
Implicit and Explicit Optimizations for
Stencil Computations

By Shoaib Kamil1,2, Kaushik Datta1, Samuel Williams1,2, Leonid
Oliker2, John Shalf2 and Katherine A. Yelick1,2

1BeBOP Project, U.C. Berkeley
2Lawrence Berkeley National Laboratory

October 22, 2006

http://bebop.cs.berkeley.edu
kdatta@eecs.berkeley.edu



What are stencil codes?

• For a given point, a stencil is a pre-determined set of nearest
neighbors (possibly including itself)

• A stencil code updates every point in a regular grid with a
weighted subset of its neighbors (“applying a stencil”)

2D Stencil 3D Stencil



Stencil Applications

• Stencils are critical to many scientific applications:
– Diffusion, Electromagnetics, Computational Fluid Dynamics
– Both explicit and implicit iterative methods (e.g. Multigrid)
– Both uniform and adaptive block-structured meshes

• Many type of stencils
– 1D, 2D, 3D meshes
– Number of neighbors (5-

pt, 7-pt, 9-pt, 27-pt,…)
– Gauss-Seidel (update in

place) vs Jacobi iterations
(2 meshes)

• Our study focuses on 3D, 7-point, Jacobi iteration



Naïve Stencil Pseudocode (One iteration)

void stencil3d(double A[], double B[], int nx, int ny, int nz) {
for all grid indices in x-dim {
   for all grid indices in y-dim {
      for all grid indices in z-dim {
         B[center] = S0* A[center] +

        S1*(A[top] + A[bottom] +
      A[left] + A[right] +

           A[front] + A[back]);
 }

   }
   }
}



Potential Optimizations

• Performance is limited by memory bandwidth and latency
– Re-use is limited to the number of neighbors in a stencil
– For large meshes (e.g., 5123), cache blocking helps
– For smaller meshes, stencil time is roughly the time to read the

mesh once from main memory
– Tradeoff of blocking: reduces cache misses (bandwidth), but

increases prefetch misses (latency)
– See previous paper for details [Kamil et al, MSP ’05]

• We look at merging across iterations to improve reuse
– Three techniques with varying level of control

• We vary architecture types
– Significant work (not shown) on low level optimizations



Optimization Strategies
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• Two software techniques
– Cache oblivious algorithm

recursively subdivides
– Cache conscious has an

explicit block size
• Two hardware techniques

– Fast memory (cache) is
managed by hardware

– Fast memory (local store)
is managed by application
software

If hardware forces control,
software cannot be oblivious



Opt. Strategy #1: Cache Oblivious
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• Two software techniques
– Cache oblivious algorithm

recursively subdivides
• Elegant Solution
• No explicit block size
• No need to tune block size

– Cache conscious has an
explicit block size

• Two hardware techniques
– Cache managed by hw

• Less programmer effort

– Local store managed by sw



Cache Oblivious Algorithm

• By Matteo Frigo et al
• Recursive algorithm consists of space cuts, time cuts, and a base case
• Operates on well-defined trapezoid (x0, dx0, x1, dx1, t0, t1):

• Trapezoid for 1D problem; our experiments are for 3D (shrinking cube)

tim
e

space x1x0

t1

t0

dx1dx0



Cache Oblivious Algorithm - Base Case

• If the height=1, then we have a line of points (x0:x1, t0):

• At this point, we stop the recursion and perform the stencil on
this set of points

• Order does not matter since there are no inter-dependencies

tim
e

space x1x0

t1
t0



Cache Oblivious Algorithm - Space Cut

• If trapezoid width >= 2*height, cut with slope=-1 through the
center:

• Since no point in Tr1 depends on Tr2, execute Tr1 first and then
Tr2

• In multiple dimensions, we try space cuts in each dimension
before proceeding

tim
e

space x1x0

t1

t0

Tr1 Tr2



Cache Oblivious Algorithm - Time Cut

• Otherwise, cut the trapezoid in half in the time dimension:

• Again, since no point in Tr1 depends on Tr2, execute Tr1 first
and then Tr2

tim
e

space x1x0

t1

t0
Tr1

Tr2



Poor Itanium 2 Cache Oblivious Performance

Cycle ComparisonL3 Cache Miss Comparison

• Fewer cache misses BUT longer running time



Poor Cache Oblivious Performance

Power5 Cycle ComparisonOpteron Cycle Comparison

• Much slower on Opteron and Power5 too



Improving Cache Oblivious Performance

• Fewer cache misses did NOT translate to better performance:

Early cut off of recursionRecursion even after block
fits in cache

Pre-computed lookup arrayModulo Operator

Maintain explicit stackRecursion stack overhead

No cuts in unit-stride
dimension

Poor prefetch behavior

Inlined kernelExtra function calls

SolutionProblem



Cache Oblivious Performance

• Only Opteron shows any benefit



Opt. Strategy #2: Cache Conscious
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• Two software techniques
– Cache oblivious algorithm

recursively subdivides
– Cache conscious has an

explicit block size
• Easier to visualize
• Tunable block size
• No recursion stack

overhead

• Two hardware techniques
– Cache managed by hw

• Less programmer effort

– Local store managed by sw



• Like the cache oblivious algorithm, we have space cuts
• However, cache conscious is NOT recursive and explicitly

requires cache block dimension c as a parameter

• Again, trapezoid for a 1D problem above

Cache Conscious Algorithm
tim
e

space x1x0

t1

t0

dx1dx0 Tr1 Tr2 Tr3

c c c



Cache Conscious - 3D Animation
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Cache Conscious - 3D Animation



Cache Conscious - Optimal Block Size Search



Cache Conscious - Optimal Block Size Search

• Reduced memory traffic does correlate to higher GFlop rates



Cache Conscious Performance

• Cache conscious measured with optimal block size on each platform
• Itanium 2 and Opteron both improve



Opt. Strategy #3: Cache Conscious on Cell
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• Two software techniques
– Cache oblivious algorithm

recursively subdivides
– Cache conscious has an

explicit block size
• Easier to visualize
• Tunable block size
• No recursion stack

overhead

• Two hardware techniques
– Cache managed by hw
– Local store managed by sw

• Eliminate extraneous
reads/writes



Cell Processor

• PowerPC core that controls 8 simple SIMD cores (“SPE”s)
• Memory hierarchy consists of:

– Registers
– Local memory
– External DRAM

• Application explicitly controls memory:
– Explicit DMA operations required to move data from DRAM to each

SPE’s local memory
– Effective for predictable data access patterns

• Cell code contains more low-level intrinsics than prior code



Cell Local Store Blocking

Stream out planes to
target grid

Stream in planes
from source grid

SPE local store



Excellent Cell Processor Performance

• Double-Precision (DP) Performance: 7.3 GFlops/s
• DP performance still relatively weak

– Only 1 floating point instruction every 7 cycles
– Problem becomes computation-bound when cache-blocked

• Single-Precision (SP) Performance: 65.8 GFlops/s!
– Problem now memory-bound even when cache-blocked

• If Cell had better DP performance or ran in SP, could take
further advantage of cache blocking



Summary - Computation Rate Comparison



Summary - Algorithmic Peak Comparison



Stencil Code Conclusions

• Cache-blocking performs better when explicit
– But need to choose right cache block size for architecture

• Software-controlled memory boosts stencil performance
– Caters memory accesses to given algorithm
– Works especially well due to predictable data access patterns

• Low-level code gets closer to algorithmic peak
– Eradicates compiler code generation issues
– Application knowledge allows for better use of functional units


