# Communication-avoiding Krylov subspace methods

#### Mark Hoemmen

mhoemmen@cs.berkeley.edu

University of California Berkeley EECS

SIAM Parallel Processing for Scientific Computing 2008



(日本) (日本) (日本) (日本)



- Current Krylov methods: communication-limited
- Can rearrange them to avoid communication
- Can do this in a numerically stable way
- Requires rethinking preconditioning

\* 同 > \* 日 > \* 日 > 「三日

Two communication-bound kernels Potential to avoid communication Data dependencies limit reuse

## Motivation

- Two communication-bound kernels
- Can rearrange each kernel to avoid communication, but...
- Data dependency between the two precludes rearrangement...
- Unless you rearrange the Krylov method!

(金) (金) (金) (金)

Two communication-bound kernels Potential to avoid communication Data dependencies limit reuse

## Krylov methods: Two communication-bound kernels

Sparse matrix-vector multiplication (SpMV)

- Share/communicate source vector w/ neighbors
- Low computational intensity per processor
- Orthogonalization:  $\Theta(1)$  reductions per vector
  - Arnoldi/GMRES:
    - Modified Gram-Schmidt or Householder QR
  - Lanczos/CG:
    - Recurrence orthogonalizes implicitly

《曰》《曰》《曰》《曰》 종日

Two communication-bound kernels Potential to avoid communication Data dependencies limit reuse

## Krylov methods: Two communication-bound kernels

- Sparse matrix-vector multiplication (SpMV)
  - Share/communicate source vector w/ neighbors
  - Low computational intensity per processor
- Orthogonalization:  $\Theta(1)$  reductions per vector
  - Arnoldi/GMRES:
    - Modified Gram-Schmidt or Householder QR
  - Lanczos/CG:
    - Recurrence orthogonalizes implicitly

Two communication-bound kernels Potential to avoid communication Data dependencies limit reuse

#### Potential to avoid communication

- SpMV: Matrix powers kernel (Marghoob)
  - Compute [*v*, *Av*, *A*<sup>2</sup>*v*, ..., *A*<sup>s</sup>*v*]
  - Tiling to reuse matrix entries
  - Parallel: same latency cost as one SpMV
  - Sequential: only read matrix O(1) times
- Orthogonalization: TSQR (Julien)
  - Just as stable as Householder QR
  - Parallel: same latency cost as one reduction
  - Sequential: only read vectors once

《曰》《圖》《臣》《臣》 문법

Two communication-bound kernels Potential to avoid communication Data dependencies limit reuse

#### Potential to avoid communication

- SpMV: Matrix powers kernel (Marghoob)
  - Compute [*v*, *Av*, *A*<sup>2</sup>*v*, ..., *A*<sup>s</sup>*v*]
  - Tiling to reuse matrix entries
  - Parallel: same latency cost as one SpMV
  - Sequential: only read matrix O(1) times
- Orthogonalization: TSQR (Julien)
  - Just as stable as Householder QR
  - Parallel: same latency cost as one reduction
  - Sequential: only read vectors once

《曰》《曰》《曰》《曰》 종日

Two communication-bound kernels Potential to avoid communication Data dependencies limit reuse

#### Problem: Data dependencies limit reuse

- Krylov methods advance one vector at a time
- SpMV, then orthogonalize, then SpMV, ...

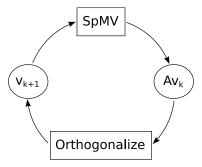


Figure: Data dependencies in Krylov subspace methods.



· 문 · · · 문 · · · 문

Idea Example: GMRES Basis condition number Numerical experiments Our algorithms

#### s-step Krylov methods: break the dependency

- Matrix powers kernel
  - Compute basis of span{ $v, Av, A^2v, \dots, A^sv$ }
- TSQR
  - Orthogonalize basis
- Use *R* factor to reconstruct upper Hessenberg *H* resp. tridiagonal *T*
- Solve least squares problem or linear system with *H* resp. *T* for coefficients of solution update

Idea Example: GMRES Basis condition number Numerical experiments Our algorithms

#### s-step Krylov methods: break the dependency

- Matrix powers kernel
  - Compute basis of span{ $v, Av, A^2v, \dots, A^sv$ }
- TSQR
  - Orthogonalize basis
- Use *R* factor to reconstruct upper Hessenberg *H* resp. tridiagonal *T*
- Solve least squares problem or linear system with *H* resp. *T* for coefficients of solution update

< □ > < 圖 > < 필 > < 필 > 三目目

Idea Example: GMRES Basis condition number Numerical experiments Our algorithms

#### Example: GMRES



Hoemmen Comm.-avoiding KSMs

Idea Example: GMRES Basis condition number Numerical experiments Our algorithms

# **Original GMRES**

- 1: **for** *k* = 1 to *s* **do**
- 2:  $w = Av_{k-1}$
- 3: Orthogonalize *w* against  $v_0, \ldots, v_{k-1}$  using Modified Gram-Schmidt
- 4: end for
- 5: Compute solution using *H*

(비) (종) (종) (종) (종)

Idea Example: GMRES Basis condition number Numerical experiments Our algorithms

#### Version 2: Matrix powers kernel & TSQR

1: 
$$W = [v_0, Av_0, A^2v_0, \dots, A^sv_0]$$

- 2: [Q, R] = TSQR(W)
- 3: Compute H using R
- 4: Compute solution using *H* 
  - s powers of A for no extra latency cost
  - s steps of QR for one step of latency
  - But...

Idea Example: GMRES Basis condition number Numerical experiments Our algorithms

#### Basis computation not stable

#### • $v, Av, A^2v, \ldots$ looks familiar...

• It's the power method!

- Converges to principal eigenvector of A
- Expect increasing linear dependence...
- Basis condition number exponential in s

Idea Example: GMRES Basis condition number Numerical experiments Our algorithms

#### Basis computation not stable

- $v, Av, A^2v, \ldots$  looks familiar...
- It's the power method!
  - Converges to principal eigenvector of A
  - Expect increasing linear dependence...
- Basis condition number exponential in s



Idea Example: GMRES Basis condition number Numerical experiments Our algorithms

#### Basis computation not stable

- $v, Av, A^2v, \ldots$  looks familiar...
- It's the power method!
  - Converges to principal eigenvector of A
  - Expect increasing linear dependence...
- Basis condition number exponential in s

Idea Example: GMRES Basis condition number Numerical experiments Our algorithms

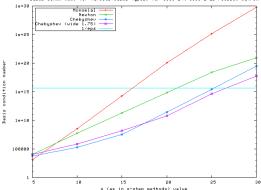
#### Version 3: Different basis

- Just like polynomial interpolation
- Use a different basis, e.g.:
  - Newton basis  $W = [v, (A \theta_1 I)v, (A \theta_2 I)(A \theta_1 I)v, \dots]$ 
    - Get shifts θ<sub>i</sub> for free Ritz values
    - Can change shifts with each group of s
  - Chebyshev basis  $W = [v, T_1(v), T_2(v), \dots]$ 
    - Use condition number bounds to scale  $T_k(z)$
    - Uncertain sensitivity of κ<sub>2</sub>(W) to bounds

< 由 > < 圖 > < 필 > < 필 > < 필 > 및 비 - 오

Idea Example: GMRES Basis condition number Numerical experiments Our algorithms

#### Basis condition number



Basis cond. num. for various basis types, for 1000^2 × 1000^2 2D Poisson matrix

Figure: Condition number of various bases as a function of basis length *s*. Matrix *A* is a  $10^6 \times 10^6$  2-D Poisson operator.



Comm.-avoiding KSMs

고나님

Numerical experiments

- Diagonal  $10^4 \times 10^4$  matrix,  $\kappa_2(A) = 10^8$
- *s* = 24
- Newton: basis condition # about 10<sup>14</sup>
- Monomial: basis condition # about 10<sup>16</sup>

(ロ)
(目)
(日)

Idea Example: GMRES Basis condition number Numerical experiments Our algorithms

#### Better basis pays off: restarting

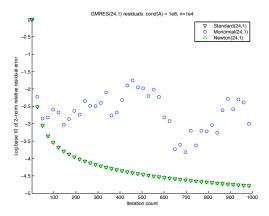


Figure: Restart after every group of s steps



E ► < E ►

Hoemmen Comm.-avoiding KSMs

Idea Example: GMRES Basis condition number Numerical experiments Our algorithms

#### Better basis pays off: less restarting

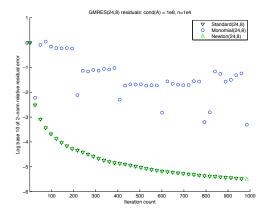


Figure: Restart after 8 groups of s = 24 steps.



同トメヨトメヨト

Idea Example: GMRES Basis condition number Numerical experiments Our algorithms

Krylov methods we can rearrange

- s-step Arnoldi / GMRES
- s-step symmetric Lanczos / CG
- Need not restart after each group of s
  - Just update TSQR factorization

(日) (四) (종) (종) (종)

*s*-step CG, part 1 *s*-step GMRES *s*-step CG, part 2

#### Previous work: s-step CG, part 1

- Van Rosendale 1983, Chronopoulos 1989, ...
  - Compute  $W = [v, Av, A^2v, \dots, A^sv]$
  - Get solution update coefficients from  $W^T W$
- Unstable
  - Monomial basis  $(\kappa_2(W) \text{ is } \Theta(2^s))$
  - Gram matrix  $W^T W$  (squares  $\kappa_2(A)$ )
- No matrix powers kernel
- No preconditioning

・四・・モ・ モー

*s*-step CG, part 1 *s*-step GMRES *s*-step CG, part 2

#### Previous work: s-step GMRES

- De Sturler 1991, Bai et al. 1991, et al.
- More stable
  - Newton basis, not monomial
  - QR, not Gram matrix
- No matrix powers kernel
- No preconditioning
- Must restart after each group of s



· 문 · · · 문 · · · 문

*s*-step CG, part 1 *s*-step GMRES *s*-step CG, part 2

#### Previous work: s-step CG, part 2

- Toledo 1995 (PhD thesis)
- Developed as part of a matrix powers kernel
  - For (un)structured low-dimensional grids
  - Also for multigrid-like hierarchical graphs
- Based on Chronopoulos 1989
- Suggested change of basis for stability
- Formed Gram matrix  $W^T W$  (squares  $\kappa_2(A)$ )
- No preconditioning

(日本) (日本) (日本) (日本)

Matrix powers kernel changes Effective preconditioning

#### Preconditioning: matrix powers kernel changes

• GMRES with left preconditioning (or any kind)

•  $v, M^{-1}Av, (M^{-1}A)^2v, \ldots, (M^{-1}A)^sv$ 

• Symmetric Lanczos / CG with split preconditioning

•  $v, L^{-1}AL^{-T}v, \ldots, (L^{-1}AL^{-T})^{s}v$ 

Symmetric Lanczos / CG with left preconditioning

•  $V = [v, M^{-1}Av, \dots, (M^{-1}A)^{s}v]$ , and

•  $W = [Av, AM^{-1}Av, \dots, (AM^{-1})^{s}Av]$ 

Works with any basis

(日) (圖) (臣) (臣) 된답 ()

Matrix powers kernel changes Effective preconditioning

#### Preconditioning: matrix powers kernel changes

• GMRES with left preconditioning (or any kind)

•  $v, M^{-1}Av, (M^{-1}A)^2v, \ldots, (M^{-1}A)^sv$ 

Symmetric Lanczos / CG with split preconditioning

•  $v, L^{-1}AL^{-T}v, ..., (L^{-1}AL^{-T})^{s}v$ 

• Symmetric Lanczos / CG with left preconditioning

• 
$$V = [v, M^{-1}Av, \dots, (M^{-1}A)^{s}v]$$
, and

• 
$$W = [Av, AM^{-1}Av, \dots, (AM^{-1})^sAv]$$

Works with any basis

<ロ> <回> <回> <回> <回> <回> <回</p>

Matrix powers kernel changes Effective preconditioning

## Effective preconditioning

- Easy to limit communication if connectivity local
- Sparse: "looks like a low-dimensional mesh"
- General: low-rank off-diagonal blocks
  - Rank only grows linearly in s
  - Matrix and preconditioner
  - e.g., hierarchical matrices, semiseparable, fast multipole



Figure: Discretization of log(|x - y|) on interval.



イロン 不得 とくほ とくほう ほ

## Future work

- Preconditioner implementations
- Performance tuning (choosing *s*)
- Extension to eigensolvers
- Lanczos biorthogonalization (e.g., Bi-CG)
- Combine with block Krylov methods
  - Block methods can already use TSQR
  - Does combining block and s-step pay?



• s-step Krylov methods incomplete before:

- Either not stable, not scalable, or both
- Had to restart between groups of s
- No preconditioning / not part of optimizations
- Now we have all the pieces!
  - Stable, optimized kernels
  - Can do restarting or not
  - Preconditioning

(圖) (종) (종) (종)

|                | Appendix<br>Extra slides<br>Block Krylov methods?<br>Preconditioning<br>Acknowledgments | Bibliography |  |
|----------------|-----------------------------------------------------------------------------------------|--------------|--|
| Bibliography I |                                                                                         |              |  |

- Z. BAI, D. HU, AND L. REICHTEL, A Newton basis GMRES implementation, IMA Journal of Numerical Analysis, 14 (1994), pp. 563–581.
- A. H. BAKER, J. M. DENNIS, AND E. R. JESSUP, On improving linear solver performance: A block variant of GMRES, SIAM J. Sci. Comp., 27 (2006), pp. 1608–1626.
- S. BÖRM, L. GRASEDYCK, AND W. HACKBUSCH, *Hierarchical matrices*.

http://www.mis.mpg.de/scicomp/Fulltext/WS\_ HMatrices.pdf, 2004.

물 에 문 에 문 물

| Appendix<br>Extra slides<br>Block Krylov methods?<br>Preconditioning<br>Acknowledgments | Bibliography |
|-----------------------------------------------------------------------------------------|--------------|
| anhy II                                                                                 |              |

# Bibliography II

- S. CHANDRASEKARAN, M. GU, AND W. LYONS, *A fast and stable adaptive solver for hierarchically semi-separable representations*, May 2004.
- A. T. CHRONOPOULOS AND C. W. GEAR, s-step iterative methods for symmetric linear systems, J. Comput. Appl. Math., 25 (1989), pp. 153–168.
- A. T. CHRONOPOULOS AND A. B. KUCHEROV, A parallel Krylov-type method for nonsymmetric linear systems, in High Performance Computing - HiPC 2001: Eighth International Conference, Hyderabad, India, December 17-20, 2001. Proceedings, Springer, 2001, pp. 104–114.



▶ ★ 문 ▶ 문[님

Appendix Extra slides Block Krylov methods? Preconditioning Acknowledgments

Bibliography

# Bibliography III

- E. DE STURLER, A parallel variant of GMRES(m), in Proceedings of the 13th IMACS World Congress on Computation and Applied Mathematics, J. J. H. Miller and R. Vichnevetsky, eds., Dublin, Ireland, 1991, Criterion Press.
- J. ERHEL, *A parallel GMRES version for general sparse matrices*, Electronic Transactions on Numerical Analysis, 3 (1995), pp. 160–176.
- W. GAUTSCHI AND G. INGLESE, *Lower bounds for the condition number of Vandermonde matrices*, Numer. Math., 52 (1988), pp. 241–250.

《曰》《曰》《曰》《曰》 종日

Appendix Extra slides Block Krylov methods? Preconditioning Acknowledgments

Bibliography

# Bibliography IV

W. HACKBUSCH, Hierarchische Matrizen – Algorithmen und Analysis. http://www.mis.mpg.de/scicomp/Fulltext/

hmvorlesung.ps, last accessed 22 May 2006, Jan. 2006.

W. D. JOUBERT AND G. F. CAREY, Parallelizable restarted iterative methods for nonsymmetric linear systems, Part I: Theory, International Journal of Computer Mathematics, 44 (1992), pp. 243–267.

\* 同 > \* 日 > \* 日 > 「三日

Appendix Extra slides Block Krylov methods? Preconditioning Acknowledgments

Bibliography

## Bibliography V

- Parallelizable restarted iterative methods for nonsymmetric linear systems, Part II: Parallel implementation, International Journal of Computer Mathematics, 44 (1992), pp. 269–290.
- C. E. LEISERSON, S. RAO, AND S. TOLEDO, Efficient out-of-core algorithms for linear relaxation using blocking covers, Journal of Computer and System Sciences, 54 (1997), pp. 332–344.
- G. MEURANT, *The block preconditioned conjugate gradient method on vector computers*, BIT, 24 (1984), pp. 623–633.



<ロ> <同> <同> < 回> < 回> < 回> < 回< のQC

| Appendix<br>Extra slides<br>Block Krylov methods?<br>Preconditioning<br>Acknowledgments | Bibliography |
|-----------------------------------------------------------------------------------------|--------------|
| liography VI                                                                            |              |

D. P. O'LEARY, *The block conjugate gradient algorithm and related methods*, Linear Algebra Appl., 29 (1980), pp. 293–322.

Bib

- S. A. TOLEDO, *Quantitative performance modeling of scientific computations and creating locality in numerical algorithms*, PhD thesis, Massachusetts Institute of Technology, 1995.
- J. VAN ROSENDALE, *Minimizing inner product data dependence in conjugate gradient iteration*, in Proc. IEEE Internat. Confer. Parallel Processing, 1983.

《圖》 《문》 《문》 문법



Why not use block Krylov methods?

- Solve Ax = B for multiple right-hand sides
- Useful for eigenproblems (original use)
- No extra latency cost
- Bandwidth cost scales linearly w/ # RHS's
- Can use if only one right-hand side

(日本) (日本) (日本) (日本)



Problems with block methods for Ax = b

- If only one right-hand side:
  - Start with one right-hand side
  - After each restart cycle, add error vector to RHS block
  - High startup cost
    - Need s cycles of s until at full block size
    - Whereas, *s*-step always at full optimization
- More complicated convergence & breakdown conditions



Restarting for stability Extra precision for stability Lanczos reorthogonalization Components

# Preconditioning

- Modifications to matrix powers kernel
- Low off-diagonal rank characterization
- Possible preconditioners



Restarting for stability Extra precision for stability Lanczos reorthogonalization Components

## Preconditioning and matrix powers

- GMRES or split-preconditioner Lanczos
  - Standard matrix powers kernel
  - Just replace A with preconditioned operator  $L^{-1}AL^{-T}$
- Left-preconditioned CG: need new kernel!

비로 《문》《문》《問》《曰》

Restarting for stability Extra precision for stability Lanczos reorthogonalization Components

New kernel for left-preconditioned CG

- For a basis  $p_0, p_1, p_2, \ldots$ , define "left shift" operator lshift:
  - In that basis' coordinate system,  $\text{lshift } e_i = e_{i+1}$  ("multiply by *x*")
  - $Ishift_A(v)$  means replace x with matrix A
- Left-preconditioned CG: need

$$V_{s+1} = [v, \mathsf{lshift}_{M^{-1}A}(v), \dots, \mathsf{lshift}_{M^{-1}A}^s(v)], \mathsf{and}$$

$$W_{s} = [Av, \mathsf{lshift}_{AM^{-1}}(Av), \dots, \mathsf{lshift}_{AM^{-1}}^{s-1}(Av)]$$

Restarting for stability Extra precision for stability Lanczos reorthogonalization Components

# Preconditioning and orthogonalization

- GMRES or split-preconditioned CG: no change
- Left-preconditioned CG:
  - *M*<sup>-1</sup>*A* usually nonsymmetric
  - Basis vectors not orthogonal
    - M-orthogonal ("conjugate") instead
    - Can't use QR to orthogonalize
    - Must rely on CG recurrence instead
  - Gram matrix  $V_{s+1}^* W_s$  squares  $\kappa(A)$  bad!
  - Avoid by using generalized QR or SVD instead

비로 《문》《문》《問》《曰》

Restarting for stability Extra precision for stability Lanczos reorthogonalization Components

Preconditioning and orthogonalization

- GMRES or split-preconditioned CG: no change
- Left-preconditioned CG:
  - *M*<sup>-1</sup>*A* usually nonsymmetric
  - Basis vectors not orthogonal
    - M-orthogonal ("conjugate") instead
    - Can't use QR to orthogonalize
    - Must rely on CG recurrence instead
  - Gram matrix  $V_{s+1}^* W_s$  squares  $\kappa(A)$  bad!
  - Avoid by using generalized QR or SVD instead

《曰》《曰》《曰》《曰》 종日

Restarting for stability Extra precision for stability Lanczos reorthogonalization Components

Preconditioning: Low off-diagonal rank

- Matrix powers: depends on boundaries being "lower dimension" than interiors
- Boundary edges of graph are off-diagonal nonzeros
- Generalization: low-rank off-diagonal blocks
- Can do matrix powers kernel with SVD-like representation of partitioned matrix

Restarting for stability Extra precision for stability Lanczos reorthogonalization Components

### Possible preconditioners

Right generalization: low-rank off-diagonal blocks

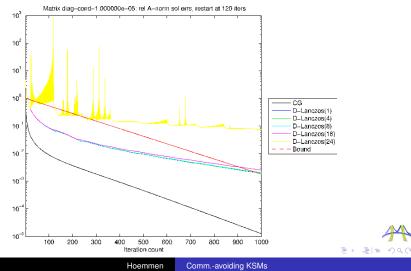
- Rank 0: block diagonal (a.k.a. block Jacobi)
  - Blocks can be arbitrarily complex
- But effective preconditioning needs some communication!
- Sparse approximate inverse (SPAI) constrain low off-diag rank
- $\mathcal{H}, \mathcal{H}^2$ , HSS matrices
  - From integral equations with separable kernels
  - Continuous analogue to discrete "low-rank off-diagonal blocks" condition



《日》《圖》《日》《王》 문법

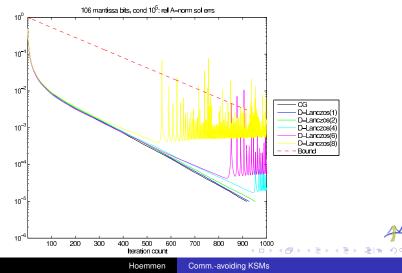
Restarting for stability Extra precision for stability Lanczos reorthogonalization Components

#### Restarting for stability



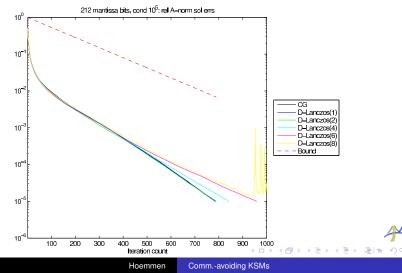
Restarting for stability Extra precision for stability Lanczos reorthogonalization Components

#### Extra precision for stability (1 of 3)



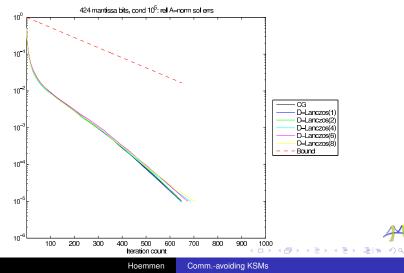
Restarting for stability Extra precision for stability Lanczos reorthogonalization Components

#### Extra precision for stability (2 of 3)



Restarting for stability Extra precision for stability Lanczos reorthogonalization Components

#### Extra precision for stability (3 of 3)



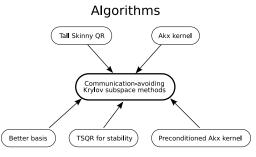
Restarting for stability Extra precision for stability Lanczos reorthogonalization Components

# Lanczos(s,t) w/ reorthogonalization

- Get orthogonality estimates from Lanczos recurrence (Paige)
- Each group of *s* basis vectors is a TSQR *Q* factor
- Best reorthogonalization:
  - Do TSQR of last group to compute Lanczos coefficients
  - Use Lanczos coeffs in Paige's recurrence
  - If last group not orthogonal w.r.t. previous groups
    - Compute it explicitly
    - Orthogonalize against previous t 1 groups
  - Finally take TSQR again of last group
- Converting all groups of *s* to explicit storage and redoing TSQR on them all is too expensive & unnecessary

Restarting for stability Extra precision for stability Lanczos reorthogonalization Components

### Components



Numerical analysis

Figure: Components of communication-avoiding Krylov methods.

Hoemmen Comm.-avoiding KSMs

### Acknowledgments

- NSF
- DoE
- ACM/IEEE

