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Abstract

Achieving peak performance from library subroutines usually requires ex-
tensive, machine-dependent tuning by hand. Automatic tuning systems
have emerged in response, and they typically operate by (1) generating a
large number of possible implementations of a subroutine, and (2) select-
ing the fastest implementation by an exhaustive, empirical search. This
paper presents quantitative data that motivates the development of such
a search-based system, and discusses two problems which arise in the con-
text of search. First, we develop a heuristic for stopping an exhaustive
compile-time search early if a near-optimal implementation is found. Sec-
ond, we show how to construct run-time decision rules, based on run-time
inputs, for selecting from among a subset of the best implementations.
We address both problems by using statistical techniques to exploit the
large amount of performance data collected during the search. We apply
our methods to actual performance data collected by the PHiPAC tuning
system for matrix multiply on a variety of hardware platforms.

1 Introduction

For a wide variety of applications in science, engineering, and information re-
trieval, among others, overall performance often depends critically on the un-
derlying efficiency of only a few basic operations, or computational kernels. Fa-
miliar examples of such kernels include dense and sparse linear algebra routines,
the fast Fourier transform and related signal processing kernels, and sorting, to
name a few. Developers can build portable applications that also have portable
performance, provided highly-tuned kernels are available on the platforms of
interest to their users. Thus far, developers have relied on hardware vendors
to provide these fast kernels, usually through some standard library interface.
A wealth of popular libraries have been developed in this spirit, including the
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Basic Linear Algebra Subroutines (BLAS) [17, 8, 7], the Vector and Signal Im-
age Processing Library API [21], and the Message Passing Interface (MPI) for
distributed parallel communications [1].

However, both construction and machine-specific hand-tuning of these li-
braries can be tedious and time-consuming tasks. First, program execution
speed is sensitive to the detailed structure of the underlying machine. Mod-
ern machines employ deep memory hierarchies and microprocessors having long
pipelines and intricate out-of-order execution schemes—understanding and ac-
curately modeling performance on these machines can be extremely difficult.
Second, modern compilers vary widely in the range and scope of analyses, trans-
formations, and optimizations that they can perform, further complicating the
task of developers who might wish to rely on the compiler to perform particular
optimizations. Third, any given kernel could have many possible “reasonable”
implementations which (a) are difficult to model because of the complexities
of machine architecture and compiler, and (b) correspond to algorithmic vari-
ations that are beyond the scope of transformations compilers can presently
apply. Fourth, the tuning process must be repeated for every platform.1 Fi-
nally, performance may depend strongly on the program inputs, and this is
typically known only at run-time. Thus, kernel performance could even depend
on conditions not known when the library is initially built.

In reponse, several recent research efforts have sought to automate the tun-
ing process using the following two-step methodology. First, rather than code a
given kernel by hand for each computing platform of interest, these systems con-
tain parameterized code generators that (a) encapsulate possible tuning strate-
gies for the kernel, and (b) output an implementation, usually in a high-level
language (like C or Fortran) for portability. By “tuning strategies” we mean
that the generators can output implementations which vary by machine char-
acteristics (e.g., different instruction mixes and schedules), optimization tech-
niques (e.g., loop unrolling, cache blocking, the use of alternative data struc-
tures), run-time data (e.g., problem size), and kernel-specific transformations
and algorithmic variants. Second, the systems tune for a particular platform
by searching, i.e., varying the generators’ parameters, benchmarking the result-
ing routines, and finally selecting the fastest implementation. In many cases
it is possible to perform the potentially lengthy search process only once per
platform. However, even the cost of more frequent compile-time, run-time, or
hybrid compile-time/run-time searches can often be amortized over many uses
of the kernel.

In this paper, we focus on the search task itself and argue that searching is an
important and interesting area for research. We begin by showing empirically
the difficulty of identifying the best implementation, even within a space of
reasonable implementations (Section 2). This motivates searching and suggests
the necessity of exhaustive search to guarantee the best possible implementation.
Our argument also leads us to two search-related problems, both of which we
treat in this paper using statistical modeling ideas. We refer to these problems

1By platform we mean a particular machine architecture and compiler.
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as the early stopping problem and the problem of run-time selection.
The early stopping problem arises when it is not possible to perform an

exhaustive search (Section 3). We ask whether we can perform a partial search
and still provide some guarantees on the performance of the best implementation
found. We answer the question by developing an informative, probabilistic
stopping criteria that exploits performance data as it is collected during a search.

The run-time selection problem was first addressed by Brewer [5] (Section
4). Informally, suppose we are given a small number of implementations, each
of which is fastest on some class of inputs. We assume we do not know the
classes precisely ahead of time, but that we are allowed to collect a sample of
performance of the implementations on a subset of all possible inputs. We then
address the problem of automatically constructing a set of decision rules which
can be applied at run-time to select the best implementation on any given input.
We formulate the problem as a statistical classification task and illustrate the
variety of models and techniques that can be applied within our framework.

Throughout we demonstrate our techniques on actual data collected from
an existing tuning system: PHiPAC, the first system to propose the “generate
and search” methodology [2, 3]. The PHiPAC system generates highly-tuned,
BLAS compatible dense matrix multiply implementations, and a more detailed
overview of PHiPAC appears in Section 2. Our use of PHiPAC is primarily to
supply sample performance data on which we can demonstrate our methods.
The ideas apply more generally, and in Section 5 we offer a brief survey of
a number of other important automatic tuning systems and related compiler
work.

2 The Case for Searching

In this section, we motivate the need for search methods in automated tuning
systems, using PHiPAC as a case study. PHiPAC searches a combinatorially
large space defined by possible optimizations in building its implementation.
Among the most important optimizations are (1) register, L1, and L2 cache tile
sizes where non-square shapes are allowed, (2) loop unrolling, and (3) a choice
of six software pipelining strategies. To limit search time, machine parameters
(such as the number of registers available and cache sizes) are used to restrict
tile sizes. In spite of this and other pruning heuristics, searches can gener-
ally take hours to weeks depending on the user-selectable thoroughness of the
search. Nevertheless, Figure 1 shows two examples in which the performance of
PHiPAC-generated routines compares well with (a) hand-tuned vendor libraries
and (b) “naive” C code (3-nested loops) compiled with full optimizations.

To see the necessity of search, consider the following experiment in which we
fixed a particular software pipelining strategy and explored the space of possible
register tile sizes on six different platforms. This space is three-dimensional and
we index it by integer triplets (m0, k0, n0).2 Using heuristics, this space was

2The specifics of why the space is three dimensional are, for the moment, unimportant.

3



0 100 200 300 400 500 600 700 800
0

50

100

150

200

250

300

Sun Perf. Lib 1.2

PHiPAC

Naive C (Sun cc, full opt.)

N

P
er

fo
rm

an
ce

 (
M

flo
p/

s)

N × N Matrix Multiply [Ultra−1/170]

0 100 200 300 400 500 600 700 800
0

50

100

150

200

250

PHiPAC

Intel Math Kernel Library 2.1

Naive C (gcc)

N

P
er

fo
rm

an
ce

 (
M

flo
p/

s)

N × N Matrix Multiply [Pentium−II 300 MHz]

Figure 1: Performance (Mflop/s) on a square matrix multiply benchmark for
the Sun Ultra 1/170 workstation (left) and a 300 MHz Pentium-II platform
(right). The theoretical peaks are 333 Mflop/s and 300 Mflop/s, respectively.

pruned to contain between 500 and 2500 reasonable implementations per plat-
form. Figure 2 (top) shows what fraction of implementations (y-axis) achieved
what fraction of machine peak (x-axis). On the IBM RS/6000, a machine with
generous memory bandwidth, 5% of the implementations achieved at least 90%
of the machine peak. By contrast, only 1.7% on a uniprocessor Cray T3E node,
4% on a Pentium-II, and fewer than 4% on a Sun Ultra 10/333 achieved more
than 70% of machine peak. And on a majority of the platforms, fewer than
1% of implemenations were within 5% of the best; 80% on the Cray T3E ran
at less than 15% of machine peak. Two important ideas emerge: (1) different
machines can display widely different characteristics, making generalization of
search properties across them difficult, and (2) finding the very best implemen-
tations is akin to finding a “needle in a haystack.”

The latter difficulty is illustrated more clearly in Figure 2 (bottom), which
shows a 2-D slice (k0 = 1) of the 3-D tile space on the Ultra 10. The plot
is color coded from black=50 Mflop/s to white=620 Mflop/s. The lone white
square at (m0 = 2, n0 = 3) was the fastest. The black region to the upper-right
was pruned (i.e., not searched) based on the number of registers. We see that
performance is not a smooth function of algorithmic details, making accurate
sampling, interpolation, or other modeling of the space difficult. Like Figure 2
(top), this motivates an exhaustive search.

3 An Early Stopping Criterion

While an exhaustive search can guarantee finding the best implementation,3

such searches can be demanding, requiring dedicated machine time for long pe-
riods. If we assume that search will be performed only once per platform, then an

3By “guarantee” we mean within the space of implementations considered.

4



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

fraction of peak machine speed

fr
ac

tio
n 

of
 im

pl
em

en
ta

tio
ns

The Variations in Performance across Platforms

Sun Ultra−IIi/333
Pentium II−300   
PowerPC 604e     
IBM RS/6000−590  
MIPS R10k/175    
Cray T3E Node    

100

150

200

250

300

350

400

450

500

550

600

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

m
0

n 0

Performance of Register Tile Implementations

Figure 2: (Top) The fraction of implementations (y-axis) attaining at least a
given level of peak machine speed (x-axis) on six platforms. (Bottom) A 2-D
slice of the 3-D register tile space on the Sun Ultra 10/333 platform. Each
square represents a particular implementation (m0×1×n0 register tile), and is
color-coded by performance (scale values are Mflop/s). The best implementation
(m0 = 2, n0 = 3) achieved 620 Mflop/s out of a 667 Mflop/s peak performance.
Note that the dark region in the upper-right corner of this plot has been pruned
from the search space.

5



exhaustive search is justified. However, users today are more frequently running
tuning systems themselves, or may wish to build kernels that are customized for
their particular application or non-standard hardware configuration. Further-
more, we could imagine limited forms of search being employed at run-time, for
instance, in the context of dynamic compilation systems.

Thus far, tuning systems have sought to prune the search spaces using heuris-
tics and performance models specific to their code generators. Here, we consider
a complementary method for stopping a search early based only on performance
data gathered during the search. In particular, Figure 2 (top), described in the
previous section, suggests that even when we cannot otherwise model the space,
we can have access to some information as characterized by the statistical dis-
tribution of performance. Estimation of this distribution is the key idea behind
our early stopping criterion.

3.1 A formal model

The following is a formal model of the search. Suppose there are N possible
implementations. When we generate implementation i, we measure its per-
formance xi. Assume that each xi is normalized to lie between 0 (slowest)
and 1 (fastest). Define the space of implementations as S = {x1, . . . , xN}.
Let X be a random variable corresponding to the value of an element drawn
uniformly at random from S, and let n(x) be the number of elements of S
less than or equal to x. Then X has a cumulative distribution function (cdf)
F (x) = Pr[X ≤ x] = n(x)/N . At time t, where t is between 1 and N inclusive,
suppose we generate an implementation at random without replacement. Let
Xt be a random variable corresponding to the observed performance. Letting
Mt = max1≤i≤tXi be the maximum observed performance at t, we can ask
about the chance that Mt is less than some threshold:

Pr[Mt ≤ 1− ε] < α, (1)

where ε is the proximity to the best performance, and α is an upper-bound on
the probability that the observed maximum at time t is below 1− ε. Note that

Pr[Mt ≤ x] = Pr[X1 ≤ x,X2 ≤ x, . . . ,Xt ≤ x] = p1(x)p2(x) · · · pt(x) (2)

where, assuming no replacement,

pr(x) = Pr[Xr ≤ x|X1 ≤ x, . . . ,Xr−1 ≤ x]

=
{

0 n(x) < r
n(x)−r+1
N−r+1 n(x) ≥ r (3)

Since n(x) = N · F (x), we cannot know its true value since we do not know
the true distribution F (x). However we can use the t observed samples to
approximate F (x) using, say, the empirical cdf (ecdf) F̂t(x) based on the t
samples:

F̂t(x) = n̂t(x)/t (4)
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where n̂t(x) is the number of observed samples less than or equal to x. We
rescale the samples so that the maximum is one, since we do not know the true
maximum.4 Other forms for equation (4) are opportunities for experimentation.

In summary, a user or library designer specifies the search tolerance param-
eters ε and α. Then at each time t, the automated search system builds the ecdf
in equation (4) to estimate (2). The search ends when equation (1) is satisfied.

3.2 Results with PHiPAC data

We apply the above model to the register tile space data for the platforms shown
in Figure 2 (top). Specifically, we performed several hundred searches, measur-
ing (1) the average stopping time, and (2) the average proximity in performance
of the implementation found to the best found in an exhaustive search.

The results appear in Figures 3 and 4 for the Pentium and Cray T3E plat-
forms, respectively. The top plots show the stopping time, and the bottom
plots show the average proximity to the best. On the Pentium (Figure 3), set-
ting ε = .05 and α = .1 (i.e., “find an implementation within 5% of the best with
10% uncertainty”), we see that, on average, the search ends after sampling 27%
of the full space (top plot), having found an implementation within about 3.5%
of the best (bottom plot).5 By contrast, on the Cray T3E (Figure 4) where the
best is difficult to find, the same tolerance values produce an implementation
within about 4% of the best while still requiring exploration of 70% of the search
space.6 Thus, the model adapts to the characteristics of the implementations
and the underlying machine.

There are many other possible combinatorial search algorithms. In prior
work [2], we experimented with search methods including random, ordered,
best-first, simulated annealing. The OCEANS project [16] has also reported on
a quantitative comparison of these methods and others. In both, random search
was comparable to and easier to implement than the others. Our technique adds
user-interpretable bounds to the random method while preserving the simplicity
of its implementation. Furthermore, note that if the user wishes to specify a
maximum search time (e.g., “stop searching after 3 hours”), the bounds could
be computed and reported to the user.

4 Run-time Selection Rules

The previous sections assume that a single optimal implementation exists. For
some applications, however, several implementations may be “optimal” depend-
ing on the run-time inputs. In this section, we consider the run-time selection

4This was a reasonable approximation on actual data. We are developing theoretical
bounds on the quality of this approximation, which we expect will be close to the known
bounds on ecdf approximation due to Kolmogorov and Smirnov [4].

5The standard deviation on the stopping time at ε = .05 and α = .1 is 3.5%, and 3% for
the proximity.

6The standard deviation of the stopping time is 10%, and 4% for the proximity.
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problem: how can we automatically build decision rules to select the best im-
plementation for a given input? Below, we formalize the problem and present
three techniques to illustrate the variety of solutions possible.

4.1 A formal framework

We can pose the run-time selection problem as the following classification task.
Suppose we are given (1) a set of m “good” implementations of an algorithm,
A = {a1, . . . , am} which all give the same output when presented with the
same input; (2) a set of samples S0 = {s1, s2, . . . , sn} from the space S of all
possible inputs (i.e., S0 ⊆ S), where each si is a d-dimensional real vector; (3)
the execution time T (a, s) of algorithm a on input s, where a ∈ A and s ∈ S.
Our goal is to find a decision function f(s) that maps an input s to the best
implementation in A, i.e., f : S → A. The idea is to construct f(s) using the
performance of the good implementations on a sample of the inputs S0. We will
refer to S0 as the training set. In geometric terms, we would like to partition the
input space by implementation, as shown in Figure 5 (left). This would occur
at compile (or “build”) time. At run-time, the user calls a single routine which,
when given an input s, evaluates f(s) to select and execute an implementation.

There are a number of important issues to consider. Among them is the cost
and complexity of building the predictor f . Another is the cost of evaluating
f(s)—this cost should be a fraction of the cost of executing the best imple-
mentation. A third issue is how to compare the prediction accuracy of different
decision functions. One possible metric is the average misclassification rate, i.e.,
the fraction of test samples mispredicted. We always choose the test set S′ to
exclude the training data S0, that is, S′ ⊆ (S−S0). However, if the performance
difference between two implementations is small, a misprediction may still be
acceptable. Thus, we will also consider the slow-down of the selected variant
relative to the best, tselected

tbest
− 1, where tselected and tbest are the execution times

of the selected and best algorithms for a given input, respectively.
To illustrate the framework, we will refer to the following example in the

remainder of this section. Consider the matrix multiply operation C = C+AB,
where A, B, and C are dense matrices of size M×K, K×N , and M×N , respec-
tively. In PHiPAC, it is possible to generate different implementations tuned on
different matrix workloads. For instance, we could have three implementations,
tuned for matrix sizes that fit approximately within L1 cache, those that fit
within L2, and all larger sizes.7 The inputs to each are M , K, and N , making
the input space S three-dimensional. This is illustrated in Figure 5 (right).

4.2 A cost minimization method

One geometric approach is to first assume that there are boundaries, described
parametrically, that divide the implementations, and then optimize the param-

7Recent work by Gunnels, et al., considers more sophisticated examples of deriving algo-
rithmic variants for matrix multiply based on matrix shapes [12]. These variants would be
suitable implementations A in our formal model.
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eters with respect to an appropriate cost. Formally, associate with each im-
plementation a a weight function wθa(s), parameterized by θa, which returns a
value between 0 and 1 for some input value s. Our decision function selects the
algorithm with the highest weight on input s, f(s) = argmaxa∈A {wθa(s)}. We
can compute the weights so as to minimize the average execution time over the
training set, i.e., find θa1 , . . . , θam that minimize

C(θa1 , . . . , θam) =
∑
a∈A

∑
s∈S0

wθa(s) · T (a, s). (5)

Of the many possible choices for wθa , we choose the softmax function [15],
wθa(s) = exp

(
θTa s+ θa,0

)
/Z where θa has the same dimensions as s, θa,0 is

an additional parameter to estimate, and Z is a normalizing constant. The
derivatives of the weights are easy to compute, so we can estimate θa and θa,0
by minimizing equation (5) numerically using Newton’s method.

A nice property of the weight function is that f is cheap to evaluate at run-
time: the linear form θTa s+θa,0 costs O(d) operations to evaluate, where d is the
dimension of the space. However, the primary disadvantage of this approach
is that the same linear form makes this formulation equivalent to asking for
hyperplane boundaries to partition the space. Hyperplanes may not be a good
way to separate the input space as we shall see below. Of course, other forms are
certainly possible, but positing their precise form a priori might not be obvious,
and more complicated forms could also complicate the numerical optimization.

4.3 Regression models

Another natural idea is to postulate a parametric model for the running time
of each implementation. Then at run-time, we can choose the fastest imple-
mentation based on the execution time predicted by the models. This approach
was originally proposed by Brewer [5]. For matrix multiply on matrices of size
N ×N , we might guess that the running time of implementation a will have the
form

Ta(N) = β3N
3 + β2N

2 + β1N + β0. (6)

where we can use standard regression techniques to determine the coefficients
βk, given the running times on some sample inputs S0. The decision function
is just f(s) = argmina∈ATa(s).

An advantage of this approach is that the models, and thus the accuracy of
prediction as well as the cost of making a prediction, can be as simple or as com-
plicated as desired. For example, for matrices of more general sizes, (M,K,N),
we might hypothesize a model Ta(M,K,N) with linear coefficients and the
terms MKN , MK, KN , MN , M , K, N , and 1. We can even eliminate terms
whose coefficients are “small” to reduce the run-time prediction costs. Also, no
explicit assumptions are being made about the geometry of the input space, as
with our cost-minimization technique. However, a difficult disadvantage is that
it may not be easy to postulate an accurate run-time model.
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4.4 The support vector method

Another approach is to view the problem as a statistical classification task. One
sophisticated and successful classification algorithm is known as the support
vector (SV) method [24]. In this method, each sample si ∈ S0 is given a label
li ∈ A to indicate which implementation was fastest for that input. The SV
method then computes a partitioning that attempts to maximize the minimum
distance between classes.8 The result is a decision function f(s).

The SV method is well-grounded theoretically and potentially much more
accurate than the previous two methods, and we include it in our discussion as
a kind of practical upper-bound on prediction accuracy. However, the time to
compute f(s) is a factor of |S0| greater than that of the other methods. This
extra factor exists because some fraction of the training set must be retained to
compute the decision function. Thus, evaluation of f(s) is possibly much more
expensive to calculate at run-time than either of the other two methods.

4.5 Results with PHiPAC data

We offer a brief comparison of the three methods on the matrix multiply example
described in Section 4.1, using PHiPAC to generate the implementations on a
Sun Ultra 1/170 workstation.

To evaluate the prediction accuracy of the three run-time selection algo-
rithms, we conducted the following experiment.9 First, we considered a 2-D
cross-section of the full 3-D input space in which M = N and 1 ≤ M,K,N ≤
800. We selected 10 disjoint subsets of points in this space, where each subset
contained 1500 points chosen at random.10 Then we further divided each subset
into 1000 training points and 500 testing points. We then trained and tested all
three run-time selection algorithms, measuring the prediction accuracy on each
subset. We report the overall misclassification rate for each selection algorithm
as the average over all of the subsets.

In Figure 6, we show an example of a 500-point testing set where each
point is color-coded by the implementation which ran fastest. We note that
the implementation which was fastest on the majority of inputs is the default
implementation generated by PHiPAC, and contains full tiling optimizations.
Thus, a useful reference is a baseline predictor which always chooses this imple-
mentation. The misclassification rate of this predictor was 24%.

The predictions of the three methods on a sample test set are shown in
Figures 7–9. We see qualitatively that the boundaries of the cost-based method
are a poor fit to the data. The regression method captures the boundaries
roughly but does not correctly model one of the implementations (upper-left of
figure). The SV method appears to produce the best predictions. Quantatively,

8Formally, this is the optimal margin criterion [24].
9The cost-minimization and regression models were implemented as described. For the

support vector method, we used Platt’s sequential minimal optimization algorithm with a
Gaussian kernel [20]. We built multiclass classifiers from ensembles of binary classifiers, as
described by [24].

10The points were chosen from a distribution with a bias toward small sizes.
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the misclassification rates are 31% for the cost-based predictor, 34% for the
regression predictor, and 12% for the support vector predictor. Only the support
vector predictor outperformed the baseline predictor.

However, misclassification rates may seem to be too strict a measure of
prediction performance, since we may be willing to tolerate some penalties to
obtain a fast prediction. Figure 10 shows the distribution of slow-downs due
to mispredictions. Observe that the baseline predictor performs fairly well in
the sense that fewer than 1% of its mispredictions resulted in more than a 7%
slow-down in execution time. The distribution of slow-downs for the baseline
predictor indicates that the performance of the three tuned implementations is
fairly similar. Thus, we do not expect to improve upon the baseline predic-
tor much, and this is borne out by observing the slow-down distributions of
the cost-minimization and regression predictors. Nevertheless, we also see that
for slow-downs of up to 10%, the support vector predictor shows a significant
improvement over the baseline predictor. Depending upon an application’s per-
formance requirements, this may justify the use of the more complex statistical
model.

Although the baseline predictor is, on average, likely to be sufficient for this
particular example, the distribution of slow-downs nevertheless show a number
of interesting features. If we compare the regression and cost-minimization
methods, we see a cross-over point: even though the overall misclassification
rate for the cost-minimization predictor is lower than the regression predictor,
the tail of the distribution for the regression predictor becomes much smaller.
A similar cross-over exists between the baseline and support vector predictors.

In terms of prediction times (i.e., the time to evaluate f(s)), both the re-
gression and cost-minimization methods lead to reasonably fast predictors. Pre-
diction times were roughly equivalent to the execution time of a 3×3 matrix
multiply. By contrast, the prediction cost of the SVM is about a 64×64 matrix
multiply, which would prohibit its use when small sizes occur often.

However, this analysis is not intended to be definitive. For instance, we can-
not fairly report on specific training costs due to differences in the implemen-
tations in our experimental setting. Also, matrix multiply is only one possible
application, and we see that it does not stress all of the strengths and weaknesses
of the three methods. Furthermore, a user or application might care about a
region of the full input-space which is different from the one used in our exam-
ple. Instead, our primary aim is simply to present the general framework and
illustrate the issues on actual data. Moreover, there are many possible models;
our examples offer a flavor of the role that statistical modeling of performance
data can play.
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5 Related Work: A Short Survey of Tuning Sys-
tems

To give a sense of the recent interest in automatic tuning systems, we men-
tion briefly a number of important tuning systems in addition to PHiPAC. In
signal processing, FFTW was the first tuning system for various flavors of the
discrete Fourier transform [11]. FFTW is notable for its use of a high-level,
symbolic representation of the FFT algorithm, as well as its run-time search
which saves and uses performance history information. In dense linear alge-
bra, ATLAS extends PHiPAC ideas and applicability to all of the BLAS [26].11

The Sparsity system targets sparse linear algebra, and in particular produces
tuned sparse matrix-vector multiply implementations specific not only to the
machine architecture but also to a given sparse matrix [14]. There have also
been additional efforts in signal processing which build on the FFTW ideas. The
SPIRAL system is built on top of a symbolic algebra system, and uses a novel
search method based on genetic algorithms [13, 22]. The UHFFT system is an
alternative implementation of FFTW which includes a different implementation
of the code generator which contains additional discrete Fourier transform vari-
ants [18]. The Pan system uses an FFTW-like specialized compiler to generate
optimized implementations of kernels for image synthesis and manipulation [9].
In the area of parallel communications, Vadhiyar, et al., explore automatically
tuning MPI collective operations [23].

All of these systems employ sophisticated code generators which use both the
mathematical structure of the problems they solve and the characteristics of the
underlying machine to generate high performance code. All match hand-tuned
vendor libraries, when available, on a wide variety of platforms. Nevertheless,
these systems also face the common problem of how to reduce the lengthy search
process. Thus, each uses heuristics, properties, and performance models specific
to its code generator to prune the search spaces. This will always be a necessary
and effective approach in practice, and we view our techniques as complementary
methods for pruning the search spaces independently of the code generator.

The search task deserves attention not only because of its central role in
specialized tuning systems, but also because of its potential utility in compil-
ers. Researchers in the OCEANS project [16] are integrating an empirical search
procedure into a compiler for embedded systems. They consider the use of mod-
els that predict implementation performance to identify which implementations
to benchmark. For the run-time selection problem, a prototype compiler that
performs run-time profiling and selection from among multiple implementations
exists as part of the ADAPT project [25]. Mitchell considers static compile-time
modeling methods for comparing and selecting from among various loop trans-
formations [19]. Those models use empirical search data collected in a one-time
profiling of the machine.

11It is worth noting that both FFTW and ATLAS are now included with Matlab.
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6 Conclusions and Directions

While all of the existing automatic tuning systems implicitly follow the two-step
“generate-and-search” methodology, one aim of this study is to draw attention
to the process of searching itself as an interesting and challenging problem. This
article uses statistical methods to address some of the challenges which arise.

One challenge is pruning the enormous implementation spaces. Existing tun-
ing systems have shown the effectiveness of pruning these spaces using problem-
specific heuristics and performance models; our statistical model for stopping
a search early is a complementary technique. It has the nice properties of (1)
making very few assumptions about the performance of the implementations, (2)
incorporating performance feedback data, and (3) providing users with a mean-
ingful way to control the search procedure (namely, via probabilistic thresholds).

The other challenge is to find efficient ways to select implementations at
run-time when several known implementations are available. Our aim has been
to discuss a possible framework, using sampling and statistical classification, for
attacking this problem in the context of automatic tuning systems.

However, many other modeling techniques remain to be explored. For in-
stance, the early stopping problem can be posed as a similar problem which has
been treated extensively in the statistical literature under the theory of optimal
stopping [6]. Problems treated in that theory can incorporate the cost of the
search itself, which would be especially useful if we wished to perform searches
not just at build-time, as we consider here, but at run-time—for instance, in
the case of a just-in-time or other dynamic compilation system.

In the case of run-time selection, we make implicit geometric assumptions
about inputs to the kernels being points in some continuous space. However,
inputs could also be binary flags or other arbitrary discrete labels. This can
be handled in the same way as in the traditional classification settings, namely,
either by finding mappings from the discrete spaces into continuous (feature)
spaces, or by using statistical models with discrete probability distributions
(e.g., using graphical models [10]).

In short, this work connects high performance software engineering with
statistical modeling ideas. Furthermore, as mentioned in Section 5, the idea of
searching is being incorporated into more general purpose compilation systems.
This indicates another future direction for the search process, and emphasizes
the relevance of search beyond specialized tuning systems.
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Figure 3: Average stopping time (top), as a fraction of the total search space,
and proximity to the best performance (bottom), as the difference between nor-
malized performance scores, on the 300 MHz Pentium-II class workstation as
functions of the tolerance parameters ε (x-axis) and α (y-axis).
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rithm. (Right) The matrix multiply operation C = C+AB is specified by three
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Figure 6: A “truth map” showing the regions in which particular implementa-
tions are fastest. The points shown represent a 500-point sample of a 2-D slice
(specifically, M = N) of the input space. An implementation with only register
tiling is shown with a red O; one with L1 and register tiling is shown with a
green *; one with register, L1, and L2 tiling is shown with a blue X. The base-
line predictor always chooses the blue algorithm. The average misclassification
rate for this baseline predictor is 24.5%.
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Figure 7: Example of the prediction results for the cost-based method on the
same 500 point sample shown in Figure 6. The average misclassification rate
for this predictor is 31.6%.
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Figure 8: Example of the prediction results for the regression predictor. The
average misclassification rate for this predictor was 34.5%.

19



0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

800

matrix dimensions M,N (equal)

m
at

rix
 d

im
en

si
on

 K

Support−Vector Predictor

Figure 9: Prediction results support-vector predictor. The average misclassifi-
cation rate for this predictor was 12%.
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