When Cache Blocking of Sparse Matrix Vector
Multiply Works and Why

Rajesh Nishtala, Richard Vuduc, James W. Demmel, and Katherine A. Yelick

University of California at Berkeley, Computer Science Division
Berkeley, California, USA

Abstract. We present new performance models and a new, more com-
pact data structure for cache blocking when applied to the sparse matrix-
vector multiply (SpMxV) operation, y < y + A - z. Prior work indicates
that cache blocked SpMxV performs very well for some matrix and ma-
chine combinations, yielding speedups as high as 3x. We look at the
general question of when and why performance improves, finding that
cache blocking is most effective when simultaneously 1) = does not fit in
cache, 2) y fits in cache, 3) the non-zeros are distributed throughout the
matrix, and 4) the non-zero density is sufficiently high. We extend our
prior performance models, which bounded performance by assuming x
and y fit in cache, to consider these classes of matrices. Unlike our prior
model, the updated models are accurate enough to use as a heuristic for
predicting the optimum block sizes. We conclude with architectural sug-
gestions that would make processor and memory systems more amenable
to SpMxV.

1 Introduction and Overview

We consider the problem of building high-performance implementations of sparse
matrix-vector multiply (SpMxV), or y « y + A - . We call = the source vec-
tor and y the destination vector. Making SpMxV fast is complicated both by
modern hardware architectures and by the overhead of manipulating sparse data
structures. It is not unusual to see SpMxV run at under 10% of the peak float-
ing point performance of a single processor. Moreover, in contrast to optimizing
dense matrix kernels (dense BLAS), performance depends on the non zero struc-
ture of the matrix which may not be known until run-time.

In prior work on the SPARSITY system (version 1.0) [6], Im developed an
algorithm generator and search strategy for SpMxV that was quite effective in
practice. The SPARSITY generators employed a variety of performance optimiza-
tion techniques, including register blocking, cache blocking, and multiplication
by multiple vectors. Cache blocking differs from register blocking in that cache
blocking reorders memory accesses to increase temporal locality, whereas register
blocking compresses the data structure to reduce memory traffic. This paper fo-
cuses on cache blocking (Section 2) and asks the fundamental questions of what
limits exist on such performance tuning, and how close tuned code gets to these
limits. The models presented in this paper (Section 3) extend our prior models

2 R. Nishtala, R. Vuduc, J. Demmel, K. Yelick

[13] by accounting for the TLB, enabling accurate selection of optimal cache
block sizes. It increases the complexity of the data structures used to represent
the matrix by adding an extra set of row pointers for each block. The funda-
mental trade off we need to make is whether the benefit of the added temporal
locality outweighs the costs associated with accessing the added overhead.

We classify the set of matrices on which we see benefits from cache blocking,
concluding that cache blocking is most effective when simultaneously 1) x does
not fit in cache 2) y fits in cache, 3) the non zeros are distributed throughout
the matrix and 4) the non-zero density is sufficiently high. In particular all the
test matrices in Table 1 (except Matrix 1) are sparse enough so that register
blocking [6, 13] has no significant effect.

Traditional static models of cache behavior used to select tile sizes for dense
kernels cannot be applied to sparse kernels due to the presence of indirect and
irregular memory accesses known only at run-time. Nevertheless, there have
been a number of notable attempts. Temam and Jalby [11], Heras, et al. [5],
and Fraguela, et al. [2] have developed sophisticated probabilistic cache miss
models, but assume uniform distribution of non-zero entries. These models are
primarily distinguished from one another by their ability to account for self-and
cross-interference misses. Our model in Section 3 differs from the prior work in
that 1) we consider multi-level memory hierarchies including the TLB, and 2)
explicitly model the execution time in addition to cache misses.

Gropp, et al., use bounds similar to the ones we develop to analyze and tune
a computational fluid dynamics code [3]; Heber, et al., present a detailed perfor-
mance study of a fracture mechanics code on Itanium [4]. This paper considers
tuning for matrices that come a variety of other domains, and is furthermore
concerned with performance modeling for cache block size selection.

Due to space limitations we only present the high level intuitions and sum-
mary data. We refer the reader to the full report [7] for a detailed investigation.

2 Summary of the Cache Blocking Optimization

We assume a reference implementation which stores the matrix in a com-
pressed sparse row (CSR) format [8]. Cache blocking breaks the CSR matrix
into multiple smaller 7cqche X Ceache CSR matrices and then stores these sequen-
tially in memory. Below, we discuss how 1)we compress the size of each block
using the row start/end (RSE) optimization, and 2) further exploit the fact that
each cache block is a smaller matrix. The latter technique also allows easy re-
cursion with multiple levels of cache blocking.

Row Start / End (RSE) When matrices (especially band matrices) are blocked
it is possible that within a cache block non-zeros do not exist on all the rows.
The first cache block, for example, might have only non zero elements in the
first tenth of the rows and have the rest of the cache block be empty. However
the basic cache blocked data structure would loop over all zero rows without
doing any useful work. In order to avoid the unnecessary accesses, a new vector

Cache Blocking of SpMx V, Extended Abstract 3

that contains row start(RS) and row end (RE) information for each cache block
is also created to point to the first and last nonzero rows in the cache block.
This new indexing information makes the performance less sensitive to the size
of the cache block. Performance results have shown that this optimization can
only help improve performance [7].

Exploiting Cache Block Structure As described above, the cache blocked
matrix can be thought of as many smaller sparse matrices stored sequentially
in memory. We can exploit this fact by calling our prior sparse matrix vector
multiplication routines on each smaller matrix, passing the appropriate part of
the source and destination vectors as arguments. The advantage of handling the
multiplication in this fashion is that the inner loops can be generated indepen-
dently of the code for cache blocking and code previously written for non-cache
blocked implementations can be reused. This optimization also allows easy re-
cursion with multiple levels of cache blocking. Tests indicate that the function
call overhead is negligible since the number of cache blocks for a matrix is usually
small compared to the total memory operations.

3 Analytic Models of Memory System Performance

We create analytic upper and lower bounds on performance by modeling various
levels of the memory hierarchy. The load and cache models are identical to our
prior models [12]. Due to space limitations we do not present those models here.
The lower bound model assumes only compulsory misses while the upper bound
assumes that every access to x, y, and matrix miss.

Overall Performance Model We extend our prior model [12] by adding a
term to account for TLB misses. The new execution time model is as follows:

k—1
T= Z hic; + My mem + MTLBOTLE, (1)

i=1
We assume perfect nesting of the caches, thus h;y1 = m; — m;41, where h;
and m; are the hits and misses at the i*" level of cache respectively. To esti-
mate the upper bound on performance, we set the m; terms to count only the
compulsory misses at the it" level. In addition we set the mypp term to be
Mr(nj;ﬁg)(r, ¢) which is described below. For the lower bound on performance we
set all the cache miss terms to be the upper bound on cache misses at each level

and set the TLB misses to be the upper bound on TLB misses.

TLB Miss Model According to our simple load and cache miss models, cache
blocking has no benefit since the blocking adds overhead to the data storage. To
factor this in, we need to be able to model at least the most important level of the
memory system more accurately to expose the advantages of locality. Empirical
evidence suggests that the largest performance gains using cache blocking come

4 R. Nishtala, R. Vuduc, J. Demmel, K. Yelick

from minimizing TLB misses. Below, we present intuition behind our TLB miss
modeling, myr g, and refer the reader elsewhere [7] for full expressions.

|
i

!
N

!
IS

Iogz(Row Dimension / TLB Size)
& &

-8 -7 -6

-5 -4 = - -1 0 1 2 3
log,(Column Dimension / TLB Size)

Fig. 1. Histogram of Block sizes for Itanium 2. For each row and column block size
shown above, the value in the cell contains the number of matrices whose performance
was within 90% of peak if that block size was chosen. We define TLB Size to be the
number of entries in the TLB multipliled by the page size. On the Itanium 2 this was
2MB or 256 doubles.

As shown in Figure 1, measurements indicate two distinct categories of good
block sizes for our matrix suite for the Itanium 2. Matrices 2—-11 showed the best
performance when cqqene equaled %th the TLB size (in words). Matrices 12-14
did not benefit at all from blocking, i.e., Ceqche €quals the column dimension. This
dichotomy existed on other platforms as well. Furthermore, performance was
relatively insensitive to the row block size, suggesting no row blocking is needed.
Our TLB model reflects these observations by switching between expressions for
lower and upper bounds on TLB misses as the block size varies [7].

4 Verification of the Analytic Model

We evaluate SpMxV on a set of matrices that are large enough and sparse
enough for cache blocking to have a significant effect. The properties of the 14
matrices that were chosen are referenced in Table 1. We evaluate the performance
model in which we use true hardware counters through PAPI [1] to predict
the performance (henceforth called the PAPI model) and compare it to the
model in which we use estimates of lower and upper bound of cache and TLB
misses (henceforth termed the analytic model). The cache and memory latencies
were derived from published processor manuals, curve fitting, and experimental
work using the Saavedra-Barrera memory system microbenchmark [9] and MAPS

Cache Blocking of SpMx V, Extended Abstract 5

benchmarks [10]. Due to space limitations we only present a summary of the data
for the Itanium 2.

Table 1. Matrix Benchmark Suite. Matrices are listed in alphabetical order. Note
that matrices 6, 7, and 8 are just modified versions of matrix 5.

| |App1ication Area |Dimension ||Nonzeros|Density|
1 |Dense Matrix 2000 x 2000 4000000 | 1.00
2 |Statistical Experimental Design 231 x 319770 8953560 |1.21e-1
3 |Linear programming (LP) 52260 x 379350 1567800 |7.91e-5
4 |LP 10280 x 243246 1408073 |5.63e-4
5 |Latent Semmantic Indexing 10000 x 255943 3712489 |1.45e-3
6 |column wise expansion of LSI 10000 x 2559430 3712489 |1.45e-4
7 [row wise expansion of LSI 100000 x 255943 3712489 | 1.45e-4
8 |row wise stamping of LSI 100000 x 255943 ||37124890| 1.45e-3
9 |Queuing model of mutual exclusion|65535 x 65535 1114079 |2.59e-4
10|Italian Railways scheduling (LP) 4284 x 1092610 11279748 2.41e-3
11|Italian Railways scheduling (LP) |4284 x 546305 5661231 |2.42¢-3
12|Web connectivity graph (WG) 1000005 x 1000005(| 3105536 |3.11e-6
13|WG after MMD reordering 1000005 x 1000005|| 3105536 |3.11e-6
14|WG after RCM reordering 1000005 x 1000005(| 3105536 |3.11e-6

The model of Section 3 over predicts absolute performance by up to a factor
of 2 on the Itanium 2, implying time still unaccounted for. Moreover, the relative
performance as a function of block size is well predicted, meaning we can use
the model as a heuristic for choosing a good block size. Indeed, performance
at the optimal block sizes in the PAPI model are all within 90% of the best on
Itanium 2, implying the model is a good heuristic if the miss models are accurate.
Furthermore, except in the case of Matrix 3, the analytic model makes similarly
good predictions on the Itanium 2, yielding 90% of the best performance.

5 Evaluation Across Matrices and Platforms

Matrix Structure The speedups for each matrix varied across machines, but
the best speedups (Table 2) were observed for the same matrices. The best
speedups occurred with Matrices 58, 2, and 10-11. Except for Matrices 7 and 8,
these matrices have small row dimension and very large column dimension, with
non-zeros scattered throughout the matrix. Furthermore, the largest increases in
cache misses as Cqqche increased occurred on the matrices the largest speedups,
implying that cache blocking had the intended effect of increasing locality.
Matrices 12—14 are so sparse that there is effectively no reuse when access-
ing the source vector and thus blocking does not help, even though their source
vector is large. Matrices with densities higher than 10~ were helped with cache
blocking, provided that their column block size is large enough (greater than

6 R. Nishtala, R. Vuduc, J. Demmel, K. Yelick

Table 2. Speedups across Matrices and Across Platforms. This table shows the
performance of the optimum cache block divided by the performance of the non-blocked
implementation on that platform for that matrix.

Matrix No.

Platform | 1 | 2 [3 |4][5 |6 |78 |9]10]11]12]13]14
Ttanium 2[[1.00[1.27]1.28[1.14]2.00[2.84]1.72]1.94]1.00]1.40[1.34]1.00]1.00[1.00

Pentium 3[[1.01[1.61]1.02[1.15[1.40[1.33[1.10|N/A[1.001.21]1.21]1.00]1.00[1.00
Power 4 [[1.01]1.77]1.24[1.37[1.97]2.93[1.68]N/A[1.00]1.75]1.73]1.01]1.09]1.01

200,000 elements). There was enough reuse in x for the blocking to payoff. We
also find that in general matrices in which the row dimension is much less than
the column dimension benefit the most from cache blocking. The smaller row
dimension implies the overhead added by cache blocking is small since the num-
ber of rows themselves are limited. The larger column dimension implies that
the unblocked implementations lack locality. Even though Matrix 3 has a large
column dimension, blocking did not yield much performance improvement. We
performed additional experiments on random but banded matrices confirming
theoretical work by Temam and Jalby [11]. As expected, cache blocking does
not help when the band is relatively narrow because the natural access pattern
to z is optimal, but pays off as the band grows. In this latter case, the RSE
optimization smooths out differences in performance across block sizes [7].

Platform Evaluation Certain matrices such as Matrix 5 experienced sig-
nificant performance gains through cache blocking on the Itanium 2 and the
Power 4, but the speedup was less drastic on the Pentium 3. We expect that as
the average number of cycles to access the memory grows, cache blocking will
provide a good improvement in performance since cache blocking allows us to
reduce expensive accesses to the main memory. The behavior of cache blocked
SpMxV has a number of implications for architecture and systems. First, the
TLB misses reduced by cache blocking can also be avoided by creating large
page sizes. Second, two paths to memory would be ideal since only access to
x are helped by caches, and not accesses to the matrix itself. Separate paths
would prevent cache conflicts between matrix data and source vector data. In
contrast, increased associativity only partially addresses this issue since it still
allows premature eviction of “old” source vector elements by matrix elements.
Future work might verify the impact of separate memory paths on the hybrid
scalar-vector architecture of the Cray X1.

6 Conclusions and Future Work

The empirical findings discussed in this paper and our full report indicate that
TLB misses have the largest impact on performance. Cache blocking significantly
reduces these misses particularly when x is large, y is small, the distribution of

Cache Blocking of SpMx V, Extended Abstract 7

non-zeros is nearly random, and the non-zero density is sufficiently high. Our new
performance bounds models incorporate the effect of TLB by implicitly modeling
capacity and conflict misses ignored by our prior models [12, 13]. Moreover, these
new models predict optimal (or near-optimal) cache block sizes.

Future work should focus on improving the accuracy of the miss models at all

the levels in the memory hierarchy and obtain more accurate memory latencies.
More accurate models should lead to even more accurate heuristics that decide
when and how to cache block a sparse matrix, given the platform and matrix
structure. Future work would also analyze the problem on novel architectures.

References

1.

10.

11.

12.

13.

S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. A scalable cross-
platform infrastructure for application performance tuning using hardware coun-
ters. In Proceedings of Supercomputing, November 2000.

B. B. Fraguela, R. Doallo, and E. L. Zapata. Memory hierarchy performance
prediction for sparse blocked algorithms. Parallel Processing Letters, 9(3), 1999.

. W. D. Gropp, D. K. Kasushik, D. E. Keyes, and B. F. Smith. Towards realistic

bounds for implicit CFD codes. In Proceedings of Parallel Computational Fluid
Dynamics, pages 241-248, 1999.

G. Heber, A. J. Dolgert, M. Alt, K. A. Mazurkiewicz, and L. Stringer. Fracture
mechanics on the Intel Itanium architecture: A case study. In Workshop on EPIC
Architectures and Compiler Technology (ACM MICRO 84), Austin, TX, 2001.

D. B. Heras, V. B. Perez, J. C. C. Dominguez, and F. F. Rivera. Modeling and
improving locality for irregular problems: sparse matrix-vector product on cache
memories as a case study. In HPCN FEurope, pages 201-210, 1999.

E.-J. Im. Optimizing the performance of sparse matriz-vector multiplication. PhD
thesis, University of California, Berkeley, May 2000.

R. Nishtala, R. W. Vuduc, J. W. Demmel, and K. A. Yelick. Performance modeling
and analysis of cache blocking in sparse matrix vector multiply. Technical report,
University of California, Berkeley, EECS Dept., 2004. (to appear).

. Y. Saad. SPARSKIT: A basic toolkit for sparse matrix computations, 1994.

www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html.

R. H. Saavedra-Barrera. CPU Performance Fvaluation and Execution Time Predic-
tion Using Narrow Spectrum Benchmarking. PhD thesis, University of California,
Berkeley, February 1992.

A. Snavely, L. Carrington, and N. Wolter. Modeling application performance by
convolving machine signatures with application profiles. 2001.

O. Temam and W. Jalby. Characterizing the behavior of sparse algorithms on
caches. In Proceedings of Supercomputing 92, 1992.

R. Vuduc, J. W. Demmel, K. A. Yelick, S. Kamil, R. Nishtala, and B. Lee. Perfor-
mance optimizations and bounds for sparse matrix-vector multiply. In Proceedings
of Supercomputing, Baltimore, MD, USA, November 2002.

R. W. Vuduc. Automatic performance tuning of sparse matriz kernels. PhD thesis,
University of California, Berkeley, 2003.

