 16 2 32

FBDIMM- DDR3- DDR2- DDR2- FBDIMM-DRAM Type
667 1066 800 425 667

System Power (W) § 530 375 350 31‡ 610
Compiler icc 10.0 icc 10.0 icc 10.0 xlc 9.0 gcc 4.0.4

Table 3.1: Architectural summary of evaluated platforms. †out-of-order (ooo). §System
power is measured with a digital power meter while under a full computational load. ‡Power
running Linpack averaged per blade. (www.top500.org)

31

21.33 GB/s (read)

MCH (4x64b controllers)

C
o

re

C
o

re

4MB
L2

C
o

re

C
o

re

4MB
L2

FSB

10.66 GB/s 10.66 GB/s

C
o

re

C
o

re

4MB
L2

C
o

re

C
o

re

4MB
L2

FSB

8 x 667MHz FBDIMMs

10.66 GB/s (write)

(a) Intel Clovertown

(b) Intel Nehalem
(Gainestown)

(e) Sun Niagara2
(Victoria Falls)

(c) AMD Barcelona

(d) IBM Blue Gene/P

DRAM

Core

Cache

Figure 3.1: Hardware configuration diagrams for every architecture in our study.
While the Blue Gene/P is single socket, all the other platforms are dual socket.
These diagrams are courtesy of Samuel Webb Williams.

32

northbridge chip, also known as a memory controller hub (MCH), via a 10.66 GB/s

frontside bus (FSB). This northbridge provides access to the caches of other sockets,

DRAM memory, and other peripherals.

This type of older frontside bus architecture severely limits both system scalabil-

ity and memory performance. All memory and cache coherency traffic must travel

through the northbridge, which quickly becomes a bottleneck as core counts are

increased. The one positive aspect of the architecture is that it provides uniform

memory access (UMA), which makes threaded programming easier. Programmers

do not have to concern themselves with varying memory access times since every core

will require the same time to access any memory location. However, this is meager

compensation for the significant performance penalty resulting from the FSB.

Our study evaluates a Sun Fire X4150 dual-socket platform, which contains two

MCMs with dual independent busses. The chipset provides the interface to four fully

buffered DDR2-667 DRAM (FBDIMM) channels, each with two DIMMs. Combined,

they can deliver an aggregate read memory bandwidth of 21.33 GB/s. Each core may

activate all four channels, but rarely attains peak memory performance due to the

limited FSB bandwidth and the coherency protocol that consumes the FSB.

3.1.2 Intel Xeon X5550 (Nehalem)

The recently released Nehalem, shown in Figure 3.1(b), is the successor to the

Intel “Core” architecture and represents a dramatic shift from Intel’s previous multi-

processor designs. Unlike the frontside bus architecture employed on the Clovertown,

the Nehalem adopts a modern multisocket architecture. Specifically, memory con-

trollers have been integrated on-chip, thus requiring an inter-chip network. The re-

sultant QuickPath Interconnect (QPI) handles access to remote memory controllers,

coherency, and access to I/O.

For the programmer, this change comes at a price. With the advent of on-chip

memory controllers, a discrete northbridge is no longer needed, and DRAM can be

attached directly to a socket. Consequently, accessing memory on a remote socket is

now significantly more expensive than retrieving data from local DRAM. This type of

newer architecture design is therefore non-uniform memory access (NUMA). These

33

machines require the programmer to properly map memory pages to the requesting

socket’s DRAM while also minimizing remote memory accesses. The details of how

this is done is discussed in Section 4.2.1. Nevertheless, the dramatic improvement

in the memory performance of NUMA machines over the older FSB approach more

than justifies any required code modifications.

Two other architectural innovations were incorporated into Nehalem: two-way

simultaneous multithreading (SMT) and TurboMode. Two-way SMT allows two

hardware threads to run concurrently on a single core. This allows for a better

utilization of core resources, and, to some extent, better hiding of memory latency.

The other feature, TurboMode, allows one core to operate faster than the set clock

rate under certain workloads. On our machine, TurboMode was disabled due to its

inconsistent timing behavior.

The system in this study is a dual-socket 2.66 GHz Xeon X5550 (Gainestown)

with a total of 8 cores. Each dual-threaded core contains a 32KB L1 data cache

and a 256KB unified L2 cache. An 8MB L3 cache is also shared by all the cores on

the same socket. Each socket integrates three DDR3 memory controllers that can

provide up to 25.6GB/s of DRAM bandwidth to each socket.

3.1.3 AMD Opteron 2356 (Barcelona)

The Opteron 2356 (Barcelona), visualized in Figure 3.1(c), was AMD’s initial

quad-core processor offering. It is similar to the Nehalem in that it is a NUMA

architecture with integrated memory controllers and the HyperTransport (HT) inter-

chip network that serves the same purposes as Intel’s QuickPath. However, unlike

Nehalem, Barcelona does not support SMT.

Superficially, Nehalem, Clovertown, and Barcelona all implement a very similar

core microarchitecture. Each Opteron core contains a 64KB L1 cache and a 512MB

L2 victim cache. In addition, each chip instantiates a 2MB L3 victim cache shared

among all four cores. Each socket of the Barcelona includes two DDR2-667 memory

controllers and a single cache-coherent HT link to access the other socket’s cache

and memory; thus delivering 10.66 GB/s per socket, for an aggregate peak NUMA

memory bandwidth of 21.33 GB/s for the quad-core, dual-socket Sun X2200 M2

34

system examined in our study.

3.1.4 IBM Blue Gene/P

Unlike the other architectures used in this work, IBM’s Blue Gene/P solution

(shown in Figure 3.1(d)) was tailored and optimized for ultrascale (up to 220 cores)

supercomputing. To that end, it was optimized for power efficiency and cost ef-

fectiveness while maintaining a conventional programming model. Our single-socket

Blue Gene/P processor is comprised of four, dual-issue PowerPC 450 embedded cores.

Each core runs at a relatively slow 850MHz, includes a highly associative 32KB

data cache, and has a 128-bit fused multiply add (FMA) SIMD pipeline (known as

double hummer). In addition to several streaming prefetch buffers, each chip in-

cludes a shared 8MB L3 cache and two 128-bit interfaces each to 1GB of 425MHz

DDR DRAM. This provides each socket with 13.6GB/s of DRAM bandwidth for its

13.6 GFlop/s of performance.

We see in Table 3.1 that Blue Gene/P sacrifices clock rate, peak computation rate,

memory bandwidth, and memory capacity for an order of magnitude improvement

in system power. While the rack-mounted servers in this study consume more than

300W of power, each Blue Gene/P compute node requires a mere 31W. This can

be partially attributed to the fact that our Blue Gene/P is the only single socket

platform in our study, but it is still a substantial power savings. For this work,

we only examine the performance of one Blue Gene/P compute node configured in

shared memory parallel (SMP) mode.

3.1.5 Sun UltraSparc T2+ (Victoria Falls)

The Sun “UltraSparc T2 Plus” presents an interesting departure from mainstream

multicore chip design. As seen in Figure 3.1(e), the system is a dual-socket × 8-core

SMP that is often referred to as Niagara2 or Victoria Falls. Rather than depending

on four-way superscalar execution, each of the eight strictly in-order cores supports

two groups of four hardware thread contexts (referred to as Chip MultiThreading or

CMT) — providing a total of 64 simultaneous hardware threads per socket. Assuming

there are no floating point unit or cache conflicts, each core may issue up to one

35

instruction per thread group. The CMT approach is designed to tolerate instruction,

cache, and DRAM latency through fine-grained multithreading. In actuality, the

multithreading may hide instruction and cache latency, but may not fully hide DRAM

latency.

Our study examines the Sun UltraSparc T5140 with two T2 processors operating

at 1.16 GHz. Each core only has a single floating-point unit (FPU) that is shared

among 8 threads. The UltraSparc was primarily designed for transaction processing,

so the FPU does not support fused-multiply add (FMA) nor double precision SIMD

functionality.

As for the memory hierarchy, each socket’s 8 cores have access to a private 8KB

write-through L1 cache and a shared 4MB L2 cache via an on-chip crossbar switch.

Victoria Falls has no hardware prefetching, and software prefetching only places

data into the L2. Each L2 cache is also fed by two dual-channel 667 MHz FB-

DIMM memory controllers that deliver an aggregate bandwidth of 32 GB/s per

socket (21.33 GB/s for reads and 10.66 GB/s for writes). Although the peak pin

bandwidth of Victoria Falls is higher than any of the x86 architectures, its peak flop

rate per socket is lower than even BGP.

3.2 Consistent Scaling Studies

To ensure our multicore scaling experiments are consistent and comparable across

the wide range of architectures in Section 3.1, we exploit affinity routines to first

utilize all the hardware thread contexts on a single core, then scale to all the cores

on a socket, and finally use all the cores across all sockets. Some architectures, such

as the Intel Clovertown, do not do this by default because they wish to exploit the

second socket’s bandwidth early. These platforms were remapped to adhere to the

thread affinity policy just described.

This approach to thread affinity compels us to exhaust all the available resources

on a given part of the chip before utilizing any new hardware. For instance, for

multi-threaded architectures like Nehalem and Victoria Falls, we always fully utilize

all the hardware threads on a single core before scaling to multiple cores. Similarly,

on the multi-socket architectures, we always populate all the cores on a single socket

36

before including the second socket; this prevents us from exploiting a second socket’s

memory bandwidth until the first socket’s bandwidth is maximized.

This approach to the problem of thread affinity has two main benefits. First,

it is a simple policy that can be implemented across any multicore chip. However,

the real beauty of this approach is that, outside of cache effects, we do not expect

to see superlinear scaling results. This makes our performance results much more

comprehensible. In contrast, if we scaled from one core to two cores by employing

the second socket, performance could more than double initially, but then flatten as

the entire system’s cores are utilized.

Another problem that we had to address was the wide deviation in hardware

thread counts across the architectures introduced in Section 3.1. Given that Victoria

Falls supports 128 threads, it was obviously not realistic to show data for every thread

count. Instead, we chose to scale the threads in powers of two. This is effective

because all our machines have a power of two number of threads on a core, cores

on a socket, and sockets. However, some newer processors do not always conform

to this design. For instance, the recently released six-core AMD Opteron [1] forces

us to modify our power of two thread scaling strategy. One way to deal with this

problem is to scale in powers of two for as long as possible, and then have the final

data point utilize all the cores on the chip. In the case of the six-core Opteron, this

would mean collecting data for 1, 2, 4, and 6 cores.

We note that in our study, we never oversubscribed threads to cores. Specifically,

the number of software threads was always less than or equal to the number of

available hardware threads on a core, socket, or system– but never more than this

number. While oversubscribing threads is an interesting direction in future research,

we believe that this would likely cause performance degradation because of the time

sharing between software threads.

3.3 Parallel Programming Models

Having explained both the hardware and the thread mapping policy employed

in our evaluation, we now turn our attention to software, and specifically parallel

programming models. We wish to select an appropriate programming model that

37

maximizes the performance of our cache-coherent shared memory multicore machines.

However, more than that, the chosen programming model should be able to best

exploit future multicore machines as well. We anticipate that on these future mul-

ticore platforms, several changes will occur. It is likely that both the number of

sockets and the number of cores on a socket will continue to scale. The total memory

capacity per socket will grow relatively slowly, though– at least until advances like

chip stacking take place [37, 44]. As a result, stencil grids will likely be weakly scaled

(i.e. the grid size grows proportionally to the number of sockets or cores) at the

node level, but effectively strongly scaled within a node (i.e. the grid size remains

constant). Instead of focusing on node level scaling, this thesis will focus on good

performance within a node. Thus, we need to ensure that our chosen programming

model will help us perform effective intra-node strong scaling. The drawback of

strong scaling is that different architectures support varying numbers of hardware

threads, and thus will receive different amounts of work per thread. Unfortunately,

insufficient work per thread can cause performance degradation, so we will set our

workload to be large enough to avoid this issue.

In this section, we discuss three common programming models and their ap-

plicability to structured grids. For shared memory programming, the two most

common models are POSIX threads (Pthreads) [51] and Open Multi-Processing

(OpenMP) [39]. If we chose to use a distributed memory programming model, by far

the dominant paradigm would be the Message Passing Interface (MPI) [46]. There

are also hybrid programming models that combine Pthreads or OpenMP with MPI,

but these incorrectly assume that adding MPI to a threaded stencil kernel is relatively

straightforward. In the end, we selected Pthreads for reasons explained below.

3.3.1 Pthreads

Pthreads is a set of C language programming types and procedure calls to support

parallelism on shared memory machines. The created threads run within a UNIX

process, and are fairly lightweight since they only replicate enough resources so as to

run as independent streams of instructions [51].

There are several advantages to using Pthreads over other programming models.

38

(a)
Shared memory

subgrid distribution

G
G
G
G

G G G G

G
G
G
G

G G G G

G
G
G
G

G G G G

G
G
G
G

G G G G

G G G G
G
G
G
G

G G G G

G
G
G
G

G
G
G
G

G G G G

G G G G

G
G
G
G

G
G
G
G

G
G
G
G

G G G G

G G G G

G
G
G
G

G G G G

G G G G
G
G
G
G

(b)
Distributed memory
subgrid distribution

Figure 3.2: The figures above display the shared and distributed memory subgrid
distributions for a 2D grid that will have a 5-point stencil (in red) sweep over it
by four cores. The non-grey points reflect the data processed by each of the four
cores, while the grey points along the exterior represent the boundary values of the
problem. In addition, ghost cells, which store either boundary conditions or duplicate
needed data from other subgrids, are marked with a “G”. In (a), the shared memory
layout has all the processor subgrids stored contiguously in memory, without any
replication. In contrast, (b) shows the distributed memory layout, which not only
has disjoint processor subgrids, but also redundant data in each subgrid.

The major advantage that Pthreads holds over OpenMP is explicit control of the

number of threads created and their affinity. This is important, as the default thread

mapping on a system may not result in the desired allocation of threads to sockets,

as detailed in Section 3.2.

For multicore chips, Pthreads is also usually preferable to MPI due to its lower

memory overhead. There are two main reasons for this reduced memory footprint.

First, as we see in Figure 3.2, the shared memory model of the 2D grid in (a) does not

require data replication, while the distributed memory model in (b) requires addi-

tional ghost cells to store needed data from other subgrids. While the 2D grid shown

in (b) already has a non-trivial proportion of ghost cells, the problem becomes even

worse with 3D grids due to the increased surface-to-volume ratio. Thus, the need

for ghost cells certainly increases the memory requirements for MPI over Pthreads.

Moreover, managing Pthreads requires fewer system resources and less state infor-

mation than heavyweight MPI processes. Consequently, Pthreads typically performs

better than MPI in these scenarios.

39

3.3.2 OpenMP

OpenMP is an Application Programming Interface (API) that can be inserted

into C or Fortran code to create shared memory parallelism. From the programmer’s

standpoint, OpenMP is relatively easy to use because the compiler handles much of

the parallelism. The most fundamental OpenMP construct is the parallel region. By

using compiler directives to declare that a certain region of code should be paral-

lelized, the compiler will create a certain number of OpenMP threads to execute the

code.

For our purposes, OpenMP has two major drawbacks, neither of which we were

able to fully address. The first is lack of complete control over the number of threads

run in a parallel region. Usually, the number of threads created can be controlled by

the programmer, but it is possible that the compiler sets the thread count, and this

default thread count can vary depending on the OpenMP implementation [39]. The

OpenMP model believes that the compiler should make the final decision on thread

count, to the dismay of experienced programmers.

The second, and possibly larger problem with OpenMP is the lack of locality

control. When OpenMP threads are spawned for a parallel region, the programmer

has no knowledge or control over where in the multicore chip each of these threads is

actually running. Ideally, the mapping of subgrids to threads should be such that the

number of cells requiring data from remote sockets is minimized. However, depending

on how the OpenMP compiler maps subgrids to threads, a significant amount of

needless inter-socket communication may occur, creating large performance penalties.

While OpenMP is simpler to use than either Pthreads or MPI, we decided not

to use it because it ceded too much control to the compiler. The programmer has

no control over thread affinity and not enough control over thread count. These are

critical parameters if we wish to get the best possible performance across a wide

variety of multicore platforms.

3.3.3 MPI

MPI is a message passing library that, combined with C or Fortran, has be-

come the de facto standard for distributed memory programming [46]. It is certainly

40

portable and relatively efficient, but it does have significant drawbacks when used

on multicore machines. As seen in Figure 3.2, distributed memory models like MPI

require extra ghost cells in order to perform local calculations. This adds extra

memory overhead. Moreover, MPI makes it very difficult to perform optimizations

like thread blocking, which we describe in Section 4.1.2. Essentially, thread blocking

performs a block-cyclic decomposition of the grid, so that each thread or process will

receive multiple subgrids from different locations in the overall grid. This optimiza-

tion allows architectures like Victoria Falls, which supports 8 hardware threads per

core, to gain a performance benefit using Pthreads. However, due to the disjoint

memory spaces of MPI processes, we would again require extra ghost cells around

each subgrid, making this optimization all but impossible.

Another issue with MPI is that its processes are fairly heavyweight, requiring non-

trivial amounts of information about both program resources and execution state. In

addition, it often creates system buffers to store messages that are about to be sent

or have just been received. An MPI process running on every core of a multicore

machine would consume a non-trivial amount of system resources. This problem is

further exacerbated on manycore architectures or multicore architectures that sup-

port multiple hardware threads on a core.

Finally, for most people, MPI is harder to program in than either Pthreads or

OpenMP due to the explicit communication commands that are required. This in

itself is not the reason we avoided MPI– due to the reasons cited above, we felt that

it was unlikely to achieve the performance of Pthreads on multicore architectures.

However, if everything else were equal, programmer productivity would be a factor

in our decision making.

3.4 Programming Languages

The advantage of Pthreads over other programming models is substantial enough

that our choice of programming language was dictated by it. The two program-

ming languages that we considered were C and Fortran. From a programmability

standpoint, Fortran is a better fit for stencil codes because of its support for true

multidimensional array indexing. However, there are only a few Pthreads implemen-

41

tations for Fortran [23, 25], and they are not widely available, so we chose C instead.

At a secondary level, C also allows for pointer manipulation, which we used when

executing multiple sweeps over a grid.

3.5 Compilers

The choice of compiler plays a significant role in the effectiveness of certain op-

timizations as well as overall performance. Our goal was to choose the compiler

that, given appropriate compiler flags, would generate the fastest code. The cho-

sen compilers are listed in the last row of Table 3.1. For the x86 platforms, we

found that icc generates superior code to gcc, since it can often automatically

perform SIMDization (discussed in Section 4.4.2) and register blocking (detailed in

Section 4.4.1). In fact, for the compute-intensive 3D 27-point stencil, we observed

up to a 23% improvement from using icc instead of gcc [13]. As a result, we have

used the icc compiler across all our x86 machines, including the AMD Barcelona.

However, the more bandwidth-limited the kernel, the less icc’s advantage. For ex-

ample, the memory-intensive 3D 7-point kernel showed minimal, if any, performance

difference between the two compilers.

Now we shift our attention to the non-x86 architectures. On the Blue Gene/P,

IBM’s xlc compiler was really the only choice available, so we utilized it. Finally,

we did have a choice between gcc and suncc on the Sun Victoria Falls architecture,

but we found that gcc usually compiled faster and generated better code.

For each platform, we read through the list of available optimization flags for our

chosen compiler and selected the ones that were best suited to stencil codes. There

was minimal exploration of these flags, however. This is an area of future work.

3.6 Performance Measurement

For all our collected results, we report the median performance over five trials to

ensure consistency. Between each trial, we attempt to flush the cache by performing

a simple vector operation over an array that is larger than the size of the cache. This

prevents later trials from speeding up due to a warm cache. We have observed that

42

Respects time Problem size- Kernel-
Unit to solution independent independent

Seconds X — —
Depends

GFlop/s
on kernel

X X

GStencil/s X X —

Table 3.2: A comparison of different possible units for reporting stencil performance re-
sults. Ideally, we would like a unit that is both problem size and kernel independent, while
respecting the time to solution.

the Blue Gene/P are very reproducible, with all five trials typically falling within

1% of the median value. The x86 architectures also show little variation, as most of

the trials fall within 2% of the median. The Victoria Falls results did result in more

outliers, but three of the five trials were usually within a few percent of the median.

Generally speaking, the Blue Gene/P and the x86 architectures were very consistent.

Victoria Falls results were less reproducible, but by reporting the median value, this

effect was somewhat mitigated.

When choosing the best metric for presenting our performance results, we sought

a unit that would be independent of architecture, problem size, and kernel, while

also respecting the time to solution. The units that we considered are shown in

Table 3.2. Given that time is our ultimate metric of performance, “seconds” could

be an appropriate unit. Upon closer examination, though, we see that it is dependent

on both problem size and kernel; this precludes us from making broader statements

about stencil code performance.

Another potential metric is “GFlop/s” (billions of floating point operations per

second). This seems like a good metric, especially given that most high performance

computing (HPC) results are presented this way. There are many benefits of this

unit– it is problem size independent, kernel independent, and we can compare the

results directly to the peak computational rate of the machine. This is, in fact, likely

the best unit for presenting the 7-point stencil and Helmholtz kernel results. How-

ever, for the 27-point stencil results, the common subexpression elimination (CSE)

optimization (from Section 4.4.3) causes a major problem. CSE alters the number

of flops performed per grid point, and thus it makes it possible to hasten the time to

43

solution while decreasing the GFlop rate. Thus, the time to solution is not respected.

The final unit from Table 3.2, “GStencil/s” (billions of stencils per second), does

respect the time to solution in all cases. Moreover, it is also independent of problem

size. However, unlike the GFlop rate, it does not allow for direct comparisons between

different kernels (like the 7-point and 27-point stencils).

Ultimately, we decided that for the Helmholtz kernel results in Chapter 9, the

best unit would be GFlop/s, since we do not perform CSE for this kernel. For the

3D 27-point stencil results in in Chapter 8, we instead use GStencil/s, since it is

vital that our metric respect the time to solution. Similarly, the 3D 7-point stencil

results in Chapter 7 are also presented in GStencil/s, given that the chapter is laid

out analogously to the 27-point stencil chapter. This is despite the fact that we do

not perform the CSE optimization for the 7-point stencil.

We will also compare our performance results to machine performance limits, in-

cluding the percentage of peak attainable bandwidth or in-cache performance. These

metrics allow us to understand how much of the platform’s resources we are utiliz-

ing. However, these units are not designed to make raw performance comparisons

between machines.

3.7 Summary

Thus far, we have established our experimental setup, which has included hard-

ware, software, and data collection. Still, this is only a prelude to the actual stencil

experiments, results, and analysis, which will be presented in the following chapters.

44

Chapter 4

Stencil Code and Data Structure

Transformations

In this chapter, we introduce source-level optimizations that are designed specif-

ically for stencil codes. These optimizations can roughly be divided into four cate-

gories:

1. In Section 4.1, we discuss how we perform a hierarchical decomposition of

the stencil problem. This serves multiple purposes. First and foremost, by

breaking down the problem into subgrids that can be mapped onto threads, the

problem is then parallelized for running on our multicore platforms. Moreover,

by properly choosing the size of these subgrids, we can also achieve better cache

locality. Finally, by performing unroll-and-jam within the inner loop, we can

make the best use of our available registers and functional units.

2. Section 4.2 considers the question of where to place the grid data for best

performance. The largest concern in this regard is ensuring that the needed

grid data is on local DRAM, and we specify how we do this. We also discuss

how we alter the data layout in cache so that conflict misses are minimized.

3. Stencil codes are often bound by memory bandwidth, so in Section 4.3 we

introduce two methods to deal with this problem. One optimization increases

our effective memory bandwidth, while the other drastically reduces the amount

of memory traffic needed for out-of-place stencil calculations.

45

+Y

+Z

(b)
Decomposition of a core
block into thread blocks

(c)
Decomposition of a thread
block into register blocks

(a)
Decomposition of the grid
into a chunk of core blocks

RY RX
RZ

CY

C
Z

CX

TY TX

NY

N
Z

NX

+X
(unit stride) TY

C
Z

TX

Figure 4.1: A hierarchical decomposition of the grid in order to preserve locality
at each level of the memory hierarchy. This diagram is courtesy of Samuel Webb
Williams.

4. Finally, for compute-intensive stencils or platforms with sufficient bandwidth,

we address the problem of maximizing in-core performance in Section 4.4. The

optimizations in this section include loop unrolling in different dimensions,

exploiting short vector instructions, and reducing the flop count by eliminating

redundant computations.

While the register blocking optimization is mentioned in two of these categories,

the rest are placed into the one that we thought was most applicable. These opti-

mizations are also discussed in [12] and [13].

4.1 Problem Decomposition

In Sections 3.3 and 3.4, we have already discussed why we have chosen C with

Pthreads as our programming model. However, we have not discussed what opti-

mizations would be applied nor how the stencil problem would be partitioned so as

to run on multicore architectures. To this end, we have written a variety of sten-

cil code generators that feature a three-level geometric decomposition strategy, as

visualized in Figure 4.1. This multi-level decomposition simultaneously implements

parallelization, NUMA-aware allocation, cache blocking, and loop unrolling, yet does

46

not change the original grid data structure. Note that the nature of out-of-place sten-

cil iterations implies that all blocks are independent and can be computed in any

order. This greatly facilitates parallelization, but the size of the resultant search

space does complicate tuning.

4.1.1 Core Blocking

As pictured in Figure 4.1(a), the coarsest decomposition that we perform is core

blocking. The entire grid of size NX×NY ×NZ is partitioned in all three dimensions

into smaller core blocks of size CX×CY ×CZ, where X is the unit stride dimension,

and the strides increase monotonically in the Y and Z directions. The dimensions of

the core blocks can then be tuned for best performance.

The introduction of core blocks serves two main purposes. First, it parallelizes the

problem, so that each core (or hardware thread when multiple threads are supported

per core) can process its share of core blocks. In order to get the best performance,

the number of core blocks is set to be a multiple of the number of cores. This is

possible because the grid dimensions and the core counts are always constrained to

be a power of 2; this allows the grid to be divided equally so that none of the cores

are left idle. Second, core blocks also facilitate cache blocking. If we reduce the size

of a core block, we can change our traversal through the grid so that several adjacent

planes are kept in cache concurrently. This will allow us to get maximal data reuse

before the data is evicted from cache. In terms of the three C’s model of classifying

cache misses [24], cache blocking helps in reducing capacity misses.

While smaller core blocks may result in fewer cache capacity misses, they may

also cause NUMA issues that will be discussed shortly. Therefore, we group adjacent

core blocks together into chunks of size ChunkSize, where all the core blocks within

a chunk are processed by the same subset of threads. In Figure 4.1(a), for instance,

ChunkSize equals 4. Each of these chunks is then assigned to the cores in a round-

robin fashion.

There are competing forces involved in the best choice of ChunkSize. When

ChunkSize is large, the chunk will occupy a longer contiguous set of memory ad-

dresses. Therefore, there is a good chance that different data needed by multiple

47

threads will get mapped to the same set in cache, causing a conflict miss (in the

three C’s model of cache misses [24]). The positive aspect of having a large con-

tiguous set of memory is that there are fewer memory pages that will have data

from multiple sockets. This should reduce inter-socket communication, and therefore

diminish NUMA effects.

In contrast, when ChunkSize is small, there is a lower chance that memory ad-

dresses will be mapped to the same set in cache, and therefore fewer conflict misses.

The drawback of having fewer core blocks in a chunk is that the likelihood of a mem-

ory page having data from two different sockets is increased. Consequently, NUMA

effects are magnified. We therefore tune ChunkSize to find the best tradeoff of these

two competing effects.

4.1.2 Thread Blocking

For architectures where multiple hardware threads per core are supported, namely

the Nehalem and Niagara2 machines in our study, a middle level of decomposition

may provide additional benefit. This second decomposition level further partitions

each core block into a series of thread blocks of size TX × TY × CZ, as shown in

Figure 4.1(b). Core blocks and thread blocks are the same size in the Z (least unit

stride) dimension– this is the dimension that is least important for preserving locality,

so it was left unchanged. As a result, when TX = CX and TY = CY , there is only

one thread per core block.

The main benefit of thread blocking stems from the fact that stencil calculations

require data not just from the point that is being written to, but from adjacent

points as well. We can localize a given core’s computation by having all of its

hardware threads process the same core block. Consequently, when one thread needs

neighboring data from outside its own thread block, there is a good chance that the

adjacent thread block is being computed by a thread on the same core. This data

sharing between threads helps reduce capacity misses in the core’s shared caches.

This optimization could potentially benefit both the Nehalem and Niagara2 ma-

chines, but for this study it was only applied to the latter. This is because the

Niagara2 has many more threads per core (8 versus Nehalem’s 2) as well as a much

48

smaller L1 cache (8 KB versus Nehalem’s 32 KB). This combination makes it likely

that thread blocking can provide a performance boost on the Niagara2, but it is

much less clear whether it will help on Nehalem.

There are two concerns about thread blocking that the programmer needs to

address. First, since the data sharing among a core’s threads is critical, it is important

to keep the threads in-sync. If the work among threads is not properly load balanced,

or if the threads run for a long time without any synchronization, then some of the

threads may get ahead of the others, causing a loss of data sharing among threads.

In our case, we made sure that each hardware thread on a machine received the

same number of grid points to process by setting dimensions and thread counts to

be powers of 2. However, we only performed synchronization at the end of the entire

computation; there was no additional synchronization after a certain number of core

blocks had been completed. Despite the cost of synchronization, this might provide

better performance and is a topic of future work.

The second concern resulting from thread blocking is the additional parameters

involved and the resultant increase in the search space size. Specifically, on Niagara2,

the number of thread blocks per core block was fixed to be 8, since the architecture

supports 8 threads per core. Accordingly, the size of the parameter space without

thread blocking will be multiplied by the number of (TX, TY) pairs that fall under

this constraint. In order to keep the search space tractable, both TX and TY

are powers of 2. For our study, we had the luxury of searching through all valid

combinations of TX and TY , although the search time was significantly longer. The

searched parameter spaces will be discussed further in Section 7.2.

4.1.3 Register Blocking

Figure 4.1(c) shows the final decomposition, which partitions each thread block

into register blocks of size RX × RY × RZ. The dimensions of the register block

indicate how many times the inner loop has been unrolled and jammed (see Fig-

ure 4.2) in each of the three dimensions. By tuning for the best register block size,

we can make the best use of the system’s available registers and functional units.

This optimization will be discussed in further detail in Section 4.4.

49

for (k=0; k < nz; k++) {
 for (j=0; j < ny; j++) {
 for (i=0; i < nx; i++) {
 B[i,j,k] = 2.0 * A[i,j,k];
 }
 }
}

for (k=0; k < nz; k++) {
 for (j=0; j < ny; j++) {
 for (i=0; i < (nx-1); i=i+2) {
 B[i,j,k] = 2.0 * A[i,j,k];
 B[i+1,j,k] = 2.0 * A[i+1,j,k];
 }
 for (; i < nx; i++) {
 B[i,j,k] = 2.0 * A[i,j,k];
 }
 }
}(a)

The original code for multiplying
every element in 3D grid A by 2

and storing the result in 3D grid B.

(b)
The modified code has been both

loop unrolled once and jammed. Some
“clean up” code has also been inserted.

Figure 4.2: Code showing the loop unroll and jam transformation. Both versions
of the code are equivalent, but (b) may make better use of registers and functional
units. While the code shown is only loop unrolled in the X-dimension, it is possible
to unroll it in any or all of the three dimensions. Unroll and jam is used in the
register blocking optimization.

4.2 Data Allocation

The previous section, and specifically Figure 4.1, have detailed which threads will

be processing which parts of the stencil grid. However, the layout of the grid array,

both in DRAM and in cache, can greatly affect performance. For instance, on NUMA

architectures, the data needed by a given socket may be located on a different socket’s

DRAM. However, accessing remote DRAM is typically a very expensive operation.

To address this problem, we implemented a NUMA-aware allocation that minimizes

inter-socket communication and maximizes memory controller utilization.

A second data layout issue arises when a given thread needs two data points

that both map to the same set in cache. Depending on the cache associativity and

replacement policy, one of these points may be evicted, causing a conflict miss. Un-

fortunately, the evicted point will need to be retrieved from DRAM again, requiring

a much longer access time and causing more memory traffic. This motivates our use

of array padding.

4.2.1 NUMA-Aware Allocation

Our stencil code allocates the source and destination grids as separate large arrays.

On NUMA systems that implement a “first touch” page mapping policy, a memory

50

NX

(unit-stride)

padding

NZ

Figure 4.3: A visual representation of the array padding data structure transforma-
tion. By adding a tuned padding amount to the unit-stride dimension of the grid,
the memory layout of the grid can be altered so as to minimize cache conflict misses.

page will be mapped to the socket where it is initialized. Näıvely, if we let a single

thread fully initialize both arrays, then all the memory pages containing those arrays

will be mapped to the socket that particular thread is running on. Subsequently, if

we used threads across multiple sockets to perform array computations, the threads

not on the same socket as the initializing thread would perform expensive inter-socket

communication to retrieve their needed data.

Fortunately, these NUMA issues can be sidestepped. Since our decomposition

strategy has deterministically specified which thread will update each array point,

a better alternative is to let each thread initialize the points that it will later be

processing. This NUMA-aware allocation correctly pins data to the socket tasked to

update it. This optimization is only expected to help when we scale from one socket

to multiple sockets, but without it, performance on memory-bound architectures

could easily be cut in half.

4.2.2 Array Padding

The second data allocation optimization that we utilized is array padding. Some

architectures have relatively low associativity shared caches, at least when compared

to the product of threads and cache lines required by the stencil. On such computers,

conflict misses can cause the eviction of needed data, thereby adding to the overall

memory traffic and causing significant memory latency. To avoid these pitfalls, we

51

pad the unit-stride dimension of our arrays (NX ← NX + padding), as shown in

Figure 4.3. The padded portion of the array is not computed over – it is merely

used to alter the memory layout and avoid conflict misses. This array padding

optimization is the only data structure change that we consider in our study.

4.3 Bandwidth Optimizations

For stencils with low arithmetic intensities, the 7-point stencil being the most

obvious, memory bandwidth is a valuable resource that needs to be managed ef-

fectively. We therefore introduce software prefetching to hide memory latency (and

thereby increase effective memory bandwidth) and the cache bypass instruction to

dramatically reduce overall memory traffic.

4.3.1 Software Prefetching

The x86 architectures have hardware stream prefetchers that can recognize both

unit-stride and strided memory access patterns. When these patterns are detected,

successive cache lines are fetched without first being demanded. However, hard-

ware prefetchers have two major drawbacks. First, they will not cross memory page

boundaries. For machines with 4 KB pages, this can be as little as 512 consecutive

doubles. Moreover, hardware prefetchers may produce extraneous cache line requests

when there are discontinuities in the memory access pattern, such as if the core blocks

divide the grid in the unit-stride dimension.

In contrast, software prefetching, which is available on all cache-based processors,

is not precluded by either limitation. However, it only requests a single cache line

at a time. In our case, we tune for two software prefetching parameters. First, by

changing the number of software prefetch requests, we vary the number of cache

lines to be retrieved. Additionally, we also adjust the proper look-ahead distance in

order to effectively hide memory latency. If both parameters are properly tuned, the

effective memory bandwidth of the machine can be increased.

52

4.3.2 Cache Bypass

On write-allocate architectures, a write miss will result in the allocation of a cache

line and a read from main memory to populate its contents. However, for stencil codes

performing Jacobi (out-of-place) iterations, we are only concerned with the write

value being written back to DRAM; the read itself is unnecessary since that data is

left unused. Therefore, in SSE (discussed further in Section 4.4.2) we can use the

movntpd instruction to get rid of these extraneous reads. For Jacobi iterations using

two grids, we can eliminate 1
3

of the overall memory traffic by removing this cache line

allocation. This corresponds to a 50% improvement in arithmetic intensity, which, if

we are bandwidth bound, can also increase performance by up to 50%! Unfortunately,

this optimization is not supported on either Blue Gene/P or Niagara2.

4.4 In-core Optimizations

For stencils with higher arithmetic intensities, of which the 27-point stencil is a

good example, computation can often become a bottleneck. To address this issue,

we perform register blocking and reordering to effectively utilize a given platform’s

registers and functional units. On the x86 architectures and Blue Gene/P, we also

perform explicit SIMDization to achieve better computational performance. Finally,

across all architectures, we can perform common subexpression elimination to reduce

the total flop count.

4.4.1 Register Blocking and Instruction Reordering

After tuning for bandwidth and memory traffic, it often helps to explore the space

of inner loop transformations to find the fastest possible code. One such transfor-

mation is unroll and jam, which is explained in Figure 4.2. Essentially, unroll and

jam allows multiple points to be concurrently executed in the inner loop, possibly

allowing for better utilization of registers and functional units. Register blocking

takes unroll and jam one step further by applying it in each of the three spatial

dimensions. Therefore, the dimensions of a register block (RX, RY , and RZ, shown

in Figure 4.1(c)) are precisely the loop unroll factors in the X, Y , and Z dimen-

53

sions. Compilers might make this transformation automatically, but if the heuristic

to decide the best register block size is poor, then the quality of the generated code

will also suffer. Our code generator needs to be portable, so we do not rely on any

compiler to do register blocking well.

For stencil codes, having larger register blocks will typically reduce the total

number of loads performed. This is because stencil computations require data from

adjacent points in addition to the point being written to. Hence, the points sur-

rounding the register block are also needed in order to properly compute each point

inside the block. As the size of the register block grows, the ratio of points around the

surface of the register block to the points in the register block (the surface-to-volume

ratio) drops. As a result, larger blocks will, on average, need to load a given point

less often than smaller blocks.

However, having a register block the size of the entire grid is non-sensical due

to register pressure. Specifically, when there are more live variables in the inner

loop than available registers, some of the data is “spilled” to cache. Accessing cache

memory is significantly more expensive than accessing registers, so this will cause a

serious performance penalty.

Our code generator can create code for arbitrary size register blocks, as well as

perform limited instruction reordering. These register blocks then sweep through

each thread block. As will be discussed in Chapter 5, register blocking is an opti-

mization that will be incorporated into our stencil auto-tuner. However, since register

blocking requires actual code generation, rather than a simple runtime parameter, it

will increase the size of the code and the resultant executable. Still, this should be

a worthwhile tradeoff, since we can make the best use of the available registers and

functional units while avoiding register spills.

4.4.2 SIMDization

The x86 platforms and Blue Gene/P both support Single Instruction Multiple

Data (SIMD) instructions, which allows a single instruction to process multiple dou-

ble precision words simultaneously. These double precision words are usually stored

in short, typically 128-bit vector registers. For compute-intensive codes, this can

54

Legal
and
fast

Alignment 16B 8B 16B 8B 16B

Legal
but

slow

x86 SIMD

Legal
and
fast

Alignment 16B 8B 16B 8B 16B

Illegal

Blue Gene/P SIMD

Figure 4.4: A visualization of the legality and performance of SIMD loads on x86 and
Blue Gene/P. Both architectures use 128-bit registers, which can store two double
precision words (shown as lavender squares). On both architectures, 16 Byte-aligned
loads are legal and fast. However, for unaligned (8 Byte-aligned) loads, x86 can
perform them, albeit slowly, while Blue Gene/P doesn’t allow them at all.

often achieve better computational performance.

Some compilers, but not all, can take the portable C code produced by our code

generator and automatically SIMDize it. In order to avoid depending on the compiler,

we created several instruction set architecture (ISA) specific variants that produce

explicitly SIMDized code. This was done through the use of intrinsics, which are

C language commands that get expanded by the compiler into inlined assembly in-

structions. On x86, we used Streaming SIMD Extensions 2 (SSE2) intrinsics [50],

while for Blue Gene/P, double hummer intrinsics [48] were employed. If the com-

piler fails to SIMDize the code, these versions can deliver significantly better in-core

performance. As one might expect, though, this transformation will have a limited

benefit on memory-bound stencils like the 7-point.

In order to use these SIMD intrinsics properly, we needed to ensure that our

double-precision data was properly aligned. For both x86 and Blue Gene/P, the best

way to populate the 128-bit registers is by loading data that is aligned to a 16-Byte

boundary in memory. These loads will always be legal and relatively fast. On x86

architectures, it is also legal to load from data aligned to an 8-Byte boundary, but

these unaligned loads will be slower. On Blue Gene/P, unaligned loads are not even

legal. These different cases are diagrammed in Figure 4.4. Due to alignment issues

associated with SIMD, the array padding optimization discussed in Section 4.2.2 is

55

(c)
Each shaded plane

represents a temporary sum
 of the plane’s corner points

+Y

+Z

+X
(unit stride)

+Y

+Z

+X
(unit stride)

+Y

+Z

+X
(unit stride)

(b)
Each shaded plane

represents a temporary sum
 of the plane’s edge points

(a)
The 27-point stencil shown
as three adjacent planes.

The center point being
written to is in red.

Figure 4.5: A graphic representation of common subexpression elimination for the
27-point stencil. The sum edges * and sum corners * temporary variables from the
code in Figure 4.6 are visualized in (b) and (c), respectively.

not utilized for SIMD code; the padding we perform is for proper alignment only.

From a programmer productivity standpoint, SIMDization is highly unproduc-

tive, as it requires a complete rewrite of the code. Moreover, SIMD code is not

portable; SSE code will only run on x86 architectures, while double hummer code

will run exclusively on Blue Gene/P. As a result, we wrote separate code generators

for both x86 and Blue Gene/P.

4.4.3 Common Subexpression Elimination

Our final optimization involves identifying and removing common expressions

within a register block. This common subexpression elimination (CSE) reduces or

eliminates redundant flops, but may produce results that are not bit-wise equiva-

lent to the original implementation due to the non-associativity of floating point

operations.

For the 3D 7-point stencil, there is very little opportunity to identify and eliminate

common subexpressions. Moreover, the 7-point stencil is usually bandwidth-limited,

so reducing the flop count may be of little value anyway. Hence, this optimization

was not performed, and 8 flops are always performed for every point.

The 3D 27-point stencil, however, presents such an opportunity. Consider Fig-

56

ure 4.5(a). The näıve 27-point stencil implementation will perform 30 flops per

stencil. However, as we iterate through the X-dimension within a register block, we

can create several temporary variables of sums that will be reused, as seen in Fig-

ures 4.5(b) and (c). Actual code for this transformation is shown in Figure 4.6 for the

case where the register block’s X-dimension (parameter RX in Figure 4.1(c)) equals

2. The left panel, displaying näıve code, performs 30 flops per point. However, it

contains redundant computation that can be removed. For instance, the value of the

variable sum corners 1 is computed twice in the left panel. By computing it only

once in the right panel, and then using that value in multiple places, the right panel

performs 29 flops per point. As RX becomes larger, more redundant computation

is eliminated, and thus the flops per point drops, with an asymptotic lower limit of

18 flops/point. However, as stated in Section 4.4.1, if the register block becomes too

large, then register spills become an issue.

Disappointingly, neither the gcc nor icc compilers were able to apply CSE au-

tomatically for the 27-point stencil. This was confirmed by examining the assem-

bly code generated by both compilers; neither one reduced the flop count from 30

flops/point. As seen in Figure 4.6, the common subexpressions only arise when the

loop unroll factor is at least two. Thus, a compiler must loop unroll before trying

to identify common subexpressions. However, even when we explicitly loop unrolled

the stencil code, neither compiler was able to exploit CSE. It is unclear whether the

compilers lacked sufficient information to perform this algorithmic transformation or

are simply not capable of doing so.

4.5 Summary

Thus far, we have laid out the stencil-specific optimizations that will be used to

tune stencil performance in later chapters. However, we have not yet mentioned how

to combine these optimizations into a stencil auto-tuner, nor what parameter values

these optimizations can take. These will be discussed in the following chapter.

57

for (k=1; k <= nz; k++) {
 for (j=1; j <= ny; j++) {

 for (i=1; i < nx; i=i+2) {
 next[i,j,k] =

 alpha * (now[i,j,k])

 +beta * (
 now[i,j,k-1] + now[i,j-1,k] +

 now[i,j+1,k] + now[i,j,k+1] +

 now[i-1,j,k] + now[i+1,j,k]
)

 +gamma * (

 now[i-1,j,k-1] + now[i-1,j-1,k] +
 now[i-1,j+1,k] + now[i-1,j,k+1] +

 now[i,j-1,k-1] + now[i,j+1,k-1] +

 now[i,j-1,k+1] + now[i,j+1,k+1] +
 now[i+1,j,k-1] + now[i+1,j-1,k] +

 now[i+1,j+1,k] + now[i+1,j,k+1]
)

 +delta * (

 now[i-1,j-1,k-1] + now[i-1,j+1,k-1] +
 now[i-1,j-1,k+1] + now[i-1,j+1,k+1] +

 now[i+1,j-1,k-1] + now[i+1,j+1,k-1] +

 now[i+1,j-1,k+1] + now[i+1,j+1,k+1]
);

 next[i+1,j,k] =
 alpha * (now[i+1,j,k])

 +beta * (
 now[i+1,j,k-1] + now[i+1,j-1,k] +

 now[i+1,j+1,k] + now[i+1,j,k+1] +

 now[i,j,k] + now[i+2,j,k]
)

 +gamma * (

 now[i,j,k-1] + now[i,j-1,k] +
 now[i,j+1,k] + now[i+1-1,j,k+1] +

 now[i+1,j-1,k-1] + now[i+1,j+1,k-1] +

 now[i+1,j-1,k+1] + now[i+1,j+1,k+1] +
 now[i+2,j,k-1] + now[i+2,j-1,k] +

 now[i+2,j+1,k] + now[i+2,j,k+1]

)
 +delta * (

 now[i,j-1,k-1] + now[i,j+1,k-1] +
 now[i,j-1,k+1] + now[i,j+1,k+1] +

 now[i+2,j-1,k-1] + now[i+2,j+1,k-1] +

 now[i+2,j-1,k+1] + now[i+2,j+1,k+1]
);

 }
 }

}

for (k=1; k <= nz; k++) {
 for (j=1; j <= ny; j++) {

 for (i=1; i < nx; i=i+2) {
 sum_edges_0 =

 now[i-1,j,k-1] + now[i-1,j-1,k] +

 now[i-1,j+1,k] + now[i-1,j,k+1];
 sum_edges_1 =

 now[i,j,k-1] + now[i,j-1,k] +

 now[i,j+1,k] + now[i,j,k+1];
 sum_edges_2 =

 now[i+1,j,k-1] + now[i+1,j-1,k] +

 now[i+1,j+1,k] + now[i+1,j,k+1];
 sum_edges_3 =

 now[i+2,j,k-1] + now[i+2,j-1,k] +

 now[i+2,j+1,k] + now[i+2,j,k+1];

 sum_corners_0 =
 now[i-1,j-1,k-1] + now[i-1,j+1,k-1] +

 now[i-1,j-1,k+1] + now[i-1,j+1,k+1];

 sum_corners_1 =
 now[i,j-1,k-1] + now[i,j+1,k-1] +

 now[i,j-1,k+1] + now[i,j+1,k+1];

 sum_corners_2 =
 now[i+1,j-1,k-1] + now[i+1,j+1,k-1] +

 now[i+1,j-1,k+1] + now[i+1,j+1,k+1];

 sum_corners_3 =
 now[i+2,j-1,k-1] + now[i+2,j+1,k-1] +

 now[i+2,j-1,k+1] + now[i+2,j+1,k+1];

 center_plane_1 =

 alpha * now[i,j,k] +
 beta * sum_edges_1 + gamma * sum_corners_1;

 center_plane_2 =

 alpha * now[i+1,j,k] +
 beta * sum_edges_2 + gamma * sum_corners_2;

 side_plane_0 =
 beta * now[i-1,j,k] +

 gamma * sum_edges_0 + delta * sum_corners_0;

 side_plane_1 =
 beta * now[i,j,k] +

 gamma * sum_edges_1 + delta * sum_corners_1;
 side_plane_2 =

 beta * now[i+1,j,k] +

 gamma * sum_edges_2 + delta * sum_corners_2;
 side_plane_3 =

 beta * now[i+2,j,k] +

 gamma * sum_edges_3 + delta * sum_corners_3;

 next[i,j,k] =

 side_plane_0 + center_plane_1 + side_plane_2;
 next[i+1,j,k] =

 side_plane_1 + center_plane_2 + side_plane_3;
 }

 }

}No CSE CSE

Figure 4.6: Code for a single grid sweep using a 27-point stencil. Both panels have
code that has been loop unrolled once in the unit-stride (X) dimension. However,
the left panel does not exploit common subexpression elimination (CSE), while the
right panel does. For instance, the value of the variable sum corners 1 is computed
twice in the left panel, but only once in the right panel. The variables sum edges *

in the right panel are graphically displayed in Figure 4.5(b), while the variables
sum corners * are shown in Figure 4.5(c).

58

Chapter 5

Stencil Auto-Tuning

In Chapter 4, we introduced many transformations for improving the performance

of stencil codes. In order to take full advantage of these optimizations, we developed

an automatic tuning (or auto-tuning) environment [12] that combines them so as to

achieve good performance.

This chapter delves into more detail about our automatic tuner. We begin by

introducing the concept of auto-tuning and explaining its usefulness in Section 5.1.

We then talk about why domain-specific auto-tuners are preferable to general-purpose

compilers in Section 5.2.

However, there are challenges to creating an auto-tuner. In Section 5.3, for in-

stance, we discuss the problem of taking domain-specific optimizations (like the ones

introduced in Chapter 4) and creating actual code. Our solution was to develop

PERL code generators that produce C code variants encompassing our stencil opti-

mizations. A second challenge is dealing with parameter space issues– how to select

the specific parameters for each optimization, whether to tune offline or online, and

how to find a high-performing parameter configuration from a vast configuration

space. Section 5.4 details each of these topics. This approach allows us to achieve

high performance across significantly varying architectures.

59

5.1 Auto-tuning Overview

Now that we have introduced stencil-specific optimizations in Chapter 4, we need

to ask ourselves two questions. First, do we even need to tune our stencil codes

for performance on multicore architectures? We will show in Chapters 7–9 that

the answer is almost always yes. Then, as this is the case, how do we effectively

utilize these optimizations? This is not an easy task. The specific stencil kernel,

the problem size, and the choice of platform can all affect which optimizations, or

specific optimization parameters, will be effective. From a productivity standpoint,

it is non-sensical to create a distinct hand-tuned stencil code given the breadth of

architectures, stencil kernels, and problem sizes. A better solution is to build an

automatic tuner, or auto-tuner, so as to achieve performance portability.

The programmer does need to expend a non-trivial one-time cost to build an

auto-tuner, but this cost is easily recovered in the portability the auto-tuner offers.

Not only does automatic tuning allow us to run well on today’s multicore platforms,

it should also allow us to execute our stencil code efficiently on future architectures

that support similar programming models. Moreover, even if we change the stencil

kernel or the grid size, we should still be able to find a good parameter configuration

for the new problem.

The concept of auto-tuning is not new. The current production-quality auto-

tuners include FFTW [20] and SPIRAL [41] for spectral methods and PHiPAC [?]

and OSKI [54] for linear algebra. More recently, the FLAME project [18] and the

thesis of S. Williams [59] have designed auto-tuners with multicore platforms in

mind– the former in the area of dense linear algebra, the latter for several different

kernels.

These auto-tuners, and auto-tuners in general, are created through three basic

steps. First, the programmer needs to determine which domain-specific code trans-

formations are legal and potentially useful. This may be performed in conjunction

with an application scientist. Once these optimizations are enumerated, the second

question is how to generate the code corresponding to these optimizations. This can

be difficult, especially given the difficulty of combining certain optimizations, and

the possible need for correctness checking. Finally, we need to explore the resulting

60

parameter space efficiently so as to find a high-performing configuration.

We will be discussing each of these steps in turn.

5.2 Auto-tuners vs. General-Purpose Compilers

The first step in building an auto-tuner is the enumeration of the optimization

space, which, for the case of stencils, we already discussed in Chapter 4. Currently,

almost all auto-tuners are specific to one “motif” (in the parlance of the Berkeley

View [2]) in order to keep the potential transformations tractable. In our case,

we were able to identify relevant stencil transformations through a combination of

architectural and domain-specific knowledge. This knowledge was then incorporated

into our auto-tuner, thereby creating a type of domain-specific compiler.

In contrast to our auto-tuner, a general-purpose compiler needs to be able to

accept and optimize any valid code. From the list of transformations that it can

verify as legal, a general-purpose compiler then has to select the ones that will be

useful in stencil codes. This is a difficult problem, and one that is made harder by

the fact that the compiler may not have all the information it needs. For instance,

the size of the problem, which might only be known at runtime, may dictate which

transformations are best. Unfortunately, the general-purpose compiler will not have

this information, and thus will resort to the use of simple, but often unreliable,

heuristics.

The situation is even worse when the compiler cannot check the legality of a given

optimization. In all likelihood, this eliminates the more complex ISA-specific, data

structure, and algorithmic transformations. All of them require broader code modi-

fications that currently cannot be verified through program analysis. Unfortunately,

these optimizations often also provide the best speedups.

5.3 Code Generation

The first major decision in creating our stencil auto-tuner is deciding how to

expose the functionality to the user. Previous auto-tuning efforts like ATLAS (Au-

tomatically Tuned Linear Algebra Software, designed for dense linear algebra) [55]

61

PERL Code Generator #
Optimization

1 2 3 4 5 6 7 8

x86 SIMD X X
BGP SIMD X X
Thread Blocking X X
CSE X X X X

Table 5.1: This table details the optimizations covered by each of the eight PERL code
generators used for tuning the 7-point and 27-point stencil kernels.

and OSKI (Optimized Sparse Kernel Interface, for sparse linear algebra) [54] have

relied on libraries. In general, linear algebra is amenable to a library interface be-

cause there is a fairly limited set of common operations that are performed. These

include multiplying a pair of matrices, solving a system of equations, or finding the

eigenvalues of a matrix. In addition, it is fairly simple for these library routines to

handle matrices of different dimensions.

In contrast, stencil codes are generally not amenable to a library interface due to

the wide variety of stencil shapes, sizes, dimensionalities, and array counts. Further-

more, the numerical operations performed in the stencil can vary from application to

application. Writing a separate stencil subroutine for every common stencil would

be both unrealistic and impractical, since it would require a unique auto-tuner for

each stencil instantiation. Moreover, specifying the points of a stencil to a library is

non-trivial, especially when multiple arrays are involved. As a result, we abandoned

the library interface that is common to linear algebra and opted for a more general

code generator approach instead.

We now need to determine how best to generate the actual stencil code that corre-

sponds to our stencil optimizations. To make matters simpler, some of the optimiza-

tions from Chapter 4 can be performed without code generation; they only require

that a runtime parameter is passed into the auto-tuner. However, all the bandwidth

and in-core optimizations, as well as the NUMA-aware optimization, do require ac-

tual code creation. In order to avoid doing painful and error-prone manual C code

development, we instead developed a PERL script that creates ISA-independent C

code. This code generator can create many code variants that vary parameters like

62

register block dimensions or prefetching types. We also wrote several specialized code

generators for the drastic code changes resulting from SIMDization, thread block-

ing, and CSE. More specifically, x86 SIMD and Blue Gene/P SIMD intrinsics are

different, so a distinct code generator was created for each one. In addition, the

CSE optimization can be applied to either SIMD or thread blocked code in order to

potentially increase performance. As a result, we also created code generators for

SIMD or thread blocked code either with or without the CSE optimization. Eight

different code generators were created in all– the optimizations encompassed by each

one are listed in Figure 5.1. While developing all these code generators was likely

still more productive than hand-tuning for each architecture, trying to accommodate

non-portable optimizations and the CSE optimization certainly reduced programmer

productivity.

It should be noted that the NUMA-aware optimization, discussed in Section 4.2.1,

is unique in that it does not change the actual timed stencil functions. Rather, it

alters how the grid data is initialized. In our code, this is performed through a

simple C preprocessor flag. In addition, while all of the PERL code generators that

we utilized can create many equivalent stencil functions, we still need the ability to

access the desired code variant in order to measure its performance. To this end, we

created a table of function pointers in the C code. We can choose the function we

wish to run by properly indexing into this table.

Despite these code generators, the question of when different transformations can

be applied, while still preserving correctness, lingers. Our stencil auto-tuner does

not have any semantic knowledge of the stencil, and thus relies on the programmer

to verify all code correctness via a separate DEBUG macro. However, this is neither

practical nor scalable. Any new transformations will again need to be checked by

the programmer before inclusion into the auto-tuning system.

On more developed auto-tuning systems like FLAME and SPIRAL, correctness

checking is built in. In the case of SPIRAL, a domain-specific language called SPL

represents the specific DSP (Digital Signal Processing) transform to be executed. A

compiler then manipulates the abstract syntax tree (AST) of the SPL expression so

as to explore different algorithms and, ultimately, generate target code. This type of

system automatically performs correctness checking, since the relatively simple set

63

of rules followed by the compiler have all been previously verified.

Ultimately, we would also like our stencil auto-tuner to have a formal framework

that similarly allows for algorithm exploration and program verification. The prelim-

inary work of Kamil et al [26] has shown promising results in fulfilling this mission.

Their work uses a domain-specific transformation and code generation framework,

combined with an automated search, to replace stencil kernels with their optimized

versions. The framework’s front-end can parse a straightforward Fortran 95 stencil

expression and generate the corresponding abstract syntax tree. A transformation

engine can then take this AST and manipulate it by applying many of the auto-

tuning optimizations that we introduced in Chapter 4. Finally, the backend code

generation engine can again convert the auto-tuned AST back into actual code. This

is akin to the work done in FLAME and SPIRAL, where auto-tuning and verifica-

tion are performed hand-in-hand. However, this framework is initial work and is still

considered to be proof-of-concept at this point.

Similar to how our PERL code generators are one level higher than basic hand-

tuning, this type of formal stencil auto-tuning framework is one level higher than

our PERL code generators. Ideally, the framework should be able to capture any

new optimizations through proper manipulation of the AST and the backend code

generaton engine. This would allow for all of the optimizations to be captured and

verified in the same framework. As mentioned earlier, we needed to create new

PERL code generators whenever drastic code changes were introduced, so the formal

framework should be more productive as well. The work of Kamil et al is a promising

proof of concept, but much of it still falls into future work.

5.4 Parameter Space

Now that we have identified effective stencil-specific optimizations and generated

the appropriate code for each of them, we still need to identify appropriate opti-

mization parameters, decide which optimizations will be searched online and which

ones offline, and then determine how to search quickly to find a high-performing

configuration.

64

5.4.1 Selection of Parameter Ranges

Our first decision was choosing the parameter values associated with each opti-

mization. Optimizations such as NUMA-aware, explicit SIMDization, cache bypass,

and CSE are mere booleans, indicating whether the optimization is employed or not.

These were simple. However, for the other optimizations, our goal was to ensure that

the optimal configuration for every benchmarked architecture was captured within

the chosen range of parameter values. Given the great diversity in our set of plat-

forms, we therefore allowed ourselves a very broad range of parameter values, which

will be detailed in Tables 7.1 and 9.2.

Of course, a large range of parameters for each optimization creates a large num-

ber of total parameter configurations. We attempted to limit the amount of time

spent tuning through the use of a clever search algorithm that we introduce in Sec-

tion 5.4.3. Despite this, the search time required on a given architecture varied from

a few minutes to several hours. For this study, we afforded ourselves the luxury of

spending up to a day tuning on a single node, since large scale stencil applications

may be scaled to thousands of nodes and run many times. At this level of parallelism,

it is vital to ensure that the software is as efficient as possible. In addition, much of

this thesis is a proof-of-concept for designing future multicore stencil auto-tuners, so

it is just as important to understand how to find a good parameter configuration as

it is to actually find it. Consequently, the extra tuning time was justified.

5.4.2 Online vs. Offline Tuning

For our study, all of our optimizations are applied offline, but with a complete

problem specification available to the auto-tuner. For production stencil auto-tuners,

a full specification of the problem may not always be needed; this really depends on

how much tuning will need to be re-done each time the problem changes. However,

it does make sense to determine which optimizations could be shifted offline so as to

minimize the time required for runtime search. This is the approach taken by many

numerical libraries, including ATLAS [55]. ATLAS attempts to provide portably

optimal linear algebra software by tuning itself during installation on a given machine.

It then builds the libraries based on these tuning results. Essentially, extra time is

65

spent benchmarking for portability during installation so that parameter searching

can be avoided during runtime. This is a tradeoff that most software users are happy

to make.

For stencil codes, it is logical to adopt a similar philosophy of trying to perform

as much tuning offline as possible. However, this depends on how long we wish

to spend performing install time tuning and how large a performance database we

wish to maintain. At the most basic level, we could measure the performance of an

“Optimized Stream” benchmark that could serve as one upper bound on performance.

Many stencil kernels are bandwidth-bound, so if we find that we are achieving some

pre-determined fraction of the Optimized Stream performance, we can then halt

tuning. In order to set upper bounds on performance. we will implement an actual

Optimized Stream benchmark in Section 6.3.

If we wished to do further offline benchmarking, at the expense of keeping a

larger performance database, then we could also set a computational limit for certain

common stencils (e.g. the 3D 7-point and 27-point stencils). Many sweeps of each

common stencil can be benchmarked over a small problem size that fits into some

pre-determined level of a core’s cache. In this scenario, all the data should be read in

only once, and then should stay resident in cache, thereby avoiding additional DRAM

or inter-socket bandwidth. Thus, the code will likely be bound by computation. By

varying the register block dimensions to determine the one that best utilizes the core’s

registers and functional units, we will have not only discovered the best register block

dimensions for each stencil, but also another upper bound on performance. Moreover,

the optimal register block dimensions for a stencil from this experiment should be

the best dimensions for a grid of any size, although this advantage will only be

observed when the code is computation-bound. Again, we actually do benchmark

the in-cache performance of the 7-point and 27-point stencils in Section 6.4 so as to

bound performance.

5.4.3 Parameter Space Search

The parameter ranges chosen for each of the stencil optimizations are shown

in Tables 7.1 and 9.2. They are individually tractable, but the parameter space

66

generated by combining these optimizations results in a combinatorial explosion.

Even if some (or many) of these parameter searches are performed offline, we would

still like a clever algorithm to minimize the total time required. This section discusses

various methods for dealing with this issue, including the one used in Chapters 7–9.

Exhaustive Search

The näıve approach to handling the number of generated parameter configura-

tions is to search everything– thus, an exhaustive search. In the case of the GSRB

Helmholtz auto-tuner, where we don’t perform any SIMD, cache bypass, thread

blocking, or CSE optimizations, this may be a possible, if not practical, approach.

For the 7-point and 27-point stencil auto-tuners, the number of optimization config-

urations can quickly escalate into the millions without thread blocking, and into the

billions with it. Clearly, an exhaustive search is no longer feasible– tuning on a single

node would take far too long, while tuning on a supercomputer with many identical

nodes would consume too many resources.

For all three kernels, a major difficulty lies in the fact that the optimizations are

not independent of one another; they can often interact in subtle ways that vary

from platform to platform. Hence, our auto-tuners require a clever search strategy

in order to find high-performing parameter configurations quickly.

Heuristics

One way to prune the search space is through the use of heuristics, or simple rules

based on architectural or compiler models. Many compilers use heuristics to quickly,

if not precisely, tackle NP-hard problems such as register allocation and instruction

scheduling [5, 8].

However, there are some drawbacks to using heuristics. While heuristics can be

used as a blunt tool for shedding obviously poor optimization parameters, they are

often too imprecise for predicting the best parameters. Moreover, they can typically

be applied to only a subset of all the applied optimizations. Thus, further search will

still be needed. In addition, if the underlying model that the heuristic is based on is

flawed, then there is a good chance that the heuristic will be too.

67

Optimization #1 Parameters

O
pt

im
iz

at
io

n
#2

 P
ar

am
et

er
s

Figure 5.1: A visual representation of the iterative greedy search that we used to
find the best parameter configuration. First, the optimizations were ordered. Then,
we searched over all the parameter values for Optimization #1, while keeping the
parameters for Optimizations #2 and #3 fixed. The best-performing parameter was
set as the value for Optimization #1 (represented as a small gold star). The same
is done for Optimization #2, resulting in a second small gold star. Finally, after
completing the search with Optimization #3, the selected parameter configuration
is shown as a large gold star.

We incorporated limited heuristics into the design of our search space. For in-

stance, on machines with hardware prefetchers, the fact that we keep the unit-stride

dimension of our core blocks undivided helps keep the search space size tractable.

However, to avoid pruning any fast-performing configurations, we kept heuristics to

a minimum.

Iterative Greedy Search

Our main method in finding the best configuration parameters was through an

iterative greedy search, also commonly referred to as hill climbing [59]. For this search,

we first fixed the order of optimizations. While there was some expert knowledge

involved in the ordering of optimizations, they were generally ordered by their level

of complexity. If n represents the number of optimizations in our search space, and

consequently the dimension of the search space, then there are also n steps to the

iterative greedy algorithm. For each optimization in our ordered list, we search over

the entire parameter range of that particular optimization while keeping all other

optimization parameters fixed. After we find the best parameter for the current

optimization, we fix that value and proceed to the next optimization. After all

68

n steps are complete, the final configuration is the one that we select. A visual

representation of this method is shown in Figure 5.1.

This iterative greedy search is essentially performing n line searches through

an n-dimensional hypercube. We deem it to be “greedy” because at each step, it

performs the best action locally. If all n optimizations were independent of one

another, this search method would find the global performance maxima. However,

due to subtle interactions between certain optimizations, this usually won’t be the

case. Nonetheless, we expect that it will find a high-performing set of parameters

after doing a full sweep through all applicable optimizations.

In subsequent chapters, the auto-tuning will mostly be conducted using this iter-

ative greedy search. However, as will be explained in Tables 7.2 and 9.3, applying the

iterative greedy search exactly as explained above is not always feasible. For cases

where different code generators are used (e.g. for SIMD, thread blocking, or CSE),

slightly different rules apply which will be explained later.

Machine Learning

Machine learning is a relatively new method for doing parameter space searches

quickly, and for the most part, effectively. The power of machine learning lies in the

fact that, unlike the iterative greedy search, little architectural or domain knowledge

is required. Typically, these algorithms collect data from a random set of config-

urations, which is then used to identify and exploit any relationships between the

input parameters and the output metrics. Machine learning is one of the methods

used in the SPIRAL project for finding the best DSP algorithms. We used a similar

machine learning technique for stencil codes [22], which is discussed in more depth

in Section 10.3. However, actual results will not be included in this thesis.

5.5 Summary

We have now discussed the main components of our auto-tuners, from setting

individual parameter ranges, to then combining optimizations, and finally exploring

the vast resultant parameter spaces. The performance results that we present in

subsequent chapters will reveal how effective these auto-tuners actually are.

69

Chapter 6

Stencil Performance Bounds Based

on the Roofline Model

Before auto-tuning the 7-point and 27-point stencils, we would like to determine

approximate upper bounds on performance for each architecture. These bounds

would not only serve to judge the quality of our tuning, they would also help us

decide when to stop tuning. The Roofline model, described in this chapter, provides

such bounds. In order to properly develop the Roofline model, we will also introduce

an Optimized Stream benchmark that sets an upper bound on memory bandwidth.

6.1 Roofline Model Overview

The Roofline model [59, 58, 57] provides a visual assessment of potential per-

formance and impediments to performance constructed using bound and bottleneck

analysis. Each model is constructed using a communication-computation abstraction

where data is moved from a memory to computational units. This “memory” could

be registers or different levels of cache, but is typically DRAM. Computation, for

our purposes, will be the floating-point datapaths. We use arithmetic intensity as a

means of expressing the balance between computation and communication. Often a

first order model (e.g. DRAM–FP) is sufficient for a given architecture for a range of

similar kernels. However, for certain kernels, depending on the degree of optimiza-

tion, either bandwidth from DRAM or bandwidth from the L3 cache could be the

70

bottleneck. For the purposes of this thesis, we will only use a DRAM–FP Roofline

model.

The Roofline model defines three types of potential bottlenecks: computation,

communication, and locality (arithmetic intensity). Evocative of the roofline analogy,

these are labeled as ceilings and walls. The in-core ceilings (or computation bounds)

are perhaps the easiest to understand. To achieve peak performance, a number of

architectural features must be exploited — thread-level parallelism (e.g. multicore),

instruction-level parallelism (e.g. keeping functional units busy by unrolling and jam-

ming loops), data-level parallelism (e.g. SIMD), and proper instruction mix (e.g. bal-

ance between multiplies and adds or total use of fused multiply add). If one fails to

exploit any of these (through either a failing of the compiler or programmer), the per-

formance is diminished. We define ceilings as impenetrable impediments to improved

performance without the corresponding optimization. Bandwidth ceilings are similar

but are derived from incomplete expression and exploitation of memory-level paral-

lelism. As such we often define ceilings such as no NUMA or no prefetching. Finally,

locality walls represent the balance between computation and communication. For

many kernels the numerator of this ratio is fixed (i.e. the number of floating-point

operations is fixed), but the denominator varies as compulsory misses are augmented

with capacity or conflict misses, as well as speculative or write allocation traffic.

As these terms are progressively added they define a new arithmetic intensity and

thus a new locality wall. Moreover, for each of these terms there is a corresponding

optimization which must be applied (e.g. cache blocking for capacity misses, array

padding for conflict misses, or cache bypass for write allocations) to remove this po-

tential impediment to performance. It should be noted that the ordering of ceilings

is based on the perceived abilities of compilers. Those ceilings most likely not to be

addressed by a compiler are placed at the top.

6.2 Locality Bounds

As previously mentioned, the locality bounds represent the balance between com-

putation and communication. The ideal arithmetic intensities (i.e. the ratio of flops

performed per stencil to DRAM Bytes transferred per stencil) for the three kernels

71

Ideal Arithmetic Ideal Arithmetic
Kernel Intensity w/o Cache Intensity with Cache

Bypass (in Flops/Byte) Bypass (in Flops/Byte)

3D 7-Point Stencil 8/24 = 0.33 8/16 = 0.50
3D 27-Point Stencil (no CSE) 30/24 = 1.25 30/16 = 1.88

3D 27-Point Stencil (with CSE) Varies from 0.75–1.25 Varies from 1.13–1.88
3D GSRB Helmholtz Kernel 12.5/64 = 0.20 Unnecessary

Table 6.1: This table presents the ideal arithmetic intensities for the three kernels
studied in this thesis. The numerator in each fraction represents the actual number
of flops performed per stencil, while the denominator is the idealized number of
Bytes transferred from DRAM for each stencil. This assumes that we only incur
compulsory cache misses when retrieving data from DRAM, because capacity and
conflict misses have been eliminated through our other optimizations. Of course,
this is very difficult to do in practice, and thus these arithmetic intensities serve as
theoretical upper bounds.

studied in this thesis are displayed in Table 6.1. We deem these ratios to be “ideal”

because they assume that only compulsory cache misses are occurring when we re-

trieve data from DRAM. While it is true that we perform optimizations like array

padding and core blocking to eliminate conflict and capacity misses, respectively, in

practice it is very difficult to eliminate them completely. Furthermore, without avail-

able performance counters, it is hard to know exactly how much memory traffic is

being transferred. As a result, the true arithmetic intensity is also somewhat fuzzy,

but we do have some intuition as to the expected range that it falls in. We will

show this range when we present the Roofline models for each architecture, but the

actual performance bounds will be based on the ideal arithmetic intensities shown in

Table 6.1.

For the 27-point stencil with the CSE optimization, recall that the flop count per

stencil can vary from 18 to 30 depending on the dimensions of the best register block.

This was detailed in Section 4.4.3. Due to the wide variance in arithmetic intensity

when using CSE, we will not be using the Roofline model to bound its performance.

Instead, we will use the in-cache performance of the 27-point stencil kernel, which

we will discuss in Section 6.4.

Finally, the Helmholtz kernel is significantly more complex than either the 3D

72

7-point or 27-point stencils. First, it no longer employs a simple Jacobi iteration.

Instead, it uses a Gauss-Seidel Red Black (GSRB) ordering, meaning that it only

writes to every other grid point during a single sweep. Thus, only half the grid points

are updated during a single sweep. The Helmholtz kernel performs 25 flops for every

updated grid point, so we can approximate that 12.5 flops are performed per point.

Second, the memory traffic is more complex as well; the Helmholtz kernel employs

six read grids, as well as one grid that is both read and written. It is true that we are

still performing GSRB ordering, so only half the points are being updated. However,

memory traffic is transferred in units of cache lines, so modifying half of a cache line

still requires that the entire line be written back to DRAM. Consequently, there are

ideally 64 Bytes of memory traffic per point. The resulting arithmetic intensity is

approximately 0.20. Interestingly, the cache bypass optimization does not improve

this kernel’s performance since the same array is both being read and written.

The rest of this chapter will only cover the 3D 7-point and 27-point stencils. The

GSRB Helmholtz kernel will be discussed further in Chapter 9.

6.3 Communication Bounds

In order to set the communication bound for the Roofline models, we created an

“Optimized Stream” benchmark that addresses many of the ceilings in the Roofline

model. This Optimized Stream benchmark is completely analogous to our sten-

cil auto-tuner in that it is auto-tuned using many of the same optimizations we

introduced in Chapter 4 (e.g. array padding, loop unrolling, software prefetching,

SIMDization, and cache bypass). These optimizations are again applied using the

same iterative greedy search that we discussed earlier. The main difference between

the two is that instead of performing 3D stencil computations, the Optimized Stream

benchmark performs floating point multiplies over varying numbers of 1D read arrays,

and writes the result to a varying number of 1D write arrays. However, in order to

avoid having in-core computation become a bottleneck, the number of floating point

operations is kept to a minimum. In addition, the Optimized Stream benchmark

never accesses the same array element twice, so all cache misses are compulsory. As

such, there is no reason to avoid capacity cache misses through core blocking, so this

73

optimization was not utilized in the benchmark.

The best results from the Optimized Stream benchmark for a range of read and

write arrays (per thread) is shown in Figure 6.1. For each platform, we used the

maximum number of hardware threads available. Please note that the plots in Fig-

ure 6.1 are the maximum bandwidths over several different optimizations. The best

bandwidths that we achieved when using only portable C code, SIMD code, or the

cache bypass optimization can be found in Appendix A.

As expected, the plots in Figure 6.1 generally show bandwidths that are below the

DRAM pin bandwidths from Table 3.1. The one exception is Blue Gene/P, whose

pin bandwidth is 13.6 GB/s, even though we show bandwidths up to 21.1 GB/s.

However, these impossibly high bandwidths appear only when there are no read

streams present. While cache bypass is not supported on this architecture, it is

possible that the compiler and/or hardware has changed the program execution so

that data is not actually being written back to DRAM. This needs to be verified with

performance counter data, but, of course, it is impossible to surpass a machine’s

hardware pin bandwidth. Fortunately, we will not being using Optimized Stream

data with zero read streams to bound the performance of any of the kernels in this

thesis.

The Roofline model bandwidth bounds are taken from Appendix A– specifically,

the data points where a single read stream and a single write stream are present per

thread. This essentially mimics the memory access pattern that we perform for the

out-of-place sweeps of the 7-point and 27-point stencils. In order to convert from the

units of GB/s in the Optimized Stream plots to the GFlops/s used in the Roofline

model, we multiplied the bandwidth by the ideal arithmetic intensity of the kernel,

which we calculated in Table 6.1. Again, for the 27-point stencil with CSE, we will

not use the Roofline model to bound performance because of the resulting variability

in arithmetic intensity.

We note that there is a widely distributed “Stream” benchmark that also attempts

to measure the peak sustained memory bandwidth on a given system [35]. Unlike our

Optimized Stream benchmark, it is not auto-tuned, so the final bandwidth numbers

are gathered more quickly, but we do not expect the attained bandwidths to be as

high. Table 6.2 compares the results of the Stream benchmark against our Optimized

74

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Number of Read Streams

Nu
m

be
r o

f W
rit

e
St

re
am

s

Intel Clovertown [8 threads, in GB/s]

0.0

8.0

8.0

8.0

8.0

8.0

8.0

8.0

5.9

7.2

7.5

7.6

7.7

7.8

7.8

7.8

5.9

6.8

7.2

7.4

7.5

7.6

7.6

7.7

5.9

6.6

6.9

7.2

7.3

7.4

7.5

7.5

5.9

6.5

6.8

7.0

7.1

7.3

7.4

7.4

5.9

6.4

6.7

6.9

7.0

7.2

7.2

7.3

5.9

6.3

6.6

6.8

6.9

7.1

7.2

7.2

5.9

6.3

6.5

6.7

6.9

7.0

7.1

7.1

0

2

4

6

8

10

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Number of Read Streams

Nu
m

be
r o

f W
rit

e
St

re
am

s

Intel Nehalem [16 threads, in GB/s]

0.0

35.8

35.9

36.2

36.2

36.3

36.3

36.2

36.1

35.3

35.5

35.5

35.7

35.8

35.9

36.0

33.1

34.1

34.9

35.1

35.1

35.3

35.5

35.6

32.0

33.4

33.8

34.4

34.6

34.9

35.0

35.2

31.8

33.3

32.9

33.5

33.9

34.2

34.4

34.6

31.7

32.3

32.3

33.1

33.4

33.7

34.0

34.2

31.7

31.9

32.4

32.5

32.9

33.2

33.6

33.8

31.6

31.7

31.9

32.2

32.6

33.0

33.3

33.5

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Number of Read Streams

Nu
m

be
r o

f W
rit

e
St

re
am

s

AMD Barcelona [8 threads, in GB/s]

0.0

14.5

14.5

14.5

14.5

14.5

14.5

14.5

16.8

15.2

14.7

13.9

13.3

12.1

12.3

11.1

14.6

13.9

12.8

13.5

13.3

11.9

11.1

12.0

14.6

11.7

12.9

12.9

12.8

10.9

11.9

12.1

12.6

12.7

13.1

12.3

11.1

11.9

12.1

12.0

13.6

12.2

12.1

10.9

11.9

12.1

12.0

12.0

12.9

12.3

10.8

11.9

12.1

12.0

12.1

12.1

13.1

10.5

12.1

12.3

12.1

12.1

12.1

12.2

0

5

10

15

20

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Number of Read Streams

Nu
m

be
r o

f W
rit

e
St

re
am

s

IBM Blue Gene/P [4 threads, in GB/s]

0.0

21.1

19.0

19.3

13.1

11.9

6.8

6.7

9.9

12.8

13.3

12.9

13.6

9.2

8.8

4.1

11.7

11.9

11.8

12.9

12.4

11.8

4.6

10.6

11.9

11.1

12.1

11.7

11.9

6.3

10.7

6.8

11.6

10.7

11.0

11.4

9.3

11.5

9.8

7.6

9.2

10.3

10.8

9.4

10.9

10.3

10.7

7.4

7.0

8.5

7.7

10.4

10.1

10.6

9.6

9.4

6.5

2.4

8.3

9.9

9.8

8.6

8.7

8.1

0

5

10

15

20

25

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Number of Read Streams

Nu
m

be
r o

f W
rit

e
St

re
am

s

Sun Niagara2 [128 threads, in GB/s]

0.0

22.7

21.0

20.9

20.3

20.6

20.6

20.1

33.1

24.9

23.4

21.6

21.7

21.4

21.1

19.7

31.6

26.9

24.5

23.3

22.5

22.1

20.6

20.8

31.5

26.9

25.9

24.0

23.4

21.5

21.7

21.0

29.6

29.0

26.9

25.2

22.9

22.5

21.8

21.3

31.1

29.4

27.0

24.3

23.9

22.8

21.9

21.9

30.5

29.8

25.4

25.4

24.3

23.8

22.4

22.4

32.0

27.5

27.7

25.8

25.0

23.7

23.2

22.2

0

5

10

15

20

25

30

35

Note: These plots only show
the maximum bandwidths

over several different
optimizations, including
SIMD and cache bypass.

The plots showing the
best bandwidth for each

individual optimization are
displayed in Appendix A.

Figure 6.1: The results from the Optimized Stream benchmark for varying numbers
of read and write streams per thread.

75

Best Stream Best Optimized Stream
Platform Copy Performance Copy Performance

Percentage

(in GB/s) (in GB/s)
Improvement

Intel Clovertown 7.14 7.16 0.3%
Intel Nehalem 34.5 35.3 2.1%

AMD Barcelona 14.7 15.2 3.4%
IBM Blue Gene/P 12.2 12.8 4.9%

Sun Niagara2 22.0 24.9 13.3%

Table 6.2: This table presents the performance improvement that we observe when
using the Optimized Stream benchmark over the normal Stream benchmark. Both
benchmarks are measured while performing a simple array copy operation.

Stream benchmark. Both benchmarks perform a simple array copy operation, where

the contents of a single 1D array are copied into a second 1D array of equal length.

This again corresponds to having a single read stream and a single write stream per

thread. We find that our Optimized Stream benchmark consistently outperforms the

Stream benchmark across all the platforms in our study, but the median advantage is

a modest 3.4%. However, on the Sun Niagara2, our auto-tuning does pay significant

dividends, as performance improved by 13.3% over the normal Stream benchmark.

6.4 Computation Bounds

Now that we have placed a communication upper bound on our performance, we

would also like to set a computation bound as well. This will likely be needed for

several of our platforms when running the 27-point stencil, and may be needed for

the 7-point stencil as well.

The Roofline model places several ceilings on computation, including exploiting

full thread-level parallelism, instruction-level parallelism, SIMD, and optimizing the

floating point multiply-add balance. In order to be independent of the compiler, many

of these ceilings are established using information from hardware manuals about

floating point datapaths. This sets a true upper bound on the rate of computation

that a chip can deliver.

However, for this thesis, we wished to place a second, tighter computation bound

76

Best 7-point Stencil Best 27-Point Stencil
Platform In-cache Performance In-cache Performance

(in GStencil/s) (in GStencil/s)

Intel Clovertown 2.61 1.11
Intel Nehalem 3.36 1.19

AMD Barcelona 3.02 0.93
IBM Blue Gene/P 0.29 0.10

Sun Niagara2 1.26 0.60

Table 6.3: This table displays the in-cache performance of both the 7-point and 27-
point stencils. These can serve as computation bounds for our stencil performance.

that takes the quality of the code generated by the compiler into account. As such,

we first chose a small stencil problem that fit into the last-level (largest) cache of

a single socket on each of the systems in our study. The grid dimensions of this

stencil problem were chosen with a long unit-stride dimension and a relatively short

least contiguous dimension so as to avoid having many discontinuities in the memory

access pattern. We then performed at least 100 stencil sweeps over this grid in order

to amortize the initial time needed to retrieve data from DRAM into cache. This

experiment was again auto-tuned, as we performed array padding, core blocking,

register blocking, prefetching, SIMDization, and cache bypass through our usual

iterative greedy search. The computational rate achieved from this experiment should

serve as the “speed-of-light” for the given kernel.

Table 6.3 shows the best in-cache computational rates achieved for both the 7-

point and 27-point stencils. As expected, the 7-point stencil always attains a higher

GStencil rate than the 27-point stencil because it performs far fewer flops per stencil.

In order to convert the 7-point stencil results from GStencil/s to GFlop/s, we merely

need to multiply by 8 flops/stencil. However, performing the same conversion for the

27-point stencil is again complicated by the CSE optimization. The 27-point stencil

results in Table 6.3 include the CSE optimization, so the number of flops performed

per point varies. Consequently, we will only be presenting these results as GStencil/s.

77

6.5 Roofline Models and Performance Expecta-

tions

Using a combination of the Optimized Stream benchmark and a knowledge of

the floating point datapaths for each platform in our study, S. Williams created

the Roofline models shown in Figure 6.2. These models may be used to identify

potential bottlenecks for each architecture. Given an arithmetic intensity, we can

simply scan upward from the x-axis. Performance may not exceed a ceiling until

the corresponding optimization has been implemented. For example, with cache

bypass, the 27-point stencil on Nehalem requires full instruction-level parallelism

(ILP) including unroll and jam, full data-level parallelism using SSE instructions

(SIMDization), and NUMA-aware allocation to have any hope of achieving peak

performance. Conversely, without cache bypass, the 7-point won’t even require full

thread-level parallelism (TLP), that is using all cores, to achieve peak performance.

By combining these Roofline models with a knowledge of each kernel’s arithmetic

intensity and instruction mix, we may not only bound the ultimate performance for

each architecture, but also broadly enumerate the optimizations required to achieve

it. However, please note that the CSE optimization for the 27-point stencil is outside

the scope of our analysis since the arithmetic intensity varies with the register block

size.

6.5.1 Intel Clovertown

The older front side bus (FSB) based Clovertown architecture has similar compu-

tational capabilites to Nehalem and Barcelona, but with signficantly lower memory

bandwidth. As such, both the 7-point and 27-point kernels will be memory-bound.

Interestingly, although the Optimized Stream benchmark time-to-solution is superior

using the cache bypass optimization (implemented with the movntpd instruction), the

observed Optimized Stream bandwidth (based on total bytes including those from

write allocations) is substantially lower than the bandwidth without cache bypass.

This can be clearly observed in Figure A.1 for the data point where a single read

stream and a single write stream are present per thread. Consequently, there are two

78

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2

G
Fl

op
/s

Arithmetic Intensity

 3.0 GFlop/s

 11.1 GFlop/s

1

peak

57%
only add's

full SSE

no SSE
full ILP

no ILP

mul/add balance

full TLP

 2.4 GFlop/s

 8.9 GFlop/s

7-point 27-point

Intel Clovertown

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2

G
Fl

op
/s

Arithmetic Intensity

 16.8 GFlop/s

 49.1 GFlop/s

1

peak

57%
only add's

full SSE

no SSE
full ILP

no ILP

mul/add balance

full TLP

 44.1 GFlop/s

 11.8 GFlop/s

7-point 27-point

Intel Nehalem

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2

G
Fl

op
/s

Arithmetic Intensity

 7.6 GFlop/s

 28.4 GFlop/s

1

peak

57%
only add's

full SSE

no SSE
full ILP

no ILP

mul/add balance

full TLP
 4.6 GFlop/s

 17.1 GFlop/s

7-point 27-point

AMD Barcelona

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2

IBM BlueGene/P

G
Fl

op
/s

Arithmetic Intensity

 4.3 GFlop/s

 7.8 GFlop/s

1

peak

57%
no FMA

full SIMD

no SIMD
full ILP

full FMA

7-point 27-point

1 2 4 8 16 1/8
1/4

1/2

128

64

32

16

8

4

2

Sun Niagara2

G
Fl

op
/s

Arithmetic Intensity

 8.3 GFlop/s

 18.6 GFlop/s

1

peak
50% instructions are FP

25% instructions are FP

12% instructions are FP

7-point 27-point

Legend

Expected range in performance

Expected range in arithmetic intensity
using cache bypass

Expected range in arithmetic intensity
without cache bypass

Performance envelope

Figure 6.2: The Roofline model for each of the architectures in our study. These
diagrams were designed by Samuel Webb Williams [59, 58, 57].

79

bandwidth ceilings shown in the Clovertown Roofline model. The performance up-

shot is that the benefit from exploiting cache bypass on stencil operations is muted to

about 25% instead of the ideal 50%. We expect Clovertown to be so heavily memory-

bound that simple parallelization should be enough to achieve peak performance on

the 7-point stencil, and only moderate unrolling is sufficient for the 27-point stencil.

Clovertown performance should be limited to about 3.0 GFlop/s (0.38 GStencil/s)

and 11.1 GFlop/s (0.37 GStencil/s) for the 7-point and 27-point stencils respectively.

6.5.2 Intel Nehalem

For the 7-point stencil, we expect that Nehalem will ultimately be memory-

bound with or without cache bypass. Given the Optimized Stream bandwidth and

ideal arithmetic intensity, 16.8 GFlop/s (2.1 GStencil/s) is a reasonable performance

bound. To achieve it, some instruction-level parallelism or data-level parallelism cou-

pled with correct NUMA allocation is required. However, as we move to the 27-point

stencil, we observe that Nehalem will likely become compute limited, likely achieving

between 44 and 49 GFlop/s (1.5–1.6 GStencil/s). There is some uncertainty here due

to the confluence of a broad range in arithmetic intensity at a point on the roofline

where computation is nearly balanced with communication. The transition from be-

ing memory-bound to being compute-bound implies that the benefits of cache bypass

will be significantly diminished as one moves from the 7-point to the 27-point stencil.

6.5.3 AMD Barcelona

The Barcelona processor is architecturally similar to the Nehalem but built on a

previous generation’s technology. As a result, we see that although it exhibits similar

computational capability, its substantially lower memory bandwidth mandates that

both stencil kernels will be memory-bound. Barcelona performance should be limited

to 7.6 GFlop/s (0.95 GStencil/s) and 28.4 GFlop/s (0.95 GStencil/s) for the 7-point

and 27-point stencils respectively. However, to achieve high performance on the

latter, SIMD (DLP), substantial unrolling (ILP), and proper NUMA allocation will

be required.

80

6.5.4 IBM Blue Gene/P

Architectures like the chip used in Blue Gene/P are much more balanced, dedicat-

ing a larger fraction of their power and design budget to DRAM performance. This

is not to say they have higher absolute memory bandwidth, but rather the design is

more balanced given the low frequency quad core processors. As we were not able

to exploit the cache bypass optimization on BG/P, we achieve substantially lower

arithmetic intensities than for the x86 architectures. The Roofline model suggests

that if we were able to perfectly SIMDize and unroll the code, we would expect the

7-point stencil to be memory bound, yielding 4.3 GFlop/s (0.54 GStencil/s). On

the other hand, the 27-point stencil should be compute-limited due to the relatively

small fraction of multiplies in the code. We should expect the performance to be

about 7.8 GFlop/s (0.26 GStencil/s), but this may be difficult to achieve given the

limited issue-width and in-order nature of the PPC450 architecture.

6.5.5 Sun Niagara2

Unlike the other architectures in our study, Victoria Falls uses massive thread-

level parallelism (TLP) to express memory-level parallelism. Nonetheless, we expect

that its performance characteristics should be similar to Blue Gene/P in that it will

be memory bound for the 7-point stencil and compute bound for the 27-point stencil,

with performances of 8.3 GFlop/s (1.04 GStencil/s) and 18.6 GFlop/s (0.62 GSten-

cil/s) respectively. Victoria Falls is also similar to Blue Gene/P in that we were

unable to exploit the cache bypass optimization. As multithreading provides an at-

tractive solution to avoiding the ILP pitfall, our primary concern after proper NUMA

allocation is that floating-point instructions dominate the instruction mix on the 27-

point stencil. As such, the Niagara2 Roofline model is shown with computational

ceilings corresponding to various ratios of floating-point instructions. Note that the

SPARC ISA does not support either FMA instructions nor double precision SIMD,

so this simplifies the computational ceilings for Victoria Falls.

81

6.6 Summary

Thus far, we have discussed performance expectations and bounds for the 7-point

and 27-point stencils. The actual results in the following chapters will bear out the

accuracy of these predictions.

82

Chapter 7

3D 7-Point Stencil Tuning

7.1 Description

As discussed in Chapter 2, the 3D 7-point stencil performs 8 flops per point and

ideally transfers either 24 Bytes of DRAM traffic (without cache bypass) or 16 Bytes

(with cache bypass) per point. In the previous chapter, we laid out our expectations

and upper bounds for how this kernel would perform on each of the platforms in our

study. In this chapter, we present the actual performance results that we achieved

after full auto-tuning. We then compare these results against the Roofline models

and the in-cache performance results from Chapter 6.

7.2 Optimization Parameter Ranges

We developed auto-tuners for all three 3D stencil kernels presented in this thesis–

the 7-point stencil, the 27-point stencil, and the GSRB Helmholtz kernel. For each,

we also performed “data-aware” tuning. This means that we selected appropriate

parameter ranges based on a priori knowledge of the problem size. We did not

tune for a generic problem size and then hope that the tuning would be effective

for our given problem. Consequently, for a given optimization, there is a reasonably

high expectation of the optimal parameter value falling within the chosen parameter

range. Moreover, because several of the parameter ranges are large, we explore them

in powers of two.

83

Optimization parameter tuning range by architecture
Category Parameter Name x86 Machines Blue Gene/P Niagara2

CX NX NX {8...NX}
Core Block Size CY {4...NY} {4...NY} {4...NY}

CZ {4...NZ} {4...NZ} {4...NZ}Domain
TX CX CX {8...CX}Decomp Thread Block Size
TY CY CY {8...CY}

Chunk Size {1... NX×NY ×NZ
TX×TY ×CZ×NThreads}

NUMA Aware X N/A XData
Pad by a maximum of: 31 31 31Allocation
Pad by a multiple of: 1 1 1

Prefetching Type {none, register block, plane, pencil}
Bandwidth Prefetching Distance {0...64} {0...64} {0...64}

Cache Bypass X — N/A
RX {1...8} {1...8} {1...8}

Register Block Size RY {1...4} {1...4} {1...4}
In-Core RZ {1...4} {1...4} {1...4}

Explicit SIMDization X X N/A
CSE X X X

Search Strategy Iterative GreedyTuning
Data-aware X X X

Table 7.1: Attempted optimizations and the associated parameter spaces explored by
the auto-tuner for the 3D 7-point and 27-point stencils sweeping over a 2563 problem
(NX,NY,NZ = 256). The parameter names are visually represented in Figure 4.1. For
simplicity, all of the block dimensions and chunk sizes are set to be powers of two, while
the prefetching distances are either zero or a power of two. In addition, all numbers are in
terms of doubles.

84

For both the 3D 7-point and 27-point stencils, we kept a fixed problem size of

2563 (i.e. NX, NY, NZ = 256). Based on this knowledge, we chose the parameter

values in Table 7.1. Several of the parameters, including the ones for the NUMA-

aware, cache bypass, explicit SIMD, and CSE optimizations, are booleans. The other

non-boolean parameters intentionally search over a very wide set of legal values so

that we find the optimal value for every machine. Some of these parameter ranges

do require further explanation, though.

First, we know from Section 3.1.5 that, in lieu of hardware prefetching, Victo-

ria Falls has adopted a unique multithreaded approach to hiding memory latency.

Therefore, we have made several unique tuning range decisions specifically for it. We

know from previous work [28] that hardware prefetchers handle unit-stride accesses

well, but are also severely disrupted when there are discontinuities in the memory ac-

cess pattern. By leaving core blocks undivided in the unit-stride (X) dimension (i.e.

CX = NX) for our other architectures, we expect the hardware stream prefetchers

to remain engaged and effective. However, for Victoria Falls, the lack of a hardware

prefetcher allows us to set CX ≤ NX; the resulting short stanza lengths may actu-

ally result in better performance. Moreover, since Victoria Falls supports 8 threads

per core and has relatively small, low associativity caches, we allow each core block

to contain either 1 or 8 thread blocks (explained in Section 4.1.2). In essence, this

allows us to conceptualize Victoria Falls as either a 128 core machine or a 16 core

machine with 8 threads per core. On the other architectures, in contrast, we always

set the thread block size equal to the core block size. Finally, there are no supported

SIMD or cache bypass instrinsics on Victoria Falls, so only the portable Pthreads C

code was run.

The parameter range of ChunkSize in Table 7.1 also deserves more elaboration.

Recall from Section 4.1 that ChunkSize represents the number of adjacent core blocks

that have been grouped together into a chunk. Each of the core blocks within this

chunk are then processed by the same subset of threads. If ChunkSize becomes too

large, then some threads may not receive any core blocks to process. Consequently,

we limit ChunkSize to values where all threads are still properly load balanced.

Finally, all of the machines in our study support software prefetching. Table 7.1

shows that we vary both the prefetching type and prefetching distance at the source

85

code level. The prefetching type indicates how many software prefetch streams are

in place. If it is set to “register block”, then there is a single software prefetch stream

for the entire register block, regardless of its dimensions. If the prefetching type is

set to “plane” or “pencil”, then every plane or pencil of the register block will have a

software prefetch stream. In these cases, the size of the register block does determine

how many software prefetch streams are in place. It is possible to have too many

software prefetch streams, or to prefetch a distance too far ahead, so both of these

parameters are tunable.

7.3 Parameter Space Search

There are some exceptions to how the iterative greedy search is conducted, and

they are indicated in Table 7.2. As we add optimizations, the columns of Table 7.2

indicate which optimization parameters are already fixed (“F”) and which ones need

to be searched over (“S”). The exceptions occur where “F”’s are absent below the

main “S” diagonal. The first such exception occurs when we SIMDize the code. Since

this optimization requires a complete code rewrite, it causes us to re-adjust some of

the previously fixed parameters. The register blocking and prefetching optimizations

are both involved in the modified inner loop, so these parameters require another

search. In addition, since SIMD code requires proper data alignment, the purpose of

the padding optimization was altered from reducing conflict misses (as described in

Section 4.2.2) to performing proper data alignment. The other parameters were left

unchanged.

The cache bypass optimization, which is only applicable for our x86 machines,

builds upon the SIMDized code. It again searches over the best register block size

and prefetching in order to find the fastest code.

On Victoria Falls, neither the SIMD nor the cache bypass optimization was avail-

able, so instead we performed thread blocking. However, since the thread block

dimensions are directly affected by the size of the core blocks, we searched over the

legal values for both simultaneously. This search took significantly longer than for

core blocking only, but search time was not a constraint in our experiment.

The final optimization, common subexpression elimination (CSE), only applies

86

Optimization Order N
U

M
A

-A
w

ar
e

P
ad

d
in

g

C
or

e
B

lo
ck

in
g

R
eg

is
te

r
B

lo
ck

in
g

P
re

fe
tc

h
in

g

S
IM

D

C
ac

h
e

B
y
p
as

s

T
h
re

ad
B

lo
ck

in
g

C
S
E

Näıve
+NUMA-Aware S
+Padding F S
+Core Blocking F F S
+Register Blocking F F F S
+Prefetching F F F F S

+SIMD (BGP and x86 only) F S F S S S
+Cache Bypass (x86 only) F F F S S F S

+Thread Blocking (VF only) F F S F F S

+Register Blocking, CSE F F F S
+Prefetching, CSE F F F F S

+SIMD, CSE (BGP and x86 only) F S F S S S
+Cache Bypass, CSE (x86 only) F F F S S F S

+Thread Blocking, CSE (VF only) F F S F F S

Table 7.2: The specifics of the iterative greedy search we performed with the 7-point
and 27-point stencil auto-tuners. The optimizations shown in the leftmost column are
applied from top to bottom. As each new optimization is applied, the optimizations labeled
“F” have already had their parameter values previously fixed, while the ones labeled “S”
are currently being searched over. In addition, the row breaks indicate that a new code
generator is being employed due to substantial changes in the stencil code.

to the 27-point stencil, and thus will be described in the following chapter. However,

the CSE optimization essentially caused us to perform a second, smaller iterative

greedy search due to the drastic nature of the optimization.

7.4 Performance

The results from auto-tuning the 7-point stencil across the five architectures we

detailed in Section 3.1 are shown in Figure 7.1. In addition, we placed performance

upper bounds on each platform by taking the minimum of the in-cache performance

87

0.0

0.1

0.2

0.3

0.4

0.5

1 2 4 8

G
St

en
ci

l/s

Cores

Intel Clovertown

0.0

0.5

1.0

1.5

2.0

2.5

1 2 4 8

G
St

en
ci

l/s

Fully Populated Cores

Intel Nehalem

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 4 8

G
St

en
ci

l/s

Cores

AMD Barcelona

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 2 4

G
St

en
ci

l/s

Cores

IBM Blue Gene/P

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 4 8 16

G
St

en
ci

l/s

Fully Populated Cores

Sun Niagara2

Naive

+Explicit SW Prefetching

+Register Blocking

+Core Blocking

+Array Padding

+NUMA-Aware Allocation

+Cache Bypass

+Explicit SIMDization

2nd greedy search

+Thread Blocking

Perf. Limit (blue=comp., red=bandwidth)

Figure 7.1: Individual performance graphs for the 7-point stencil. The performance
limits are set by the minimum of the in-cache performance and Optimized Stream
performance.

88

and the Optimized Stream performance, both of which were discussed in Chapter 6.

The näıve code from which we begin our tuning represents a programmer’s likely

first attempt at coding the 3D 7-point stencil. There is no NUMA-aware data alloca-

tion, array padding, loop unrolling, software prefetching, SIMDization, or cache by-

pass optimization. However, to make the comparison fair, this näıve code is threaded,

not serial. The domain decomposition for this code is performed by dividing the least

contiguous (Z) dimension of the grid equally so that every hardware thread is load

balanced. Thus, the resulting core blocks are left undivided in the contiguous and

middle (X and Y) dimensions.

Unfortunately, we see that the näıve code alone exhibits no parallel scalability

on most of these architectures. This is certainly true for the three x86 machines, as

additional cores do not result in any additional speedup. On the Sun Niagara2, there

is some scalability up to 4 cores, but then the performance drops again at 8 and 16

cores. This is a disturbing trend, as the machines are not taking advantage of the

extra cores available to them. However, this is precisely the reason why auto-tuning

was necessary. The one exception to the scalability trend is the Blue Gene/P, which

does show monotonically improving performance with increasing core count. In this

case, we can still show that auto-tuning allows us to achieve substantially better

performance than the näıve code alone.

7.4.1 Intel Clovertown

The performance of the 7-point stencil on the Intel Clovertown is shown in the

upper left graph of Figure 7.1. As we mentioned previously, the Clovertown is a Uni-

form Memory Access (UMA) machine with an older front side bus architecture. This

implies that the NUMA-aware optimization will not be useful and that the 7-point

stencil kernel will likely be bandwidth-constrained. Indeed, we see that both of these

predictions are true. There is no speedup from the NUMA-aware optimization as we

scale from one socket (four cores) to two (eight cores), and the Optimized Stream per-

formance is less than the in-cache stencil performance. Not only are we bandwidth-

limited, but only bandwidth optimizations produce any speedups on this architecture.

At maximum concurrency, core blocking produces a 1.7× speedup, while the cache

89

bypass optimization improved performance by another 11%. Presumably, in-core

optimizations are ineffective because the machine is already bandwidth-starved.

Clovertown’s poor multicore scaling indicates that the system has rapidly become

memory-bound. Given the snoopy coherency protocol overhead, it is not too sur-

prising that the performance only improves by 38% when scaling from one socket to

two (when both FSBs are engaged), despite the doubling of the peak aggregate FSB

bandwidth.

The Clovertown Roofline model in Figure 6.2 accurately predicts that we will

be heavily bandwidth-bound for the 7-point stencil. Moreover, its predicted upper

bounds of 0.30 GStencil/s (without cache bypass) and 0.38 GStencil/s (with it)

correspond well with the actual performance of 0.29 GStencil/s and 0.32 GStencil/s,

respectively. The discrepancy between the actual results and the predicted upper

bounds is most likely due to the non-compulsory memory traffic transferred during

the stencil computation that we avoided in the Optimized Stream benchmark.

Overall, auto-tuning produced a 1.9× improvement over the performance of the

best näıve code, and it created a similar 1.9× speedup when examining the tuned

performance from one core to all eight cores.

7.4.2 Intel Nehalem

The upper right graph in Figure 7.1 shows 7-point stencil performance on the

Intel Nehalem. If we only examine the näıve implementation, the performance is

fairly constant regardless of core count. This is discouraging news for programmers;

the compiler, even with all optimization flags set, cannot take advantage of the extra

resources provided by more cores.

In order to address this problem, the first optimization we applied was using a

NUMA-aware data allocation. By correctly mapping memory pages to the socket

where the data will be processed, this optimization provides a speedup of 2.5× when

using all 8 cores of the SMP. Subsequently, core blocking and cache bypass also

produced performance improvements of 74% and 37%, respectively. Both of these

optimizations attempt to reduce memory traffic (capacity misses), suggesting that

performance is bandwidth-bound at high core counts. By looking at the Roofline

90

model for the Nehalem (Figure 6.2), we see that this is indeed the case. The model

predicts that if the stencil calculation can achieve the Optimized Stream bandwidth,

while minimizing non-compulsory cache misses, then the 7-point stencil will attain

a maximum of 2.1 GStencil/s (16.8 GFlop/s). In actuality, we achieve 2.0 GSten-

cil/s (15.8 GFlop/s). As this is acceptably good performance, we can stop tuning.

Overall on Nehalem, auto-tuning produced a speedup of 4.9× over the näıve code

at full concurrency, as well as an improvement of 4.5× when comparing the tuned

performance of one core to all eight cores.

Observe that register blocking and software prefetching ostensibly had little per-

formance benefit– a testament to the icc compiler and hardware prefetchers. Re-

member, the auto-tuning methodology explores a large number of optimizations in

the hope that they may be useful on a given architecture–compiler combination. As

it is difficult to predict this beforehand, it is still important to try each relevant

optimization.

7.4.3 AMD Barcelona

In many ways, the performance of the 7-point stencil on Barcelona is very similar

to that of Nehalem. This is not surprising, given the similar architectures. The

Barcelona performance is shown in the middle left graph of Figure 7.1, and we again

see that the näıve implementation shows no parallel scaling at all. However, the

NUMA-aware code increased performance by 115% when both sockets are engaged.

Like on the Nehalem, the core blocking and cache bypass optimizations again

made a large impact. First, core blocking improved performance by 69% at maximum

concurrency. Then, the cache bypass (streaming store) intrinsic reduced memory

traffic by 33%, thus changing the 7-point stencil kernel’s flop:byte ratio (i.e. arith-

metic intensity) from 1
3

to 1
2
. This potential 50% improvement corresponds closely to

the 53% observed performance improvement, thereby confirming the memory bound

nature of the 7-point stencil kernel on this machine.

The Barcelona Roofline model in Figure 6.2 accurately predicts the heavily memory-

bound nature of the 7-point stencil. In addition, its predicted upper bound of

0.95 GStencil/s (7.6 GFlop/s) correlates well with our attained performance of 0.87 GS-

91

tencil/s (6.9 GFlop/s). Overall, auto-tuning served us well on the Barcelona, as it

produced a 5.4× speedup over the best näıve code and a 4.4× speedup when scaling

from a single core to all eight cores.

7.4.4 IBM Blue Gene/P

The performance of the IBM Blue Gene/P node is an interesting departure from

our previous x86 architectures since it is compute-bound, not bandwidth-limited,

for the 7-point stencil. As seen in the middle right graph in Figure 7.1, memory

optimizations like padding, core blocking, or software prefetching make no differ-

ence in performance. Instead, the only optimizations that help performance are

computation-related, like register blocking (3.3× speedup) and SIMDization (1.3×
speedup).

After full tuning of the 7-point stencil, we see a performance improvement of 4.4×
at full concurrency, as well as nearly perfect parallel scaling of 3.9× going from 1 to

4 cores. Moreover, the computation rate now matches the best in-cache computation

rate (shown as a blue line). Thus, we are definitively compute-bound.

Interestingly, the Blue Gene/P Roofline model in Figure 6.2 incorrectly predicts

that the 7-point stencil will be bandwidth-bound, with a performance upper bound

of 0.53 GStencil/s (4.3 GFlop/s). This is an 85% overestimate over our attained

performance of 0.29 GStencil/s (2.30 GFlop/s). The reason for this requires further

exploration, but may likely be explained by the xlc compiler’s inability to generate

quality code and fully utilize the computational capabilities of the Blue Gene/P

chip. This, in turn, causes the 7-point stencil to still be compute-bound instead of

bandwidth-limited. Unlike the Roofline model, the in-cache stencil performance is

dependent on the compiler, which is why its performance matches that of the 7-point

stencil.

We note that unlike the three previous architectures, the IBM Blue Gene/P’s

xlc compiler does not generate or support cache bypass at this time. As a result,

the best arithmetic intensity we can achieve is 0.33 for the 7-point stencil.

92

7.4.5 Sun Niagara2

Like the Blue Gene/P, the Niagara2 does not exploit cache bypass. Moreover, it

is a highly multi-threaded architecture with low-associativity caches. We will observe

both of these architectural features as we tune.

Initially, if we look at the performance of our näıve 7-point stencil implementation

in the lower left corner of Figure 7.1, we see that the we attain 0.16 GStencil/s

(1.29 GFlop/s) at 4 cores, but only 0.09 GStencil/s (0.70 GFlop/s) using all 16 cores!

Clearly the machine’s resources are not being utilized properly. Now, as we begin to

optimize, we find that properly-tuned padding improves performance by 3.6× using

8 cores and 3.4× when employing all 16 cores. The padding optimization produces

much larger speedups on Victoria Falls than for all previous architectures, primarily

due to the increased conflict misses resulting from its low associativity caches.The

highly multithreaded nature of the architecture results in each thread receiving only

64 KB of L2 cache. Consequently, core blocking also becomes vital, and, as expected,

produces large gains across all core counts.

A new optimization that we introduced specifically for the Sun Niagara2 was

thread blocking. In the original implementation of the stencil code, each core block is

processed by only one thread. When the code is thread blocked, threads are clustered

into groups of 8; these groups work collectively on one core block at a time. The

Niagara2 supports 8 hardware threads per core, so we suspected that this approach

would better exploit cache locality than our original approach. When thread blocked,

we see a 3% performance improvement with 8 cores and a 9% improvement when

using all 16 cores. However, the automated search to identify the best parameters

for thread blocking was relatively lengthy, since we needed to determine both the

optimal core block and thread block dimensions simultaneously.

Finally, we also saw a small improvement when we performed a second pass

through our greedy algorithm. Specifically, we started with the best parameter con-

figuration from our first iterative greedy search, and then performed another itera-

tive greedy search. For the higher core counts, this improved performance by about

0.025 GStencil/s (0.20 GFlop/s). Overall, the tuning for the 7-point stencil resulted

in a 4.7× speedup at maximum concurrency and a 8.6× parallel speedup as we scale

93

0.3

2.0

0.9

0.3

0.8

0.0

0.5

1.0

1.5

2.0

2.5

G
St

en
ci

l/s

Performance

(a)

0.0

0.1

0.2

0.3

0.4

0.5

1 2 4 8 16

G
St

en
ci

l/s
/c

or
e

Cores

Scalability

(b)

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

%
 o

f O
pt

im
iz

ed
 S

tr
ea

m
 B

an
dw

id
th

% of In-Cache GStencil Rate

Memory-Bound Region C
om

pute-B
ound R

egion

(c)

Clovertown Nehalem Barcelona Blue Gene/P Niagara2

Figure 7.2: Performance summary graphs for the 7-point stencil.

to 16 cores.

The Roofline prediction for the Niagara2 (shown in Figure 6.2) correctly predicts

that the 7-point stencil will be bandwidth-bound, but its predicted upper bound of

1.04 GStencil/s (8.3 GFlop/s) is 37% higher than our actual attained performance

of 0.76 GStencil/s (6.1 GFlop/s). It is likely that the small working set size and the

low associativity caches of the Niagara2 have caused a significant number of capacity

and conflict misses, many of which we were unable to eliminate through auto-tuning.

This would explain the relatively large gap between our attained bandwidth and the

bandwidth achieved by the Optimized Stream benchmark.

7.4.6 Performance Summary

Figure 7.2 captures some of the major trends among the five architectures. In

terms of overall performance, Figure 7.2(a) indicates that there are three tiers of raw

performance. In the first tier, the Nehalem system more than doubles the perfor-

mance of either the Barcelona or the Victoria Falls systems. These two machines can

then be considered to be the second tier of performance, as they again almost triple

94

the performance of either the Clovertown or the Blue Gene/P. Ironically, both the

Clovertown and the Blue Gene/P achieve about the same low overall performance de-

spite over a 6× advantage in peak computational rate for the Clovertown. However,

we know that the Clovertown is severely bandwidth-constrained by its front-side bus,

while the Blue Gene/P has already become compute-bound.

In order to better understand scalability, we also plotted the GStencil rates per

core in Figure 7.2(b). Only the Blue Gene/P exhibits perfect linear scaling, and that,

again, is because it is compute-bound at all core counts. All the other architectures

display some sub-linear scaling, although the Clovertown performance decays more

quickly than the other architectures.

Finally, in order to identify the bottlenecks to performance, we plotted the per-

centage of the Optimized Stream bandwidth versus the percentage of in-cache GSten-

cil rate in Figure 7.2(c). As expected, the Blue Gene/P is completely compute-bound.

In contrast, the x86 architectures are clearly bandwidth-bound, since all three plat-

forms achieve at least 87% of the Optimized Stream bandwidth while attaining no

more than 60% of the in-cache GStencil rate. This also reflects the fact that, af-

ter full tuning, we have eliminated almost all of the capacity and conflict misses on

these machines. Finally, the Sun Niagara2 achieves 74% of optimized stream band-

width and 61% of the in-cache computation rate. It is likely that the Niagara2 is

bandwidth-bound, even though we don’t achieve as high a fraction of Optimized

Stream bandwidth as the x86 machines. The highly multi-threaded nature of the

machine, along with its small, low-associativity caches does make it harder to tune,

but we still achieve a respectable fraction of Optimized Stream bandwidth.

Across all architectures, Table 7.3 shows that we achieve between a 1.9×–5.4×
speedup from performance tuning the 7-point stencil, with a median speedup of 4.7×.

Thus, auto-tuning plays an essential role in achieving good performance from these

multicore systems. Moreover, after full tuning, we see a parallel scaling speedup of

between 1.9× and 8.6× over the single core performance, with a median speedup

of 4.4×. Therefore, our tuning is also critical in achieving good scalability on these

systems.

95

Tuning Speedup Parallel Scaling Percent
Over Best Speedup Over Tuned of Perfect

Platform Näıve Code Single Core Performance Speedup

Intel Clovertown 1.9× 1.9× 23%
Intel Nehalem 4.9× 4.5× 57%
AMD Barcelona 5.4× 4.4× 55%
IBM Blue Gene/P 4.4× 3.9× 98%
Sun Niagara2 4.7× 8.6× 54%

Table 7.3: This table presents the performance tuning speedups and parallel scaling
speedups for the 7-point stencil.

7.5 Comparison of Best Parameter Configurations

Despite the results that we have shown, it is still unclear whether the best tuning

parameters for one platform will translate to good performance on one or more of

the other platforms in our study. Looking solely at the architectural features of our

machines, this idea does have some merit– several of our machines support similar

numbers of hardware threads and have comparable amounts of last-level cache. If this

is indeed the case, then we can imagine tuning on only one platform and employing

that parameter configuration on several other platforms as well. This would certainly

reduce the overall time required for tuning.

In order to test this proposition, we collected data on how well the best parameter

configuration for one platform performs on all the other platforms in our study.

However, this was an inexact study for two reasons. First, the number of available

hardware threads varies from platform to platform, so the ideal number of threads on

one machine may undersubscribe or oversubscribe the threads on a different machine.

In order to normalize for this, we always chose to employ the maximum number of

hardware threads supported on the given architecture. However, depending on the

core block dimensions and the chunk size, it is still possible that not all the threads

on a given architecture will be utilized. In fact, this did occur, and we will see this

effect shortly.

The second reason that this was an inexact study was that not all the optimiza-

tions for one platform are available on the others. For instance, the cache bypass

96

Naive Clovertown Nehalem Barcelona BG/P Niagara2

Clovertown

Nehalem

Barcelona

BG/P

Niagara2

Best Parameter Configuration

Pl
at

fo
rm

7−Point Stencil [Fraction of platform best]

0.52

0.17

0.16

0.23

0.12

1.00

0.43

0.93

0.63

0.07

0.94

1.00

0.86

0.75

0.32

0.95

0.44

1.00

0.83

0.08

0.42

0.23

0.19

1.00

0.04

0.78

0.59

0.40

0.51

1.00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7.3: The 7-point stencil performance results from running the best parameter
configuration for each platform on every other platform in our study. As a point of
comparison, we also show the performance of the näıve code in the leftmost column
of this plot.

optimization is unavailable on the Niagara2 and Blue Gene/P, but is available, and

often quite effective, on the x86 machines. As a result, we implemented the following

policy. If the best parameter configuration for one platform could be tested on the

new platform, then we did so and reported the results. For instance, the thread

blocking optimization produced the best performance results for the Niagara2. For-

tunately, this was still portable C code, so we ran the same thread blocked code on all

the other architectures to measure how well the parameter configuration performed.

On the other hand, if the best parameter configuration could not be directly run

on the new platform, then we modified the optimization so that we could still run

a somewhat similar configuration on the new platform. For example, SIMDization

achieved the best performance on the Blue Gene/P, but this optimization is unavail-

able on the Sun Victoria Falls machine. Consequently, we ran portable C code on

Victoria Falls, but with the register block size having the same dimensions (in dou-

bles) as the best SIMD register block size of the Blue Gene/P. The other parameters

that were transferrable between the two architectures were still kept fixed. We felt

97

that this was the fairest and most consistent method for testing the best parameter

configuration across such a wide range of platforms.

The results from this experiment are shown in Figure 7.3. The data collected

on each of the five machines in our study is shown as a distinct row in this plot.

The leftmost column shows how well the näıve code performs on each platform. The

five columns thereafter show the performance of the best parameter configuration

for each machine on every machine (including itself). The results are shown as a

“fraction of platform best”. Specifically, when the best parameter configuration for a

given platform is actually run on that platform, we achieve 100% (or 1.00) of platform

best. All other results on that platform are normalized to this result.

There are several interesting trends in Figure 7.3. First, the Clovertown architec-

ture seems to be the easiest platform to tune for; the best parameter configurations

for the other two x86 platforms perform very well on the Clovertown, achieving

between 94%–95% of the platform best. Moreover, the best Niagara2 parameter

configuration also performs well, achieving 78% of the platform best, which is still

significantly better than the näıve code. We are able to achieve such good perfor-

mance from the Clovertown because of the front-side bus bottleneck that we discussed

earlier. By performing even moderate core blocking, we can sufficiently reduce the

bandwidth requirements of the problem so that we achieve a relatively high fraction

of the platform best, even though this still translates to poor raw performance. The

only platform whose best parameter configuration suffers on the Clovertown is the

Blue Gene/P, but this is because the core block dimensions and the chunk size only

provide enough work for four hardware threads. The other four available threads

on the Clovertown are left idle, explaining why we achieve less than half of the best

Clovertown performance.

Similar to the Clovertown, the Barcelona architecture also exhibits very good per-

formance with the best parameter configurations of the other x86 machines, attaining

86% and 93% of the platform best. However, the performance drops significantly for

the non-x86 parameter configurations; we achieve only 40% of platform best for

the best Niagara2 parameter configuration, and only 19% of platform best for the

Blue Gene/P configuration. We can partially explain the poor performance of the

Blue Gene/P configuration because it only provides enough work for four threads.

98

However, in general, the Barcelona does seem to be more sensitive to the parameter

configuration than the Clovertown.

The Nehalem is harder to tune for than either the Clovertown or the Barcelona.

We can see that the best parameter configurations of the Clovertown and the Barcelona

only achieve 43% and 44% of the platform best, respectively. In the case of the

Barcelona, the core block dimensions and the chunk size only allow enough work

for 8 hardware threads. Thus, the Nehalem’s other 8 available threads are left un-

used. The best Clovertown configuration, on the other hand, exposes enough par-

allelism for all 16 Nehalem threads, but the configuration is not well-suited to the

Nehalem architecture. As for the non-x86 configurations, the Niagara2 configuration

does moderately well on the Nehalem, achieving 59% of the platform best, but the

Blue Gene/P again suffers, attaining only 23% of the platform best.

The Blue Gene/P is moderately easy to tune, as each of the best parameter

configurations attains at least 50% of the platform best, while the Barcelona config-

uration achieves 83% of platform best. This is partially due to the fact that BG/P

supports only four hardware threads, while all the other architectures support at

least 8 threads, so we can guarantee that none of the BG/P threads will be left idle.

The Sun Niagara2 lies at the other end of the spectrum– it supports 128 hardware

threads, which is 8×more than the next highest platform. As a result, there is a good

chance that some of its threads will be left idle when running the best parameter

configuration from different platforms. In fact, out of the other four platforms in our

study, only the Nehalem’s best parameter configuration provides enough parallelism

for all 128 Niagara2 threads. However, despite providing enough work to keep all

the threads busy, the Nehalem configuration still only achieves 32% of the best

platform performance. The other platform configurations do not even have enough

work for all 128 threads, and thus their performance ranges from a mere 4%–8% of

the platform best. It has become painfully obvious that the highly multithreaded

Niagara2 architecture, with its small, low associativity caches, is extremely sensitive

to the choice of tuning parameters.

Thus far, we have analyzed Figure 7.3 by row. However, it is also instructive

to briefly analyze it by column. For instance, we know that the best Blue Gene/P

parameter configuration only provides enough work for four threads. If we look at

99

the column corresponding to the Blue Gene/P configuration, we see that for non-

BG/P platforms, we only achieve up to 42% of platform best, and usually well

below this fraction. This is understandable, as all the other platforms in our study

support at least 8 threads. Next, if we examine the column corresponding to the

best Nehalem configuration, we see that outside the Niagara2, it does well on the

other platforms (ranging from 75%–94% of platform best). This is partly explained

by the fact that the Nehalem configuration provides enough parallelism for up to 128

threads, so none of the architectures will have idle threads. Moreover, the Nehalem

configuration employs both the SIMDization and cache bypass optimizations, both

of which are usually very effective on x86 architectures. Finally, let us examine

the column associated with the best Niagara2 configuration. Like the Nehalem,

there is enough parallelism to support at least 128 threads. However, unlike the

Nehalem configuration, the Niagara2 code does not utilize either the SIMDization or

cache bypass optimizations, since neither is supported on the architecture. Instead,

the code is thread blocked to take mitigate the effects of the Niagara2’s relatively

small caches. Unfortunately, tuning for Victoria Falls does not translate to good

performance on the other architectures, as the Nehalem configuration consistently

outperforms the thread blocked code.

In general, the first step to ensuring that the best parameter configuration for one

platform works well on another is to verify that there is enough parallelism available

to avoid leaving any hardware threads idle. However, meeting this criteria alone

may still be insufficient for good performance. Some architectures, especially highly-

multithreaded ones like the Sun Niagara2, may still require significantly more work

to attain good performance.

7.6 Conclusions

Thus far, we have exhaustively explored the performance of the 7-point stencil

on each of the systems in our study. We have also seen that, in general, the Roofline

model has supplied a relatively tight upper bound on stencil performance. However,

except for the Blue Gene/P, the 7-point stencil kernel taxes the memory subsystem

far more than the chip’s computational abilities. The 27-point stencil, examined in

100

the following chapter, has a significantly higher arithmetic intensity, so we should

finally expose the floating point capabilities of our multicore chips.

101

Chapter 8

3D 27-Point Stencil Tuning

8.1 Description

In Chapter 2, we mentioned that the 3D 27-point stencil performs 30 flops per

point without common subexpression elimination (CSE), and between 18–30 flops

per point with it. This is many more flops than for the 7-point stencil. The DRAM

traffic, however, should be similar to the 7-point stencil. Ideally, we should expect

24 Bytes of traffic per point without the cache bypass optimization, and 16 Bytes

with it. This chapter will present the full auto-tuning results for the 27-point stencil

kernel, and will also analyze the results using the performance upper bounds that we

laid out in Chapter 6.

8.2 Optimization Parameter Ranges and Parame-

ter Space Search

Like the 7-point stencil, for the 27-point stencil we again kept a fixed problem size

of 2563 (i.e. NX, NY, NZ = 256). As a result, the optimization parameter ranges

for the 27-point stencil are also identical to that of the 7-point stencil, which we

detailed in Section 7.2. Similarly, the parameter space search that we explained in

Section 7.3 applies equally to the 27-point stencil, with one exception– the common

subexpression elimination (CSE) optimization only applies to the 27-point stencil,

102

and thus it will be discussed here instead of Chapter 7.

As shown in Table 7.2, the CSE optimization is the final optimization that we

apply during our iterative greedy (or hill-climbing) search. However, it can be built on

top of many different optimized code versions, and thus requires further explanation.

Across all architectures, the drastic nature of the optimization compels us to perform

a second, smaller iterative greedy search specifically for CSE. For the x86 and BGP

architectures, this required new CSE code generators that create both portable C

and SIMD code. The results that we show are for the best performing CSE code,

regardless of which code generator was used. Similarly, for Victoria Falls, we created

a new CSE code generator for thread blocking as well. Again, the presented result

for Victoria Falls is for the best performing CSE code, regardless of whether it is

thread blocked.

8.3 Performance

The results from auto-tuning the 27-point stencil across the five platforms in our

study are displayed in Figure 8.1. We again bounded the performance on each plat-

form by taking the minimum of the in-cache performance and the Optimized Stream

performance. In addition, our results are again presented in terms of GStencil/s.

The 27-point stencil sweeps over the same amount of memory as the 7-point stencil,

but performs several times more flops. As such, we should expect that for the same

platform, the GStencil rate of the 27-point stencil will be the same or less than that

of the 7-point stencil. By comparing the performance of each of the five platforms

in Figures 7.1 and 8.1, we see that this is indeed the case.

Finally, we note that the näıve code from which we start tuning is very similar to

the näıve 7-point stencil code that we described in Section 7.4. The näıve 27-point

stencil code does not perform any NUMA-aware data allocation, array padding, loop

unrolling, software prefetching, SIMDization, cache bypass optimization, or CSE. It

is threaded, however, and the domain is decomposed by dividing the grid equally

in the least contiguous (Z) dimension such that every hardware thread receives an

equal amount of work.

103

0.0

0.1

0.2

0.3

0.4

0.5

1 2 4 8

G
St

en
ci

l/s

Cores

Intel Clovertown

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 2 4 8

G
St

en
ci

l/s

Fully Populated Cores

Intel Nehalem

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1 2 4 8

G
St

en
ci

l/s

Cores

AMD Barcelona

0.00

0.02

0.04

0.06

0.08

0.10

0.12

1 2 4

G
St

en
ci

l/s

Cores

IBM Blue Gene/P

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 4 8 16

G
St

en
ci

l/s

Fully Populated Cores

Sun Niagara2

Naive

+Explicit SW Prefetching

+Register Blocking

+Core Blocking

+Array Padding

+NUMA-Aware Allocation

+Cache Bypass

+Explicit SIMDization

2nd greedy search

+Thread Blocking

+Common Subexpression Elimination

Perf. Limit (blue=comp., red=bandwidth)

Figure 8.1: Individual performance graphs for the 27-point stencil. The performance
limits are set by the minimum of the in-cache performance and Optimized Stream
performance.

104

8.3.1 Intel Clovertown

The 27-point stencil performance on Clovertown is displayed in the upper left

graph of Figure 8.1. Despite the high flop:byte ratio of the 27-point stencil, memory

bandwidth is again an issue at the higher core counts. When we utilize one or two

cores, cache bypass is not helpful, while the CSE optimization produces speedups of

at least 30%, implying that the lower core counts are compute-bound.

However, as we scale to four and eight cores, we observe a transition to being

memory-bound– in fact, since the 7-point and 27-point stencils are both memory-

bound at these higher core counts, we observe that they achieve identical GStencil

rates. At four and eight cores, the cache bypass instruction improves performance

by at least 10% for the 27-point stencil, while the effects of CSE are negligible. The

Clovertown Roofline model in Figure 6.2 predicts this behavior, as it shows that the

27-point stencil is still memory-bound, and thus cache bypass should be effective.

The Roofline model also predicts a performance upper bound of 0.36 GStencil/s

(11.1 GFlop/s), while we actually attained 0.32 GStencil/s (9.6 GFlop/s). Hence,

further tuning will have diminishing returns. All in all, full tuning for the 27-point

stencil resulted in a 1.9× improvement using all 8 cores, as well as a 2.7× speedup

when scaling from one to all eight cores.

8.3.2 Intel Nehalem

The Nehalem performance results for the 27-point stencil are shown in the upper

right graph of Figure 8.1. We see that the näıve code improves by 3.3× when scaling

from one to four cores, but then drops slightly when we use all eight cores across

both sockets. This performance quirk is eliminated when we apply the NUMA-aware

optimization.

After full tuning, there are several indicators that strongly suggest that perfor-

mance has become compute-bound — core blocking shows less benefit than for the

7-point stencil, cache bypass doesn’t show any benefit, performance scales linearly

with the number of cores, and the CSE optimization is successful across all core

counts. However, perhaps the most obvious sign is that after full tuning, we match

the in-cache performance of the 27-point stencil code. Ultimately, this tuning re-

105

sulted in a 3.6× speedup over the best näıve code, as well as a parallel scaling of

8.1× when going from one to eight cores– the ideal multicore scaling.

The Nehalem Roofline model, shown in Figure 6.2, correctly predicts that the 27-

point stencil will be compute-bound, but predicts an upper bound of 1.63 GStencil/s

(49.1 GFlop/s) before applying the CSE optimization. In actuality, we attain about

0.95 GStencil/s (28.4 GFlop/s) before the CSE optimization, which is 42% less than

our predicted upper bound. However, as we explained in Section 6.5.2, there was

some uncertainty with this upper bound– not only was there a broad range in actual

arithmetic intensity, but computation and communication are also nearly balanced

at this point in the Roofline model.

8.3.3 AMD Barcelona

Unlike the 27-point stencil on Nehalem, the sub-linear scaling of Barcelona in

the middle left graph of Figure 8.1 seems to indicate that the kernel is constrained

by memory bandwidth. However, the fact that cache bypass did not improve per-

formance, while the CSE optimization improves performance by 18% at maximum

concurrency, hints that it is close to being compute-bound. In actuality, by exam-

ining Figure 8.2(c), we see that Barcelona achieves about 65% of both Optimized

Stream bandwidth and in-cache GStencil rate. Thus, it is about equally constrained

by bandwidth and computation; this may explain why we achieve such a low fraction

of peak for both.

The Roofline model for Barcelona, displayed in Figure 6.2, predicts that the

27-point stencil will be bandwidth-bound. Similar to the Nehalem predictions, the

27-point stencil (without CSE) predictions for Barcelona are looser than for the 7-

point stencil. The Roofline model predicts an upper bound of about 0.95 GStencil/s

(28.4 GFlop/s), but our attained performance is 0.51 GStencil/s (15.4 GFlop/s).

This discrepancy is likely due to the transition from being limited by bandwidth to

being limited by computation. This suggests that as we approach a compute-bound

state, the DRAM–FP Roofline model alone is insufficient. Instead, it may be useful

to employ multiple Roofline models per architecture.

Overall, auto-tuning the 27-point stencil on Barcelona was able to produce a 3.8×

106

speedup using all eight cores. In addition, parallel scaling from a single core to all

eight cores produces a speedup of 5.7×, which is 71% of the perfect parallel speedup.

8.3.4 IBM Blue Gene/P

As we observed in Section 7.4.4, the 7-point stencil was already compute-bound

on the Blue Gene/P. While the 27-point stencil may incur slightly more cache capac-

ity misses, the 3.8× increase in the number of flops per point should ensure that it

remains compute-bound as well. As seen in the middle right graph of Figure 8.1, we

again observe that memory optimizations like padding, core blocking, and software

prefetching are futile. Similar to the 7-point stencil, only computation-related opti-

mizations like register blocking (2.1× speedup) and CSE (1.4× speedup) show any

benefit. After full tuning, the 27-point stencil kernel exhibits the perfect multicore

scaling of 4.0× when scaling from one to four cores. Moreover, the GStencil rate

slightly exceeds the in-cache performance of this kernel, most likely because of the

second iterative greedy search that we performed. All these observations confirm the

compute-bound nature on this kernel on Blue Gene/P.

If we examine the Blue Gene/P Roofline model in Figure 6.2, we see that the

27-point stencil is clearly compute-limited, with a predicted upper bound of 0.26 GS-

tencil/s (7.8 GFlop/s) before CSE. In actuality, we are compute-bound, but we only

attain a performance of 0.08 GStencil/s (2.3 GFlop/s) without CSE, which is less

than a third of the Roofline predicted upper limit. Again, there are several potential

reasons for this difference. First, we observed a similar overestimate of the Roofline

upper bound for the 7-point stencil on BG/P, so it is possible that the xlc compiler is

not generating sufficiently high-quality code. Moreover, as we noted in Section 6.5.4,

the limited issue-width and the in-order nature of the PPC450 architecture could

also be hindering the computational abilities of the chip.

8.3.5 Sun Niagara2

The näıve implementation of the 27-point stencil on Victoria Falls, shown in

the lower left graph of Figure 8.1, seems to scale well. Nonetheless, auto-tuning

was still able to achieve significantly better results than the näıve implementation

107

0.3

1.2

0.6

0.1

0.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

G
St

en
ci

l/s

Performance

(a)

0.00

0.04

0.08

0.12

0.16

0.20

1 2 4 8 16

G
St

en
ci

l/s
/c

or
e

Cores

Scalability

(b)

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

%
 o

f O
pt

im
iz

ed
 S

tr
ea

m
 B

an
dw

id
th

% of In-Cache GStencil Rate

Memory-Bound Region C
om

pute-B
ound R

egion

(c)

Clovertown Nehalem Barcelona Blue Gene/P Niagara2

Figure 8.2: Summary performance graphs for the 27-point stencil.

alone. Many optimizations combined together to improve performance, including

array padding, core blocking, common subexpression elimination, and a second sweep

of the iterative greedy algorithm. After full tuning, performance improved by 1.8×
over the näıve code, and we also observed good parallel scaling of 12.8× when scaling

from one to 16 cores. The fact that we achieve this nearly linear scaling suggests that

we are compute-bound on Victoria Falls. Figure 8.2(c) confirms this idea, showing

that while we only achieve 50% of our bandwidth peak, we attain 85% of our in-cache

performance.

The Roofline model for the Niagara2, shown in Figure 6.2, predicts that the 27-

point stencil is compute-bound, with an upper limit of 0.62 GStencil/s (18.6 GFlop/s)

before CSE. This is a reasonable, if not tight, upper bound, as we actually achieve

0.45 GStencil/s (13.5 GFlop/s). Thus, the Roofline-predicted upper bound is 38%

higher than our actual performance; this discrepancy may be partially due to the

fact that this Roofline upper bound is compiler independent.

108

8.3.6 Performance Summary

Figure 8.2 displays performance summary graphs for the 27-point stencil. Fig-

ure 8.2(a) shows the best raw performance attained by each platform. Similar to

the corresponding figure for the 7-point stencil (Figure 7.2(b)), we again see that

Nehalem performs twice as fast as Barcelona, which again performs at a similar rate

to Victoria Falls. However, unlike Figure 7.2(b), we now see that Clovertown now

triples the performance of Blue Gene/P. Apparently, the compute-intensive 27-point

stencil is finally able to expose the overwhelming advantage in peak GFlop rate that

Clovertown holds over Blue Gene/P.

Interestingly, even though the x86 systems have nearly the same peak GFlop

rates (as seen in Table 3.1), they still attain very different actual GFlop rates for

a kernel with a relatively high arithmetic intensity. However, we can explain this

phenomenon. As we observed before, the Nehalem platform achieves the highest

GFlop rate primarily because it is compute-bound across all core counts. Its nearly

perfect parallel scaling from one to eight cores can be clearly seen in Figure 8.2(b).

The Barcelona performance falls in the middle since it is compute-bound only up to

two cores, at which point parallel scaling drops off and it becomes bandwidth-bound.

This is also visualized in Figure 8.2(b), since the performance per core drops by

about one-third when scaling up to four and eight cores. Finally, Clovertown seems

to be bandwidth-bound beyond a single core, primarily due to its older front-side bus

architecture. Figure 8.2(b) shows that the single core performance on Clovertown is

better than that of Barcelona, but performance decays quickly as we scale up to eight

cores. Thus, when using all eight cores, only Nehalem has a chance of exploiting its

full computational resources for executing the 27-point stencil.

The Blue Gene/P and Niagara2 also exhibit very good parallel scaling for the 27-

point stencil kernel, primarily because both machines are already compute-bound.

This is not surprising, given that both machines have such low computational peaks

(about one-fifth that of the x86 machines).

Finally, Figure 8.2(c) plots the percent of Optimized Stream bandwidth against

the percent of in-cache GStencil rate. This comparison of communication against

computation helps us identify the limiting factor for each of our five architectures.

109

Tuning Speedup Parallel Scaling Percent
Over Best Speedup Over Tuned of Perfect

Platform Näıve Code Single Core Performance Speedup

Intel Clovertown 1.9× 2.7× 33%
Intel Nehalem 3.0× 8.1× 101%
AMD Barcelona 3.8× 5.7× 71%
IBM Blue Gene/P 2.9× 4.0× 100%
Sun Niagara2 1.8× 12.8× 80%

Table 8.1: This table presents the performance tuning speedups and parallel scaling
speedups for the 27-point stencil.

Clearly, both Nehalem and Blue Gene/P are computation-limited, as they both

achieve about 100% of the in-cache computation rate. Victoria Falls also seems

to be compute-bound, although it achieves a slightly lower percentage of in-cache

performance. The Clovertown architecture, as we noted before, is heavily memory-

bound, as it achieves 89% of the Optimized Stream bandwidth, but only 29% of the

in-cache GStencil rate. Finally, Barcelona seems to be bound by both bandwidth

and computation, as it achieves 65% of both peak bandwidth and peak in-cache per-

formance. The reason it achieves such a low fraction of both metrics may be because

it is limited by two resources.

Table 8.1 summarizes the benefits we see from tuning this kernel. While the im-

provements from tuning are not as dramatic as for the 7-point stencil, we still attain

a speedup between 1.8×–3.8×, with a median of 2.9×. This is because, in general,

memory optimizations often provide larger speedups than computation optimiza-

tions. The 7-point stencil is usually memory-bound, so it shows better performance

improvements over the näıve code than the 27-point stencil.

However, in terms of parallel scaling, the two kernels are reversed. The 27-point

stencil now exhibits significantly larger improvements than the 7-point stencil, as we

achieve between a 2.7×–12.8× performance improvement over the single core perfor-

mance, with a median speedup of 5.7×. This is because a compute-intensive kernel

like the 27-point stencil can easily exploit more cores by offloading computation onto

them. Unfortunately, the 7-point stencil is often bandwidth-bound– since bandwidth

usually does not increase with more cores, scalability is also suppressed.

110

Naive Clovertown Nehalem Barcelona BG/P Niagara2

Clovertown

Nehalem

Barcelona

BG/P

Niagara2

Best Parameter Configuration

Pl
at

fo
rm

27−Point Stencil [Fraction of platform best]

0.52

0.28

0.25

0.35

0.55

1.00

0.37

0.75

0.40

0.05

0.85

1.00

0.74

0.78

0.23

0.97

0.43

1.00

0.54

0.05

0.28

0.17

0.24

1.00

0.04

0.79

0.61

0.65

0.55

1.00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8.3: The 27-point stencil performance results from running the best parameter
configuration for each platform on every other platform in our study. As a point of
comparison, we also show the performance of the näıve code in the leftmost column
of this plot.

8.4 Comparison of Best Parameter Configurations

Finally, we again examine the topic of whether the best parameter configuration

for one system can produce good performance on other systems. This has the poten-

tial to greatly trim tuning time, as we can possibly tune for only a single architecture

and employ the chosen configuration on all other platforms.

However, as we explained in Section 7.5, translating the best parameter configura-

tion on one machine to other multicore architectures is not an exact science. In short,

we always utilize the maximum number of hardware threads on a given machine, and

we always attempt to run the same code with the same parameters on every other

platform. If the code is not valid on a given platform (e.g. SIMD code on Victoria

Falls), then we still transfer all the valid parameters (e.g. core blocking dimensions

and array padding amounts), and try to modify the offending optimization so that

it can still be translated onto the new platform. This seemed to be the fairest and

most consistent way of carrying out this comparison.

111

Figure 8.3 displays the results of taking the best parameter configuration for a

given architecture and running it on every other platform in our study. All results

are shown as a fraction of the platform’s best performance, which is set to 1. In

addition, as a comparison, we also show the performance of the näıve code on each

architecture in the first column.

Many intriguing trends arise from this plot. First, it again looks like the Clover-

town architecture is the easiest to tune for. For instance, the best parameter config-

urations for Nehalem and Barcelona achieve 85% and 97% of the platform best, re-

spectively. The best Niagara2 configuration also does very well, attaining 79% of the

platform best. The only platform configuration that suffers is for the Blue Gene/P,

and this is because it only has enough work for four threads; all the other available

threads will sit idle. If we look at the column representing the best Blue Gene/P

configuration, we see that, outside the Blue Gene/P itself, this problem plagues all

the platforms in our study.

It is not surprising that most parameter configurations also execute well on Clover-

town. As we explained previously, this platform is heavily memory-bound even for

the 27-point stencil. However, moderate core blocking can sufficiently reduce mem-

ory bandwidth so that we still achieve a high fraction of the platform best, although

the actual raw performance is still quite low.

The Barcelona platform also does an adequate job of running other tuned parame-

ter configurations well. The parameter configurations for the two other x86 platforms

achieve about three-quarters of the platform best, and the Niagara2 achieves 65%

of the best. Both of these results are still at least 2.6× better than the näıve code

performance. Only the Blue Gene/P code performs poorly, and that is again due to

a lack of parallelism.

The Nehalem is the only x86 platform where the other tuned parameter con-

figurations generally don’t attain a high fraction of the platform best. However, for

three of the other four architectures, this is due to a lack of parallelism. The Nehalem

supports a total of 16 hardware threads, but the best parameter configurations for

Blue Gene/P, Clovertown, and Barcelona only provide enough work for 4, 8, and 8

threads, respectively. Specifically, the best parameter configurations on these ma-

chines only generates either four or eight core blocks, so machines like the Nehalem

112

with more than eight hardware threads will suffer.

Given that the 27-point stencil is compute-bound on Nehalem, we expect that

the Blue Gene/P configuration will only achieve a maximum of one-quarter of the

platform best, while Clovertown and Barcelona configurations should attain at most

half of platform best. This holds true in actuality, as Blue Gene/P, Clovertown,

and Barcelona attain 17%, 37%, and 43% of the platform best, respectively. The

Niagara2, which supports 128 hardware threads, is the only platform where the best

parameter configuration provides sufficient parallelism to keep all 16 Nehalem threads

busy. As a result, it is able to achieve 61% of the platform best.

The Sun Niagara2, which supports 128 threads, suffers the same lack of par-

allelism issues as the Nehalem, only to a much greater extent. In this case, the

Blue Gene/P, Clovertown, and Barcelona configurations will only be exploiting be-

tween 3%–6% of the available hardware threads. Unfortunately, we see that this

translates to performances ranging from 4%–5% of the platform best for these ar-

chitectures. The Nehalem configuration does better, attaining 23% of the platform

best, but it only provides enough work for 32 hardware threads. Clearly, the lack

of sufficient parallelism is the major reason why the other platform configurations

suffer on the Niagara2; none of the configurations even achieve half of the näıve code

performance.

Finally, the Blue Gene/P architecture seems to show mixed results when running

the tuned parameter configurations from our other platforms. However, given that it

supports the fewest number of hardware threads of any of our architectures (four), we

can be assured that the other parameter configurations provide sufficient parallelism.

Moreover, we have already seen that the Blue Gene/P is heavily compute-bound when

executing the 27-point stencil, so it is likely that the parameters for our in-core op-

timizations (e.g.register blocking) will dictate the performance on this platform. We

observe that while the Nehalem configuration achieves 78% of the Blue Gene/P best,

the other platform configurations only achieve between 40%–55%. In all likelihood,

this is because the Nehalem in-core optimization parameters were most amenable to

the Blue Gene/P.

For this experiment, we can draw similar conclusions for the 27-point stencil as

for the 7-point stencil. The first priority in achieving good performance for a tuned

113

parameter configuration from a different platform is to ensure that there is sufficient

parallelism to keep all the hardware threads on the system busy and load balanced.

This was certainly an issue on Nehalem and Victoria Falls. However, this alone does

not always lead to good performance. For instance, if we look at the column in

Figure 8.3 representing the best Niagara2 parameter configuration, we know that

this configuration has enough parallelism for 128 threads. However, it only achieves

between 55%–79% of the platform best on the other machines in our study. Clearly,

many of these platforms could still benefit from individualized tuning.

8.5 Conclusions

This chapter has examined the performance of the compute-intensive 27-point

stencil kernel on the systems in our study. Unlike the 7-point stencil, the 27-point

stencil is much more likely to be computation-bound, not memory-limited, thereby

exposing a different dimension to these architectures. In general, the 27-point stencil

exhibited much better parallel scaling than the 7-point stencil, since computation

readily scales with more cores, but bandwidth generally does not.

However, we noted that the Roofline model typically provided a much looser

upper bound than for the 7-point stencil. Generally speaking, placing upper limits

on compute-bound kernels is more difficult than memory-bound kernels because the

compiler plays a larger role in attained performance. The Roofline model is compiler

independent, as it only looks at the hardware features of a platform in order to

determine the performance upper bound. Moreover, the CSE optimization made the

Roofline model much more difficult to employ, since the arithmetic intensity became

variable. Both these details made the actual achieved performance much harder

to bound, since the performance is compiler dependent, and the CSE optimization

was utilized. Consequently, we also used the in-cache performance of the 27-point

stencil as a secondary, tighter upper bound. This served us well in capping the actual

attained performance.

114

Chapter 9

3D Helmholtz Kernel Tuning

As we will explain shortly, the Helmholtz kernel is signficantly more complex

than either the 7-point or 27-point stencil problems that we have presented thus far.

Therefore, it presents its own challenges to tuning and performance analysis. We

will explore these topics in this chapter.

9.1 Description

We will be tackling issues with the 3D GSRB Helmholtz kernel that we did not

encounter with either of the previous stencil kernels. This is because there are three

major differences between the tuning of the Helmholtz kernel and our prior 7-point

and 27-point stencil tuning.

First, we will no longer be solving a single large stencil problem. This GSRB

Helmholtz kernel is actually taken from Chombo [9], a software framework for per-

forming Adaptive Mesh Refinement (AMR) [3]. AMR codes often produce numerous

small problems, each of which may be executing the Helmholtz kernel to iteratively

“relax” the results from a larger solver (like multigrid [6, 52]). In order to mimic

this type of behavior, we also perform the kernel over many small problems, which

we call “subproblems”. Thus, we will be taking some of the lessons learned from

executing the 7-point and 27-point stencils on a single large grid and apply them to

a more realistic scenario of processing many small grids.

For standardization purposes, we fixed the total memory footprint of all the

115

Helmholtz problems to be 0.5, 1, 2, or 4 GB. Most current multicore architectures

support at least 2–4 GB of memory, so these memory restrictions should be reason-

able. In addition, for simplicity, we only deal with cubic problem sizes, even though

the actual Chombo code produces grids with many different aspect ratios. Table 9.1

displays the number of Helmholtz problems of a given size that fit into the specified

memory footprint. This table will be useful in understanding the performance results

presented later in the chapter.

Second, as we mentioned in Section 2.3.2, the Helmholtz kernel involves a variable

coefficient stencil. As such, the stencil coefficients are no longer constant scalars;

the coefficients themselves vary, and therefore need to be stored as separate arrays.

The upshot is that the Helmholtz kernel involves seven grids; six of these grids are

exclusively read from, while one grid is both read and written. These grids, as well

as their dimensions (relative to some NX, NY , and NZ), are shown in Table 2.4.

Unfortunately, the presence of seven grids translates to 64 Bytes of memory traffic

per point, as opposed to 24 Bytes (or 16 Bytes with cache bypass) for the 7-point

and 27-point stencils.

Finally, we are no longer performing a Jacobi sweep, where we simply read the

data from one grid and write the stencil computation result to another. Now, we

are executing Gauss-Seidel Red Black (GSRB) updates (described in Section 2.1.2).

The GSRB ordering allows for parallelizable in-place updates by only modifying every

other point in the write grid. Unlike the GSRB sweep definition given in Section 2.1.2,

in this chapter each sweep will consist of updating a single color, not both colors. The

Helmholtz kernel performs 25 flops for every updated point, but since only half the

total points are updated during a single sweep, there are approximately 12.5 flops

per point. As we discussed in Section 6.2, the resulting ideal arithmetic intensity

is about 12.5/64 = 0.20. This is less than the arithmetic intensity for the 7-point

stencil, so we expect that this kernel will be bandwidth-bound on most architectures.

9.2 Optimization Parameter Ranges

Based on the description of the Helmholtz kernel given in the previous section,

we selected the optimizations and associated parameter values shown in Table 9.2. It

116

Helmholtz Memory Footprint
Subproblem Size 0.5 GB 1 GB 2 GB 4 GB

NX = NY = NZ = 16 2100 4201 8403 16806
NX = NY = NZ = 32 277 554 1108 2217
NX = NY = NZ = 64 35 71 142 284
NX = NY = NZ = 128 4 9 18 36

Table 9.1: For a given Helmholtz problem size, the number of such problems that fit into
the listed memory footprint.

is similar to the corresponding table for the 7-point and 27-point stencils (Table 7.1),

but there are some differences. Most obvious, perhaps, is that we no longer perform

the SIMDization, or cache bypass optimizations. We did not SIMDize the Helmholtz

kernel because, in accordance with the GSRB ordering, we perform updates on every

other point. On our architectures, the SIMD optimization only allows for data paral-

lelism across two doubles– if every other point is being written to, SIMDization does

not make much sense without a change of data structure or algorithm. These are

larger transformations that are left as future work. We also did not utilize the cache

bypass operation, since we are no longer performing out-of-place Jacobi sweeps. For

the Helmholtz kernel, the phi array is both being read and written. In this case, we

should not suffer write misses, since the needed cache lines should already be read

into the on-chip cache.

One parameter that is not listed in Table 9.2 but comes into play when processing

so many small subproblems is the number of threads per subproblem. When presenting

our performance results, this parameter will be varied to test whether coarse-grained

parallelism (few threads per subproblem) or fine-grained parallelism (many threads

per subproblem) performs best for this kernel.

Finally, we note that the Helmholtz kernel was only evaluated on two of the

platforms in this thesis, the Intel Nehalem and AMD Barcelona. However, executing

this code on other multicore architectures is a subject of future work.

117

Optimization parameter tuning range
Category Parameter Name Nehalem and Barcelona

CX NX
Core Block Size CY {4...NY }

Domain
CZ {4...NZ}

Decomp
Chunk Size {1... NY ×NZ

CY ×CZ×NThreads
}

NUMA Aware X
Data

Pad by a maximum of: 7
Allocation

Pad by a multiple of: 1

Prefetching Type {none, register block, plane, pencil}
Bandwidth

Prefetching Distance {0...64}
RX {2...8}

In-Core Register Block Size RY {2...4}
RZ {2...4}

Search Strategy Iterative Greedy
Tuning

Data-aware X

Table 9.2: Attempted optimizations and the associated parameter spaces explored by the
auto-tuner for the GSRB Helmholtz kernel. The parameter names are visually represented
in Figure 4.1. For simplicity, all of the block dimensions and chunk sizes are set to be powers
of two, while the prefetching distances are either zero or a power of two. In addition, all
numbers are in terms of doubles.

9.3 Parameter Space Search

After deciding on the appropriate optimizations and parameter values, the sub-

sequent iterative greedy search for the Helmholtz kernel is relatively straightforward.

The details of the search are shown in Table 9.3. We see that now, unlike the 7-

point and 27-point stencil tuning, there are no exceptions to the iterative greedy

search; each time we add a new optimization, all the previous optimization parame-

ters are still kept fixed. Furthermore, we no longer have multiple code generators for

implementing the more drastic optimizations (e.g. SIMDization or CSE). While we

implemented fewer optimizations for tuning the Helmholtz kernel, we we will still be

comparing our performance against the same performance limits used in the previous

two chapters.

118

Optimization Order N
U

M
A

-A
w

ar
e

P
ad

d
in

g

C
or

e
B

lo
ck

in
g

R
eg

is
te

r
B

lo
ck

in
g

P
re

fe
tc

h
in

g

Näıve
+NUMA-Aware S
+Padding F S
+Core Blocking F F S
+Register Blocking F F F S
+Prefetching F F F F S

Table 9.3: The specifics of the iterative greedy search we performed for the GSRB
Helmholtz kernel. The optimizations shown in the leftmost column are applied from top to
bottom. As each new optimization is applied, the optimizations labeled “F” have already
had their parameter values previously fixed, while the ones labeled “S” are currently being
searched over.

9.4 Single Iteration Performance

We begin our analysis of the Helmholtz kernel by examining the performance

for a single iteration. Then, we will extend our performance analysis to multiple

iterations, since it may provide better numerical convergence.

9.4.1 Fixed Memory Footprint

In order to understand the performance of the Helmholtz kernel, we initially

fixed the memory footprint at 2 GB. Then, we began auto-tuning a single iteration

of the Helmholtz kernel for 163, 323, 643 and 1283 problems. The number of such

subproblems that fit into our 2 GB footprint is shown in Table 9.1.

The performance results from this experiment are shown in Figure 9.1. The x-

axis of these plots displays two quantities– the major x-axis represents the cubic

grid dimension, while the minor x-axis displays the number of threads per problem.

In addition, the bandwidth of the Optimized Stream benchmark is used to place

an upper bound on performance. Unlike previous chapters, this bound is no longer

119

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

16 32 64 128

G
St

en
ci

l/s

Cubic Grid Dim. (Threads/Problem)

Nehalem

0.00

0.02

0.04

0.06

0.08

0.10

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

16 32 64 128

G
St

en
ci

l/s

Cubic Grid Dim. (Threads/Problem)

Barcelona

Naive +NUMA-Aware +Array Padding +Core Blocking

+Register Blocking +SW Prefetching Bandwidth Perf. Limit

Figure 9.1: Individual performance graphs for a single iteration of the Helmholtz
kernel with a 2 GB total memory footprint. The major x-axis shows the cubic grid
dimensions of a single Helmholtz problem, while the minor x-axis displays the number
of threads per problem. The performance limits are set by the Optimized Stream
benchmark.

a straight line because we are dealing with several different problem sizes. The

bandwidth bound translates to higher GStencil rates for larger problem sizes because

the surface to volume ratio decreases. As such, the ghost cells from the grids in

Table 2.4 constitute a smaller fraction of the overall memory traffic.

There are several intriguing trends in these plots. For one, it seems that having

more threads per subproblem is beneficial for larger grid sizes. However, closer

examination reveals that grid size is not the real issue, but rather the number of

Helmholtz subproblems that need to be processed. We see from Table 9.1 that

there are only 18 1283 Helmholtz subproblems contained in a 2 GB footprint. If

we utilize a single thread per subproblem, then on Nehalem, this means that two

threads will need to process two 1283 subproblems, while the other 14 threads will

only process a single 1283 subproblem. On Barcelona, the load imbalance is less

severe, but still present; two threads will process three subproblems, while the other

six threads will process only two subproblems. Clearly, when only a small number

120

of Helmholtz subproblems need to be processed, load balancing becomes a major

performance issue. However, by employing more threads per subproblem, this effect

can be mitigated. For instance, the Nehalem performance for the 1283 problem

improves by 77% when we use all 16 threads per subproblem instead of a single thread

per subproblem, while for Barcelona, there is a 16% improvement from employing

all eight threads per subproblem.

Another interesting trend is that for smaller subproblem sizes, utilizing fewer

threads per subproblem seems to be advantageous. The one major exception to this

trend is on Nehalem, where employing two threads per subproblem always performs

better than using one thread per subproblem. However, this is likely due to the fact

that Nehalem supports two threads per core; by having each of these threads work on

a different subproblem, any core-level locality is destroyed. Outside of this artifact,

we observe that having many threads processing the same small Helmholtz problem

produces poor memory access patterns. Specifically, since each thread receives a

relatively small amount of work per problem, the resulting memory access pattern

has more short unit-stride stanzas. In previous work, we have already shown that

this type of traversal causes noticeable performance degradation for machines with

hardware prefetchers [28], which include both the Nehalem and Barcelona. Victoria

Falls, a highly multi-threaded architecture without any hardware prefetchers, may

benefit from such a memory access pattern, but this is left for future work.

Overall on Nehalem, our median auto-tuning speedup is 2.2×, much of it coming

from the NUMA-aware and core blocking optimizations. However, the reason we

do not achieve even larger speedups is because we are approaching the machine’s

bandwidth limit. We attain a median of 95% of the Optimized Stream bandwidth on

Nehalem, but in one case, we are actually able to match this bandwidth. This is not

wholly surprising, given that for the 7-point stencil (another memory-bound kernel

on Nehalem), we were able to attain 95% of the Optimized Stream bandwidth.

On Barcelona, the performance numbers are slightly less impressive, but still

good. Our median speedup from auto-tuning is 1.9×, with the great majority of this

speedup coming from the NUMA-aware optimization. In addition, after full tuning

we achieve between 68%–87% of the Optimized Stream bandwidth, with a median of

80%. However, the Helmholtz kernel still falls short of the 93% of Optimized Stream

121

0.00

0.05

0.10

0.15

0.20

0.25

0.30

16

32

64

12
8 16

32

64

12

8 16

32

64

12
8 16

32

64

12

8

0.5 1 2 4

G
St

en
ci

l/s

Mem. Footprint in GB (Cubic Grid Dim.)

Nehalem

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

16

32

64

12
8 16

32

64

12

8 16

32

64

12
8 16

32

64

12

8

0.5 1 2 4

G
St

en
ci

l/s

Mem. Footprint in GB (Cubic Grid Dim.)

Barcelona

1 Bandwidth Perf. Limit Threads Per Problem: 2 4 8 16

Figure 9.2: Individual performance graphs for a single iteration of the Helmholtz
kernel. The major x-axis shows the total memory footprint in Gigabytes, while the
minor x-axis displays the cubic grid dimensions of a single Helmholtz problem. The
performance limits are set by the Optimized Stream benchmark.

bandwidth that we attained for the 7-point stencil.

9.4.2 Varying Memory Footprints

Now that we have explored the basic performance trends while having a fixed 2 GB

memory footprint, we will also explore the performance from memory footprints of

0.5 GB, 1 GB, and 4 GB. Figure 9.2 presents these results, but the plots do require

some explanation. First, we again show two quantities on the x-axis. The major x-

axis represents the memory footprint size, while the minor x-axis shows the Helmholtz

problem size. In addition, these plots no longer show the benefits of each auto-tuning

optimization; we now show the fully auto-tuned performance for a variety of threads

per grid. This is done by first showing the performance of a single thread per grid,

and then showing the performance results from having more threads per grid if they

perform better. Again, the bandwidth bound is no longer a straight line because we

are now dealing with different problem sizes with varying surface to volume ratios.

The surface to volume ratio decreases with increasing problem size, resulting in a

122

smaller fraction of memory traffic being used to transfer ghost cells.

We observe that on Nehalem, executing a single thread per subproblem is never

optimal; at least two threads per subproblem is always required for best performance.

As mentioned previously, this is likely due to the fact that Nehalem supports two

threads per core. In contrast, Barcelona supports only a single thread per core.

For situations where load balancing issues are unlikely– either when we have small

subproblem sizes or large memory footprints– two threads per subproblem is opti-

mal on Nehalem, while a single thread per subproblem performs best on Barcelona.

However, whenever we deal with larger grid sizes or smaller memory footprints, the

resulting decrease in the number of Helmholtz subproblems (as listed in Table 9.1)

causes load balancing issues.

The worst case is when we attempt to process the 1283 problem on a 0.5 GB

memory footprint. This results in only four Helmholtz subproblems. If we utilize a

single thread per subproblem, then only four threads will be busy in this scenario.

On Nehalem, this means that 12 threads will still be left idle, while on Barcelona,

four threads will not receive any work. The plots in Figure 9.2 show that we attain

speedups of 3.7× and 1.9× on Nehalem and Barcelona, respectively, when we utilize

more threads per problem.

Analyzing Figure 9.2 further, it seems that when load balancing is not a concern,

then two threads per subproblem on Nehalem and one thread per subproblem on

Barcelona is always optimal. This is again likely due to the poor memory access

patterns that results from having many threads per problem. However, this is a

concern as core counts continue to escalate. If only 1–2 threads per problem continues

to be optimal as we approach the manycore era, then load balancing will be an even

larger impediment to good scalability.

9.5 Multiple Iteration Performance

From our single iteration performance analysis of the Helmholtz kernel, we know

that this kernel is memory-bound on both the Nehalem and Barcelona architectures.

If this is the case, then we may be able to take advantage of this fact by performing

a second (or possibly even a third) iteration “for free”. By this, we mean that we

123

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10

G
St

en
ci

l/s

Iteration Count

Nehalem

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10

G
St

en
ci

l/s

Iteration Count

Barcelona

Computation Perf. Limit Threads Per Problem: 1 2 4 8 16

Figure 9.3: Individual performance graphs for many iterations of the Helmholtz
kernel when the problem size is 163 and the memory footprint is 0.5 GB. The com-
putation limit was set by the in-cache performance of a single 163 Helmholtz problem.

may be able to perform more than a single iteration without increasing the running

time substantially because bandwidth, not computation, may still be our limiting

factor. This argument can only be taken so far, though– after a certain iteration

count, computation will become the bottleneck.

There were some design decisions that we made prior to exploring the performance

of multiple iterations. First, we selected a Helmholtz problem size of 163. This

was because each 163 problem occupies approximately 280 KB of memory (without

any array padding), so several of these problems will fit into the last-level cache of

either Nehalem (8 MB) or Barcelona (2 MB). In most cases, this means that the

problems will stay resident in cache as we perform multiple iterations. The one

exception is when we execute a single thread per problem on Barcelona. In this case,

eight different Helmholtz problems may need to be in cache simultaneously, but the

combined memory footprint of these problems exceeds Barcelona’s last-level cache.

This may result in performance degradation, but in all other cases, this should not

be an issue.

The second design choice was to fix the memory footprint size at 0.5 GB. This

124

allows us to process 2100 163 Helmholtz problems, which is more than enough to avoid

any load balancing issues. Larger memory footprints will result in longer running

times but will not produce any new information.

Figure 9.3 shows the performance results from this experiment. Similar to the

single iteration performance, we again varied the number of threads per grid from one

up to the number of hardware threads available on the system. We note that when

we used a single thread per problem, no barrier was present between iterations, since

none was needed to preserve correctness. However, whenever we utilized multiple

threads per problem, a barrier was present between iterations. This certainly gives

the one thread per problem case an advantage.

In addition, in order to place an upper bound on performance, we executed 10,000

iterations over a single 163 Helmholtz problem. This problem size will easily fit into

the last-level cache of both the Nehalem and Barcelona. The thread count for this

experiment was varied so that at a minimum, one core was employed, and at a

maximum, all the cores on the system were utilized. We displayed the best GStencil

rate from these different thread counts.

There are two obvious trends in Figure 9.3. First, on both architectures, we ob-

serve that performance monotonically decreases as we increase the number of threads

per problem. We know that the case of a single thread per problem is already at an

advantage due to the lack of barriers between iterations. The fact that adding more

threads per problem continues to degrade performance may again be due to the poor

memory access patterns that result. Specifically, each 163 problem is being divided

among more threads, creating shorter unit-stride stanzas for each one. However,

since the Helmholtz problems are resident in cache, the issue is no longer DRAM

latency, but rather the cache to register latency.

Second, as expected, as the iteration count increases, the performance for each

thread count per problem monotonically increases, approaching some asymptote;

this asymptote is sometimes the best in-cache performance, but not always. This

behavior is due to the fact that the first iteration is by far the slowest, since the grids

are read from DRAM during that time. Subsequent iterations should be limited by

computation, not bandwidth, and thus are significantly faster. As a result, these

later iterations help to amortize the time for the slow first iteration.

125

This theory is confirmed by examining the running times of the first few iterations.

In the one thread per problem case on Nehalem, the second and third iterations both

require about 33% of the running time of the first iteration. On Barcelona, the

second iteration takes about 16% of the first iteration running time. Thus, while

later iterations are not “free”, they are significantly faster than the first iteration.

We note that when we performed multiple iterations, we never performed any

ghost cell exchanges between iterations. To be mathematically correct, an exchange

should occur after every iteration. While it is possible to perform two iterations

without any ghost cell exchanges, more than two may cause stability issues with the

solver. Our experiment executed up to 10 iterations without an exchange so that we

could better understand the resulting performance behavior, even though it is not

mathematically sound.

9.6 Conclusions

The Helmholtz kernel in this chapter was designed to imitate the behavior of

AMR codes, which have very different characteristics from the 7-point and 27-point

stencil problems that we had solved earlier. Since we are now dealing with many small

problems, the number of threads per problem becomes another tunable parameter.

In both the single iteration and multiple iteration cases, we noticed that fewer (1–

2) threads per problem was usually optimal. However, the resulting coarse-grained

parallelism caused serious load balancing issues when there was insufficient work for

all the available threads. If fewer threads per problem continues to be optimal in the

manycore era, load imbalance will be an even larger problem than it is now.

126

Chapter 10

Related and Future Work

This chapter covers relatively disparate topics that are related to tuning stencil

codes, but were not appropriate to mention in previous chapters. Specifically, the

three areas of focus are: grid traversal algorithms for performing multiple sweeps,

more productive domain-specific stencil compilers, and the use of statistical machine

learning in searching the auto-tuning parameter space. We also discuss directions for

future research whenever they arise.

10.1 Multiple Iteration Grid Traversal Algorithms

This thesis has not discussed the topic of performing multiple stencil iterations

in great detail. While we did perform multiple Helmholtz kernel sweeps in Chap-

ter 9, we usually performed a barrier between iterations (unless a single thread was

processing the entire grid). Barriers, however, are expensive operations that require

communication between all threads that are processing the grid; this will likely be-

come a larger issue as we head towards the manycore era. Moreover, barriers are

typically placed after each iteration, potentially resulting in significant amounts of

time spent in communication.

This section will explore other algorithms for performing multiple stencil sweeps

that (mostly) avoid barriers. These algorithms attempt to take advantage of spatial

and temporal locality so that we minimize memory traffic and effectively utilize any

hardware prefetchers.

127

(a) Naïve Tiling

ite
ra

tio
ns

x0 x1 x2 x3 x4

space

(b) Time Skewing

ite
ra

tio
ns

x0 x1 x2 x3 x4
space

(c) Circular Queue

ite
ra

tio
ns

x0 x1 x2 x3 x4
space

“clean-up” work

Figure 10.1: A visual depiction of three grid traversal algorithms performing multiple
iterations of a 1D three-point stencil (with constant boundaries at each edge of the
grid). Each colored tile is performed consecutively going from left to right, but in the
case of (a) and (c), the colored tiles can be processed in parallel safely. In addition,
the points within each colored tile are performed a single iteration at a time.

We note that the following algorithms can be used in conjunction with barriers.

For example, instead of having a barrier after each iteration, we can perform n

iterations with one of the following algorithms, execute a barrier, and then perform

another n iterations. In this way, a barrier becomes a part of the overall tuning

space.

10.1.1 Näıve Tiling

Näıve tiling, where we decompose the grid into blocks spatially (but not tem-

porally), is the simplest approach to improving the memory access pattern when

performing multiple iterations. An example of this algorithm is shown for a simple

128

1D 3-point stencil in Figure 10.1(a), where we assume that no barrier exists between

iterations. This type of tiling can be performed in serial or parallel. In the serial

case, we can tune the colored tiles such that each one fits in cache. This algorithm

is also easily parallelizable by having each thread process one or more colored tiles.

The major problem with näıve tiling is that by not performing any type of tem-

poral skewing, the tile boundaries retreat from each other after each iteration due to

stencil dependencies. We can rectify this in two ways. First, if this is implemented as

a parallel algorithm, then we can place a barrier between each iteration, which would

allow the tile boundaries to remain stationary. However, as mentioned, a barrier is

an expensive operation, especially as the processor count grows. The other option

is to perform “clean up” work (shown as black triangles) after the initial colored

tiles are complete. This, too, is undesirable, since a second, cache-unfriendly grid

traversal needs to be executed.

10.1.2 Time Skewing

In order to avoid this clean up work, more contemporary approaches to stencil

optimization are geared towards techniques that leverage tiling in both the spatial and

temporal dimensions. This can be performed using loop skewing in order to increase

data reuse within the cache hierarchy. Initial work by Wolf [60] showed loop skewing

generally did not improve performance, but subsequent studies by McCalpin [34] et

al and others [47, 61, 27] have shown a modified form of loop skewing called time

skewing can improve performance for many stencil kernels.

Figure 10.1(b) shows a simplified diagram of time skewing for the same 1D three-

point stencil. The grid is divided into tiles by several skewed cuts that preserve the

data dependencies of the stencil. In order for the time skewing algorithm to execute

correctly, each of the colored tiles needs to be processed consecutively from left to

right. For example, the red tile needs to be fully calculated before beginning on the

yellow tile. In general, this holds true between the nth and (n + 1)th tiles.

As a result, time skewing becomes an inherently sequential algorithm; if the tiles

are executed out of order, the final result will be incorrect. Thus, the colored tiles

in Figure 10.1(b) can be considered to be cache blocks. There has been some work

129

in making the time skewing algorithm parallel [62], but it suffers from some of the

same issues with “clean up” work that we observed with näıve tiling.

10.1.3 Circular Queue

In order to execute in parallel and avoid clean up work, we can utilize the circular

queue algorithm, which was implemented by S. Williams to parallelize a stencil code

for the STI Cell processor [27, 11]. Figure 10.1(c) shows that this algorithm performs

redundant work per colored tile (represented as overlapping tiles) so as to avoid

synchronizing with other tiles. Since every tile is now completely self-contained, the

tiles can be processed either serially or in parallel. This algorithm is similar to the

näıve tiling approach, but with initial tiles that are large enough for us to avoid any

subsequent clean up work.

The circular queue algorithm also includes an additional data structure that was

not present in the previous two algorithms. Separate from the other grids, this

algorithm maintains an additional set of planes for each iteration that is performed.

The number of planes corresponds to the height of the stencil– in the case of the 3D

7-point or 27-point stencil, three planes are required. For a simple Jacobi iteration,

initially the first three planes of the read grid are copied into the three planes of this

external data structure. The calculation is performed in this set of planes and the

result is updated in the write grid. Then, the bottom plane of this data structure is

updated with the next plane from the read grid, and the plane pointers are updated

properly, so that the next higher plane in our calculation can be computed. This

then continues for the rest of the grid. The power of this extra “circular queue” data

structure is that it exposes spatial and temporal locality explicitly by storing the

working set of the stencil. This helps ensure that the hardware does not evict needed

cache lines prematurely.

The major drawback of the circular queue algorithm is that redundant com-

putation is performed in each tile. This effect is exacerbated if we are executing

higher-dimensional stencils (due to the increased surface-to-volume ratio) or if we

are performing many iterations. However, we can ameliorate this effect through the

use of additional barriers.

130

10.1.4 Cache Oblivious Traversal/Recursive Data Structures

Cache oblivious optimizations optimize algorithms without using cache sizes as a

tuning parameter. Such optimizations have been shown to improve performance for

some classes of matrix operations [40] including matrix transpose, Fast Fourier Trans-

form (FFT), and sorting [21]. More recently, Frigo et al [19] showed the potential of

cache oblivious optimizations for improving stencil kernel performance.

In our previous work [27], we examined the implicit cache oblivious tiling method-

ology on serial stencil codes. This algorithm [19] further leverages the idea of combin-

ing temporal and spatial blocking by organizing the computation in a manner that

doesn’t require any explicit information about the cache hierarchy. More precisely, it

considers an (n+1)-dimensional spacetime trapezoid consisting of the n-dimensional

spatial grid together with an additional dimension in the time (or sweep) direction.

In order to recursively operate on smaller spacetime trapezoids, we cut an existing

trapezoid either in time or space and then recursively called the cache oblivious sten-

cil function to operate on the two smaller trapezoids. This recursion continued until

there was only one time step in the calculation. At this point, we executed in the

usual explicit manner.

Unfortunately, the implicit cache oblivious stencil never performed as well as the

explicit time skewed stencil. The poor results are partly due to the compiler’s in-

ability to generate optimized code for the complex loop structures required by the

cache oblivious implementation. The performance problems remained despite several

layers of optimization, which included reducing the function call overhead, eliminat-

ing modulo operations for periodic boundaries, taking advantage of prefetching, and

terminating the recursion early.

As future work, it may be beneficial to use recursion not to traverse the grid,

but rather to alter the grid data structure itself. Specifically, by ordering the grid in

a space-filling curve layout [49], we may be able to achieve better memory locality

than the normal layout (diagrammed in Figure 2.2). On architectures where we have

already attained over 90% of our performance limit, we have already shown that

we are maximizing the available resources. However, if we are bandwidth-bound

and attaining less than this percentage, having a recursive data structure may be

131

useful. This is a relatively complex data structure, though. Before attempting this

optimization, it may be worth executing a stencil with better locality properties to

confirm that a lack of locality is the actual performance bottleneck.

10.2 Stencil Compilers

As shown in subsequent chapters, the PERL scripts we created for generating

C+Pthreads code are effective in getting very good performance across a diverse

set of architectures. As we know, they do suffer from a lack of program analysis

and verification, which we addressed in Section 5.3 by introducing a formal stencil

framework. From a programmer’s standpoint, creating these PERL scripts is also

not very productive. A recently introduced technique called SEJITS (Selective Em-

bedded Just-In-Time Specialization) is an alternative approach that achieves both

productivity and good performance [7].

In essence, SEJITS allows programmers to prototype code quickly in a productivity-

level language (PLL) like Python or MATLAB, while achieving close to the perfor-

mance of an efficiency-layer language (ELL) like CUDA or C with OpenMP. The

secret is the use of provided class libraries written in a modern scripting language

like Ruby or Python. These class libraries represent domain-appropriate abstractions

in the productivity language. However, the library functions generate source code in

an efficiency language, which is then JIT-compiled, cached, dynamically linked, and

executed. Note that the JIT specialization is selective, meaning that the overhead of

runtime specialization is paid only when performance can be significantly improved.

Furthermore, the JIT is embedded in the PLL itself, allowing for the addition of new

extensions. In our case, we could imagine writing a new specializer for each of the

different PERL code generators in our study; this would likely be more productive

for the programmer.

For the 7-point stencil, the slowdown from hand-coding to SEJITS was about

1.3× on Barcelona and about 2.8× on Nehalem. This is largely attributable to the

specialization overhead, but this tradeoff of productivity for performance may be

appropriate in many realms where the utmost performance is unnecessary.

132

10.3 Statistical Machine Learning

Statistical machine learning (SML) is a relatively new method for doing param-

eter space searches quickly yet effectively. SML has previously been used to address

performance optimization for simpler High Performance Computing (HPC) prob-

lems. For instance, Brewer [4] used linear regression over three parameters (width,

height, and iterations) to select the best data partitioning scheme for 2D stencil

code parallelization; Vuduc [53] later used support vector machines (SVMs) to select

between three optimization algorithms for dense matrix multiply of varying matrix

dimensions; and Cavazos et al [17] have used a logistic regression model to predict

the optimal set of compiler flags.

All three previous SML examples showed very promising results. In our case,

we want SML to identify and exploit any relationships between our optimization

parameters and the resultant performance metrics. Kernel Canonical Correlation

Analysis (KCCA) [16] is a recent SML algorithm that does this effectively. Specif-

ically, KCCA finds multivariate correlations between optimization parameters and

performance metrics on a training set of data. We can then leverage these statistical

relationships to optimize for performance.

In joint work with Archana Ganapathi, we utilized KCCA for optimizing the per-

formance of the 7-point and 27-point stencil auto-tuners [22]. We first trained the al-

gorithm by randomly sampling 1500 data points from the configuration space. Then,

we evaluated these configurations on the Intel Clovertown and AMD Barcelona. We

not only collected timing data during this experiment, but also relevant performance

counter information. This includes data about cache line misses, TLB misses, and

cache coherency traffic. However, we did not collect data on flop counts since the

grid size was fixed, and thus the number of floating point operations for our stencil

kernel was also constant.

KCCA then processed this data to find hidden relationships between the opti-

mization configurations and performance. This was done by transforming the con-

figuration vectors and performance vectors into their respective similarity matrices.

These similarity matrices were then used as inputs to a generalized eigenvalue prob-

lem, the solution of which was used to create a new KCCA data space. In this

133

transformed KCCA data space, the input space and output space are maximally

correlated. This is because the hidden relationships between optimization configu-

rations and performance in the raw data space are made explicit in the transformed

KCCA data space.

The power of the KCCA output space lies in the fact that it clusters the best

performing points together. By finding the best performing point from our 1500

training data points, we can find this point’s nearest neighbors in the KCCA output

space, and they should all be high-performing data points as well. We can then map

these points back to the input space to determine their optimization configurations.

We can then create new test data points by taking the configuration parameters of

these points and permuting them. We expect that some of these new points will also

perform well.

Our results confirm that these newly generated data points do indeed perform

well. Using a subset of the optimizations performed in the iterative greedy search,

we found that KCCA was able to do about as well– and occasionally even better–

than the iterative greedy search.

However, there are two hurdles to KCCA that need to be addressed before it

can be a viable alternative to more näıve methods. First, the time to create the

KCCA model is prohibitive, and this time grows superlinearly with the number of

training points. We need to investigate whether there are better eigenvalue solvers

for keeping the model creation time tractable. Moreover, KCCA typically requires

that performance counter data be collected in conjunction with timing data. For

many architectures, multiplexing certain performance counter events is impossible,

so multiple runs need to be executed instead. This also adds to the auto-tuning time.

We need to examine whether using only timing data in the KCCA model degrades

the quality of the final solution, and if it does, then if the tradeoff is worthwhile.

Assuming these problems can be rectified, the future of machine learning in auto-

tuning appears bright. Unlike our iterative greedy search, KCCA is a general al-

gorithm that requires very little architectural or application knowledge. As more

software developers create auto-tuners for their multicore application, fewer of them

will be expert programmers; SML offers a way to search their parameter space quickly

to find a high-quality solution. Moreover, if we consider alternative compilers, dif-

134

ferent compiler flags, a composition of several kernels, multichip NUMA systems, or

heterogeneous hardware, then the size of the parameter space will continue to grow

exponentially larger. SML is designed to handle these extra configuration parame-

ters.

10.4 Summary

All of the research areas that we discussed in this chapter aim to improve key

elements of our stencil auto-tuner, including faster multiple iteration performance,

more programmer productivity, and better parameter searching. Several of the ideas

that were introduced are applicable outside the realm of auto-tuning as well.

135

Chapter 11

Conclusion

The rise of multicore architectures has certainly made a great impact on the

software industry. Not only are programmers now expected to write parallel code,

but this code will often need to be tuned in order to fully utilize a multicore machine’s

resources. Given the rate at which machines are doubling their core counts, as well as

the diversity of multicore architectures in today’s market, we knew that hand-tuning

our stencil kernels would be unproductive. Instead, we found that building a stencil

auto-tuner was a better option, despite the relatively high one-time cost. Across the

five heterogenous architectures of this study, all of the performance gains that we

discussed were achieved with the same set of stencil auto-tuners.

Auto-tuning has enabled us to fully exploit either the bandwidth or the com-

putational abilities in almost all cases. For instance, when executing the 7-point

and 27-point stencils, four of the five architectures achieved at least 85% of either

the in-cache GStencil rate or the Optimized Stream bandwidth. In addition, for the

Helmholtz kernel, we achieved between 89%–100% of the peak attainable bandwidth.

Across all kernels, in the two cases where we failed to attain at least 85% of the peak

attainable bandwidth or computation rate, further examination is required. However,

part of the problem may be that our current model assumes that either computation

or bandwidth will bound the performance of the hardware. Such a simplistic model

may not be accurate in this case. For instance, cache or instruction bandwidth may

present other impediments to good performance. This needs to be studied further,

but if we can uncover these other potential performance bounds, we may be able to

136

address them in software.

In almost all cases, though, we are nearly maximizing either bandwidth or compu-

tation. Thus, ultimately, we are limited by the hardware. We can only do as well as

the peak memory bandwidths or computational rates of the machines we are execut-

ing on. However, current architectural trends indicate a growing disparity between

computational rates and bandwidth rates on multicore chips– the so-called memory

wall. With the number of cores per chip doubling every 18–24 months, not only does

the computational ability of the entire processor steadily increase, but the bandwidth

per core steadily decreases. For most stencil codes, this means that many of the cores

on a chip will be effectively wasted because there is insufficient bandwidth to keep

them busy. The hardware industry is trying to address this problem through better

integration of memory and processors, including innovations like stacking memory

chips atop processors [37, 44]. However, we will have to wait and see whether newer

technologies can adequately address this computation–bandwidth gap.

Another disturbing trend was discovered during tuning of the Helmholtz kernel.

For this kernel, we tuned for many small subproblems, which is characteristic of the

Adaptive Mesh Refinement (AMR) codes that the kernel was ported from. Therefore,

we introduced a new tunable parameter– the number of threads per subproblem. We

discovered that for the Nehalem and Barcelona architectures, the optimal number

of threads per subproblem was either one or two, assuming that load balancing was

not an issue. Thus, coarse-grained parallelism seemed to outperform fine-grained

parallelism. Unfortunately, coarse-grained parallelism leaves us exposed to load bal-

ancing issues whenever there are few subproblems to process. There are ways to deal

with this problem, but they require extra work on the part of the programmer. For

instance, one solution is to have all the threads work on the maximum number of

load-balanced subproblems using coarse-grained parallelism, and then have all the

threads process the remaining subproblems using fine-grained parallelism. Another

more drastic, but general solution is to use a work queue model. This is better suited

to situations where the subproblems also vary in size and shape. Nonetheless, going

into the manycore era, load balancing will continue to be an issue, but one that can

be addressed.

137

Bibliography

[1] Six-Core AMD Opteron Processor. http://www.amd.com/us/products/

server/processors/six-core-opteron/Pages%/six-core-opteron.aspx,

2009.

[2] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz,

N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick. A

view of the parallel computing landscape. Commun. ACM, 52(10):56–67, 2009.

[3] M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial dif-

ferential equations. Journal of Computational Physics, 53:484–512, 1984.

[4] Eric Allen Brewer. Portable high-performance supercomputing: high-level

platform-dependent optimization. PhD thesis, Massachusetts Institute of Tech-

nology, 1994.

[5] P. Briggs, K. D. Cooper, K. Kennedy, and L. Torczon. Coloring heuristics for

register allocation. SIGPLAN Not., 24(7):275–284, 1989.

[6] W.L. Briggs, V. Henson, and S.F. McCormick. A Multigrid Tutorial. Society for

Industrial and Applied Mathematics, Philadelphia, PA, Second edition, 2000.

[7] B. Catanzaro, S. Kamil, Y. Lee, K. Asanović, J. Demmel, K. Keutzer, J. Shalf,

K. Yelick, and A. Fox. SEJITS: Getting Productivity and Performance With

Selective Embedded JIT Specialization. In First Workshop on Programmable

Models for Emerging Architecture (PMEA) at the 18th International Conference

on Parallel Architectures and Compilation Techniques, 2009.

138

[8] John Cavazos. Automatically constructing compiler optimization heuristics using

supervised learning. PhD thesis, University of Massachusetts Amherst, 2005.

Director-Moss, J. Eliot.

[9] Chombo homepage. http://seesar.lbl.gov/anag/chombo.

[10] Lothar Collatz. The Numerical Treatment of Differential Equations. Springer-

Verlag, 1960.

[11] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and K. Yelick. Optimization

and performance modeling of stencil computations on modern microprocessors.

In SIAM Review (SIREV), 2008.

[12] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson,

J. Shalf, and K. Yelick. Stencil computation optimization and autotuning on

state-of-the-art multicore architectures. In Proc. SC2008: High performance

computing, networking, and storage conference, 2008.

[13] K. Datta, S. Williams, V. Volkov, J. Carter, L. Oliker, J. Shalf, and K. Yelick.

Auto-tuning the 27-point stencil for multicore. In Proc. iWAPT2009: The

Fourth International Workshop on Automatic Performance Tuning, 2009.

[14] James W. Demmel. Applied Numerical Linear Algebra. Society for Industrial

and Applied Mathematics, Philadelphia, PA, 1997.

[15] Hikmet Dursun, Ken-Ichi Nomura, Liu Peng, Richard Seymour, Weiqiang Wang,

Rajiv K. Kalia, Aiichiro Nakano, and Priya Vashishta. A multilevel paralleliza-

tion framework for high-order stencil computations. In Euro-Par ’09: Proceed-

ings of the 15th International Euro-Par Conference on Parallel Processing, pages

642–653, Berlin, Heidelberg, 2009. Springer-Verlag.

[16] F.R. Bach et al. Kernel independent component analysis. In International

Conference on Acoustics, Speech, and Signal Processing (ICASSP), Hong Kong,

China, 2003.

139

[17] J. Cavazos et al. Rapidly selecting good compiler optimizations using perfor-

mance counters. In CGO ’07: Proceedings of the International Symposium on

Code Generation and Optimization, Washington, DC, USA, 2007.

[18] The FLAME Project. http://z.cs.utexas.edu/wiki/flame.wiki/.

[19] M. Frigo and V. Strumpen. Evaluation of cache-based superscalar and cache-

less vector architectures for scientific computations. In Proc. of the 19th ACM

International Conference on Supercomputing (ICS05), Boston, MA, 2005.

[20] Matteo Frigo and Steven G. Johnson. FFTW: An adaptive software architec-

ture for the FFT. In Proc. 1998 IEEE Intl. Conf. Acoustics Speech and Signal

Processing, volume 3, pages 1381–1384. IEEE, 1998.

[21] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.

Cache-oblivious algorithms. In FOCS ’99: Proceedings of the 40th Annual Sym-

posium on Foundations of Computer Science, page 285, Washington, DC, USA,

1999. IEEE Computer Society.

[22] A. Ganapathi, K. Datta, A. Fox, and D. Patterson. A Case for Machine Learning

to Optimize Multicore Performance. In First USENIX Workshop on Hot Topics

in Parallelism, 2009.

[23] Richard J. Hanson, Clay P. Breshears, and Henry A. Gabb. Algorithm 821: A

fortran interface to posix threads. ACM Trans. Math. Softw., 28(3):354–371,

2002.

[24] M. D. Hill and A. J. Smith. Evaluating Associativity in CPU Caches. IEEE

Trans. Comput., 38(12):1612–1630, 1989.

[25] IBM Fortran 90 Pthreads Library Module. http://publib.boulder.ibm.com/

infocenter/lnxpcomp/v8v101/index.jsp?topi%c=/com.ibm.xlf101l.doc/

xlfopg/posix.htm.

[26] S. Kamil, C. Chan, S. Williams, L. Oliker, J. Shalf, M. Howison, E.W. Bethel,

and Prabhat. A Generalized Framework for Auto-tuning Stencil Computations.

In Proceedings of the Cray User Group Conference, 2009.

140

[27] S. Kamil, K. Datta, S. Williams, L. Oliker. J. Shalf, and K. Yelick. Implicit

and explicit optimizations for stencil computations. In Memory Systems Per-

formance and Correctness (MSPC), 2006.

[28] S. Kamil, P. Husbands, L. Oliker, J. Shalf, and K. Yelick. Impact of modern

memory subsystems on cache optimizations for stencil computations. In MSP

’05: Proceedings of the 2005 workshop on Memory system performance, pages

36–43, New York, NY, USA, 2005. ACM.

[29] Theodore Kim. Hardware-aware analysis and optimization of stable fluids. In

I3D ’08: Proceedings of the 2008 symposium on Interactive 3D graphics and

games, pages 99–106, New York, NY, USA, 2008. ACM.

[30] Randall J. LeVeque. Finite Difference Methods for Ordinary and Partial Differ-

ential Equations. Society for Industrial and Applied Mathematics, Philadelphia,

PA, 2007.

[31] T. Ligocki. private communication, 2009.

[32] A. Lim, S. Liao, and M. Lam. Blocking and array contraction across arbitrarily

nested loops using affine partitioning. In Proceedings of the ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, June 2001.

[33] D.F. Martin and K.L. Cartwright. Solving Poisson’s Equation using Adaptive

Mesh Refinement, 1996.

[34] J. McCalpin and D. Wonnacott. Time Skewing: A Value-Based Approach to

Optimizing for Memory Locality. Technical Report DCS-TR-379, Department

of Computer Science, Rugers University, 1999.

[35] John D. McCalpin. STREAM: Sustainable Memory Bandwidth in High Perfor-

mance Computers. http://www.cs.virginia.edu/stream.

[36] Gordon E. Moore. Cramming More Components Onto Integrated Circuits. Elec-

tronics, 38(8), April 1965.

141

[37] S.K. Moore. Multicore is bad news for supercomputers. Spectrum, IEEE,

45(11):15–15, November 2008.

[38] A. Nakano, P. Vashishta, and R.K. Kalia. Multiresolution molecular dynam-

ics for realistic materials modeling on parallel computers. Computer Physics

Communications, 83:197–214, 1994.

[39] OpenMP. http://openmp.org, 1997.

[40] H. Prokop. Cache-oblivious algorithms, June 1999. Master’s thesis, MIT De-

partment of Electrical Engineering and Computer Science.

[41] Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua, Manuela

Veloso, Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voro-

nenko, Kang Chen, Robert W. Johnson, and Nicholas Rizzolo. SPIRAL: Code

generation for DSP transforms. Proceedings of the IEEE, special issue on “Pro-

gram Generation, Optimization, and Adaptation”, 93(2):232– 275, 2005.

[42] G. Rivera and C. Tseng. Tiling optimizations for 3D scientific computations. In

Proceedings of SC’00, Dallas, TX, November 2000. Supercomputing 2000.

[43] S. Sellappa and S. Chatterjee. Cache-Efficient Multigrid Algorithms. Inter-

national Journal of High Performance Computing Applications, 18(1):115–133,

2004.

[44] J. Shalf, J. Bashor, D. Patterson, K. Asanovic, K. Yelick, K. Keutzer, and

T. Mattson. The MANYCORE Revolution: Will HPC LEAD or FOLLOW?

SciDAC Review, 14:40–49, Fall 2009.

[45] F. Shimojo, R.K. Kalia, A. Nakano, and P. Vashishta. Divide-and-conquer den-

sity functional theory on hierarchical real-space grids: Parallel implementation

and applications. Physical Review B, 77, 2008.

[46] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI: The

Complete Reference (Vol. 1). The MIT Press, 1998.

142

[47] Y. Song and Z. Li. New Tiling Techniques to Improve Cache Temporal Locality.

In Proc. ACM SIGPLAN Conference on Programming Language Design and

Implementation, Atlanta, GA, 1999.

[48] Carlos P. Sosa. IBM System Blue Gene Solution: Blue Gene/P Application

Development. International Technical Support Organization, first edition, De-

cember 2007.

[49] Space-filling curve. http://en.wikipedia.org/wiki/Space-filling_curve.

[50] Microsoft Developers Network SSE2 Intrinsics for Floating Point. http://msdn.

microsoft.com/en-us/library/4atda1f2(VS.80).aspx.

[51] The IEEE and The Open Group. The Open Group Base Specifications Issue 6,

2004.

[52] U. Trottenberg, C.W. Oosterlee, and A. Schüller. Multigrid. Academic Press,

San Francisco, CA, 2001.

[53] R. Vuduc. Automatic Performance Tuning of Sparse Matrix Kernels. PhD

thesis, University of California, Berkeley, Berkeley, CA, USA, December 2003.

[54] R. Vuduc, J. Demmel, and K. Yelick. OSKI: A Library of Automatically Tuned

Sparse Matrix Kernels. In Proc. of SciDAC 2005, J. of Physics: Conference

Series. Institute of Physics Publishing, June 2005.

[55] R. C. Whaley, A. Petitet, and J. Dongarra. Automated Empirical Optimization

of Software and the ATLAS project. Parallel Computing, 27(1-2):3–35, 2001.

[56] S. Williams, J. Carter, L. Oliker, J. Shalf, and K. Yelick. Lattice Boltzmann

simulation optimization on leading multicore platforms. In Interational Confer-

ence on Parallel and Distributed Computing Systems (IPDPS), Miami, Florida,

2008.

[57] S. Williams, D. Patterson, L. Oliker, J. Shalf, and K. Yelick. The roofline

model: A pedagogical tool for auto-tuning kernels on multicore architectures.

IEEE HotChips Symposium on High-Performance Chips (HotChips 2008), Au-

gust 2008.

143

[58] S. Williams, A. Waterman, and D. Patterson. Roofline: an insightful visual

performance model for multicore architectures. Communications of the ACM,

52(4):65–76, 2009.

[59] Samuel Webb Williams. Auto-tuning Performance on Multicore Computers.

PhD thesis, University of California, Berkeley, Berkeley, CA, USA, December

2008.

[60] M. E. Wolf. Improving Locality and Parallelism in Nested Loops. PhD thesis,

Stanford University, Stanford, CA, USA, 1992.

[61] D. Wonnacott. Using Time Skewing to Eliminate Idle Time due to Memory

Bandwidth and Network Limitations. In IPDPS:Interational Conference on

Parallel and Distributed Computing Systems, Cancun, Mexico, 2000.

[62] David Wonnacott. Time skewing for parallel computers. In LCPC ’99: Pro-

ceedings of the 12th International Workshop on Languages and Compilers for

Parallel Computing, pages 477–480, London, UK, 2000. Springer-Verlag.

144

Appendix A

Supplemental Optimized Stream

Data

This appendix is an extension of the data presented in Figure 6.1, which displays

the maximum attained DRAM bandwidths for the Optimized Stream benchmark.

However, other than the Niagara2 architecture, all the plots shown take the maximum

bandwidths over several different optimizations, including SIMD and cache bypass.

In contrast, the plots presented in this appendix show the actual bandwidths achieved

for each of these optimizations separately.

For instance, Figure A.1 shows the bandwidth results on Clovertown from three

different code variants. The upper left plot shows the performance of the portable C

code, which look very similar to the SIMDized code results shown in the upper right

plot. It is likely that the icc compiler has automatically SIMDized the portable

C code, resulting in both codes having similar executables. The bottom graph is

SIMDized at the source code level, but also employs the cache bypass instruction

(movntpd). As explained in Section 4.3.2, this optimization avoids reading a cache

line from memory when the data only needs to be written back to DRAM. Thus, the

amount of DRAM traffic for a write miss drops from 16 to 8 Bytes per point! Thus,

even though the bottom graph shows lower bandwidths than the other two plots,

it often exhibits better stencil performance because fewer Bytes of memory traffic

need to be moved. Unfortunately, when more than five write streams per thread are

present, this code shows a severe bandwidth drop. In these cases, it obviously makes

145

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Number of Read Streams

Nu
m

be
r o

f W
rit

e
St

re
am

s

Intel Clovertown [8 thr., Portable C, in GB/s]

0.0

8.0

8.0

8.0

8.0

8.0

8.0

8.0

5.9

7.2

7.5

7.6

7.7

7.8

7.8

7.8

5.9

6.8

7.2

7.4

7.5

7.6

7.6

7.7

5.9

6.6

6.9

7.2

7.3

7.4

7.5

7.5

5.9

6.5

6.8

7.0

7.1

7.3

7.3

7.4

5.9

6.4

6.7

6.9

7.0

7.2

7.2

7.3

5.9

6.3

6.6

6.8

6.9

7.1

7.1

7.2

5.9

6.3

6.5

6.7

6.9

7.0

7.1

7.1

0

2

4

6

8

10

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Number of Read Streams

Nu
m

be
r o

f W
rit

e
St

re
am

s

Intel Clovertown [8 threads, SIMD, in GB/s]

0.0

8.0

8.0

8.0

8.0

8.0

8.0

8.0

5.9

7.2

7.5

7.6

7.7

7.8

7.8

7.8

5.9

6.8

7.1

7.4

7.5

7.6

7.6

7.7

5.9

6.6

6.9

7.2

7.3

7.4

7.5

7.5

5.9

6.5

6.8

7.0

7.1

7.3

7.4

7.4

5.9

6.4

6.7

6.9

7.0

7.2

7.2

7.3

5.9

6.3

6.6

6.8

6.9

7.1

7.2

7.2

5.9

6.3

6.5

6.7

6.9

7.0

7.1

7.1

0

2

4

6

8

10

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Number of Read Streams

Nu
m

be
r o

f W
rit

e
St

re
am

s

Intel Clovertown [8 thr., Cache Bypass, in GB/s]

0.0

5.2

5.0

5.0

4.3

4.3

0.5

0.3

5.9

5.9

5.9

5.9

5.7

5.0

0.5

0.2

5.9

5.9

5.9

5.9

5.7

4.8

0.3

0.3

5.9

5.9

5.9

5.9

5.8

0.4

0.4

0.3

5.9

5.9

5.9

5.7

2.0

2.7

1.3

0.4

5.9

5.9

5.7

3.4

4.9

2.6

0.5

0.4

5.9

5.8

4.5

5.0

4.1

1.5

0.8

0.5

5.9

5.4

5.5

4.8

3.6

5.4

3.0

0.7

0

2

4

6

8

10

Figure A.1: The results from the Optimized Stream benchmark on the Intel Clover-
town for varying numbers of read and write streams per thread.

sense to disable the cache bypass option.

The Optimized Stream performance of Nehalem, shown in Figure A.2, exhibits

similarities to the Clovertown performance. First, we again see that the portable C

code and the SIMD code show remarkably similar bandwidth results. Presumably,

the icc compiler is automatically SIMDizing the portable C code. Furthermore, the

cache bypass code again exhibits a severe bandwidth drop when at least six write

streams are present per thread. This phenomenon is likely due to a hardware feature

that requires further analysis.

The AMD Barcelona Optimized Stream results, displayed in Figure A.3, again

displays the same features that were mentioned for both the Clovertown and Ne-

146

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Number of Read Streams

Nu
m

be
r o

f W
rit

e
St

re
am

s

Intel Nehalem [16 thr., Portable C, in GB/s]

0.0

35.8

35.8

36.2

36.2

36.3

36.3

36.2

35.7

34.9

35.5

35.5

35.6

35.6

35.8

35.4

33.1

33.3

34.3

34.7

35.0

35.2

35.2

35.4

32.0

32.9

33.7

34.1

34.4

34.6

34.8

34.9

31.8

31.9

32.9

33.4

33.8

34.0

34.3

34.6

31.7

31.7

32.3

32.8

33.2

33.6

33.9

34.1

31.7

31.6

31.4

32.3

32.7

33.2

33.5

33.8

31.6

29.3

31.7

31.9

32.6

32.8

33.3

33.5

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Number of Read Streams

Nu
m

be
r o

f W
rit

e
St

re
am

s

Intel Nehalem [16 threads, SIMD, in GB/s]

0.0

35.8

35.9

36.2

36.2

36.3

36.3

36.2

36.1

35.3

35.4

35.5

35.7

35.8

35.9

36.0

32.3

34.1

34.9

35.1

35.1

35.3

35.5

35.6

31.6

33.4

33.8

34.4

34.6

34.9

35.0

35.2

31.6

33.3

32.8

33.5

33.9

34.2

34.4

34.6

31.6

32.3

32.3

33.1

33.4

33.7

34.0

34.2

31.6

31.9

32.4

32.5

32.9

33.2

33.6

33.8

31.6

31.7

31.9

32.2

32.6

33.0

33.2

33.4

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Number of Read Streams

Nu
m

be
r o

f W
rit

e
St

re
am

s

Intel Nehalem [16 thr., Cache Bypass, in GB/s]

0.0

26.1

24.6

22.9

19.5

9.2

1.6

1.6

36.0

33.6

31.6

28.8

23.4

12.7

2.8

2.3

32.7

32.1

31.7

30.9

26.5

17.7

4.5

2.7

31.6

31.2

31.1

31.2

27.7

15.7

6.3

3.5

31.7

30.6

30.2

30.3

24.7

24.6

7.7

4.6

31.6

29.8

30.0

28.1

29.0

20.2

9.8

5.4

31.6

29.7

29.1

30.0

28.7

22.5

11.1

6.2

31.5

29.2

28.6

28.6

28.5

23.3

11.8

7.7

0

5

10

15

20

25

30

35

40

Figure A.2: The results from the Optimized Stream benchmark on the Intel Nehalem
for varying numbers of read and write streams per thread.

halem. The only difference seems to be that for the cache bypass optimization, the

bandwidth drop occurs with five or more write streams per thread, not six like the

Intel platforms. However, the phenomenon itself is common to all three x86 archi-

tectures.

Finally, the Blue Gene/P results are shown in Figure A.4. Like the x86 archi-

tectures, the Blue Gene/P does support SIMDization (but by using different SIMD

intrinsics than the x86 machines). Unlike the x86 architectures, the Blue Gene/P

does not support the cache bypass optimization. Thus, the figure only shows the

bandwidth performance of the portable C code and the SIMD code. Considering

their similarities, it is possible that like the icc compiler, the xlc compiler is also

147

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Number of Read Streams

Nu
m

be
r o

f W
rit

e
St

re
am

s

AMD Barcelona [8 thr., Portable C, in GB/s]

0.0

14.5

14.5

14.5

14.5

14.5

14.5

14.5

16.6

13.7

13.1

10.1

12.5

11.9

12.3

8.0

13.2

13.3

10.8

12.2

11.8

11.9

10.5

12.0

14.6

10.7

12.2

11.7

11.7

9.6

11.9

12.1

10.5

12.7

11.9

11.7

10.1

11.9

12.0

12.0

13.6

12.2

11.9

10.0

11.9

12.1

12.0

12.0

12.9

12.3

10.1

11.9

12.1

12.0

12.1

12.0

13.1

9.3

12.1

12.3

12.1

12.1

12.0

12.2

0

5

10

15

20

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Number of Read Streams

Nu
m

be
r o

f W
rit

e
St

re
am

s

AMD Barcelona [8 threads, SIMD, in GB/s]

0.0

14.5

14.5

14.5

14.5

14.5

14.5

14.5

16.8

13.5

13.1

11.0

12.5

12.1

12.3

11.1

14.6

13.3

11.1

12.2

11.8

11.9

11.1

12.0

14.6

11.2

12.2

11.8

11.7

10.9

11.9

12.1

12.5

12.5

11.8

11.7

11.1

11.9

12.1

12.0

13.3

12.1

11.9

10.9

11.9

12.0

12.0

12.0

12.8

12.2

10.8

11.9

12.0

12.0

12.0

12.1

13.0

10.5

12.1

12.3

12.1

12.1

12.1

12.2

0

5

10

15

20

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Number of Read Streams

Nu
m

be
r o

f W
rit

e
St

re
am

s

AMD Barcelona [8 thr., Cache Bypass, in GB/s]

0.0

10.3

10.3

10.1

10.2

1.5

1.5

1.5

16.8

15.2

14.7

13.9

13.3

1.8

1.7

1.7

14.5

13.9

12.8

13.5

13.3

2.0

1.9

1.9

14.6

11.7

12.9

12.9

12.8

2.2

2.1

2.0

12.6

12.7

13.1

12.3

11.0

2.5

2.3

2.2

13.3

12.1

12.1

10.8

11.9

2.6

2.5

2.3

12.9

12.2

10.8

11.6

11.6

2.9

2.7

2.5

13.0

10.5

11.9

11.8

11.6

3.0

2.8

2.7

0

5

10

15

20

Figure A.3: The results from the Optimized Stream benchmark on the AMD
Barcelona for varying numbers of read and write streams per thread.

SIMDizing the portable C code automatically.

As we explained in Section 6.3, the one caveat about Figure A.4 is that the

data with zero read streams shows bandwidths higher than the platform’s 13.6 GB/s

DRAM pin bandwidth. Most likely, the compiler and/or hardware is changing the

Optimized Stream program execution so that data is not actually being written back

to DRAM in these cases. Ultimately, this will need to be confirmed with performance

counter data.

148

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Number of Read Streams

Nu
m

be
r o

f W
rit

e
St

re
am

s

IBM Blue Gene/P [4 thr., Portable C, in GB/s]

0.0

21.1

13.4

19.3

13.1

10.2

5.3

5.4

7.7

12.7

13.3

11.9

13.6

8.3

7.7

3.2

8.3

11.9

11.6

12.9

11.0

11.8

3.5

10.6

8.3

10.8

11.7

11.6

11.4

3.9

7.9

5.4

8.3

10.7

11.0

11.4

8.2

10.6

7.3

7.6

7.5

9.5

10.4

8.6

9.7

10.2

6.8

5.1

6.4

8.0

6.4

8.7

9.2

8.4

6.0

8.0

6.5

1.9

7.9

8.5

8.8

7.7

7.4

5.8

0

5

10

15

20

25

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Number of Read Streams

Nu
m

be
r o

f W
rit

e
St

re
am

s

IBM Blue Gene/P [4 threads, SIMD, in GB/s]

0.0

21.0

19.0

19.0

7.3

11.9

6.8

6.7

9.9

12.8

13.2

12.9

13.4

9.2

8.8

4.1

11.7

11.9

11.8

12.5

12.4

11.2

4.6

7.4

11.9

11.1

12.1

11.7

11.9

6.3

10.7

6.8

11.6

10.4

10.9

11.2

9.3

11.5

9.8

7.0

9.2

10.3

10.8

9.4

10.9

10.3

10.7

7.4

7.0

8.5

7.7

10.4

10.1

10.6

9.6

9.4

6.5

2.4

8.3

9.9

9.8

8.6

8.7

8.1

0

5

10

15

20

25

Figure A.4: The results from the Optimized Stream benchmark on the IBM
Blue Gene/P for varying numbers of read and write streams per thread.

