
Background
Algorithms

Performance Models
Implementation

Summary

Fast Implementations of the Akx Kernel

Marghoob Mohiyuddin Mark Hoemmen James Demmel
Katherine Yelick

Department of Electrical Engineering and Computer Science

University of California at Berkeley

SIAM Conference on Parallel Processing for Scienti�c
Computing, 2008

Mohiyuddin et al. Fast Implementations of the Akx Kernel 1/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Outline

1 Background

2 Algorithms

3 Performance Models

4 Implementation

Mohiyuddin et al. Fast Implementations of the Akx Kernel 2/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Takeaways
Motivation
Problem Statement

Takeaways

Sequential and parallel algorithms for the Akx kernel with
minimum communication.

Optimal speedups possible.

Measured speedups of 3x for the sequential algorithm.

Mohiyuddin et al. Fast Implementations of the Akx Kernel 3/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Takeaways
Motivation
Problem Statement

Communication is Costly, Computation is Cheap

Gap between computational capability and communication
cost increasing.

Applications need to be designed with this gap in mind
Communication hiding not enough.

Latency can be dealt with by overlap, but limited by the
amount of computation

Communication avoiding:

Trade o� communication with computation.

Mohiyuddin et al. Fast Implementations of the Akx Kernel 4/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Takeaways
Motivation
Problem Statement

The Akx Kernel

Given n×n sparse matrix A, vector x , integer k > 0,

Compute the k vectors Ax ,A2x , . . . ,Akx e�ciently.

Parallel and sequential algorithms.

Arises in Krylov Subspace Methods.

Unpreconditioned KSMs need to look at the Krylov subspace
spanned by [x ,Ax ,A2

x , . . . ,Ak
x ].

Mohiyuddin et al. Fast Implementations of the Akx Kernel 5/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Setup

Matrix A and vector x divided in to p blocks.

Parallel machine:

Each proc. operates on a separate block.
Interproc. communication for remote dependencies.

Sequential machine:

Each block stored contiguously in slow memory.
Algorithm operates on a block-by-block basis.

Output vectors computed on a per block basis.

Mohiyuddin et al. Fast Implementations of the Akx Kernel 6/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 iterations

1 Entries available marked red.

2 Computing Ax : Send entries
needed by other procs (green).

3 Computing Ax : Compute
locally dependent entries.

4 Computing Ax : Receive entries
from other procs (blue).

5 Computing Ax : Compute
remaining entries of Ax .

6 Compute A2x as A(Ax).

7 Compute A3x as A(A2x).

Mohiyuddin et al. Fast Implementations of the Akx Kernel 7/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 iterations

1 Entries available marked red.

2 Computing Ax : Send entries
needed by other procs (green).

3 Computing Ax : Compute
locally dependent entries.

4 Computing Ax : Receive entries
from other procs (blue).

5 Computing Ax : Compute
remaining entries of Ax .

6 Compute A2x as A(Ax).

7 Compute A3x as A(A2x).

Mohiyuddin et al. Fast Implementations of the Akx Kernel 7/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 iterations

1 Entries available marked red.

2 Computing Ax : Send entries
needed by other procs (green).

3 Computing Ax : Compute
locally dependent entries.

4 Computing Ax : Receive entries
from other procs (blue).

5 Computing Ax : Compute
remaining entries of Ax .

6 Compute A2x as A(Ax).

7 Compute A3x as A(A2x).

Mohiyuddin et al. Fast Implementations of the Akx Kernel 7/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 iterations

1 Entries available marked red.

2 Computing Ax : Send entries
needed by other procs (green).

3 Computing Ax : Compute
locally dependent entries.

4 Computing Ax : Receive entries
from other procs (blue).

5 Computing Ax : Compute
remaining entries of Ax .

6 Compute A2x as A(Ax).

7 Compute A3x as A(A2x).

Mohiyuddin et al. Fast Implementations of the Akx Kernel 7/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 iterations

1 Entries available marked red.

2 Computing Ax : Send entries
needed by other procs (green).

3 Computing Ax : Compute
locally dependent entries.

4 Computing Ax : Receive entries
from other procs (blue).

5 Computing Ax : Compute
remaining entries of Ax .

6 Compute A2x as A(Ax).

7 Compute A3x as A(A2x).

Mohiyuddin et al. Fast Implementations of the Akx Kernel 7/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 iterations

1 Entries available marked red.

2 Computing Ax : Send entries
needed by other procs (green).

3 Computing Ax : Compute
locally dependent entries.

4 Computing Ax : Receive entries
from other procs (blue).

5 Computing Ax : Compute
remaining entries of Ax .

6 Compute A2x as A(Ax).

7 Compute A3x as A(A2x).

Mohiyuddin et al. Fast Implementations of the Akx Kernel 7/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 iterations

1 Entries available marked red.

2 Computing Ax : Send entries
needed by other procs (green).

3 Computing Ax : Compute
locally dependent entries.

4 Computing Ax : Receive entries
from other procs (blue).

5 Computing Ax : Compute
remaining entries of Ax .

6 Compute A2x as A(Ax).

7 Compute A3x as A(A2x).

Mohiyuddin et al. Fast Implementations of the Akx Kernel 7/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 iterations

1 Entries available marked red.

2 Computing Ax : Send entries
needed by other procs (green).

3 Computing Ax : Compute
locally dependent entries.

4 Computing Ax : Receive entries
from other procs (blue).

5 Computing Ax : Compute
remaining entries of Ax .

6 Compute A2x as A(Ax).

7 Compute A3x as A(A2x).

Mohiyuddin et al. Fast Implementations of the Akx Kernel 7/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 iterations

1 Entries available marked red.

2 Computing Ax : Send entries
needed by other procs (green).

3 Computing Ax : Compute
locally dependent entries.

4 Computing Ax : Receive entries
from other procs (blue).

5 Computing Ax : Compute
remaining entries of Ax .

6 Compute A2x as A(Ax).

7 Compute A3x as A(A2x).

Mohiyuddin et al. Fast Implementations of the Akx Kernel 7/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 iterations

1 Entries available marked red.

2 Computing Ax : Send entries
needed by other procs (green).

3 Computing Ax : Compute
locally dependent entries.

4 Computing Ax : Receive entries
from other procs (blue).

5 Computing Ax : Compute
remaining entries of Ax .

6 Compute A2x as A(Ax).

7 Compute A3x as A(A2x).

Mohiyuddin et al. Fast Implementations of the Akx Kernel 7/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 iterations

1 Entries available marked red.

2 Computing Ax : Send entries
needed by other procs (green).

3 Computing Ax : Compute
locally dependent entries.

4 Computing Ax : Receive entries
from other procs (blue).

5 Computing Ax : Compute
remaining entries of Ax .

6 Compute A2x as A(Ax).

7 Compute A3x as A(A2x).

Mohiyuddin et al. Fast Implementations of the Akx Kernel 7/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 iterations

1 Entries available marked red.

2 Computing Ax : Send entries
needed by other procs (green).

3 Computing Ax : Compute
locally dependent entries.

4 Computing Ax : Receive entries
from other procs (blue).

5 Computing Ax : Compute
remaining entries of Ax .

6 Compute A2x as A(Ax).

7 Compute A3x as A(A2x).

Mohiyuddin et al. Fast Implementations of the Akx Kernel 7/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 iterations

1 Entries available marked red.

2 Computing Ax : Send entries
needed by other procs (green).

3 Computing Ax : Compute
locally dependent entries.

4 Computing Ax : Receive entries
from other procs (blue).

5 Computing Ax : Compute
remaining entries of Ax .

6 Compute A2x as A(Ax).

7 Compute A3x as A(A2x).

Mohiyuddin et al. Fast Implementations of the Akx Kernel 7/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 iterations

1 Entries available marked red.

2 Computing Ax : Send entries
needed by other procs (green).

3 Computing Ax : Compute
locally dependent entries.

4 Computing Ax : Receive entries
from other procs (blue).

5 Computing Ax : Compute
remaining entries of Ax .

6 Compute A2x as A(Ax).

7 Compute A3x as A(A2x).

Mohiyuddin et al. Fast Implementations of the Akx Kernel 7/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 iterations

1 Entries available marked red.

2 Computing Ax : Send entries
needed by other procs (green).

3 Computing Ax : Compute
locally dependent entries.

4 Computing Ax : Receive entries
from other procs (blue).

5 Computing Ax : Compute
remaining entries of Ax .

6 Compute A2x as A(Ax).

7 Compute A3x as A(A2x).

Mohiyuddin et al. Fast Implementations of the Akx Kernel 7/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm: 9-pt Operator for 3 iterations

1 Entries available marked red.

2 Computing Ax : Send entries
needed by other procs (green).

3 Computing Ax : Compute
locally dependent entries.

4 Computing Ax : Receive entries
from other procs (blue).

5 Computing Ax : Compute
remaining entries of Ax .

6 Compute A2x as A(Ax).

7 Compute A3x as A(A2x).

Mohiyuddin et al. Fast Implementations of the Akx Kernel 7/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Naïve Algorithm

For i = 1, . . . ,k ,
Compute Aix using the product of A and Ai−1x

Fetch ghost zones of x from other procs/blocks.

O(k) messages between any two procs/blocks.

Latency cost is k times the minimum.
Objective: O(1) messages between any 2 blocks/procs.

Sequential machine: A and x read k times from slow to fast
memory.

Bandwidth cost is k times the minimum.
Objective: Read A and x at most once.

Minimum number of �oating-point operations performed.

Objective: Minimize number of extra �ops.

Mohiyuddin et al. Fast Implementations of the Akx Kernel 8/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving Naïve Algorithm: 9-point operator for 3 iterations

1 Entries available marked red.

2 Send entries needed by other
procs.

3 Compute locally computable
entries.

4 Receive entries from other
procs (blue).

5 Compute remotely dependent

entries.

Mohiyuddin et al. Fast Implementations of the Akx Kernel 9/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving Naïve Algorithm: 9-point operator for 3 iterations

1 Entries available marked red.

2 Send entries needed by other
procs.

3 Compute locally computable
entries.

4 Receive entries from other
procs (blue).

5 Compute remotely dependent

entries.

Mohiyuddin et al. Fast Implementations of the Akx Kernel 9/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving Naïve Algorithm: 9-point operator for 3 iterations

1 Entries available marked red.

2 Send entries needed by other
procs.

3 Compute locally computable
entries.

4 Receive entries from other
procs (blue).

5 Compute remotely dependent

entries.

Mohiyuddin et al. Fast Implementations of the Akx Kernel 9/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving Naïve Algorithm: 9-point operator for 3 iterations

1 Entries available marked red.

2 Send entries needed by other
procs.

3 Compute locally computable
entries.

4 Receive entries from other
procs (blue).

5 Compute remotely dependent

entries.

Mohiyuddin et al. Fast Implementations of the Akx Kernel 9/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving Naïve Algorithm: 9-point operator for 3 iterations

1 Entries available marked red.

2 Send entries needed by other
procs.

3 Compute locally computable
entries.

4 Receive entries from other
procs (blue).

5 Compute remotely dependent

entries.

Mohiyuddin et al. Fast Implementations of the Akx Kernel 9/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving Naïve Algorithm: 9-point operator for 3 iterations

1 Entries available marked red.

2 Send entries needed by other
procs.

3 Compute locally computable
entries.

4 Receive entries from other
procs (blue).

5 Compute remotely dependent

entries.

Mohiyuddin et al. Fast Implementations of the Akx Kernel 9/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving Naïve Algorithm: 9-point operator for 3 iterations

1 Entries available marked red.

2 Send entries needed by other
procs.

3 Compute locally computable
entries.

4 Receive entries from other
procs (blue).

5 Compute remotely dependent

entries.

Mohiyuddin et al. Fast Implementations of the Akx Kernel 9/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving Naïve Algorithm: 9-point operator for 3 iterations

1 Entries available marked red.

2 Send entries needed by other
procs.

3 Compute locally computable
entries.

4 Receive entries from other
procs (blue).

5 Compute remotely dependent

entries.

Mohiyuddin et al. Fast Implementations of the Akx Kernel 9/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving Naïve Algorithm: 9-point operator for 3 iterations

1 Entries available marked red.

2 Send entries needed by other
procs.

3 Compute locally computable
entries.

4 Receive entries from other
procs (blue).

5 Compute remotely dependent

entries.

Mohiyuddin et al. Fast Implementations of the Akx Kernel 9/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving Naïve Algorithm: 9-point operator for 3 iterations

1 Entries available marked red.

2 Send entries needed by other
procs.

3 Compute locally computable
entries.

4 Receive entries from other
procs (blue).

5 Compute remotely dependent

entries.

Mohiyuddin et al. Fast Implementations of the Akx Kernel 9/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

PA1 (code for proc. i)

1 The required entries of x are computed as dependencies on x of entries of
Akx in block i .

2 Send the entries of x needed by other procs.

3 Compute the locally computable entries of Ajx for 1≤ j ≤ k.

4 Receive the entries of x needed from other procs.

5 Compute the remaining entries of Ajx for 1≤ j ≤ k.

O(1) messages between any 2 procs.

Redundant computations.

Mohiyuddin et al. Fast Implementations of the Akx Kernel 10/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving PA1: 9-pt operator for 3 iterations

1 Entries available marked red.

2 Compute entries needed by
other procs.

3 Send entries to other procs
(green).

4 Compute remaining locally
computable.

5 Receive entries from other
procs (blue).

6 Compute remotely dependent

entries.

Mohiyuddin et al. Fast Implementations of the Akx Kernel 11/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving PA1: 9-pt operator for 3 iterations

1 Entries available marked red.

2 Compute entries needed by
other procs.

3 Send entries to other procs
(green).

4 Compute remaining locally
computable.

5 Receive entries from other
procs (blue).

6 Compute remotely dependent

entries.

Mohiyuddin et al. Fast Implementations of the Akx Kernel 11/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving PA1: 9-pt operator for 3 iterations

1 Entries available marked red.

2 Compute entries needed by
other procs.

3 Send entries to other procs
(green).

4 Compute remaining locally
computable.

5 Receive entries from other
procs (blue).

6 Compute remotely dependent

entries.

Mohiyuddin et al. Fast Implementations of the Akx Kernel 11/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving PA1: 9-pt operator for 3 iterations

1 Entries available marked red.

2 Compute entries needed by
other procs.

3 Send entries to other procs
(green).

4 Compute remaining locally
computable.

5 Receive entries from other
procs (blue).

6 Compute remotely dependent

entries.

Mohiyuddin et al. Fast Implementations of the Akx Kernel 11/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving PA1: 9-pt operator for 3 iterations

1 Entries available marked red.

2 Compute entries needed by
other procs.

3 Send entries to other procs
(green).

4 Compute remaining locally
computable.

5 Receive entries from other
procs (blue).

6 Compute remotely dependent

entries.

Mohiyuddin et al. Fast Implementations of the Akx Kernel 11/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving PA1: 9-pt operator for 3 iterations

1 Entries available marked red.

2 Compute entries needed by
other procs.

3 Send entries to other procs
(green).

4 Compute remaining locally
computable.

5 Receive entries from other
procs (blue).

6 Compute remotely dependent

entries.

Mohiyuddin et al. Fast Implementations of the Akx Kernel 11/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving PA1: 9-pt operator for 3 iterations

1 Entries available marked red.

2 Compute entries needed by
other procs.

3 Send entries to other procs
(green).

4 Compute remaining locally
computable.

5 Receive entries from other
procs (blue).

6 Compute remotely dependent

entries.

Mohiyuddin et al. Fast Implementations of the Akx Kernel 11/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving PA1: 9-pt operator for 3 iterations

1 Entries available marked red.

2 Compute entries needed by
other procs.

3 Send entries to other procs
(green).

4 Compute remaining locally
computable.

5 Receive entries from other
procs (blue).

6 Compute remotely dependent

entries.

Mohiyuddin et al. Fast Implementations of the Akx Kernel 11/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving PA1: 9-pt operator for 3 iterations

1 Entries available marked red.

2 Compute entries needed by
other procs.

3 Send entries to other procs
(green).

4 Compute remaining locally
computable.

5 Receive entries from other
procs (blue).

6 Compute remotely dependent

entries.

Mohiyuddin et al. Fast Implementations of the Akx Kernel 11/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Improving PA1: 9-pt operator for 3 iterations

1 Entries available marked red.

2 Compute entries needed by
other procs.

3 Send entries to other procs
(green).

4 Compute remaining locally
computable.

5 Receive entries from other
procs (blue).

6 Compute remotely dependent

entries.

Mohiyuddin et al. Fast Implementations of the Akx Kernel 11/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

PA2 (code for proc. i)

1 Compute the locally computable entries of x ,Ax , . . . ,Akx needed by other
procs. These are the entries on the boundary of locally computable and
remotely dependent entries.

2 Send the entries of x ,Ax , . . . ,Akx needed by other procs.

3 Compute remaining locally computable entries of [Ax , . . . ,Akx ].

4 Receive the entries of x ,Ax , . . . ,Akx needed from other procs.

5 Compute the remaining entries of Ajx for 1≤ j ≤ k using the already
computed entries and the fetched entries.

O(1) messages between any 2 procs..

Fewer �ops than PA1.

Locally computable entries computed on only their host proc.

Mohiyuddin et al. Fast Implementations of the Akx Kernel 12/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Sequential Algorithm

1 For i = 1, . . . ,p, (p= number of blocks of A and x)

2 Load block i from slow memory to fast memory.

3 Load parts of x needed from other blocks in to fast memory.

4 Compute the local entries of Ax , . . . ,Akx .

5 Store the computed entries in to slow memory.

Entries of x and A may be reordered to minimize the cost of
accessing slow memory.

Minimizing number of slow memory accesses.

2 kinds of Travelling Salesman Problems: one for the
neighbors of a block, and other for the number of blocks.

Minimizing number of entries fetched from slow memory:

Extra entries fetched to reduce the number of slow memory
accesses.

Mohiyuddin et al. Fast Implementations of the Akx Kernel 13/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Setup
Naïve Algorithm
Parallel Algorithms
Sequential Algorithm

Sequential Algorithm Ordering Example

1 2 3

4

567

8 9

Left block needs 2 accesses to fetch the entries in 1, 7, 8.

Other blocks need 1 access to fetch their needed entries.

Mohiyuddin et al. Fast Implementations of the Akx Kernel 14/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Performance Modeling Results

Performance Model: Sequential Out-of-Core Algorithm on 9-pt Operator

500 MFlops/s, mem = 4
GBytes, lat = 5.7 ms,
bw = 62.5 MBytes/s.

No. of blocks p
(1≤ p ≤ pmax ) chosen for
best perf.

Speedups across whole

range of problem sizes (at

least 10x)

Reading A and x

always costs bw. ⇒
speedups always
possible.

Mohiyuddin et al. Fast Implementations of the Akx Kernel 15/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Performance Modeling Results

Performance Model: Sequential Out-of-Core Algorithm on 27-point Operator

Speedups across whole
range of problem sizes (at
least 7x).

Mohiyuddin et al. Fast Implementations of the Akx Kernel 16/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Performance Modeling Results

Performance Model: Parallel Algorithm (PA2)

9-pt. operator on n×n mesh, 27-pt. operator on n×n×n mesh.

Peta: No. procs. = 8100, proc. performance = 50 GFlops/s,
memory=500 GBytes, lat=10 µs, bw=4 GBytes/s

Matrix Range of n Max Modeled Speedup

9-pt 210 to 222 6.9

27-pt 29 to 214 1.02

Speedups for small problem sizes (for 9-pt operator, 210 ≤ n ≤ 213).
Other problem sizes computation bound, so not limited by
communication (hidden by overlap with communication).

Mohiyuddin et al. Fast Implementations of the Akx Kernel 17/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Performance Modeling Results

Performance Model: Parallel Algorithms (PA2)

Grid: No. procs. = 125, proc. performance = 1 TFlops/s,
memory=10 TBytes, lat=100 ms, bw=320 MBytes/s

Matrix Range of n Max Modeled Speedup

9-pt operator 210 to 222 22.22

27-pt operator 29 to 214 4.41

Small problem sizes run on 1 proc.
Speedups for moderate problem sizes (for 9-pt operator,
215 ≤ n ≤ 219).
Large problem sizes computation bound.

Mohiyuddin et al. Fast Implementations of the Akx Kernel 18/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Implementation
Results

Implementation

Parallel algorithm implemented in UPC (Uni�ed Parallel C).

Works for general sparse matrices.
For PA1, entries of A and x reordered to make local
computations as k invocations of Sparse Matrix Vector
multiplication.

Sequential (out-of-core) algorithm implemented in C.

Slow memory assumed to be disk.
Reordering done to minimize bandwidth cost for disk access
using a randomized heuristic.

Mohiyuddin et al. Fast Implementations of the Akx Kernel 19/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Implementation
Results

Results: Sequential Out-of-Core Algorithm

Itanium II node with
5.2 GFlops peak �op
rate.

27-point operator with
3683 points partitioned
in to 43 = 64 blocks.

Performance 6x slower
than ideal machine (∞
DRAM).

Mohiyuddin et al. Fast Implementations of the Akx Kernel 20/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Summary

Sequential and parallel communication avoiding algorithms for
the Akx kernel.

Almost linear speedups possible.
Minimum latency cost.
Minimum bandwidth cost for the sequential algorithm.

Performance modeling of the algorithms.

Parallel implementation expected to achieve speedups for
moderate problem sizes.
Sequential implementation expected to achieve speedups
across the whole range of problem sizes.

Sequential implementation demonstrates speedup of 3x for a
27-point operator.

Mohiyuddin et al. Fast Implementations of the Akx Kernel 21/ 22



Background
Algorithms

Performance Models
Implementation

Summary

Mohiyuddin et al. Fast Implementations of the Akx Kernel 22/ 22


	Background
	
	
	

	Algorithms
	
	
	
	

	Performance Models
	

	Implementation
	
	

	Summary

