
Motivation
Break the dependency

Previous work
Preconditioning

Future work
Summary

Communication-avoiding Krylov subspace
methods

Mark Hoemmen
mhoemmen@cs.berkeley.edu

University of California Berkeley EECS

SIAM Parallel Processing for Scientific Computing 2008

Hoemmen Comm.-avoiding KSMs

Motivation
Break the dependency

Previous work
Preconditioning

Future work
Summary

Overview

Current Krylov methods: communication-limited
Can rearrange them to avoid communication
Can do this in a numerically stable way
Requires rethinking preconditioning

Hoemmen Comm.-avoiding KSMs

Motivation
Break the dependency

Previous work
Preconditioning

Future work
Summary

Two communication-bound kernels
Potential to avoid communication
Data dependencies limit reuse

Motivation

Two communication-bound kernels
Can rearrange each kernel to avoid communication, but. . .
Data dependency between the two precludes
rearrangement. . .
Unless you rearrange the Krylov method!

Hoemmen Comm.-avoiding KSMs

Motivation
Break the dependency

Previous work
Preconditioning

Future work
Summary

Two communication-bound kernels
Potential to avoid communication
Data dependencies limit reuse

Krylov methods: Two communication-bound kernels

Sparse matrix-vector multiplication (SpMV)
Share/communicate source vector w/ neighbors
Low computational intensity per processor

Orthogonalization: Θ(1) reductions per vector
Arnoldi/GMRES:

Modified Gram-Schmidt or Householder QR
Lanczos/CG:

Recurrence orthogonalizes implicitly

Hoemmen Comm.-avoiding KSMs

Motivation
Break the dependency

Previous work
Preconditioning

Future work
Summary

Two communication-bound kernels
Potential to avoid communication
Data dependencies limit reuse

Krylov methods: Two communication-bound kernels

Sparse matrix-vector multiplication (SpMV)
Share/communicate source vector w/ neighbors
Low computational intensity per processor

Orthogonalization: Θ(1) reductions per vector
Arnoldi/GMRES:

Modified Gram-Schmidt or Householder QR
Lanczos/CG:

Recurrence orthogonalizes implicitly

Hoemmen Comm.-avoiding KSMs

Motivation
Break the dependency

Previous work
Preconditioning

Future work
Summary

Two communication-bound kernels
Potential to avoid communication
Data dependencies limit reuse

Potential to avoid communication

SpMV: Matrix powers kernel (Marghoob)
Compute [v , Av , A2v , . . . , Asv]
Tiling to reuse matrix entries
Parallel: same latency cost as one SpMV
Sequential: only read matrix O(1) times

Orthogonalization: TSQR (Julien)
Just as stable as Householder QR
Parallel: same latency cost as one reduction
Sequential: only read vectors once

Hoemmen Comm.-avoiding KSMs

Motivation
Break the dependency

Previous work
Preconditioning

Future work
Summary

Two communication-bound kernels
Potential to avoid communication
Data dependencies limit reuse

Potential to avoid communication

SpMV: Matrix powers kernel (Marghoob)
Compute [v , Av , A2v , . . . , Asv]
Tiling to reuse matrix entries
Parallel: same latency cost as one SpMV
Sequential: only read matrix O(1) times

Orthogonalization: TSQR (Julien)
Just as stable as Householder QR
Parallel: same latency cost as one reduction
Sequential: only read vectors once

Hoemmen Comm.-avoiding KSMs

Motivation
Break the dependency

Previous work
Preconditioning

Future work
Summary

Two communication-bound kernels
Potential to avoid communication
Data dependencies limit reuse

Problem: Data dependencies limit reuse

Krylov methods advance one vector at a time
SpMV, then orthogonalize, then SpMV, . . .

Figure: Data dependencies in Krylov subspace methods.

Hoemmen Comm.-avoiding KSMs

Motivation
Break the dependency

Previous work
Preconditioning

Future work
Summary

Idea
Example: GMRES
Basis condition number
Numerical experiments
Our algorithms

s-step Krylov methods: break the dependency

Matrix powers kernel
Compute basis of span{v , Av , A2v , . . . , Asv}

TSQR
Orthogonalize basis

Use R factor to reconstruct upper Hessenberg H resp.
tridiagonal T
Solve least squares problem or linear system with H resp.
T for coefficients of solution update

Hoemmen Comm.-avoiding KSMs

Motivation
Break the dependency

Previous work
Preconditioning

Future work
Summary

Idea
Example: GMRES
Basis condition number
Numerical experiments
Our algorithms

s-step Krylov methods: break the dependency

Matrix powers kernel
Compute basis of span{v , Av , A2v , . . . , Asv}

TSQR
Orthogonalize basis

Use R factor to reconstruct upper Hessenberg H resp.
tridiagonal T
Solve least squares problem or linear system with H resp.
T for coefficients of solution update

Hoemmen Comm.-avoiding KSMs

Motivation
Break the dependency

Previous work
Preconditioning

Future work
Summary

Idea
Example: GMRES
Basis condition number
Numerical experiments
Our algorithms

Example: GMRES

Hoemmen Comm.-avoiding KSMs

Motivation
Break the dependency

Previous work
Preconditioning

Future work
Summary

Idea
Example: GMRES
Basis condition number
Numerical experiments
Our algorithms

Original GMRES

1: for k = 1 to s do
2: w = Avk−1
3: Orthogonalize w against v0, . . . , vk−1 using Modified

Gram-Schmidt
4: end for
5: Compute solution using H

Hoemmen Comm.-avoiding KSMs

Motivation
Break the dependency

Previous work
Preconditioning

Future work
Summary

Idea
Example: GMRES
Basis condition number
Numerical experiments
Our algorithms

Version 2: Matrix powers kernel & TSQR

1: W = [v0, Av0, A2v0, . . . , Asv0]
2: [Q, R] = TSQR(W)
3: Compute H using R
4: Compute solution using H

s powers of A for no extra latency cost
s steps of QR for one step of latency
But. . .

Hoemmen Comm.-avoiding KSMs

Motivation
Break the dependency

Previous work
Preconditioning

Future work
Summary

Idea
Example: GMRES
Basis condition number
Numerical experiments
Our algorithms

Basis computation not stable

v , Av , A2v , . . . looks familiar. . .
It’s the power method!

Converges to principal eigenvector of A
Expect increasing linear dependence. . .

Basis condition number exponential in s

Hoemmen Comm.-avoiding KSMs

Motivation
Break the dependency

Previous work
Preconditioning

Future work
Summary

Idea
Example: GMRES
Basis condition number
Numerical experiments
Our algorithms

Basis computation not stable

v , Av , A2v , . . . looks familiar. . .
It’s the power method!

Converges to principal eigenvector of A
Expect increasing linear dependence. . .

Basis condition number exponential in s

Hoemmen Comm.-avoiding KSMs

Motivation
Break the dependency

Previous work
Preconditioning

Future work
Summary

Idea
Example: GMRES
Basis condition number
Numerical experiments
Our algorithms

Basis computation not stable

v , Av , A2v , . . . looks familiar. . .
It’s the power method!

Converges to principal eigenvector of A
Expect increasing linear dependence. . .

Basis condition number exponential in s

Hoemmen Comm.-avoiding KSMs

Motivation
Break the dependency

Previous work
Preconditioning

Future work
Summary

Idea
Example: GMRES
Basis condition number
Numerical experiments
Our algorithms

Version 3: Different basis

Just like polynomial interpolation
Use a different basis, e.g.:

Newton basis W = [v , (A− θ1I)v , (A− θ2I)(A− θ1I)v , . . .]

Get shifts θi for free – Ritz values
Can change shifts with each group of s

Chebyshev basis W = [v , T1(v), T2(v), . . .]

Use condition number bounds to scale Tk (z)
Uncertain sensitivity of κ2(W) to bounds

Hoemmen Comm.-avoiding KSMs

Motivation
Break the dependency

Previous work
Preconditioning

Future work
Summary

Idea
Example: GMRES
Basis condition number
Numerical experiments
Our algorithms

Basis condition number

Figure: Condition number of various bases as a function of basis
length s. Matrix A is a 106 × 106 2-D Poisson operator.

Hoemmen Comm.-avoiding KSMs

Motivation
Break the dependency

Previous work
Preconditioning

Future work
Summary

Idea
Example: GMRES
Basis condition number
Numerical experiments
Our algorithms

Numerical experiments

Diagonal 104 × 104 matrix, κ2(A) = 108

s = 24
Newton: basis condition # about 1014

Monomial: basis condition # about 1016

Hoemmen Comm.-avoiding KSMs

Motivation
Break the dependency

Previous work
Preconditioning

Future work
Summary

Idea
Example: GMRES
Basis condition number
Numerical experiments
Our algorithms

Better basis pays off: restarting

100 200 300 400 500 600 700 800 900 1000
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Iteration count

Lo
g

ba
se

 1
0

of
 2
−n

or
m

 re
la

tiv
e

re
sid

ua
l e

rro
r

GMRES(24,1) residuals: cond(A) = 1e8, n=1e4

Standard(24,1)
Monomial(24,1)
Newton(24,1)

Figure: Restart after every group of s steps

Hoemmen Comm.-avoiding KSMs

Motivation
Break the dependency

Previous work
Preconditioning

Future work
Summary

Idea
Example: GMRES
Basis condition number
Numerical experiments
Our algorithms

Better basis pays off: less restarting

100 200 300 400 500 600 700 800 900 1000
−6

−5

−4

−3

−2

−1

0

1

Iteration count

Lo
g

ba
se

 1
0

of
 2
−n

or
m

 re
la

tiv
e

re
sid

ua
l e

rro
r

GMRES(24,8) residuals: cond(A) = 1e8, n=1e4

Standard(24,8)
Monomial(24,8)
Newton(24,8)

Figure: Restart after 8 groups of s = 24 steps.

Hoemmen Comm.-avoiding KSMs

Motivation
Break the dependency

Previous work
Preconditioning

Future work
Summary

Idea
Example: GMRES
Basis condition number
Numerical experiments
Our algorithms

Krylov methods we can rearrange
s-step Arnoldi / GMRES
s-step symmetric Lanczos / CG
Need not restart after each group of s

Just update TSQR factorization

Hoemmen Comm.-avoiding KSMs

Motivation
Break the dependency

Previous work
Preconditioning

Future work
Summary

s-step CG, part 1
s-step GMRES
s-step CG, part 2

Previous work: s-step CG, part 1

Van Rosendale 1983, Chronopoulos 1989, . . .
Compute W = [v , Av , A2v , . . . , Asv]
Get solution update coefficients from W T W

Unstable
Monomial basis (κ2(W) is Θ(2s))
Gram matrix W T W (squares κ2(A))

No matrix powers kernel
No preconditioning

Hoemmen Comm.-avoiding KSMs

Motivation
Break the dependency

Previous work
Preconditioning

Future work
Summary

s-step CG, part 1
s-step GMRES
s-step CG, part 2

Previous work: s-step GMRES

De Sturler 1991, Bai et al. 1991, et al.
More stable

Newton basis, not monomial
QR, not Gram matrix

No matrix powers kernel
No preconditioning
Must restart after each group of s

Hoemmen Comm.-avoiding KSMs

Motivation
Break the dependency

Previous work
Preconditioning

Future work
Summary

s-step CG, part 1
s-step GMRES
s-step CG, part 2

Previous work: s-step CG, part 2

Toledo 1995 (PhD thesis)
Developed as part of a matrix powers kernel

For (un)structured low-dimensional grids
Also for multigrid-like hierarchical graphs

Based on Chronopoulos 1989
Suggested change of basis for stability
Formed Gram matrix W T W (squares κ2(A))
No preconditioning

Hoemmen Comm.-avoiding KSMs

Motivation
Break the dependency

Previous work
Preconditioning

Future work
Summary

Matrix powers kernel changes
Effective preconditioning

Preconditioning: matrix powers kernel changes

GMRES with left preconditioning (or any kind)
v , M−1Av , (M−1A)2v , . . . , (M−1A)sv

Symmetric Lanczos / CG with split preconditioning
v , L−1AL−T v , . . . , (L−1AL−T)sv

Symmetric Lanczos / CG with left preconditioning
V = [v , M−1Av , . . . , (M−1A)sv], and
W = [Av , AM−1Av , . . . , (AM−1)sAv]

Works with any basis

Hoemmen Comm.-avoiding KSMs

Motivation
Break the dependency

Previous work
Preconditioning

Future work
Summary

Matrix powers kernel changes
Effective preconditioning

Preconditioning: matrix powers kernel changes

GMRES with left preconditioning (or any kind)
v , M−1Av , (M−1A)2v , . . . , (M−1A)sv

Symmetric Lanczos / CG with split preconditioning
v , L−1AL−T v , . . . , (L−1AL−T)sv

Symmetric Lanczos / CG with left preconditioning
V = [v , M−1Av , . . . , (M−1A)sv], and
W = [Av , AM−1Av , . . . , (AM−1)sAv]

Works with any basis

Hoemmen Comm.-avoiding KSMs

Motivation
Break the dependency

Previous work
Preconditioning

Future work
Summary

Matrix powers kernel changes
Effective preconditioning

Effective preconditioning

Easy to limit communication if connectivity local
Sparse: “looks like a low-dimensional mesh”
General: low-rank off-diagonal blocks

Rank only grows linearly in s
Matrix and preconditioner
e.g., hierarchical matrices, semiseparable, fast multipole

!
!

!
! !

!
!
!! !
! ! !

! ! !
! ! !

! ! !
! ! !

! ! !
! ! !

! ! !
! ! !

! ! !
! ! !

! !

!

(a) log |x−y| on a straight
line

!
!

!
! !

!
!
!! !
! ! !

! ! !
! ! !

! ! !
! ! !

! ! !
! ! !

! ! !
! ! !

! ! !
! ! !

! !!

!!

(b) log |x − y| on a circle

Figure 1: Submatrices labeled with a “•” are full-rank. All other submatrices are low-rank.

We begin by displaying the first block 4 × 4 leading principal sub-matrix of a block 8 × 8 example:

A =















D1 U3;1B3;1,2V H
3;2 U3;1R3;1B2;1,2W H

3;3V
H
3;3 U3;1R3;1B2;1,2W H

3;4V
H
3;4 · · ·

U3;2B3;2,1V H
3;1 D2 U3;2R3;2B2;1,2W H

3;3V
H
3;3 U3;2R3;2B2;1,2W H

3;4V
H
3;4 · · ·

U3;3R3;3B2;2,1W3;1V H
3;1 U3;3R3;3B2;2,1W H

3;2V
H
3;2 D3 U3;3B3;3,4V H

3;4 · · ·
U3;4R3;4B2;2,1W H

3,1V
H
3;1 U3;4R3;4B2;2,1W H

3;2V
H
3;2 U3;4B3;4,3V H

3;3 D4 · · ·
...

...
...

...
...















.

The fifth block column looks like this:


















U3;1R3;1R2;1B1;1,2W H
2;3W

H
3;5V

H
3;5

U3;2R3;2R2;1B1;1,2W H
2;3W

H
3;5V

H
3;5

U3;3R3;3R2;2B1;1,2W H
2;3W

H
3;5V

H
3;5

U3;4R3;4R2;2B1;1,2W H
2;3W

H
3;5V

H
3;5

D5
...



















.

Here U3;1, R3;1, B1;1,2, W3;3, V3;3, etc., are all matrices of potentially different sizes such that all necessary
multiplications are defined. To describe this hierarchical structure it is convenient to use a binary tree.
The tree describes in essence how the rows and columns of the matrix have been partitioned. To make
things concrete consider the block 8 × 8 HSS matrix, that we denote by A. Let mi for i = 1 to 8 denote
the partition sizes, and let A3;i,j denote the (i, j)-th block of the partition. (The 3 will be explained in
a little while.) Note that A3;i,j is an mi × mj matrix. We will denote the square diagonal blocks by
A3;i,i = Di. The off-diagonal blocks are described by a formula that is defined by an associated binary
tree. We call this tree the merge tree. For this example we use the merge tree depicted in Figure 2.
The tree is constructed as follows. There are eight leaves, one for each partition. More specifically, the
first node is associated with the numbers 1, 2, . . . ,m1, the second leaf is associated with the numbers
m1 + 1,m1 + 2, . . . ,m1 + m2, and so on. In general the i-th leaf (counting left to right) is associated with
the mi numbers m1 + · · ·+mi−1 +1,m1 + · · ·+mi−1 +2, . . . ,m1 + · · ·+mi−1 +mi. For convenience we use

the notation νi =
∑i

j=1 mj. In this notation the ith leaf is associated with numbers from νi−1 + 1 up to
νi, with the understanding that ν0 = 0. Non-leaf nodes are associated with the numbers corresponding to
their children. In particular the root node is associated with all the integers from 1 to m1 + m2 + · · ·+ m8

2

Figure: Discretization of log(|x − y |) on interval.

Hoemmen Comm.-avoiding KSMs

Motivation
Break the dependency

Previous work
Preconditioning

Future work
Summary

Future work

Preconditioner implementations
Performance tuning (choosing s)
Extension to eigensolvers
Lanczos biorthogonalization (e.g., Bi-CG)
Combine with block Krylov methods

Block methods can already use TSQR
Does combining block and s-step pay?

Hoemmen Comm.-avoiding KSMs

Motivation
Break the dependency

Previous work
Preconditioning

Future work
Summary

Summary

s-step Krylov methods incomplete before:
Either not stable, not scalable, or both
Had to restart between groups of s
No preconditioning / not part of optimizations

Now we have all the pieces!
Stable, optimized kernels
Can do restarting or not
Preconditioning

Hoemmen Comm.-avoiding KSMs

Appendix
Extra slides

Block Krylov methods?
Preconditioning

Acknowledgments

Bibliography

Bibliography I

Z. BAI, D. HU, AND L. REICHTEL, A Newton basis GMRES
implementation, IMA Journal of Numerical Analysis, 14
(1994), pp. 563–581.

A. H. BAKER, J. M. DENNIS, AND E. R. JESSUP, On
improving linear solver performance: A block variant of
GMRES, SIAM J. Sci. Comp., 27 (2006), pp. 1608–1626.

S. BÖRM, L. GRASEDYCK, AND W. HACKBUSCH,
Hierarchical matrices.
http://www.mis.mpg.de/scicomp/Fulltext/WS_
HMatrices.pdf, 2004.

Hoemmen Comm.-avoiding KSMs

http://www.mis.mpg.de/scicomp/Fulltext/WS_HMatrices.pdf
http://www.mis.mpg.de/scicomp/Fulltext/WS_HMatrices.pdf

Appendix
Extra slides

Block Krylov methods?
Preconditioning

Acknowledgments

Bibliography

Bibliography II

S. CHANDRASEKARAN, M. GU, AND W. LYONS, A fast and
stable adaptive solver for hierarchically semi-separable
representations, May 2004.

A. T. CHRONOPOULOS AND C. W. GEAR, s-step iterative
methods for symmetric linear systems, J. Comput. Appl.
Math., 25 (1989), pp. 153–168.

A. T. CHRONOPOULOS AND A. B. KUCHEROV, A parallel
Krylov-type method for nonsymmetric linear systems, in
High Performance Computing - HiPC 2001: Eighth
International Conference, Hyderabad, India, December
17-20, 2001. Proceedings, Springer, 2001, pp. 104–114.

Hoemmen Comm.-avoiding KSMs

Appendix
Extra slides

Block Krylov methods?
Preconditioning

Acknowledgments

Bibliography

Bibliography III

E. DE STURLER, A parallel variant of GMRES(m), in
Proceedings of the 13th IMACS World Congress on
Computation and Applied Mathematics, J. J. H. Miller and
R. Vichnevetsky, eds., Dublin, Ireland, 1991, Criterion
Press.

J. ERHEL, A parallel GMRES version for general sparse
matrices, Electronic Transactions on Numerical Analysis, 3
(1995), pp. 160–176.

W. GAUTSCHI AND G. INGLESE, Lower bounds for the
condition number of Vandermonde matrices, Numer. Math.,
52 (1988), pp. 241–250.

Hoemmen Comm.-avoiding KSMs

Appendix
Extra slides

Block Krylov methods?
Preconditioning

Acknowledgments

Bibliography

Bibliography IV

W. HACKBUSCH, Hierarchische Matrizen – Algorithmen und
Analysis.
http://www.mis.mpg.de/scicomp/Fulltext/
hmvorlesung.ps, last accessed 22 May 2006, Jan. 2006.

W. D. JOUBERT AND G. F. CAREY, Parallelizable restarted
iterative methods for nonsymmetric linear systems, Part I:
Theory, International Journal of Computer Mathematics, 44
(1992), pp. 243–267.

Hoemmen Comm.-avoiding KSMs

http://www.mis.mpg.de/scicomp/Fulltext/hmvorlesung.ps
http://www.mis.mpg.de/scicomp/Fulltext/hmvorlesung.ps

Appendix
Extra slides

Block Krylov methods?
Preconditioning

Acknowledgments

Bibliography

Bibliography V

, Parallelizable restarted iterative methods for
nonsymmetric linear systems, Part II: Parallel
implementation, International Journal of Computer
Mathematics, 44 (1992), pp. 269–290.

C. E. LEISERSON, S. RAO, AND S. TOLEDO, Efficient
out-of-core algorithms for linear relaxation using blocking
covers, Journal of Computer and System Sciences, 54
(1997), pp. 332–344.

G. MEURANT, The block preconditioned conjugate gradient
method on vector computers, BIT, 24 (1984), pp. 623–633.

Hoemmen Comm.-avoiding KSMs

Appendix
Extra slides

Block Krylov methods?
Preconditioning

Acknowledgments

Bibliography

Bibliography VI

D. P. O’LEARY, The block conjugate gradient algorithm and
related methods, Linear Algebra Appl., 29 (1980),
pp. 293–322.

S. A. TOLEDO, Quantitative performance modeling of
scientific computations and creating locality in numerical
algorithms, PhD thesis, Massachusetts Institute of
Technology, 1995.

J. VAN ROSENDALE, Minimizing inner product data
dependence in conjugate gradient iteration, in Proc. IEEE
Internat. Confer. Parallel Processing, 1983.

Hoemmen Comm.-avoiding KSMs

Appendix
Extra slides

Block Krylov methods?
Preconditioning

Acknowledgments

Problems with block methods

Why not use block Krylov methods?

Solve Ax = B for multiple right-hand sides
Useful for eigenproblems (original use)
No extra latency cost
Bandwidth cost scales linearly w/ # RHS’s
Can use if only one right-hand side

Hoemmen Comm.-avoiding KSMs

Appendix
Extra slides

Block Krylov methods?
Preconditioning

Acknowledgments

Problems with block methods

Problems with block methods for Ax = b

If only one right-hand side:
Start with one right-hand side
After each restart cycle, add error vector to RHS block
High startup cost

Need s cycles of s until at full block size
Whereas, s-step always at full optimization

More complicated convergence & breakdown conditions

Hoemmen Comm.-avoiding KSMs

Appendix
Extra slides

Block Krylov methods?
Preconditioning

Acknowledgments

Restarting for stability
Extra precision for stability
Lanczos reorthogonalization
Components

Preconditioning

Modifications to matrix powers kernel
Low off-diagonal rank characterization
Possible preconditioners

Hoemmen Comm.-avoiding KSMs

Appendix
Extra slides

Block Krylov methods?
Preconditioning

Acknowledgments

Restarting for stability
Extra precision for stability
Lanczos reorthogonalization
Components

Preconditioning and matrix powers

GMRES or split-preconditioner Lanczos
Standard matrix powers kernel
Just replace A with preconditioned operator L−1AL−T

Left-preconditioned CG: need new kernel!

Hoemmen Comm.-avoiding KSMs

Appendix
Extra slides

Block Krylov methods?
Preconditioning

Acknowledgments

Restarting for stability
Extra precision for stability
Lanczos reorthogonalization
Components

New kernel for left-preconditioned CG

For a basis p0, p1, p2, . . . , define “left shift” operator lshift:
In that basis’ coordinate system, lshift ei = ei+1 (“multiply by
x”)
lshiftA(v) means replace x with matrix A

Left-preconditioned CG: need

Vs+1 = [v , lshiftM−1A(v), . . . , lshiftsM−1A(v)], and

Ws = [Av , lshiftAM−1(Av), . . . , lshifts−1
AM−1(Av)]

Hoemmen Comm.-avoiding KSMs

Appendix
Extra slides

Block Krylov methods?
Preconditioning

Acknowledgments

Restarting for stability
Extra precision for stability
Lanczos reorthogonalization
Components

Preconditioning and orthogonalization

GMRES or split-preconditioned CG: no change
Left-preconditioned CG:

M−1A usually nonsymmetric
Basis vectors not orthogonal

M-orthogonal (“conjugate”) instead
Can’t use QR to orthogonalize
Must rely on CG recurrence instead

Gram matrix V ∗
s+1Ws squares κ(A) – bad!

Avoid by using generalized QR or SVD instead

Hoemmen Comm.-avoiding KSMs

Appendix
Extra slides

Block Krylov methods?
Preconditioning

Acknowledgments

Restarting for stability
Extra precision for stability
Lanczos reorthogonalization
Components

Preconditioning and orthogonalization

GMRES or split-preconditioned CG: no change
Left-preconditioned CG:

M−1A usually nonsymmetric
Basis vectors not orthogonal

M-orthogonal (“conjugate”) instead
Can’t use QR to orthogonalize
Must rely on CG recurrence instead

Gram matrix V ∗
s+1Ws squares κ(A) – bad!

Avoid by using generalized QR or SVD instead

Hoemmen Comm.-avoiding KSMs

Appendix
Extra slides

Block Krylov methods?
Preconditioning

Acknowledgments

Restarting for stability
Extra precision for stability
Lanczos reorthogonalization
Components

Preconditioning: Low off-diagonal rank

Matrix powers: depends on boundaries being “lower
dimension” than interiors
Boundary edges of graph are off-diagonal nonzeros
Generalization: low-rank off-diagonal blocks
Can do matrix powers kernel with SVD-like representation
of partitioned matrix

Hoemmen Comm.-avoiding KSMs

Appendix
Extra slides

Block Krylov methods?
Preconditioning

Acknowledgments

Restarting for stability
Extra precision for stability
Lanczos reorthogonalization
Components

Possible preconditioners
Right generalization: low-rank off-diagonal blocks

Rank 0: block diagonal (a.k.a. block Jacobi)
Blocks can be arbitrarily complex

But effective preconditioning needs some communication!
Sparse approximate inverse (SPAI) – constrain low off-diag
rank
H, H2, HSS matrices

From integral equations with separable kernels
Continuous analogue to discrete “low-rank off-diagonal
blocks” condition

Hoemmen Comm.-avoiding KSMs

Appendix
Extra slides

Block Krylov methods?
Preconditioning

Acknowledgments

Restarting for stability
Extra precision for stability
Lanczos reorthogonalization
Components

Restarting for stability

Figure: CG(s) on a 1000× 1000 matrix with condition number 105, for
different s, with restarting after every 120 iterations.

Hoemmen Comm.-avoiding KSMs

Appendix
Extra slides

Block Krylov methods?
Preconditioning

Acknowledgments

Restarting for stability
Extra precision for stability
Lanczos reorthogonalization
Components

Extra precision for stability (1 of 3)

Figure: CG(s) (non-restarted) on a 1000× 1000 matrix with condition
number 105, for different s, with 106 bits of floating-point precision.

Hoemmen Comm.-avoiding KSMs

Appendix
Extra slides

Block Krylov methods?
Preconditioning

Acknowledgments

Restarting for stability
Extra precision for stability
Lanczos reorthogonalization
Components

Extra precision for stability (2 of 3)

Figure: CG(s) on a 1000× 1000 matrix with condition number 105, for
different s, with 212 bits of floating-point precision.

Hoemmen Comm.-avoiding KSMs

Appendix
Extra slides

Block Krylov methods?
Preconditioning

Acknowledgments

Restarting for stability
Extra precision for stability
Lanczos reorthogonalization
Components

Extra precision for stability (3 of 3)

Figure: CG(s) on a 1000× 1000 matrix with condition number 105, for
different s, with 424 bits of floating-point precision.

Hoemmen Comm.-avoiding KSMs

Appendix
Extra slides

Block Krylov methods?
Preconditioning

Acknowledgments

Restarting for stability
Extra precision for stability
Lanczos reorthogonalization
Components

Lanczos(s,t) w/ reorthogonalization

Get orthogonality estimates from Lanczos recurrence
(Paige)
Each group of s basis vectors is a TSQR Q factor
Best reorthogonalization:

Do TSQR of last group to compute Lanczos coefficients
Use Lanczos coeffs in Paige’s recurrence
If last group not orthogonal w.r.t. previous groups

Compute it explicitly
Orthogonalize against previous t − 1 groups

Finally take TSQR again of last group

Converting all groups of s to explicit storage and redoing
TSQR on them all is too expensive & unnecessary

Hoemmen Comm.-avoiding KSMs

Appendix
Extra slides

Block Krylov methods?
Preconditioning

Acknowledgments

Restarting for stability
Extra precision for stability
Lanczos reorthogonalization
Components

Components

Figure: Components of communication-avoiding Krylov methods.

Hoemmen Comm.-avoiding KSMs

Appendix
Extra slides

Block Krylov methods?
Preconditioning

Acknowledgments

Acknowledgments
NSF
DoE
ACM/IEEE

Hoemmen Comm.-avoiding KSMs

	Motivation
	Two communication-bound kernels
	Potential to avoid communication
	Data dependencies limit reuse

	Break the dependency
	Idea
	Example: GMRES
	Basis condition number
	Numerical experiments
	Our algorithms

	Previous work
	s-step CG, part 1
	s-step GMRES
	s-step CG, part 2

	Preconditioning
	Matrix powers kernel changes
	Effective preconditioning

	Future work
	Summary
	Appendix
	Bibliography

	Extra slides
	Block Krylov methods?
	Problems with block methods

	Preconditioning
	Restarting for stability
	Extra precision for stability
	Lanczos reorthogonalization
	Components

	Acknowledgments

