
LU, QR and Cholesky Factorizations using Vector
Capabilities of GPUs

Vasily Volkov
James Demmel

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-49

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-49.html

May 13, 2008

Copyright © 2008, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

1

GPU name GeForce
8800GTX

Quadro
FX5600

GeForce
8800GTS

GeForce
8600GTS

of SIMD cores 16 16 12 4
core clock, GHz 1.35 1.35 1.188 1.458

peak Gflop/s 346 346 228 93.3
peak Gflop/s/core 21.6 21.6 19.0 23.3
memory bus, MHz 900 800 800 1000
memory bus, pins 384 384 320 128
bandwidth, GB/s 86 77 64 32
memory size, MB 768 1535 640 256

flops:word 16 18 14 12
Table 1: The list of the GPUs used in this study. Flops:word is the
ratio of peak Gflop/s rate in multiply-and-add operations to pin-

memory bandwidth in words.

LU, QR and Cholesky Factorizations using Vector Capabilities of GPUs

Vasily Volkov

Computer Science Division
University of California at Berkeley

James W. Demmel

Computer Science Division and Department of Mathematics
University of California at Berkeley

Abstract
We present performance results for dense linear algebra using
the 8-series NVIDIA GPUs. Our matrix-matrix multiply routine
(GEMM) runs 60% faster than the vendor implementation in
CUBLAS 1.1 and approaches the peak of hardware capabilities.
Our LU, QR and Cholesky factorizations achieve up to 80–90%
of the peak GEMM rate. Our parallel LU running on two GPUs
achieves up to ~300 Gflop/s. These results are accomplished by
challenging the accepted view of the GPU architecture and
programming guidelines. We argue that modern GPUs should be
viewed as multithreaded multicore vector units. We exploit
blocking similarly to vector computers and heterogeneity of the
system by computing both on GPU and CPU. This study
includes detailed benchmarking of the GPU memory system that
reveals sizes and latencies of caches and TLB. We present a
couple of algorithmic optimizations aimed at increasing
parallelism and regularity in the problem that provide us with
slightly higher performance.

1 Introduction
We make the following contributions. For the first time, we
show an LU, QR and Cholesky factorization that achieve
computational rates that approach 200 Gflop/s on a GPU. These
are three of the most widely used factorizations in dense linear
algebra and pave the way for the implementation of the entire
LAPACK library for the GPUs.

These rates are achieved on the 8-series of NVIDIA GPUs
that have been available for about 1.5 years. However, we
program these GPUs in a way that was not done before and
achieve performance in such basic kernels as matrix-matrix
multiply that is 60% higher than those in the optimized vendor’s
library CUBLAS 1.1. In the core of our approach we think of the
GPU as a multithreaded vector unit, which provides many
insights and inspirations from the mature field of vector
computing.

We perform detailed benchmarks of the GPU and reveal
some of the bottlenecks, such as access to the on-chip memory
that bounds the performance of our best codes, and kernel
launch overheads that prohibits efficient fine-grain
computations. The benchmarks reveal the structure of the GPU
memory system, including sizes and latencies of the L1 and L2
caches and TLB. We implement and measure the performance
of global synchronization primitives such as barrier for the first
time on the 8-series of GPUs. We believe this is an important
component for the overall programmability of current GPUs.

To achieve the best performance in matrix factorizations we
use state of art techniques such as look-ahead, overlapping CPU
and GPU computation, autotuning, smarter variants of 2-level
blocking, and choosing the right memory layout; we also use a
novel algorithm with modified numerics. We analyze the
performance of our implementations in detail to show that all
components of the final system run at the nearly optimal rates.

Our best speedups vs. one dual core CPU are up to 7−8× in
all 3 factorizations and 3−5.5× vs. one quad core CPU.

The rest of this paper is organized as follows. Section 2
describes the architecture of the GPUs we used, highlighting the
features important for performance, and drawing parallels to

conventional vector and SIMD architectures. Section 3
benchmarks operations including memory transfer, kernel start-
up, and barriers, and uses these to analyze the performance of
the panel factorization of LU. Section 4 discusses the design and
performance evaluation of matrix multiplication. Section 5
discusses the design of LU, QR and Cholesky, and Section 6
evaluates their performance. Section 7 summarizes and
describes future work.

2 GPU Architecture
In this work we are concerned with programming 8-series
NVIDIA GPUs, as listed in Table 1. They expose extensive
programming flexibility such as being able to execute scalar
threads with arbitrary memory access patterns and branch
behaviors, which are best described in the CUDA programming
guide [NVIDIA 2007]. However, exploiting this flexibility may
cost 10–100× loss in performance; see Section 3.7 for an
example that exposes the factor of 100×.

In this section we describe GPUs as multithreaded SIMD
architectures. Novel facilities that are not usually present in
SIMD architectures and designed to support non-SIMD
programs at performance cost are briefly reviewed but not used
in the rest of the paper. The purpose of this exposition is to
encourage the user to expose parallelism as required by the
hardware and reuse previous findings in programming vector
and SIMD architectures.

2.1 SIMD Cores
Earlier GPUs had a 2-level SIMD architecture — an SIMD array
of processors, each operating on 4-component vectors. Modern
GPUs have a 1-level SIMD architecture — an SIMD array of
scalar processors. Despite this change, it is the overall SIMD
architecture that is important to understand.

The fastest GPU in our study, GeForce 8800GTX, has 128
scalar processors which are partitioned into 16 multiprocessors
[NVIDIA 2006; NVIDIA 2007]. The multiprocessors have an
SIMD architecture [NVIDIA 2007, Ch. 3.1]. Scalar threads are
grouped into SIMD groups called “warps” [NVIDIA 2007, Ch.
3.2], with 32 scalar threads per warp [NVIDIA 2007, Ch. A.1].

2

There is one instruction fetch/dispatch unit per multiprocessor
that synchronously broadcasts instructions to the scalar
processors. It takes 4 cycles to execute one instruction for the
entire warp [NVIDIA 2007, Ch. 5.1.1.1], i.e. one scalar
instruction per cycle per scalar processor.

Thus, a multiprocessor is an SIMD unit with scalar
processors effectively being its SIMD lanes. We refer to it as a
SIMD core to put it into the context of other modern multicore
systems, such as Core2 and Cell. This definition is also
convenient from a performance perspective. One GPU core has
19–23 Gflop/s of peak arithmetic performance in multiply-and-
add operations (see Table 1), which is similar to the peak
performance of the CPU cores (~21.3 Gflop/s/core for 2.66GHz
Intel Core2) and SPE units of the Cell processor (25.6 Gflop/s
per SPE).

Another important feature of GPUs is multithreading that is
designed to hide memory and pipeline latencies. To facilitate a
low-cost context switch, all simultaneously running threads keep
their register states in the same register file. The number of
registers consumed by a thread depends on the program. There
is also a small local memory storage on each SIMD core called
shared memory that is partitioned among groups of threads
called thread blocks. The user is allowed to create more threads
than can fit simultaneously in registers and local memory. In
that case some of the threads are not initiated until others finish.
However, this mechanism is provided for convenience and
promises little performance and functionality gain.

2.2 Executing Non-SIMD Programs
SIMD architectures permit simulating fully MIMD execution by
following all execution paths in the program and masking non-
participating processors off. GPUs offer a novel optimization to
this execution style. First, they manage the stack of predication
masks in hardware to save and restore the previous predication
state at branch instructions. Second, if all scalar threads within
the SIMD width take same path, other paths are not executed at
all. The mechanism is discussed in detail in other companies’
manuals, such as [AMD 2006]. NVIDIA describes a similar
mechanism, but in less detail [NVIDIA 2007, Ch. 5.1.1.2].

The purpose of this mechanism is functionality, not
performance. Branch divergence within SIMD width should be
avoided if possible to avoid idle cycles on the scalar processors
that are masked off.

2.3 SIMD Memory Access
GPUs provide high-bandwidth non-cached SIMD memory loads
and stores. These operate on correctly aligned contiguous
locations in memory.

As with control structures, non-cached non-SIMD memory
operations are also supported in hardware but run at an order of
magnitude lower bandwidth. Thus, they must be avoided if
possible. For example, a stride-2 vector fetch may be
implemented instead as an aligned stride-1 fetch by discarding
the redundantly fetched data.

GPUs also provide cached memory fetches. These do not
require exposing an SIMD pattern for better performance.
However, cached access requires high spatial locality within
every vector gather due to the small cache size, see Section 3.3
for more details.

All these types of memory accesses are exposed in the ISA
as indexed gathers and scatters. This implies supplying
redundant indices in the case of SIMD accesses.

2.4 On-Chip Memory Hierarchy
Each SIMD core has 32KB register file partitioned across SIMD

lanes. For the GeForce 8800 GTX this amounts to 512KB on a
single chip, which is larger than any other particular level of the
on-chip memory hierarchy. This motivates different design
decisions than those used for superscalar processors that have
relatively few registers (e.g. 128−256 bytes in SSE units) and
massive caches.

The second largest level of the on-chip memory hierarchy is
the local memory — it is 16KB per SIMD core and 256 KB in
total. It can effectively be used as scalar registers and also
permits indexed access.

Other important on-chip memories are L2 and L1 read-only
caches that amount to 192KB and 40KB on 8800GTX
respectively according to our research as presented in Section
3.3.

2.5 Vector Program Model
Performance programming for GPUs is most similar to
programming for other multicore SIMD architectures, such as
Core2 SSE and Cell SPE units. Such programs are often
expressed as operations on vectors. This can be applied to GPUs
by exposing a single warp as one SIMD or vector thread. Scalar
threads such as exposed in CUDA correspond to vector
elements. We also use term vector thread when referring to a
thread block. This conveniently expresses independent threads
of data-parallel work, encapsulates data-parallel communication
using local memory and simulates configurable vector length.

The vector length should be set to a small multiple of the
native SIMD width. The CUDA programming guide
recommends a multiple of 64 scalars to avoid register bank
conflicts [NVIDIA 2007, Ch. 5.1.2.5]. In practice we found that
64 may both give the nearly best performance as demonstrated
in Section 3.4 and keep resource consumption low. Indeed,
temporary values in data-parallel program consume at least the
vector length. Scalar values and operations may also need to be
replicated across the entire vector length. Memory scatters and
gathers require as many pointers as the vector length. This all
motivates using short vectors. Longer vectors that may be
convenient to deal with in applications should then be strip-
mined into shorter vectors. As longer vectors are implemented
using more warps, i.e. native SIMD threads, strip-mining
converts thread-level parallelism into instruction-level
parallelism that also contributes towards hiding pipeline and
memory latencies.

3 Microbenchmarks
The results reported in this section were measured on a few
different systems running Windows XP and 64-bit Linux, each
equipped with one of the four GPUs listed in Table 1. The name
of a particular GPU is mentioned if it matters. All programming
of GPUs was done using CUDA 1.1 if not specified otherwise.

To ensure the quality of the GPU code produced by the
CUDA compiler we used decuda1, which is a third-party
disassembler of the GPU binaries. The vendor’s tools, such as
the virtual ISA called PTX, was less helpful, as it exposes
different consumption of instruction slots and registers. The
native instruction set for NVIDIA GPUs is not officially
released.

3.1 Kernel Launch Overhead
It takes 5 μs to invoke a GPU kernel using the low-level CUDA
API (one cuLaunchGrid call or two cuParamSetv and
cuLaunchGrid calls if new arguments must be supplied —

1 http://www.cs.rug.nl/~wladimir/decuda/

3

CROSSBAR

...
(16 cores)

…
(6 banks)

L1, 5KB

Local memory
16KB

Vector
registers

32KB

Local memory
16KB

Vector
registers

32KB

SIMD core #15 SIMD core #16

L2 cache
32KB

DRAM6
128MB

L1, 5KB

Local memory
16KB

Vector
registers

32KB

Local memory
16KB

Vector
registers

32KB

SIMD core #1 SIMD core #2

L2 cache
32KB

DRAM1
128MB

latency
(cycles)

26

24

280

370

510

64 64

…
(6 L2 caches)

...
(8 L1 caches)

Figure 2: Summary of the memory system of 8800GTX
according to our study. Sizes of the on-chip memory levels are
shown in the same scale. Latencies shown are for the cached

access. Note the small size of the L1 caches.

Figure 1: Memory latency as revealed by the pointer chasing
benchmark on GeForce 8800 GTX for different kinds of memory

accesses. Array size is shown in the boxes. Cached access
assumed unless otherwise specified. Blue, red and green lines

highlight 5KB cache, 192 KB cache, and 512KB memory pages
respectively. Solid black is non-cached access, dashed black is

local memory.

both cases give similar timings). It takes 5−7 μs if done with the
higher level API (<<< >>> expression). This was measured by
asynchronously invoking the same kernel a very large number of
times and synchronizing once at the end (e.g. using
cudaThreadSynchronize API call). The program used
was the simplest possible, such as copying one word from one
location in the GPU memory to another. This is to ensure that
the program runtime does not contribute substantially to the
overall time. The time increases to 11−12 μs when
synchronizing at each kernel invocation. This gives an idea of
how expensive the synchronization is.

To ensure that we do not sacrifice performance by choosing
CUDA for programming the GPU we also measured overheads
in DirectX 9.0c, which is a mature graphics API widely used in
computer games. The timings were 7 μs for invocation alone
and 21 μs for invocation with synchronization (synchronization
is required when computing with DirectX to ensure correctness).
This indicates that CUDA is as efficient as or better than
DirectX.

3.2 CPU-GPU Data Transfers
The GPUs used in this study were designed for the PCIe 1.1 ×16
interface that bounds the bandwidth of the CPU-GPU link by 4
GB/s (newer GPUs support PCIe 2.0 which is twice as fast). We
found that transferring contiguous pieces of data with sizes from
1 byte to 100 MB long across this link using CUDA with pinned
memory takes about

Time =15μs + bytes transferred

3.3GB /s
. (1)

This fits the measured data within a few percent.

3.3 GPU Memory System
The vendor’s manuals supply limited information on GPU
caches. The CUDA programming guide specifies an 8KB cache
working set per SIMD core [NVIDIA 2007, Ch. A.1], i.e.
128KB for the entire 8800 GTX chip (there is also a cache for
small constant memory that we leave out of scope in this paper).
He et al. [2007] estimate the size of the 8800GTX cache to be
392KB. None of them differentiate levels of cache. However, it
is known that the 8800GTX has one L1 cache per two cores and
six L2 caches [NVIDIA 2006]. L1 caches are connected with L2

caches via a crossbar.
We use a traditional pointer chasing benchmark similar to

that used, for example, in LMBench2 to reveal the latency and
structure of the memory system. It traverses an integer array A
by running k = A[k] in a long unrolled loop, yielding the time
per one iteration. This time is dominated by the latency of the
memory access. The traversal is done in one scalar thread, and
so utilizes only one GPU core and may not see caches associated
with other cores. The array is initialized with a stride, i.e. A[k] =
k + stride mod array size. We test cached and non-cached
memory access to the off-chip memory and also access to the
local memory (in which case data is first copied from the off-
chip memory and this time is later subtracted). Results for
different array sizes and strides on the 8800 GTX are shown in
Fig. 1.

A larger latency indicates more cache misses. The array size
defines the working set and reveals the cache size, such as 5KB
and 192KB in the Figure. The higher latency of the long-stride
non-cached access indicates the presence of a TLB, which is not
officially documented to the best of our knowledge. The stride
reveals cache lines and memory pages, such as 32 bytes and
512KB in the Figure. When the stride is very large, working set
decreases until it again fits in the cache, this time producing
conflict misses if cache is not fully associative. The data in Fig.
1 suggests a fully associative 16-entry TLB (no TLB overhead
for 128MB array, 8MB stride), a 20-way set associative L1
cache (20KB array at 1KB stride fits in L1), and a 24-way set-
associative L2 cache (back to L2 hit latency for 768KB array,
32KB stride). These are the effective numbers and the real
implementation might be different. Six 4-way set-associative L2
caches match this data as well.

According to this data, L1 cache has 160 cache lines only (in
8 fully associative sets). This promises a 100% miss rate in
every cached access unless scalar threads are sufficiently
coordinated to share cache lines.

Figure 1 reveals a 470−720 cycle latency non-cached
memory access that roughly matches the official 400−600 cycle
figure [NVIDIA 2007, Ch. 5.1.1.3].

To find the total amount of the partitioned cache memory,
we run a multithreaded test that utilizes all cores. We run one
thread per core (this is enforced by holding a large amount of
local memory per thread), each traversing through a private
array so that their working sets do not overlap. The results match
the official data, with the effective size of L1 cache scaling with

2 http://www.bitmover.com/lmbench

4

the number of cores. Effective L2 cache size did not scale. Fig. 2
summarizes the parameters of memory system of 8800GTX
including the findings cited above. Preliminary study shows that
TLB also scales with number of cores.

Similar tests and plots for other GPUs in this study
suggested the same sizes of L1 caches (5KB per 2 cores) and
TLB (16 entries per TLB), and showed that L2 caches scale as
memory pins: 32KB for each 64 pins (to match 6 caches in the
8800 GTX [NVIDIA 2006]). Also, it matches 128MB memory
per 64 memory pins on all GPUs but the FX5600, which has
twice as much memory. Our guess is that L2 GPU caches are
similar in function to the hot-spot caches on the earlier highly
multithreaded processors such as Tera MTA [Alverson et al.
1990] that were designed to alleviate contention at memory
banks.

Latencies expressed in cycles were about same on all four
GPUs. Note that an L1 cache hit costs about 280 cycles (260 on
8600 GTS) which is about half of the memory access latency.
According to the vendor’s manual, the purpose of the GPU
cache is to reduce “DRAM bandwidth demand, but not fetch
latency” [NVIDIA 2007, Ch. 5.1.2.3]. Interestingly, the same
purpose is followed in the design of the vector cache in the Cray
BlackWidow vector computer [Abts et al. 2007].

 Latency to the local memory is an order of magnitude less
than to the cache ⎯ 36 cycles. To measure it more accurately
and compare to the pipeline latency we performed a separate
experiments on 8800GTX. This time we execute a = a * b + c
operation many times in an aggressively unrolled loop. We used
decuda to ensure that this operation maps to a single native
instruction. When all three variables are in registers the
measurements show 24 cycle throughput per instruction that is
6× larger than at the peak throughput and is an estimate of the
pipeline latency. Same test showed 26 cycles when b was in
local memory. 2 extra cycles for operations with local memory
appear again in Section 3.5.

24 cycle latency may be hidden by running simultaneously 6
warps or 192 scalar threads per SIMD core, which explains the
number cited in the CUDA guide [NVIDIA 2007, Ch. 5.1.2.5].

3.4 Attaining Peak Instruction Throughput
We were able to achieve 98% of the arithmetic peak on
8800GTX in register-to-register multiply-and-add instructions.
This was achieved running a single vector thread per SIMD
core. Vector length was two warps or 64 elements (1024 scalar
threads in total). Each thread performs a group of 6 independent
multiply-and-adds a million times in an aggressively unrolled
loop. The number 6 was chosen to hide the pipeline latency no
matter how many threads are run per SIMD core. However, it
didn’t work when there was only one warp per SIMD core (we
got 50% of peak only) or two warps in different thread blocks
(66% of peak) when using the same code.

3.5 Throughput when using Local Memory
According to decuda, locations in local memory can be used as
an instruction operand. However, the best of our experiments
yielded only 66% of the arithmetic peak on all four GPUs in
multiply-and-add instructions with one operand in local
memory. This corresponds to 6-cycle throughput per warp
versus the usual 4 and 230 Gflop/s on 8800GTX.

To isolate the effect, we tried different local memory access
patterns keeping the structure of the inner loop unperturbed. We
found that it takes 12 cycles per instruction if each local memory
access involves a 2-way local memory bank conflict (as defined
in [NVIDIA 2007, Ch. 5.1.2.5]), 24 cycles if conflicts are 4-
way, etc. This fits the description in the CUDA guide that says

that conflicting accesses are serialized. This indicates that the
bottleneck is in the local memory access, not in the hidden
pointer arithmetic.

3.6 Faster Global Barrier
A global barrier is a basic synchronization primitive that is
widely used in many parallel algorithms. Currently, it is
common to assume that global barrier on the GPU should be
implemented by invoking a new kernel, which involves
expensive overhead as we have found in Section 3.1. For the
first time we show that it is possible to implement global a
barrier within a single kernel run. Of course, it synchronizes
only among threads that run simultaneously and thus introduces
explicit dependence on the number of GPU cores. In Section 3.8
we argue that this mechanism may be important in fine-grain
computations on the GPUs.

Our implementation does not use atomic primitives
available in the newer GPUs (however, it assumes that word-
wide non-cached memory reads and writes are atomic). Instead,
we replicate the variables used in the synchronization to ensure
that different threads never write to the same address. This keeps
changes to these variables atomic. In our implementation we
allocate arrival and wakeup variables for each vector thread.
There is one master vector thread and others are slaves. The i-th
slave updates the i-th arrival variable and spins on the i-th
wakeup variable until that is updated. The master thread spins on
the arrival variables until every one is updated, then updates
every wakeup variable. For better efficiency we lay out the
counters in memory to ensure that the head thread fetches and
stores the variable values using a single SIMD memory access.
In our prototype implementation we pick the vector length equal
to the total number of vector threads created.

1.3−1.6 μs or 1920−2000 cycles per barrier was observed on
all four GPUs used in the study when running one vector thread
per core. This is about 4 memory latencies of non-cached access,
which is the minimum number of data trips between the
processing chip and the memory as assumed by the algorithm.
This time was up to 2800 cycles when running multiple (up to 8)
vector threads per core.

Although substantial, this time is 3−4× less than the kernel
launch overhead, so it can be used to speedup fine-grain
computations that otherwise require multiple kernel runs.
However, we note that this barrier does not guarantee that
previous accesses to all levels of the memory hierarchy have
completed unless a memory consistency model is assumed.
Also, its practical application is complicated by the inability to
change the thread block size and the register partitioning during
the kernel execution.

3.7 GPU Memory Bandwidth
The best bandwidth in copying within GPU memory on the
8800GTX that we could attain was 76 GB/s, which is 88% of
the pin-bandwidth. This proves that a large fraction of the peak
bandwidth may be attained in SIMD accesses, which should be
the goal in all bandwidth-bound codes. However, the same code
gets 11× lower bandwidth if the supplied pointers are not
aligned. Thus, performance codes must always include basic
optimizations to avoid misaligned accesses. For example, a
misaligned stride-1 copy should be converted into a large
aligned stride-1 copy and one less efficient but much smaller
copy at the head of the array. This can be performed within a
single kernel call.

Even stronger deterioration is possible in strided accesses.
Copying 218 32-bit numbers in GPU memory with strides 1, 8
and 512 takes 34 μs, 260 μs and 2600 μs correspondingly,

5

Figure 3: Gflop/s rates achieved in LU factorization of m×64
panel. GPU is 8800GTX programmed using CUDA 2.0 beta,

CPU is 2.66GHz Core2 Duo CPU using Intel MKL 10.0. Curve
corresponds to the GPU performance if not specified otherwise.
Dashed lines are theoretical estimates, others are empirical data.

which is effectively 62 GB/s, 8.1 GB/s and 0.81 GB/s. This is
done by a simple code, where each vector thread reads and
writes one vector with the given stride. Performing the same
operation using the possibly better optimized vendor’s library
CUBLAS 1.1 gave similar results.

3.8 Implications for Panel Factorization
Results shown by Barrachina et al. [2008] and Baboulin et al.
[2008] indicate that copying a matrix panel to the CPU memory,
factorizing it using the CPU and transferring it back to the GPU
may take less time than performing panel factorization on the
GPU using the vendor-supplied BLAS library. We analyze this
behavior below using a performance model.

Consider running the LU factorization of a panel as done in
LAPACK’s sgetf2 on the GeForce 8800GTX. This routine is
built of calls to BLAS1 and BLAS2 that have flop-to-word ratio
as low as 1 or 2, which is much below the flop-to-word ratio of
the GPUs (see Table 1) and thus are bandwidth bound. Let us
assume they are efficiently implemented, i.e. run in

Time= 5μs + bandwidth required

75GB/s
, (2)

where we used the kernel launch overhead and the peak
sustained bandwidth found above. (Although one might imagine
an environment where runtime of the GPU program and launch
overhead overlap, we observed that these times sum up in
practice if the most efficient invocation routine in CUDA 1.1 is
used.) For example, consider the BLAS1 routine sscal that
scales a vector by a constant factor. It does n flops and requires
2n words of bandwidth for an n-element vector. The highest rate
it can attain on this GPU is therefore r∞ = 9.4 Gflop/s. Half of
this rate is achieved at n1/2 ≈ 47,000, i.e. it runs at 5−10μs for
any n < 47,000. The best of our GPUs has 1.5GB memory that
fits up to 20,000×20,000 matrices. Thus, for practical square
matrix sizes sscal effectively runs in O(1) time instead of the
asymptotic O(n).

Using this model we estimate the runtime of the entire
factorization of an m×n panel, m > n. It involves n calls to each
of the isamax (finds largest element in a vector), sscal,
sswap (swap rows) and n–1 call to sger (rank-1 update).
Assume an ideal implementation, i.e. each routine reads and
writes inputs and outputs only once (e.g. the input row and
column in the rank-1 update stay in cache, registers or local
memory). Fig. 3 shows the result for n = 64 (labeled “estimate”)
compared with few other Gflop/s rates. 64 is the panel width we
use in practice as described in Section 5.

According to the plot, the GPU may yield up to 2.4×
speedup vs. the CPU (labeled “CPU+transfer”) but may achieve
this efficiency only at large problem sizes. The CPU timings in
the plot are handicapped by including the time to transfer panel
to the CPU and back computed as in (1).

The asymptotic performance of the factorization computed
using the model is 18.8 Gflop/s. Only a small fraction of it is
achieved when factorizing a small panel mostly due to the large
startup times. To highlight the importance of the faster global
barrier introduced in Section 3.6, we computed similar estimates
using its overhead, which is 1.4μs on this GPU, as the startup
time in (2). The new estimate is plotted in the same Figure and
labeled “fast barrier, estimate”. The new barrier promises to
yield up to 3× speedup and outperforms CPU starting at smaller
m ≈ 750.

In the same graph we show two implementations of the
panel factorization on the GPU that are labeled “optimized” and
“naive”. One of them is a naïve implementation that executes
LAPACK’s sgetf2 code using CUBLAS 2.0 beta. This is a
newer version of CUBLAS that contains a faster implementation

of sger than in CUBLAS 1.1. The only substantial difference
with the LAPACK code that we introduced was not checking if
1/aii underflows, thus always using cublasSscal. The factors
aii were fetched to the CPU using cublasGetVector. This
version achieves up to 1.5 Gflop/s which is only 11% of the
estimated value. This is also 10% of the peak sustained rate of
cublasSger which is 15.0 Gflop/s for aligned data. The low
fraction is due to working with unaligned data.

The second implementation included a couple of basic
optimizations. The most important optimization was to
implement sger as two calls to cublasSger in the manner
described in Section 3.7 to reduce the work done with unaligned
data. Another optimization was implementing isamax on the
CPU if m is small enough. In that case the data is first fetched to
the CPU memory, then reduction is performed. This
implementation runs up to 5× faster than cublasIsamax in
CUBLAS 2.0 beta, which never takes less than 74μs (~15 kernel
launch overheads!). Finally, scaling was implemented by a
custom kernel that does not require copying aii to the CPU. The
optimized version runs at up to 5.8 Gflop/s which is nearly 4×
speedup compared to the non-optimized code. However, this is
only 41% of the estimated value.

The rate achieved in cublasSger in the optimized code is
shown in the same plot (labeled “sger alone”). Most of the work
is done in this routine. Note the gap in performance with the
entire panel factorization. This is the practical slowdown due to
the low work-to-cost ratio of isamax, sscal and sswap.

Further optimization might bring performance closer to the
estimates. However, there could be other fundamental
bottlenecks that prohibit achieving this simplified estimate.
Implementing panel factorization on the GPU may not worth the
effort and it may be preferable to offload this work to the CPU.
We always perform panel factorization on the CPU in practice.

4 Design of Matrix-Matrix Multiply Routine
In this Section we describe the designs of AB and ABT matrix-
matrix multiplication routines that run at up to 90% of the
arithmetic peak for operations using local memory as found in
Section 3.5. This is 60% faster than in the CUBLAS 1.1 library
released by NVIDIA. At the time of writing, our codes have
been adopted NVIDIA and are included in CUBLAS 2.0 beta. In
Section 6.3 we describe a few independent works that have been
done using our routines.

6

// version: C := αABT + βC
Compute pointers in A, B and C using thread IDs
s[1:4] = next 64×16 block in A
t = next 4×16 block in B
c[1:16] = 0
do
 copy s[1:4] into a[1:4]
 copy t into b[1:4][1:16]
 (local barrier)
 s[1:4] = next 64×16 block in A
 t = next 4×16 block in B
 c[1:16] += a[1:4]*b[1:4][1:16]
 (local barrier)
 update pointers in A and B
repeat until pointer in B is out of range
copy t into b[1:4][1:16]
(local barrier)
c[1:16] += s[1:4]*b[1:4][1:16]
Merge c[1:16] with 64×16 block of C in memory

// version: C := αAB + βC
Compute pointers in A, B and C using thread IDs
c[1:16] = 0
do
 a[1:4] = next 64×16 block in A
 b[1:16][1:16] = next 16×16 block in B
 (local barrier)
 c[1:16] += a[1:4]*b[1:4][1:16]
 a[1:4] = next 64×16 block of A
 c[1:16] += a[1:4]*b[5:7][1:16]
 a[1:4] = next 64×16 block of A
 c[1:16] += a[1:4]*b[8:11][1:16]
 a[1:4] = next 64×16 block of A
 c[1:16] += a[1:4]*b[12:15][1:16]
 (local barrier)
 update pointers in A and B
repeat until pointer in B is out of range
Merge c[1:16] with 64×16 block of C in memory

Figure 4: Vector thread programs for matrix-matrix multiply. Bold characters a, c, s and t represent vector registers, b is in local memory.

4.1 Block Matrix Multiply
Consider evaluating product C := C + AB, where A, B and C are
m×k, k×n and m×n matrices resp. Partition these matrices into
M×K, K×N and M×N grids of bm×bk, bk×bn and bm×bn blocks.
Suppose that fast memory can hold one block in C, A and B at
the same time. Consider the ijk/jik-variant of the algorithm that
holds the block of C until all updates to it are accumulated (other
variants may involve multiple updates of C from different
threads resulting in a race condition). Then computing one block
in C requires fetching K blocks of A and B. There are M⋅N
blocks in C, so in total these fetches consume M⋅N⋅K⋅bm⋅bk +
M⋅N⋅K⋅bk⋅bn = m⋅n⋅k⋅(1/bn+1/bm) words of bandwidth. This is
2/(1/bn+1/bm) times less than if no blocking is used, i.e. if bm =
bn = bk = 1. Since this factor does not depend on bk, small bk
can be recommended when the fast memory is small. For
example, bm = bn = b, bk = 1 requires nearly 3× less local
storage than bm = bn = bk = b but requires the same bandwidth.
We use bk = 4, which corresponds to a moderate unrolling of the
inner loop. Below we refer to bm×bn as the block size.

The amount of bandwidth reduction should be at least as
large as the flop-to-word ratio of the machine. This ratio is 18
for GeForce 8800 GTX if our goal is approaching 346 Gflop/s
under 75 GB/s cap on the bandwidth and 12 if the goal is 230
Gflop/s. Thus, the minimum block is 18×18 and 12×12 resp. We
were satisfied with the results we got with 32×32 (not discussed
in this paper) and 64×16 blocking and did not try using smaller
blocks.

Our algorithm is similar to one by Agarwal and Gustavson
[1989] designed for IBM 3090 Vector Facility and Anderson et
al. [2004] for Cray X1. In these implementations blocks in A and
C are stored in registers and blocks in B are in other fast
memory that is shared across different vector elements — scalar
registers and cache respectively. We keep B in local memory.
Therefore, each multiply-and-add instruction uses data in local
memory that bound the performance of algorithm by 66% of the
arithmetic peak as found in Section 3.5. In practice we achieve
60% of the arithmetic peak as discussed below in detail.
Substantially faster solution should rely on using less expensive
sharing of data in matrix blocks than local memory.

4.2 Implementation Details
We implemented the C := αAB + βC and C := αABT + βC cases
of matrix multiplication for matrices in column-major layout,
where α and β are scalars. We got our best results with vector
length 64. We create M⋅N vector threads, one thread per 64×16
block in C. Only non-cached memory access is used. Matrix A is
fetched in 64×4 blocks. Matrix B is fetched in 16×16 blocks and
matrix BT is fetched in 4×16 blocks. This ensures that all
memory fetches follow the SIMD restrictions and can run at
maximum bandwidth. In multiplying AB, a block of B is laid out
in the row-major format in local memory (same for the block of
BT in ABT). This reduces the amount of pointer arithmetic
required to iterate through it. 16×16 arrays are padded as
advised in [NVIDIA 2007] to avoid bank conflicts in column
access when storing 16×4 blocks in the AB case. To improve
latency hiding, we prefetch one block ahead in the ABT code3.
The other code has a sufficiently long body so that the compiler
puts gather instructions sufficiently early. Figure 4 illustrates
these algorithms.

Similar code is used to deal with block triangular matrices
such as that appear in Cholesky factorization. When C is block
triangular, we create as many threads as it has nonzero blocks.
Since threads are always created as a 1D or 2D array, this
involves extra arithmetic in converting the thread ID into a block
index (a block triangular matrix is cut in two pieces that are
flipped and fit together to make a rectangle). A simpler solution
would be creating threads as for a full matrix, and making
threads corresponding to the non-participating blocks (those
below or above the diagonal) exit immediately. If either A or B
is block triangular, we modify the thread’s startup code to adjust
pointers in matrices A and B and/or number of iterations of the
inner loop according to the thread ID. Either way we don’t
change the structure of the inner loop, thus the code runs at
similar peak rates as the usual matrix-matrix multiply.

The code is written in CUDA’s C to offload part of the work
to the compiler. As runtime of our implementation is bound by
instruction slots and register usage, it was important to ensure

3 using prefetching and “–maxrregcount 32” compiler option is due
to Paul Leventis

7

C := C + AB C := C + ABT
GPU peak

CUBLAS est. actual no fetch no pref. CUBLAS est. actual no fetch no pref.
FX5600 230 127 202 205 210 183 122 197 205 205 191

8800GTX 230 128 202 206 210 186 122 197 205 205 192
8800GTS 152 84 133 136 138 123 81 130 136 136 127
8600GTS 62 35 55 56 57 49 33 53 56 56 50

Table 2: Estimated and best observed rates in Gflop/s when multiplying square matrices up to 4096×4096. Peak — the peak for multiply-
and-add operation with one argument in local memory according to our benchmarks. CUBLAS — cublasSgemm in CUBLAS 1.1, est.
— the estimated rate, actual – the observed rate, no fetch — fetches in A and B substituted with assignments, no pref. — no prefetching

used. For comparison, sgemm in Intel MKL 10.0 runs at up to 70 Gflop/s on 2.4GHz Core2 Quad.

Figure 5: Runtime of the three versions of matrix-matrix
multiply run on 8800GTX: one in CUBLAS 1.1, our algorithm
and the prototype optimized for small C. In all cases the shared
dimension of A and B was 1024. In our implementation, blocks

in C are 64×16, in CUBLAS it is 32×32.

Figure 6: Rates in multiplying square and thin matrices on
8800GTX and 2.4GHz Core2 Quad.

efficient code generation. This was accomplished using decuda.
We needed to enforce a tight register budget by using the “-
maxrregcount 32” compiler option. This ensures that each
vector thread uses not more than 32 × vector length = 2048
registers, so 4 vector threads can fit on one core at a time. This is
important in hiding memory latency.

Our algorithm uses little of local memory — up to 7.5% and
28% of the resource at full load in ABT and AB respectively.
This is an example of efficient usage of registers as the primary
scratch space.

The performance of the code is highly compiler-dependent.
The performance cited was obtained using the compiler in
CUDA SDK 1.1. Code produced by the previous compiler
version performs substantially slower. Code produced when
compiling on 64-bit Linux runs ~10% slower unless forced to
compile into 32-bit with compiler option “-m 32”.

4.3 Optimization for Small Matrices
Thread-level parallelism may be not sufficient to hide memory
latencies if matrix C is small. For example, at least 64 vector
threads are required to achieve full-occupancy on 16-core GPUs.
This corresponds to 256×256 or 1024×64 dimensions of C. Such
matrices may be important in some applications, such as in
Crout version of the LU decomposition. Importance of this issue
is likely to grow with time, as future processors may have many
more loosely connected cores.

In this case we might wish to extract another level of
parallelism available in matrix multiply — in the dot products
that define entries of the output matrix: Cij = αΣAikBkj+βCij. We
split the dot product into partial sums that are computed with
different threads. The partial sums are summed up and merged
with matrix C using a different kernel. In our prototype
implementation, the optimal number of partial sums is found
using brute force search for every particular matrix dimension.
This algorithm consumes extra bandwidth by keeping
intermediate data in the off-chip memory and costs another
kernel launch overhead. But it may worth it as we shortly see.

4.4 Performance Analysis
To estimate the performance of the algorithm, we analyze the
disassembler output (decuda). The inner loop of the C := αAB +
βC (C := αABT + βC) program has 312 (83) instructions, 256
(64) of which are multiply-and-adds with operands in local
memory and 4 (6) instructions are half-width (i.e instruction
code is 32-bit wide; other instruction codes are 64-bit wide).
Assuming that multiply-and-adds have a throughput of 6 cycles
per warp, half-width instructions take 2 cycles and all other
operations take 4 cycles, we estimate the asymptotic Gflop/s
rate. The estimated and observed rates are listed in Table 2.
There is a consistent underestimate within 2−4%.

To check that our code is not bound by the memory
bandwidth and latency in reading A and B, we substituted

assigning a value at the pointer with assigning the pointer value
itself in all these reads. This preserves the dependence pattern
and produces similar machine code as we checked with the
disassembler. To make feasible assigning pointers to floating
point variables in CUDA we also substitute pointers to A and B
with floating point indices. Table 2 shows that performance is
within 3% of the original, i.e. memory bandwidth or latency do
not factor in the performance in a substantial degree.

Another test version of the code does not use prefetching. In
the case of the ABT version this amounts to substituting copies
before the first local barrier as in Fig. 4 with appropriate
memory accesses. In the case of the AB version, this means that

8

all fetches of A are placed after the first local barrier to avoid
extra overlap in latencies. According to the table, these codes
run 7−11% slower indicating the effectiveness of using
prefetching in hiding the latency.

On all four GPUs the code performed at 89–90% of the peak
performance with participation of local memory, or 59–60% of
the peak arithmetic performance. This means it scales well with
the number of cores and clock rate, corresponds to 11−14
Gflop/s per core. Substantially faster code could be built only if
using local memory less intensively.

Future GPUs might have faster access to local memory. If
accessing local memory in multiply-and-add did not involve
extra cost and latency was still well-hidden, a similar
performance estimate promises ~80% of arithmetic peak bound
by ~20% of instructions spent in pointer arithmetic, fetch
instructions, synchronization and flow control. For comparison,
sgemm in Intel MKL 10.0 run on a 2.4GHz Core2 Quad runs at
70 Gflop/s, which is 91% of the arithmetic peak.

64×16 blocking yields 25.6× reduction of bandwidth
consumption. Thus, 206 Gflop/s achieved on 8800 GTX
corresponds to 32 GB/s in reading matrices A and B, which is
43% of the peak sustained bandwidth. In contrast, some of the
earlier methods, such as Govindaraju et al. [2006] and
Fatahalian et al. [2004] are bandwidth-bound.

Fig. 5 plots runtime of the algorithm versus the number of
blocks in C, i.e. the number of vector threads. Step-pattern is
due to the round-robin distribution of vector threads across the
GPU cores. This produces poor load balance when number of
threads is small. The runtime of the two-stage version optimized
for small matrices grows nearly linearly with the amount of the
work done as it creates many more threads than the number of
blocks in C. Fig. 6 summarizes the performance of our algorithm
for square and skinny matrices compared to CUBLAS 1.1 and
matrix multiply as implemented in Intel MKL 10.0 and run on
2.4GHz Core2 Quad Q6600 running 64-bit Linux.

The version of the code that deals with a square block
triangular matrix C and full matrices A and B runs at the same
peak rates as for a full matrix C. However, a simpler solution
based on more threads some of which exit early runs at 10%
lower peak and was ~30% slower for some matrix sizes. Thus,
creating large number of empty threads may have a substantial
impact on the overall performance.

5 Implementation of One-Sided Matrix
Factorizations
We consider the factorization of matrices that reside in the CPU
memory in column-major layout, and whose factorizations
overwrite the original data. The intention is to match the
semantics of LAPACK routines [Anderson et al. 1990].
However, for the purpose of this study we restrict our attention
to square matrices whose dimension is a multiple of the block
size used.

There are three classical bulk-synchronous variants of LU
factorization — left-looking, right-looking and Crout [Dongarra
et al. 1998]. We dismiss the left-looking scheme as it does about
half its flops in triangular solves with small number of right-
hand sides and so has limited inherent parallelism. We prefer the
right-looking algorithm to the Crout algorithm because it
exposes more thread-level parallelism in the calls to matrix-
matrix multiply. Cholesky and QR factorizations work in the
same manner — the entire matrix is updated as soon as next
block column is available.

Panel factorization is done on the CPU as done
independently by Barrachina et al. [2008] and Baboulin et al.
[2008]. However, in our implementation triangular solve in
Cholesky is also done on the CPU (we are most interested in

better performance at large problem sizes). The panel
factorization is overlapped with computation on the GPU using
a look-ahead technique (see e.g. Dongarra and Ostrouchov
[1990] who call it pipelined updating). This requires transferring
matrix panels from the GPU to CPU memory and back. The
transfers are currently not overlapped with the computation on
the GPU, as our best GPUs (8800GTX and FX560) do not
permit it (unlike the newer GPUs).

To avoid extra overhead in the transfers, the panels are
placed into their final output location when transferred to the
CPU memory. Thus panel factorization produces the final
results for those locations, except for LU factorization, which
requires pivoting of the entire matrix at each panel factorization,
which is done on the GPU. The transfer of the triangular matrix
in the Cholesky factorization is done by transferring a set of
rectangular blocks that includes the triangular part. The width of
the blocks is optimized using the performance model presented
in Section 3.2.

To avoid the severely penalized strided memory access in
pivoting on the GPU, the matrix is laid out in the GPU memory
in row-major order. This involves extra overhead for the
transposition and applies to LU factorization only. The
transposition of the square matrix is done in-place to avoid extra
space requirements (a slightly more complicated solution may
be used with non-square matrices). When the panel is transferred
to the CPU memory and back, it is transposed on the GPU using
an additional, smaller, buffer. Pivoting kernel does 64 row
interchanges per call to amortize the kernel launch overhead.
The pivot indices are passed in as function parameters that are
accessible via local memory in CUDA. This avoids any memory
access overhead in reading them.

Only the lower triangular part of the output of the panel
factorization in the QR algorithm is needed for the update done
on the GPU. It is filled in with zeros and a unit diagonal to
create a rectangular matrix, so that it can be multiplied using a
single matrix-matrix multiply. A similar technique is used in
ScaLAPACK [Choi et al. 1996]. The same technique is used
with the small triangular matrix that arises in the panel
factorization in QR. These fill-ins are done on the CPU to
overlap with the work on the GPU.

Instead of running triangular solve in the LU decomposition
we run matrix-matrix multiply with the inverse of the triangular
matrix. The inverse is computed on the CPU. Unlike other
optimizations, this may affect the numerical stability of the
algorithm. However, our numerical tests so far show no
difficulty and in fact the stability of either algorithm depends on
the essentially the same assumption, namely that L−1 is not too
large in norm, since this bounds both pivot growth and the
accuracy of the triangular solve. In the future we might revert to
triangular solve when ||L−1|| is too large.

The block size used is the same as in the matrix multiply
(64). A larger block size could reduce bandwidth consumption
and improve performance with large matrices. We address the
bandwidth consumption using two techniques.

The first technique is a variant of 2-level blocking (this was
independently done in [Barrachina et al. 2008]). Both levels are
done in the right-looking manner to use a large number of
threads in the matrix multiply. A novel tweak is that we switch
to the coarse blocking level when only half the finer level is
complete. This avoids updating matrices that have too few block
columns and so offer little thread parallelism in the matrix
multiplies. Note, that this approach is not a subset of the
traditional recursive blocking.

A different technique is used in QR factorization, which has
a different structure of updates. We used autotuning to choose
best block size (multiple of 64) at every stage of the algorithm.

9

Figure 7: Rates achieved in the factorizations using Core2 Duo
with GeForce 8800GTX (black), using Core2 Quad alone (red)

and in the BLAS3 operations on the GPU as used in the
factorizations (green).

Figure 8: Speedup versus CPU-alone versions.

Core2 Duo Core2 Quad
 8800GTX

Gflop/s Gflop/s speedup Gflop/s speedup

Cholesky 183 23.0 7.4× 34.9 5.5×

LU 179 22.7 7.7× 59.2 3.0×

QR 192 22.5 8.3× 44.8 4.3×

sgemm 206 25.9 8.0× 69.8 3.0×
Table 3: Comparison of best Gflop/s rates in the GPU version
and the two CPU-alone versions. The speedups shown are the
best speedups vs. CPU-alone versions that were observed for

some n.

Figure 9: Performance of one-GPU and two-GPU versions of
the LU decomposition.

Each stage is parameterized with a 3-tuple: the size of the
trailing matrix, the block size used in panel factorization and the
block size used in the update (same as used in the last panel
factorization). In the current prototype we measure the runtime
for every instance of this 3-tuple within the range of interest.
Dynamic programming is then used to choose the best sequence
of the block sizes, similarly to [Bischof and Lacroute 1990].
Block triangular matrix multiplies are used wherever possible.

5.1 LU factorization on two GPUs
We consider using two GPUs attached to the same workstation.
We use a column-cyclic layout to distribute the matrix over two
GPUs. It is convenient, as it does not require communication in
pivoting, distributes the workload evenly and keeps CPU-GPU
data transfers simple. Each GPU sees only its own fraction of
the matrix (even or odd columns). The exception is the updates,
which require the transfer to each GPU of an entire panel. The
columns that do not belong to the layout are discarded after the
update is complete. The structure of the algorithm is same as in
the single-GPU case but no 2-level blocking is currently
implemented as it requires extra space.

6 Results
All single-GPU results in this section are given for a desktop
system that has one 2.67GHz Core2 Duo E6700 and one
GeForce 8800 GTX running Windows XP. Two-GPU results are
given for the same system with two GeForce 8800 GTXs. We
also compare results with one 2.4GHz Core2 Quad Q6600
running 64-bit Linux. In all cases the Intel MKL 10.0 library is
used for factorizations on the CPU and CUDA SDK 1.1 for
programming the GPU.

Input and output data are in the pinned CPU memory, which
provides a compromise between usefulness in applications (that
are likely to run on the CPU) and performance (slower transfers
to/from GPU if the data is in pageable memory). The cost of the
memory allocation is not included in the timings.

The correctness of the algorithms is tested in the following
way. Input matrix A is synthesized with random entries
uniformly distributed in [–1,1] (to guarantee symmetric positive
definiteness, A = 0.001⋅I + XTX is used instead in testing the
Cholesky factorization, where X is the random matrix as
described above and I is the identity matrix). Output factors are
multiplied and max-norm of its difference with the input matrix
is found. This measures the backward error in the factorization.
We found that this error is about the same whether using our
GPU-based algorithm or the purely CPU-based algorithm in the
Intel MKL (always within a factor of 2, and within 20% in most
cases). The variant of the LU factorization that multiplies by the
inverses of the diagonal blocks of the triangular matrix has
shown about same accuracy as when running triangular solves
on the GPU. As an example, the errors as measured above in
LU, QR and Cholesky at n = 8192 are about 2000⋅ε⋅||A||max,
200⋅ε⋅||A||max and 17⋅ε⋅||A||max resp., where ε = 2–23 is machine
epsilon in IEEE single precision and ||A||max is the max-norm of
A.

6.1 Summary of Performance
Figure 7 shows the Gflop/s rates sustained in the GPU-based
matrix factorization routines and their BLAS3 calls. Redundant
flops, such as when multiplying by the zero fill-ins in the
triangular matrices, are not counted. Operations with block
triangular matrices are also counted as BLAS3, although they do
not strictly match the semantics. One can see that BLAS3 rates
approach peak rates of the matrix-matrix multiply presented in
Section 4.4. Performance of BLAS3 bounds performance of

10

Figure 10: The breakdown of time in the LU decomposition.

Figure 11: Slowdown when omitting one of the optimizations
used.

entire factorization as it’s the fastest component of the
algorithm. The gap between BLAS3 and factorization rates
illustrates the impact of the other work done. The gap is the
largest in the case of LU decomposition, which requires
pivoting, transposition and transferring the final result back to
the CPU unlike the two other factorizations.

The same plot also includes the rates achieved in the
factorizations done using Core2 Quad alone, and Figure 8 details
the speedups vs. Core2 Duo and Core2 Quad. According to the
Figure, the crossover between the GPU-based and CPU-alone
implementations is at n = 200−400 for LU and QR algorithms.
Cholesky always runs faster than the CPU-alone implementation
on the Core2 Duo (which might indicate inefficiency of the CPU
implementation). Crossover with the performance of the CPU-
alone algorithm running on Core2 Quad is at n = 500−700. The
best performances are summarized in Table 3. It shows that the
speedup is nearly the same as the speedup in the matrix-matrix
multiply (sgemm) and even better when comparing to the Core2
Quad.

Finally, Fig. 9 shows the performance of the LU
decomposition that achieves ≈ 300 Gflop/s at n ≈ 18,000 by
running two GPUs in parallel.

6.2 Performance Analysis
The different rates in the BLAS3 routines in Fig. 8 are due to
different amounts of the thread level parallelism (TLP) exposed
in the bulk matrix multiplies. Right-looking LU decomposition
exposes the most TLP, and right-looking Cholesky exposes less,
as it runs similar updates but for triangular matrices that have
about half as many blocks (this may explain why the Cholesky
curve looks similar to the LU curve shifted right by factor of
two). Around half of the BLA3 operations in QR factorization
are involved in producing a skinny matrix, thus running slower
than in BLAS3 in LU factorization. BLAS3 in QR speeds up for
larger n as adaptive blocking switches to less skinny matrices.
However, QR factorization achieves the overall highest speed
among the three factorization as it does more flops in matrix
multiplies than any other algorithm.

Fig. 10 shows the breakdown of runtime in the LU
factorization. The breakdown for Cholesky looks similar, but
does not have the transpose time, the CPU-GPU transfer takes
less time (no transferring the entire matrix back) and overlap
between CPU and GPU is not as good due to less work done in
matrix-matrix multiply (the panel factorization has about same
cost). We did not do this analysis for QR but expect the work
done on the CPU to be hidden better than in LU. The breakdown
shows that up to 90% of the runtime is consumed by computing
on the GPU and about of 10% of this time overlaps with
computing on the CPU. It reveals a potential use of
asynchronous transfers that could save another 10% of time, if
available in hardware. Another speedup is possible with
offloading more work to the CPU as currently up to 80% of time
GPU works alone. Time spent in transposing the matrices is not
substantial. Individual measurements have shown that transpose
runs at 25−45 GB/s for n > 1000. This variation in bandwidth is
due to the moderate granularity of this operation. For example, it
takes ~7.5μs to copy or transpose a 1024×64 matrix at 70 GB/s,
which is about the same as the kernel launch overhead. CPU-
GPU transfers run at 3.0−3.3GB/s for n > 1000, which
approaches the peak sustained bandwidth as in Section 3.2.

Fig. 11 evaluates the impacts of different optimizations
used. The most important optimization was using row-major
layout on the GPU. If not used, we lose about half of the Gflop/s
rate. We measured pivoting individually and found that it takes
1−10% of time in the entire computation for n > 1000 if done in
the row-major layout. In that case it achieves 7−17 GB/s of

effective bandwidth. When using column-major layout, it can
take up to 56% of total time and run at 0.2−2GB/s, with slower
rates for larger matrices.

A surprisingly large speedup (up to 30%) was obtained by
performing triangular solve via multiplying by the inverse
matrix. Triangular solve with a 64×64 triangular matrix and
4096 right hand sides runs at 13 Gflop/s when using CUBLAS
1.1 or CUBLAS 2.0 beta. It is an order of magnitude slower than
the 160 Gflop/s rate achieved in multiplying a 64×64 matrix by
a 64×4096 matrix that does the same work (this is 80 Gflop/s if
not counting the redundant work).

The best speedups by using autotuning to choose block sizes
in QR and in 2-level schemes in LU and Cholesky were 7%, 6%
and 4% correspondingly and factored in only for n > 4096.

According to Fig. 9, using two GPUs yields only ~67%
improvement in the Gflop/s rate. Benchmarks of CPU-GPU
transfers showed only 1.6 GB/s peak in the transfers with the
second GPU. Apparently it is working at PCI-e ×8 rate, we do
not know if this can be remedied. As we perform factorization in
a bulk-synchronous manner, the runtime is bound by the slowest
transfer. There are other sources of slowdown, such as extra
CPU-GPU bandwidth consumption, lack of 2-level blocking and
keeping the number of CPUs constant.

6.3 Comparison with Other Work
The first implementation of the LU factorization using GPUs
that we know was published by Galoppo et al. [2005] and ran at
up to ~10 Gflop/s for n = 4000 without pivoting and at ~6
Gflop/s for n = 3500 with partial pivoting on the older GeForce

11

7800. This is 13× and 22× slower than our implementation done
with partial pivoting at these matrix dimensions. As discussed
above, in our implementation pivoting does not introduce as
much slowdown.

Barrachina et al. [2008] report 50 Gflop/s in LU
factorization and 41 Gflop/s in Cholesky factorization for n =
5000 using CUBLAS 1.0 on GeForce 8800 Ultra. This GPU is
faster than the 8800 GTX that we use (6.4% higher processor
clock rate and 11% higher pin-bandwidth). Our implementation
achieves 2.9× and 3.7× higher speed for LU and Cholesky resp.
This is due to our improved matrix-matrix multiply routine and
the optimizations evaluated above.

Baboulin et al. [2008] describes implementation of LU and
QR algorithms that run at up to ≈55 Gflop/s on Quadro FX5600
for n ≈ 19,000 using CUBLAS 1.0. This GPU is similar to what
we use (see Tables 1 and 2). Their implementation of Cholesky
runs at up to 90 Gflop/s if using CUBLAS and approaches 160
Gflop/s if using an early version of the matrix multiply
described in this paper and offloading BLAS1/BLAS2
operations to the CPU. Our implementation achieves higher
rates at smaller orders of matrix, thus is more efficient.

Castillo et al. [2008] report results for Cholesky
factorization run on 4-GPU NVIDIA Tesla S870. Each of these
GPUs is roughly equivalent to Quadro FX5600. Authors report
180 Gflop/s on a system at n ≈ 10,000. We achieve this
performance using one GPU only. Their result was later
improved to 424 Gflop/s at n ≈ 20,000 by using matrix multiply
routine presented in this paper [Quintana-Orti et al. 2008].

7 Conclusions
We have presented the fastest (so far) implementations of dense
LU, QR and Cholesky factorizations running on a single or
double NVIDIA GPUs. Based on our performance
benchmarking and modeling, they attain 80%−90% of the peak
speeds possible for large matrices. This speed was achieved by
carefully choosing optimizations to match the capabilities of the
hardware, including using the CPU in parallel with the GPU to
perform panel factorizations, which are dominated by BLAS1
and BLAS2 operations done faster on the CPU. We also
changed the LU algorithm to use explicit inverses of diagonal
subblocks of the L factor, and showed this was both faster than
and as numerically stable as the conventional algorithm.

We also presented detailed benchmarks of the GPU memory
system, kernel start-up costs, and barrier costs, which are
important to understanding the limits of performance of many
algorithms including our own. We also identified a new way to
do global barriers faster, but which may or may not provide
memory consistency.

Future work includes designing two-sided factorizations,
such as in dense eigenvalue problems, one-sided factorizations
on a GPU cluster and exploring the new performance
opportunities offered by newer generations of GPUs.

References
ABTS, D., BATAINEH, A., SCOTT, S., FAANES, G.,

SCHWARZMEIER, J., LUNDBERG, E., JOHNSON, T., BYE, M.,
AND SCHWOERER, G. 2007. The Cray BlackWidow: A Highly
Scalable Vector Multiprocessor, SC’07.

AGARWAL R. C., AND GUSTAVSON, F.G. 1989. Vector and
parallel algorithms for Cholesky factorization on IBM 3090,
Supercomputing’89, 225–233.

ELVERSON, R., CALLAHAN, D., CUMMINGS, D., KOBLENZ, B.,
PORTERFIELD, A., AND SMITH, B. 1990. The Tera Computer
System, ICS’90, 1–6.

AMD. 2006. ATI CTM Guide, version 1.01.

ANDERSON, E., BAI, Z., DONGARRA, J., GREENBAUM, A.,
MCKENNEY, A., DU CROZ, J., HAMMERLING, S., DEMMEL, J.,
BISCHOF, C., AND SORENSEN, D. 1990. LAPACK: a portable
linear algebra library for high-performance computers,
Supercomputing’90, 2–11.

ANDERSON, E., BRANDT, M., AND YANG, C. 2004. LINPACK
Benchmark Optimizations on a Virtual Processor Grid, In
Cray User Group 2004 Proceedings.

BABOULIN, M., DONGARRA J., AND TOMOV, S. 2008. Some
Issues in Dense Linear Algebra for Multicore and Special
Purpose Architectures, Technical Report UT-CS-08-200,
University of Tennessee, May 6, 2008 (also LAPACK
Working Note 200).

BARRACHINA, S., CASTILLO, M., IGUAL, F. D., MAYO, R, AND
QUINTANA-ORTI, E. S. 2008. Solving Dense Linear Systems
on Graphics Processors, Technical Report ICC 02-02-2008,
Universidad Jaime I, February 2008.

BISCHOF, C. H., AND LACROUTE, P. G. 1990. An adaptive
blocking strategy for matrix factorization, in Proceedings of
the joint international conference on Vector and parallel
processing, 210–221.

CASTILLO, M., CHAN, E., IGUAL, F. D., MAYO, R., QUINTANA-
ORTI, E. S., QUINTANA-ORTI, G., VAN DE GEIJN, R., AND VAN
ZEE, F. G. 2008. Making Programming Synonymous with
Programming for Linear Algebra Libraries, FLAME Working
Note #31. The University of Texas at Austin, Department of
Computer Sciences. Technical Report TR-08-20. April 17,
2008.

CHOI, J., DONGARRA, J. J., OSTROUCHOV, L. S., PETITET, A. P.,
WALKER, D. W., AND WHALEY, R. C. 1996. The Design and
Implementation of the ScaLAPACK LU, QR, and Cholesky
Factorization Routines, Scientific Programming 5, 3, 173–184
(also LAPACK Working Note 80).

DONGARRA, J., DUFF, I. S., SORENSEN, D. C., AND VAN DER
VORST, H. A. 1998. Numerical Linear Algebra for High-
Performance Computers, SIAM.

DONGARRA, J., AND OSTROUCHOV, S. 1990. LAPACK Block
Factorization Algorithms on the Intel iPSC/860, Technical
Report CS-90-115, University of Tennessee (also LAPACK
Working Note 24).

GALOPPO, N., GOVINDARAJU, N. K., HENSON, M., AND
MANOCHA, D. 2005. LU-GPU: Efficient Algorithms for
Solving Dense Linear Systems on Graphics Hardware, SC’05.

GOVINDARAJU, N. K., LARSEN, S., GRAY, J., AND MANOCHA, D.
2006. A Memory Model for Scientific Algorithms on Graphcs
Processors, SC’06.

FATAHALIAN, K., SUGERMAN, J., AND HANRAHAN, P. 2004.
Understanding the efficiency of GPU algorithms for matrix-
matrix multiplication, In Graphics Hardware 2004, 133–137.

HE, B., GOVINDARAJU, N. K., LUO, Q., AND SMITH, B. 2007.
Efficient Gather and Scatter Operations on Graphics
Processors, SC’07.

NVIDIA. 2006. NVIDIA GeForce 8800 GPU Architecture
Overview, Technical Brief, November 2006.

NVIDIA. 2007. NVIDIA CUDA Compute Unified Device
Architecture, Programming Guide, v. 1.1.

QUINTANA-ORTI, G., IGUAL, F. D., QUINTANA-ORTI, E. S., AND
VAN DE GEIJN, R. 2008. Solving Dense Linear Systems on
Platforms with Multiple Hardware Accelerators, FLAME
Working Note #32. The University of Texas at Austin,
Department of Computer Sciences. Technical Report TR-08-
22. May 9, 2008.

