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ABSTRACT
As power has become the pre-eminent design constraint for future
HPC systems, computational efficiency is being emphasized over
simply peak performance. Recently, static benchmark codes have
been used to find a power efficient architecture. Unfortunately,
because compilers generate sub-optimal code, benchmark perfor-
mance can be a poor indicator of the performance potential of archi-
tecture design points. Therefore, we present hardware/software co-
tuning as a novel approach for system design, in which traditional
architecture space exploration is tightly coupled with software
auto-tuning for delivering substantial improvements in area and
power efficiency. We demonstrate the proposed methodology by
exploring the parameter space of a Tensilica-based multi-processor
running three of the most heavily used kernels in scientific com-
puting, each with widely varying micro-architectural requirements:
sparse matrix vector multiplication, stencil-based computations,
and general matrix-matrix multiplication. Results demonstrate
that co-tuning significantly improves hardware area and energy
efficiency – a key driver for next generation of HPC system design.

1. INTRODUCTION
Energy efficiency is rapidly becoming the primary concern of all

large-scale scientific computing facilities. According to power con-
sumption data collected by the Top500 list [24], high-performance
computing (HPC) systems draw on the order of 2–5 Megawatts
of power to reach a petaflop of peak performance. Furthermore,
current projections suggest that emerging multi-petaflop systems
are expected to draw as much as 15 MW of power including
cooling. Extrapolating the current trends, the Department of
Energy (DOE) E3 [21] report predicts an exascale system would
require 130 MW. At these levels, the cost of electricity will dwarf
the procurement cost of the hardware systems; unless the energy
efficiency of future large-scale systems increases dramatically,
HPC will face a crisis in which the cost of running large scale
systems is impractically high. This energy-efficiency crisis is
already upon us. According to an August 6, 2006 article in the
Baltimore Sun, the NSA has an HPC center at an undisclosed
location near Baltimore that is consuming 75 Megawatts of power
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and growing at a substantial rate per year – causing concerns
that there would not be sufficient power available for the city of
Baltimore. More recently (July 6, 2009), NSA was forced to build
a new facility in Utah to avert an overload of the Baltimore metro
area energy grid.

Our approach in this paper is inspired by embedded system
design methodologies, which routinely employ specialized proces-
sors to meet demanding cost and power efficiency requirements.
Leveraging design tools from embedded systems can dramati-
cally reduce time-to-solution as well as non-recurring engineering
(NRE) design and implementation cost of architecturally special-
ized systems. Building a System-on-Chip (SoC) from pre-verified
parameterized core designs in the embedded space, such as the
Tensilica approach, enables fully programmable solutions that offer
more tractable design and verification costs compared to a full-
custom logic design. For this reason, we use the Stanford Smart
Memories [12], which is based on Tensilica cores, as the target
architecture in this work. Given that the cost of powering HPC
systems will soon dwarf design and procurement costs, energy effi-
ciency will justify a larger investment in the original system design
— thus necessitating approaches that can significantly decrease
energy consumption.

General-purpose commodity microprocessors, which form the
building blocks of most massively parallel systems, are grossly
energy inefficient because they have been optimized for serial
performance. This energy inefficiency has not been a concern for
small-scale systems where the power budget is typically sufficient.
However, energy efficiency becomes a concern for large-scale HPC
systems, where even a few megawatts of power savings can make a
dramatic difference in operating costs or even feasability. From
the perspective of an application, energy efficiency is obtained
by tailoring the code to the target machine, whereas from the
perspective of a machine, energy efficiency comes by tailoring the
machine to the target applications. Naturally, tailoring both the
hardware and software to each other is expected to achieve better
energy efficiency — this is the approach taken in this work.

The novelty of our proposed methodology, illustrated in Fig-
ure 1, is to incorporate extensive software tuning into an itera-
tive process for system design. Due to the increasing diversity
of target architectures, software auto-tuning is becoming the de-
facto optimization technique to tailor applications to target ma-
chines. Hardware design space exploration is routinely performed
to determine the right hardware design parameters for the target
applications. Our co-tuning strategy integrates the two paradigms
of hardware and software design exploration; we employ auto-
matically tuned software to maximize the performance of each
potential architectural design point. The auto-tuning methodology
achieves performance by searching over a large space of software
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Figure 1: Our proposed approach for hardware/software co-tuning. In essence we have embedded a conventional auto-tuning
framework within our novel-cotuning framework. As efficiency rather than peak performance is our metric of interest, we use models
in conjunction with performance counters to to estimate area and power efficiency. The result is both a hardware configuration and
a software implementation.

implementations of an algorithm to find the best mapping to a
microarchitecture [6]. Though our proposed approach may seem
intuitive, this work is the first to quantify the potential benefits of
co-tuning.

We demonstrate the effectiveness of our methodology using the
sophisticated Stanford Smart Memories [12] simulator on three
of the most heavily used kernels in scientific computing: sparse
matrix vector multiplication (SpMV), stencil-based computation,
and general matrix-matrix multiplication (SGEMM). Our experi-
ments examine co-tuning advantages on isolated kernels, as well as
multi-kernel application experiments. Overall results demonstrate
that our co-tuning strategy can yield significant improvements in
performance, power efficiency, and area efficiency when compared
with the traditional approaches. We conclude that co-tuning can
have a tremendous impact on future HPC system design.

2. RELATED WORK
Software auto-tuning is an emerging field, with optimization

packages for several key scientific computing kernels, including
FFTW [7], SPIRAL [16], OSKI [26], and ATLAS [28]. The
success of these examples has demonstrated that software auto-
tuning is a practical method for portable high-performance scien-
tific libraries. In addition to specific kernel optimization, recent
work on the ROSE compiler project [19] enables auto-tuning
individual loops to improve overall code performance. Work on the
POET language [31] allows developers to define domain-specific
optimizations for an application, thus simplifying the process of
auto-tuning design.

Current work in system design treats hardware design space
exploration (DSE) and software tuning separately. Approaches to
DSE [10, 11, 14, 15] tune hardware parameters for benchmarks [2,
4,30], with little [10] or no software tuning [11,14,15]. Intuitively,
coupling DSE with software tuning should improve overall perfor-
mance metrics — however, we are the first to study the benefits
of such an approach. In a recent study closest to our work [20],
DSE is performed for horizontally partitioned cache architectures
and it is shown that including compiler (which targets a specific
hardware configuration) in the DSE loop gives better results when
compared to the traditional approach. However, we extend this idea
to include both the compiler and the software auto-tuner in the DSE
loop — the compiler incorporates hardware configuration specific
knowledge, whereas the auto-tuner incorporates application/kernel
specific knowledge to improve performance.

Finally we note that our study utilizes the Tensilica processor-
based architecture, due to the significant power efficiency benefits
offered by embedded cores. The practicality of HPC systems
built using power-efficient embedded cores is borne out by the

existence of IBM Blue Gene/P [22] (using IBM PowerPC 450
cores), SiCortex [17] (using MIPS cores), and the Anton [9]
molecular dynamics (MD) supercomputer (using Tensilica LX
cores).

3. EVALUATED NUMERICAL KERNELS
Many high-performance computing applications spend a high

fraction of their running time in a few, relatively small kernels.
For purposes of the design methodology presented in this work,
we examine three key kernels from scientific computing: matrix-
matrix multiplication (SGEMM), PDEs on structured grids as im-
plemented by a 7-point stencil (Stencil), and sparse-matrix vector
multiplication (SpMV). All examined kernels are single-precision
implementations due to the constraints of the Tensilica simulator
(described in Section 4), and will be extended to double precision as
the Tensilica platform evolves. In general, our design methodology
could easily be applied to applications dominated by other kernel
classes or in any other precision or data type.

In this section we provide the fundamental details of these
kernels as well as the auto-tuning methodologies used to optimize
their performance. Table 1 quantifies some key computational
characteristics, including the total number of floating-point oper-
ations, the arithmetic intensity in flop:DRAM bytes, and the cache
or local store capacity required to attain said arithmetic intensity.
Superficially, SpMV and stencil have arithmetic intensities that are
constant with respect to problem size whereas SGEMM has an
arithmetic intensity that scales with cache block size and is limited
only by cache capacity and computational capabilities. As such,
one naturally expects SGEMM performance to exceed stencil, and
stencil to exceed SpMV. One should also observe that cache-based
and local store-based implementations will place different demands
on their respective on-chip memories. We will now provide the
details on these three kernels.

3.1 Dense Matrix Matrix Multiplication
SGEMM (Single-precision General Matrix-Matrix Multiplica-

tion) is a critical dense linear algebra kernel. As a fundamental
BLAS-3 routine, an efficient SGEMM implementation is crucial
for efficient implementation of many linear algebra codes. For our
purposes, the SGEMM kernel performs single-precision matrix-
matrix multiplication with increment on square N×N matrices
(C ← A · B + C). Such a kernel is easily ammenable to
cache blocking in which the matrix is decomposed into B×B cache
blocks. As a result, SGEMM can attain a high computational
intensity, and highly-tuned implementations usually achieve close
to peak machine performance. Note that extensive optimization
is necessary, as a naïve version sub-optimally exploits cache and



SGEMM Stencil SpMV
FLOPs 2·N3 8·N3 2·NNZ

flop:byte ratio < B
6

<1.0 <0.5

12·B2 (CC) 8·X·Y (CC)Requisite LS/Cache
20·B2 (LS) 24·X·Y (LS)

<4·N

Table 1: Computational characteristics of three evaluated
kernels (in single-precision). Note: Cache/local store (LS)
capacities are measured in bytes. X and Y are the cache block
sizes in their respective dimensions. NNZ is the number of
nonzeros in an sparse matrix with N columns. The cache block
size for SGEMM is B ×B.

register resources.
For this work we implement an SGEMM auto-tuner capable of

exploiting local store based architectures and using a subset of
the optimizations presented in previous studies [28]. However,
to maximize performance we utilize the well-known ATLAS [28]
code generator for the innermost kernel codes. We implemented
blocking for cache and register file utilization, as well as loop unroll
and jam. For cache-based architectures, we store matrices A and
B in block-major format, and dynamically transpose A to enable
unit-stride access.

Our auto-tuner implements a greedy algorithm and thus operates
in two phases. It first determines the register blocking and loop
unrolling to optimize single-core performance and then determines
the cache-blocking parameters for best multi-core performance.
Due to the time constraints of the software-based simulation frame-
work, we limit our dataset to matrices of dimension 512× 512.

3.2 7pt Stencil from the Heat Equation PDE
A frequent approach to solving partial differential equations

(PDE) is the iterative, explicit finite-difference method. Typically,
it sweeps through the discretized space, usually out-of-cache, per-
forming a linear combination of each point’s nearest-neighbors — a
stencil. Stencils can be used to implement a variety of PDE solvers,
ranging from simple Jacobi iterations, to complex multi-grid and
adaptive mesh refinement methods [3]. In this work, we examine
performance of Jacobi’s method to the single-precision 7-point 3D
heat equation on a N3 grid, naïvely expressed as triply nested loops
ijk over:

B[i, j, k] = C0 · A[i, j, k] + C1 · (A[i + 1, j, k] + A[i − 1, j, k] +

A[i, j + 1, k] + A[i, j − 1, k] + A[i, j, k + 1] + A[i, j, k − 1]).
The auto-tunner used in this work implements a subset of those

described in previous investigations [5], which had proven to
be extremely effective over a wide range of multi-core architec-
tures. The work here focuses exclusively on optimizations that
are relevant to the architectures within our design space: register
blocking, array padding, and cache/local store blocking, including
an implementation of the circular queue DMA blocking algorithm.
We now briefly describe the implemented optimizations. Interested
readers should refer to the prior work for more details [5].

Stencil register blocking consists of an unroll-and-jam in the
X (unit-stride) and Y dimensions. This enables re-use of data in
the register file, and decreases loop overheads. The best unrolling
factors balance an increase in register-pressure against decreased
L1 data cache bandwidth. Array padding consists of adding a small
number of dummy cells at the end of each pencil (1D row of the
3D stencil arrays), and perturbs the aliasing pattern of the arrays
in set-associative caches to decrease cache conflict misses. Such
an optimization avoids the need for designs with highly associative

Stream out planes to
target grid

Stream in planes
from source grid

Figure 2: Visualization of stencil circular queue optimization
for local store systems [5].

caches. The cache-blocking optimization is an implementation of
the Rivera-Tseng blocking algorithm [18]. We tile in the X (unit
stride) and Y dimensions, and perform a loop-interchange to bring
the Z-dimension (least unit stride) loop inside of the tiled loop
nests, exploiting re-use between vertically adjacent planes. For
cacheless, local store-based targets with software-managed DMA,
the circular-queue technique of local store management [5] is used
to implement the Rivera Tiling and schedule the DMAs to overlap
memory accesses with computation (see Figure 2).

Our approach to auto-tuning the stencil code is designed to bal-
ance coverage of the search space against the amount of simulation
time required. To that end, we implement a greedy algorithm
that starts with the “innermost” optimizations and works its way
outward. Thus, it begins by tuning the register-block size, then
tunes for the optimal array padding, and tunes for the optimal
cache-block size last.

3.3 Sparse Matrix-Vector Multiplication
Sparse Matrix-Vector Multiplication (SpMV) dominates the per-

formance of diverse applications in scientific and engineering com-
puting, economic modeling, information retrieval, among others.
Reference SpMV versions perform very poorly, running at 10% or
less of machine peak on single-core cache-based microprocessor-
based systems [25]. In this work, we use the single-precision
SpMV operation (y ← Ax) in which a sparse matrix A is
multiplied by a dense source vector x. This produces the dense
destination vector y. A is sparse; most of its entries are zero,
and are neither stored in memory nor used in the computation.
Typically, A is represented in a compressed sparse row (CSR)
data structure. SpMV has a low arithmetic intensity as each
Ai,j is used exactly once per SpMV to perform one multiply-
accumulate operation. Moreover, to reference Ai,j , CSR demands
an additional 4 bytes of meta data for every nonzero.

Our SpMV auto-tuning optimization approach utilizes previ-
ously established techniques [25, 29], which we describe only
briefly. SpMV performance suffers primarily from large instruc-
tion and storage overheads for sparse matrix data structures and
from irregular memory access patterns. Optimizations focus on
selecting a compact data structure to represent the matrix and code
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Figure 3: Overview of matrices used for SpMV evaluation,
representing a variety of computational structures.

transformations that exploit both the structure of the sparse matrix
and the underlying machine architecture.

This work considers thread, cache, and register blocking, and
software prefetching. On local store-based architectures, cache
blocking is called local store blocking, and prefetching becomes
DMA. Thread blocking is slightly distinguished from paralleliza-
tion in that the matrix is partitioned into equal-sized sub-matrices
that can be individually allocated, padded, and optimized. Cache
blocking exploits re-use of the source vector by tiling accesses
to columns of the matrix. The tiling transformation must be
implemented on local store architectures with software-managed
DMA to guarantee correctness rather than to improve performance.
Our software prefetching and DMA optimizations load only the
non-zero values and column index arrays. For local store-based
architectures, we must explicitly load all the referenced source-
vector elements, as well as the matrix data structure.

Our SpMV auto-tuner is a port of the cache-based and Cell/
DMA code described in [29]. However, in this work, as we are
tuning hardware to maximize efficiency, we cannot make the as-
sumption that our target architecture (see Section 4) will be heavily
memory-bound. Thus, we employ a more complex heuristic [25]
that attempts to balance the superfluous memory traffic associated
with filling zeros when register blocking with a register block’s
inherently higher raw flop rate.

SpMV performance is heavily dependent upon the nonzero struc-
ture (sparsity pattern) of the sparse matrix. Thus, it is necessary
to evaluate SpMV implementations against matrices drawn from
realistic applications. We conducted experiments on seven sparse
matrices from a wide variety of actual applications, including finite

Opteron Blue Gene/P
Cores (per chip) 4 4
Power (per chip) 95W 16W

DGEMM 32000 10200Sustained MFlop/s
Stencil 3580 2304per chip
SpMV 1980 590

Sustained PFlop/s DGEMM 3.37 6.38
with 10MW of Stencil 0.38 1.44

chip power SpMV 0.21 0.37

Table 2: Performance of the double-precision implementations
of our three key kernels on petascale computers. Note, power
requirements are for the chip only assuming perfect scaling.

element method-based modeling, circuit simulation, and linear
programming. An overview of their salient characteristics appears
in Figure 3. We also evaluate a dense matrix stored in sparse format
as a performance upper-bound. These matrices cover a range of
properties relevant to SpMV performance: matrix dimension, non-
zeros per row, the existence of dense block substructures, and
degree of non-zero concentration near the diagonal. Previous work
presented an overview of their salient characteristics [29]. Due to
space limitations, we present data only on the median performance.

3.4 Kernel Performance on Petscale Systems
To provide context, Table 2 presents the performance of the

double-precision implementations of DGEMM, the 7-pt stencil,
and SpMV on two petascale-class architectures: the XT4 and
Blue Gene/P. The XT4 is built from commodity general-purpose
quad-core Opteron processors, while Blue Gene/P is built from
customized quad-core embedded PPC450 processors. Chip perfor-
mance is shown for each of the studied kernels. Additionally, as a
point of reference, we extrapolate the maximum attainable PFlop/
s performance (assuming perfect scaling) given a 10MW chip
power budget (clearly the overall system power will exceed the chip
power requirements). Note that the chip power requirements differ
by about a factor of six with the more power hungry chip delivering
superior per node performance. However, in a power-conscious or
constrained world, the Blue Gene/P system would deliver about
twice the performance on a fixed 10MW chip power budget. It is,
therefore, clear that power efficiency will have tremendous impact
on the attainable performance of next-generation supercomputing
facilities. Our co-tuning work, as detailed in the remaining of this
study, brings forth a methodology that can significantly improve a
system’s power (or area) efficiency.

4. EXPERIMENTAL PLATFORM AND DE-
SIGN SPACE EXPLORATION

Our study is heavily geared towards producing area- and power-
efficient designs. As such, we embrace SiCortex’s and IBM’s
decision to utilize embedded processors for HPC systems. In
this work, we used the Tensilica XTensa core primarily due to
its flexibility, ease of system integration, configurability of micro-
architectural resources, and of course, XTensa’s target market is
energy-efficient embedded systems.

As a testbed for the evaluation of the myriad of different hard-
ware configurations, our work utilizes the Smart Memories [12]
(SM) reconfigurable simulator developed at Stanford for general-
purpose multi-core research. We present and exploit only the
aspects of the architecture relevant to our design space, and refer
the reader to cited works for other details. Figure 4 generalizes
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Component Parameters Explored Configs
Issue width single-issuein-order
Frequency 500 MHzcores XTensa

Number of Cores 1, 4, 16core
Inst. Cache (per core) 16 KB

Coherent Capacity (per core) 16, 32, 64, 128 KB
Data Associativity 4 way

Memory Caches Line size 64 Bytes
Hierarchy Local Store Capacity (per core) 16, 32, 64, 128 KB

External Bandwidth 0.8, 1.6, 3.2 GB/s
DRAM Latency 100 core cycles

(b)

Figure 4: (a): Restricted SmartMemories architecture for
some number of cores. Each core has a private instruction
cache and either a private data cache or a private local store.
(b): Hardware parameters explored in co-tuning architectural-
space exploration. The parameters corresponding to baseline
(untuned) hardware configuration are in boldface. Note that
data cache and local store designs are mutually exclusive.

our multicore architecture. The SM simulator was designed to
simulate a wide variety of on-chip memory hierarchies for multi-
core processor, and utilizes cycle-accurate simulator of the Tensil-
ica XTensa processor for performance modeling of the individual
cores. The goal of SM is functional emulation and accurate
performance estimation, subject to the throughput and latency
specifications of the system configuration. Our power and area
estimation methodology is presented in Section 5. In this work, we
use the configurability of the simulator to explore an enumerated
design space. Since the experiments are conducted in a software
simulation environment, we have pruned this design space to re-
duce the amount of compute time needed. Future work will explore
the space faster by using FPGA-based hardware emulation [27].

Previous studies of numerical algorithms have shown that cache
hierarchy, memory system, and on-chip computational resources
are crucial system design parameters for HPC architectures. Fig-
ure 4 enumerates our hardware design space. The core architecture
is a fixed 500MHz single-issue, in-order Tensilica XTensa core
with a private 16KB instruction cache. The 500MHz rate is useful,
as it allows the Tensilica toolchain to provide us with accurate

power and area projections. For expedience, we only explored 1,
4, and 16-core designs. The memory hierarchy is divided into two
parts: on-chip memories, and off-chip memory. On-chip memories
are either a private coherent caches (CC) per core or a private
disjoint local stores (LS) per core. We fixed cache associatvity as
4-way and line size is 64 bytes. For caches and local stores we
explore four different capacities. All cores use the same design
— there is no heterogeneity. Off-chip memory is abstracted as a
uniform memory access DRAM running at one of three different
possible bandwidths.

5. EVALUATION METRICS
Our area of focus is parallelized scientific applications run-

ning on large-scale, energy-efficient, throughput-oriented high-
performance systems consisting of tens of thousands, if not mil-
lions, of individual processing elements. Obtaining enough power
for such systems can obviously be an impediment to their adoption.
Thus, achieving high performance when designing such machines
is less dependent on maximizing each node’s performance, but
rather on maximizing each node’s power efficiency. Moreover,
large silicon surface area can be expensive both from a fabrication
cost, and also in its impact on mean time between failures (MTBF).
Thus, our design methodology focuses on two key optimization
metrics: power efficiency — the ratio of attained MFlop/s per chip
to chip power, and area efficiency — the ratio of attained MFlop/
s per chip to chip area. In essence, power efficiency is a measure of
number of tasks completed per unit of energy be it Joules or kWh.

Given these metrics, one can impose either a per-node or per-
supercomputer chip power (or area) budget and estimate the resul-
tant attainable performance: minimum of area efficiency × chip
area budget and power efficiency × chip power budget. Systems
with limited power budgets should be selected based on power
efficiency, whereas systems with limited silicon budgets should be
selected based on area efficiency. Identifying the trade-off between
the two allows a designer to balance the system acquisition costs,
system power requirements, and system up time. It is important
to note that further gains in power efficiency can be realized by
optimizing all the system components (in addition to chip power)
— this will be focus of future investigations.

We anticipate most of the growth in parallelism for future sys-
tems will be primarily within a computational "node". For a
fixed aggregate MPI performance level, the range of practical core
counts differs by only one order of magnitude whereas the number
of nodes in a given system is likely to differ by a far smaller
amount. The challenge of our decade is to make more efficient use
of explicit parallelism within the node to extract a strong scaling
speed-up in lieu of continued clock-frequency scaling. This will
require better abstractions for fine grained parallelism within the
node as well as more efficient computational elements within the
node. As such, we may focus only on single node performance.

5.1 Modeling Chip Power
The power estimation is based on the model used in [10] by

weighting a number of key architectural events counted by the
software simulator with appropriately modeled or derived energies
weighted by the total execution time. Energy for events originating
in the cores are derived using the energy estimates from the Ten-
silica tools. The effect of clock gating is taken into account by a
reduced power consumption when the core is stalled (assumed to be
10% of peak power). The dynamic energy for the caches and local
stores is modeled on a per transaction basis using a CACTI 5 [23]
model. On-chip network energy is calculated based on the total on-
chip network traffic and using the scaled energy numbers from [10].



Finally, leakage power is assumed to be 15% of peak power for
any configuration. Although, every software implementation for
a given hardware design will yield different power estimates, this
model allows us to explore variations in the constants without
having to resimulate the design.

5.2 Modeling Chip Area
The area of a given processor configuration is an important

metric due to its effect on the end cost of fabricating and packaging
the circuit. To this end, we model the hardware configuration
area within the design space, assuming 65nm node technology for
the core chip. Core area estimates are provided by the Tensilica
toolchain, while CACTI 5 [23] was used to model cache or local
store area. To mitigate the effect of area on yield, we assume
sparing is used for increasing yield — one spare core is assumed
for chips with up to eight cores, and two spare cores are assumed
for chips with 16 cores. Each Tenscilica cores is extremely small
when compared with modern high-performance microprocessors
— less than 0.5 mm2. As such, we expect such a sparing strategy to
have very high die yields and a yield percentage that is effectively
independent of the chip area. In essence, the resultant yield-
adjusted chip costs should be roughly linear with core chip area.
We assume that the on-chip network and clocking add another 20%
to the core chip area.

5.3 Modeling DRAM
We modeled DRAM energy using the current profiles from the

Micron datasheets [13] for a 256-MB-DDR2-400 memory module.
Given the low power nature of the Tensilica cores, DRAM power
is a substantial component of total power. For modeling DRAM
area, we assume that DRAM area is 3× more cost efficient than
chip area. For this reason we assume that the memory interface and
DIMMs contribute a constant 35 mm2 to the total area. Since this
is substantial compared to the area of a tensilica core, which is less
than 0.5 mm2, and caches (each 128 KB cache is less than 1 mm2),
we include this area in our calculations. As such, there is a clear
economy of scale by incorporating many cores.

We note that vector systems, such as the Cray X2 and NEC
SX-9 are able to achieve substantially better computing efficiency
by organizing DRAM to support word-granularity data accesses.
However, because of the internal page-oriented organization of
internal DRAM architecture, support for such access patterns re-
quires over-provisioning of DRAM bandwidth, with commensurate
increase in power loads. So although we find massively bank-
switched memories of these systems enable much higher com-
putational efficiency, the power consumed by DRAM makes this
approach uncompetitive in energy efficiency when we tried to
include this approach in our study. Therefore, we have focused on
primarily conventional DRAM organization that supports cache-
line granularity accesses and did not include word-granularity
access in this study.

6. EXPERIMENTAL RESULTS
Before delving into the experimental results, we briefly reiterate

our novel co-tuning approach shown in Figure 1: for each of the
three kernels, and for each processor configuration in our search
space, the kernel is auto-tuned on that hardware configuration
to find the software implementation that maximizes performance.
Therefore, given a hardware configuration, we always report data
corresponding to the best performance achieved by the auto-tuner
on it. Note that while our auto-tuners heuristically prune their own
search spaces of tuned software implementations, we explore the
hardware configuration space exhaustively by running the auto-

tuners on all the configurations within our design space. An
application of co-tuning for a real system, however, would use a
more efficient search strategy to explore a much larger hardware
design space. For the purpose of this paper, though, exhaustive
search suffices as the hardware design space is small and serves
well to illustrate the effectiveness of co-tuning.

We now quantify the effectiveness of our co-tuning methodology
for a variety of hardware and software optimization strategies on
each of the three numerical kernels. We commence with a study
of the relationship between architectural configuration and attained
performance. Next, we measure the potential improvements in
kernel power and area efficiency using our co-tuned design space
exploration. Finally, we analyze the benefit of co-tuning for
applications dominated by a varying mix of these three kernels.

6.1 Performance of Design Parameters
We now explore the per kernel performance response to changes

in both software optimization and processor configuration. Do-
ing so provides insights into the inherent hardware requirements
and attainable efficiencies for each kernel as well as quantifying
the importance of the instantiation of the auto-tuning component
within the co-tuner. Not only do these simulation results, shown in
Figure 5, follow our intuitions regarding the expected performance
of our kernels under varying architectural conditions, they also
serve to validate the underlying simulation environment.

Auto-tuning.
Figures 5(a–c) show the performance benefit of auto-tuning for

SpMV, Stencil, and SGEMM using a fixed memory bandwidth of
1.6 GB/s and either a 64 KB data cache or a 64 KB local store for
1, 4, or 16 cores. The stacked bars indicate the improvement of our
software optimizations.

Observe that due to SpMV’s constant and low arithmetic inten-
sity, with enough cores, SpMV performance plateaus for both the
tuned and untuned code versions using either caches or local stores.
In effect, the changes in processor configuration transitioned its
behavior from compute-bound to memory-bound. Note that for
smaller concurrencies, the untuned DMA-based implementations
outperform the cache coherent versions by a factor of 2×. Such a
situation arises because the DMA version utilizes block transfers,
which represent a means of more easily satisfying Little’s Law [1]
and mandates a reuse-friendy blocked implementation for cor-
rectness. Nevertheless, the SpMV auto-tuner provides significant
benefit even on bandwidth-limited configurations. This class of
SpMV auto-tuner attempts to both minimize memory traffic and
express more instruction-level-parallelism. The results reaffirm
the significant impact of auto-tuning shown previously shown on
numerous multicore architectures [5, 6, 29].

The stencil code is both moderately more arithmetically intense
than SpMV, and also contains more regularity in its memory
access pattern. Figure 5(b) demonstrates that, relative to SpMV,
the higher arithmetic intensity forestalls the advent of a memory-
bound processor configuration. Thus, as applications shift their
focus from SpMV to stencil-like kernels, they may readily exploit
more cores. Most interesting, the quad-core local store version
attains the performance comparable to the 16-core cache-based
implementation. In effect, DMA transfers eliminate superfluous
write allocate traffic and express more memory-level parallelism.
The incorporation of effective prefetching into the cache-based
stencil auto-tuner might mitigate the latter. Finally, the tuned local
store stencil code can utilize a large portion (∼75%) of memory
system with four cores; hence the performance improvement is
limited to about 30% when quadrupling the number of cores to 16.



(a) SpMV, effect of auto-tuning (b) Stencil, effect of auto-tuning (c) SGEMM, effect of auto-tuning

(d) SpMV, effect of cache/localstore size (e) Stencil, effect of cache/localstore size (f) SGEMM, effect of cache/localstore size

(g) SpMV, effect of memory bandwidth (h) Stencil, effect of memory bandwidth (i) SGEMM, effect of memory bandwidth

Figure 5: The interplay between processor configuration and auto-tuning for the SpMV, Stencil, and SGEMM kernels. Note: ‘LS’
indicates DMA-managed local store architectures, and ‘CC’ indicates coherent-cache systems.

With 16-cores, even the untuned DMA-based code is nearly able to
saturate the memory system.

SGEMM has a high arithmetic intensity arithmetic hierarchally
limited by the register and cache capacities. Thus, it alone among
our kernels is capable of exploiting increasing numbers of cores
(and cache capacities). Figure 5(c) shows the performance of
SGEMM scales linearly with the number of cores, for any pro-
cessor configuration both with and without auto-tuning. This does
not imply all configurations delivered the same performance or
benefits. To the contrary, auto-tuning was essential on cache-
based architectures; improving performance by 64×, but only
provided a moderate speedup on the already well-blocked local
store implementations. Moreover, the local store configuration
consistently outperformed the cache configurations. The naïve
code incurs significant cache conflict misses for large matrices,
especially when the matrix dimensions are powers of 2 — the
common case in our experiments. Furthermore, the latency penalty
of a cache miss is high due to the absence of an L2 cache in our
configurations. Due to SGEMM’s hierarchal arithmetic intensity,

the effects of inner-loop code generation and blocking for data
reuse are extremely important. In contrast to the stencil and SpMV
codes, even our most highly optimized SGEMM implementations
are not significantly limited by memory bandwidth.

On-chip Memory Capacity.
Figures 5(d–f) quantify performance response to changes in core

count and per-core memory capacity for the auto-tuned codes. We
show both the cache-based and DMA-based codes for each of 1,
4, and 16 cores. Although the cache-based configurations can be
more sensitive to cache size compared with the local store versions
— since it is harder to control blocking and data movement via
scalar loads and stores — performance is relatively insensitive
to cache and local-memory sizes. SpMV performance hardly
changes at all, as the smallest cache size is enough to exploit
re-use of the two vectors. The cache-based stencil code sees
about 60% performance improvement as the cache size increase
from 16 KB to 64 KB. However, the explicitly-blocked, DMA-
based stencil code can exploit nearly all temporal locality using the



smallest local memory. SGEMM on 16-core systems benefits from
increased cache and local memory sizes due to memory bandwidth
contention; the larger caches enable larger block sizes and reduce
pressure on memory bandwidth — i.e. higher arithmetic intensity.

Memory Bandwidth.
Figures 5(g–i) show performance as the processors’ memory

bandwidth is changed. Clearly, for SpMV and stencil, increasing
the number of cores is only viable when the memory bandwidth is
similarly increased since they are ultimately memory limited. This
effect is less pronounced for Stencil due to its higher arithmetic
intensity. SGEMM, on the other hand, only begins to show the
limitations of memory bandwidth with 16 cores.

6.2 Tuning for Power and Area Efficiency
Having established raw performance characteristics, we now ex-

amine the power and area efficiency of our methodology. Figure 6
plots these efficiency metrics (as defined in Section 5) for our three
test kernels. Each point in the scatter plot represents a unique
processor configuration, with yellow circles, green triangles, and
red triangles corresponding to auto-tuned cache, untuned cache,
and (either auto-tuned or untuned) local store versions respectively.
Additionally, a circle is drawn to highlight the configurations with
the best power or area efficiencies.

These figures serve to demonstrate the extreme variation in
both efficiency metrics spanned by the design points within our
configuration search space. Figure 6(a) shows that a poor choice
of hardware can result in as much as a 3× degradation in power
efficiency for SpMV (MFlops/s per Watt), whether software tuning
is employed or not. Figure 6(b) shows that for stencil, the differ-
ence is nearly 8×. For SGEMM in Figure 6(c), this difference is
nearly two orders of magnitude! Since the operational cost and
performance ceiling of future HPC facilities are limited by the
power consumption of compute resources, these results quantify
the potential impact of an energy-efficient design and hold the
promise of reducing petascale system power by several megawatts.

We now measure the potential effectiveness of our combined
hardware/software tuning methodology. Performance is explored
in the context of four configurations: untuned software on the
fastest processor configuration, auto-tuned software on the fastest
processor configuration, tuned hardware running untuned (fixed)
software, and co-tuned hardware/software. This serves to differ-
entiate the efficiency gains from tuning software and hardware
individually from the efficiency gains of co-tuning.

Out-of-the box: Untuned Software on the Fastest Pro-
cessor Configuration.

Our lowest baseline comparison is the conventional wisdom
strategy of choosing a system design by using the most powerful
hardware configuration. We do not tune the software running
on these processors. The most powerful hardware configuration
within our search space is a coherent-cache chip multi-processor
with 16 cores, 128 KB of L1 data cache per core, and 3.2 GB/s of
main memory bandwidth. While local store architectures generally
provide better performance, it is impossible to produce un-tuned
codes to utilize them. As this comparison represents putting essen-
tially no effort into the system design, it is highly unlikely to be a
viable power- or area-efficient solution. Rather, we present it as a
point of comparison to illustrate how much efficiency our coupled
hardware/software design space exploration provides. Table 3
presents an overview of the optimal power and area efficiency data
for each optimization strategy (including the improvement impact
of co-tuning), starting with this baseline configuration, shown in

the fourth column. Observe that our co-tuning methodology would
deliver 3.2–80× better power and area efficiencies for our evaluated
kernels.

Auto-Tuned Software on the Fastest Processor Config-
uration.

In order to differentiate the efficiency that the current state-of-
the-art provides, we present the result of auto-tuned software on
the fastest hardware. This combination is analogous to building
a system from high-performance commodity cores and utilizing
auto-tuning for software optimization — an increasingly common
solution. The hardware provides as much of each architectural
resource as our design space allows, but without having been
specifically tailored to any specific kernel. The auto-tuned kernels
exploit those resource to maximize performance. The fifth column
(auto-tuned SW, fastest HW) of Table 3 shows the optimal power
and area efficiency produced by this approach.

Since the hardware configuration is the same as the untuned SW
on fastest HW, the efficiency gains correspond roughly to improve-
ments in attained floating-point performance through auto-tuning.
These ratios are different for power and area efficiency, since power
depends on the activities of the various architectural resources,
while area depends only on their physical quantity. Comparing
the fourth and fifth columns of Table 3 shows that SGEMM’s
auto-tuning achieves an impressive 54× and 53× improvement
in power and area efficiency (respectively), due to the enormous
performance impact of auto-tuning on this kernel. For Stencil
and SpMV, the improvement is not as spectacular, but nonetheless
substantial: Auto-tuning improves Stencil’s power efficiency by
1.5× and its area efficiency by 1.2×, while SpMV benefits by
1.8× in power efficiency, and 2.2× in area efficiency. These
results reiterate the conclusions of prior works [5, 6, 29] that auto-
tuned codes can outperform compiler-only optimizations by a wide
margin.

Untuned software, Tuned Hardware.
We now examine the effect of hardware design space exploration

alone, without the benefit of software auto-tuning. Note that
we omit local store-based configurations in the hardware tuning
design space for this case. This is because our so-called “untuned”
kernels on local store-based configurations are cognizant of both
the local store capacity, as well as the locality inherent in the
algorithms. A truly untuned (architecturally and algorithmically
agnostic) local store code would doubtlessly achieve significantly
lower performance. The green triangles in the scatter plots in
Figure 6 represent the range of efficiencies that hardware-only
tuning achieves, while the sixth column (untuned SW, tuned HW)
in Table 3 shows the efficiencies of the Pareto-optimal hardware
configurations.

Looking at the sixth column of Table 3 shows that simply
tuning over the hardware space improves both power and area
efficiency for all our kernels. SpMV, stencil and SGEMM achieve
power efficiency improvements of approximately 1.7×, and area
efficiency gains of 1.3×, 1.4×, and 1.1× (respectively), when com-
pared the untuned SW/HW. Note that since we are optimizing for
power and area efficiency, the attained floating-point performance
is lower compared with the untuned SW/HW case. Examining
the fifth and sixth columns of Table 3 shows that even after
searching over the hardware design space, we can still under-
perform even on the most powerful hardware configuration, if auto-
tuning software is not employed. This difference is quite dramatic
for SGEMM (30× and 47× lower power and area efficiency)
because it benefits tremendously from tuning, especially for the



(a) SpMV area vs. power efficiency (b) Stencil area vs. power efficiency (c) SGEMM area vs. power efficiency

Figure 6: Area efficiency vs. power efficiency for each of the three Kernels. ‘AE’ and ‘PE’ denote the most area- and power-efficient
configurations respectively.

specific matrix dimensions used in our experiments.

Hardware/Software Co-Tuning.
Our hardware/software co-tuning methodology performs soft-

ware auto-tuning for each potential point in the hardware design
space, and thus represents a more complete coverage of the overall
system design space than the other examined approaches. Each
hardware design point is evaluated with a more complete picture
of its potential for performance and efficiency. Please note, for
each kernel, the software auto-tuning loop is embedded within the
hardware loop, and thus optimizes performance for each individ-
ual hardware configuration. We then record the power and area
efficiencies for the fastest auto-tuned software configuration for
each individual hardware configuration. The last column in Table 3
shows the power and area efficiency of the overall Pareto-optimal
configurations using the co-tuning methodology. Results show that
this approach yields significant improvements in power and area
efficiency when compared to the three previously discussed config-
urations (as shown in the parenthesized values of each column).

It is interesting to compare co-tuning (seventh column) with only
software-based (fifth column) or hardware-based (sixth column)
tuning. Given the tremendous benefits of software tuning, it is not
surprising to see that co-tuning outperforms the hardware-only tun-
ing approach. This difference is particularly dramatic for SGEMM
— 36× and 70× in power and area efficiency respectively — where
the untuned code performs quite poorly. Additionally, co-tuning
gains for stencil and SpMV range from 1.9×–2.7×. Comparison
of the co-tuning versus the software-only tuning approach shows
that even after fully optimizing the code on the fastest hardware,
there is still significant room for efficiency improvements. Notably,
the power efficiency gains of co-tuning for SpMV, SGEMM, and
stencil are 1.7×, 2.4×, and 1.2× respectively, whereas, the area ef-
ficiency improvements are 1.6×, 3×, and 1.5× respectively. These
are the first results to quantify the intuitive notion that ignoring
either hardware or software optimization while performing system
design will naturally lead to suboptimal solutions. Finally, we
also note that each individual kernel can have different optimal
hardware configurations which is evident by the different areas for
the best area efficiency configurations.

6.3 Co-Tuning for Multi-Kernel Applications
No one individual kernel can give a complete picture of an entire

application’s performance on a given system. Realistic large-scale
scientific applications consist of multiple subsystems that solve
different parts of the overall problem. We therefore approximate
the effect of co-tuning on a multi-kernel application by combining

the results from Section 6.2.
We thus construct co-tuning results for the set of kernels by

taking a weighted mean of their tuned performance data on each
hardware configuration. Given that each individual kernel con-
tributes some fraction of the floating-point operations for an entire
application, we sum these kernel contributions via a weighted har-
monic mean. This basic strategy assumes that interaction between
kernels does not have significant impact on whole-application per-
formance. Although this is clearly a simplifying assumption, it is
nonetheless an important first step toward quantifying the potential
impact of the co-tuning methodology to full-scale applications.
Expanding this approach will be the focus of future work.

Figure 7(a) plots the power efficiency of the best co-tuned
hardware configuration relative to the fractions of floating-point
operations contributed by the three kernels, where the individ-
ual contributions always sum to one. We present these data by
defining the x-axis and y-axis of Figure 7(a) as the fractional
contribution of Stencil and SpMV to an application’s computation,
while the remaining fractional portion represents the contribution
of SGEMM (on the implicit z-axis). Therefore, the lower-left
corner of the plot represents optimized hardware configurations
for applications consisting entirely of SGEMM-like dense linear
algebra algorithms. Similarly, the lower-right corner represents
applications consisting entirely of SpMV-like sparse linear algebra,
while and the upper left corner is stencil-based grid computations.
As the most power efficient configuration differs for each mix of
kernels, we annotate Figure 7(a) with the parameters of the best
configuration: CC/LS, core-count (1-16), CC/LS size (16K-128K),
and memory bandwidth (0.8-3.2 GB/s). Results show the variety
of co-tuning architectural solutions and corresponding power effi-
ciencies based on a given application’s underlying characteristics.

Figure 7(b) plots the power efficiency improvements of the co-
tuned systems for each kernel mix compared with the untuned-
software tuned-hardware approach (described in Section 6.2). This
approach most closely resembles prior work in automated system
design, which have hitherto not included extensive software op-
timization. Recall, that we only consider coherent-cache based
configurations for untuned-software base case (see Section 6.2).
Results show that co-tuning results in power efficiency gains rang-
ing between 1.2×–2.4× depending on each kernels contributions.
A similar analysis for area efficiency (not shown), demonstrates
improvements varying from 1.6× to 3× (as seen in Table 3). Over-
all this approach points to the potential of applying our co-tuning
methodology to more complex, multi-algorithmic applications.



Design Co-Tuned Untuned SW Auto-Tuned SW Untuned SW Co-Tuned
Objective Kernel

Metric
Fastest HW Fastest HW Tuned HW∗ SW/HW

MFlop/s 397 895 127 229
Power (W) 4.8 6.0 0.9 0.9SpMV

Power Efficiency 82.4 150.2 141.6 267.5
Co-Tuning Advantage 3.2x 1.7x 1.9x —

MFlop/s 906 1139 262 686
Power Power (W) 4.5 3.5 0.8 0.9

Efficiency
Stencil

Power Efficiency 203.2 321.9 344.5 756.9
Co-Tuning Advantage 3.7x 2.4x 2.2x —

MFlop/s 132 7079 122 5823
Power (W) 1.9 1.9 1.0 1.3SGEMM

Power Efficiency 68.7 3750.5 124.7 4431.4
Co-Tuning Advantage 65x 1.2x 36x —

Design Co-Tuned Untuned SW Auto-Tuned SW Untuned SW Co-Tuned
Objective Kernel

Metric
Fastest HW Fastest HW Tuned HW∗ SW/HW

MFlop/s 397 895 390 897
Area (mm2) 70.3 70.3 52.0 45.3SpMV

Area Efficiency 5.8 12.7 7.5 19.8
Co-Tuning Advantage 3.5x 1.6x 2.6x —

MFlop/s 906 1139 923 2502
Area Area (mm2) 70.3 70.3 52.0 52.0

Efficiency
Stencil

Area Efficiency 12.9 16.2 17.9 48.1
Co-Tuning Advantage 3.7x 3x 2.7x —

MFlop/s 132 7079 110 8173
Area (mm2) 70.3 70.3 52.0 55.0SGEMM

Area Efficiency 1.9 100.7 2.1 149.9
Co-Tuning Advantage 80x 1.5x 70x —

Table 3: Summary of optimal power-efficiency (in MFlops/s/Watt) and area-efficiency (in MFlops/s/mm2) data (and relative
improvement of co-tuning) for each optimization configuration.∗The hardware configuration space for ‘Untuned SW, Tuned HW’
only includes coherent-cache based configurations.

7. CONCLUSIONS AND FUTURE WORK
Power efficiency is rapidly becoming the primary concern for

HPC system design. Conventionally designed ultra-scale platforms
constructed with the conventional-wisdom approach based on using
commodity server-oriented processors, will draw tens to hundreds
of Megawatts — making the cost of powering these machines
impractically high. Therefore, it is critical to develop design tools
and technologies that improve the power efficiencies of future high-
end systems.

We have proposed a novel co-tuning methodology — tradi-
tional architecture space exploration is tightly coupled with soft-
ware auto-tuning — for high-performance system design, and
demonstrated that it provides substantial efficiency benefits by
customizing the system’s architecture to software and software to
the system’s architecture. Our study applies this approach to a
multi-core processor design with three heavily used kernels from
scientific applications spanning a wide variety of computational
characteristics. Based on the optimization results for the individual
kernels, we demonstrate power and area efficiency gains of 1.2–
2.4× and 1.5–3× respectively, due to co-tuning — when compared
to using auto-tuned software on the fastest, embedded processor
configuration. Additionally, we show that these improvements
can also be attained in multi-kernel application environments. As
highlighted in Table 2, this increased efficiency can translate into
hundreds of Teraflops, if not Petaflops, of additional performance
for next-generation power-constrained HPC systems. Athough
we used Tensilica cores in our study, our co-tuning methodology

is also applicable to the design of systems based on commodity
microprocessors. Using co-tuning for designing such systems
can yield lower cost solutions through possible reductions in chip
area (smaller number of cores, smaller cache size, etc.), DRAM
bandwidth requirements, and other system parameters.

Building platforms from pre-verified parameterized core designs
in the embedded space enables programmability and accelerated
system design compared to a full-custom logic design, while pro-
viding higher efficiencies than general purpose processors tailored
for serial performance. Furthermore, our hardware/software co-
tuning methodology is a tool for assisting and automating the
optimization of programmable HPC systems for energy efficiency.
Tools for automatic design space exploration in the context of ad-
hoc architectures do not exist, and the design space is intractably
large. However, basing architectures on programmable multi-core
processors constrains the design space, making the search space
tractable and verification costs reasonable — as the same core can
be replicated millions of times.

Future work will examine more complex architectural designs
that can potentially improve power efficiency such as VLIW, SIMD,
vector, streaming and hardware multi-threading. Additionally,
we plan to explore more algorithmic techniques as well as their
interactions and potential cross-kernel optimizations. We also note
that the search space in our study is primarily limited by the
software-based architectural simulators. Each auto-tuning search
produces hundreds of individual kernel implementations that must
be executed on all 72 hardware configurations explored in our
study— requiring thousands of CPU-hours of simulation time. Our



(a) Co-tuned weighted power efficiency showing optimal configu-
ration: CC/LS, core count, CC/LS size (KB), memory BW (GB/s).

(b) Weighted improvements in power efficiency of co-tuning
versus untuned-hardware with tuned-software approach.

Figure 7: Co-tuning for multiple kernels, using a 3D graph with the fractional contribution of SPMV on the x-axis, stencil on the
y-axis, and SGEMM on the implicit z-axis. Each square in (a) depicts the HW parameters of the corresponding square in (b). The
sum of the three kernels’ flops contributions (x-,y-, and z-axis) always adds up to one.

ongoing work is therefore leveraging RAMP [27] to optimize archi-
tectural configurations by using FPGA-based hardware emulation
to accelerate the exploration process. Moreover, we plan to incor-
porate intelligent pruning approaches [8] into our methodology to
accelerate searching of the co-tuning design space. This will enable
us to better investigate whether the fastest software implementation
for a particular hardware configuration is, as assumed, the most
area or power efficient by recording the performance, power, and
area for each hardware/software combination. This accelerated
tuning environment will also enable us to investigate approaches to
performing a global analysis across a range of applications. Finally,
as we scale to distributed applications, we plan to include the
energy and power for inter-node communication including network
power.

Our proposed co-tuning strategy offers a promising trade-off
between the additional design cost of architectural customization
and the portability and programmability of off-the-shelf micropro-
cessors. Moreover, existing toolchains of companies like Tensilica
enable a large space of hardware configurations, and the evolving
maturity of auto-tuners for scientific kernels provides the ability
to extract near-peak performance from these designs. Overall, this
approach can provide a quantum leap in hardware utilization and
energy efficiency, the primary metrics driving the design of the
next-generation HPC systems.
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