Communication-avoiding Krylov subspace methods

Mark Hoemmen
mhoemmen@cs.berkeley.edu
University of California Berkeley EECS

SIAM Parallel Processing for Scientific Computing 2008

Overview

- Current Krylov methods: communication-limited
- Can rearrange them to avoid communication
- Can do this in a numerically stable way
- Requires rethinking preconditioning

Motivation

- Two communication-bound kernels
- Can rearrange each kernel to avoid communication, but...
- Data dependency between the two precludes rearrangement. . .
- Unless you rearrange the Krylov method!

Krylov methods: Two communication-bound kernels

- Sparse matrix-vector multiplication (SpMV)
- Share/communicate source vector w/ neighbors
- Low computational intensity per processor
- Orthogonalization: $\Theta(1)$ reductions per vector
- Arnoldi/GMRES
- Modified Gram-Schmidt or Householder QR
- Lanczos/CG:
- Recurrence orthogonalizes implicitly

Krylov methods: Two communication-bound kernels

- Sparse matrix-vector multiplication (SpMV)
- Share/communicate source vector w/ neighbors
- Low computational intensity per processor
- Orthogonalization: $\Theta(1)$ reductions per vector
- Arnoldi/GMRES:
- Modified Gram-Schmidt or Householder QR
- Lanczos/CG:
- Recurrence orthogonalizes implicitly

Potential to avoid communication

- SpMV: Matrix powers kernel (Marghoob)
- Compute $\left[v, A v, A^{2} v, \ldots, A^{s} v\right]$
- Tiling to reuse matrix entries
- Parallel: same latency cost as one SpMV
- Sequential: only read matrix $O(1)$ times
- Orthogonalization: TSQR (Julien)
- Just as stable as Householder QR
- Parallel: same latency cost as one recluction
- Sequential: only read vectors once

Potential to avoid communication

- SpMV: Matrix powers kernel (Marghoob)
- Compute $\left[v, A v, A^{2} v, \ldots, A^{s} v\right]$
- Tiling to reuse matrix entries
- Parallel: same latency cost as one SpMV
- Sequential: only read matrix $O(1)$ times
- Orthogonalization: TSQR (Julien)
- Just as stable as Householder QR
- Parallel: same latency cost as one reduction
- Sequential: only read vectors once

Problem: Data dependencies limit reuse

- Krylov methods advance one vector at a time
- SpMV, then orthogonalize, then SpMV, ...

Figure: Data dependencies in Krylov subspace methods.

s-step Krylov methods: break the dependency

- Matrix powers kernel
- Compute basis of $\operatorname{span}\left\{v, A v, A^{2} v, \ldots, A^{s} v\right\}$
- TSQR
- Orthogonalize basis
- Use R factor to reconstruct upper Hessenberg H resp. tridiagonal T
- Solve least squares problem or linear system with H resp. T for coefficients of solution update

s-step Krylov methods: break the dependency

- Matrix powers kernel
- Compute basis of $\operatorname{span}\left\{v, A v, A^{2} v, \ldots, A^{s} v\right\}$
- TSQR
- Orthogonalize basis
- Use R factor to reconstruct upper Hessenberg H resp. tridiagonal T
- Solve least squares problem or linear system with H resp. T for coefficients of solution update

Example: GMRES

Original GMRES

1: for $k=1$ to s do
2: $\quad w=A v_{k-1}$
3: \quad Orthogonalize w against v_{0}, \ldots, v_{k-1} using Modified Gram-Schmidt
4: end for
5: Compute solution using H

Version 2: Matrix powers kernel \& TSQR

1: $W=\left[v_{0}, A v_{0}, A^{2} v_{0}, \ldots, A^{s} v_{0}\right]$
2: $[Q, R]=\operatorname{TSQR}(W)$
3: Compute H using R
4: Compute solution using H

- s powers of A for no extra latency cost
- s steps of QR for one step of latency
- But...

Motivation
Break the dependency
Previous work
Preconditioning
Future work
Summary

Idea

Example: GMRES
Basis condition number
Numerical experiments
Our algorithms

Basis computation not stable

- $v, A v, A^{2} v, \ldots$ looks familiar. . .
- It's the power method!
- Converges to principal eigenvector of A - Expect increasing linear dependence.
- Basis condition number exponential in s

Basis computation not stable

- $v, A v, A^{2} v, \ldots$ looks familiar. . .
- It's the power method!
- Converges to principal eigenvector of A
- Expect increasing linear dependence...
- Basis condition number exponential in s

Basis computation not stable

- $v, A v, A^{2} v, \ldots$ looks familiar. . .
- It's the power method!
- Converges to principal eigenvector of A
- Expect increasing linear dependence...
- Basis condition number exponential in s

Version 3: Different basis

- Just like polynomial interpolation
- Use a different basis, e.g.:
- Newton basis $W=\left[v,\left(A-\theta_{1} I\right) v,\left(A-\theta_{2} I\right)\left(A-\theta_{1} I\right) v, \ldots\right]$
- Get shifts θ_{i} for free - Ritz values
- Can change shifts with each group of s
- Chebyshev basis $W=\left[v, T_{1}(v), T_{2}(v), \ldots\right]$
- Use condition number bounds to scale $T_{k}(z)$
- Uncertain sensitivity of $\kappa_{2}(W)$ to bounds

Motivation
Break the dependency
Previous work
Preconditioning
Future work
Summary

Basis condition number

Figure: Condition number of various bases as a function of basis length s. Matrix A is a $10^{6} \times 10^{6}$ 2-D Poisson operator.

Numerical experiments

- Diagonal $10^{4} \times 10^{4}$ matrix, $\kappa_{2}(A)=10^{8}$
- $s=24$
- Newton: basis condition \# about 10^{14}
- Monomial: basis condition \# about 10^{16}

Motivation
Break the dependency
Previous work
Preconditioning
Future work
Summary

Idea
Example: GMRES
Basis condition number
Numerical experiments
Our algorithms

Better basis pays off: restarting

Figure: Restart after every group of s steps

Motivation
Break the dependency
Previous work
Preconditioning
Future work
Summary

Idea
Example: GMRES
Basis condition number
Numerical experiments
Our algorithms

Better basis pays off: less restarting

Figure: Restart after 8 groups of $s=24$ steps.

Krylov methods we can rearrange

- s-step Arnoldi / GMRES
- s-step symmetric Lanczos / CG
- Need not restart after each group of s
- Just update TSQR factorization

Previous work: s-step CG, part 1

- Van Rosendale 1983, Chronopoulos 1989, ...
- Compute $W=\left[v, A v, A^{2} v, \ldots, A^{s} v\right]$
- Get solution update coefficients from $W^{\top} W$
- Unstable
- Monomial basis $\left(\kappa_{2}(W)\right.$ is $\left.\Theta\left(2^{s}\right)\right)$
- Gram matrix $W^{\top} W$ (squares $\left.\kappa_{2}(A)\right)$
- No matrix powers kernel
- No preconditioning

Previous work: s-step GMRES

- De Sturler 1991, Bai et al. 1991, et al.
- More stable
- Newton basis, not monomial
- QR, not Gram matrix
- No matrix powers kernel
- No preconditioning
- Must restart after each group of s

Previous work: s-step CG, part 2

- Toledo 1995 (PhD thesis)
- Developed as part of a matrix powers kernel
- For (un)structured low-dimensional grids
- Also for multigrid-like hierarchical graphs
- Based on Chronopoulos 1989
- Suggested change of basis for stability
- Formed Gram matrix $W^{\top} W$ (squares $\kappa_{2}(A)$)
- No preconditioning

Preconditioning: matrix powers kernel changes

- GMRES with left preconditioning (or any kind)
- $v, M^{-1} A v,\left(M^{-1} A\right)^{2} v, \ldots,\left(M^{-1} A\right)^{s} v$
- Symmetric Lanczos / CG with split preconditioning

$$
\text { - } v, L^{-1} A L^{-T} v, \ldots,\left(L^{-1} A L^{-T}\right)^{s} v
$$

- Symmetric Lanczos / CG with left preconditioning

- Works with any basis

Preconditioning: matrix powers kernel changes

- GMRES with left preconditioning (or any kind)
- $v, M^{-1} A v,\left(M^{-1} A\right)^{2} v, \ldots,\left(M^{-1} A\right)^{s} v$
- Symmetric Lanczos / CG with split preconditioning

$$
v, L^{-1} A L^{-T} v, \ldots,\left(L^{-1} A L^{-T}\right)^{s} v
$$

- Symmetric Lanczos / CG with left preconditioning
- $V=\left[v, M^{-1} A v, \ldots,\left(M^{-1} A\right)^{s} v\right]$, and
- $W=\left[A v, A M^{-1} A v, \ldots,\left(A M^{-1}\right)^{s} A v\right]$
- Works with any basis

Effective preconditioning

- Easy to limit communication if connectivity local
- Sparse: "looks like a low-dimensional mesh"
- General: low-rank off-diagonal blocks
- Rank only grows linearly in s
- Matrix and preconditioner
- e.g., hierarchical matrices, semiseparable, fast multipole

Figure: Discretization of $\log (|x-y|)$ on interval.

Future work

- Preconditioner implementations
- Performance tuning (choosing s)
- Extension to eigensolvers
- Lanczos biorthogonalization (e.g., Bi-CG)
- Combine with block Krylov methods
- Block methods can already use TSQR
- Does combining block and s-step pay?

Summary

- s-step Krylov methods incomplete before:
- Either not stable, not scalable, or both
- Had to restart between groups of s
- No preconditioning / not part of optimizations
- Now we have all the pieces!
- Stable, optimized kernels
- Can do restarting or not
- Preconditioning

Bibliography I

R Z. Bai, D. Hu, and L. Reichtel, A Newton basis GMRES implementation, IMA Journal of Numerical Analysis, 14 (1994), pp. 563-581.
(A. H. Baker, J. M. Dennis, and E. R. Jessup, On improving linear solver performance: A block variant of GMRES, SIAM J. Sci. Comp., 27 (2006), pp. 1608-1626.

围 S. Börm, L. Grasedyck, and W. Hackbusch, Hierarchical matrices.
http://www.mis.mpg.de/scicomp/Fulltext/WS_ HMatrices.pdf, 2004.

Bibliography II

冨 S．Chandrasekaran，M．Gu，and W．Lyons，A fast and stable adaptive solver for hierarchically semi－separable representations，May 2004.

图 A．T．Chronopoulos and C．W．Gear，s－step iterative methods for symmetric linear systems，J．Comput．Appl． Math．， 25 （1989），pp．153－168．

囯 A．T．Chronopoulos and A．B．Kucherov，A parallel Krylov－type method for nonsymmetric linear systems，in High Performance Computing－HiPC 2001：Eighth International Conference，Hyderabad，India，December 17－20，2001．Proceedings，Springer，2001，pp．104－114．

Bibliography III

E. DE Sturler, A parallel variant of GMRES(m), in Proceedings of the 13th IMACS World Congress on Computation and Applied Mathematics, J. J. H. Miller and R. Vichnevetsky, eds., Dublin, Ireland, 1991, Criterion Press.
䡒 J. ERHEL, A parallel GMRES version for general sparse matrices, Electronic Transactions on Numerical Analysis, 3 (1995), pp. 160-176.

- W. Gautschi and G. Inglese, Lower bounds for the condition number of Vandermonde matrices, Numer. Math., 52 (1988), pp. 241-250.

Bibliography IV

W. Hackbusch, Hierarchische Matrizen - Algorithmen und Analysis.
http://www.mis.mpg.de/scicomp/Fulltext/ hmvorlesung.ps, last accessed 22 May 2006, Jan. 2006.
雷 W. D. Joubert and G. F. Carey, Parallelizable restarted iterative methods for nonsymmetric linear systems, Part I: Theory, International Journal of Computer Mathematics, 44 (1992), pp. 243-267.

Bibliography V

n . Parallelizable restarted iterative methods for nonsymmetric linear systems, Part II: Parallel implementation, International Journal of Computer Mathematics, 44 (1992), pp. 269-290.

嗇 C. E. Leiserson, S. Rao, and S. Toledo, Efficient out-of-core algorithms for linear relaxation using blocking covers, Journal of Computer and System Sciences, 54 (1997), pp. 332-344.

嗇 G. Meurant, The block preconditioned conjugate gradient method on vector computers, BIT, 24 (1984), pp. 623-633.

Bibliography VI

目 D. P. O'LEARY, The block conjugate gradient algorithm and related methods, Linear Algebra Appl., 29 (1980), pp. 293-322.
R. A. Toledo, Quantitative performance modeling of scientific computations and creating locality in numerical algorithms, PhD thesis, Massachusetts Institute of Technology, 1995.

國 J. van Rosendale, Minimizing inner product data dependence in conjugate gradient iteration, in Proc. IEEE Internat. Confer. Parallel Processing, 1983.

Why not use block Krylov methods?

- Solve $A x=B$ for multiple right-hand sides
- Useful for eigenproblems (original use)
- No extra latency cost
- Bandwidth cost scales linearly w/ \# RHS's
- Can use if only one right-hand side

Problems with block methods for $A x=b$

- If only one right-hand side:
- Start with one right-hand side
- After each restart cycle, add error vector to RHS block
- High startup cost
- Need s cycles of s until at full block size
- Whereas, s-step always at full optimization
- More complicated convergence \& breakdown conditions

Preconditioning

- Modifications to matrix powers kernel
- Low off-diagonal rank characterization
- Possible preconditioners

Preconditioning and matrix powers

- GMRES or split-preconditioner Lanczos
- Standard matrix powers kernel
- Just replace A with preconditioned operator $L^{-1} A L^{-T}$
- Left-preconditioned CG: need new kernel!

New kernel for left-preconditioned CG

- For a basis $p_{0}, p_{1}, p_{2}, \ldots$, define "left shift" operator Ishift:
- In that basis' coordinate system, Ishift $e_{i}=e_{i+1}$ ("multiply by $x^{\prime \prime}$)
- $\operatorname{Ishift}_{A}(v)$ means replace x with matrix A
- Left-preconditioned CG: need

$$
\begin{aligned}
V_{s+1} & =\left[v, \operatorname{Ishift}_{M^{-1} A}(v), \ldots, \text { Ishift }_{M^{-1} A}^{s}(v)\right], \text { and } \\
W_{s} & =\left[A v, \operatorname{Ishift}_{A M^{-1}}(A v), \ldots, \operatorname{Ishift}_{A M^{-1}}^{s-1}(A v)\right]
\end{aligned}
$$

Preconditioning and orthogonalization

- GMRES or split-preconditioned CG: no change
- Left-preconditioned CG:
- $M^{-1} A$ usually nonsymmetric
- Basis vectors not orthogonal
- M-orthogonal ("conjugate") instead
- Can't use QR to orthogonalize
- Must rely on CG recurrence instead
- Gram matrix $V_{s+1}^{*} W_{S}$ squares $\kappa(A)$ - bad!
- Avoid by using generalized QR or SVD instead

Preconditioning and orthogonalization

- GMRES or split-preconditioned CG: no change
- Left-preconditioned CG:
- $M^{-1} A$ usually nonsymmetric
- Basis vectors not orthogonal
- M-orthogonal ("conjugate") instead
- Can't use QR to orthogonalize
- Must rely on CG recurrence instead
- Gram matrix $V_{s+1}^{*} W_{s}$ squares $\kappa(A)$ - bad!
- Avoid by using generalized QR or SVD instead

Preconditioning: Low off-diagonal rank

- Matrix powers: depends on boundaries being "lower dimension" than interiors
- Boundary edges of graph are off-diagonal nonzeros
- Generalization: low-rank off-diagonal blocks
- Can do matrix powers kernel with SVD-like representation of partitioned matrix

Possible preconditioners
Right generalization: low-rank off-diagonal blocks

- Rank 0: block diagonal (a.k.a. block Jacobi)
- Blocks can be arbitrarily complex
- But effective preconditioning needs some communication!
- Sparse approximate inverse (SPAI) - constrain low off-diag rank
- $\mathcal{H}, \mathcal{H}^{2}$, HSS matrices
- From integral equations with separable kernels
- Continuous analogue to discrete "low-rank off-diagonal blocks" condition

Restarting for stability
Extra precision for stability
Lanczos reorthogonalization
Components

Restarting for stability

三・シ引
Hoemmen
Comm．－avoiding KSMs

Restarting for stability
Extra precision for stability
Lanczos reorthogonalization
Components

Extra precision for stability (1 of 3)

Hoemmen
Comm.-avoiding KSMs

Restarting for stability
Extra precision for stability
Lanczos reorthogonalization
Components

Extra precision for stability (2 of 3)

[^0]Restarting for stability
Extra precision for stability
Lanczos reorthogonalization
Components

Extra precision for stability (3 of 3)

Lanczos(s, t) w/ reorthogonalization

- Get orthogonality estimates from Lanczos recurrence (Paige)
- Each group of s basis vectors is a TSQR Q factor
- Best reorthogonalization:
- Do TSQR of last group to compute Lanczos coefficients
- Use Lanczos coeffs in Paige's recurrence
- If last group not orthogonal w.r.t. previous groups
- Compute it explicitly
- Orthogonalize against previous $t-1$ groups
- Finally take TSQR again of last group
- Converting all groups of s to explicit storage and redoing TSQR on them all is too expensive \& unnecessary

Components

Algorithms

Figure: Components of communication-avoiding Krylov methods.

Acknowledgments
 - NSF
 - DoE
 - ACM/IEEE

[^0]: Hoemmen
 Comm.-avoiding KSMs

