
Benchmarking Sparse Matrix-Vector Multiply

Copyright 2006

by

Hormozd Benjamin Gahvari

i

Contents

List of Figures ii

List of Tables iii

1 SpMV Basics 1
1.1 Basic Sparse Matrix Data Structures . 2

1.1.1 Coordinate Format . 2
1.1.2 Compressed Sparse-Row (CSR) Format 3
1.1.3 Compressed Sparse-Column (CSC) Fromat 4
1.1.4 Other Formats . 4
1.1.5 Comparing Formats . 5

1.2 Performance Optimizations . 5

2 SpMV Performance and Modeling 9
2.1 SpMV Performance . 10
2.2 Approximation By Performance Bounds . 16
2.3 Approximation By Other Operations . 18
2.4 Preexisting Benchmarks That Perform SpMV 21
2.5 Using Synthetic Matrices to Mimic Real-Life Ones 22

3 A Benchmark For Evaluating SpMV Performance 42
3.1 Limiting the Set of Matrices to Benchmark 43
3.2 Condensing the Reported Data . 44
3.3 Decreasing The Benchmark’s Runtime . 46
3.4 Reduced-Time Benchmark Results . 52

4 Conclusions and Directions for Future Work 54
4.1 Improvements to the Benchmark . 54

4.1.1 Synthetic Matrix Generation . 54
4.1.2 Benchmark Output . 55
4.1.3 Symmetric Matrices . 55
4.1.4 Other Benchmarking Techniques . 56

ii

4.2 Extending the Benchmark to New Platforms 56

Bibliography 62

A Experimental Setup 65

B Suite of Test Matrices 66

C Nonzero Distributions of the Matrix Test Suite 74

D SpMV Performance on the Penium 4 82
D.1 Small Matrices . 83
D.2 Medium Matrices . 86
D.3 Large Matrices . 90
D.4 Symmetric Matrices . 92

E SpMV Performance on the Itanium 2 96
E.1 Small Matrices . 97
E.2 Medium Matrices . 101
E.3 Large Matrices . 104
E.4 Symmetric Matrices . 105

F SpMV Performance on the Opteron 109
F.1 Small Matrices . 110
F.2 Medium Matrices . 113
F.3 Large Matrices . 116
F.4 Symmetric Matrices . 117

G SpMV Performance on the Pentium 3 121
G.1 Small Matrices . 122
G.2 Medium Matrices . 125
G.3 Large Matrices . 129
G.4 Symmetric Matrices . 131

H Pentium 4 Benchmark Data 135

I Itanium 2 Benchmark Data 154

J Opteron Benchmark Data 173

K Pentium 3 Benchmark Data 192

iii

List of Figures

2.1 Small, Medium, Large behavior on the Pentium 4. 12
2.2 Small, Medium, Large behavior on the Itanium 2. 13
2.3 Small, Medium, Large behavior on the Opteron. 14
2.4 Small, Medium, Large behavior on the Pentium 3. 15
2.5 Performance bounds vs. SpMV performance on a Sun Ultra 2i. Reproduced

from [15] with permission. 16
2.6 Machine balance vs. SpMV performance on 8 platforms. Reproduced from [12]

with permission. 17
2.7 Performance of STREAM Triad vs. real matrices on the Pentium 4. 19
2.8 Performance of STREAM Triad vs. real matrices on the Itanium 2. 19
2.9 Performance of STREAM Triad vs. real matrices on the Opteron. 20
2.10 Performance of STREAM Triad vs. real matrices on the Pentium 3. 20
2.11 Real vs. Synthetic matrices on the Pentium 4. 24
2.12 Real vs. Synthetic matrices on the Itanium 2. 25
2.13 Real vs. Synthetic matrices on the Opteron. 26
2.14 Real vs. Synthetic matrices on the Pentium 3. 27
2.15 Real vs. Synthetic matrices on the Pentium 4. 28
2.16 Real vs. Synthetic matrices on the Itanium 2. 29
2.17 Real vs. Synthetic matrices on the Opteron. 30
2.18 Real vs. Synthetic matrices on the Pentium 3. 31
2.19 Matrix divided up into bands. For simplicity of illustration, this matrix is

only divided up into 5 bands instead of 10. 33
2.20 Real vs. Synthetic matrices on the Pentium 4 where the nonzero distributions

of each matrix are also matched. 34
2.21 Real vs. Synthetic matrices on the Itanium 2 where the nonzero distributions

of each matrix are also matched. 35
2.22 Real vs. Synthetic matrices on the Opteron where the nonzero distributions

of each matrix are also matched. 36
2.23 Real vs. Synthetic matrices on the Pentium 3 where the nonzero distributions

of each matrix are also matched. 37
2.24 Real vs. Synthetic matrices on the Pentium 4. 38
2.25 Real vs. Synthetic matrices on the Itanium 2. 39

iv

2.26 Real vs. Synthetic matrices on the Opteron. 40
2.27 Real vs. Synthetic matrices on the Pentium 3. 41

3.1 Performance of benchmark vs. real matrices on the Pentium 4. 47
3.2 Performance of benchmark vs. real matrices on the Itanium 2. 48
3.3 Performance of benchmark vs. real matrices on the Opteron. 49
3.4 Performance of benchmark vs. real matrices on the Pentium 3. 50

4.1 Performance of benchmark vs. real matrices on the Pentium 4 with symme-
try taken into account. Triangles represent symmetric matrices and circles
represent nonsymmetric ones. 57

4.2 Performance of benchmark vs. real matrices on the Itanium 2 with symme-
try taken into account. Triangles represent symmetric matrices and circles
represent nonsymmetric ones. 58

4.3 Performance of benchmark vs. real matrices on the Opteron with symme-
try taken into account. Triangles represent symmetric matrices and circles
represent nonsymmetric ones. 59

4.4 Performance of benchmark vs. real matrices on the Pentium 3 with symme-
try taken into account. Triangles represent symmetric matrices and circles
represent nonsymmetric ones. 60

v

List of Tables

3.1 Distribution of Nonzero Entries in Matrix Test Suite 44

vi

Acknowledgments

This work was supported in part by the National Science Foundation under CNS-0325873,

ACI-0090127, and ACI-9619020, and by the California State MICRO program, and by

gifts from Intel Corporation, Hewlett-Packard, and Microsoft. Experiments in this paper

were performed on the computer facilities of the Berkeley Benchmarking and Optimization

(BeBOP) group at UC Berkeley, on the Millennium cluster at UC Berkeley, and on the

Mobius Cluster at The Ohio State University. The information presented here does not

necessarily reflect the position or the policy of the Government, and no official endorsement

should be inferred.

vii

Introduction

Sparse matrix-dense vector multiplication, abbreviated as SpMV, is an important

operation in scientific codes. It is important in iterative methods used to solve sparse

linear systems arising from discretiziations of partial differential equations, in information

retrieval, and many other applications. Because of its wide use, a benchmark for SpMV

would provide much useful information to consumers and vendors alike, especially within

benchmark suites like the HPCS suite [5] that attempt to measure the overall performance

of computing platforms.

However, SpMV is very difficult to benchmark because a number of factors can

have an effect on the performance. The data structure used for the sparse matrix, its density

of nonzero entries, its dimensions, and even its specific pattern of nonzero entries all have

significant effects on SpMV performance, and must all be taken into account if we are to

design an accurate benchmark for SpMV.

This thesis describes a prototype benchmark that runs quickly and can be used in

benchmarks like the HPCS suite. We also show that the results it gives cannot be obtained

by running other preexisting benchmarks.

1

Chapter 1

SpMV Basics

Sparse matrix-vector multiply is a common operation in scientific codes. It has

uses from iterative methods for solving linear systems to information retrieval. However, it

is very hard to consistently achieve good performance when running SpMV, much more so

than its analogous cousin GEMV (dense matrix-vector multiply). This is because GEMV

performance is not affected by the density of nonzero entries or their specific pattern as

is SpMV performance. This issue is a significant one that comes up when designing an

accurate benchmark for SpMV, as we want to capture this effect. One example of how it

comes up, that we will see later on, is that unlike GEMV performance, our ability to improve

SpMV performance with performance optimizations depends strongly on the matrix.

In this chapter, we will examine the basics of how SpMV is performed on a com-

puter and how its performance might be improved, which will give us an idea of what we

have to take into account when designing a benchmark for SpMV.

2

1.1 Basic Sparse Matrix Data Structures

In the case of a dense matrix, the most basic data structure used to store it is a

simple contiguous array containing all the entries. Two orderings are most common: row-

major, where the rows are stored contiguously, or column-major, where the columns are

stored contiguously.

We need such a structure for a dense matrix because usually all of its entries are

nonzero. However, in a sparse matrix, most (often over 99%) of the entries are zero. It

would be a waste of space and time to store these entries and do arithmetic with them; we

would be better off if we could just store and operate on the nonzero entries. In fact, we can

do this, so long as we keep track of where exactly in the matrix these entries lie. There are a

number of ways this can be done, each of which is known as a sparse matrix data structure.

Here is a quick overview of a few “baseline” sparse matrix data structures for the general

case of storing a sparse matrix on a uniprocessor machine, where the term “baseline” is

used to mean that no performance optimizations (which will be discussed later) have been

applied.

1.1.1 Coordinate Format

The simplest format for storing a sparse matrix is the coordinate format, in which

the entries are stored in one array, the row index of each entry is stored in a second array,

and the column index of each entry is stored in a third array. This requires three arrays

of length equal to the number of nonzero entries in the matrix, as shown by this example.

3

Note that we use zero-based addressing in this thesis.
1 2 0

0 3 4

5 0 0

values = [1, 2, 3, 4, 5]

row = [0, 0, 1, 1, 2]

col = [0, 1, 1, 2, 0]

As we will see with some other formats, it is possible to store the matrix without storing

as much indexing information.

1.1.2 Compressed Sparse-Row (CSR) Format

CSR format is one of two “basic” data structures for storing a sparse matrix in

that it stores the nonzero entries in order with no wasted space (i.e. the explicit storing

of zeros) plus a minimal amount of indexing information, without making any assumptions

about the specific pattern of the entries. In a CSR matrix, the matrix’s nonzero entries are

stored in row-major order with two auxiliary arrays: row start and col idx. row start

has one entry for each row of the matrix, with each entry giving the index of the matrix

entry that starts that particular row. col idx has one entry corresponding to each matrix

4

entry, and says which column each entry is in. Here is an example:

1 2 0 0 0

3 0 4 0 0

0 5 0 6 0

0 0 7 0 8

values = [1, 2, 3, 4, 5, 6, 7, 8]

row start = [0, 2, 4, 6, 8]

col idx = [0, 1, 0, 2, 1, 3, 2, 4]

1.1.3 Compressed Sparse-Column (CSC) Fromat

CSC format is basically the column-major analog of CSR. Here the nonzero entries

are stored in column-major order, and the auxiliary arrays are col start and row idx.

col start has the same function as row start except that col start marks the entries

that begin each column. Similarly, row idx marks which row each element belongs to

instead of which column. The above CSR example in CSC format would look like this:

values = [1, 3, 2, 5, 4, 7, 6, 8]

col start = [0, 2, 4, 6, 7, 8]

row idx = [0, 1, 0, 2, 1, 3, 2, 3]

1.1.4 Other Formats

The formats listed above are not the only formats available for storing sparse

matrices. Many other formats exist. They can be simple modifications to one of the above

5

formats, such as modified sparse-row (MSR), which is just like CSR except that the main

diagonal is stored in a separate array that requires no indexing. Or they can be a hybrid of

multiple formats. Such is the case with the skyline format, which stores the main diagonal

in its own array, the lower triangle in CSR, and the upper triangle in CSC. Then there are

other formats that are optimized for vector machines, such as ELLPACK, jagged diagonal,

and segmented scan. Information about segmented scan can be found in [2]; the other

formats are discussed in [12].

1.1.5 Comparing Formats

In [12], a series of tests were run on a number of scalar uniprocessor platforms

comparing the performance of SpMV on matrices stored in the baseline data structures

listed above, with the exception of the coordinate format and segmented scan. In most

cases, CSR SpMV outperformed the other formats. Based on these results, we will use CSR

as the data structure for measuring the performance of unoptimized SpMV.

1.2 Performance Optimizations

Even if we do the best possible job of selecting an unoptimized general-purpose

sparse matrix data structure, there can still be more that can be done to improve perfor-

mance. Out of the tests of various sparse matrix structures in [12], even selecting the

best unoptimized data structure for the job resulted in performance that was typically no

better than 10% of machine peak. We would like to do better, and fortunately this is often

possible. In many cases, we can apply certain performance optimizations that can increase

6

the speed of SpMV dramatically [12]. Though restructuring the matrix into an appropriate

format introduces overhead, repeated use of the matrix in applications such as iterative

solvers for linear systems makes up for it.

One very basic performance optimization, and the one this thesis will focus on,

is to block the matrix, i.e. rearrange the matrix entries into blocks that fit in a particular

level of a machine’s memory hierarchy. This allows for more of the computation to be done

in that level, cutting down on the number of time-consuming accesses to lower levels of the

memory hierarchy. One form of blocking, register blocking, involves storing the matrix in a

data structure where in place of the individual nonzero entries are contiguous dense blocks

of a size that fits in a processor’s register file.

This requires modification of a data structure to index the matrix in terms of block

rows and block columns instead of merely rows and columns. If we register block an m× n

matrix with an arbitrary blocksize r×c, we change its data structure to one with m/r block

rows (each of which represents r rows of the original matrix) and n/c block columns (each of

which represents c columns of the original matrix). The entry at block row i, block column

j is an r × c dense block whose first entry is the entry at position (ri, cj) in the original

matrix.

Here is an example for the CSR format, which when blocked is called BCSR. The

blocksize chosen for this example is 2 × 2. Many selections are possible for the block size;

how to make this selection is discussed in more detail in [6], [7], [12], and [15]. In practice,

the dense blocks can be stored in either row-major or column-major order; in the example

7

we will use a row-major ordering. The register blocks are color-coded for clarity.

1 0 2 3 0 0

0 4 5 0 0 0

0 0 0 0 6 7

0 0 0 0 8 9

values = [1, 0, 0, 4, 2, 3, 5, 0, 6, 7, 8, 9]

row start = [8, 12]

col idx = [0, 1, 2]

The main benefit of doing this is that the computation is performed with less traffic between

registers and memory, which can lead to substantial speedups. In some cases, this requires

introducing explicit zero entries (as seen in the above example) into the data structure. But

even when a lot of zero entries are introduced, the savings can still be substantial, as found

by [12] and [15]. [12] also presents a system for quickly register blocking a matrix at runtime,

which is frequently used by the sparse matrix kernel library OSKI [13] when performing

SpMV. Because we can efficiently make frequent use of this optimization in practice on

multiple platforms, we will use it when measuring optimized SpMV performance.

Another form of blocking is cache blocking, in which the blocks are smaller sparse

matrices of sizes that fit inside a particular machine’s cache. This can lead to speedups of

up to 2.2 over CSR performance for certain matrices, which has been the subject of study

in [10]. However, no efficient runtime system yet exists for determining when to cache block

a matrix or what block size(s) to use when doing so. This limits its general-purpose use, so

we will not use this optimization when measuring optimized SpMV.

8

Two other possible optimizations for SpMV are mentioned in [12]. One is splitting

a matrix into two or more matrices, running SpMV on each of them individually, and

then adding the results to get the final answer. This is useful in the case of matrices that

have a natural block structure that cannot be captured by just one blocksize. The other

is reordering a matrix to provide a natural block structure where none previously existed.

OSKI does contain both of these optimizations [14], but they have to be specified by the

user because as in the case of cache blocking, there is currently no runtime implementation

of them as there is for register blocking [12]. Therefore, we will not make use of these when

measuring the performance of optimized SpMV.

9

Chapter 2

SpMV Performance and Modeling

Understanding what affects SpMV performance is key for designing a benchmark

for SpMV. As we will see shortly, the memory access patterns are complicated in SpMV,

leading to the previously mentioned result of typical performance being less than 10% of

machine peak. Here, we look at what determines the performance of SpMV and how we

might go about using this information when designing a benchmark. We would like to be

able to approximate real-life SpMV quickly and effectively because measuring performance

on matrices taken from real-world applications is prohibitively expensive, as it relies upon

collecting many matrices that take up an immense amount of disk space (the matrix suite

used in this thesis takes up 2 GB), and the set of matrices used in real-world applications

is constantly changing and growing.

10

2.1 SpMV Performance

Any form of matrix-vector multiplication b = Ax performed on a computer, dense

or sparse, involves accesses to three arrays stored in memory: the actual matrix (A), the

source vector from which elements are read and the matrix entries are multiplied by (x),

and the destination vector (b) to which the result is written. In the case of GEMV, these

are the only arrays we have to access, and the access pattern is highly regular, with each

array streamed through using unit stride accesses, assuming row-major or column-major

storage.

Now let us look at SpMV with a matrix stored in CSR or BCSR format. There

are two more arrays we have to access, row start and col idx. These will be accessed

unit-stride, as will the matrix and destination vector. The source vector, however, is no

longer accessed in a regular fashion. It is instead accessed indirectly based on the values

in col idx, a change that substantially reduces performance. An indirectly accessed vector

cannot be avoided, no matter what the data structure used, as some sort of index array or

arrays need to be accessed in any sparse matrix data structure to determine where a matrix

entry is located. In the case of CSR or BCSR, it is the source vector, as we said before. In

the case of CSC, it is the destination vector.

This distinction between accesses to the matrix and accesses to the source or

destination vector leads us to propose three categories for SpMV problems, organized based

on the size of the matrix and the source vector:

• Small: both the matrix and source vector fit in a machine’s cache

• Medium: the matrix falls out of cache but the source vector still fits in cache

11

• Large: the source vector no longer fits in cache

Figures 2.1–2.4 show SpMV performance of 275 matrices from real-life applications

that fall into each of these three categories. The results were obtained on the platforms

decribed in Appendix A. Performance is shown both for untuned (unblocked) and tuned

(blocked) cases. The tuning for the blocked case was done by OSKI. As can be seen in the

lower plots in each figure, blocking can lead to speedups exceeding 2x on this test set (4x

speedups were obtained on some matrices in the test set used in [12] and [15]).

These matrices, which we will use as our sparse matrix test suite in this thesis,

were taken from the online collection [3], and are described in more detail in Appendix B.

There are a few general trends to take note of in these plots. There is definitely

a decline in performance going from small to medium to large problems. The performance

peak is for the densest small problems. In fact, there is a very noticeable trend for all

problem sizes for the performance to increase with nnz/row. While this is the trend that

jumps out the most, we will focus on capturing the trend of performance decreasing as the

dimension increases because larger, sparser matrices are more common in applications, as

seen in Appendix B. Going this way also allows us to observe performance for all three

problem sizes.

For an SpMV benchmark to be accurate, any operation it uses to approximate

real-life SpMV performance should capture both the effects of dependence on the memory

hierarchy as outlined above and the effects of performance tuning. We will now look at

some possible approaches based on prior work and see where they fall short based on these

criteria, and conclude by presenting a new approach that forms the basis for the benchmark

12

103 104 105

100

101

102

dimension

nn
z/

ro
w

Untuned Performance (MFLOP/s) of Real Matrices, P4

small

medium large

92

187

283

378

474

569

(a) Untuned

103 104 105

100

101

102

dimension

nn
z/

ro
w

Speedups Obtained by Tuning Real Matrices, P4

small

medium large

1.11

1.23

1.35

1.47

1.59

1.71

(b) Tuned

Figure 2.1: Small, Medium, Large behavior on the Pentium 4.

13

103 104 105

100

101

102

dimension

nn
z/

ro
w

Untuned Performance (MFLOP/s) of Real Matrices, Itanium 2

small

medium large

63

128

194

259

324

390

(a) Untuned

103 104 105

100

101

102

dimension

nn
z/

ro
w

Speedups Obtained by Tuning Real Matrices, Itanium 2

small

medium large

1.24

1.49

1.74

1.99

2.25

2.5

(b) Tuned

Figure 2.2: Small, Medium, Large behavior on the Itanium 2.

14

103 104 105

100

101

102

dimension

nn
z/

ro
w

Untuned Performance (MFLOP/s) of Real Matrices, Opteron

small

medium large

55

111

168

224

281

337

(a) Untuned

103 104 105

100

101

102

dimension

nn
z/

ro
w

Speedups Obtained by Tuning Real Matrices, Opteron

small

medium large

1.21

1.42

1.64

1.85

2.07

2.29

(b) Tuned

Figure 2.3: Small, Medium, Large behavior on the Opteron.

15

103 104 105

100

101

102

dimension

nn
z/

ro
w

Untuned Performance (MFLOP/s) of Real Matrices, P3

small

medium large

144

296

447

598

749

900

(a) Untuned

103 104 105

100

101

102

dimension

nn
z/

ro
w

Speedups Obtained by Tuning Real Matrices, P3

small

medium large

1.16

1.33

1.5

1.67

1.84

2

(b) Tuned

Figure 2.4: Small, Medium, Large behavior on the Pentium 3.

16

Figure 2.5: Performance bounds vs. SpMV performance on a Sun Ultra 2i. Reproduced
from [15] with permission.

that we present in the next chapter.

2.2 Approximation By Performance Bounds

[12] and [15] developed upper and lower bounds on SpMV performance based on

the best and worst case scenarios regarding cache misses. As shown there, the bounds very

reliably predict best and worst-case SpMV performance on multiple platforms, but do not

give any kind of indicator of “expected” performance, as seen in figure 2.2 for example.

Notice how actual SpMV performance (untuned in the case of blue stars, and tuned in the

case of green circles) is bounded quite loosely by the upper and lower bounds.

[12] also tried using machine balance to benchmark SpMV. The machine balance

17

Figure 2.6: Machine balance vs. SpMV performance on 8 platforms. Reproduced from [12]
with permission.

of a particular architecture is the ratio of its peak floating point operation rate to its

maximum sustainable main memory bandwidth. As this approaches 2, performance for

SpMV approaches optimal, which is two floating point operations (multiply and add) per

memory reference. This correctly predicted SpMV performance on a number of machines,

but missed significantly on one, as shown in figure 2.2. A Sun Ultra 3 was predicted to be

the third-best platform for SpMV out of the eight in the graph, but ended up being the

worst.

18

2.3 Approximation By Other Operations

The main operation in an SpMV problem Ax = b with an m × n matrix A is

performing the update

bi := bi + aijxj

for j = 1, . . . ,m for each element bi in the destination vector. Based on this, it might seem

like a good idea to try and measure SpMV performance by measuring the performance

of this operation. The STREAM TRIAD benchmark [8] measures the sustainable main

memory bandwidth for this operation in MB/s, which can be translated into a MFLOP

rate. For the platforms we tested, the results were

Platform STREAM Triad MFLOP/s
Pentium 4 170
Itanium 2 238
Opteron 149
Pentium 3 52

In figures 2.7–2.10, we plot these numbers against the unblocked performance of

SpMV for real matrices. STREAM Triad shows itself to be somewhat predictive of average

performance on the Itanium 2, but underpredictive of performance on the the Pentium 4,

the Opteron, and the Pentium 3 except for large problems. This is expected, as STREAM

Triad measures sustainable main memory bandwidth. While a portion of a problem is

still in cache, memory bandwidth between the cache and the processor is also a factor and

STREAM Triad does not measure that.

This plus there being no way to block STREAM Triad for comparison with register

blocked SpMV disqualifies STREAM Triad as a benchmark for SpMV.

19

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

small

medium

large

Matrices Sorted by Problem Size

M
FL

O
P/

s

STREAM Triad vs. Real Matrices, P4

Figure 2.7: Performance of STREAM Triad vs. real matrices on the Pentium 4.

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450

small

medium

large

Matrices Sorted by Problem Size

M
FL

O
P/

s

STREAM Triad vs. Real Matrices, Itanium 2

Figure 2.8: Performance of STREAM Triad vs. real matrices on the Itanium 2.

20

0 50 100 150 200 250 300
50

100

150

200

250

300

350

400

450

small

medium

large

Matrices Sorted by Problem Size

M
FL

O
P/

s

STREAM Triad vs. Real Matrices, Opteron

Figure 2.9: Performance of STREAM Triad vs. real matrices on the Opteron.

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

800

900

1000

small

medium

large

Matrices Sorted by Problem Size

M
FL

O
P/

s

STREAM Triad vs. Real Matrices, P3

Figure 2.10: Performance of STREAM Triad vs. real matrices on the Pentium 3.

21

2.4 Preexisting Benchmarks That Perform SpMV

There are three preexisting benchmarks that directly measure the performance of

SpMV. However, all of them have shortcomings. The SciMark benchmark suite [9] contains

an SpMV benchmark that measures SpMV performance for two CSR matrices, one small

and one large, each with a particular structure. The small matrix is 1000 × 1000 with 5

nonzero entries per row, and the large matrix is 100000×100000 with 10 nonzero entries per

row. Data we saw in the first section tells us that performance varies enough with problem

size that it would be preferable to measure multiple problem sizes when benchmarking

SpMV. More important is that the SpMV performed by SciMark uses no blocking.

SparseBench [4] is a benchmark that measures the performance of iterative meth-

ods for sparse linear systems derived from partial differential equations. SpMV is a heavily

used operation in these methods, and SparseBench measures how fast this component is

performed. However, it suffers from the same crucial flaw as SciMark in that it does not

measure optimized SpMV performance.

NAS-CG is one of a suite of popular benchmarks [1] for measuring the performance

of supercomputers. It measures the performance of the conjugate gradient operation, which

is rich in SpMV. However, it also contains dense vector updates and outer products, and

requires the matrix to be symmetric and positive definite, which is not representative of

many real-life matrices. And while it does allow for performance optimizations, they must

be user-supplied. The standard reference implementation does not use a matrix susceptible

to blocking.

22

2.5 Using Synthetic Matrices to Mimic Real-Life Ones

We saw in the previous section that the SpMV in preexisting benchmarks is not

sufficient to model SpMV for the multitude of matrices that exist in real-world applications.

There are a number of issues that need to be resolved, all centered around this question:

what properties of the matrices do we need to preserve in the synthetic matrices we are

using to model them? The fewer we need, the better, because that means we will have to

generate fewer matrices to model SpMV, but it turns out that we will need to capture a

number of properties to effectively model SpMV with synthetically generated matrices.

Beyond the problem size discussed in section 2.1, the first property we have to

capture is the register blocksize selected when doing performance tuning. This is vital as

it is our way of measuring its effect. The results of matching this along with problem

size (dimension and density) are shown in figures 2.11–2.13. In the upper plot in each of

these figures, each real matrix is denoted by a red R and is connected to its correspond-

ing synthetic matrix, which is denoted by a green S. The color of the line, red or green,

denotes which matrix ran faster. In the lower plot in each of these figures, the results

are color-coded by the largest register block dimension of the real matrices being modeled.

The synthetic matrices are created to have the same dimensions and nnz/row as the real

matrices we are trying to match them with. The entries or dense blocks in the case of

blocked matrices are placed randomly in each row, with no particular pattern. We match

every matrix in the suite with an unblocked counterpart (figures 2.11(a), 2.12(a), 2.13(a),

and 2.14(a)), and the ones that OSKI can tune are also matched with a blocked counterpart

(figures 2.11(b), 2.12(b), 2.13(b), and 2.14(b)). The horizontal axis in each plot is sorted by

23

increasing problem size, small to medium to large. For small to medium, this means sorting

by the total space taken by the matrix and vectors, and for medium to large and beyond,

the space taken by the vectors only. The order of the matrices for each platform are given

in appendices D–G.

Another perspective is given in figures 2.15–2.18. Here, color is used to show how

well the synthetic matrices predict the performance of the real matrices, and the matrices

themselves are organized not according to increasing problem size, but by both dimension

and nnz/row.

The first thing that stands out from these graphs is that the synthetic matrices

substantially underpredict the performance of the real matrices for the large matrices, es-

pecially in the case where we use no blocking. To fix this, we will also try to match the

nonzero pattern of the real-life matrices. We will do this in terms of the distribution of

entries in bands that lie parallel to the diagonal, as an examination of the matrices in [3]

reveals that many of them have their nonzero entries in bands that are located relatively

close to the diagonal. By this we mean that, if we divide up the matrices into bands that

are 10(i− 1) to 10i percent away from the diagonal, where 1 ≤ i ≤ 10, then the entries are

mostly in the bands where i is small. Figure 2.5 shows this.

Appendix C shows which percentage of the matrix entries lie in these bands for

each of the matrices in our test suite. To generate synthetic matrices that match the

dimensions, density, and nonzero distribution of real matrices, we use algorithm 2.5.1. Note

that all divisions in the algorithm are to be rounded to the nearest integer.

24

50 100 150 200 250

100

200

300

400

500

600

R

S

R

S

R

S

R

S
R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

SR

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S
R

S

R

S

R

S

R

S

R

S

R

S

R

S
R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S
R
S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R
S

R

S
R

S

R

S

R

S

R

S
R

S

R

S

R

S

R

S

R

S

R

S

R

S
R

S
RS

R

S

R

S

R

S
R

SRS

R

S

R

S

R

S

R

S

RS

R

S

RS

R

S

R

S

RS

R

S
RS

R

S

R

S

R

S

R

S

R

S

R

S

R

SRS

R

S

R

S

R

S

R

S

R

S

R

S

R

S
RSRS

R

SR
S

R

S

R

S
RSRS

R
S
R
SR
S

R

SRS

R

S

R

S

R

S

R

S

R

S
R
S

R

S

R

S

R

S

R

S

R

SRS

R

SRS
R
S

RS

R

S

R
S
R
S

R
S
R
S
R
S

R

S

R

S
R
S

R
S

R

S
R

S

R

S
R
SRS
R

S

R

S

R

SR
S

R

S
R

S
R
S

R

S

R

S

R

S

R
S

R
S

RS

R
S

R
S

R

S

R
S

R

S
R

SRS

R

S

R

S
R
S

R
S

R

S

R
S
R

S

R
S

R

SR

SRS

R

S

R
S

RS

R

S

R

S

R

S
R

S

R

S

R

S
R
S

R

S

R

S

R

S

R

S
R

S
RS

R

S

R

S

R
S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S
R
S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

SRS

R

S
R
S

R

S

R

S

R

S

R

S

R

S

R

S

Matrices Sorted by Problem Size

M
FL

O
P/

s

Real vs. Synthetic Matrices, Untuned, P4

small

medium large

(a) Untuned

10 20 30 40 50

200

400

600

800

1000

1200

1400

1600

Matrices Sorted by Problem Size

M
FL

O
P/

s

Real vs. Synthetic Matrices, Tuned, P4

R

S
R

S

R

S
R

S

R

S

R

SR

S

R

S
R

S
R

S

R

S
R

S
R
S

R

SR
S

R

S
R

S

R

SRS
R

S
R
SRSRS

R
S

RSRS
RSRSRSRS

RS

RSRSRS
R
S

RS
RS

R
S

RSRS

R

S

R
S

RS

R
SR

S

RS
R
S

R

S

R

S

R

S

RS
R
SR

S

R

S
R
S

R

S

R

Ssmall

medium large

max(r,c) = 2 3 4 5 6 7 8

(b) Tuned

Figure 2.11: Real vs. Synthetic matrices on the Pentium 4.

25

50 100 150 200 250
50

100

150

200

250

300

350

400

450

R
S

R

SR
S

R
S

RS
R

S

R
S

RSRS

R

S

R

S

R

S

R

S
R

S

R

S

R

S

R
S
R
S
R
SR
S

R
S

R

S

R
S

R

S

R

S
R

S

R
S
R
S

R
S

R

S

R
S

R
S

R
S

R
S
R

S

R
SR
S

R
S

R

S

R
S

R

S

RS
R
SRS

R
SR
S
R

S
R

S

R
S

R
S

RS

R
S

R

S

R
S

R
S

R
S
R
S

RS

R
S

RS

R

S

R
S

R
S

R
S

R

S

R
S

R
S

R
S

R
SRS

R

S

R

S

RS
R

SR
S

R
S

R
S

RS

RS

RSR
S

R
S
RS

RS

R

S

RS
R
S

RS
RS

R

S

R
S

R
S

R

S
R
S

R
S

RSR
S

RS

RS

RS

R

S

R
S
R
S

R
S

R

S

R

S

R

S

RS

R

S

R
S

R

S

RS

RS

RS

R

S

R
S

RS

R
S

R
S
R
S

RS
RS

R
S
R
S

RS

RS

R
S

RS

R
S
R
S

R
S

RS

R
S

R
S

R
S

R
S

R

S

RS

RS

R
S

RS

R
S

R
S
R
S

RS

R
S

R
S
R
S

RS

RS

R
S

R
S

R
S

R
S

R
S
RS

R

S

RS

RSRSR
SRS
R
S
R
S
R
SRSRSRSR
S
RSRS
RS
RS

RSR
SRSRSRS

R
S
RS
RS
R
SRS

R

SR
SR
SRS
RS

R
S

RS
RS

R

S

RS

RSRSRS
RS
RS
RS

R
S

RS

R

S

R

S

RS

RS

RS

R
S

R
S

R

S

R
S

R
S

RS

R

S

RS

RS

RS
RS
RSR
S
R
S

RSRS

R

S

R
S

RS

R
S

RS

R
S

R
S

RS

RS

RS

R

S
R
S

R

S

RS

R

S

RS

R

SRS

R
S

R
S

R

S

R

S

R

S

R

S

R

S

R
S
R
S

R

SR

S

R

SR

S

R

S

R

S

R

S

R

S

R

S

R

S
R
S
R

S

R

S

R

S

R

S

R

S

R

SRS

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

Matrices Sorted by Problem Size

M
FL

O
P/

s

Real vs. Synthetic Matrices, Untuned, Itanium 2

small

medium large

(a) Untuned

10 20 30 40 50 60

200

400

600

800

1000

1200

1400

1600

Matrices Sorted by Problem Size

M
FL

O
P/

s

Real vs. Synthetic Matrices, Tuned, Itanium 2

R

S

R

S

R

S

R

S

R

S
R

SR

S

R

S

R

S

R
S

R
S

RS

R

S
R

S

R

S

R

S
R
S

R

S
R

S

R

S

R

S

RS

R
S

RS

RSR
SR

S
RS

R
SR

SRS
RS

R
SR

S

R

S
R
SR

SRS

RS
R

S

R

S
RS

R
S

R

S
RS

R
S

R

S

R
S

R
S

R
S

R
S

R
S

R
S

R
S

R

S

R
S

R
S

R
S

R
S

R
S

RS
R

SR
S

R
SRS

small

medium large

max(r,c) = 2 3 4 5 6 7 8

(b) Tuned

Figure 2.12: Real vs. Synthetic matrices on the Itanium 2.

26

50 100 150 200 250

50

100

150

200

250

300

350

400

450

R

S

R

S

R

S

R

S
R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

SR

S

R

S

R

S

R

S
R

S

R

S

R

S

R

S

R

S

RS

R

S

R

S

R

S

RSR

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S
RS

R

S

R

S

R

S
R
S
R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R
SR

S

R

S
R

S

RS

R

S

RS
RS

R

S

R

S

R
S

R

S

R

S
RS

R

S

RS

R
S
RSRS

R

S

R

S
R

S

R
S

R

S

R

S

R

S

R

S

R

SR
S

RS

R
SRS

R

S
RS
R
S

R
S
R

S
RS

R

S

R

S

R

S

R
S

RS

R

S

R
S

R

SRS

R

S

R
S

R

S
RS

RS

RS

R

S

R

S

R
S
RS
R
S

RS
RS

RS

RS

RS

RS

R
S

RSRS

RS

RS

R
S

RS

RSRSRS

RSR
S
RS
RS
RSRSRS

RS
RSRSRS
RSR
S
R
S
RSRSRSRS
R
S
RSR
S
R
S
R
S
R
S
R
SR
S

R

S
R

S

R
SR

S

R
S
RS

R

S

R
S

R
S
R
S
R

S

R
S
RS

R

S

R
S

R
S
R

SR
S

R

S
R

S

R

S

R

SR

S

R

S

R

S

R
S

R

S

R

S

R

S

R

SRS

R

SRS
RS

R

S

R

S

R

SRS

R
S

R

S

R

S

R

S

R

SR

S

R

S

R

S

R

S

R
S

R

S

R

S

R

SR
S

R
S

R

S

R

S

RS

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

SR
S

R

S

R

S

R

S

R

S

R

S

R

SR
S

R

S

R

S

R

S
R
S
R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S
RS

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

Matrices Sorted by Problem Size

M
FL

O
P/

s

Real vs. Synthetic Matrices, Untuned, Opteron

small

medium large

(a) Untuned

10 20 30 40 50

200

400

600

800

1000

Matrices Sorted by Problem Size

M
FL

O
P/

s

Real vs. Synthetic Matrices, Tuned, Opteron

R

S

R

S

R

S
R

S

R
S

RS
R
S

R
S

R
S

R

S

R

S

R

S

RS

R

SR

S

RS

R

S

RSRS
RSRSR

SRSR
SRSRS

RSRSRSRSR
SR

S
R
SRSRS

R
SRSRSR

SRS
RSR

SRSRS
R
S

R
SRSR

S

R

S

R
S

RSR
S

R
S

R
S

R
S

R

S
small

medium large

max(r,c) = 2 3 4 5 6 7 8

(b) Tuned

Figure 2.13: Real vs. Synthetic matrices on the Opteron.

27

50 100 150 200 250

100

200

300

400

500

600

700

800

900

R
SR

S

R

S

R
S

R

S

R

S

R
S

R

S
RS

R
S

R

S

R

S

R

S

R
S

R

S

R
S

R

SR

S

R

S
R

S

R

S

R
S
R

S

R

S

R

S
R
S

R

S

R
SR

S

R

S

R
S

R

S
R
S

R

S

R

S

R

S

R

S

R

SR
S

R

S
R
S
R

S

R

S
R

S

R

SR
S

R

S
R
S

R

S

R

S

R

S
R
S

R

S

R

S

R

S

R

SRS

R

SRS

R

S
R

S

R
S

R

S

R

S
R
S

R

S

R

S

RS

R

SRS

RS

R

S

R

S
RSR
S

R
S

R

S

R

S

R

S

RSR
S

R
S

R

S

R

S

R

S

R

SRSRSRS

R

S

R

S

R

S

R

SRSRS

R

S

R

S

R

S

R
S

R

SR
S

RSRS

R

S
RS
R
S

R

SRS

R

S
RS
RSRSRSRSRSR

S

R

SRSRSRSRSRS
RS
RS

R

S

R

SRS

R

SRSRS

R

S

R

S

R

S

R

S

R

SRS

R

SRS

R

SRSRSRS

R

S
RSRSRSRS
RS

R

SRS

R

S

R

S

R

S
RS

R

S

R

S

R

S

R

S

R

SRSRS

R

S

R

SRS
RS

R

SRS

R

S
RSRS

R

S

R

S

R

SRS

R

S
R

SRS

RS

R

S

R

S

R

S

R

S

R

SR
S

R

S

R

SRS
R
S

R

S

R

S
R
S
R

S

R

S

R

SRS

R

S
R
S

R

S

R

S

R

SRS
RS

R

S
R
S

R

SR
S

R

S

R

S
R
S

R

S
R
S

R

S

R

SRS
RS

R

S

R

S
RS

R

S

R

S

R

S

R

S

R

S

R

S
R
S

R

S

R

S

R

SRS

R

S

R

S

R

S

R

S

R

S

R

S
R

S

R

S

R

S

R

SRS

R

S

R

S

R

S

R

S

R

S

R

S

R

S
R
S
R
S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S
R
S

R

S

R

S

R

S

R

S

R

S

R

SRS
R
SRS
R
S

R

S

R

S

R

S

R

S

R

S

Matrices Sorted by Problem Size

M
FL

O
P/

s

Real vs. Synthetic Matrices, Untuned, P3

small

medium large

(a) Untuned

10 20 30 40 50 60

200

400

600

800

1000

1200

Matrices Sorted by Problem Size

M
FL

O
P/

s

Real vs. Synthetic Matrices, Tuned, P3

R
S

R
S

R
S

R

S

R

SRS

RS

R

S

RS

RS

R

S

R

SR

S

R

S

R
S

RS

R

SRS

R

SRSRS

R

S

R

S
RS

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S
RS

R

S

R

S

R

S

R

SRS

R

S

R

S
RS

R

S

R

SR
S

R

S

R

SR
S

RS

R

S

R

S

R

S

R

S

R

S

R

SRS
R
S

R
S

R

S

R

SRS

R

S

R

S
small

medium large

max(r,c) = 2 3 4 5 6 7 8

(b) Tuned

Figure 2.14: Real vs. Synthetic matrices on the Pentium 3.

28

103 104 105

100

101

102

dimension

nn
z/

ro
w

Untuned Synthetic/Real Performance Ratios, P4

small

medium large

0.44

0.9

1.36

1.82

2.28

2.74

(a) Untuned

103 104 105

100

101

102

dimension

nn
z/

ro
w

Tuned Synthetic/Real Performance Ratios, P4

small

medium large

0.44

0.9

1.36

1.82

2.28

2.74

(b) Tuned

Figure 2.15: Real vs. Synthetic matrices on the Pentium 4.

29

103 104 105

100

101

102

dimension

nn
z/

ro
w

Untuned Synthetic/Real Performance Ratios, Itanium 2

small

medium large

0.32

0.67

1.01

1.35

1.69

2.03

(a) Untuned

103 104 105

100

101

102

dimension

nn
z/

ro
w

Tuned Synthetic/Real Performance Ratios, Itanium 2

small

medium large

0.32

0.67

1.01

1.35

1.69

2.03

(b) Tuned

Figure 2.16: Real vs. Synthetic matrices on the Itanium 2.

30

103 104 105

100

101

102

dimension

nn
z/

ro
w

Untuned Synthetic/Real Performance Ratios, Opteron

small

medium large

0.34

0.7

1.06

1.42

1.78

2.14

(a) Untuned

103 104 105

100

101

102

dimension

nn
z/

ro
w

Tuned Synthetic/Real Performance Ratios, Opteron

small

medium large

0.34

0.7

1.06

1.42

1.78

2.14

(b) Tuned

Figure 2.17: Real vs. Synthetic matrices on the Opteron.

31

103 104 105

100

101

102

dimension

nn
z/

ro
w

Untuned Synthetic/Real Performance Ratios, P3

small

medium large

0.27

0.56

0.84

1.13

1.41

1.69

(a) Untuned

103 104 105

100

101

102

dimension

nn
z/

ro
w

Tuned Synthetic/Real Performance Ratios, P3

small

medium large

0.27

0.56

0.84

1.13

1.41

1.69

(b) Tuned

Figure 2.18: Real vs. Synthetic matrices on the Pentium 3.

32

Algorithm 2.5.1: GenerateMatrix(m,n, r, c, nnz row, stats)

num block rows← m/r

num block cols← n/c

nnzb← num block rows× num block cols

nnzb row ← nnzb/num block rows

for i← 1 to 10

do

nnzb per decile(i)← nnzb to add to decile i

decile size(i)← size in nnzb of decile i

for i← 1 to num block rows

for j ← 1 to 10

do

decile size this row ← size in nnzb of decile j in row i

nnzb added← nnzb per decile(j)×decile size this row
decile size(j)

add nnzb added nonzero blocks at random locations in row i, decile j

if nnzb added > nnzb row

then repeat
take 1 entry away from each decile proportionally

decrement nnzb added

until nnzb added = nnzb row

else if nnzb added < nnzb row

then repeat
add 1 entry to each decile proportionally

increment nnzb added

until nnzb added = nnzb row

33

5
@

@
4

@
@

@
@

3

@
@

@
@

@
@

2

@
@

@
@

@
@

@
@

1

@
@

@
@

@
@

@
@

2

@
@

@
@

@
@

3

@
@

@
@

4
@

@
5

Figure 2.19: Matrix divided up into bands. For simplicity of illustration, this matrix is only
divided up into 5 bands instead of 10.

Using algorithm 2.5.1 to generate our matrices, we get the results in Figures 2.20–

2.23, with an alternate perspective organized by dimension and nnz/row provided by fig-

ures 2.24–2.27. Here, we see that the synthetic matrices still underpredict the performance of

the real matrices for large problems, but not to the extent that they do in figures 2.11–2.14.

We also see that the synthetic matrices do a pretty good job of predicting the performance of

real matrices for medium problems while noticeably overpredicting the performance of real

matrices for small problems on two platforms (the Pentium 4 and the Opteron) and notice-

ably underpredicting performance on the Pentium 3. The misprediction of small problems

is something we will see in the next chapter, and discuss further in Chapter 4.

One last thing to note is that while a number of matrices in our test suite are

symmetric, the matrix generator we use does not create symmetric matrices. To generate

data from which we could accurately gauge how well the synthetic matrices performed, we

ran SpMV on the symmetric matrices from our test suite with symmetry disabled. We will

return to this issue in Chapter 4.

34

50 100 150 200 250

100

200

300

400

500

600

R

S

R

S

R

S

R

S
R

S

R

S

R

S

R

S

R

S

R

S

R

S
R

S

R

S
R

S

R

S

R

S

R

S

R
S

R

S

R

S

R
S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R
S

R
S

R

S

R
S

R

S

R

S

R

S

R

S

R

S

R

S

R
S

R

S

R

S

R

S

R

SR

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

RS

R

S
R

S

R

S

R

S

R

SR

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R
S

R

S

R

S

R

S
R

SRS

R
S
R

S

R
S

R

S

RS

R
S

RS

R

S

R

S

R
S

R

S
RS

R

S

R

S

R

S

R

S

R

S

R

S

R

S
R
S

R

S

R

S

R

S

R

S

R

S

R

S

R

SRSRS

R

S
R
S

R

S

R

S
RS
RS

R

S

R

SRS

R

S
RS

R

S

R

S

R

S

R

S

R

S
R
S

R

S

R

S

R

S

R

S
R

SRS

R

S
RS

RS
RS

R

S

R
S
R
S

R
S
R
S
R
S

R

S

R

SRS

R

S

R

SR

S

R

S
R
SR
S
R

S

R

S

RS
RS

R
SR

S

R
S

R
S

R

S

R

S

R
S

R

S
RS

R
S

RS

R
S
R
S

R
S

R

S
R

SR

S

R

SR

S

RS

RS

R
S

R

S
R
S

RS

RS
R
SR
S

R
S

RS

R

SRS

R

S
R
S

RS

R
S

R

S

RSRSR
S

R

S
R

S

RS

R

S

R

S

RS

R
S

R
S

R

SR

S
R
S

R

S

R

S

RS

R

S

R

SR

S

R

S
R
S

R

S

R
S

R
S

R

S
R

S

R

S

R

S

R

S

R
S

R

S

R

S

R

S

R

S

R

S

R
SR

S

R
S

R

S
R

S

R

S
R

S

R

S

RS

R

S

R

S

R

S
R

S

R

S
R
S

R

S

R

S

R

S

R

S

R

S

R

S
RS

R

SR
S

R

S

R

S

R

S

R

S

R

S

R

S

Matrices Sorted by Problem Size

M
FL

O
P/

s

Real vs. Synthetic Matrices, Untuned, P4

small

medium large

(a) Untuned

10 20 30 40 50

200

400

600

800

1000

1200

1400

Matrices Sorted by Problem Size

M
FL

O
P/

s

Real vs. Synthetic Matrices, Tuned, P4

R

S
R

S

R

S

R

S

R

S

R

S
R

S

R

S
R

S
R

S

R

S
R
S

R

S

R

SR
S

R

S
R

S

R

SRS
R
S

RSRS
RS

R
S

RS
RS

RSRSRSRS

R
S

RSRSRS
R
S

RS
RS

R
S

RSRS

R

S

RSR
S

R

SR

S

RSR
S

RSR

S

R

SR

S
R
SR

S

R
S

R

SR

S

R

S
small

medium large

max(r,c) = 2 3 4 5 6 7 8

(b) Tuned

Figure 2.20: Real vs. Synthetic matrices on the Pentium 4 where the nonzero distributions
of each matrix are also matched.

35

50 100 150 200 250
50

100

150

200

250

300

350

400

450

R
S

R

SR
S

R
S

RS
R

S

R
S

RSRS

R

S

R

S

R

S

R

S
R

S

R

S

R

S

R
S
R
S
R
SR
S

R
S

R

S

R
S

R

S

R

S
R

S

R
S
R
S

R
S

R

S

R
S

R
S

R
S

R
S
R

S

R
SR
S

R
S

R

S

R
S

R
S

RS
R
SRS

R

SR
S

R

SR

S

R
S

R
S

RS

R
S

R

S

R
S

R
S

R
S
R

S
RS

RS

RS

R

S

R
S

R
S

R
S

R

S

R
S

R
S

R
S

R
SRS

R

S

R

S

R
SR

SR
S

R
S

R
S

RS

RS

R

S

R
S

R
S
RS

RS

R

S

RS
R
S

RS
RS

R

S

R
S

RS

R

S
R
S

R
S

RSR
S

RS

RS

RS

R

S

R
S
R
S

R
S

R

S

R

S

R

S

RS

R

S

R
S

R

S

RS

R
S

RS

R

S

R
S

RS

R
S

RSRS

R
SR
S

R
S
R
S

RS

RS

R
S

RS

R
S
R
S

RS

RS

R
S

R

S

R
S

R
S

R

S

R
S

RS

R

S

R
S

R
S

R
S
R
S

R
S

R
S

R
S
R
S

RS

RS

R
S

R
S

RS

R
S

R

SR
S

R

S

RS

RSRSRS
RS
R
S
R
S
RSR
S
RSR
SR
S
RSRS
RS
RS

RSR
SRSRSR
S

R
S
RS
RS
R
SRS

R

SRS
R
S
RS
RS

R
S

RS
RS

R

S

RS

RSRSRS
RS
RS
RS

R

S

RS

R

S

R

S

RS

RS

RS

R
S

R

S

R
S

R
S

R
S

RS

R

S

RS

RS

RSRS
RSRSRS

R
SRS

R

S

RS

R
S

R
S

RS

R
S

R
S

R
S

RS

R
S

RS
RS

R
S

R
S

RS

RS

R
S

RS

R
S

R
S

R
S

R

S

R
S

R

S

R

S

R
S
RS

R

S

R
S

R

S

R
S

R

S

R

S
R

S

R
S
R

S

R
S

R
S
R

S

R

S
RS

R
S

R
S

R

S

RS

R
S

R
S

RS

R

S

RS

R

S

R

S

RS

Matrices Sorted by Problem Size

M
FL

O
P/

s

Real vs. Synthetic Matrices, Untuned, Itanium 2

small

medium large

(a) Untuned

10 20 30 40 50 60

200

400

600

800

1000

1200

1400

Matrices Sorted by Problem Size

M
FL

O
P/

s

Real vs. Synthetic Matrices, Tuned, Itanium 2

R

S

R

S

R

S

R

S

R

S
R

SR

S

R

S

R

S

R

S

R
S

RS

R

S
R

S

R

S

R

S

R
S

R

S
R

S

R

S

R

S

RS

R
S

RS

RSR
SR

S
RS

RSR
SRS

RS
R
SR

S

R

S
R

SRS
RS

RS

R

S

R

S
RS

R
S

R

S

RS

R
S

R

S

R
S

R

S

R
S

R
S

R

S
RS

RS

R

S

R
S

RS

R

S
R

S

R
S

RS

RS

R

S
R
S

R

S

small

medium large

max(r,c) = 2 3 4 5 6 7 8

(b) Tuned

Figure 2.21: Real vs. Synthetic matrices on the Itanium 2 where the nonzero distributions
of each matrix are also matched.

36

50 100 150 200 250
50

100

150

200

250

300

350

400

450

R

S

R

S

R

S

R

S
R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

SR

S

R

S

R

S

R

S
R

S

R

S

R

S

R

S

R

S

RS

R

S

R

S

R

S

RS
R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S
RS

R

S

R

S

R

S

R
S
R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

RS
R

S

R

S
R

S

RS

R

S

RS
RS

R

S

R

S

R

S

R

S

R

S
RS

R

S

R
S

R

S
RSRS

R

S

R

SR

S

R
S

R

S

R

S

R

S

R

S

R

S

RS

RS

R

S
R

S

R

S
RS
R
S

R

SR

S
R

S

R

S

R

S

R

S

R
S

RS

R

S

R

S

R

S

RS

R

S

RS

R

S
R
S

RS

RS

R

S

R

S

R

S
R
S
R
S

RS

RS

R
S

R
S

R
S

R

S

R
S

RS
R
S

R
S

RS

R

S

RS

R
SR
S
RS

R
S
RSRS
R
S
RSRSRS

RS

R
S
R
S
R
S
R
S
RSR
S
R

S

RSRSRS
R
S
R
SRS
RSRSRS
RSR
S

R

S
R

S

R
SR

S

RS

RS

R
S

R
S
R

S

R
S
R

S

RSR
S

R
S

R
S

R

SR

S
R
S

R
SRS

R
S
R

S
R

S

RS
R
SR
S

R
SR
S
R

S

R
S

RS

R

S
R
S
R
S

R

S

R

S

R

S
R
S
RS
R

S

R

S
R

S

R

SR

S

R

S
R

S
R

S

R
S

R

S

R
S

R

S
RS
R
S

R

S

R

S

RS

R

S

R

S
R

S

R

S

R

S

R

S
R

S

R

SR

S

R

SR
S

R

S

R

S

R

S

R

S

R

S

R

SR
S

R

SR

S

R

S
R
S
R

S

R

S

R
S

R

S

R

S
R

S

R

S
R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

RS

R

S

R

S

R

S

R

S

R

S

R

S

RS

R

S
R
S

R

S

R

S

R

S

R

S

R

S

R

S

Matrices Sorted by Problem Size

M
FL

O
P/

s

Real vs. Synthetic Matrices, Untuned, Opteron

small

medium large

(a) Untuned

10 20 30 40 50

200

400

600

800

1000

Matrices Sorted by Problem Size

M
FL

O
P/

s

Real vs. Synthetic Matrices, Tuned, Opteron

R

S

R

S

R

S
R

S

R
S

RS
R
S

R
S

R
S

R

S

R

S

R

S

RS

R

SR

S

RS

R

S

RSRS
RSRSR

SRSR
SRSRS

RSRSRSRSR
SR

S
R
SRSRS

R
SRSRSR

SRS
RSR

SRSRS
R
S

R
SRSR

S

R

S

R
S

RSR
S

R
S

R
S

R
S

R

S
small

medium large

max(r,c) = 2 3 4 5 6 7 8

(b) Tuned

Figure 2.22: Real vs. Synthetic matrices on the Opteron where the nonzero distributions
of each matrix are also matched.

37

50 100 150 200 250

100

200

300

400

500

600

700

800

900

R
SR

S

R

S

R
S

R

S

R

S

R
S

R

S
R
S

R
S

R

S

R

S

R

S

R
S

R

S

R

S

R

S
R

S

R

S
R

S

R

S

R

SR

S

R

S

R

S

R
S

R

S

R
S
R

S

R

S

R
S

R

S
R
S

R

S

R

S

R

S

R

S
R
SR
S

R

S
RS

R

S

R

S
R

S

R

SR
S

R

S
R
S

R

S

R

S

R

S
R
S

R

S

R

S

R

S

R

SR
S

R

S
RS

R

S
R

S

RS

R

S

R

S
R
S

R

S

R

S

R
S

R

SRS

RS

R

S

R

SR
SR
S

RS

R

S

R

S

RS

R
S

RS

RS

R

S

R

S

R

S

R

S
RSR
S
R
S

R

S

R

S

R

S

R

SRSRS
R

S

R

SR

S
RS

R

SR
S

RSRS

R

S
RS
RS

R

SR
S

R

S
RS
RSRSR
S
RSRSRS

R

SRSRSRSRSRS
RS
RS

R

S

R

SRS

R

SRSRS

R

S

R

S

R

S

R

S

R

SRS

R

SRS

R

SRSRSRS

R

S
RSRSRSRSRS

R

SRS

R

S

R

S

R

S
RS

R

S

R

S

R

S

R

S

R

S
RSRS

R

S

R

SRS
RS
R

SRS

R

SRSRS

R

S

R

S

R

SRS

R

S
R

SRS
RS

R

S

R

S

R

S

R

S

R

SRS

R

S

R

SRS
RS

R

S

R

SRS
R

S

R

S
R

SRS

R

S
R
S

R

S

R

S

R

S
RS
RS

R

SRS

R

SRS

R

S

R

SR
S

R

S
RS

R

S
R
SRSRS

R

S

R

S

RS

R

SRS

R

S

R

S
R
S

R

SRS

R

S

R

S

R

SRS
R
S
R

S

R

S

R

SR
S

R

S
R

S

R

SR

S

R

S
RS

R

S

R

S

R
S

R

S

R

S
R

S
R
SRS
RS
R
S
R
S

R

S
R
S
R
S

R

S
R

S

R

S
R

S

R
SRS

R

S

R

S
R
S

R

S
R
S

R

SRS
R
SRS
R
S
R

S

R

S

R

S
R

S

R

S

Matrices Sorted by Problem Size

M
FL

O
P/

s

Real vs. Synthetic Matrices, Untuned, P3

small

medium large

(a) Untuned

10 20 30 40 50 60

200

400

600

800

1000

1200

Matrices Sorted by Problem Size

M
FL

O
P/

s

Real vs. Synthetic Matrices, Tuned, P3

R
S

R
S

RS

R

S

R

SR
S

RS

R

S

RS

RS

R
S

R

SR

S

R

S
R
S

RS

R

S
RS

R

SRSRS

R

S

R

S
RS

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S

R

S
RS

R

S

R

S

R

S

R

SRS

R

S

R

S
RS

R

S

R

SR
S

R

S

R

SRSRS

R

S

R

S

R

S

R

S

R

S

R

SRSR
S

RS

R

S

R

SRS

R

S

R

S

small

medium large

max(r,c) = 2 3 4 5 6 7 8

(b) Tuned

Figure 2.23: Real vs. Synthetic matrices on the Pentium 3 where the nonzero distributions
of each matrix are also matched.

38

103 104 105

100

101

102

dimension

nn
z/

ro
w

Untuned Synthetic/Real Performance Ratios, P4

small

medium large

0.43

0.87

1.32

1.77

2.22

2.67

(a) Untuned

103 104 105

100

101

102

dimension

nn
z/

ro
w

Tuned Synthetic/Real Performance Ratios, P4

small

medium large

0.43

0.87

1.32

1.77

2.22

2.67

(b) Tuned

Figure 2.24: Real vs. Synthetic matrices on the Pentium 4.

39

103 104 105

100

101

102

dimension

nn
z/

ro
w

Untuned Synthetic/Real Performance Ratios, Itanium 2

small

medium large

0.3

0.61

0.92

1.23

1.54

1.85

(a) Untuned

103 104 105

100

101

102

dimension

nn
z/

ro
w

Tuned Synthetic/Real Performance Ratios, Itanium 2

small

medium large

0.3

0.61

0.92

1.23

1.54

1.85

(b) Tuned

Figure 2.25: Real vs. Synthetic matrices on the Itanium 2.

40

103 104 105

100

101

102

dimension

nn
z/

ro
w

Untuned Synthetic/Real Performance Ratios, Opteron

small

medium large

0.4

0.83

1.26

1.68

2.11

2.53

(a) Untuned

103 104 105

100

101

102

dimension

nn
z/

ro
w

Tuned Synthetic/Real Performance Ratios, Opteron

small

medium large

0.4

0.83

1.26

1.68

2.11

2.53

(b) Tuned

Figure 2.26: Real vs. Synthetic matrices on the Opteron.

41

103 104 105

100

101

102

dimension

nn
z/

ro
w

Untuned Synthetic/Real Performance Ratios, P3

small

medium large

0.26

0.54

0.81

1.09

1.36

1.64

(a) Untuned

103 104 105

100

101

102

dimension

nn
z/

ro
w

Tuned Synthetic/Real Performance Ratios, P3

small

medium large

0.26

0.54

0.81

1.09

1.36

1.64

(b) Tuned

Figure 2.27: Real vs. Synthetic matrices on the Pentium 3.

42

Chapter 3

A Benchmark For Evaluating

SpMV Performance

We have seen that we have no better way to predict the performance of SpMV

than to perform actual SpMV, and that we can use synthetically generated matrices to effec-

tively approximate SpMV performance on real matrices. Even with synthetically generated

matrices, though, there is a very large space of matrices to consider, determined by their

density, dimensions, block structure, and nonzero distribution. The matrices in [3] have

dimensions ranging from under 100 to over 1 million, with densities ranging from just one

nonzero entry per row to almost 400 nonzero entries per row and many possible blocksizes.

The matrices in our test suite that form a subset of [3] were found in the previous chapter

to have blocksizes with dimensions range from 1 through 8. This forms a set of 64 possible

blocksizes, and with the blocksize varying by platform, all of them could turn up depending

on which platform we run the matrices on.

43

3.1 Limiting the Set of Matrices to Benchmark

Testing every possible synthetic matrix with all possible combinations of density,

dimension, blocksize, and nonzero distribution would be prohibitively expensive. Instead of

doing this, we will cut down on the search space as follows:

1. Test only square matrices whose dimension is a power of 2 no smaller than 512 and

no larger than a user-specified upper limit (which is expressed by the user in terms of

a constraint on the amount of memory used, as is done in the HPCC benchmarks [5]).

In this thesis, we set the upper limit at 220 ≈ 106, which is the smallest power of 2

that is larger than the largest matrix dimension in our test suite.

2. Keep the number of nonzero entries per row within a certain small range. We choose

[24, 34] = 29 ± 5 because 29 is the average number of nonzero entries per row in our

test suite.

3. Look at only matrices with blocksizes found to be common in [12], which uses a

matrix test suite with a large proportion of matrices that benefit from tuning. These

blocksizes come from the set {r, c} ∈ {1, 2, 3, 4, 6, 8}×{1, 2, 3, 4, 6, 8}. Our matrix test

suite, meant to represent both matrices we can and cannot tune, has a substantial

number of matrices for which tuning has no benefit.

4. Generate matrices with nonzero entries distributed as shown in table 3.1. This distri-

bution is the average distribution over all the matrices in our test suite (the individual

distributions for each matrix can be found in Appendix C).

44

Distance From Diagonal Entries In This Range
0-10% 65.9%
10-20% 11.4%
20-30% 5.84%
30-40% 6.84%
40-50% 2.85%
50-60% 1.86%
60-70% 1.44%
70-80% 2.71%
80-90% 0.774%
90-100% 0.387%

Table 3.1: Distribution of Nonzero Entries in Matrix Test Suite

To ensure accurate measurements, we first measure the timer resolution, and based

on this run SpMV enough times so that the time per SpMV is no smaller than 100 times

the timer resolution. This ensures that timer measurement error is at most 1%. To guard

against reporting an unusual value, at least 10 trials of SpMV are performed no matter

what the problem dimension is.

This testing scheme was run on three different platforms (see Appendix A), pro-

ducing 36 plots for each machine, one for each block size tested, 12 (# dimensions) × 11

(# nnz/row) × 36 (# blocksizes) = 4752 matrices in all. These plots can be found in

Appendices H–K.

3.2 Condensing the Reported Data

As the plots in Appendices H–K show, testing all the matrices in this reduced

search space still produces a lot of data. Benchmark suites like HPCC want data in the

form of just a few numbers (and preferably just one number) [5]. We report four MFLOP

45

rates: unblocked maximum, unblocked median, blocked maximum, and blocked median.

The unblocked numbers are taken only from data gathered for matrices with 1× 1 blocks,

and represent the case of the real-life matrices for which tuning was attempted but found

to be of no benefit. The blocked numbers are taken from the rest of the data, and represent

the case of the real-life matrices for which there was a benefit to tuning. Based on the

patterns in the graphs in Appendices H–K, we feel that the four numbers we report are the

ones that best capture SpMV performance.

When forced to report one number for condensed output, as all bencharks in the

HPCC suite are [5], we report the median blocked MFLOP rate. The results for each

platform tested are

Platform Unblocked Blocked
Max Median Max Median

Pentium 4 699 307 1961 530
Itanium 2 443 343 2177 753
Opteron 396 170 1178 273
Pentium 3 474 97 1017 172

The proportion of matrices generated by the benchmark that fall into each SpMV

problem classification are

Platform Small Medium Large
Pentium 4 17% 42% 42%
Itanium 2 33% 50% 17%
Opteron 23% 44% 33%
Pentium 3 17% 42% 42%

This tells us that we are capturing the small/medium/large behavior that we want

to capture.

Figures 3.1–3.4 compare our benchmark’s output to the performance of real matri-

ces. Plotted in them are maximum, minimum, and median MFLOP rates for each problem

46

dimension, in both the blocked and blocked cases, along with dots to represent real matri-

ces. They show that the numbers output by our benchmark have good predictive power,

though the blocked maximum numbers stand out as being noticeably too high.

3.3 Decreasing The Benchmark’s Runtime

One problem remains with the SpMV benchmarking scheme outlined in the pre-

vious sections: its overall runtime. On each machine tested, running the benchmark was

quite a time-consuming endeavor, as these runtimes show:

Machine Runtime (minutes)
Pentium 4 150
Opteron 149
Itanium 2 128
Penium 3 221

We would like to make these runtimes much smaller without drastically affecting

the benchmark’s output. One obvious way of limiting runtime is to put a further constraint

on the largest problem dimension, requiring it not to get so large as to make the benchmark’s

runtime exceed a certain time limit. Another way can be gleaned from the performance

graphs for each blocksize. While the performance of SpMV can be sensitive to the number

of nonzero entries per row in a matrix, it is only sensitive for matrices with a very small

dimension. Thus, we can also constrain the number of different values of the number of

nonzero entries per row when the matrix dimension is not too small. Defining “too small”

might seem difficult, but we can easily do this at runtime. To do so, we define what we call

a threshold dimension. This is a problem dimension below which we consider the task of

creating a matrix and performing SpMV with it to be “free.” Each register block size for

which we generate matrices will have its own threshold dimension. All values of nnz/row

47

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

median

max

small

medium

large

Matrices Sorted by Problem Size

M
FL

O
P/

s

Benchmark vs. Real Matrices, Unblocked, P4

(a) Unblocked benchmark numbers vs. unblocked real matrices

0 10 20 30 40 50 60
0

500

1000

1500

2000

Matrices Sorted by Problem Size

M
FL

O
P/

s

Benchmark vs. Real Matrices, Blocked, P4

median

max

small

medium

large

max(r,c) = 2 3 4 5 6 7 8

(b) Blocked benchmark numbers vs. blocked real matrices

Figure 3.1: Performance of benchmark vs. real matrices on the Pentium 4.

48

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450

median

max

small

medium

large

Matrices Sorted by Problem Size

M
FL

O
P/

s

Benchmark vs. Real Matrices, Unblocked, Itanium 2

(a) Unblocked benchmark numbers vs. unblocked real matrices

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

Matrices Sorted by Problem Size

M
FL

O
P/

s

Benchmark vs. Real Matrices, Blocked, Itanium 2

median

max

small

medium

large

max(r,c) = 2 3 4 5 6 7 8

(b) Blocked benchmark numbers vs. blocked real matrices

Figure 3.2: Performance of benchmark vs. real matrices on the Itanium 2.

49

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450

median

max

small

medium

large

Matrices Sorted by Problem Size

M
FL

O
P/

s

Benchmark vs. Real Matrices, Unblocked, Opteron

(a) Unblocked benchmark numbers vs. unblocked real matrices

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

Matrices Sorted by Problem Size

M
FL

O
P/

s

Benchmark vs. Real Matrices, Blocked, Opteron

median

max

small

medium

large

max(r,c) = 2 3 4 5 6 7 8

(b) Blocked benchmark numbers vs. blocked real matrices

Figure 3.3: Performance of benchmark vs. real matrices on the Opteron.

50

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

800

900

1000

median

max

small

medium

large

Matrices Sorted by Problem Size

M
FL

O
P/

s

Benchmark vs. Real Matrices, Unblocked, P3

(a) Unblocked benchmark numbers vs. unblocked real matrices

0 10 20 30 40 50 60 70
0

200

400

600

800

1000

1200

1400

Matrices Sorted by Problem Size

M
FL

O
P/

s

Benchmark vs. Real Matrices, Blocked, P3

median

max

small

medium

large

max(r,c) = 2 3 4 5 6 7 8

(b) Blocked benchmark numbers vs. blocked real matrices

Figure 3.4: Performance of benchmark vs. real matrices on the Pentium 3.

51

are to be tested for problem dimensions below the threshold dimension. Above it, we can

omit values as we see fit.

The actual decision of which trials not to run is made by a runtime estimator that

first estimates the runtime of a full benchmark run and then cuts out certain trials from

the full run until a user-specified time constraint is satisfied. Based on limitations required

by [5], we set this constraint to five minutes. Runtime estimation is performed, for each

register blocksize tested, by running an SpMV trial (both matrix generation and performing

the actual multiplication) for a matrix with the threshold dimension defined earlier and then

doubling the runtime of this trial to obtain runtime estimates for running an SpMV trial

for each successive problem dimension we intend to test. The estimator keeps nnz/row at

the midpoint of the selected range, and adds up the computed estimates to estimate the

runtime of the entire benchmark. Afterwards, it uses the following iteration to determine

which SpMV trials to omit:

1. Reduce the number of values of nnz/row to test and adjust the runtime estimate

accordingly.

2. If the time limit is still exceeded, cut off the largest dimension to be tested and go

back to testing the full nnz/row range, adjusting the estimate accordingly.

3. Repeat the previous two steps until the time limit is satisfied. To account for estima-

tion errors, we allow the time limit to be exceeded by 10%.

This keeps the largest problem dimension tested as large as possible to ensure that

the benchmark tests small, medium, and large problems, while still dramatically cutting

52

down on the runtime. Before we see the results, though, we note that cutting out values

of nnz/row to test cuts out data points which would greatly change our median statistics

because we test the full nnz/row range for problem dimensions below the threshold di-

mension. To correct this problem, we replace these missing data points so our computed

medians make sense by either duplication if we test only one nnz/row value or interpolation

if we test more than one. In the latter case, we require the endpoints of the nnz/row range

to be included among the nnz/row values tested.

3.4 Reduced-Time Benchmark Results

Running the benchmark from scratch with the time-saving measures described in

the previous section and a time limit of 5 minutes yielded the following condensed results,

which are not too much different from the results obtained in section 3.2 by running for over

two hours. The difference in max numbers between the full and abbreviated runs, which

would ideally be the same, fall within the bounds of measurement noise.

Untuned Tuned
Max Median Max Median

Pentium 4 692 362 1937 555
Itanium 2 442 343 2181 803
Opteron 394 188 1178 286
Pentium 3 474 113 1010 180

The actual runtimes for each platform in minutes were

Runtime (original) Runtime (condensed)
Pentium 4 150 minutes 3 minutes
Itanium 2 128 minutes 3 minutes
Opteron 149 minutes 3 minutes
Penium 3 221 minutes 5 minutes

That the runtime was 3 minutes and not 5 means the runtime estimator determined

that testing the next largest problem dimension would have pushed the benchmark’s runtime

53

over the time limit. The proportion of generated matrices falling in each SpMV category

in this reduced test space are as follows:

Small Medium Large
Pentium 4 20% 50% 30%
Itanium 2 40% 60% 0%
Opteron 27% 53% 20%
Penium 3 20% 50% 30%

54

Chapter 4

Conclusions and Directions for

Future Work

In this thesis, we have presented a way to benchmark SpMV that works on multi-

ple architectures, through which accurate results can be obtained in as little as five minutes.

Many areas for future work remain, however. A number of them have already been high-

lighted by graphs in the previous two chapters. We will discuss these and other areas for

improvement here. These range from improving the benchmark itself to extending it to new

platforms.

4.1 Improvements to the Benchmark

4.1.1 Synthetic Matrix Generation

As the graphs in the previous two chapters show, there is still plenty of room

for improvement in the benchmark itself. The graphs of real versus synthetic matrices in

55

Chapter 2 tell us that further research into how to generate synthetic matrices that better

approximate real ones could give us more a more accurate benchmark. The ends of the

spectrum that need to be given the most attention are the small and large problems. For

small problems, the synthetic matrices often mispredict the performance of real ones, and

we have not yet found a way to correct this. For large problems, even though using nonzero

distribution statistics have helped, the synthetic matrices still noticeably underpredict the

performance of the real ones.

4.1.2 Benchmark Output

Perhaps the biggest area for improvement comes when looking at the maximum

blocked MFLOP rate output by the benchmark. It is clearly very high in most cases. One

reason comes from the synthetic matrices with blocksizes on the larger end of the ones we

use in out benchmark. While they are represented in larger problems, they are not very

often found in small problems, as a scan through [3] reveals. But this is not the only

issue at work. There is also the general problem of synthetic matrices mispredicting the

performance of real ones, which happens regardless of blocksize. Research addressing these

issues is needed to make the benchmark’s output more accurate.

4.1.3 Symmetric Matrices

Our benchmark in its current state generates exclusively nonsymmetric matrices.

This ignores a large number of real-life matrices that are symmetric. In this thesis, we have

converted symmetric real-life matrices to nonsymmetric format before performing SpMV on

them. But since symmetric matrices form an important subclass of SpMV problems, being

56

able to predict symmetric SpMV performance is something that would be desirable in an

SpMV benchmark. Figures 4.1–4.4 show that our benchmark retains some predictive power

when we try and predict symmetric performance. However, because symmetric matrices

are frequently found in real-life examples, we would like to be able to somehow incorporate

symmetry into our benchmark. How this can best be done is a question that needs further

research.

4.1.4 Other Benchmarking Techniques

One current line of research raises the question as to whether other benchmark-

ing approaches are possible [11]. This work seeks to measure application performance by

modeling its memory access patterns. If such an approach could be extended to SpMV, it

would mean that future approaches to benchmarking it could be much simpler than the one

we have given in this thesis.

4.2 Extending the Benchmark to New Platforms

Currently, the benchmark only works on scalar uniprocessor machines. This is

not an ideal situation, as there are two other kinds of architectures often used in scientific

computing that would also benefit from an SpMV benchmark.

The first are vector machines. As discussed in [2] and [12], the CSR and BCSR

sparse matrix formats that we used in this thesis may not be fastest for vector architec-

tures. [2] presents a format called segmented scan that is very well-suited to vector archi-

tectures. The use of this or another suitable format could serve to extend our benchmark

57

0 50 100 150 200 250 300
0

200

400

600

800

1000

1200

median

max

small

medium

large

Matrices Sorted by Problem Size

M
FL

O
P/

s

Benchmark vs. Real Matrices, Unblocked, P4

(a) Unblocked benchmark numbers vs. unblocked real matrices

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

Matrices Sorted by Problem Size

M
FL

O
P/

s

Benchmark vs. Real Matrices, Blocked, P4

median

max

small

medium

large

max(r,c) = 2 3 4 5 6 7 8

(b) Blocked benchmark numbers vs. blocked real matrices

Figure 4.1: Performance of benchmark vs. real matrices on the Pentium 4 with symmetry
taken into account. Triangles represent symmetric matrices and circles represent nonsym-
metric ones.

58

0 50 100 150 200 250 300
0

200

400

600

800

1000

1200

1400

median
max

small

medium

large

Matrices Sorted by Problem Size

M
FL

O
P/

s

Benchmark vs. Real Matrices, Unblocked, Itanium 2

(a) Unblocked benchmark numbers vs. unblocked real matrices

0 20 40 60 80 100 120 140
0

500

1000

1500

2000

2500

3000

3500

Matrices Sorted by Problem Size

M
FL

O
P/

s

Benchmark vs. Real Matrices, Blocked, Itanium 2

median

max

small

medium

large

max(r,c) = 2 3 4 5 6 7 8

(b) Blocked benchmark numbers vs. blocked real matrices

Figure 4.2: Performance of benchmark vs. real matrices on the Itanium 2 with symmetry
taken into account. Triangles represent symmetric matrices and circles represent nonsym-
metric ones.

59

0 50 100 150 200 250 300
0

200

400

600

800

1000

1200

median

max

small

medium

large

Matrices Sorted by Problem Size

M
FL

O
P/

s

Benchmark vs. Real Matrices, Unblocked, Opteron

(a) Unblocked benchmark numbers vs. unblocked real matrices

0 10 20 30 40 50 60
0

500

1000

1500

2000

Matrices Sorted by Problem Size

M
FL

O
P/

s

Benchmark vs. Real Matrices, Blocked, Opteron

median

max

small

medium

large

max(r,c) = 2 3 4 5 6 7 8

(b) Blocked benchmark numbers vs. blocked real matrices

Figure 4.3: Performance of benchmark vs. real matrices on the Opteron with symmetry
taken into account. Triangles represent symmetric matrices and circles represent nonsym-
metric ones.

60

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

800

900

1000

median

max

small

medium

large

Matrices Sorted by Problem Size

M
FL

O
P/

s

Benchmark vs. Real Matrices, Unblocked, P3

(a) Unblocked benchmark numbers vs. unblocked real matrices

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

1400

Matrices Sorted by Problem Size

M
FL

O
P/

s

Benchmark vs. Real Matrices, Blocked, P3

median

max

small

medium

large

max(r,c) = 2 3 4 5 6 7 8

(b) Blocked benchmark numbers vs. blocked real matrices

Figure 4.4: Performance of benchmark vs. real matrices on the Pentium 3 with symmetry
taken into account. Triangles represent symmetric matrices and circles represent nonsym-
metric ones.

61

to vector architectures.

The second are parallel machines. Today, most intense scientific computations are

done on parallel machines, so any benchmark that measures the performance of an operation

used in scientific computing should run on those machines. The benchmarks currently in [5]

all have parallel versions, and a benchmark for SpMV should be no exception.

A number of issues come up in the parallel case, though, that do not come up

when looking at SpMV on uniprocessor machines. These make designing a parallel SpMV

benchmark a challenging problem that needs much further attention. Issues such as the way

a matrix is distributed amongst processors and how to handle the different cases of parallel

machines, shared-memory machines, SMP’s, and distributed-memory machines become very

important, and research is needed on the best way for a portable SpMV benchmark to

accomodate these differences.

62

Bibliography

[1] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi,

S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan,

and S. Weeratunga. The NAS Parallel Benchmarks. Technical Report 94-007, RNR,

March 1994. http://www.nas.nasa.gov/Resources/Software/npb.html.

[2] G. Belloch, M. Heroux, and M. Zagha. Segmented operations for sparse matrix compu-

tation on vector multiprocessors. Technical Report CMU-CS-93-173, Carnegie Mellon

University, 1993.

[3] T. Davis. University of Florida Sparse Matrix Collection.

http://www.cise.ufl.edu/research/sparse/matrices.

[4] J. Dongarra, V. Eijkhout, and H. van der Vorst. Sparsebench: a sparse iterative

benchmark, 2001.

[5] J. Dongarra and P. Luszczek. Introduction to the HPC Challenge Benchmark Suite.

Technical Report UT-CS-05-544, University of Tennessee, Knoxville, 2005.

[6] E.-J. Im and K. A. Yelick. Optimizing sparse matrix computations for register reuse in

63

SPARSITY. In Proceedings of the International Conference on Computational Science,

volume 2073 of LNCS, pages 127–136, San Francisco, CA, May 2001. Springer.

[7] E.-J. Im, K. A. Yelick, and R. Vuduc. SPARSITY: Framework for optimizing sparse

matrix-vector multiply. International Journal of High Performance Computing Appli-

cations, 18(1):135–158, February 2004.

[8] J. D. McCalpin. Sustainable memory bandwidth in current high performance comput-

ers. Technical report, Advanced Systems Division, Silicon Graphics, Inc., 1995.

[9] National Institute of Science and Technology. SciMark 2.0 Java Benchmark for Scien-

tific Computing. http://math.nist.gov/scimark2.

[10] R. Nishtala, R. Vuduc, J. W. Demmel, and K. A. Yelick. When cache blocking sparse

matrix vector multiply works and why. Applicable Algebra in Engineering, Commu-

nication, and Computing: Special Issue on Computational Linear Algebra and Sparse

Matrix Computations, 2005. (to appear).

[11] E. Strohmaier and H. Shan. Architecture independent performance characterization

and benchmarking for scientific applications. In International Symposium on Modeling,

Analysis and Simulation of Computer and Telecommunication Systems, Volendam, The

Netherlands, October 2004.

[12] R. Vuduc. Automatic Performance Tuning of Sparse Matrix Kernels. PhD thesis,

University of California, Berkeley, December 2003.

[13] R. Vuduc, J. Demmel, and K. Yelick. OSKI: A library of automatically tuned sparse

64

matrix kernels. In Proceedings of SciDAC 2005, Journal of Physics: Conference Series,

San Francisco, CA, USA, June 2005. Institute of Physics Publishing. (to appear).

[14] R. Vuduc, J. W. Demmel, and K. A. Yelick. An interface for a self-optimizing sparse

matrix kernel library, 2005.

[15] R. Vuduc, J. W. Demmel, K. A. Yelick, S. Kamil, R. Nishtala, and B. Lee. Perfor-

mance optimizations and bounds for sparse matrix-vector multiply. In Proceedings of

Supercomputing, Baltimore, MD, USA, November 2002.

65

Appendix A

Experimental Setup

Here are details on the platforms experiments were carried out on. Included are

information about the processors, cache sizes, compiler, and compiler flags used.

GHz Bits Cache Compiler Compiler Command

Pentium 4 2.4 32 512 KB gcc 3.4.4

cc -O3
-malign-double
-march=pentium4
-msse2 -std=c99

Itanium 2 1 64 3 MB Intel C v9.0
icc -O3 -tpp2
-mcpu=itanium2
-std=c99

Opteron 1.4 64 1 MB gcc 3.2.3 cc -O3 -m64
-march=k8 -std=c99

Pentium 3 1.4 32 512 KB Intel C v9.0

icc -O3 -tpp6
-mcpu=pentiumpro
-march=pentiumiii
-std=c99

66

Appendix B

Suite of Test Matrices

The real matrices for which performance data was collected were taken from the

online collection [3]. The following table gives information on the properties of each matrix

that was used.

Name Dimension Nonzeros nnz/row Symmetric
dw256A 512 2480 5 no
gre 512 512 1976 4 no
pores 3 532 3474 7 no
fs 541 1 541 4282 8 no
lshp 577 577 3889 7 yes
bcsstm34 588 24270 41 yes
steam2 600 5660 9 no
can 634 634 7228 11 yes
ex21 656 18964 29 no
shl 0 663 1687 3 no
nnc666 666 4032 6 no
nos6 675 3255 5 yes
fs 680 3 680 2471 4 no
685 bus 685 3249 5 yes
can 715 715 6665 9 yes
nos7 729 4617 6 yes
mcfe 765 24382 32 no

67

Name Dimension Nonzeros nnz/row Symmetric
Si2 769 17801 23 yes
lshp 778 778 5272 7 yes
bfwa782 782 7514 10 no
rotor2 791 10685 14 no
G1 800 38352 48 yes
bcsstk19 817 6853 8 yes
bcsstm19 817 817 1 yes
bp 800 822 4534 6 no
can 838 838 10010 12 yes
ex25 848 24369 29 no
dwt 869 869 7285 8 yes
qh882 882 3354 4 no
orsirr 2 886 5970 7 no
pde900 900 4380 5 no
dwt 918 918 7384 8 yes
jagmesh1 936 6264 7 yes
nos3 960 15844 17 yes
cdde1 961 4681 5 no
ex27 974 37652 39 no
west0989 989 3518 4 no
jpwh 991 991 6027 6 no
dwt 992 992 16744 17 yes
saylr3 1000 3750 4 no
tub1000 1000 3996 4 no
lshp1009 1009 6865 7 yes
cage8 1015 11003 11 no
sherman2 1080 23094 21 no
b dyn 1089 4144 4 no
sherman4 1104 3786 3 no
fpga dcop 01 1220 5892 5 no
bcsstk27 1224 56126 46 yes
pores 2 1224 9613 8 no
dwt 1242 1242 10426 8 yes
mahindas 1258 7682 6 no
jagmesh6 1377 8993 7 yes
bcsstk11 1473 34241 23 yes
bcsstm11 1473 1473 1 yes
comsol 1500 97465 65 no
west1505 1505 5414 4 no
lshp1561 1561 10681 7 yes
bcspwr07 1612 5824 4 yes

68

Name Dimension Nonzeros nnz/row Symmetric
ex7 1633 46626 29 no
lung1 1650 7419 4 no
bcspwr09 1723 6511 4 yes
epb0 1794 7764 4 no
bcsstk14 1806 63454 35 yes
adder trans 01 1814 14579 8 no
ex3 1821 52685 29 no
watt 1 1856 11360 6 no
rajat12 1879 12818 7 no
plsk1919 1919 9662 5 no
bcsstk26 1922 30336 16 yes
bcsstm26 1922 1922 1 yes
rajat02 1960 11187 6 yes
bcsstk13 2003 83883 42 yes
bcsstm13 2003 21181 11 yes
west2021 2021 7310 4 no
dw1024 2048 10114 5 no
blckhole 2132 14872 7 yes
lshp2233 2233 15337 7 yes
ex24 2283 47901 21 no
heart2 2339 680341 291 no
add20 2395 13151 5 no
rdist3a 2398 61896 26 no
ex10 2410 54840 23 no
orani678 2529 90158 36 no
ex28 2603 77031 30 no
dwt 2680 2680 25026 9 yes
extr1 2837 10967 4 no
meg1 2904 58142 20 no
nasa2910 2910 174296 60 yes
lhr02 2954 36875 12 no
pde2961 2961 14585 5 no
G50 3000 12000 4 yes
laser 3002 9000 3 yes
lshp3025 3025 20833 7 yes
psmigr 3 3140 543160 173 no
swang1 3169 20841 7 no
garon1 3175 84723 27 no
raefsky2 3242 293551 91 no
bayer05 3268 20712 6 no
ex9 3363 99471 30 no

69

Name Dimension Nonzeros nnz/row Symmetric
shermanACa 3432 25220 7 no
thermal 3456 66528 19 no
lshp3466 3466 23896 7 yes
cage9 3534 41594 12 no
heart1 3557 1385317 389 no
bcsstk24 3562 159910 45 yes
bcsstm21 3600 3600 1 yes
lns 3937 3937 25407 6 no
bcsstk15 3948 117816 30 yes
ex12 3973 79077 20 no
poli 4008 8188 2 no
sts4098 4098 72356 18 yes
lhr04 4101 81057 20 no
rdist1 4134 94408 23 no
struct4 4350 237798 55 yes
circuit 2 4510 21199 5 no
bcsstk16 4884 290378 59 yes
gemat11 4929 33108 7 no
add32 4960 19848 4 no
G58 5000 59140 12 yes
G59 5000 59140 12 yes
olm5000 5000 19996 4 no
bcspwr10 5300 21842 4 yes
hydr1 5308 22680 4 no
SiNa 5743 198787 35 yes
ex18 5773 71701 12 no
Na5 5832 305630 52 yes
meg4 5860 25258 4 no
Hamrle2 5952 22162 4 no
shermanACd 6136 53329 9 no
Alemdar 6245 42581 7 yes
raefsky5 6316 167178 26 no
bayer03 6747 29195 4 no
jan99jac020 6774 33744 5 no
rajat01 6833 43250 6 no
ex15 6867 98671 14 no
G64 7000 82918 12 yes
cell1 7055 30082 4 no
goodwin 7320 324772 44 no
lhr07 7337 154660 21 no
sinc12 7500 283992 38 no

70

Name Dimension Nonzeros nnz/row Symmetric
rajat13 7598 48762 6 no
ex40 7740 456188 59 no
commanche dual 7920 31680 4 yes
G65 8000 32000 4 yes
bcsstk38 8032 355460 44 yes
Pd 8081 13036 2 no
dw4096 8192 41746 5 no
benzene 8219 242669 30 yes
bcsstk33 8738 591904 68 yes
nd3k 9000 3279690 364 yes
mark3jac020 9129 52883 6 no
nemeth02 9506 394808 42 yes
nemeth16 9506 587012 62 yes
nemeth19 9506 818302 86 yes
nemeth21 9506 1173746 123 yes
nemeth26 9506 1511760 159 yes
coater2 9540 207308 22 no
fv2 9801 87025 9 no
shuttle eddy 10429 103599 10 yes
pkustk02 10800 810000 75 yes
igbt3 10938 130500 12 no
k3plates 11107 378927 34 no
m3plates 11107 6639 1 yes
coupled 11341 97193 9 yes
cage10 11397 150645 13 no
t2dah a 11445 176117 15 yes
sinc15 11532 551184 48 no
sme3Da 12504 874887 70 no
stokes64 12546 140034 11 yes
skirt 12598 196520 16 yes
tuma2 12992 49365 4 yes
poisson3Da 13514 352762 26 no
Pres Poisson 14822 715804 48 yes
rajat07 14842 63913 4 yes
powersim 15838 64424 4 no
sinc18 16428 948696 58 no
pds10 16558 149658 9 yes
pkustk07 16860 2418804 143 yes
gyro k 17361 1021159 59 yes
gyro m 17361 340431 20 yes
nd6k 18000 6897316 383 yes

71

Name Dimension Nonzeros nnz/row Symmetric
nmos3 18588 237130 13 no
bodyy6 19366 134208 7 yes
t3dl a 20360 509866 25 yes
t3dl e 20360 20360 1 yes
ns3Da 20414 1679599 82 no
raefsky3 21200 1488768 70 no
pkustk01 22044 979380 44 yes
pkustk08 22209 3226671 145 yes
rim 22560 1014951 45 no
tuma1 22967 87760 4 yes
crystm03 24696 583770 24 yes
dtoc 24993 69972 3 yes
mult dcop 01 25187 193276 8 no
bcsstm37 25503 15525 1 yes
brainpc2 27607 179395 6 yes
3D 28984 Tetra 28984 285092 10 no
bloweya 30004 150009 5 yes
aug2dc 30200 80000 3 yes
rajat10 30202 130303 4 yes
bcsstm35 30237 20619 1 yes
Zhao1 33861 166453 5 no
pkustk09 33960 1583640 47 yes
lhr34 35152 746972 21 no
nd12k 36000 14220946 395 yes
onetone1 36057 335552 9 no
wathen120 36441 565761 16 yes
pwt 36519 326017 9 yes
rajat15 37261 443573 12 no
finance256 37376 298496 8 yes
cage11 39082 559722 14 no
torsion1 40000 197608 5 yes
av41092 41092 1683902 41 no
jan99jac120 41374 229385 6 no
sme3Dc 42930 3148656 73 no
pkustk06 43164 2571768 60 yes
3dtube 45330 3213618 71 yes
bcsstk39 46772 2060662 44 yes
bcsstm39 46772 46772 1 yes
rma10 46835 2329092 50 no
gridgena 48962 512084 10 yes
stokes128 49666 558594 11 yes

72

Name Dimension Nonzeros nnz/row Symmetric
ibm matrix 2 51448 537038 10 no
ct20stif 52329 2600295 50 yes
g7jac180 53370 641290 12 no
struct3 53570 1173694 22 yes
copter2 55476 759952 14 yes
pkustk04 55590 4218660 76 yes
bayer01 57735 275094 5 no
g7jac200 59310 717620 12 no
a5esindl 60008 255004 4 yes
blockqp1 60012 640033 11 yes
qa8fk 66127 1660579 25 yes
lhr71 70304 1494006 21 no
nd24k 72000 28715634 399 yes
ncvxqp3 75000 499964 7 yes
t3dh e 79171 4352105 55 yes
a2nnsnsl 80016 347222 4 yes
pkustk10 80676 4308984 53 yes
poisson3Db 85623 2374949 28 no
ncvxqp7 87500 574962 7 yes
boyd1 93279 1211231 13 yes
tandem dual 94069 460493 5 yes
pkustk12 94653 7512317 79 yes
pkustk13 94893 6616827 70 yes
ford2 100196 544688 5 yes
matrix 9 103430 1205518 12 no
hcircuit 105676 513072 5 no
lung2 109460 492564 4 no
barrier2-1 113076 2129496 19 no
torso2 115967 1033473 9 no
torso1 116158 8516500 73 no
twotone 120750 1206265 10 no
matrix-new 3 125329 893984 7 no
pkustk14 151926 14836504 98 yes
para-6 153226 2930882 19 no
gearbox 153746 9080404 59 yes
para-10 155924 2094873 13 no
xenon2 157464 3866688 25 no
scircuit 170998 958936 6 no
cont-300 180895 988195 5 yes
ohne2 181343 6869939 38 no
stomach 213360 3021648 14 no

73

Name Dimension Nonzeros nnz/row Symmetric
pwtk 217918 11524432 53 yes
torso3 259156 4429042 17 no
Ga41As41H72 268096 18488476 69 yes
Stanford 281903 2312497 8 no
rajat24 358172 1946979 5 no
language 399130 1216334 3 no
rajat21 411676 1876011 5 no
cage13 445315 7479343 17 no
boyd2 466316 1500397 3 yes
af shell1 504855 17562051 35 yes
pre2 659033 5834044 9 no
Stanford Berkeley 683446 7583376 11 no

74

Appendix C

Nonzero Distributions of the

Matrix Test Suite

Here are the statistics for distribution of nonzero entries in the matrices in our test

suite. The numbers in the table are the percentages of the entries of each matrix that are

in decile i, i.e. between 10(i− 1) and 10i percent of the diagonal. Each number is rounded

to the nearest integer. A blank entry means that there are either no entries in that decile

or that the amount of entries is less than 1% after rounding.

Decile
1 2 3 4 5 6 7 8 9 10

dw256A 98% 2%
gre 512 82% 18%
pores 3 69% 31%
fs 541 1 38% 10% 11% 8% 11% 8% 5% 5% 3% 1%
lshp 577 85% 9% 2% 1% 1% 1%
bcsstm34 39% 61% 1%
steam2 17% 9% 72% 2%
can 634 63% 9% 7% 6% 3% 2% 2% 5% 3%

75

Decile
1 2 3 4 5 6 7 8 9 10

ex21 46% 52% 2%
shl 0 2% 8% 31% 26% 3% 5% 5% 4% 11% 3%
nnc666 74% 25% 1%
nos6 100%
fs 680 3 43% 15% 16% 3% 8% 5% 5% 5% 2%
685 bus 79% 14% 4% 1% 2% 1%
can 715 79% 6% 6% 2% 4% 2% 2%
nos7 72% 28%
mcfe 69% 24% 8%
Si2 59% 12% 10% 6% 4% 5% 2% 1%
lshp 778 87% 8% 2% 1% 1% 1%
bfwa782 48% 5% 8% 10% 10% 10% 8%
rotor2 87% 1% 1% 2% 1% 2% 1% 2% 1% 3%
G1 9% 18% 16% 14% 12% 10% 8% 6% 4% 2%
bcsstk19 84% 2% 9% 3% 2%
bcsstm19 100%
bp 800 9% 18% 14% 13% 14% 11% 10% 7% 3% 1%
can 838 41% 5% 19% 20% 2% 11% 1%
ex25 56% 44%
dwt 869 97% 2% 1%
qh882 49% 6% 5% 7% 9% 15% 9%
orsirr 2 69% 20% 2% 3% 2% 2% 4%
pde900 100%
dwt 918 81% 5% 2% 1% 1% 1% 3% 4% 2% 1%
jagmesh1 83% 14% 2% 1%
nos3 100%
cdde1 100%
ex27 53% 47%
west0989 23% 22% 22% 15% 10% 6% 1% 1% 1%
jpwh 991 49% 50% 1%
dwt 992 50% 50%
saylr3 83% 17%
tub1000 100%
lshp1009 89% 7% 1% 1% 1%
cage8 53% 25% 12% 8% 2%
sherman2 70% 30%
b dyn 6% 13% 10% 12% 12% 13% 12% 9% 8% 4%
sherman4 81% 19%
fpga dcop 01 35% 11% 8% 10% 10% 11% 9% 5%
bcsstk27 100%
pores 2 73% 10% 14% 2%

76

Decile
1 2 3 4 5 6 7 8 9 10

dwt 1242 89% 2% 2% 2% 2% 1% 1% 1%
mahindas 11% 13% 8% 6% 32% 12% 5% 3% 8%
jagmesh6 99% 1%
bcsstk11 94% 1% 1% 5%
bcsstm11 100%
comsol 11% 17% 15% 16% 11% 9% 8% 7% 3% 2%
west1505 18% 23% 25% 16% 9% 6% 2% 1%
lshp1561 91% 6% 1% 1%
bcspwr07 88% 9% 1%
ex7 57% 43% 1%
lung1 78% 22%
bcspwr09 43% 14% 13% 10% 6% 6% 4% 2% 1% 1%
epb0 42% 12% 12% 3% 5% 7% 7% 6% 3%
bcsstk14 65% 35%
adder trans 01 27% 13% 11% 10% 9% 8% 8% 7% 4% 3%
ex3 76% 24%
watt 1 100%
rajat12 53% 12% 6% 4% 4% 4% 4% 4% 4% 4%
plsk1919 74% 1% 25%
bcsstk26 62% 38%
bcsstm26 100%
rajat02 72% 9% 2% 3% 6% 2% 1% 2% 2%
bcsstk13 62% 28% 5% 1% 2% 1%
bcsstm13 64% 31% 5%
west2021 16% 24% 24% 19% 8% 5% 4% 1%
dw1024 99% 1%
blckhole 91% 3% 1% 3% 2%
lshp2233 92% 5% 1% 1%
ex24 94% 6%
heart2 41% 31% 7% 7% 8% 2% 1% 1% 1% 1%
add20 55% 9% 4% 8% 6% 4% 8% 5%
rdist3a 98% 2%
ex10 100%
orani678 21% 46% 6% 8% 4% 13% 1%
ex28 100%
dwt 2680 82% 8% 3% 2% 1% 1% 2% 1%
extr1 5% 12% 11% 12% 12% 10% 11% 10% 12% 5%
meg1 1% 13% 22% 21% 21% 17% 1% 2% 1%
nasa2910 60% 21% 13% 6%
lhr02 49% 43% 1% 5% 1%
pde2961 100%

77

Decile
1 2 3 4 5 6 7 8 9 10

G50 98%
laser 11% 22% 67%
lshp3025 93% 5% 1% 1%
psmigr 3 27% 14% 13% 12% 8% 9% 7% 4% 4% 2%
swang1 58% 3% 7% 7% 7% 7% 7% 2% 1%
garon1 19% 7% 16% 12% 20% 2% 8% 8% 1% 5%
raefsky2 35% 65%
bayer05 1% 7% 6% 6% 12% 18% 12% 17% 15% 6%
ex9 100%
shermanACa 35% 16% 10% 10% 9% 6% 5% 4% 3% 1%
thermal 43% 57%
lshp3466 93% 4% 1% 1%
cage9 63% 21% 9% 5% 2%
heart1 39% 21% 10% 7% 5% 6% 4% 4% 2% 1%
bcsstk24 80% 4% 2% 1% 1% 1% 4% 2% 3% 2%
bcsstm21 100%
lns 3937 56% 5% 23% 5% 11%
bcsstk15 61% 39%
ex12 100%
poli 62% 4% 4% 5% 5% 4% 4% 4% 4% 2%
sts4098 51% 16% 5% 2% 6% 6% 12% 2% 1%
lhr04 36% 22% 18% 18% 4% 2%
rdist1 98% 1%
struct4 44% 56%
circuit 2 46% 25% 13% 5% 1% 2% 3% 2% 1% 1%
bcsstk16 100%
gemat11 13% 22% 19% 19% 16% 7% 2% 1%
add32 49% 6% 12% 6% 6% 13% 7%
G58 13% 18% 14% 12% 10% 9% 7% 6% 5% 3%
G59 13% 18% 14% 12% 10% 9% 7% 6% 5% 3%
olm5000 100%
bcspwr10 35% 12% 11% 12% 10% 7% 6% 4% 3% 1%
hydr1 6% 12% 11% 12% 12% 12% 11% 10% 9% 4%
SiNa 62% 19% 9% 7% 3%
ex18 100%
Na5 53% 28% 11% 6% 2%
meg4 59% 27% 2% 2% 2% 2% 2% 2% 1% 1%
Hamrle2 10% 19% 18% 17% 22% 8% 6%
shermanACd 32% 16% 9% 9% 7% 8% 7% 6% 4% 2%
Alemdar 14% 16% 16% 11% 11% 16% 6% 5% 4% 2%
raefsky5 89% 10%

78

Decile
1 2 3 4 5 6 7 8 9 10

bayer03 7% 14% 12% 12% 13% 12% 13% 9% 5% 2%
jan99jac020 60% 17% 13% 6% 2% 1%
rajat01 68% 9% 3% 3% 4% 2% 4% 4% 2% 1%
ex15 100%
G64 13% 18% 15% 12% 10% 9% 7% 6% 5% 3%
cell1 100%
goodwin 99%
lhr07 28% 21% 29% 18% 2% 2%
sinc12 1% 18% 33% 33% 13% 1%
rajat13 57% 9% 4% 4% 4% 4% 4% 4% 4% 4%
ex40 100%
commanche dual 48% 2% 6% 5% 11% 10% 9% 2% 5% 2%
G65 100%
bcsstk38 90% 8% 1% 1%
Pd 98% 1%
dw4096 97% 3%
benzene 72% 13% 10% 5%
bcsstk33 83% 17%
nd3k 27% 21% 17% 10% 9% 7% 3% 3% 2% 1%
mark3jac020 87% 12%
nemeth02 100%
nemeth16 100%
nemeth19 100%
nemeth21 100%
nemeth26 100%
coater2 99% 1%
fv2 100%
shuttle eddy 85% 1% 2% 3% 10%
pkustk02 68% 24% 4% 1% 1% 1% 1% 1%
igbt3 28% 3% 4% 38% 3% 2% 2% 18% 1% 1%
k3plates 100%
m3plates 100%
coupled 32% 13% 12% 11% 9% 8% 6% 5% 3% 2%
cage10 68% 18% 8% 4% 1%
t2dah a 100%
sinc15 2% 18% 33% 35% 12% 1%
sme3Da 11% 16% 15% 17% 11% 9% 8% 7% 3% 2%
stokes64 53% 23% 23%
skirt 98% 2%
tuma2 40% 2% 7% 7% 9% 17% 13% 5%
poisson3Da 17% 14% 13% 11% 12% 10% 6% 7% 6% 3%

79

Decile
1 2 3 4 5 6 7 8 9 10

Pres Poisson 89% 7% 2% 1% 1%
rajat07 98% 1%
powersim 65% 14% 12% 4% 1% 1% 2% 1%
sinc18 2% 18% 32% 36% 11% 1%
pds10 76% 2% 4% 2% 2% 2% 2% 3% 3% 2%
pkustk07 65% 14% 8% 2% 3% 1% 2% 1% 1% 1%
gyro k 90% 8% 2%
gyro m 90% 8% 2%
nd6k 29% 22% 19% 11% 8% 5% 3% 2% 2%
nmos3 30% 2% 2% 40% 3% 1% 2% 20%
bodyy6 96% 1% 1% 1%
t3dl a 98% 2%
t3dl e 100%
ns3Da 9% 16% 15% 15% 11% 10% 9% 6% 4% 3%
raefsky3 100%
pkustk01 87% 7% 3% 1% 1%
pkustk08 67% 16% 5% 3% 3% 1% 1% 1% 1% 1%
rim 100%
tuma1 40% 2% 7% 7% 9% 17% 13% 6%
crystm03 100%
dtoc 86% 4% 7% 4%
mult dcop 01 31% 13% 10% 9% 8% 7% 7% 6% 4% 3%
bcsstm37 100%
brainpc2 14% 12% 12% 14% 6% 34% 8%
3D 28984 Tetra 74% 1% 24%
bloweya 34% 2% 2% 5% 18% 18% 18% 3%
aug2dc 2% 30% 31% 31% 6%
rajat10 98% 1%
bcsstm35 100%
Zhao1 20% 13% 26% 1% 1% 25% 1% 13% 1%
pkustk09 89% 6% 2% 1% 1%
lhr34 33% 59% 7% 1%
nd12k 31% 25% 16% 11% 8% 5% 2% 1% 1%
onetone1 76% 16% 7%
wathen120 100%
pwt 81% 1% 3% 4% 3% 3% 3% 2% 1%
rajat15 40% 11% 11% 8% 6% 5% 7% 6% 5% 2%
finance256 61% 1% 12% 13% 13% 1%
cage11 73% 15% 8% 3% 1%
torsion1 100%
av41092 15% 33% 29% 10% 7% 3% 1% 1%

80

Decile
1 2 3 4 5 6 7 8 9 10

jan99jac120 91% 7% 1%
sme3Dc 11% 17% 15% 17% 11% 9% 8% 7% 3% 2%
pkustk06 86% 8% 3% 1% 1%
3dtube 93% 7%
bcsstk39 100%
bcsstm39 100%
rma10 70% 17% 12%
gridgena 100%
stokes128 53% 23% 23%
ibm matrix 2 72% 27%
ct20stif 84% 8% 2% 3% 2%
g7jac180 54% 22% 21% 3%
struct3 100%
copter2 49% 22% 2% 3% 8% 7% 7% 1% 1% 1%
pkustk04 80% 11% 5% 1% 1% 1%
bayer01 5% 11% 13% 11% 11% 10% 11% 10% 10% 5%
g7jac200 55% 24% 20%
a5esindl 14% 24% 24% 3% 13% 13% 9%
blockqp1 23% 21% 21% 18% 6% 6% 6% 1%
qa8fk 100%
lhr71 62% 38%
nd24k 34% 30% 18% 9% 5% 2% 1%
ncvxqp3 19% 18% 17% 12% 12% 4% 4% 13% 2% 1%
t3dh e 98% 2%
a2nnsnsl 13% 23% 23% 6% 13% 10% 12%
pkustk10 93% 3% 2% 1%
poisson3Db 18% 19% 14% 10% 7% 7% 8% 6% 6% 4%
ncvxqp7 18% 19% 15% 12% 7% 5% 18% 3% 2% 1%
boyd1 12% 9% 9% 9% 9% 8% 8% 10% 11% 9%
tandem dual 89% 2% 2% 6%
pkustk12 81% 10% 5% 1% 1% 1%
pkustk13 90% 5% 2% 1% 1% 1%
ford2 84% 3% 3% 2% 1% 1% 1% 1% 2% 1%
matrix 9 100%
hcircuit 57% 7% 11% 3% 7% 8% 3% 3%
lung2 100%
barrier2-1 28% 4% 4% 38% 3% 2% 2% 18% 1% 1%
torso2 99%
torso1 27% 19% 11% 6% 6% 7% 8% 7% 5% 3%
twotone 79% 18% 3%
matrix-new 3 99%

81

Decile
1 2 3 4 5 6 7 8 9 10

pkustk14 90% 6% 1% 1% 1%
para-6 30% 3% 3% 39% 2% 2% 2% 19% 1%
gearbox 98% 1% 1%
para-10 30% 3% 3% 39% 2% 2% 2% 19% 1%
xenon2 94% 6%
scircuit 72% 5% 4% 6% 4% 3% 2% 2% 1% 1%
cont-300 9% 36% 31% 5% 18%
ohne2 32% 1% 1% 42% 1% 1% 1% 21%
stomach 99% 1%
pwtk 97% 1% 2%
torso3 97% 1% 1% 1%
Ga41As41H72 76% 24%
Stanford 14% 19% 15% 13% 11% 9% 8% 6% 4% 2%
rajat24 81% 6% 4% 3% 2% 2% 1%
language 47% 36% 4% 2% 2% 3% 3% 2% 1%
rajat21 82% 5% 3% 3% 2% 2% 1%
cage13 78% 13% 6% 2% 1%
boyd2 19% 28% 8% 23% 6% 16%
af shell1 100%
pre2 93% 2% 4%
Stanford Berkeley 92% 2% 2% 1% 1% 1%

82

Appendix D

SpMV Performance on the Penium

4

Here we present information about SpMV performance for each of the matrices

in our test suite, as well as which ones fall into the categories small, medium, and large,

on the Pentium 4. The matrices are sorted in order of increasing problem size. Symmetric

and nonsymmetric performance are also compared for symmetric matrices. All performance

numbers are in MFLOP/s. Blank values in the tuned columns indicate that OSKI did not

tune SpMV for that particular matrix. Raw MFLOP rates (counting operations performed

on explicitly stored zero entries that were introduced during blocking) are given for the

tuned numbers so that a proper comparison with synthetic matrices, which have no filled

in zero entries, can be made. For an MFLOP rate that counts only operations performed

on nonzero entries, divide by the fill ratio.

83

D.1 Small Matrices

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

bcsstm19 155 293
shl 0 207 499
gre 512 260 365
bcsstm11 185 290
dw256A 310 583
fs 680 3 283 393
bcsstm26 186 292
nos6 371 583
685 bus 306 592
pores 3 333 630 2× 1 1.06 363 806
qh882 279 417
lshp 577 439 638
west0989 241 360
nnc666 340 456
saylr3 245 532
fs 541 1 378 498
sherman4 260 498
tub1000 328 367
b dyn 249 525
pde900 347 572
nos7 416 444
bp 800 294 576
cdde1 310 585
lshp 778 467 623
steam2 511 647 4× 4 1 873 1025
orsirr 2 336 626
west1505 286 366
jpwh 991 287 587
fpga dcop 01 320 563
jagmesh1 468 632
bcsstm21 194 292
can 715 480 638
bcspwr07 269 526
bcsstk19 460 640
can 634 489 659
lshp1009 467 642
dwt 869 468 506
bcspwr09 324 362
bfwa782 425 652

84

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

dwt 918 468 503
mahindas 354 433
lung1 305 374
west2021 243 362
epb0 320 535
jagmesh6 482 642
pores 2 449 652 2× 1 1 427 832
can 838 534 562
rotor2 443 595 3× 3 1.32 604 1343
plsk1919 241 592
dwt 1242 477 664
laser 353 486
cage8 492 655
dw1024 280 585
poli 171 419
lshp1561 481 638
rajat02 384 597
watt 1 390 612
extr1 263 519
rajat12 338 614
G50 407 540
add20 322 563
adder trans 01 327 607
nos3 555 627 2× 2 1.02 764 1093
blckhole 461 636
pde2961 325 585
lshp2233 481 634
dwt 992 557 612
m3plates 125 257
Si2 576 636
ex21 481 665 2× 1 1.1 638 935
Pd 144 294
bcsstm13 454 630
lshp3025 474 539
bayer05 344 413
swang1 328 525
sherman2 480 593
add32 260 448
bcsstm34 636 647 6× 2 1.26 877 1519
olm5000 299 442 1× 2 1.25 328 578
mcfe 423 629

85

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

ex25 504 587 2× 1 1.06 631 914
circuit 2 294 511
bcspwr10 308 453
lshp3466 451 578
dwt 2680 443 526
hydr1 303 475
Hamrle2 252 417
shermanACa 281 535
lns 3937 344 527
meg4 259 421
bcsstk26 484 576
bcsstk11 517 543 3× 3 1.06 819 1121
bayer03 254 410
cell1 268 379
gemat11 265 439 2× 1 1.31 350 642
ex27 404 499
G1 514 498
commanche dual 336 374
lhr02 337 479
G65 333 368
jan99jac020 235 382
t3dl e 128 126
bcsstm37 81 115

86

D.2 Medium Matrices

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

bcsstk27 440 448 3× 2 1.27 585 676
comsol 349 418
ex7 339 480
bcsstk14 423 391 6× 2 1.17 594 840
ex3 340 443 2× 1 1.15 407 561
bcsstk13 412 417
ex24 317 453
heart2 366 427 2× 6 1.29 538 634
rdist3a 313 412 1× 2 1.21 362 537
ex10 328 422
orani678 334 423
ex28 326 400 2× 2 1.11 429 585
meg1 313 407 1× 3 1.37 385 537
nasa2910 423 401 1× 5 1.23 529 514
psmigr 3 353 437
garon1 320 412
raefsky2 355 419 2× 2 1.02 447 522
ex9 327 390
thermal 313 394
cage9 310 445
heart1 364 429 1× 3 1.15 473 513
bcsstk24 415 413 2× 2 1.03 515 556
bcsstk15 401 402
ex12 307 396
sts4098 371 391
lhr04 293 381
rdist1 310 390
struct4 417 407
bcsstk16 426 419 3× 3 1.02 561 605
G58 347 395
G59 349 391
SiNa 400 392
ex18 267 372
Na5 409 410
shermanACd 260 399
Alemdar 352 398
raefsky5 316 373 2× 2 1.12 399 486
rajat01 257 356
ex15 273 367

87

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

G64 341 370
goodwin 327 397
lhr07 299 363
sinc12 316 405
rajat13 246 331
ex40 351 403
bcsstk38 413 405
dw4096 178 351
benzene 390 381
bcsstk33 429 420
nd3k 443 437 3× 3 1.11 604 627
mark3jac020 214 301
nemeth02 412 393
nemeth16 429 398 4× 1 1.22 559 568
nemeth19 439 408 4× 4 1.27 634 662
nemeth21 446 416 8× 1 1.19 610 620
nemeth26 450 419 8× 1 1.21 619 599
coater2 293 370
fv2 259 324
shuttle eddy 314 329
pkustk02 433 384 6× 2 1 584 607
igbt3 270 336
k3plates 323 400 2× 1 1.14 395 457
coupled 297 346
cage10 323 343
t2dah a 355 362
sinc15 325 379
sme3Da 329 398
stokes64 313 322
skirt 343 356
tuma2 244 278
poisson3Da 287 369
Pres Poisson 415 395
rajat07 233 256
powersim 176 254
sinc18 327 373
pds10 278 309
pkustk07 441 384 3× 3 1 588 591
gyro m 362 365
gyro k 422 385 3× 3 1 552 555
nd6k 440 427 3× 3 1.12 597 623

88

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

nmos3 282 308
bodyy6 272 306
t3dl a 380 360
ns3Da 313 380
raefsky3 351 408 4× 4 1 522 631
pkustk01 406 363 3× 3 1 526 553
pkustk08 439 344 3× 3 1 584 597
rim 343 390
tuma1 211 218
crystm03 376 371
dtoc 185 212
mult dcop 01 167 263
brainpc2 247 218
3D 28984 Tetra 288 296 3× 3 1.03 371 464
bloweya 235 219
aug2dc 180 203
rajat10 216 243
bcsstm35 80 108
Zhao1 181 192
pkustk09 410 316 6× 2 1 540 572
lhr34 312 323
nd12k 436 216 3× 3 1.12 584 603
onetone1 243 276
wathen120 343 353
pwt 279 318
rajat15 190 146
finance256 259 248
cage11 247 252
torsion1 246 265
av41092 308 176 2× 1 1.05 371 230
jan99jac120 194 260
sme3Dc 157 146
pkustk06 417 280 6× 2 1 559 564
3dtube 408 355 3× 3 1.02 546 593
bcsstm39 91 101
bcsstk39 417 400
rma10 336 353
gridgena 279 322
stokes128 309 255
ibm matrix 2 273 291 3× 3 1.03 335 452
ct20stif 407 216 2× 1 1.1 472 289

89

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

g7jac180 256 208
struct3 376 361
copter2 263 155
pkustk04 423 203 3× 3 1 546 562
bayer01 203 143
g7jac200 253 206
a5esindl 182 146
blockqp1 307 99

90

D.3 Large Matrices

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

qa8fk 381 365
lhr71 294 271
nd24k 430 116 3× 3 1.12 579 490
ncvxqp3 152 87
t3dh e 407 315
a2nnsnsl 184 116
pkustk10 416 239 6× 2 1 555 560
poisson3Db 99 65
ncvxqp7 148 74
boyd1 274 72
tandem dual 179 238
pkustk12 419 131 3× 1 1.1 512 237
pkustk13 419 170 3× 1 1.1 518 292
ford2 211 228
matrix 9 236 302 3× 3 1.01 326 503
hcircuit 148 111
lung2 162 207
barrier2-1 188 87
torso2 195 263
torso1 282 55 2× 3 1.18 396 316
twotone 198 147
matrix-new 3 232 231 3× 3 1.03 313 410
pkustk14 426 128
para-6 180 73
gearbox 422 201 3× 3 1 531 586
para-10 182 87
xenon2 235 144 3× 3 1.06 345 486
scircuit 119 137
cont-300 237 105
ohne2 242 80
stomach 204 150
pwtk 420 135 3× 1 1.11 513 214
torso3 201 117
Ga41As41H72 344 65
Stanford 30 35
rajat24 132 70
language 66 41
rajat21 136 61
cage13 183 43

91

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

boyd2 162 41
af shell1 390 57 5× 1 1 473 163
pre2 186 44
Stanford Berkeley 193 45

92

D.4 Symmetric Matrices

Untuned Performance Tuned Performance
MFLOP/s Blocksize Fill Ratio MFLOP/s

lshp 577 593
bcsstm34 1160 1× 3 1.17 1360
can 634 805
nos6 608
685 bus 480
can 715 792
nos7 712
Si2 826
lshp 778 711
G1 929
bcsstk19 725 1× 2 1.38 998
bcsstm19 118
can 838 701
dwt 869 670
dwt 918 750
jagmesh1 631
nos3 822 2× 2 1.08 888
dwt 992 880 1× 2 1.34 1181
lshp1009 671 1× 2 1.58 1061
bcsstk27 942 1× 3 1.16 1092
dwt 1242 626
jagmesh6 611
bcsstk11 1116 3× 3 1.15 1278
bcsstm11 135
lshp1561 663
bcspwr07 341
bcspwr09 396
bcsstk14 881 2× 2 1.15 1011
bcsstk26 800
bcsstm26 123
rajat02 546
bcsstk13 818
bcsstm13 699
blckhole 667
lshp2233 780
dwt 2680 653
nasa2910 843 5× 1 1.26 1066
G50 447
laser 572

93

Untuned Performance Tuned Performance
MFLOP/s Blocksize Fill Ratio MFLOP/s

lshp3025 655
lshp3466 630
bcsstk24 1032 2× 2 1.06 1090
bcsstm21 124
bcsstk15 775
sts4098 651
struct4 848
bcsstk16 843 1× 3 1.04 878
G58 597
G59 597
bcspwr10 407
SiNa 717
Na5 779
Alemdar 918
G64 602
commanche dual 384
G65 571
bcsstk38 793
benzene 672
bcsstk33 845 2× 2 1.32 1114
nd3k 895 5× 1 1.25 1123
nemeth02 814
nemeth16 854 5× 1 1.31 1120
nemeth19 972 5× 1 1.26 1229
nemeth21 899 5× 1 1.22 1099
nemeth26 988 5× 1 1.24 1222
shuttle eddy 533
pkustk02 1044 2× 2 1.01 1058
m3plates 77 1× 2 1.67 129
coupled 491
t2dah a 646
stokes64 570
skirt 613
tuma2 421
Pres Poisson 928
rajat07 362
pds10 518
pkustk07 889 1× 3 1.01 901
gyro k 815 1× 3 1.03 843
gyro m 638
nd6k 903 5× 1 1.26 1139

94

Untuned Performance Tuned Performance
MFLOP/s Blocksize Fill Ratio MFLOP/s

bodyy6 499
t3dl a 719
t3dl e 90
pkustk01 786 1× 3 1.04 820
pkustk08 982 1× 3 1.01 996
tuma1 375
crystm03 709
dtoc 386
bcsstm37 66 1× 2 1.81 120
brainpc2 482
bloweya 500
aug2dc 367 1× 2 2.5 920
rajat10 365
bcsstm35 84
pkustk09 832 2× 2 1.02 850
nd12k 930 5× 1 1.26 1174
wathen120 729
pwt 508
finance256 454
torsion1 483
pkustk06 812 2× 2 1.02 826
3dtube 800 1× 3 1.04 831
bcsstk39 800
bcsstm39 77
gridgena 477
stokes128 587
ct20stif 785 2× 2 1.23 963
struct3 711
copter2 443
pkustk04 825 1× 3 1.03 846
a5esindl 284
blockqp1 490
qa8fk 740
nd24k 886 5× 1 1.26 1119
ncvxqp3 238
t3dh e 762
a2nnsnsl 274
pkustk10 838 2× 2 1.02 853
ncvxqp7 211
boyd1 490
tandem dual 238

95

Untuned Performance Tuned Performance
MFLOP/s Blocksize Fill Ratio MFLOP/s

pkustk12 660 1× 3 1.16 763
pkustk13 637 3× 1 1.12 712
ford2 300
pkustk14 643
gearbox 656 1× 3 1.03 679
cont-300 379
pwtk 664 3× 1 1.15 760
Ga41As41H72 539
boyd2 233
af shell1 812 5× 1 1.11 903

96

Appendix E

SpMV Performance on the

Itanium 2

Here we present information about SpMV performance for each of the matrices

in our test suite, as well as which ones fall into the categories small, medium, and large,

on the Itanium 2. The matrices are sorted in order of increasing problem size. Symmetric

and nonsymmetric performance are also compared for symmetric matrices. All performance

numbers are in MFLOP/s. Blank values in the tuned columns indicate that OSKI did not

tune SpMV for that particular matrix. Raw MFLOP rates (counting operations performed

on explicitly stored zero entries that were introduced during blocking) are given for the

tuned numbers so that a proper comparison with synthetic matrices, which have no filled

in zero entries, can be made. For an MFLOP rate that counts only operations performed

on nonzero entries, divide by the fill ratio.

97

E.1 Small Matrices

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

bcsstm19 35 55
shl 0 91 142
gre 512 151 177
bcsstm11 37 55
dw256A 164 161
fs 680 3 144 177
bcsstm26 37 55
nos6 168 161
685 bus 166 161
pores 3 199 255 2× 1 1.06 192 444
qh882 145 175
lshp 577 206 250
west0989 139 174
nnc666 194 229
saylr3 134 173
fs 541 1 225 269
sherman4 120 140
tub1000 152 174
b dyn 152 173
pde900 175 158
nos7 203 225
bp 800 180 226
cdde1 175 158
lshp 778 213 246
steam2 373 236 4× 2 1 598 968
orsirr 2 215 244
west1505 145 171
jpwh 991 197 222
fpga dcop 01 174 157
jagmesh1 215 244
bcsstm21 38 55
can 715 255 232
bcspwr07 147 171
bcsstk19 244 261
can 634 280 307
lshp1009 219 243
dwt 869 245 260
bcspwr09 152 171
bfwa782 261 295

98

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

dwt 918 240 261
mahindas 195 222
lung1 172 171
west2021 149 171
epb0 169 171
jagmesh6 217 244
pores 2 240 260 2× 1 1 245 447
can 838 292 319
rotor2 309 341 6× 3 1.61 589 1448
plsk1919 131 157
dwt 1242 250 261
laser 132 138
cage8 282 306
dw1024 186 157
poli 77 99
lshp1561 225 244
rajat02 202 223
watt 1 209 179
extr1 162 171
rajat12 225 221
G50 163 169
add20 234 156
adder trans 01 247 259
nos3 339 321 2× 2 1.02 391 658
blckhole 229 243
pde2961 187 157
lshp2233 226 243
dwt 992 341 322
m3plates 32 54
Si2 376 402
ex21 398 390 2× 3 1.42 556 736
Pd 68 99
bcsstm13 259 305
lshp3025 228 242
bayer05 250 220
swang1 222 239
sherman2 362 348
add32 185 170
bcsstm34 434 426 3× 2 1.24 757 876
olm5000 165 170
mcfe 413 439

99

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

ex25 404 387 2× 3 1.39 560 718
circuit 2 182 156
bcspwr10 167 170
lshp3466 231 240
dwt 2680 271 228
hydr1 175 170
Hamrle2 155 170
shermanACa 235 238
lns 3937 216 217
meg4 251 170
bcsstk26 338 351
bcsstk11 384 394 3× 1 1.04 571 763
bayer03 254 169
cell1 190 169
gemat11 228 241 2× 1 1.31 281 408
ex27 437 441
G1 445 462
commanche dual 165 169
lhr02 309 314
G65 165 169
jan99jac020 207 156
t3dl e 39 55
bcsstm37 34 55
cage9 302 313
ex7 418 363
Alemdar 305 240
dw4096 194 156
rajat01 219 220
ex24 375 339
bcsstm35 39 55
ex3 406 376 2× 1 1.15 569 661
rajat13 222 220
ex10 376 394
bcsstk27 447 439 3× 2 1.27 835 813
shermanACd 259 229
meg1 364 379 2× 2 1.4 517 650
mark3jac020 216 214
tuma2 156 170
G58 301 310
G59 302 310
rdist3a 392 407 2× 2 1.37 564 696

100

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

bcsstk14 417 429 6× 4 1.42 1067 1493
thermal 358 369
sts4098 347 360
ex18 304 309
rajat07 171 169
ex28 391 411 2× 2 1.11 532 717
powersim 171 170
ex12 362 376
lhr04 353 372
bcsstk13 414 420
garon1 386 389
G64 297 313
orani678 389 420 2× 1 1.23 604 683
bcsstm39 38 54
dtoc 118 137
fv2 261 229
rdist1 360 385 2× 2 1.41 527 679
comsol 429 424
ex9 381 409
ex15 319 331
coupled 253 227
aug2dc 119 137
tuma1 156 169
shuttle eddy 273 286
bcsstk15 374 397
igbt3 331 307
stokes64 282 296
bodyy6 226 236
rajat10 169 169
lhr07 319 333
cage10 297 272
bcsstk24 368 371 2× 2 1.03 585 760
pds10 253 228
raefsky5 337 365 2× 2 1.12 508 685
nasa2910 372 383 5× 5 1.22 870 1290
bloweya 183 154
t2dah a 311 318

101

E.2 Medium Matrices

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

heart2 377 382 3× 6 1.34 878 891
psmigr 3 373 376
raefsky2 364 375 2× 2 1.02 671 753
heart1 380 380 2× 3 1.26 825 831
struct4 359 376
bcsstk16 358 370 3× 1 1.01 628 629
SiNa 352 362
Na5 358 365
goodwin 354 343
sinc12 350 359
ex40 360 370
bcsstk38 353 362 3× 1 1.24 598 654
benzene 347 346
bcsstk33 363 370 2× 2 1.31 667 745
nd3k 380 381 3× 2 1.15 808 822
nemeth02 354 362 3× 2 1.4 661 700
nemeth16 363 370 3× 2 1.3 701 758
nemeth19 369 373 3× 2 1.21 739 777
nemeth21 374 377 8× 1 1.19 791 766
nemeth26 377 379 8× 1 1.21 824 770
coater2 327 346
pkustk02 366 371 6× 6 1 744 925
k3plates 349 357 2× 2 1.28 540 689
sinc15 360 372
sme3Da 363 369
skirt 308 335
poisson3Da 336 345
Pres Poisson 357 370 2× 2 1.35 618 726
sinc18 359 361
pkustk07 375 368 3× 1 1 688 648
gyro m 320 334
gyro k 362 367 3× 1 1 594 603
nd6k 379 377 3× 2 1.16 789 808
nmos3 327 273
t3dl a 339 335
ns3Da 364 366
raefsky3 365 370 8× 8 1 698 940
pkustk01 356 357 3× 2 1.12 605 766
pkustk08 374 371 3× 1 1 685 659

102

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

rim 356 356
crystm03 335 344
mult dcop 01 226 253
brainpc2 208 215
3D 28984 Tetra 323 275 3× 1 1.02 355 427
Zhao1 182 154
pkustk09 356 358 6× 6 1 635 912
lhr34 312 316
nd12k 379 372 3× 2 1.16 774 799
onetone1 243 226
wathen120 306 336
pwt 250 227
rajat15 271 286
finance256 235 251
cage11 295 302
torsion1 184 155
av41092 339 341 2× 1 1.05 479 542
jan99jac120 207 213
sme3Dc 359 353
pkustk06 362 360 6× 6 1 670 897
3dtube 366 367 3× 2 1.14 694 787
bcsstk39 358 359 2× 2 1.35 599 710
rma10 360 356 2× 2 1.29 597 705
gridgena 267 278
stokes128 273 275
ibm matrix 2 324 275 3× 1 1.02 344 419
ct20stif 359 354 2× 2 1.21 579 705
g7jac180 278 290
struct3 331 344
copter2 288 294
pkustk04 366 352 3× 1 1 599 603
bayer01 176 153
g7jac200 278 290
a5esindl 161 168
blockqp1 255 268
qa8fk 339 334
lhr71 312 314
nd24k 378 355 3× 2 1.16 756 791
ncvxqp3 212 224
t3dh e 360 359
a2nnsnsl 162 167

103

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

pkustk10 360 349 6× 6 1 646 913
poisson3Db 315 313
ncvxqp7 206 223
boyd1 263 251
tandem dual 180 154
pkustk12 366 336 3× 2 1.26 686 752
pkustk13 364 343 3× 1 1.1 602 577
ford2 190 154
matrix 9 323 293 3× 1 1 341 537
hcircuit 171 152
lung2 171 166
barrier2-1 328 295
torso2 249 225
torso1 359 288 2× 3 1.18 610 734
twotone 250 269
matrix-new 3 322 231 3× 1 1.02 342 264
pkustk14 370 314 2× 2 1.37 692 691
para-6 327 276
gearbox 364 343 3× 1 1 580 570
para-10 328 250
xenon2 335 319 3× 1 1.04 415 591
scircuit 186 211
cont-300 191 152
ohne2 356 315
stomach 291 295
pwtk 361 336 3× 2 1.24 654 714
torso3 305 285
Ga41As41H72 353 309
Stanford 101 110
rajat24 178 152

104

E.3 Large Matrices

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

language 111 127
rajat21 161 152
cage13 295 170
boyd2 127 128
af shell1 351 301 5× 5 1 557 857
pre2 238 179
Stanford Berkeley 233 223

105

E.4 Symmetric Matrices

Untuned Performance Tuned Performance
MFLOP/s Blocksize Fill Ratio MFLOP/s

lshp 577 319 4× 2 3.21 1022
bcsstm34 966 6× 6 1.43 1382
can 634 477 3× 2 2.8 1339
nos6 230 3× 2 2.94 674
685 bus 259
can 715 418 3× 2 2.44 1020
nos7 294 3× 3 2.82 827
Si2 748
lshp 778 325 3× 2 2.72 884
G1 1041
bcsstk19 382 4× 3 2.75 1048
bcsstm19 69
can 838 511 3× 2 2.93 1496
dwt 869 379 3× 2 2.31 875
dwt 918 394 3× 2 2.62 1030
jagmesh1 319 5× 3 4.49 1429
nos3 616 4× 2 1.5 922
dwt 992 626 3× 2 2.11 1321
lshp1009 328 5× 5 5.54 1817
bcsstk27 1008 5× 3 1.49 1506
dwt 1242 394 3× 2 2.5 984
jagmesh6 320 3× 2 2.58 825
bcsstk11 760 3× 2 1.3 988
bcsstm11 75
lshp1561 333 3× 2 2.71 903
bcspwr07 223
bcspwr09 226
bcsstk14 913 6× 3 1.3 1190
bcsstk26 605 4× 2 1.92 1161
bcsstm26 67
rajat02 361 3× 2 3.41 1231
bcsstk13 973 3× 2 1.86 1810
bcsstm13 646
blckhole 332 3× 2 2.73 907
lshp2233 335 3× 2 2.76 927
dwt 2680 433 3× 2 2.73 1184
nasa2910 1004 5× 5 1.29 1291
G50 234 3× 2 4.5 1053
laser 272

106

Untuned Performance Tuned Performance
MFLOP/s Blocksize Fill Ratio MFLOP/s

lshp3025 336 3× 2 2.66 894
lshp3466 335 3× 2 2.74 920
bcsstk24 998 4× 2 1.25 1247
bcsstm21 79
bcsstk15 840 6× 3 1.89 1589
sts4098 653 3× 2 2.74 1789
struct4 949 3× 2 1.86 1766
bcsstk16 1022 3× 3 1.05 1075
G58 627
G59 628
bcspwr10 236
SiNa 881
Na5 1001 3× 2 2.38 2377
Alemdar 818
G64 629
commanche dual 243
G65 231 3× 2 4.5 1040
bcsstk38 931 3× 2 1.45 1354
benzene 806
bcsstk33 1051 3× 2 1.53 1609
nd3k 1359 6× 3 1.24 1691
nemeth02 958 4× 2 1.52 1453
nemeth16 1094 4× 2 1.36 1492
nemeth19 1192 8× 1 1.35 1612
nemeth21 1265 8× 1 1.29 1633
nemeth26 1279 8× 1 1.29 1650
shuttle eddy 439 3× 2 2.25 989
pkustk02 1111 6× 6 1.07 1184
m3plates 65
coupled 425
t2dah a 568 3× 2 2.42 1374
stokes64 596 3× 2 2.5 1491
skirt 565 3× 2 2.52 1422
tuma2 296 3× 2 3.77 1118
Pres Poisson 969 4× 2 1.75 1695
rajat07 254
pds10 383
pkustk07 1170 3× 3 1.01 1186
gyro k 947 3× 3 1.03 979
gyro m 591 3× 3 3 1773
nd6k 1259 6× 3 1.25 1578

107

Untuned Performance Tuned Performance
MFLOP/s Blocksize Fill Ratio MFLOP/s

bodyy6 294 3× 2 2.52 741
t3dl a 661 3× 2 2.99 1976
t3dl e 65 2× 2 2 130
pkustk01 867 3× 3 1.04 905
pkustk08 1167 3× 3 1.01 1183
tuma1 271 3× 2 3.79 1027
crystm03 635 3× 3 3 1905
dtoc 241
bcsstm37 70
brainpc2 428
bloweya 368
aug2dc 200 3× 2 5.54 1111
rajat10 219 2× 2 2.6 569
bcsstm35 87
pkustk09 882 6× 6 1.1 975
nd12k 1245 6× 3 1.25 1562
wathen120 490 3× 2 2 983
pwt 369 3× 2 2.93 1081
finance256 348 3× 2 3.4 1182
torsion1 208 2× 2 2 417
pkustk06 953 6× 6 1.08 1032
3dtube 1001 3× 2 1.17 1172
bcsstk39 858 3× 2 1.58 1360
bcsstm39 55 2× 2 2 110
gridgena 380 4× 2 2.08 791
stokes128 462 3× 2 2.49 1148
ct20stif 903 4× 2 1.5 1360
struct3 602 5× 5 2.16 1299
copter2 421
pkustk04 1036 3× 3 1.03 1063
a5esindl 229 2× 2 2.35 536
blockqp1 471 2× 4 1.88 887
qa8fk 654 3× 2 2.11 1380
nd24k 1225 6× 3 1.25 1536
ncvxqp3 293
t3dh e 909
a2nnsnsl 230 2× 2 2.39 550
pkustk10 921 6× 6 1.09 1006
ncvxqp7 297
boyd1 487 4× 4 2.02 985
tandem dual 199

108

Untuned Performance Tuned Performance
MFLOP/s Blocksize Fill Ratio MFLOP/s

pkustk12 1046 3× 2 1.3 1362
pkustk13 998 3× 3 1.26 1261
ford2 231 3× 2 3.33 770
pkustk14 1078 3× 2 1.69 1821
gearbox 952 3× 3 1.04 986
cont-300 337
pwtk 916 3× 2 1.27 1165
Ga41As41H72 837
boyd2 176
af shell1 759 5× 5 1.11 844

109

Appendix F

SpMV Performance on the

Opteron

Here we present information about SpMV performance for each of the matrices

in our test suite, as well as which ones fall into the categories small, medium, and large,

on the Opteron. The matrices are sorted in order of increasing problem size. Symmetric

and nonsymmetric performance are also compared for symmetric matrices. All performance

numbers are in MFLOP/s. Blank values in the tuned columns indicate that OSKI did not

tune SpMV for that particular matrix. Raw MFLOP rates (counting operations performed

on explicitly stored zero entries that were introduced during blocking) are given for the

tuned numbers so that a proper comparison with synthetic matrices, which have no filled

in zero entries, can be made. For an MFLOP rate that counts only operations performed

on nonzero entries, divide by the fill ratio.

110

F.1 Small Matrices

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

bcsstm19 202 305
shl 0 203 429
gre 512 265 455
bcsstm11 209 304
dw256A 332 468
fs 680 3 347 454
bcsstm26 198 304
nos6 335 468
685 bus 221 470
pores 3 342 489 2× 1 1.06 470 879
qh882 280 455
lshp 577 381 485
west0989 230 449
nnc666 289 480
saylr3 242 446
fs 541 1 338 495
sherman4 288 428
tub1000 346 444
b dyn 216 428
pde900 331 450
nos7 326 478
bp 800 232 447
cdde1 340 432
lshp 778 359 433
steam2 354 320 2× 4 1.09 721 1182
orsirr 2 314 408
west1505 208 376
jpwh 991 243 407
fpga dcop 01 267 390
jagmesh1 365 398
bcsstm21 169 216
can 715 320 289
bcspwr07 178 372
bcsstk19 269 419
can 634 300 301
lshp1009 350 407
dwt 869 321 410
bcspwr09 242 370
bfwa782 298 287
dwt 918 303 412

111

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

mahindas 294 387
lung1 286 361
west2021 211 370
epb0 288 366
jagmesh6 337 405
pores 2 309 410 2× 1 1 448 614
can 838 347 300
rotor2 313 320 3× 3 1.32 648 955
plsk1919 266 383
dwt 1242 297 410
laser 279 342
cage8 312 293
dw1024 308 383
poli 172 304
lshp1561 350 404
rajat02 247 394
watt 1 302 392
extr1 210 363
rajat12 296 403
G50 309 372
add20 283 376
adder trans 01 270 414
nos3 330 330 2× 2 1.02 662 702
blckhole 355 392
pde2961 320 375
lshp2233 363 404
dwt 992 337 338
m3plates 109 209
Si2 366 364
ex21 383 381 4× 1 1.34 794 800
Pd 144 293
bcsstm13 338 297
lshp3025 366 406
bayer05 337 368
swang1 330 388
sherman2 362 357
add32 228 347
bcsstm34 386 401 2× 2 1.2 733 799
olm5000 324 356 1× 2 1.25 382 482
mcfe 373 374
ex25 384 381 2× 3 1.39 748 825

112

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

circuit 2 310 376
bcspwr10 242 358
lshp3466 357 405
dwt 2680 306 283
hydr1 227 354
Hamrle2 290 340
shermanACa 255 388
lns 3937 320 379
meg4 293 366
bcsstk26 329 325 2× 4 1.86 781 952
bcsstk11 369 363 3× 3 1.06 826 998
bayer03 306 350
cell1 329 371
gemat11 257 393 2× 1 1.31 429 566
ex27 409 398
G1 412 400
commanche dual 302 350
lhr02 350 302
G65 316 364
jan99jac020 263 378
t3dl e 71 154
bcsstm37 62 189
cage9 316 303
ex7 389 380
Alemdar 240 378
dw4096 308 368
rajat01 252 390
ex24 357 356
bcsstm35 71 124
ex3 388 380
rajat13 291 378
ex10 351 364
bcsstk27 410 406 3× 2 1.27 895 878
shermanACd 258 249
meg1 365 309
mark3jac020 219 369
tuma2 230 314
G58 285 273
G59 292 272
rdist3a 369 359 2× 2 1.37 585 728
bcsstk14 388 391 2× 4 1.43 757 914

113

F.2 Medium Matrices

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

comsol 266 250
bcsstk13 306 289
heart2 236 218 1× 8 1.25 337 295
orani678 286 249
ex28 313 297 2× 2 1.11 591 755
nasa2910 228 220 5× 1 1.21 310 309
psmigr 3 233 216
garon1 274 261
raefsky2 231 222 2× 2 1.02 303 294
ex9 255 219
thermal 321 316
heart1 235 221 1× 8 1.34 337 298
bcsstk24 229 203 2× 2 1.03 297 294
bcsstk15 229 223
ex12 285 273
sts4098 288 282
lhr04 282 273
rdist1 253 239
struct4 227 218
bcsstk16 227 214 3× 3 1.02 318 263
SiNa 220 207
ex18 260 266
Na5 223 208
raefsky5 224 202 2× 2 1.12 292 274
ex15 224 209
G64 223 200
goodwin 228 217
lhr07 220 194
sinc12 222 193
ex40 228 219
bcsstk38 220 210
benzene 214 199
bcsstk33 228 211
nd3k 228 208 3× 3 1.11 326 258
nemeth02 219 209 4× 1 1.32 308 288
nemeth16 227 220 4× 1 1.22 315 292
nemeth19 230 221 2× 4 1.25 327 302
nemeth21 231 219 1× 8 1.19 325 289
nemeth26 232 221 1× 8 1.21 327 298

114

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

coater2 213 201
fv2 250 195
shuttle eddy 218 189
pkustk02 225 208 2× 6 1.03 313 289
igbt3 210 173
k3plates 222 212
coupled 181 170
cage10 206 177
t2dah a 208 196
sinc15 223 29
sme3Da 212 193
stokes64 210 173
skirt 205 195
poisson3Da 196 177
Pres Poisson 223 202
rajat07 247 275
powersim 180 232
sinc18 225 195
pds10 182 170
pkustk07 226 199 3× 3 1 318 257
gyro m 206 192
gyro k 222 207 3× 3 1 310 250
nd6k 229 185 3× 3 1.12 323 128
nmos3 202 161
bodyy6 198 192
t3dl a 211 188
ns3Da 200 176
raefsky3 227 212 1× 8 1.01 316 289
pkustk01 219 197 3× 3 1 300 254
pkustk08 225 191 3× 3 1 316 256
rim 225 206
tuma1 166 170
crystm03 213 180
dtoc 168 193
mult dcop 01 168 155
brainpc2 195 156
3D 28984 Tetra 208 147 3× 3 1.03 284 270
bloweya 184 144
aug2dc 161 149
rajat10 174 168
Zhao1 183 142

115

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

pkustk09 221 188 2× 6 1.04 299 295
lhr34 214 164
nd12k 227 169 3× 3 1.12 317 260
onetone1 175 143
wathen120 204 170
pwt 194 157
rajat15 177 134
finance256 170 149
cage11 197 153
torsion1 187 168
av41092 219 155 2× 1 1.05 249 211
jan99jac120 166 162
sme3Dc 177 155
pkustk06 222 180 2× 6 1.03 302 280
3dtube 225 191 3× 3 1.02 310 255
bcsstm39 90 85
bcsstk39 224 191
rma10 225 173
gridgena 196 147
stokes128 200 127
ibm matrix 2 211 135 3× 3 1.03 287 258
ct20stif 219 162 2× 2 1.21 280 259
g7jac180 189 135
struct3 212 171
copter2 180 129
pkustk04 222 163 3× 3 1 310 256
bayer01 157 129
g7jac200 189 135
a5esindl 167 121
blockqp1 196 117
qa8fk 213 167
lhr71 215 150
nd24k 225 147 3× 3 1.12 317 258
ncvxqp3 142 117
t3dh e 217 169
a2nnsnsl 162 110
pkustk10 221 157 2× 6 1.04 301 281
poisson3Db 141 114
ncvxqp7 143 110
boyd1 181 98
tandem dual 151 137

116

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

pkustk12 223 140 3× 1 1.1 280 219
pkustk13 220 146 3× 1 1.1 280 229
ford2 162 133
matrix 9 212 140 3× 3 1.01 287 248
hcircuit 155 116
lung2 170 130
barrier2-1 190 110
torso2 205 129
torso1 230 106 2× 3 1.18 305 130
twotone 187 118
matrix-new 3 210 143 3× 3 1.03 285 243

F.3 Large Matrices

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

pkustk14 223 108
para-6 191 104
gearbox 221 149 3× 3 1 308 253
para-10 191 105
xenon2 208 80 3× 3 1.06 291 247
scircuit 129 128
cont-300 186 120
ohne2 215 121
stomach 202 131
pwtk 222 103 3× 3 1.22 309 250
torso3 202 129
Ga41As41H72 202 116
Stanford 53 63
rajat24 146 111
language 91 69
rajat21 144 104
cage13 188 66
boyd2 149 68
af shell1 218 104 5× 1 1 288 197
pre2 185 55
Stanford Berkeley 187 73

117

F.4 Symmetric Matrices

Untuned Performance Tuned Performance
MFLOP/s Blocksize Fill Ratio MFLOP/s

lshp 577 705
bcsstm34 1077 3× 1 1.18 1269
can 634 816
nos6 737
685 bus 447
can 715 785
nos7 785
Si2 932
lshp 778 738
G1 1128
bcsstk19 804
bcsstm19 202
can 838 859
dwt 869 812
dwt 918 698
jagmesh1 745
nos3 931 2× 2 1.08 1006
dwt 992 948
lshp1009 729
bcsstk27 1094 1× 3 1.16 1268
dwt 1242 770
jagmesh6 698
bcsstk11 937 3× 1 1.12 1052
bcsstm11 210
lshp1561 727
bcspwr07 359
bcspwr09 475
bcsstk14 978 2× 2 1.15 1121
bcsstk26 807
bcsstm26 208
rajat02 582
bcsstk13 1076
bcsstm13 853
blckhole 753
lshp2233 723
dwt 2680 736
nasa2910 911 5× 1 1.26 1153
G50 714
laser 609

118

Untuned Performance Tuned Performance
MFLOP/s Blocksize Fill Ratio MFLOP/s

lshp3025 736
lshp3466 734
bcsstk24 950 2× 2 1.06 1003
bcsstm21 167
bcsstk15 957
sts4098 795
struct4 828
bcsstk16 824 3× 3 1.05 867
G58 686
G59 690
bcspwr10 457
SiNa 786
Na5 794
Alemdar 939
G64 593
commanche dual 438
G65 650
bcsstk38 773
benzene 733
bcsstk33 813
nd3k 845 3× 3 1.12 945
nemeth02 780
nemeth16 813 2× 1 1.12 912
nemeth19 827 3× 1 1.17 965
nemeth21 843 3× 1 1.15 967
nemeth26 849 3× 1 1.16 988
shuttle eddy 844
pkustk02 807 2× 2 1.01 817
m3plates 114
coupled 479
t2dah a 664
stokes64 838
skirt 633
tuma2 627
Pres Poisson 758
rajat07 614
pds10 502
pkustk07 821 3× 3 1.01 833
gyro k 771 3× 3 1.03 798
gyro m 632
nd6k 834 3× 3 1.12 935

119

Untuned Performance Tuned Performance
MFLOP/s Blocksize Fill Ratio MFLOP/s

bodyy6 549
t3dl a 665
t3dl e 69
pkustk01 744 3× 3 1.04 777
pkustk08 822 3× 3 1.01 833
tuma1 469
crystm03 705
dtoc 423
bcsstm37 73
brainpc2 536
bloweya 526
aug2dc 430
rajat10 387
bcsstm35 91
pkustk09 750 2× 2 1.02 766
nd12k 831 3× 3 1.12 933
wathen120 647
pwt 494
finance256 455
torsion1 458
pkustk06 771 2× 2 1.02 784
3dtube 774 3× 3 1.05 811
bcsstk39 760
bcsstm39 91
gridgena 583
stokes128 631
ct20stif 753 2× 1 1.12 845
struct3 664
copter2 480
pkustk04 792 3× 3 1.03 813
a5esindl 390
blockqp1 598
qa8fk 702
nd24k 824 3× 3 1.12 925
ncvxqp3 324
t3dh e 754
a2nnsnsl 380
pkustk10 763 2× 2 1.02 777
ncvxqp7 310
boyd1 623
tandem dual 282

120

Untuned Performance Tuned Performance
MFLOP/s Blocksize Fill Ratio MFLOP/s

pkustk12 795 1× 3 1.16 919
pkustk13 783 3× 1 1.12 876
ford2 354
pkustk14 800
gearbox 776 3× 3 1.04 804
cont-300 506
pwtk 781 3× 1 1.15 894
Ga41As41H72 689
boyd2 322
af shell1 729 5× 1 1.11 810

121

Appendix G

SpMV Performance on the

Pentium 3

Here we present information about SpMV performance for each of the matrices

in our test suite, as well as which ones fall into the categories small, medium, and large,

on the Pentium 3. The matrices are sorted in order of increasing problem size. Symmetric

and nonsymmetric performance are also compared for symmetric matrices. All performance

numbers are in MFLOP/s. Blank values in the tuned columns indicate that OSKI did not

tune SpMV for that particular matrix. Raw MFLOP rates (counting operations performed

on explicitly stored zero entries that were introduced during blocking) are given for the

tuned numbers so that a proper comparison with synthetic matrices, which have no filled

in zero entries, can be made. For an MFLOP rate that counts only operations performed

on nonzero entries, divide by the fill ratio.

122

G.1 Small Matrices

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

bcsstm19 106 162
shl 0 160 293
gre 512 224 341
bcsstm11 114 163
dw256A 266 410
fs 680 3 237 375
bcsstm26 116 163
nos6 525 412
685 bus 381 413
pores 3 264 312 2× 1 1.06 291 345
qh882 221 369
lshp 577 505 327
west0989 184 338
nnc666 248 301
saylr3 201 359
fs 541 1 298 383
sherman4 192 317
tub1000 283 372
b dyn 188 354
pde900 301 411
nos7 484 293
bp 800 233 300
cdde1 306 412
lshp 778 519 324
steam2 458 367 2× 4 1.09 597 662
orsirr 2 276 327
west1505 190 351
jpwh 991 260 305
fpga dcop 01 268 405
jagmesh1 531 327
bcsstm21 121 163
can 715 608 367
bcspwr07 320 374
bcsstk19 579 377
can 634 680 392
lshp1009 529 327
dwt 869 581 380
bcspwr09 405 349
bfwa782 326 376

123

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

dwt 918 567 345
mahindas 313 294
lung1 222 374
west2021 194 341
epb0 285 366
jagmesh6 531 327
pores 2 307 339 2× 1 1 360 397
can 838 705 416
rotor2 376 429 3× 3 1.32 519 798
plsk1919 194 400
dwt 1242 589 347
laser 476 314
cage8 362 390
dw1024 315 410
poli 160 232
lshp1561 540 320
rajat02 472 295
watt 1 272 301
extr1 201 359
rajat12 315 315
G50 592 346
add20 302 403
adder trans 01 289 283
nos3 802 463 2× 2 1.02 1008 634
blckhole 538 292
pde2961 329 385
lshp2233 545 262
dwt 992 831 457
m3plates 87 117
Si2 884 496
ex21 495 516 2× 1 1.1 604 559
Pd 122 145
bcsstm13 692 372
lshp3025 519 258
bayer05 248 283
swang1 267 229
sherman2 434 414 1× 2 1.17 444 436
add32 198 264
bcsstm34 989 366 2× 6 1.31 1290 823
olm5000 226 246 1× 2 1.25 297 289
mcfe 392 343

124

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

ex25 406 419 1× 2 1.08 480 461
circuit 2 254 245
bcspwr10 364 248
lshp3466 465 279
dwt 2680 469 278
hydr1 185 263
Hamrle2 234 223
shermanACa 225 264
lns 3937 228 201
meg4 142 242
bcsstk26 563 263
bcsstk11 541 325 3× 3 1.06 895 812
bayer03 122 191
cell1 172 193
gemat11 175 186
ex27 238 308 2× 1 1.18 277 416
G1 535 293
commanche dual 276 158
lhr02 215 207
G65 333 162
jan99jac020 144 172
t3dl e 72 56
bcsstm37 48 45

125

G.2 Medium Matrices

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

bcsstk27 365 184 1× 3 1.14 437 290
comsol 147 149
ex7 175 198
bcsstk14 317 165 2× 6 1.22 453 294
ex3 177 190 2× 1 1.15 207 246
bcsstk13 287 148
ex24 185 188
heart2 153 153 2× 6 1.29 197 196
rdist3a 158 158 1× 2 1.21 327 210
ex10 166 179
orani678 145 144
ex28 142 145 1× 2 1.08 163 171
meg1 158 158
nasa2910 278 142 5× 5 1.22 354 198
psmigr 3 149 150
garon1 136 144
raefsky2 144 144 1× 2 1.02 164 158
ex9 135 136
thermal 138 142
cage9 180 178
heart1 153 153 1× 2 1.1 177 164
bcsstk24 268 137 1× 2 1.04 305 151
bcsstk15 260 131
ex12 133 133
sts4098 258 135
lhr04 133 136
rdist1 132 131
struct4 275 138
bcsstk16 281 141 3× 3 1.02 353 190
G58 270 130
G59 272 129
SiNa 255 131
ex18 123 122
Na5 266 136
shermanACd 130 125
Alemdar 229 139
raefsky5 129 125 2× 1 1.07 151 146
rajat01 134 127
ex15 123 117

126

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

G64 231 110
goodwin 137 138
lhr07 127 119
sinc12 132 127
rajat13 131 122
ex40 141 140
bcsstk38 269 133 1× 2 1.18 306 147
dw4096 140 128
benzene 244 123
bcsstk33 281 142 1× 2 1.17 322 153
nd3k 299 145 3× 3 1.11 379 200
mark3jac020 108 103
nemeth02 269 137 1× 2 1.17 305 151
nemeth16 279 142 1× 2 1.13 318 155
nemeth19 289 146 1× 2 1.09 330 157
nemeth21 295 148 1× 2 1.08 338 159
nemeth26 301 151 1× 2 1.09 344 162
coater2 123 123
fv2 114 106
shuttle eddy 208 106
pkustk02 281 127 2× 6 1.03 362 189
igbt3 113 97
k3plates 133 132 1× 2 1.16 150 146
coupled 180 93
cage10 109 104
t2dah a 225 115
sinc15 135 122
sme3Da 123 124
stokes64 208 96
skirt 223 114
tuma2 183 94
poisson3Da 107 107
Pres Poisson 269 126 1× 2 1.19 311 148
rajat07 165 93
powersim 87 86
sinc18 138 119
pds10 190 92
pkustk07 295 124 3× 3 1 370 189
gyro m 233 112
gyro k 276 128 3× 3 1 345 189
nd6k 301 130 3× 3 1.12 378 195

127

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

nmos3 109 92
bodyy6 181 93
t3dl a 243 119
ns3Da 110 108
raefsky3 141 141 2× 8 1.03 178 197
pkustk01 266 115 3× 3 1 332 184
pkustk08 295 115 3× 3 1 364 185
rim 137 135
tuma1 145 71
crystm03 238 121
dtoc 148 73
mult dcop 01 74 69
brainpc2 171 62
3D 28984 Tetra 115 85 3× 3 1.03 142 150
bloweya 163 68
aug2dc 147 69
rajat10 145 81
bcsstm35 49 41
Zhao1 75 64
pkustk09 269 111 2× 6 1.04 342 184
lhr34 126 94
nd12k 296 96 3× 3 1.12 372 182
onetone1 100 79
wathen120 221 103
pwt 183 92
rajat15 89 62
finance256 170 69
cage11 103 83
torsion1 159 83
av41092 132 77 2× 1 1.05 151 94
jan99jac120 89 74
sme3Dc 84 73
pkustk06 273 106 2× 6 1.03 348 185
3dtube 276 118 3× 3 1.02 346 186
bcsstm39 44 34
bcsstk39 270 123
rma10 139 106 1× 2 1.16 158 133
gridgena 200 91
stokes128 197 74
ibm matrix 2 116 80 3× 3 1.03 142 147
ct20stif 273 92 1× 2 1.12 304 123

128

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

g7jac180 109 70
struct3 239 109
copter2 184 63
pkustk04 282 91 3× 3 1 351 179
bayer01 78 56
g7jac200 109 67
a5esindl 118 54
blockqp1 186 48

129

G.3 Large Matrices

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

qa8fk 241 106
lhr71 125 81
nd24k 296 70 3× 3 1.12 370 166
ncvxqp3 109 40
t3dh e 273 108
a2nnsnsl 117 49
pkustk10 273 96 2× 6 1.04 345 184
poisson3Db 64 44
ncvxqp7 109 38
boyd1 175 43
tandem dual 127 71
pkustk12 280 73 1× 3 1.12 321 140
pkustk13 281 84 1× 3 1.11 318 145
ford2 142 68
matrix 9 116 78 3× 3 1.01 138 158
hcircuit 73 50
lung2 78 63
barrier2-1 107 50
torso2 99 71
torso1 144 41 1× 2 1.06 162 71
twotone 101 58
matrix-new 3 117 65 3× 3 1.03 140 128
pkustk14 285 72 1× 2 1.18 325 109
para-6 110 46
gearbox 276 83 3× 3 1 346 173
para-10 110 47
xenon2 122 68 3× 3 1.06 147 153
scircuit 67 49
cont-300 155 49
ohne2 131 50
stomach 109 60
pwtk 273 66 1× 2 1.13 307 103
torso3 112 55
Ga41As41H72 239 46
Stanford 30 25
rajat24 74 40
language 44 29
rajat21 72 38
cage13 96 34

130

Untuned Performance Tuned Performance
Real Synthetic Blocksize Fill Ratio Real Synthetic

boyd2 104 29
af shell1 255 42 5× 5 1 317 168
pre2 98 30
Stanford Berkeley 99 32

131

G.4 Symmetric Matrices

Untuned Performance Tuned Performance
MFLOP/s Blocksize Fill Ratio MFLOP/s

lshp 577 472
bcsstm34 920 2× 1 1.16 1065
can 634 601
nos6 425
685 bus 339
can 715 576
nos7 497
Si2 785
lshp 778 486
G1 948
bcsstk19 547
bcsstm19 105
can 838 663
dwt 869 568
dwt 918 532
jagmesh1 500
nos3 706 2× 2 1.08 763
dwt 992 753
lshp1009 488
bcsstk27 824 1× 3 1.16 955
dwt 1242 572
jagmesh6 484
bcsstk11 796 1× 3 1.11 885
bcsstm11 113
lshp1561 510
bcspwr07 293
bcspwr09 356
bcsstk14 697 2× 2 1.15 800
bcsstk26 687
bcsstm26 115
rajat02 460
bcsstk13 625
bcsstm13 706
blckhole 544
lshp2233 524
dwt 2680 581
nasa2910 481
G50 443
laser 447

132

Untuned Performance Tuned Performance
MFLOP/s Blocksize Fill Ratio MFLOP/s

lshp3025 536
lshp3466 534
bcsstk24 469 2× 2 1.06 495
bcsstm21 120
bcsstk15 473
sts4098 534
struct4 462
bcsstk16 470 1× 3 1.04 489
G58 512
G59 503
bcspwr10 354
SiNa 427
Na5 438
Alemdar 493
G64 414
commanche dual 324
G65 460
bcsstk38 442
benzene 395
bcsstk33 468 2× 1 1.17 547
nd3k 497 2× 2 1.18 586
nemeth02 439
nemeth16 463 2× 2 1.23 571
nemeth19 486 2× 2 1.16 564
nemeth21 500 2× 2 1.16 577
nemeth26 509 4× 1 1.21 615
shuttle eddy 341
pkustk02 468 2× 2 1.01 474
m3plates 92
coupled 269
t2dah a 357
stokes64 345
skirt 348
tuma2 328
Pres Poisson 442
rajat07 214
pds10 290
pkustk07 495 1× 3 1.01 501
gyro k 451 3× 1 1.03 467
gyro m 363
nd6k 494 2× 2 1.19 586

133

Untuned Performance Tuned Performance
MFLOP/s Blocksize Fill Ratio MFLOP/s

bodyy6 268
t3dl a 383
t3dl e 70
pkustk01 433 1× 3 1.04 452
pkustk08 491 1× 3 1.01 498
tuma1 218
crystm03 378
dtoc 220
bcsstm37 51
brainpc2 234
bloweya 251
aug2dc 210
rajat10 175
bcsstm35 54
pkustk09 435 2× 2 1.02 444
nd12k 488 2× 2 1.19 579
wathen120 334
pwt 269
finance256 238
torsion1 209
pkustk06 449 2× 2 1.02 457
3dtube 444 1× 3 1.04 461
bcsstk39 439
bcsstm39 43
gridgena 293
stokes128 293
ct20stif 435 2× 2 1.23 534
struct3 375
copter2 240
pkustk04 464 1× 3 1.03 476
a5esindl 138
blockqp1 238
qa8fk 376
nd24k 481 2× 2 1.19 570
ncvxqp3 119
t3dh e 430
a2nnsnsl 137
pkustk10 443 2× 2 1.02 451
ncvxqp7 116
boyd1 319
tandem dual 137

134

Untuned Performance Tuned Performance
MFLOP/s Blocksize Fill Ratio MFLOP/s

pkustk12 471 1× 3 1.16 545
pkustk13 460 1× 3 1.13 519
ford2 174
pkustk14 467 1× 2 1.18 550
gearbox 455 1× 3 1.03 471
cont-300 210
pwtk 449 2× 2 1.24 555
Ga41As41H72 345
boyd2 105
af shell1 401 5× 5 1.11 446

135

Appendix H

Pentium 4 Benchmark Data

Here we graphically present the full output of our benchmark on the Pentium 4.

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

Appendix I

Itanium 2 Benchmark Data

Here we graphically present the full output of our benchmark on the Itanium 2.

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

Appendix J

Opteron Benchmark Data

Here we graphically present the full output of our benchmark on the Opteron.

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

Appendix K

Pentium 3 Benchmark Data

Here we graphically present the full output of our benchmark on the Pentium 3.

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

