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Observations 
  Scientists and engineers are able to leverage large-scale 

systems to solve many problems important for society 
 e.g. climate simulations, genomics, cloud services, etc.  

  Many interesting problems will still require orders of magnitude 
more computational power 

  With current technological limitations (i.e. power) the only way 
to deliver the performance is by using lots of processors and 
relying on parallelism 
 Responsibility of efficiently using the system shifts away 

from the hardware and higher into the software stack  
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Current Processor Counts 
  Large Scale Systems 

 Very common to have more than 1024 processor cores 
 Largest machines have over 128,000 processor cores 
 Millions of cores in the not-so distant future 

  Desktop/Laptop/Cell Phones 
 Multicore processors are ubiquitous 
 Tens to hundreds of processors per system within the not-so 

distant future 
  Intel just announced 48-core processor 

 GPUs already support programming models with high 
levels of parallelism 

  Communication is the key! 
 Must design programming models to allow processors to 

efficiently communicate with each other  
3 
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Contributions 
  Automatically tuned collective communication library for PGAS 

languages 
  Collectives are common communication building blocks used 

by many applications 
  Understand how the one-sided communication model affects 

the collective tuning 
  Tuning for both shared and distributed memory systems 

  Allow collectives to be overlapped with computation 
  Developed performance models to better understand the 

performance tradeoffs 
  Incorporate collectives into application benchmarks 

  Some of the largest scale runs of PGAS languages 
  Software is integrated into latest release of Berkeley UPC 
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EXAMPLES OF MODERN 
SYSTEMS 
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Chapter 1. Hardware overview 5

Figure 1-1   Blue Gene/P system overview from the microprocessor to the full system

1.1.1  System buildup

The number of cores in a system can be computed using the following equation:

Number of cores = (number of racks) x (number of node cards per rack) x (number of 
compute cards per node card) x (number of cores per compute card)

This equation corresponds to cores and memory. However, I/O is carried out through the I/O 
Node that is connected externally via a 10 gigabit Ethernet network. This network 
corresponds to the functional network. I/O Nodes are not considered in the previous equation.

Finally, the compute and I/O Nodes are connected externally (to the outside world) through 
the following peripherals:

! One Service Node
! One or more Front End Nodes
! Global file system

1.1.2  Compute and I/O nodes

Nodes are made of one quad-core CPU with 2 GB or 4 GB of memory. These nodes do not 
have a local file system. Therefore, they must route I/O operations to an external device. To 
reach this external device (outside the environment), a Compute Node sends data to an I/O 
Node, which in turn, carries out the I/O requests.

The hardware for both types of nodes is virtually identical. The nodes differ only in the way 
they are used, for example, extra RAM might be on the I/O Nodes, and the physical 
connectors thus are different. A Compute Node runs a light, UNIX®-like proprietary kernel, 
referred to as the !"#$%&'()"*'(+',-'.(/!)+0. The CNK ships all network-bound requests 
to the I/O Node.
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Levels of Parallelism 
 Many levels of parallelism 

  Each has its own implications for the communication 
  How do we manage communication at the different levels 
  Example: IBM BlueGene/P 

8 figure from IBM Redbook SG24-7287 



3-level Fat Tree 
  Connect nodes such that there is a constant bandwidth between all nodes 

  First described by Charles Clos in 1952 for the telephone network 
  Connectivity is very similar to the butterfly found in the Fast Fourier 

Transform (FFT) 
  Also called a “Fat Tree” 

  Switches placed into groups at every level 
  Bandwidth between child and parent groups doubles every step 
  P-port switch with T levels requires (2T-1)(P/2)(T-1) switches  
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Mesh/Torus Networks 
  Fat Tree networks can be quite expensive 

  A high number of switches might be overkill 
  Tradeoff number of switches for bandwidth across network 

  A lot of applications don’t need full bandwidth to every other node 
  Depends on target network performance and application 

  In a mesh network nodes are directly connected to their neighbors 
  Unlike switched network, the network cards at the nodes need to be able to 

route messages 
  Messages routed through the grid 
  Bandwidth on the links is shared  
  Torus is mesh with ends wrapped 
  Example is 8x8 Torus 

  What is the target network performance? 
  What are the target applications? 
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Summary Of Experimental Platforms 

11 

Cray XT5 IBM 
BlueGene/P 

Sun 
Constellation 

Cray XT4 

Name/Location Jaguar/ORNL Intrepid/ALCF Ranger/TACC Franklin/NERSC 

Top500 Rank 
(Nov. 2009) 

1 8 9 15 

Processor Type 
(Revision) 

AMD Opteron 
(Istanbul) 

IBM PowerPC 
450 

AMD Opteron 
(Barcelona) 

AMD Opteron 
(Budapest) 

Processor Speed 2.6 GHz 0.85 GHz 2.3 GHz 2.3 GHz 

Cores/Node 12 4 16 4 

Total Cores 224,256 163,840 62,976 38,288 

Interconnect 3D Torus 3D Torus 4-level Fat Tree 3D Torus 



Sun Niagara2 (256 threads) 

AMD Opteron (32 threads) 

[Diagrams Courtesy of Sam W. Williams] 12 
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ONE-SIDED PROGRAMMING 
MODELS 
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Partitioned Global Address Space 
(PGAS) Languages 

  Programming model suitable for both 
shared and distributed memory 
systems 

  Language presents a logically shared 
memory  

  Any thread may directly read/write 
data located on a remote processor 
  Can build complex distributed 

data structures 
  Address space is partitioned so each 

processor has affinity to a memory 
region 
  Accesses to “local” memory are 

potentially much faster 

shared address space 

private address space 

P0 P1 P2 P3 

Many PGAS Languages: 
UPC, Titanium, Co-Array Fortran, 
X10, Chapel, etc 

14 



UPC Overview 
  A PGAS dialect of ISO C99 

  Both private and shared data 

  int x[10];      and     shared int y[10];     

  Support for distributed data structures 

  Distributed arrays; private and shared pointers 

  One-sided shared-memory communication  

  Simple assignment statements: x[i] = y[i];      or      t = *p;        

  Bulk transfer operations: memcpy 

  Synchronization 

  Global barriers, locks, memory fences 

  Collective Communication Library 

  Broadcast, Gather, Gather-all, Scatter, Exchange, Reduce, Scan 

  I/O libraries 

  Implemented by multiple vendors and free-software efforts 

  Language is under active development 
15 



One-Sided vs. Two-Sided 
Messaging 

  Two-sided messaging 
 Message does not contain information about final destination 
 Have to perform look up at the target or do a rendezvous 
  Point-to-point synchronization is implied with all transfers 

  One-sided messaging 
 Message contains information about final destination 
 Decouple synchronization from data movement 

  What does the network hardware support? 
  What about when we need point-to-point sync? 

  Active Message based semaphore library to handle this 
efficiently (still one-sided!) 

dest. addr. 

message id 

data payload 

data payload 

one-sided put (e.g., UPC) 

two-sided message (e.g., MPI) 

network 
 interface 

memory 

host 
CPU 
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The Berkeley UPC Compiler 

Translator UPC Code 

Translator Generated C Code 

Berkeley UPC Runtime System 

GASNet Communication System 

Network Hardware 

Platform- 
independent 

Network- 
independent 

Compiler- 
independent 

Language- 
independent 

Two Goals: Portability and High-Performance 

Portable Communication Layer 
runs on many backends: 

UDP, SMP, Infiniband, Cray XT, IBM 
BlueGene/P and many more 

Need auto-tuning 
system for portability 

and high performance 

Slide source: [W. Chen et al. ICS’03]  

17 
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Six Link Peak

GASNet (6 link)

MPI (6 link)

GASNet (4 link)

MPI (4 link)

GASNet (2 link)

MPI (2 link)

One Link Peak

GASNet (1 link)

MPI (1 link)

GASNet Multilink Bandwidth 
  Each node has six 850MB/s* 

bidirectional link 
  Vary number of links from 1 to 6 
  Initiate a series of nonblocking 

puts on the links (round-robin) 
  Communication/communication 

overlap 
  Both MPI and GASNet asymptote 

to the same bandwidth 
  GASNet outperforms MPI at 

midrange message sizes 
  Lower software overhead 

implies more efficient message 
injection 

 GASNet avoids rendezvous to 
leverage RDMA 

* Kumar et. al showed the 
maximum achievable bandwidth 
for DCMF transfers is 748 MB/s 
per link so we use this as our peak 
bandwidth 
See “The deep computing 
messaging framework: generalized 
scalable message passing on the 
blue gene/P supercomputer”, 
Kumar et al. ICS08 
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GASNet Active Messages 
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  GASNet also offers rich Active Message library 

  Ability to invoke function on Remote Node 

  Important piece for collective implementation 

  A request consists of an index into a function table to be invoked 
on the target side, arguments, and possibly payload 

  Short Request:  no payload (just arguments) 

  Medium Request: small payload and arguments, source does 
not specify destination buffer 

  Long Request: payload and arguments, source provides both 
source and destination address of payload 

  Replies run inside the request handler invocation 

  Can only send to the peer that sent the request 

  Have Short, Medium,  and Long replies which have the same 
properties as their corresponding requests 

  Sending replies is optional 

Request 

Reply 

A B 

tim
e 

run request  
handler 

run reply  
handler 



COLLECTIVE 
COMMUNICATION 
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What are Collectives? 

One-to-Many 
  All processors communicate 

with a single root 
  Flat algorithm: O(T) messages 

  Broadcast 
  Scatter 
  Gather 
  Reduce-to-One 

Many-to-Many 
  All processors communicate 

with all others 
  Flat algorithm: O(T2) messages 

  Barrier 
  Gather-to-All 
  Exchange (i.e. Transpose) 
  Reduce-to-All 

 Operations that perform globally coordinated communication 
 Most modern parallel programming libraries and languages 

have versions of these operations 
 Encapsulate operations behind a library interface so that they 

can be tuned by runtime layer to achieve best performance 
and scalability  

21 
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Rooted Collectives  

Broadcast: 
 send a copy of the data 
from root processor to 
all others 

P0 P1 P2 P3 

Reduce-to-One: 
 aggregate results from 
all processors  

100 

P0 P1 P2 P3 

Gather: 
 All processors send a 
contribution to the root 

Scatter: 
 inverse of Gather 

100 

P0 P1 P2 P3 

200 400 

100 

1000 



A0 B0 C0 D0 D0 

A0 

A0 B0 C0 D0 

A0 B0 C0 D0 
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Non-Rooted Collectives 

P0 A0 

P1 

P2 

P3 

P0 

P1 

P2 

P3 D0 D1 D2 D3 

C0 C1 C2 C3 

B0 B1 B2 B3 

A0 A2 A3 A1 

A0 P0 

P1 

P2 

P3 

B0 

C0 

Exchange (Transpose): 
  All processors simultaneously 

scatter input array 
(personalized messages) 

Gather-To-All: 
All processors 

simultaneously 
broadcast input 

(non-personalized 
messages) 



Design Goals for GASNet Collectives 
  Interface 

  General collective interface that supports multiple PGAS languages 
  E.g. UPC and Chapel have different threading and execution models that 

we need to support 
  Have to support the many synchronization modes of UPC 

  Allow the collectives to be nonblocking 
  Support subset collectives (i.e. Teams) 

  Implementation 
  Leverage shared memory whenever it’s available 
  Effectively deliver the performance advantages of one-sided 

communication in the collectives 
  Automatically tune the collectives 

  Infrastructure should be able to include hardware collectives on platforms 
where applicable  

24 



TUNING COLLECTIVE 
COMMUNICATION FOR 
DISTRIBUTED MEMORY 
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Leverage Shared Memory 
  All cores within a node are part of the same shared memory domain 

  One-to-one mapping between threads and hardware cores 
  All threads within same OS process are part of same shared memory domain 

  Have only one representative thread per node manages the communication 
  Responsible for packing/unpacking the data 

  Experiment varies number of processes/thread grouping 
  Measures Broadcast latency of increasing sizes 
  1024 cores of Sun Constellation (4 sockets / 4 threads per socket) 

26 

  Best performance is 4 threads 
per process 

  Communication outside socket 
is expensive 
  Can incur the penalties for 

Non-Uniform Memory 
Access (NUMA) 
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node 0

node 1

node 2

node 3

node 4

node 5

node 6

node 7
Tier 0 Tier 2Tier 1

node 8

node 9

node 10

node 11

node 12

node 13

node 14

node 15

Trees 
  Observation: All nodes are not directly connected together 

  Send the data through intermediaries to improve scalability 
  Nodes can communicate with O(log N) peers instead of O(n) peers 
  Tradeoff depth for the width 
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  Example: 2-nomial (Binomial) tree 
  Recursive Tree 

  Root sends to sub-trees of decreasing sizes 
  The higher the radix the shallower the tree 



Example Tree Topologies 

Radix 4 k-nomial tree 
(quadnomial) 

Radix 2 k-nomial tree 
(binomial) 

Binary Tree Fork Tree 

Chain 

Tree 
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  Broadcast on Sun Constellation 
(1024 cores) 
  4-nomial is consistently a 

“good” performer 
  8-nomial is best at < 2k bytes 

  Broadcast on Cray XT4 (2048 
cores) 
  4-nomial is best < 2k 
  choosing 4-nomial at 32k 

leads to 2x degradation in 
performance 

Choosing the Best Tree 
  Optimal tree depends on many factors such as network 

latency and bandwidth and network connectivity 
  Best tree changes based on platform and collective 
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Address Modes 

30 

  In Global Address Space every thread 
knows directly where to put the data 
  How do we specify the arguments 

to the collective? 
  Two Options: 

  Single: All nodes provide address 
for all the other nodes  

  Local: Nodes only provide one 
address 

  Single Address Mode  
  Pros: can directly leverage puts/gets without additional overhead 
  Cons: overhead of generating and storing all the addresses 

  In PGAS languages however this is not that high  
  Local Address Mode 

  Pros: easy to generate addresses and no meta-data overhead 
  Cons: have to spend time to discover addresses before data can be sent 

  Broadcast on 1024 cores of Sun Constellation shows that the cost of address 
discovery is high at large messages 
  Time spent communicating addresses wastes bandwidth 

Broadcast on Sun Constellation (1024 cores) 
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Data Transfer Mechanisms 
  Eager Put  

  Send data to anonymous buffer on 
target node 

  Uses Medium AM 
  Signaling Put 

  Send data and signal target once it has 
arrived 

  Still one-sided! 
  Needs to know where the data goes 
  Uses Long AM 
  Single-Mode Only 

  Rendez-Vous 
  Send child a short message indicating 

data is read 
  Child does get and sends a short 

message indicating data is complete 
  AMs for synchronization only 

31 Broadcast on Sun Constellation (1024 cores) 

Broadcast on Cray XT4 (2048 cores) 
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Potential Synchronization 
 Problem 
1. Broadcast variable x from root 
2. Have proc 1 set a new value 

for x on proc 4 

broadcast x=1 from proc 0 
if(myid==1) { 

 put x=5 to proc 4 
} else { 

 /* do nothing*/ 
} 

pid: 0 
x: 1 

pid: 1 
x: Ø 

pid: 2 
x: Ø 

pid: 3 
x: Ø 

pid: 4 
x: Ø 

pid: 1 
x: 1 

pid: 2 
x: Ø 

pid: 3 
x: Ø 

pid: 4 
x: 1 

pid: 4 
x: 5 

pid: 0 
x: Ø 

pid: 1 
x: Ø 

pid: 4 
x: Ø 

pid: 0 
x: 1 

pid: 1 
x: Ø 

pid: 2 
x: Ø 

pid: 3 
x: Ø 

pid: 4 
x: Ø 

pid: 1 
x: 1 

pid: 2 
x: Ø 

pid: 3 
x: Ø 

pid: 4 
x: 1 

pid: 4 
x: 5 

pid: 0 
x: 1 

pid: 1 
x: Ø 

pid: 4 
x: Ø 

pid: 0 
x: 1 

pid: 1 
x: Ø 

pid: 2 
x: Ø 

pid: 3 
x: Ø 

pid: 4 
x: Ø 

pid: 1 
x: 1 

pid: 2 
x: Ø 

pid: 3 
x: Ø 

pid: 4 
x: 1 

pid: 4 
x: 5 

pid: 0 
x: 1 

pid: 1 
x: 1 

pid: 4 
x: Ø 

pid: 0 
x: 1 

pid: 1 
x: Ø 

pid: 2 
x: Ø 

pid: 3 
x: Ø 

pid: 4 
x: Ø 

pid: 1 
x: 1 

pid: 2 
x: 1 

pid: 3 
x: Ø 

pid: 4 
x: 1 

pid: 4 
x: 5 

pid: 0 
x: 1 

pid: 1 
x: 1 

pid: 4 
x: 5 

pid: 0 
x: 1 

pid: 1 
x: Ø 

pid: 2 
x: Ø 

pid: 3 
x: Ø 

pid: 4 
x: Ø 

pid: 1 
x: 1 

pid: 2 
x: 1 

pid: 3 
x: 1 

pid: 4 
x: 1 

pid: 4 
x: 5 

pid: 0 
x: 1 

pid: 1 
x: 1 

pid: 4 
x: 5 

pid: 0 
x: 1 

pid: 1 
x: Ø 

pid: 2 
x: Ø 

pid: 3 
x: Ø 

pid: 4 
x: Ø 

pid: 1 
x: 1 

pid: 2 
x: 1 

pid: 3 
x: 1 

pid: 4 
x: 1 

pid: 4 
x: 5 

pid: 0 
x: 1 

pid: 1 
x: 1 

pid: 4 
x: 1 

Put of x=5 by proc 1 has been lost 
Proc 1 observes locally complete but globally incomplete collective 

Proc 1 thinks 
collective is 
done 
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Strict v. Loose Synchronization 

  A fix to the problem 
  Use synchronization 

before/after the 
collective 

  Enforce global ordering 
of the operations 

  Is there a problem? 
 We want to decouple 

synchronization from 
data movement 

  Let user specify the 
synchronization 
requirements 
  Potential to aggregate 

synchronization 
  Done by the user or a 

smart compiler 

33 

Cray XT4 Broadcast Performance (1024 Cores) 

> 12x faster at small message sizes 
and > 5x faster at large message 
sizes! 
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Nonblocking Collectives 
  Relaxing Synchronization still 

requires at least one processor 
inside collective 

  Overlapping communication w/ 
computation is a good idea for 
1-sided programming models 
[Nishtala et al. IPDPS‘09, Nishtala 
UCBMS’06] 

  How to overlap collectives w/ 
computation? 
  Two Questions: 

  Can the applications support 
overlap? 

  Can the hardware support 
overlap? 

  Related work being pursued by 
MPI community [Hoeffler et al. and 
Brightwell et al] 

… initialize X … 

start broadcast of X 

… computation unrelated to X… 

… unsafe to modify X …  

wait for broadcast to complete 

…. X can be safely modified … 

Code for Root Processor 



Performance of Nonblocking 
Collectives 

  Benchmark overlaps collectives with each other 
  Collectives pipelined so that the network resources are more effectively used 
  100-200 microsecond difference 
  We show later how this can be incorporated into a real application 
  All collectives built as state machines 

  State machines make progress on network interrupts or polling depending on platform 

35 

Cray XT4 Nonblocking Broadcast Performance (1024 Cores) 
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Reduce 
  8-byte Reduce on Sun Constellation 

  8-nomial tree delivers best or close 
to optimal performance 

  GASNet outperforms vendor-MPI by 
18% at 1k cores and 25% at 2k 
cores 

36 

  Reduce on Cray XT4 
  4-nomial consistently gives a good 

algorithm 
  Average of 25% better 

performance over 8-nomial 
  GASNet out performs MPI by > 

factor of 2x in most cases  
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Scatter/Gather Performance 
  Scatter on 1536 cores of Cray XT5 

  Loose synch. offers 4x performance 
improvement at low sizes  

  Difference decreases at higher 
message sizes 

  GASNet is able to deliver better 
performance for both modes 
compared to vendor MPI library 

37 

  Gather on 1536 cores of Cray XT5 
  Similar results as Scatter 

  Looser synchronization 
continues to deliver good 
performance upto 4k bytes 

  GASNet is able to consistently 
outperform vendor MPI library 



Dissemination for Non-rooted 
Collectives 

  Flat algorithm: every processor sends to 
every other processor 
  O(n2) messages 
  Can we do better by sending through 

intermediaries?  
  Idea: send the data multiple times in the 

network but communicate with a fewer 
number of peers 

  Collect data from double the number of 
peers each stage 

  Dissemination required all threads to be 
active all the time 
  O(T log T) “messages”  
  Time: L*(log T) (L = latency) 
View from Thread 0 T0 T1 T2 T3 T4 T5 T6 T7 

Who knows about T0 ✔ 

Who T0 knows about ✔ 

✔ 

✔ 

✔ ✔ 

✔ ✔ 

✔ ✔ ✔ ✔ 

✔ ✔ ✔ ✔ 
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Exchange 
  Dissemination algorithm by Bruck et al. (1997) 

  Send the data multiple times through the network before it reaches the final 
destination 

  Uses less messages at the cost of more bandwidth 
  Highlights a tradeoff between algorithmic choice 

  Intuition suggests there is a crossover point between the algorithms 
  Finding the best algorithm is a tuning question that we will address in the automatic 

tuner section 
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  Penalty for picking bad algorithm 
is high 
  Radix-2 is best at 8 bytes 

but worst at 16k bytes 
  Flat algorithm becomes the 

best between 512 and 1k 
byte exchange 
  order of magnitude 

worse at 8 bytes 
  28% (~73 ms) faster at 

16 Kbytes 

Exchange on Sun Constellation (256 cores) 



APPLICATION EXAMPLE 
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Case Study: NAS FT Benchmark 

  Perform a large 3D FFT 
  Molecular dynamics, CFD, image processing, signal processing, astrophysics, 

etc. 
  Representative of a class of communication intensive algorithms 

  Requires parallel many-to-many communication 
  Stresses communication subsystem 
  Limited by bandwidth (namely bisection bandwidth) of the network 

  Building on our previous work, we perform a 2D partition of the domain 
  Requires two rounds of communication rather than one 
  Each processor communicates in two rounds with O(√T) threads in each  

  Leverage nonblocking communication to maximize communication/computation 
overlap 

41 



FFT Performance on BlueGene/P 
HPC Challenge Peak as of July 09 is ~4.5 TFlops 
on 128k Cores 

  PGAS implementations 
consistently outperform MPI 

  Leveraging communication/
computation overlap yields 
best performance 
  More collectives in flight 

and more communication 
leads to better 
performance 

  At 32k cores, overlap 
algorithms yield 17% 
improvement in overall 
application time 

  Numbers are getting close to 
HPC record  
  Future work to try to beat 

the record 
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FFT Performance on Cray XT4 
  1024 Cores of the Cray XT4 

  Uses FFTW for local FFTs 
  Larger the problem size the more effective the overlap 
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TUNING COLLECTIVE 
COMMUNICATION FOR 
SHARED MEMORY 

44 



Barrier (tree algorithm) 

  Requires two passes of a tree 
  First (UP) pass tells parent subtree 

has arrived. 
  Second (DOWN) pass indicates that 

all threads have arrived 
  O(T) “messages” 
  Time: 2L*(log T) 

  Two ways to signal others:  
  Push: write a remote variable and 

spin wait on a local variable 
  Pull: write a local variable and spin 

on a remote variable 

•  Leads to 4 unique tree 
algorithms  

•  Performance of each is 
dependent on how 
systems handle 
coherency and atomic 
ops 45 



Barrier Performance Results 

  “Traditional pthread barriers” yield poor performance 
  Performance penalty for picking bad algorithm can be quite substantial 
  Same code base across all platforms 
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Autotuning and Synchronization 
  Strict synchronization enforces 

barriers between collectives to 
protect shared memory 
  Loose allows user to handle 

own synchronization 
  Tradeoff between Flat and Tree 

based topology exposes cost of 
synchronization vs. benefit of 
extra parallelism 
  Flat trees have little 

parallelism in the 
computation but require less 
synchronization 

  Optimal algorithm is affected by 
the synchronization flags 

   Looser Synch. enables trees to 
realize better performance at 
lower message sizes 

AMD Opteron (32 threads)  
Reduction Performance 
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Autotuning and Synchronization (cont.) 

Sun Niagara 2 (256 threads)  
Reduction Performance 

Intel Clovertown (8 threads)  
Reduction Performance 

  Different platforms have different 
crossover points between the 
algorithms 

  On Intel Clovertown, flat 
algorithms always beat out the 
trees 

  However on Sun Niagara2 the 
trees always win 
  High thread count implies 

that scalable collectives must 
be implemented for all sizes 
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SOFTWARE ARCHITECTURE 
OF THE AUTOMATIC TUNER 
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Automatic Tuning Overview 
  Each collective have many implementations in GASNet 

  Variants such as eager, rendezvous, direct put, direct get 
  Orthogonally, there are many possible trees that we can use 

  GASNet collective infrastructure indexes all the algorithms  
  Hardware collectives for certain conduits go into this index 

  Allows for easy extensibility for new algorithms and platforms 

  Each collective algorithm advertises capabilities and requirements 
  Not all algorithms have to work for in call cases 

  Tuning can be done either online or offline depending on how much time 
the user is willing to devote for search 

  Like FFTW and other automatic tuning projects, the automatic tuning 
data is saved across runs 

  Performance models will be used to prune search space 
  Need the constants for the models! 
  More accurate the models the less time devoted to search 
  Models can’t capture important features like network load so some 

search will still be needed 50 



Automatic Tuning Overview (cont.) 
  Portable Performance 

  Many factors that influence the optimal algorithm 
  Importance of different factors depend on the target platform 

  Some factors are very difficult to capture through analytic models 
and necessitate search 

INSTALL-TIME RUN-TIME 

•  Processor type/speed 
•  Memory system 
•  Number of cores per socket  
•  Number of network cards 
•  Interconnect Latency 
•  Interconnect Bandwidth 
•  Interconnect Topology 

•  Number of processors 
•  Sizes of the messages 
•  Synchronization mode 
•  Processor connectivity 
•  Network load 
•  Mix of collectives and 
computation 
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Layout Matters 

  256 cores Sun Constellation 
  16 nodes with 16 cores per node 

  16 x 16 processor grid 
  make row teams 

  All cores in one node are part of the same team 
  make column teams  

  Core i from each node is part of team i  
  Team members and layout known only at runtime 
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Previous Successful Efforts 
  ATLAS: Dense Linear Algebra 

  Tuning can be done offline so tuning is done at install time 
  Spiral and FFTW: Spectral Methods 

  Tuning can be done offline or via code generator 
  Introduce idea of tradeoff between the quality of the solution and time to 

solution 
  Sparsity and OSKI: Sparse Linear Algebra 

  Input matrix matters so tuning has to be done online 
  Use offline heuristics and models to make educated guesses 
  Also introduces idea of specifying quality of algorithm to search time 

  Parallel SpMV, Parallel LBMHD and Parallel Stencil Computations 
  Outlined issues that arise with automatic tuning for parallel programming models 
  Roofline models outlined the important aspects of performance tuning for parallel 

systems 
  MPI Collective automatic tuning 

  Closely related work but the MPI collectives have some different tuning goals 
than UPC/GASNet 
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Parameterized  
Algorithms/ 

Code Generator 

Create Performance 
Models  

and Heuristics 

Library Creation  
(offline, manual) 

Time:  
O(months) 

Compiled 
Object Code 

Benchmark  
library on target  

architecture 

Benchmark 
Data 

Library Install 
 (offline, 

automated) 
Time: O(hours) 

Performance 
Model w/  

Parameters 

input 
data 

Evaluate Models 
and/or search 

Select Code,  
Parameters, & 
Data Structures 

History 

Application Runtime 
Time: O(min) with search 
O(microseconds) without 

Execute  
Function 

Automatic Tuner Flowchart 
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Performance Models 
  The optimal collective algorithm depends on many factors 

  Network Performance, processor performance, message size, 
synchronization mode, etc 

  Searching over all possible candidate algorithms at large scale is too expensive 
  Takes too long for exhaustive search 
  Time is money (literally at most cloud/computing centers) 

  Minimizing time for search allows search to happen online 
  Model constructed using LogGP [Alexandrov et al., ’97] 

  Extension of LogP [Culler et al. ‘93] 
  L (Latency): time taken for message to travel across the network  
  o (overhead): CPU time needed to inject or receive a message from the 

network  
  g (gap): time between successive message injections or receives 
  G (inverse bandwidth): cost to put a byte into the network for large 

messages 
  P (number of processors) 

  Use performance models to guide the search 
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Performance Model: Scatter 

  Scatter Performance Model Verification on 1024 Cores of Sun Constellation 
  Goal of Model: Accurately sort the search space and pick the best tree 

  Accurate performance prediction is a nice-to-have but not a need-to-
have 

  Smaller radices maximize parallelism but also increases bandwidth 
  Data is duplicated in the network many more times 
  As messages increase bandwidth becomes more important  

  Models accurately capture trends 
56 
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Guided Search 
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  Sort the algorithm/parameter space 
based on the performance model 
  Slow algorithms placed at the end 
  Searching just a handful yields an 

a good algorithm 
  Have to search 17 algorithms 

to find best 
  40% of the total space 

  Takes  25% of the search time 
8 byte Broadcast on Sun Constellation (1024 

cores) 

128 byte Scatter on Cray XT5 (1536 cores) 

  Fewer algorithms in the search space 
  Search takes 8 algorithms to find the 

best 
  However can get to within 90% of 

the best after just searching 3 
  Tradeoff time to search for the 

accuracy of the result 
  Similar to what FFTW and OSKI 

currently offer 



SUMMARY AND FUTURE 
WORK 
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Future Work 
  Add in more collective algorithms as they are discovered 

  Automatic tuning system was designed to be extensible 
  More accurate performance models 

  The more accurate the model the less time to do the search 
  Statistical Learning 

  Use statistical learning methods to further guide the search and be able to 
explore even more algorithms 

  More Apps in PGAS languages 
  Microbenchmarks can only shed so much light on the story 

  More novel collective interfaces 
  MPI-like SPMD collectives are very rigid  

  PGAS languages break this model in some novel ways that introduces more interesting 
tuning 

  How would collectives look like in new languages 
  How easily can these techniques be applied in MapReduce and Hadoop? 
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Summary 
  Future performance gains are primarily going to be from parallelism 

  Optimally communicating data between the cores is key 
  Need to abstract common communication patterns so that they can be hidden 

behind a library and be well tuned and reused 
  Allow collectives to be overlapped with computation to ensure best usage of 

available resources 
  Optimal collective performance varies based on many things  

  Need to choose the best algorithm at runtime 
  Many ways to implement the same collective 

  System architectures for both distributed and shared memory platforms are getting 
more diverse 
  New interconnect topologies and increased sharing of parallel systems 
  Need a system that can automatically tune the operations 

  Don’t want to retune the collective for every new platform or topology 
  Implement a family of algorithms that perform the same collective   

  Each is well suited for certain cases 
  Use performance model to decrease the time needed for search 
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Don’t take my word for it! 

  Automatically tuned collectives have been incorporated into latest 
release of Berkeley UPC and GASNet 

  Download all the source code from http://upc.lbl.gov 
  Current usage: 

  upcc program.upc 
  env GASNET_COLL_ENABLE_SEARCH=1 upcrun –n 4 ./a.out 

  Full documentation available online 
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THANKS! ANY QUESTIONS? 
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BACKUP SLIDES 
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Gather-To-All 

  Unlike Exchange Gather-to-All sends same message to everyone 
  W/ Dissemination algorithm, message sizes double at every round 

  Dissemination algorithm does not use extra bandwidth 
  Same operation can be done in fewer O(n log n) messages rather than O(n2) and 

thus Dissemination always wins 
  GASNet consistently outperforms MPI 
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Sun Niagara2 Broadcast 
  Broadcast latency on 128 threads 

  Loosening the synchronization 
doesn’t help 

  Memory system resources are 
shared 

  Harder to get collectives 
pipelined behind each other  

  Trees yield important improvements  
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  Broadcast bandwidth on 128 threads 
  Flat trees yield the best bandwidth 
  Most efficient to use flat trees 

  Data becomes too large to fit 
in caches 

  Using one thread yields the 
best person 
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3D FFT: Packed Slabs 
 Perform communication and computation in two distinct 

phases 
 First perform the computation for all the rows in X-

dimension 
  Communication system is idle during this time 

 Perform a Transpose to relocalize the Y-dimension 
  Requires Packing and Unpacking 
  Performed across all the processors with the same color 

 Perform the FFT for all the columns 
 Perform a transpose to relocalize the Z-dimension 
 Perform the final set of FFTs 

 As per conventional wisdom, data is packed to increase 
message size 
 Only exploits communication/communication overlap 

during the transpose 
 MPI implements transpose as in memory data movement 

plus one call to MPI_Alltoall() for each round 
  Minimum number of calls to MPI 

Message Size 
Round 1	


(NZ/TZ) × (NY/TY) × (NX/TY)	

elements	


# Messages in 
Round 1	


TY	


Message Size 
Round 2	


(NZ/TZ) × (NX/TY) × (NY/TZ)	

elements	


# Messages in 
Round 2	


TZ	
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3D FFT: Slabs 
  Algorithm sketch: 

1.  for each of the NZ/TZ planes 
1. perform all NY/TY row FFTs (len NX) 
2. pack data for this plane 
3. initiate nonblocking all-to-all 

2.  wait for all all-to-alls to finish 
3.  unpack data 
4.  for each of the NZ/TZ planes 

1. perform all NX/TY row FFTs (len NY) 
2. pack data for this plane 
3. Initiate nonblocking all-to-all 

5.  wait for all all-to-alls to finish 
6.  unpack data 
7.  perform last round of (NY/TZ) (NX/TY) FFTs (len NZ) 

Message Size 
Round 1	


(NY/TY) × (NX/TY)	

elements	


# Messages in 
Round 1	


(NZ/TZ) × TY	


Message Size 
Round 2	


(NX/TY) × (NY/TZ)	

elements	


# Messages in 
Round 2	


(NZ/TZ) × TZ	


•  Observation: 
•  After one of the NZ/TZ 
planes of row FFTs is done 
we can start transferring 
the data 
•  Allows communication/
communication overlap 
and communication/
computation overlap 
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Switched Networks 

  Nodes can be connected through intermediary switches 
  A switch is a device that can route a message between any 

input port to any output port 
  Use multiple levels of switches to connect many pieces of 

the network together 
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Performance Bottleneck!  
Bandwidth to different parts of the network is 1/3 of local bandwidth 



Node Architectures 
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Modern Shared Memory Systems 
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Node Architectures 
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UPC Pointers  

int *p1;        /* private pointer to local memory */ 
shared int *p2; /* private pointer to shared space */ 
int *shared p3; /* shared pointer to local memory */ 
shared int  *shared p4; /* shared pointer to   
                           shared space */ 

Shared 

G
lo

ba
l a

dd
re

ss
 

sp
ac

e 

Private 
p1:  

Thread0   Thread1                                       Threadn 

p2:  

p1:  

p2:  

p1:  

p2:  

p3:  

p4:  

p3:  

p4:  

p3:  

p4:  

Pointers to shared often require more storage and are more costly to dereference; 
they may refer to local or remote memory. 
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Barrier Tuning Parameters 

  Algorithm 
  Signaling Mechanisms 
  Tree Geometry 

  Tree Root 
  Tree Shape 
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Thread Layout 

Thread 0 
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min 

AMD Opteron (32 threads)  
Barrier Performance (varying root) 

best root: 24 

best root: 4 

best root: 18 
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GASNet Latency Performance 
  GASNet implemented on top of Deep 

Computing Messaging Framework 
(DCMF) 
  Lower level than MPI 
  Provides Puts, Gets, AMSend, and 

Collectives 
  Point-to-point ping-ack latency 

performance  
  N-byte transfer w/ 0 byte 

acknowledgement 
  GASNet takes advantage of DCMF 

remote completion notification 
  Minimum semantics needed to 

implement the UPC memory model 
  Almost a factor of two difference until 

32 bytes 
  Indication of better semantic match 

to underlying communication system 

G
ood 
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FFT Transpose 
  Two transposes that exchange the 

entire domain 
  Stresses the bisection 

bandwidth of the network 
 On many machines 

communication costs are on par 
w/ computation costs 

  Conventional wisdom is to pack 
messages to maximize message 
sizes and achieve peak bandwidth 
  Is that really the best though? 

Each processor owns a row of 4 
squares (16 processors in 

example) 
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A Motivation for Teams: 3DFFT 

  Many applications require 
collectives to be performed 
across teams (i.e. subsets) 
of the threads 

  Example 3D FFT:  
  Cube is distributed 
  Each processor owns a rectangle (slab)  
  Bandwidth limited problem 

  FFTs performed in each 
dimension 

  1st FFT is local 
  2nd FFT requires exchange 

amongst threads that share a 
plane 

  3rd FFT requires exchange 
amongst row of slabs (same 
color)  

Thread 0 

Thread 1 

Thread 2 

Thread 3 

NY 

NZ 

NX 
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Interface To Collectives 

  How do we construct these 
teams? 
  Thread-Centric: Programmer 

explicitly specifies the threads 
that take part in the collective 
through a language level team 
construction API  

  Data-Centric: Programmer 
only specifies the data for the 
collective. Runtime system 
then figures out where the 
data resides and performs the 
collective 

  How do we incorporate these 
interfaces with the autotuners? 

  Wrote 3D FFT w/ Data-centric 
primitives 
  Ran on BG/L to analyze 

limits of scalability of 
interface 

  Interface doesn’t limit scalability 
  2 Teraflops across 16k threads 
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Auto-tuned Conjugate Gradient 
  Incorporate tuned collectives into an 

important kernel 
  Sparse Conjugate Gradient 

  Part of Sparse Motif  
  Iteratively solve Ax=b for x given 

A and b 
  Relies heavily on optimized SPMV 

and tuned BLAS1 operations 
 Matrix Partitioned Row-wise for 

our application 
  Automatic tuning for a parallel 

system 
  Kernels tuned for parallel and 

serial performance 
  Previous related work have 

focused on serial tuning only  

A x b 

= 

  Collectives Used: 
  Scalar Reduce-To-All for 

Dot Products 
  Barriers 
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Conjugate Gradient Performance 

  Auto-tuned SPMV from Sam 
Williams [Williams et. al, SC’07] 

  Sun Performance Library for 
local BLAS1 operations 

  Incorporate aforementioned 
tuned barrier and tuned Reduce-
to-All for inter-thread 
communication  

  Matrix parallelized row-wise 
  reductions are performed 

across all 128 threads 
  Best Speedup: 21% 
  Median Speedup: 3% 
  Auto-tuning took a few seconds 

to search for best barrier and 
best  
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Performance Model: Exchange 
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  Optimal algorithm also depends on the number of threads per node 
  For 4 threads per node model predicts radix 8 is the best 
  With 16 threads per node this however takes 1.4 times as long as the flat 

algorithm 
  Using flat algorithm for 4 threads per node also leads to severe penalties 

  Model accurately predicts best performer in both cases 

8 byte Exchange on Sun Constellation (1024 cores) 


