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Algorithms incur 2 costs:
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Communication is expensive, computation is cheap

@ Time per flop > 1/bandwidth > latency

@ Gap between processing power and communication cost
increasing exponentially

Annual improvements
Flop rate 59%
DRAM bandwidth | 26%
DRAM latency 5%

@ Reduce communication = improve efficiency
@ Trading off communication for computation is okay
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The problem with sparse iterative solvers

Conventional GMRES (solve for Ax = b)

Q fori=1tor

Q@ w=Av_/ SpMV ¥/

© Orthogonalize w against {vy,...,vj_1} /* MGS ¥/
© Update vector v;, matrix H

© Use H, {v,...,v,} to construct the solution
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The problem with sparse iterative solvers

Conventional GMRES (solve for Ax = b)

Q fori=1tor

Q@ w=Av_/ SpMV ¥/

© Orthogonalize w against {vy,...,vj_1} /* MGS ¥/
© Update vector v;, matrix H

© Use H, {v,...,v,} to construct the solution

@ Repeated calls to sparse matrix vector multiply (SpMV) &
Modified Gram Schmidt orthogonalization (MGS)
e SpMV: performs 2 flops/matrix nonzero entry =
communication bound
e MGS: vector dot-products (BLAS level 1) = communication
bound
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The problem with sparse iterative solvers

Conventional GMRES (solve for Ax = b)

Q fori=1tor

Q@ w=Av_/ SpMV ¥/

© Orthogonalize w against {vy,...,vj_1} /* MGS ¥/
© Update vector v;, matrix H

© Use H, {v,...,v,} to construct the solution

@ Replace SpMV and MGS by new kernels:

e SpMV by matrix powers
e MGS by block Gram-Schmidt + TSQR

@ Reformulate to use the new kernels
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e The Kernels
@ The matrix powers kernel
@ Tall skinny QR
@ Block Gram-Schmidt orthogonalization

7/28



e The Kernels
@ The matrix powers kernel
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The matrix powers kernel

@ Usual kernel y = Ax communication-bound for large
matrices

e Large = does not fit in cache
o Need to read stream through the matrix

@ Given sparse matrix A, vector x, integer k > 0, compute
[p1(A)x, p2(A)X,...,pk(A)X], pi(A) degree i polynomial iA
o Easier to consider the special case: [Ax, Ax, ..., Akx]
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Naive parallel algorithm

Example: tridiagonal matrix, k = 3, 4 processors

7y07 7)( X N 71‘ 07
n x x x T
Y2 = x  x  x T2
Y3 x  x  x T3
Y4 X x Ty
Yy A x

Tridiagonal only for illustration
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Example: tridiagonal matrix, k = 3, 4 processors
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Naive parallel algorithm

Example: tridiagonal matrix, k = 3, 4 processors
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© Fetch green entries of Ax: 1 message/neighbor
© Compute local entries of A%x



Naive parallel algorithm

Example: tridiagonal matrix, k = 3, 4 processors
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Naive parallel algorithm

Example: tridiagonal matrix, k = 3, 4 processors
S
s AR AR KRR AR AR CERAR KKK RARRARKRRERR)
I I I

A3x
2

@ Fetch green entries of x: 1 message/neighbor
© Compute local entries of Ax

© Fetch green entries of Ax: 1 message/neighbor
© Compute local entries of A%x

© Fetch green entries of A%x: 1 message/neighbor
@ Compute local entries of A3x



Naive parallel algorithm

Example: tridiagonal matrix, k = 3, 4 processors
B T
-t
I I I

A3x
2

@ 3 messages/neighbor
@ k messages/neighbor in general
@ k times min. latency cost



A better parallel algorithm for matrix powers

Example: Tridiagonal matrix, k = 3, 4 processors
aaaaaaaaanax&ax&aaaﬁaaaaaaaaanaaaaaaaaa
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r 10 pro or 2 20 processor 3 30 pro



A better parallel algorithm for matrix powers

Example: Tridiagonal matrix, k = 3, 4 processors

SREEEARAREECEEEONREEEEERRRERERITRREEEES
O DN

rocessor 1 10 processor 2 20 processor 3 30 pro

@ Green+black entries of x sufficient to compute all the local
entries

@ Blue entries represent redundant computation
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Example: Tridiagonal matrix, k = 3, 4 processors
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@ Fetch ‘ghost’ entries (green) from other processors
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@ Compute required entries of Ax



A better parallel algorithm for matrix powers

Example: Tridiagonal matrix, k = 3, 4 processors
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@ Fetch ‘ghost’ entries (green) from other processors
e 1 message per neighbor

@ Compute required entries of Ax
© Compute required entries of A%x



A better parallel algorithm for matrix powers

Example: Tridiagonal matrix, k = 3, 4 processors
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NWNWMW (XX MO0MN}MMMNWMWN
QA ottt
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A better parallel algorithm for matrix powers

Example: Tridiagonal matrix, k = 3, 4 processors

NWNWNWN (00X MMMN}MMMNWMWN
SANTOERRRASEEREA S SERRRARESIERRARESES
NWNWMW (XX MO0MN}MMMNWMWN
QA ottt

r 10 pro or 2 20 processor 3 30 pro

@ 1 message/neighbor (O(k) improvement)
@ Redundant computation = want it to be small
@ Can order local+ghost entries to reuse tuned SpMV



General matrix/graph example

@ Our algorithms work for
general matrices

@ Performance
improvement best when
the surface-to-volume
ratio is small
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@ Our algorithms work for
general matrices

@ Performance
improvement best when
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General matrix/graph example

@ Our algorithms work for
general matrices

@ Performance
improvement best when
the surface-to-volume
ratio is small

Red+green+blue entries of x
needed when k =3
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Sequential algorithms: Explicitly blocked algorithm

Example 40 x 40 tr|d|agonal matrix, k =3

\\\\

@ Simulate parallel algorithm on 1 processor
@ Each block should be small enough to fit in cache
@ Redundant flops performed

@ Read the matrix once per k iterations (O(k) improvement)
= bandwidth savings
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Sequential algorithms: Implicitly blocked algorithm

Example: 40 x 40 tridiagonal matrix, k =3

Ay
2, Z ® o o oo pleNeeeeoeooe o
AAI %// xx s\\ ‘ oo o oo oelee

1 10 23 30 33 40

@ Improve upon the explicit algorithm
e Eliminate redundant computation

@ No redundant flops
@ Implicit blocking by reordering computations
@ Bookkeeping overhead for computation schedule

@ Computation inside blocks depends on block order
= need to solve Traveling Salesman problems

14/28



Hybrid algorithm for multicores

@ Multicore = 2 kinds of communication:

e Inter-core on-chip
e DRAM Off-chip
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@ Multicore = 2 kinds of communication:

e Inter-core on-chip
e DRAM Off-chip

@ Parallel algorithm minimizes inter-core on-chip
communication

@ Sequential algorithm minimizes off-chip communication
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Hybrid algorithm for multicores

@ Multicore = 2 kinds of communication:
e Inter-core on-chip
e DRAM Off-chip
@ Parallel algorithm minimizes inter-core on-chip
communication
@ Sequential algorithm minimizes off-chip communication
@ Hierarchical blocking of the matrix and vectors

@ Minimize inter-block communication: reordering may occur
@ Cache blocks small enough to hold the matrix and vector
entries in cache
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Hybrid algorithm for multicores

@ Multicore = 2 kinds of communication:
e Inter-core on-chip
o DRAM Off-chip
@ Parallel algorithm minimizes inter-core on-chip
communication
@ Sequential algorithm minimizes off-chip communication
@ Hierarchical blocking of the matrix and vectors
@ Minimize inter-block communication: reordering may occur
@ Cache blocks small enough to hold the matrix and vector
entries in cache
@ Redundant work due to parallelization (+explicit sequential
algorithm)
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Tuning the matrix powers kernel

@ Tuning parameters and choices:

Sequential algorithm: explicit/implicit

Explicit: using cyclic buffers or not

Partitioning strategy: reorder or not, # partitions

Solving the ordering problems

SpMV tuning parameters: register tile size, SW prefetch
distance

@ Autotuning
e Choice of parameter values dependent on matrix structure
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e The Kernels

@ Tall skinny QR
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Tall skinny QR factorization

Compute the QR factorization of an nx (k+ 1) matrix
@ “Tall skinny” matrix (n > k)

@ MPI_Reduce with QR as the reduction operator = only
one reduction

Ay —>Quoo| Roo R
Ay —>Qoo| Roo
—>Qo1/ R —»QulRey
A; —>Qu Ry A —> Ay
—>Qo2R02 —>Qoz Roz
A; —>Qx| Ry Ap—————An - QuRes
—>Qu| Ry
A; —>Q3 Ry As Az
Reduction tree for 4 processors Reduction tree for 4 cache blocks

@ Implementation uses a hybrid approach
e Sequential reduction inside a parallel reduction
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e The Kernels

@ Block Gram-Schmidt orthogonalization
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Block GRAM-Schmidt Orthogonalization

@ Original MGS: orthogonalize a vector against a block of n
orthogonal vectors

o BLAS level 1 operations: dot-products

@ Orthogonalize a block of k vectors against a block of n
orthogonal vectors

o BLAS level 3 operations: matrix-matrix multiplies = better
cache reuse = better performance
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e Integrated Solver (GMRES)
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CA-GMRES: Putting the pieces together

Conventional GMRES (solve for Ax = b)

Q fori=1tor

Q@ w=Av_/ SpMV ¥/

© Orthogonalize w against {vy,...,v;_1} /* MGS ¥/
© Update vector v;, matrix H

© Use H, {v,...,v,} to construct the solution
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CA-GMRES: Putting the pieces together

Conventional GMRES (solve for Ax = b)

Q fori=1tor

Q@ w=Av_/ SpMV ¥/

© Orthogonalize w against {vy,...,v;_1} /* MGS ¥/
© Update vector v;, matrix H

© Use H, {v,...,v,} to construct the solution

\

CA-GMRES (Communication-Avoiding GMRES)

@ fori=0,k,2k,....k(t—1) /* Outer iterations: t =r/k */
Q@ W=/{Av,A,,...,AXv;} /* Matrix powers */

© Make W orthogonal against {vy,...,v;} /* Block GS */
© Make W orthogonal /* TSOR */

e Update {V,’+1,...,Vi+k}, H

Q@ Use H, {v,vq,...,Vk} to construct the solution

A
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Does CA-GMRES converge?

10°

— Original GMRES

g 2 s

Relative norm of residual Az — b

0 200 400 600 800 1000
Iteration count
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Does CA-GMRES converge?

10° T T T T

a a 4 a — Original GMRES
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@ Monomial basis: matrix powers kernel computes [Ax,Azx,...,Akx]

23/28



Does CA-GMRES converge?

10° T T T T
a a 4 N — Original GMRES
A . .
N a aaa CA-GMRES (Monomial basis)
N -, @®e CA-GMRES (Newton basis)
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Iteration count

@ Monomial basis: matrix powers kernel computes [Ax,Azx,...,Akx]

@ Newton basis: matrix powers kernel computes

[(A— 2 D)X, (A=A D) (A=A D)X, (A— Akl (A= Aq D)x]
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Speedups over conventional GMRES: Sparse kernel

Intel Clovertown (r = k-t = 60)

Runtime / runtime(CA-GMRES)

1.4x

pwik bmw cant xenon
Sparse matrix

@ Sparse: median speedup of 1.7 x




Speedups over conventional GMRES: Dense kernels

Intel Clovertown (r = k-t = 60)

4.5 T
3 TSQR
4 I MGS n
[ Block Gram-Schmidt
35 Il Other dense ops

Runtime / runtime(CA-GMRES)

1d3pt pwik bmw cant xenon cfd shipsec
Sparse matrix

@ Dense: median speedup of 2x
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Overall speedups over conventional GMRES

Intel Clovertown (r = k-t = 60)

T
I Matrix powers

3 TSQR nl
[ Block Gram-Schmidt
I Other dense ops M
|
.

SpMV
MGS i

Runtime / runtime(CA-GMRES)

bmw cant shipsec
Sparse matrix

@ Overall: medial speedup of 2.1 x
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Overall speedups over conventional GMRES

Intel Nehalem (k- t = 60)

>
o

Il Matrix powers
3 TSQR N
[ Block Gram-Schmidt

~
T

@
o

Il Small Dense Ops
E SpMV
I MGS

[
T

N
o

o
T

5l
T

Runtime / runtime(CA-GMRES)

o
o

o

cant shipsec
Sparse matrix

@ Median speedup of 1.6x

@ More available bandwidth = speedups lower
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e Conclusions
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Conclusions/Future work

@ Implemented a communication-avoiding solver using three
new kernels
e Amortized reading matrix over multiple iterations
e Built on prior work, introduced new algorithms for modern
multicores, auto-tuned implementation
e Achieve 2.1x median speedup on Intel Clovertown and
1.6x median speedup on Intel Nehalem

@ Implication for HW design: communication-avoiding
= lower bandwidth = lower cost
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Conclusions/Future work

@ Implemented a communication-avoiding solver using three
new kernels
e Amortized reading matrix over multiple iterations
e Built on prior work, introduced new algorithms for modern
multicores, auto-tuned implementation
e Achieve 2.1x median speedup on Intel Clovertown and
1.6x median speedup on Intel Nehalem

@ Implication for HW design: communication-avoiding
= lower bandwidth = lower cost
@ Future work:

Extending to distributed memory implementations
Extensions to other iterative solvers

Add preconditioning

Incorporate TSP solver to solve the ordering problems
Autotuning compositions of kernels
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Contributions

@ High performance implementations and co-tuning of all
relevant kernels on multicore

e Simultaneous optimizations to reduce parallel and
sequential communication

@ New algorithm allows independent choice of restart length
r and kernel size k

e Prior work required r = k, but want k < r in most cases
@ Showed how to incorporate preconditioning
o Still need to implement

@ See paper for lots of references on prior work
@ Questions?
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Sparse Matrices

1d3pt bmw cant cfd
Tridiagonal matrix Stiffness matrix || FEM cantilever || Pressure matrix
(1M, 3M, 3) (141K, 7.3M, 51)| (62K, 4M, 65) [[(123K, 3.1M, 25)
pwtk shipsec xenon
Pressurized wind tunnel FEM ship Complex zeolite,
stiffness matrix section/detail ||sodalite crystals
(218K, 12M, 55) (141K, 7.8M, 55)|(157K, 3.9M, 25)




Example 1: CA-GMRES same as standard GMRES

Joubert & Carey 2-D conv-diff PDE: C*hx=0, 51 x 51 grid: Exact residual 2-norm, log scale

ond #: 4.90e+09,2.04e+11;
69e+00,7.27€+00

4:1.270+05,2.19€+05;
ing: 2.492+00,3.02¢+00

Exact residual 2-norm, log scale

@ Discretized —Au=fin[0,1]?

@ CA-GMRES w/ any basis converges as fast as standard
(restarted) GMRES, but. ..



Example 2: CA-GMRES beats standard GMRES

Joubert & Carey 2-D conv-diff PDE: C*hx=128, 51 x 51 grid: Exact residual 2-norm, log scale

Exact residual 2-norm, log scale

GMRES(60)

8l Monomial-GMRES(10,6);

©  min,max basis cond #: 9.69e+19,5.96e+24;
min,max basis scaling: 9.56e+01,1.20e+02
Newton-GMRES(10,6);

2 minmax basis cond #: 3.58e+30,7.12e+33;
min,max basis scaling: 2.50e+02,2.79¢+02

100 200 300 400 500 600 700 800 900
teration count

@ Added a Cuy convection term to the PDE
@ CA-GMRES beats standard restarted GMRES!



CA-GMRES may be better than GMRES

@ Previous metric for success: CA-GMRES = GMRES
@ For some problems, CA-GMRES converges faster
@ Future work: investigate and control this phenomenon
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