(1) \% M

We compare two approaches to compute the triple-product. While one-phase scheme has an advantage over two-phase scheme by using a knowledge on the structure of matrix, the summation of sparse matrices becomes bottleneck.
Hence, we propose a row-based one-phase scheme, where the summation of sparse matrices is replaced by the summation of sparse vectors, which can be computed efficiently using a sparse accumulator. We also improved the performance of the row-based one-phase scheme through use of additional data structures.

Two-Phase scheme

$\cdot P=\operatorname{mult}\left(A, Q=\operatorname{mult}\left(H, A^{t}\right)\right)$

In Computing $C=m u l t(A, B)$
For $B_{* i}=$ each column of B,
For each nonzero of $B_{* i}$, do the following

Efficient Sparse Vector Addition using a sparse accumulator

One-Phase Scheme

This scheme can take advantage of known structure of H, and symmetry of P, using the following equation.

a summation of sparse matrices is slow.

Row-based One-phase Scheme Instead of adding sparse matrices, add sparse vectors for each row(column) of P.
Consider row k of P (let $B_{*_{i}}=A_{i} r_{i}$)
$=\sum_{i} a_{k j} d_{j} A_{A_{j}}{ }^{t}+\sum_{i} b_{k i} B_{x_{i}}$

$$
=\sum_{j: a_{y} \neq 0} a_{k j d} d_{j} A_{\cdot j}{ }^{\prime}+\sum_{i \cdot b_{u} \neq 0} b_{k i} B_{* i}{ }^{\prime}
$$

-Row-major structures of A and B are needed to access $\left\{j: a_{k j}!=0\right\}$ and $\left\{i: b_{k i}!=0\right\}$ efficiently.

Improved One-phase Scheme

Compute a matrix B.
Create row-major structure of A and B.

Modeled and Measured Execution Time

We predict lower and upper bounds of the execution time for one-phase and two-phase scheme using our memory model and it is confirmed by measurements that one-phase scheme has advantage of execution time and memory over two-phase scheme.
In addition, the preprocessing cost is lower in one-phase scheme.

Memory Performance Modeling

- Memory Access
- Dominant factor in One-phase scheme :
access of elements of A in $A^{*} H^{*} A^{t}$:

Problem Context

- In solving a primal-dual optimization problem for a circuit design, computation of $P=A H A^{t}$ is repeatedly executed. (100-120 times)
- H has a symmetric block diagonal structure, $H_{i}=D_{i}+r_{i} r_{i}^{t}$

A sparse accumulator is used in one-phase and row-based two-phase schemes.

Preprocessing

-In one-phase scheme

- counting the number of nonzeros in B and P (to determine the amount of memory allocation)
- computing the structure of matrix B
- constructing row-major structure of A and B -In two-phase scheme
- generating A^{t}
- counting the number of nonzeros in P and Q

For each row(column) of P,
For j : $a_{k j}!=0$, do the following

For i : $b_{k i}!=0$, do the similar, without scaling factor, d_{i}

Utilizing the Symmetry of P

$$
P_{k k^{*}}=\sum_{j, a_{y} \pm 0} a_{k j} d_{j} A_{i, j}{ }^{\prime}+\sum_{i, b_{k}=0} b_{k i} B_{k_{i}}{ }^{t}
$$

\bullet In computing $a_{k j} d_{j} A_{* j}{ }^{t}$, compute $a_{k j} d_{j} A_{k: m, j}{ }^{t}$

- by keeping an array of indices pointing to each $A_{* j}$'s next nonzero element, unnecessary access to $A_{*_{j}}$'s is avoided. (\# of accesses to $A_{*_{j}}=\#$ of nonzeros of $A_{*_{j}}$)
-
- Dominant factor in Two-phase scheme : access of elements of A in $A^{*} B$:

$$
\sum_{i}^{\text {\#of of in } \mathrm{A}} n z\left(\mathrm{~A}_{i}\right) * n n z\left(B_{i *}\right)
$$

- Cache Miss

For sequentially accessed elements,
spatial locality is assumed to be exploited.

- Execution Time
$T=\alpha_{1}($ memory accesses $)+\sum_{i=1}^{k-1}\left(\alpha_{i+1}-\alpha_{i}\right) M_{i}+\left(\alpha_{\text {mem }}-\alpha_{k}\right) M_{k}$
α_{i} : latency of level- - cache
$\alpha_{\text {mes }}$:latency of memory
$k:$ level of caches
Achieved Mflop rate
M_{i} : cache miss in level-i cache

Example Matrix Set

from Circuit Design Application

	m(A)	n (A)	nnz(A)	nnz(H)		\# fop.	Mem.
$\begin{array}{\|r\|} \hline \text { set } \\ 1 \end{array}$	8648	42750	361K	195K	1-phase	11M	11M
					2-phase	24M	22M
$\begin{array}{r} \text { set } \\ 2 \end{array}$	14872	77406	667K	361K	1-phase	21M	20M
					2-phase	45M	41M
$\begin{array}{r} \text { set } \\ 3 \end{array}$	21096	112150	977K	528K	1-phase	31M	29M
					2-phase	66M	60M
$\begin{array}{r\|} \hline \text { set } \\ 4 \\ \hline \end{array}$	39768	217030	1913K	1028K	1-phase	60M	57M
					2-phase	129M	118M
set5	41392	244501	1633K	963K	1-phase	31M	50M
					2-phase	66M	113M

Conclusion

- Performance tuning of higher level sparse matrix operation than matrix-vector multiplication
- Speedup up to 2.1 x
- Less than half memory requirement
- An example of algebraic transformation
is used for performance tuning
- Knowledge on the special structure of the matrix is used for the algebraic transformation.

Overhead of Preprocessing relative to execution time in two-phase scheme

