
1/28

Minimizing Communication in Sparse Matrix
Solvers

Marghoob Mohiyuddin, Mark Hoemmen,
James Demmel, Kathy Yelick

marghoob@eecs.berkeley.edu

EECS Department, University of California at Berkeley

SC09, Nov 17, 2009



2/28

Outline

1 Background

2 The Kernels
The matrix powers kernel
Tall skinny QR
Block Gram-Schmidt orthogonalization

3 Integrated Solver (GMRES)

4 Conclusions



3/28

Outline

1 Background

2 The Kernels
The matrix powers kernel
Tall skinny QR
Block Gram-Schmidt orthogonalization

3 Integrated Solver (GMRES)

4 Conclusions



4/28

What is communication?

Algorithms incur 2 costs:

1 Arithmetic (flops)
2 Communication (data movement)

Bandwidth (#words) and latency (#messages) components

P
ar

al
le

l

Between CPUs Between CPUs and coprocessors

S
eq

ue
nt

ia
l

Between cache and DRAM
Between DRAM and disk



4/28

What is communication?

Algorithms incur 2 costs:
1 Arithmetic (flops)
2 Communication (data movement)

Bandwidth (#words) and latency (#messages) components

P
ar

al
le

l

Between CPUs Between CPUs and coprocessors

S
eq

ue
nt

ia
l

Between cache and DRAM
Between DRAM and disk



4/28

What is communication?

Algorithms incur 2 costs:
1 Arithmetic (flops)
2 Communication (data movement)

Bandwidth (#words) and latency (#messages) components

P
ar

al
le

l

Between CPUs Between CPUs and coprocessors

S
eq

ue
nt

ia
l

Between cache and DRAM
Between DRAM and disk



4/28

What is communication?

Algorithms incur 2 costs:
1 Arithmetic (flops)
2 Communication (data movement)

Bandwidth (#words) and latency (#messages) components

P
ar

al
le

l

Between CPUs Between CPUs and coprocessors

S
eq

ue
nt

ia
l

Between cache and DRAM
Between DRAM and disk



4/28

What is communication?

Algorithms incur 2 costs:
1 Arithmetic (flops)
2 Communication (data movement)

Bandwidth (#words) and latency (#messages) components

P
ar

al
le

l

Between CPUs Between CPUs and coprocessors

S
eq

ue
nt

ia
l

Between cache and DRAM
Between DRAM and disk



5/28

Communication is expensive, computation is cheap

Time per flop� 1/bandwidth� latency
Gap between processing power and communication cost
increasing exponentially

Annual improvements
Flop rate 59%

DRAM bandwidth 26%
DRAM latency 5%

Reduce communication⇒ improve efficiency
Trading off communication for computation is okay



6/28

The problem with sparse iterative solvers

Conventional GMRES (solve for Ax = b)
1 for i = 1 to r
2 w = Avi−1 /* SpMV */
3 Orthogonalize w against {v0, . . . ,vi−1} /* MGS */
4 Update vector vi , matrix H
5 Use H, {v0, . . . ,vr} to construct the solution



6/28

The problem with sparse iterative solvers

Conventional GMRES (solve for Ax = b)
1 for i = 1 to r
2 w = Avi−1 /* SpMV */
3 Orthogonalize w against {v0, . . . ,vi−1} /* MGS */
4 Update vector vi , matrix H
5 Use H, {v0, . . . ,vr} to construct the solution

Repeated calls to sparse matrix vector multiply (SpMV) &
Modified Gram Schmidt orthogonalization (MGS)

SpMV: performs 2 flops/matrix nonzero entry⇒
communication bound
MGS: vector dot-products (BLAS level 1)⇒ communication
bound



6/28

The problem with sparse iterative solvers

Conventional GMRES (solve for Ax = b)
1 for i = 1 to r
2 w = Avi−1 /* SpMV */
3 Orthogonalize w against {v0, . . . ,vi−1} /* MGS */
4 Update vector vi , matrix H
5 Use H, {v0, . . . ,vr} to construct the solution

Solution
Replace SpMV and MGS by new kernels:

SpMV by matrix powers
MGS by block Gram-Schmidt + TSQR

Reformulate to use the new kernels



7/28

Outline

1 Background

2 The Kernels
The matrix powers kernel
Tall skinny QR
Block Gram-Schmidt orthogonalization

3 Integrated Solver (GMRES)

4 Conclusions



8/28

Outline

1 Background

2 The Kernels
The matrix powers kernel
Tall skinny QR
Block Gram-Schmidt orthogonalization

3 Integrated Solver (GMRES)

4 Conclusions



9/28

The matrix powers kernel

Usual kernel y = Ax communication-bound for large
matrices

Large⇒ does not fit in cache
Need to read stream through the matrix

Given sparse matrix A, vector x , integer k > 0, compute
[p1(A)x ,p2(A)x , . . . ,pk (A)x ], pi(A) degree i polynomial iA
Easier to consider the special case: [Ax ,A2x , . . . ,Akx ]



10/28

Naïve parallel algorithm

Example: tridiagonal matrix, k = 3, 4 processors

x0

x1

x2

x3

x4

y0

y1

y2

y3

y4

y A x

Tridiagonal only for illustration



10/28

Naïve parallel algorithm

Example: tridiagonal matrix, k = 3, 4 processors

x0

x1

x2

x3

x4

⇒
y0

y1

y2

y3

y4

y A

y2

x1 x2 x3
x



10/28

Naïve parallel algorithm

Example: tridiagonal matrix, k = 3, 4 processors

x0

x1

x2

x3

x4

⇒
y0

y1

y2

y3

y4

y A

Ax
y2

x1 x2 x3
x

x



10/28

Naïve parallel algorithm

Example: tridiagonal matrix, k = 3, 4 processors

x0

x1

x2

x3

x4

y0

y1

y2

y3

y4

y A

Ax

x

x

A2x⇒



10/28

Naïve parallel algorithm

Example: tridiagonal matrix, k = 3, 4 processors

0 10 20 30
x

Ax

A2x

A3x



10/28

Naïve parallel algorithm

Example: tridiagonal matrix, k = 3, 4 processors

0 10 20 30
x

Ax

A2x

A3x

processor 1 processor 2 processor 3 processor 4



10/28

Naïve parallel algorithm

Example: tridiagonal matrix, k = 3, 4 processors

0 10 20 30
x

Ax

A2x

A3x

processor 1 processor 2 processor 3 processor 4



10/28

Naïve parallel algorithm

Example: tridiagonal matrix, k = 3, 4 processors

0 10 20 30
x

Ax

A2x

A3x

processor 1 processor 2 processor 3 processor 4

1 Fetch green entries of x : 1 message/neighbor

2 Compute local entries of Ax
3 Fetch green entries of Ax : 1 message/neighbor
4 Compute local entries of A2x
5 Fetch green entries of A2x : 1 message/neighbor
6 Compute local entries of A3x



10/28

Naïve parallel algorithm

Example: tridiagonal matrix, k = 3, 4 processors

0 10 20 30
x

Ax

A2x

A3x

processor 1 processor 2 processor 3 processor 4

1 Fetch green entries of x : 1 message/neighbor
2 Compute local entries of Ax

3 Fetch green entries of Ax : 1 message/neighbor
4 Compute local entries of A2x
5 Fetch green entries of A2x : 1 message/neighbor
6 Compute local entries of A3x



10/28

Naïve parallel algorithm

Example: tridiagonal matrix, k = 3, 4 processors

0 10 20 30
x

Ax

A2x

A3x

processor 1 processor 2 processor 3 processor 4

1 Fetch green entries of x : 1 message/neighbor
2 Compute local entries of Ax
3 Fetch green entries of Ax : 1 message/neighbor

4 Compute local entries of A2x
5 Fetch green entries of A2x : 1 message/neighbor
6 Compute local entries of A3x



10/28

Naïve parallel algorithm

Example: tridiagonal matrix, k = 3, 4 processors

0 10 20 30
x

Ax

A2x

A3x

processor 1 processor 2 processor 3 processor 4

1 Fetch green entries of x : 1 message/neighbor
2 Compute local entries of Ax
3 Fetch green entries of Ax : 1 message/neighbor
4 Compute local entries of A2x

5 Fetch green entries of A2x : 1 message/neighbor
6 Compute local entries of A3x



10/28

Naïve parallel algorithm

Example: tridiagonal matrix, k = 3, 4 processors

0 10 20 30
x

Ax

A2x

A3x

processor 1 processor 2 processor 3 processor 4

1 Fetch green entries of x : 1 message/neighbor
2 Compute local entries of Ax
3 Fetch green entries of Ax : 1 message/neighbor
4 Compute local entries of A2x
5 Fetch green entries of A2x : 1 message/neighbor

6 Compute local entries of A3x



10/28

Naïve parallel algorithm

Example: tridiagonal matrix, k = 3, 4 processors

0 10 20 30
x

Ax

A2x

A3x

processor 1 processor 2 processor 3 processor 4

1 Fetch green entries of x : 1 message/neighbor
2 Compute local entries of Ax
3 Fetch green entries of Ax : 1 message/neighbor
4 Compute local entries of A2x
5 Fetch green entries of A2x : 1 message/neighbor
6 Compute local entries of A3x



10/28

Naïve parallel algorithm

Example: tridiagonal matrix, k = 3, 4 processors

0 10 20 30
x

Ax

A2x

A3x

processor 1 processor 2 processor 3 processor 4

3 messages/neighbor
k messages/neighbor in general

k times min. latency cost



11/28

A better parallel algorithm for matrix powers

Example: Tridiagonal matrix, k = 3, 4 processors

0 10 20 30
x

Ax

A2x

A3x

processor 1 processor 2 processor 3 processor 4



11/28

A better parallel algorithm for matrix powers

Example: Tridiagonal matrix, k = 3, 4 processors

0 10 20 30
x

Ax

A2x

A3x

processor 1 processor 2 processor 3 processor 4

Green+black entries of x sufficient to compute all the local
entries
Blue entries represent redundant computation



11/28

A better parallel algorithm for matrix powers

Example: Tridiagonal matrix, k = 3, 4 processors

0 10 20 30
x

Ax

A2x

A3x

processor 1 processor 2 processor 3 processor 4

1 Fetch ‘ghost’ entries (green) from other processors
1 message per neighbor

2 Compute required entries of Ax
3 Compute required entries of A2x
4 Compute required entries of A3x



11/28

A better parallel algorithm for matrix powers

Example: Tridiagonal matrix, k = 3, 4 processors

0 10 20 30
x

Ax

A2x

A3x

processor 1 processor 2 processor 3 processor 4

1 Fetch ‘ghost’ entries (green) from other processors
1 message per neighbor

2 Compute required entries of Ax

3 Compute required entries of A2x
4 Compute required entries of A3x



11/28

A better parallel algorithm for matrix powers

Example: Tridiagonal matrix, k = 3, 4 processors

0 10 20 30
x

Ax

A2x

A3x

processor 1 processor 2 processor 3 processor 4

1 Fetch ‘ghost’ entries (green) from other processors
1 message per neighbor

2 Compute required entries of Ax
3 Compute required entries of A2x

4 Compute required entries of A3x



11/28

A better parallel algorithm for matrix powers

Example: Tridiagonal matrix, k = 3, 4 processors

0 10 20 30
x

Ax

A2x

A3x

processor 1 processor 2 processor 3 processor 4

1 Fetch ‘ghost’ entries (green) from other processors
1 message per neighbor

2 Compute required entries of Ax
3 Compute required entries of A2x
4 Compute required entries of A3x



11/28

A better parallel algorithm for matrix powers

Example: Tridiagonal matrix, k = 3, 4 processors

0 10 20 30
x

Ax

A2x

A3x

processor 1 processor 2 processor 3 processor 4

1 message/neighbor (O(k) improvement)
Redundant computation⇒ want it to be small
Can order local+ghost entries to reuse tuned SpMV



12/28

General matrix/graph example

Our algorithms work for
general matrices
Performance
improvement best when
the surface-to-volume
ratio is small



12/28

General matrix/graph example

Our algorithms work for
general matrices
Performance
improvement best when
the surface-to-volume
ratio is small

Red entries of x needed when
k = 1



12/28

General matrix/graph example

Our algorithms work for
general matrices
Performance
improvement best when
the surface-to-volume
ratio is small

Red+green entries of x
needed when k = 2



12/28

General matrix/graph example

Our algorithms work for
general matrices
Performance
improvement best when
the surface-to-volume
ratio is small

Red+green+blue entries of x
needed when k = 3



13/28

Sequential algorithms: Explicitly blocked algorithm

Example: 40×40 tridiagonal matrix, k = 3

1 8 10 13 18 20 23 28 30 33 40
x

Ax

A2x

A3x

Simulate parallel algorithm on 1 processor
Each block should be small enough to fit in cache
Redundant flops performed
Read the matrix once per k iterations (O(k) improvement)
⇒ bandwidth savings



14/28

Sequential algorithms: Implicitly blocked algorithm

Example: 40×40 tridiagonal matrix, k = 3

1 10 13 20 23 30 33 40
x

Ax

A2x

A3x

Improve upon the explicit algorithm
Eliminate redundant computation

No redundant flops
Implicit blocking by reordering computations
Bookkeeping overhead for computation schedule
Computation inside blocks depends on block order
⇒ need to solve Traveling Salesman problems



15/28

Hybrid algorithm for multicores

Multicore⇒ 2 kinds of communication:
Inter-core on-chip
DRAM Off-chip

Parallel algorithm minimizes inter-core on-chip
communication
Sequential algorithm minimizes off-chip communication
Hierarchical blocking of the matrix and vectors

Minimize inter-block communication: reordering may occur
Cache blocks small enough to hold the matrix and vector
entries in cache

Redundant work due to parallelization (+explicit sequential
algorithm)



15/28

Hybrid algorithm for multicores

Multicore⇒ 2 kinds of communication:
Inter-core on-chip
DRAM Off-chip

Parallel algorithm minimizes inter-core on-chip
communication
Sequential algorithm minimizes off-chip communication

Hierarchical blocking of the matrix and vectors
Minimize inter-block communication: reordering may occur
Cache blocks small enough to hold the matrix and vector
entries in cache

Redundant work due to parallelization (+explicit sequential
algorithm)



15/28

Hybrid algorithm for multicores

Multicore⇒ 2 kinds of communication:
Inter-core on-chip
DRAM Off-chip

Parallel algorithm minimizes inter-core on-chip
communication
Sequential algorithm minimizes off-chip communication
Hierarchical blocking of the matrix and vectors

Minimize inter-block communication: reordering may occur
Cache blocks small enough to hold the matrix and vector
entries in cache

Redundant work due to parallelization (+explicit sequential
algorithm)



15/28

Hybrid algorithm for multicores

Multicore⇒ 2 kinds of communication:
Inter-core on-chip
DRAM Off-chip

Parallel algorithm minimizes inter-core on-chip
communication
Sequential algorithm minimizes off-chip communication
Hierarchical blocking of the matrix and vectors

Minimize inter-block communication: reordering may occur
Cache blocks small enough to hold the matrix and vector
entries in cache

Redundant work due to parallelization (+explicit sequential
algorithm)



16/28

Tuning the matrix powers kernel

Tuning parameters and choices:
Sequential algorithm: explicit/implicit
Explicit: using cyclic buffers or not
Partitioning strategy: reorder or not, # partitions
Solving the ordering problems
SpMV tuning parameters: register tile size, SW prefetch
distance

Autotuning
Choice of parameter values dependent on matrix structure



17/28

Outline

1 Background

2 The Kernels
The matrix powers kernel
Tall skinny QR
Block Gram-Schmidt orthogonalization

3 Integrated Solver (GMRES)

4 Conclusions



18/28

Tall skinny QR factorization

Compute the QR factorization of an n× (k + 1) matrix
“Tall skinny” matrix (n� k )
MPI_Reduce with QR as the reduction operator⇒ only
one reduction

Reduction tree for 4 processors Reduction tree for 4 cache blocks

Implementation uses a hybrid approach
Sequential reduction inside a parallel reduction



19/28

Outline

1 Background

2 The Kernels
The matrix powers kernel
Tall skinny QR
Block Gram-Schmidt orthogonalization

3 Integrated Solver (GMRES)

4 Conclusions



20/28

Block GRAM-Schmidt Orthogonalization

Original MGS: orthogonalize a vector against a block of n
orthogonal vectors

BLAS level 1 operations: dot-products
Orthogonalize a block of k vectors against a block of n
orthogonal vectors

BLAS level 3 operations: matrix-matrix multiplies⇒ better
cache reuse⇒ better performance



21/28

Outline

1 Background

2 The Kernels
The matrix powers kernel
Tall skinny QR
Block Gram-Schmidt orthogonalization

3 Integrated Solver (GMRES)

4 Conclusions



22/28

CA-GMRES: Putting the pieces together

Conventional GMRES (solve for Ax = b)
1 for i = 1 to r
2 w = Avi−1 /* SpMV */
3 Orthogonalize w against {v0, . . . ,vi−1} /* MGS */
4 Update vector vi , matrix H
5 Use H, {v0, . . . ,vr} to construct the solution

CA-GMRES (Communication-Avoiding GMRES)
1 for i = 0,k ,2k , . . . ,k(t−1) /* Outer iterations: t = r/k */
2 W = {Avi ,A2vi , . . . ,Ak vi} /* Matrix powers */
3 Make W orthogonal against {v0, . . . ,vi} /* Block GS */
4 Make W orthogonal /* TSQR */
5 Update {vi+1, . . . ,vi+k}, H
6 Use H, {v0,v1, . . . ,vkt} to construct the solution



22/28

CA-GMRES: Putting the pieces together

Conventional GMRES (solve for Ax = b)
1 for i = 1 to r
2 w = Avi−1 /* SpMV */
3 Orthogonalize w against {v0, . . . ,vi−1} /* MGS */
4 Update vector vi , matrix H
5 Use H, {v0, . . . ,vr} to construct the solution

CA-GMRES (Communication-Avoiding GMRES)
1 for i = 0,k ,2k , . . . ,k(t−1) /* Outer iterations: t = r/k */
2 W = {Avi ,A2vi , . . . ,Ak vi} /* Matrix powers */
3 Make W orthogonal against {v0, . . . ,vi} /* Block GS */
4 Make W orthogonal /* TSQR */
5 Update {vi+1, . . . ,vi+k}, H
6 Use H, {v0,v1, . . . ,vkt} to construct the solution



23/28

Does CA-GMRES converge?

0 200 400 600 800 1000

Iteration count

10−5

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
no

rm
of

re
si

du
al
A
x
−
b

Original GMRES

Monomial basis: matrix powers kernel computes [Ax ,A2x , . . . ,Ak x ]

Newton basis: matrix powers kernel computes
[(A−λ1I)x ,(A−λ2I)(A−λ1I)x , . . . ,(A−λk I) · · ·(A−λ1I)x ]



23/28

Does CA-GMRES converge?

0 200 400 600 800 1000

Iteration count

10−5

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
no

rm
of

re
si

du
al
A
x
−
b

Original GMRES
CA-GMRES (Monomial basis)

Monomial basis: matrix powers kernel computes [Ax ,A2x , . . . ,Ak x ]

Newton basis: matrix powers kernel computes
[(A−λ1I)x ,(A−λ2I)(A−λ1I)x , . . . ,(A−λk I) · · ·(A−λ1I)x ]



23/28

Does CA-GMRES converge?

0 200 400 600 800 1000

Iteration count

10−5

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
no

rm
of

re
si

du
al
A
x
−
b

Original GMRES
CA-GMRES (Monomial basis)
CA-GMRES (Newton basis)

Monomial basis: matrix powers kernel computes [Ax ,A2x , . . . ,Ak x ]

Newton basis: matrix powers kernel computes
[(A−λ1I)x ,(A−λ2I)(A−λ1I)x , . . . ,(A−λk I) · · ·(A−λ1I)x ]



24/28

Speedups over conventional GMRES: Sparse kernel

Intel Clovertown (r = k · t = 60)

1d3pt pwtk bmw cant xenon cfd shipsec
Sparse matrix

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

R
un

tim
e

/r
un

tim
e(

C
A

-G
M

R
E

S
)

4.6×
2× 1.7× 2.1× 1.4× 1.4× 1.5×

Matrix powers
SpMV

Sparse: median speedup of 1.7×



24/28

Speedups over conventional GMRES: Dense kernels

Intel Clovertown (r = k · t = 60)

1d3pt pwtk bmw cant xenon cfd shipsec
Sparse matrix

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

R
un

tim
e

/r
un

tim
e(

C
A

-G
M

R
E

S
)

4.2×
2.5× 2.6× 2× 1.9× 2× 1.7×

TSQR
MGS
Block Gram-Schmidt
Other dense ops

Dense: median speedup of 2×



24/28

Overall speedups over conventional GMRES

Intel Clovertown (r = k · t = 60)

1d3pt pwtk bmw cant xenon cfd shipsec
Sparse matrix

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

R
un

tim
e

/r
un

tim
e(

C
A

-G
M

R
E

S
)

4.2× 2.2× 2.1× 2.1× 1.7× 1.7× 1.6×

Matrix powers
TSQR
Block Gram-Schmidt
Other dense ops
SpMV
MGS

Overall: medial speedup of 2.1×



25/28

Overall speedups over conventional GMRES

Intel Nehalem (k · t = 60)

1d3pt pwtk bmw cant xenon cfd shipsec
Sparse matrix

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

R
un

tim
e

/r
un

tim
e(

C
A

-G
M

R
E

S
)

4.1× 1.7× 1.6× 1.6× 1.5× 1.4× 1.3×

Matrix powers
TSQR
Block Gram-Schmidt
Small Dense Ops
SpMV
MGS

Median speedup of 1.6×
More available bandwidth⇒ speedups lower



26/28

Outline

1 Background

2 The Kernels
The matrix powers kernel
Tall skinny QR
Block Gram-Schmidt orthogonalization

3 Integrated Solver (GMRES)

4 Conclusions



27/28

Conclusions/Future work

Implemented a communication-avoiding solver using three
new kernels

Amortized reading matrix over multiple iterations
Built on prior work, introduced new algorithms for modern
multicores, auto-tuned implementation
Achieve 2.1× median speedup on Intel Clovertown and
1.6× median speedup on Intel Nehalem

Implication for HW design: communication-avoiding
⇒ lower bandwidth⇒ lower cost

Future work:
Extending to distributed memory implementations
Extensions to other iterative solvers
Add preconditioning
Incorporate TSP solver to solve the ordering problems
Autotuning compositions of kernels



27/28

Conclusions/Future work

Implemented a communication-avoiding solver using three
new kernels

Amortized reading matrix over multiple iterations
Built on prior work, introduced new algorithms for modern
multicores, auto-tuned implementation
Achieve 2.1× median speedup on Intel Clovertown and
1.6× median speedup on Intel Nehalem

Implication for HW design: communication-avoiding
⇒ lower bandwidth⇒ lower cost
Future work:

Extending to distributed memory implementations
Extensions to other iterative solvers
Add preconditioning
Incorporate TSP solver to solve the ordering problems
Autotuning compositions of kernels



28/28

Contributions

High performance implementations and co-tuning of all
relevant kernels on multicore

Simultaneous optimizations to reduce parallel and
sequential communication

New algorithm allows independent choice of restart length
r and kernel size k

Prior work required r = k , but want k � r in most cases
Showed how to incorporate preconditioning

Still need to implement

See paper for lots of references on prior work
Questions?





Sparse Matrices

1d3pt bmw cant cfd
Tridiagonal matrix Stiffness matrix FEM cantilever Pressure matrix

(1M, 3M, 3) (141K, 7.3M, 51) (62K, 4M, 65) (123K, 3.1M, 25)

pwtk shipsec xenon
Pressurized wind tunnel FEM ship Complex zeolite,

stiffness matrix section/detail sodalite crystals
(218K, 12M, 55) (141K, 7.8M, 55) (157K, 3.9M, 25)



Example 1: CA-GMRES same as standard GMRES

50 100 150 200 250 300 350
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Iteration count

E
xa

ct
 r

es
id

ua
l 2

−
no

rm
, l

og
 s

ca
le

Joubert & Carey 2−D conv−diff PDE: C*hx=0, 51 x 51 grid: Exact residual 2−norm, log scale

 

 

GMRES(60)
Monomial−GMRES(10,6);
min,max basis cond #: 4.90e+09,2.04e+11;
min,max basis scaling: 4.69e+00,7.27e+00
Newton−GMRES(10,6);
min,max basis cond #: 1.27e+05,2.19e+05;
min,max basis scaling: 2.49e+00,3.02e+00

Discretized −∆u = f in [0,1]2

CA-GMRES w/ any basis converges as fast as standard
(restarted) GMRES, but. . .



Example 2: CA-GMRES beats standard GMRES

100 200 300 400 500 600 700 800 900
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Iteration count

E
xa

ct
 r

es
id

ua
l 2

−
no

rm
, l

og
 s

ca
le

Joubert & Carey 2−D conv−diff PDE: C*hx=128, 51 x 51 grid: Exact residual 2−norm, log scale

 

 

GMRES(60)
Monomial−GMRES(10,6);
min,max basis cond #: 9.69e+19,5.96e+24;
min,max basis scaling: 9.56e+01,1.20e+02
Newton−GMRES(10,6);
min,max basis cond #: 3.58e+30,7.12e+33;
min,max basis scaling: 2.50e+02,2.79e+02

Added a Cux convection term to the PDE
CA-GMRES beats standard restarted GMRES!



CA-GMRES may be better than GMRES

50 100 150 200 250 300 350
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Iteration count

E
xa

ct
 r

es
id

ua
l 2

−
no

rm
, l

og
 s

ca
le

Joubert & Carey 2−D conv−diff PDE: C*hx=0, 51 x 51 grid: Exact residual 2−norm, log scale

 

 

GMRES(60)
Monomial−GMRES(10,6);
min,max basis cond #: 4.90e+09,2.04e+11;
min,max basis scaling: 4.69e+00,7.27e+00
Newton−GMRES(10,6);
min,max basis cond #: 1.27e+05,2.19e+05;
min,max basis scaling: 2.49e+00,3.02e+00

100 200 300 400 500 600 700 800 900
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Iteration count

E
xa

ct
 r

es
id

ua
l 2

−
no

rm
, l

og
 s

ca
le

Joubert & Carey 2−D conv−diff PDE: C*hx=128, 51 x 51 grid: Exact residual 2−norm, log scale

 

 

GMRES(60)
Monomial−GMRES(10,6);
min,max basis cond #: 9.69e+19,5.96e+24;
min,max basis scaling: 9.56e+01,1.20e+02
Newton−GMRES(10,6);
min,max basis cond #: 3.58e+30,7.12e+33;
min,max basis scaling: 2.50e+02,2.79e+02

Previous metric for success: CA-GMRES = GMRES
For some problems, CA-GMRES converges faster
Future work: investigate and control this phenomenon


	Background
	The Kernels
	The matrix powers kernel
	Tall skinny QR
	Block Gram-Schmidt orthogonalization

	Integrated Solver (GMRES)
	Conclusions
	Appendix

