Optimizing Sparse Matrix Computations for
Register Reuse in SPARSITY

Eun-Jin Im' and Katherine Yelick?

L School of Computer Science, Kookmin University, Seoul, Korea
ejim@cs.kookmin.ac.kr,
2 Computer Science Division, University of California, Berkeley, CA 94720, USA
yelick@cs.Berkeley.EDU

Abstract. Sparse matrix-vector multiplication is an important com-
putational kernel that tends to perform poorly on modern processors,
largely because of its high ratio of memory operations to arithmetic
operations. Optimizing this algorithm is difficult, both because of the
complexity of memory systems and because the performance is highly
dependent on the nonzero structure of the matrix. The Sparsity sys-
tem is designed to address these problem by allowing users to automat-
ically build sparse matrix kernels that are tuned to their matrices and
machines. The most difficult aspect of optimizing these algorithms is
selecting among a large set of possible transformations and choosing pa-
rameters, such as block size. In this paper we discuss the optimization of
two operations: a sparse matrix times a dense vector and a sparse matrix
times a set of dense vectors. Our experience indicates that for matrices
arising in scientific simulations, register level optimizations are critical,
and we focus here on the optimizations and parameter selection tech-
niques used in Sparsity for register-level optimizations. We demonstrate
speedups of up to 2x for the single vector case and 5x for the multiple
vector case.

1 Introduction

Matrix-vector multiplication is used in scientific computation, signal and image
processing, document retrieval, and many other applications. In many cases, the
matrices are sparse, so only the nonzero elements and their indices are stored.
The performance of sparse matrix operations tends to be much lower than their
dense matrix counterparts for two reasons: 1) there is overhead to accessing the
index information in the matrix structure and 2) the memory accesses tend to
have little spatial or temporal locality. For example, on an 167 MHz UltraSPARC
I, there is a 2x slowdown due to the data structure overhead (measured by
comparing a dense matrix in sparse and dense format) and an additional 5x
slowdown for matrices that have a nearly random nonzero structure.

The Sparsity system is designed to help users obtain highly tuned sparse
matrix kernels without having to know the details of their machine’s memory
hierarchy or how their particular matrix structure will be mapped onto that



hierarchy. Sparsity performs several optimizations, including register blocking,
cache blocking, loop unrolling, matrix reordering, and reorganization for multiple
vectors [Im00]. The optimizations involve both code and data structure transfor-
mations, which can be quite expensive. Fortunately, sparse matrix-vector multi-
plication is often used in iterative solvers or other settings where the same matrix
is multiplied by several different vectors, or matrices with different numerical en-
tries but the same or similar nonzero patterns will be re-used. Sparsity therefore
uses transformations that are specialized to a particular matrix structure, which
we will show is critical to obtaining high performance.

In this paper we focus on register level optimizations, which include register
blocking and reorganization for multiple vectors. The challenge is to select the
proper block size and the right number of vectors to maximize performance. In
both cases there are trade-offs which make the parameters selection very sensi-
tive to both machine and matrix. We explore a large space of possible techniques,
including searching over a set of parameters on the machine and matrix of in-
terest and use of performance models to predict which parameter settings will
perform well. For setting the register block size, we present a performance model
based on some matrix-independent machine characteristics, combined with an
analysis of blocking factors that is computed by a statistical sampling of the
matrix structure. The model works well in practice and eliminates the need for
a large search. For choosing the optimal number of vectors in applications where
a large number or vectors are used, we present a heuristic for choosing the block
size automatically, which works well on many matrices, but in some cases we
find that searching over a small number of vectors produces much better results.

2 Register Optimizations for Sparse Matrices

In this section we describe two optimizations: register blocking and reorganiza-
tion for multiple vectors. There are many popular sparse matrix formats, but
to make this discussion concrete, assume we start with a matrix in Compressed
Sparse Row (CSR) format. In CSR, all row indices are stored (by row) in one
vector, all matrix values are stored in another, and a separate vector of indices
indicates where each row starts within these two vectors. In the calculation of
y = A X x, where A is a sparse matrix and x and y are dense vectors, the com-
putation may be organized as a series of dot-products on the rows. In this case,
the elements of A are accessed sequentially but not reused. The elements of y
are also accessed sequentially, but more importantly they are re-used for each
nonzero in the row of A. The access to x is irregular, as it depends on the column
indices of nonzero elements in matrix A.

Register re-use of y and A cannot be improved, but access to x may be op-
timized if there are elements in A that are in the same column and nearby one
another, so that an element of x may be saved in a register. To improve local-
ity, Sparsity stores a matrix as a sequence of small dense blocks, and organizes
the computation to compute each block before moving on to the next. To take
advantage of the improved locality for register allocation, the block sizes need



to be fixed at compile time. Sparsity therefore generates code for matrices con-
taining only full dense blocks of some fixed size r x ¢, where each block starts on
a row that is a multiple of r and a column that is a multiple of ¢. The code for
each block is also unrolled, with instruction scheduling and other optimizations
applied by the C compiler. The assumption is that all nonzeros must be part of
some 1 X ¢ block, so Sparsity will transform the data structure to add explicit
zeros where necessary. While the idea of blocking or tiling for dense matrix oper-
ations is well-known (e.g., [LRW91]), the sparse matrix transformation is quite
different, since it involves filling in zeros, and the choice of r and ¢ will depend
on the matrix structure as described in section 3.

We also consider a second register level optimization of matrix-vector mul-
tiplication when the matrix is going to be multiplied by a set of vectors. This
is less common than the single vector case, but practical when there are multi-
ple right-hand sides in an iterative solver, or in blocked eigenvalue algorithms,
such as block Lanczos [Mar95] or block Arnoldi [BCD*00]. Matrix-vector mul-
tiplication accesses each matrix element only once, whereas a matrix times a
set of k vectors will access each matrix element &k times. While there is much
more potential for high performance with multiple vectors, the advantage will
not be exhibited in straightforward implementations. The basic optimization is
to interchange loops so that for each matrix element, the source and destination
values for all vectors are accessed before going to the next element.

Sparsity contains a code generator that produces loop-unrolled C code for
given block sizes and for a fixed number of vectors. If the number of vectors is
very large, the loop over the vectors is strip-mined, with the resulting inner loop
becoming one of these unrolled loops. The optimized code removes some of the
branch statements and load stalls by reordering instructions, all of which further
improve the performance beyond simply interchanging loops.

3 Choosing the Register Block Size

Register blocking does not always improve performance if the sparse matrix
does not have small dense blocks. Even when it has such blocks, the optimizer
must pick a good block size for a given matrix and machine. We have developed
a performance model that predicts the performance of the multiplication for
various block sizes without actually blocking and running the multiplication.
The model is used to select a good block size.

There is a trade-off in the choice of block size for sparse matrices. In general,
the computation rate will increase with the block size, up to some limit at which
register spilling becomes necessary. In most sparse matrices, the dense sub-blocks
that arise naturally are relatively small: 2 x 2, 3 x 3 and 6 x 6 are typical values.
When a matrix is converted to a blocked format, some zero elements are filled
in to make a complete r x ¢ block. These extra zero values not only consume
storage, but increase the number of floating point operations, because they are
involved in the sparse matrix computation. The number of added zeros in the
blocked representation are referred to as fill, and the ratio of entries before and
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after fill is the fill overhead. Our performance model has two basic components:
1) An approximation for the Mflop rate of a matrix with a given block size.
2) An approximation for the amount of unnecessary computation that will be
performed due to fill overhead.

The first component cannot be exactly determined without running the re-
sulting blocked matrix on each machine of interest. We therefore use an upper
bound for this Mflop rate, which is the performance of a dense matrix stored in
the blocked sparse format. The second component could be computed exactly
for a given matrix, but is quite expensive to compute for multiple block sizes.
Instead, we develop an approximation that can be done in a single pass over
only a subset of the matrix. These two components differ in the amount of in-
formation they require: the first needs the target machine but not the matrix,
whereas the second needs the matrix structure but not the machine.

Figure 1 show the performance of sparse matrix vector multiplication for
a dense matrix using register-blocked sparse format, on an UltraSPARC I and
a MIPS R10000. We vary the block size within a range of values for r and ¢
until the performance degrades. The data in the figure uses a 1000 x 1000 dense
matrix, but the performance is relatively insensitive to the total matrix size as
long as the matrix does not fit in cache but does fit in main memory.

Register blocking performance: UltraSPARC
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columns in register block columns in register block

Fig. 1. Performance profile of register-blocked code on an UltraSPARC I
(left) and a MIPS R10000 (right): These numbers are taken for a 1000 x 1000
dense matrix represented in sparse blocked format. Each line is for a fixed number of
rows (1), varying the number of columns (c) from 1 to 12.

To approximate the unnecessary computation that would result from register
blocking, we estimate the fill overhead. To keep the cost of this computation low,
two separate computations are made over the matrix of interest for a column
blocking factor (¢) and a row blocking factor (), each being done for a square
block size and examining only a fraction of the matrix. For example, to compute
r we sample every k' row to compute the fill overhead for that row for every
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value of r being considered. We use this estimate of fill overhead to predict the
performance of an r x r blocking of a particular matrix A as:

performance of a dense matriz in ¢ X ¢ sparse blocked format
estimated fill overhead for ¢ x ¢ blocking of A

While k and the range of r can easily be adjusted, we have found that setting
k to 100 and letting r range from 1 to 7,4, is sufficient, where 4, is the value
of r for which the dense matrix demonstrates its best performance. The value of
r is chosen to be the one that maximizes the above performance estimate for r x r
blocks. The choice of ¢ is computed independently by an analogous algorithm on
columns. Note that while these two computations use square blocks, the resulting
values of r and ¢ may be different.

4 Choosing the Number of Vectors

The question of how many vectors to use when multiplying by a set of vectors
is partly dependent on the application and partly on the performance of the
multiplication operation. For example, there may be a fixed limit to the number
of right-hand sides or convergence of an iterative algorithm may slow as the
number of vector increases. If there is a large number of vectors available, and
the only concern is performance, the optimization space is still quite complex
because there are three parameters to consider: the number of rows and columns
in register blocks, and the number of vectors.

Multi-vector Reg. Blocking for random matrices: UltraSPARC Multi-vector Reg. Blocking for dense matrices: [, 10510
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Fig. 2. Register-blocked, multiple vector performance on an UltraSPARC I,
varying the number of vectors.

Here we look at the interaction between the register-blocking factors and
the number of vectors. This interaction is particularly important because the
register-blocked code for multiple vectors unrolls both the register block and
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Multi-vector Reg. Blocking for random matrices: MIPS R10000 Multi-vector Reg. Blocking for dense matrices: MIPS R10000
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Fig. 3. Register-blocked, multiple vector performance on a MIPS R10000,
varying the number of vectors.

multiple vector loops. How effectively the registers are reused in this inner loop
is dependent on the compiler. We will simplify the discussion by looking at two
extremes in the space of matrix structures: a dense 1K x 1K matrix in sparse
format, and sparse 10K x 10K randomly generated matrices with 200K (.2%) of
the entries being nonzero. In both cases, the matrices are blocked for registers,
which in the random cases means that the 200K nonzero entries will be clustered
differently, depending on the block size. We will also limited our data to square
block sizes from 1 x 1 up to 10 x 10.

Figures 2 and 3 show the effect of changing the block size and the number of
vectors on an UltraSPARC T and MIPS R10000. (The shape of these graphs is
different for other machines, but the basic observations below are the same.) The
figures shows the performance of register-blocked code optimized for multiple
vectors, with the left-hand side showing the randomly structured matrix and
the right-hand side showing the dense matrix.

Multiple vectors typically pay off for matrices throughout the regularity and
density spectrum, and we can get some sense of this but looking at the dense
and random matrices. For most block sizes, even changing from one vector to
two is a significant improvement. However, with respect to choosing optimization
parameters, the dense and random matrices behave very differently, and there
is also quite a bit of variability across machines. There are two characteristics
that appear common across both these two machines and others we have studied.
First, the random matrix tends to have a peak with some relatively small number
of vectors (2-5), whereas for the dense matrix it is at 12 (and generally in the
range from 9 to 12 on other machines). For the dense matrix, all of these vectors
consume register resources, so the optimal block size is relatively small compared
to the that of the single vector code on the same matrix. The behavior of the
R10000 is smoother than that of the UltraSPARC, which is probably a reflection
of the more expensive memory system on the R10000.



5 Performance of Register Optimizations

We have generated register blocked codes for varying sizes of register blocks and
varying numbers of vectors using Sparsity, and have measured their performance
on several machines [Im00]. In this paper we will present the results for a set of 39
matrices on the UltraSPARC I and MIPS R10000. The matrices in the set are
taken from fluid dynamics, structural modeling, chemistry, economics, circuit
simulation and device simulation, and we include one dense matrix in sparse
format for comparison. We have omitted matrices from linear programming and
information retrieval, which have very little structure and therefore to not benefit
from register blocking optimizations. Other optimizations such as cache blocking
prove to be useful on some of those.

Figure 5 summarizes the 39 matrices. We have placed the matrices in the
table according to our understanding of the application domain from which is
was derived. Matrix 1 is a dense matrix. Matrices 2 through 17 are from Finite
Element Method (FEM) applications, which in several cases means there are
dense sub-locks within much of the matrix. Note however, that the percentage
of nonzeros is still very low, so these do not resemble the dense matrix. Matrices
18 through 39 are from structural engineering and device simulation. All the
matrices are square, and although some are symmetric, we do not try to take
advantage of symmetry here. The matrices are roughly ordered by the regularity
of nonzero patterns, with the more regular ones at the top.

Speedup of register blocked code: UltraSPARC Speedup of register blocked code: MIPS R10000
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Fig.4. Speedup of register-blocked multiplication on a 167 MHz Ultra-
SPARC I (left) and a 200MHz MIPS R10000 (right).

Figure 4 shows the effect of register blocking with a single vector on the 39
matrices in table 5. (The Mflop rate was calculated using only those arithmetic
operations required by the original representation, not those induced by fill from
blocking.) The benefit is highest for the lower numbered matrices, which tend
to have naturally occurring dense subblocks, although they are not uniform, so
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| |Name |App1ication Area || Dimension|Nonzeros|Sparsity|

1|dense1000|Dense Matrix 1000x 1000| 1000000 100

2|raefsky3 |Fluid structure interaction 21200x21200| 1488768 0.33

3linaccura [Accuracy problem 16146x16146| 1015156 0.39

4|bcsstk35  [Stiff matrix automobile frame 30237x30237| 1450163 0.16

5|venkatOl |Flow simulation 62424x62424| 1717792 0.04

6|crystk02 |[FEM Crystal free vibration 13965x13965| 968583 0.50

T|crystk03 |FEM Crystal free vibration 24696x24696| 1751178 0.29

8|nasasrb  [Shuttle rocket booster 54870x54870| 2677324 0.09

9|3dtube  |3-D pressure tube 45330x45330| 3213332 0.16
10{ct20stif |CT20 Engine block 52329x52329| 2698463 0.10
11|bai Airfoil eigenvalue calculation 23560x23560| 484256 0.09
12|raefsky4 |buckling problem 19779x19779| 1328611 0.34
13|ex11 3D steady flow calculation 16614x16614| 1096948 0.40
14|rdist1 Chemical process separation 4134x 4134 94408 0.55
15|vavasis3 |2D PDE problem 41092x41092| 1683902 0.10
16|orani678 |Economic modeling 2529x 2529 90185 1.41
17|rim FEM fluid mechanics problem 22560x22560| 1014951 0.20
18|memplus |Circuit Simulation 17758x17758| 126150 0.04
19|gematll |Power flow 4929x 4929 33185 0.14
20(1hr10 Light hydrocarbon recovery 10672x10672| 232633 0.20
21|goodwin |Fluid mechanics problem 7320x 7320| 324784 0.61
22|bayer02 |Chemical process simulation 13935x13935 63679 0.03
23|bayer10 |[Chemical process simulation 13436x13436 94926 0.05
24|coater2  |Simulation of coating flows 9540x 9540 207308 0.23
25|finan512 |Financial portfolio optimization 74752x74752| 596992 0.01
26|onetone2 |Harmonic balance method 36057x36057| 227628 0.02
27 pwt Structural engineering problem 36519x36519| 326107 0.02
28|vibrobox |Structure of vibroacoustic problem||12328x12328| 342828 0.23
29|wang4 Semiconductor device simulation |/26068x26068| 177196 0.03
30|Insp3937 |Fluid flow modeling 3937x 3937 25407 0.16
31|Ins3937  |Fluid flow modeling 3937x 3937 25407 0.16
32|shermanb [Oil reservoir modeling 3312x 3312 20793 0.19
33|sherman3 |Oil reservoir modeling 5005x 5005 20033 0.08
34|orsregl  |Oil reservoir simulation 2205x 2205 14133 0.29
35|saylr4 Oil reservoir modeling 3564x 3564 22316 0.18
36|shyy161 |Viscous flow calculation 76480x76480| 329762 0.01
37|wang3 Semiconductor device simulation ||26064x26064| 177168 0.03
38| mcfe astrophysics 765x 765 24382 4.17
39|jpwh991 |Circuit physics modeling 991x 991 6027 0.61

Fig. 5. Matrix benchmark suite: The basic characteristic of each matrix used in

our experiments is shown. The sparsity column is the percentage of nonzeros.
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Speedup of register blocked code for 9 vectors: UltraSPARC Speedup of register blocked code for 9 vectors: MIPS R10000
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Fig. 6. Speedup of register-blocked, multiple vector code using 9 vectors.

there is fill overhead. Some of the matrices that have no natural subblocks still
benefit from small blocks.

Figure 6 shows the speedup of register blocking for multiple vectors on a same
matrix set. The number of vectors is fixed at 9, and it shows a tremendous payoff.
On the MIPS R10000, the lower-number matrices have a slight advantage, and on
the UltraSPARC, the middle group of matrices sees the highest benefit; these are
mostly matrices from scientific simulation problems with some regular patterns,
but without the dense sub-blocks that appear naturally in the lower-numbered
FEM matrices. Overall, benefits are much more uniform across matrices than
for simple register blocking.

6 Related Work

Sparsity is related to several other projects that automatically tune the perfor-
mance of algorithmic kernels for specific machines. In the area of sparse matrices,
these systems include the sparse compiler that takes a dense matrix program as
input and generates code for a sparse implementation [Bik96]. As in Sparsity,
the matrix is examined during optimization, although the sparse compiler looks
for higher level structure, such as bands or symmetry. This type of analysis is
orthogonal to ours, and it is likely that the combination would prove useful. The
Bernoulli compiler also takes a program written for dense matrices and compiles
it for sparse ones, although it does not specialize the code to a particular ma-
trix structure. Toledo [Tol97] demonstrated some of the performance benefits or
register blocking, including a scheme that mixed multiple block sizes in a single
matrix, and PETSc (Portable, Extensible Toolkit for Scientific Computation)
[BGMSO00] uses a application-specified notion of register blocking for Finite Ele-
ment Methods. Toledo and many others have explored the benefits of reordering
sparse matrices, usually for parallel machines or when the natural ordering of
the application has been destroyed. Finally, we note that the BLAS Technical



Forum has already identified the need for runtime optimization of sparse ma-
trix routines, since they include a parameter in the matrix creation routine to
indicate how frequently matrix-vector multiplication will be performed [BLA99].

7 Conclusions

In this paper, we have described optimization techniques to increase register
reuse in sparse matrix-vector multiplication for one or more vectors. We de-
scribed some parts of the Sparsity system that generate code for fixed block
sizes, filling in zeros as necessary. To select the register block size, we showed
that a simple performance model that separately takes a machine performance
profile and a matrix fill estimation worked very well. The model usually chooses
the optimal block size, producing speedups of around 2x for some matrices.
Even on matrices where the blocks were not evident at the application level,
small blocks proved useful on some machines. We also extended the Sparsity
framework to generate code for multiple vectors, where the benefits are are high
as 5x on the machines and matrices shown here.!
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