Minimizing Communication in Sparse Matrix Solvers

Marghoob Mohiyuddin, Mark Hoemmen, James Demmel, Kathy Yelick marghoob@eecs.berkeley.edu

EECS Department, University of California at Berkeley

SC09, Nov 17, 2009

Outline

- Background
- 2 The Kernels
 - The matrix powers kernel
 - Tall skinny QR
 - Block Gram-Schmidt orthogonalization
- Integrated Solver (GMRES)
- 4 Conclusions

Outline

- Background
- 2 The Kernels
 - The matrix powers kernel
 - Tall skinny QR
 - Block Gram-Schmidt orthogonalization
- Integrated Solver (GMRES)
- 4 Conclusions

Algorithms incur 2 costs:

Algorithms incur 2 costs:

- Arithmetic (flops)
- Communication (data movement)

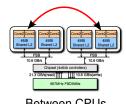
Algorithms incur 2 costs:

- Arithmetic (flops)
- ② Communication (data movement)
 - Bandwidth (#words) and latency (#messages) components

Algorithms incur 2 costs:

- Arithmetic (flops)
- Communication (data movement)
 - Bandwidth (#words) and latency (#messages) components

Parallel



Between CPUs and coprocessors

Algorithms incur 2 costs:

- Arithmetic (flops)
- Communication (data movement)

Between cache and DRAM

Bandwidth (#words) and latency (#messages) components



Communication is expensive, computation is cheap

- Time per flop ≫ 1/bandwidth ≫ latency
- Gap between processing power and communication cost increasing exponentially

Annual improvements	
Flop rate	59%
DRAM bandwidth	26%
DRAM latency	5%

- Reduce communication ⇒ improve efficiency
- Trading off communication for computation is okay

The problem with sparse iterative solvers

Conventional GMRES (solve for Ax = b)

- **1 for** i = 1 to r
- $w = Av_{i-1} / *SpMV * /$
- 3 Orthogonalize w against $\{v_0, \dots, v_{i-1}\}$ /* MGS */
- Update vector v_i , matrix H
- **1** Use H, $\{v_0, \ldots, v_r\}$ to construct the solution

The problem with sparse iterative solvers

Conventional GMRES (solve for Ax = b)

- $w = Av_{i-1} / *SpMV * /$
- Orthogonalize w against $\{v_0, ..., v_{i-1}\}$ /* MGS */
- Update vector v_i, matrix H
- **1** Use H, $\{v_0, \dots, v_r\}$ to construct the solution
 - Repeated calls to sparse matrix vector multiply (SpMV) & Modified Gram Schmidt orthogonalization (MGS)
 - SpMV: performs 2 flops/matrix nonzero entry ⇒ communication bound
 - MGS: vector dot-products (BLAS level 1) ⇒ communication bound

The problem with sparse iterative solvers

Conventional GMRES (solve for Ax = b)

- $w = Av_{i-1} / SpMV * /$
- 3 Orthogonalize w against $\{v_0, \dots, v_{i-1}\}$ /* MGS */
- Update vector v_i, matrix H
- **1** Use H, $\{v_0, \dots, v_r\}$ to construct the solution

Solution

- Replace SpMV and MGS by new kernels:
 - SpMV by matrix powers
 - MGS by block Gram-Schmidt + TSQR
- Reformulate to use the new kernels

Outline

- Background
- 2 The Kernels
 - The matrix powers kernel
 - Tall skinny QR
 - Block Gram-Schmidt orthogonalization
- Integrated Solver (GMRES)
- 4 Conclusions

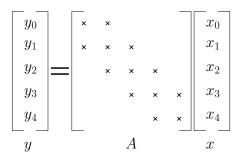
Outline

- Background
- 2 The Kernels
 - The matrix powers kernel
 - Tall skinny QR
 - Block Gram-Schmidt orthogonalization
- Integrated Solver (GMRES)
- 4 Conclusions

The matrix powers kernel

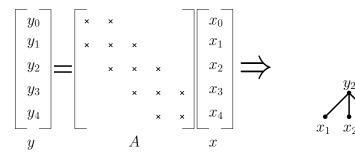
- Usual kernel y = Ax communication-bound for large matrices
 - Large ⇒ does not fit in cache
 - Need to read stream through the matrix
- Given sparse matrix A, vector x, integer k > 0, compute $[p_1(A)x, p_2(A)x, \dots, p_k(A)x]$, $p_i(A)$ degree i polynomial iA
- Easier to consider the special case: $[Ax, A^2x, ..., A^kx]$

Example: tridiagonal matrix, k = 3, 4 processors

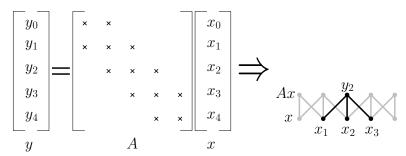


Tridiagonal only for illustration

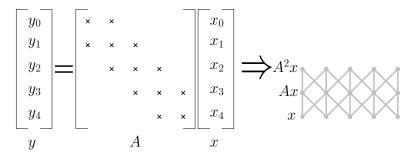
Example: tridiagonal matrix, k = 3, 4 processors

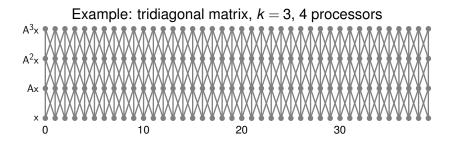


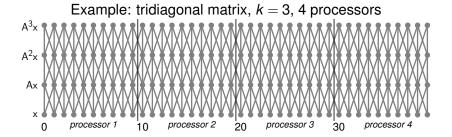
Example: tridiagonal matrix, k = 3, 4 processors

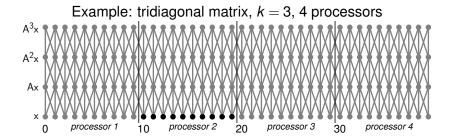


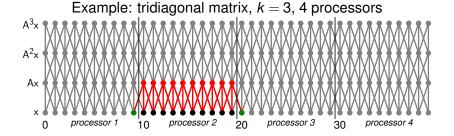
Example: tridiagonal matrix, k = 3, 4 processors



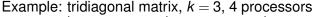


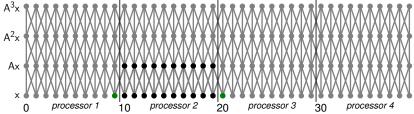




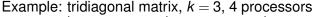


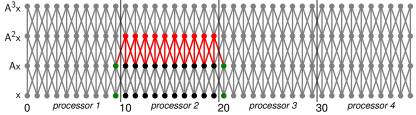
Fetch green entries of x: 1 message/neighbor



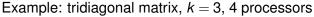


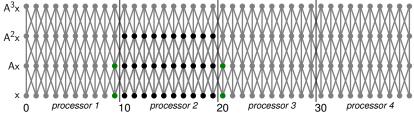
- Fetch green entries of x: 1 message/neighbor
- Compute local entries of Ax





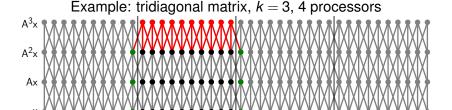
- Fetch green entries of x: 1 message/neighbor
- Compute local entries of Ax
- Fetch green entries of Ax: 1 message/neighbor





- Fetch green entries of x: 1 message/neighbor
- Compute local entries of Ax
- Fetch green entries of Ax: 1 message/neighbor
- **1** Compute local entries of A^2x

processor 1



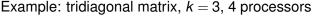
processor 3

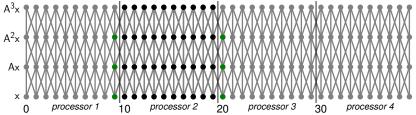
processor 4

Fetch green entries of x: 1 message/neighbor

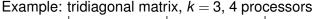
processor 2

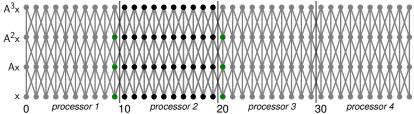
- Compute local entries of Ax
- Fetch green entries of Ax: 1 message/neighbor
- **Output** Ocal entries of A^2x
- **5** Fetch green entries of A^2x : 1 message/neighbor



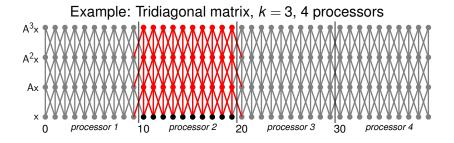


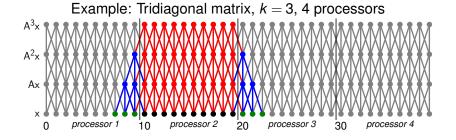
- Fetch green entries of x: 1 message/neighbor
- Compute local entries of Ax
- Fetch green entries of Ax: 1 message/neighbor
- **Output** Ocal entries of A^2x
- **5** Fetch green entries of A^2x : 1 message/neighbor
- **6** Compute local entries of A^3x



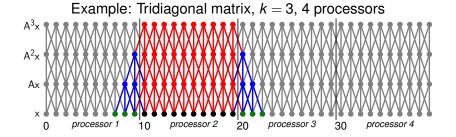


- 3 messages/neighbor
- k messages/neighbor in general
 - k times min. latency cost

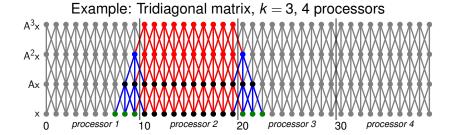




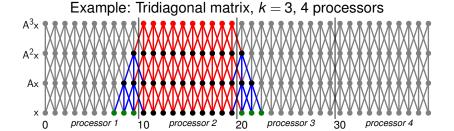
- Green+black entries of x sufficient to compute all the local entries
- Blue entries represent redundant computation



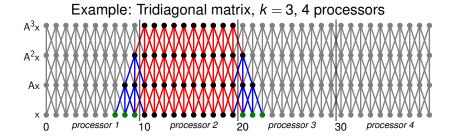
- Fetch 'ghost' entries (green) from other processors
 - 1 message per neighbor



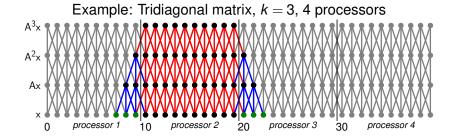
- Fetch 'ghost' entries (green) from other processors
 - 1 message per neighbor
- Compute required entries of Ax



- Fetch 'ghost' entries (green) from other processors
 - 1 message per neighbor
- Compute required entries of Ax
- **3** Compute required entries of A^2x

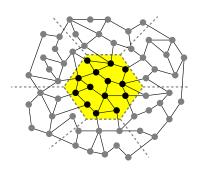


- Fetch 'ghost' entries (green) from other processors
 - 1 message per neighbor
- Compute required entries of Ax
- **3** Compute required entries of A^2x
- **3** Compute required entries of A^3x

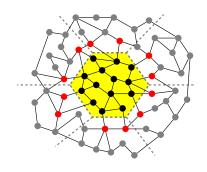


- 1 message/neighbor (O(k) improvement)
- Redundant computation ⇒ want it to be small
- Can order local+ghost entries to reuse tuned SpMV

- Our algorithms work for general matrices
- Performance improvement best when the surface-to-volume ratio is small

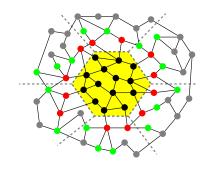


- Our algorithms work for general matrices
- Performance improvement best when the surface-to-volume ratio is small



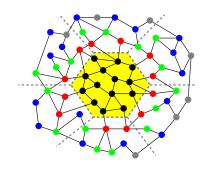
Red entries of x needed when k = 1

- Our algorithms work for general matrices
- Performance improvement best when the surface-to-volume ratio is small



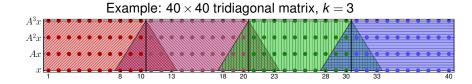
Red+green entries of x needed when k = 2

- Our algorithms work for general matrices
- Performance improvement best when the surface-to-volume ratio is small



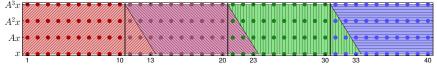
Red+green+blue entries of x needed when k = 3

Sequential algorithms: Explicitly blocked algorithm



- Simulate parallel algorithm on 1 processor
- Each block should be small enough to fit in cache
- Redundant flops performed
- Read the matrix once per k iterations (O(k) improvement)
 - ⇒ bandwidth savings

Sequential algorithms: Implicitly blocked algorithm



- Improve upon the explicit algorithm
 - Eliminate redundant computation
- No redundant flops
- Implicit blocking by reordering computations
- Bookkeeping overhead for computation schedule
- Computation inside blocks depends on block order
 - \Rightarrow need to solve Traveling Salesman problems

- Multicore ⇒ 2 kinds of communication:
 - Inter-core on-chip
 - DRAM Off-chip

- Multicore ⇒ 2 kinds of communication:
 - Inter-core on-chip
 - DRAM Off-chip
- Parallel algorithm minimizes inter-core on-chip communication
- Sequential algorithm minimizes off-chip communication

- Multicore ⇒ 2 kinds of communication:
 - Inter-core on-chip
 - DRAM Off-chip
- Parallel algorithm minimizes inter-core on-chip communication
- Sequential algorithm minimizes off-chip communication
- Hierarchical blocking of the matrix and vectors
 - Minimize inter-block communication: reordering may occur
 - Cache blocks small enough to hold the matrix and vector entries in cache

- Multicore ⇒ 2 kinds of communication:
 - Inter-core on-chip
 - DRAM Off-chip
- Parallel algorithm minimizes inter-core on-chip communication
- Sequential algorithm minimizes off-chip communication
- Hierarchical blocking of the matrix and vectors
 - Minimize inter-block communication: reordering may occur
 - Cache blocks small enough to hold the matrix and vector entries in cache
- Redundant work due to parallelization (+explicit sequential algorithm)

Tuning the matrix powers kernel

- Tuning parameters and choices:
 - Sequential algorithm: explicit/implicit
 - Explicit: using cyclic buffers or not
 - Partitioning strategy: reorder or not, # partitions
 - Solving the ordering problems
 - SpMV tuning parameters: register tile size, SW prefetch distance
- Autotuning
 - Choice of parameter values dependent on matrix structure

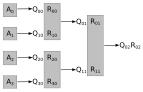
Outline

- Background
- 2 The Kernels
 - The matrix powers kernel
 - Tall skinny QR
 - Block Gram-Schmidt orthogonalization
- Integrated Solver (GMRES)
- 4 Conclusions

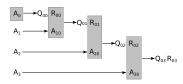
Tall skinny QR factorization

Compute the QR factorization of an $n \times (k+1)$ matrix

- "Tall skinny" matrix $(n \gg k)$
- MPI_Reduce with QR as the reduction operator ⇒ only one reduction



Reduction tree for 4 processors



Reduction tree for 4 cache blocks

- Implementation uses a hybrid approach
 - Sequential reduction inside a parallel reduction

Outline

- Background
- 2 The Kernels
 - The matrix powers kernel
 - Tall skinny QR
 - Block Gram-Schmidt orthogonalization
- Integrated Solver (GMRES)
- Conclusions

Block GRAM-Schmidt Orthogonalization

- Original MGS: orthogonalize a vector against a block of n orthogonal vectors
 - BLAS level 1 operations: dot-products
- Orthogonalize a block of k vectors against a block of n orthogonal vectors
 - BLAS level 3 operations: matrix-matrix multiplies ⇒ better cache reuse ⇒ better performance

Outline

- Background
- 2 The Kernels
 - The matrix powers kernel
 - Tall skinny QR
 - Block Gram-Schmidt orthogonalization
- Integrated Solver (GMRES)
- 4 Conclusions

CA-GMRES: Putting the pieces together

Conventional GMRES (solve for Ax = b)

- **1 for** i = 1 to r
- $w = Av_{i-1} / SpMV * /$
- Orthogonalize w against $\{v_0, ..., v_{i-1}\}$ /* MGS */
- Update vector v_i, matrix H
- **1** Use H, $\{v_0, \ldots, v_r\}$ to construct the solution

CA-GMRES: Putting the pieces together

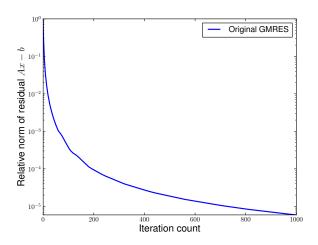
Conventional GMRES (solve for Ax = b)

- **1 for** i = 1 to r
- $w = Av_{i-1} / SpMV * /$
- Orthogonalize w against $\{v_0, ..., v_{i-1}\}$ /* MGS */
- Update vector v_i, matrix H
- **1** Use H, $\{v_0, \ldots, v_r\}$ to construct the solution

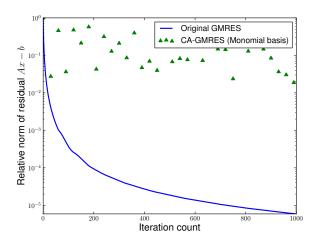
CA-GMRES (Communication-Avoiding GMRES)

- for i = 0, k, 2k, ..., k(t-1) /* Outer iterations: t = r/k */
- $W = \{Av_i, A^2v_i, \dots, A^kv_i\} /* Matrix powers */$
- Make W orthogonal against $\{v_0, ..., v_i\}$ /* Block GS */
- Make W orthogonal /* TSQR */
- **1** Update $\{v_{i+1}, ..., v_{i+k}\}, H$
- **1** Use H, $\{v_0, v_1, \dots, v_{kt}\}$ to construct the solution

Does CA-GMRES converge?

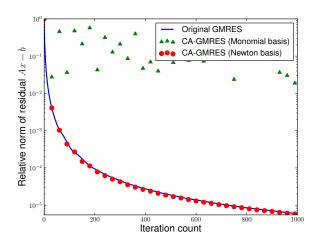


Does CA-GMRES converge?



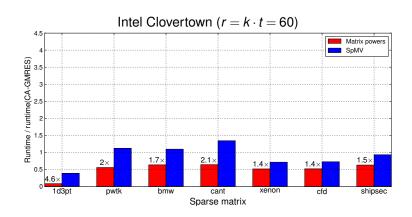
• Monomial basis: matrix powers kernel computes $[Ax, A^2x, \dots, A^kx]$

Does CA-GMRES converge?



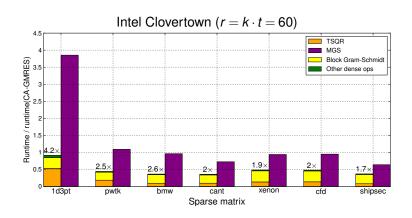
- Monomial basis: matrix powers kernel computes $[Ax, A^2x, ..., A^kx]$
- Newton basis: matrix powers kernel computes $[(A \lambda_1 I)x, (A \lambda_2 I)(A \lambda_1 I)x, \dots, (A \lambda_k I) \cdots (A \lambda_1 I)x]$

Speedups over conventional GMRES: Sparse kernel



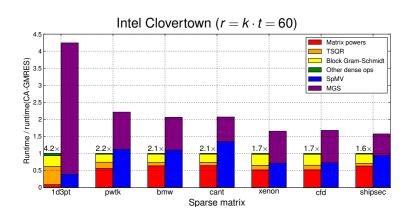
Sparse: median speedup of 1.7×

Speedups over conventional GMRES: Dense kernels



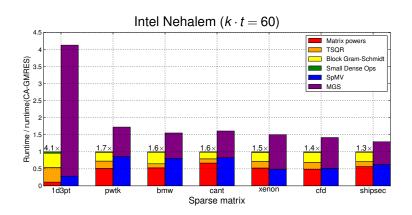
Dense: median speedup of 2×

Overall speedups over conventional GMRES



Overall: medial speedup of 2.1×

Overall speedups over conventional GMRES



- Median speedup of 1.6×
- More available bandwidth ⇒ speedups lower

Outline

- Background
- 2 The Kernels
 - The matrix powers kernel
 - Tall skinny QR
 - Block Gram-Schmidt orthogonalization
- Integrated Solver (GMRES)
- 4 Conclusions

Conclusions/Future work

- Implemented a communication-avoiding solver using three new kernels
 - Amortized reading matrix over multiple iterations
 - Built on prior work, introduced new algorithms for modern multicores, auto-tuned implementation
 - Achieve 2.1× median speedup on Intel Clovertown and 1.6× median speedup on Intel Nehalem
- Implication for HW design: communication-avoiding
 - \Rightarrow lower bandwidth \Rightarrow lower cost

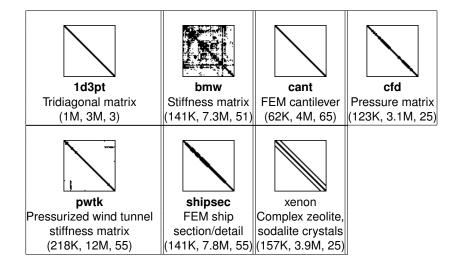
Conclusions/Future work

- Implemented a communication-avoiding solver using three new kernels
 - Amortized reading matrix over multiple iterations
 - Built on prior work, introduced new algorithms for modern multicores, auto-tuned implementation
 - Achieve 2.1× median speedup on Intel Clovertown and 1.6× median speedup on Intel Nehalem
- Implication for HW design: communication-avoiding
 - \Rightarrow lower bandwidth \Rightarrow lower cost
- Future work:
 - Extending to distributed memory implementations
 - Extensions to other iterative solvers
 - Add preconditioning
 - Incorporate TSP solver to solve the ordering problems
 - Autotuning compositions of kernels

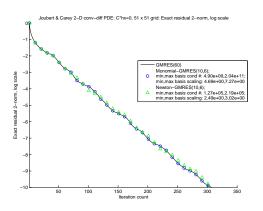
Contributions

- High performance implementations and co-tuning of all relevant kernels on multicore
 - Simultaneous optimizations to reduce parallel and sequential communication
- New algorithm allows independent choice of restart length r and kernel size k
 - Prior work required r = k, but want $k \ll r$ in most cases
- Showed how to incorporate preconditioning
 - Still need to implement
- See paper for lots of references on prior work
- Questions?

Sparse Matrices

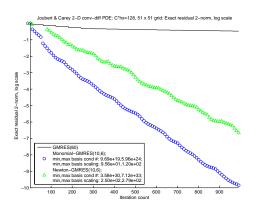


Example 1: CA-GMRES same as standard GMRES



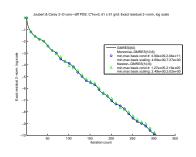
- Discretized $-\Delta u = f$ in $[0,1]^2$
- CA-GMRES w/ any basis converges as fast as standard (restarted) GMRES, but...

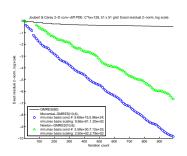
Example 2: CA-GMRES beats standard GMRES



- Added a Cu_x convection term to the PDE
- CA-GMRES beats standard restarted GMRES!

CA-GMRES may be better than GMRES





- Previous metric for success: CA-GMRES = GMRES
- For some problems, CA-GMRES converges faster
- Future work: investigate and control this phenomenon