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Applications ...

 Scientific simulation and modeling
* Weather and earthquakes
» Cars and buildings
* The universe

 Signal processing
« Audio and image compression
« Machine vision
» Speech recognition

e Information retrieval
* Web searching
e Human genome

o Computer graphics and computational geometry
 Structural models
» Films: Final Fantasy, Shrek
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... and their Building Blocks (Kernels)

 Scientific simulation and modeling
« Matrix-vector/matrix-matrix multiply
» Solving linear systems

 Signal processing
» Performing fast transforms: Fourier, trigonometric, wavelet
 Filtering
 Linear algebra on structured matrices

 Information retrieval
« Sorting
« Finding eigenvalues and eigenvectors

o Computer graphics and computational geometry
o Matrix multiply
o Computing matrix determinants
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QOutline
e Parallelism in Modern Processors

 Memory Hierarchies
« Matrix Multiply Cache Optimizations
e Bag of Tricks
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Modern Processors: Theory & Practice

o |dealized Uniprocessor Model
» Execution order specified by program
» Operations (load/store, +/*, branch) have roughly the same cost

e Processors in the Real World

» Registers and caches
« Small amounts of fast memory
« Memory ops have widely varying costs

« Exploit Instruction-Level Parallelism (ILP)
o Superscalar — multiple functional units
* Pipelined — decompose units of execution into parallel stages
« Different instruction mixes/orders have different costs

 Why Is this your problem?

* In theory, compilers understand all this mumbo-jumbo and optimize
your programs; in practice, they don't.
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What is Pipelining?
Dave Patterson’s Laundry example: 4 people doing laundry

wash (30 min) + dry (40 min) + fold (20 min)
6 PM 7 8 9 |
| . * Inthis example:

| Time » Sequential execution takes
|— |— |_ |_| 4 * 90min = 6 hours

30 40 40 40 40 20 - Pipelined execution takes

30+4*40+20 = 3.3 hours

‘ ‘C) * Pipelining helps
. j throughput, but not latency

y —

slowest pipeline stage

@
=l * Pipeline rate limited by

y—d ®

« Potential speedup =
- ;[ Number pipe stages

— A2 « Time to “fill” pipeline and
‘- ;[ time to “drain” it reduces
speedup
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Limits of ILP

Hazards prevent next instruction from executing in its
designated clock cycle

7/10/2003
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Structural: single person to
fold and put clothes away

Data: missing socks

Control: dyed clothes need
to be rewashed

Compiler will try to reduce
these, but careful coding
helps!
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Memory Hierarchy

* Most programs have a high degree of locality in their accesses
» spatial locality: accessing things nearby previous accesses
» temporal locality: reusing an item that was previously accessed

 Memory hierarchy tries to exploit locality

processor
control
Second Main Secondary Tertiary
level memory storage storage
d h cache (Disk)
atapat . (SRAM) (DRAM) (Disk/Tape/
registers on-chip WWW)
cache
Speed (ns): 1 10 100 10 ms 10 sec
Size (bytes): 100,1Ks  Ms Gs Ts Ps
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Processor-DRAM Gap (latency)

 Memory hierarchies are getting deeper
* Processors get faster more quickly than memory
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Cache Basics
e Cache hit: in-cache memory access—cheap
e Cache miss: non-cached memory access—expensive

» Consider a tiny cache (for illustration only)

X000 X001
X010 X011
X100 X101
X110 X111

e Cache line length: # of bytes loaded together in one entry

o Associativity
» direct-mapped: only one address (line) in a given range in cache
* n-way: 2 or more lines with different addresses exist
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Experimental Study of Memory

* Microbenchmark for memory system performance
(Saavedra '92)

xS «IF I <«

* time the following program for each size(A) and stride s
(repeat to obtain confidence and mitigate timer resolution)
for array A of size from 4KB to 8MB by 2x
for stride s from 8 Bytes (1 word) to size(A)/2 by 2x
for i from O to size by s

load A[i] from memory (8 Bytes)
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Memory Hierarchy on a Sun Ultra-I|li
Sun Ultra-11i

. 333 MHz
A
Array size
450 | | T T T T T T T T T T
AKB ——
8KB ——-x-—-
: : 16KB ---%---
400 | : & —
e N e SN S . s g Byvrserasgloreseereossarsarsorssnesanernen BB e
¢ PR > Mem: 396 ns
350 | ’ IR D56KB -4~ (132 cycles)
] 512KB -
| 2
300 |- Lo 4MB ---v---
[ 8MB ---¢---
= AT 16MB e
S 250 v i
3]
£
£
£ 200 .
150 -
100 .
L2: 2 MB, 36 ns
50
. . » (12 cycles)
’0 . v oo | .............. ........... = ; >
4 16 64 256 1K 4K | 16K 64K 256K 1M 2M 4M sM 1emazm L1: 16K, 6ns
v v Stridze (bytes)
L1: 16 byte L2: 64 byte v
line line

8 K pages
7/10/2003

CS267 Lecure 2

(2 cycle)

See www.cs.berkeley.edu/~yelick/arvindk/t3d-isca95.ps for details
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Memory Hierarchy on a Pentium Il

600 | | I|<atmai processor on MiIIerlmium, 5£|30 MHz | | A”Iay S||Ze |
AKB —+—
5 16KB -
32KB -
500 |

400
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200

L2: 512 KB

100 60 ns

64K 256K 1M 2M 4M 8M 16M32M L1: 64K
5 ns, 4-way?

M
>
]
n
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—
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L1: 32 byte line ? Stride (bytes)
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Lessons

e True performance can be a complicated function of the

architecture

 Slight changes in architecture or program change performance
significantly

* To write fast programs, need to consider architecture

* We would like simple models to help us design efficient algorithms

e |s this possible?

* Next: Example of improving cache performance:
blocking or tiling

» |dea: decompose problem workload into cache-sized pieces
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QOutline
e Parallelism in Modern Processors

 Memory Hierarchies
» Matrix Multiply Cache Optimizations
e Bag of Tricks
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Note on Matrix Storage

A matrix is a 2-D array of elements, but memory
addresses are “1-D”

e Conventions for matrix layout
e by column, or “column major” (Fortran default)
* by row, or “row major” (C default)

Column major Row major>

0|5 |10]15 P I
J 1|6 |11]16

2| 7 12|17 s o 10111

S |8|13)18 1213|1415

419]14]19 16 |17 | 18| 19
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Note on “Performance”

 For linear algebra, measure performance as rate of
execution:

» Millions of floating point operations per second (Mflop/s)
» Higher is better

« Comparing Mflop/s is not the same as comparing time unless flops are
constant!

» Speedup taken wrt time
» Speedup of A over B = (Running time of B) / (Running time of A)
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Using a Simple Model of Memory to Optimize

e Assume just 2 levels in the hierarchy, fast and slow

 All data initially in slow memory

 m = number of memory elements (words) moved between fast and
slow memory

e t_=time per slow memory operation Key to

o f = number of arithmetic operations alg_o_rlthm
_ _ _ _ efficiency

e t. = time per arithmetic operation <<t /

* g =f/ m |average number of flops per slow element access

e Minimum possible time = * t; when all data in fast
memory

. - t |11
Actual time fot,+m-t =f-t 1+

(PN
\ Key to
machine

 Larger g means time closer to minimum f * t

efficiency
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Warm up: Matrix-vector multiplication

{implements y =y + A*x}

fori=1:n
forj=1:n
y(1) = y() + AQ1,])*Xx0)

AG,)

y(i) y(0) x()
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Warm up: Matrix-vector multiplication

{read x(1:n) into fast memory}

{read y(1:n) into fast memory}
fori=1:n
{read row i of A into fast memory}
forj=1:n
y(1) = y() + A(L))*()
{write y(1:n) back to slow memory}

em = number of slow memory refs = 3n + n?

o f = number of arithmetic operations = 2n?

°( =f/m~=2

» Matrix-vector multiplication limited by slow memory speed
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“Naive” Matrix Multiply

{implements C = C + A*B}
fori=1ton
forj=1ton
fork=1ton
C(1,)) = C(i,)) + A(i.k) * B(k,))
C(i.) C(i) All)
] [ 1 B(:.))

[
+
*
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“Naive” Matrix Multiply
{implements C = C + A*B}
fori=1ton

{read row i of A into fast memory}

forj=1ton

{read C(i,)) into fast memory}
{read column j of B into fast memory}
fork=1ton
C(1,)) = C(1,)) + A(1,k) * B(k,))
{write C(i,]) back to slow memory}

C(i.) C(i.j) 2l

O O 1 B(:.))

[
+
*

7/10/2003 CS267 Lecure 2 23



“Naive” Matrix Multiply

Number of slow memory references on unblocked matrix multiply
m = n3 read each column of B n times
+ n? read each row of A once
+ 2n? read and write each element of C once
=nd + 3n?
Sog=f/m=2n3/(n®+ 3n?)

~= 2 for large n, no improvement over matrix-vector multiply

C(i.) C(i.j) Ali.))
B(.,)

[
+
*
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Blocked (Tiled) Matrix Multiply

Consider A,B,C to be N by N matrices of b by b subblocks where b=n/Nis
called the block size

fori=1toN
forj=1to N
{read block C(i,)) into fast memory}
fork=1to N
{read block A(i,k) into fast memory}
{read block B(k,j) into fast memory}
C(i,)) = C(,)) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

{write block C(i,j) back to slow memory}

iy C(i.j) A K)
y S R i— -

[
+
*

m Bk
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Blocked (Tiled) Matrix Multiply

Recall:
m : # of moves from slow to fast memory
Matrix is n x n, and N x N blocks each of size b x b
f = 2n3 for this problem
q = f/ m is algorithmic memory efficiency

So:
m = N*n?2 read each block of B N2 times (N3 * n/N * n/N)
+ N*n?2 read A
+ 2n?2 read and write each block of C once
= (2N + 2) * n?

Soq=f/m=2n/((2N + 2) * n?)
~=n/N=0Db forlargen

So we can improve performance by increasing the block size b
Can be much faster than matrix-vector multiply (q=2)
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Limits to Optimizing Matrix Multiply

Blocked algorithm has ratiog~=Db
e Larger block size => faster implementation

« Limit: All three blocks from A,B,C must fit in fast
memory (cache):

3b? <=M
So: q~=b <=sqrt(M/3)

Lower bound:

Theorem (Hong & Kung, 1981): Any reorganization of
this algorithm (using only algebraic associativity) is
limited to: g = O(sqrt(M))
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Basic Linear Algebra Subroutines

 Industry standard interface (evolving)
« Hardware vendors, others supply optimized implementations

* History

 BLAS1 (1970s):
e vector operations: dot product, saxpy (y=a*x+y), etc
e m=2*n,f=2*n, q~1 orless

 BLAS2 (mid 1980s)
e matrix-vector operations: matrix vector multiply, etc
e  m=n"2, f=2*n"2, q~2, less overhead
 somewhat faster than BLAS1

 BLASS3 (late 1980s)
e matrix-matrix operations: matrix matrix multiply, etc
« m>=4n"2, f=0(n"3), so g can possibly be as large as n, so BLAS3 is

potentially much faster than BLAS2

» Good algorithms used BLAS3 when possible (LAPACK)
« See ww.netlib.org/blas, www.netlib.org/lapack
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BLAS speeds on an IBM RS6000/590

Peak speed = 266 Mflops

Rs2: Level1, 2 and 3 ELAS

300
----------------------------------------------- Peak
260} {BLAS 3
EEDD
%155
100 | BLAS 2
BLAS 1
50 —/
uﬂ 1Ll!ﬂ Ef:lﬂ .‘E'-Lliﬂ 4L:!ﬂ 56::- 600

arder of vectarsmatrices

BLAS 3 (n-by-n matrix matrix multiply) vs
BLAS 2 (n-by-n matrix vector multiply) vs
BLAS 1 (saxpy of n vectors)
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Locality in Other Algorithms

* The performance of any algorithm is limited by g

* In matrix multiply, we increase g by changing
computation order

 increased temporal locality

 For other algorithms and data structures, even hand-
transformations are still an open problem

» sparse matrices (reordering, blocking)
* trees (B-Trees are for the disk level of the hierarchy)
* linked lists (some work done here)
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QOutline
e Parallelism in Modern Processors

 Memory Hierarchies
« Matrix Multiply Cache Optimizations
e Bag of Tricks
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Tiling Alone Might Not Be Enough

 Naive and a “naively tiled” code

Square (NxN) Matrix Multiply with Block Size B [333 MHz Ultra-1li]
160 ! ! | | :

—— B

140

120

—
e ]
o

o
o

Performance (Mflop/s)
oo
e ]

40

20

i I i I i
0 200 400 600 800 1000 1200
Matrix Size (N)
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Optimizing in Practice

e Tiling for registers
 loop unrolling, use of named “register” variables

e Tiling for multiple levels of cache

« Exploiting fine-grained parallelism in processor
 superscalar; pipelining

o Complicated compiler interactions
» Hard to do by hand (but you'll try)

e Automatic optimization an active research area
e BeBOP: ww.cs.berkeley.edu/~richie/bebop
e PHIPAC: www. icsi .berkeley.edu/~bilmes/phipac
In particular tr-98-035.ps.gz
e ATLAS: ww.netlib.org/atlas
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PHIPAC: Portable High Performance ANSI C

N x N Matrix Multiply [Ultra-1/170]

300

Sun Perf, Lib 1.2

1503}: ................... .................... ................... ..................... ...................................... i

Performance (Mflop/s)

—
o
S
I
%
b
|

50

0 i | i 1 | i
0 100 200 300 400 500 600 700 800
N

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops
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MFLOPS

ATLAS (cEMM n = 500)

Source: Jack Dongarra

900.0

m Vendor BLAS
800.0 B ATLAS BLAS
mF77 BLAS

700.0

600.0

500.0

400.0

300.0

Q) Q) &
Architectures 9 9 (90

« ATLAS is faster than all other portable BLAS implementations and
itis g,omparable with machine-specific libraries provided by the
vendor.
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Removing False Dependencies

 Using local variables, reorder operations to remove false
dependencies

afi] = b[1] + c; false read-after-write hazard
a[i+1] = b[i+1] * d; between a[i] and b[i+1]
float 1 = b[i];

float 2 = b[i1+1];

afi] = f1 + c;
a[i1+1] = f2 * d;

« With some compilers, %ou can say explicitly (via flag
or pragma) that a and b are not aliased.
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Exploit Multiple Reqgisters

 Reduce demands on memory bandwidth by pre-loading
Into local variables

while(C .. ) {
*res++ = filter[0]*signal[O]
+ Filter[1]*signal[1]
+ Filter[2]*signal[2];
signal++;
"‘ |
float 10 filter[0];
float f1 i Iter[l]; also: register float O = . ;
float T2 filter[2];
while( .. {
*res++ = TO*signal[O]}
+ Fl*signal[1l]

+ F2*signal[2];
signal++;

N 0 I

}
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Minimize Pointer Updates

* Replace pointer updates for strided memory addressing
with constant array offsets

0
Tl
2

*r8; r8 += 4;
*r8; r8 += 4;
*r8; r8 += 4;

4—

O = r8[0];
fl = r8[4];
2 = r8[8];
r8 += 12;
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Loop Unrolling
* EXpose Instruction-level parallelism

float fO = filter[0], f1 = filter[1l], F2
float sO = signal[0], sl signal[1l], s2
*res++ = fO*sO0 + Fl*sl + F2*s2;
do {

signal += 3;

sO = signal[0];

res[O0] = fO*sl + f1*s2 + F2*s0;

filter[2];
signal[2];

sl = signal[1l];
res[l] = fO*s2 + F1*sO0 + f2*sl;

s2 = signal[2];
res[2] = fO*sO + fl*sl + F2*s2;

res += 3;

¥ while( .. );

7/10/2003 CS267 Lecure 2 39



Expose Independent Operations

e Hide instruction latency

» Use local variables to expose independent operations that can execute
in parallel or in a pipelined fashion

« Balance the instruction mix (what functional units are available?)

fl = 5 * 19;
2 = f6 + 110;
3 = f7 * f11;
f4 = f8 + T12;
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Copy optimization

* Copy input operands or blocks
* Reduce cache conflicts
» Constant array offsets for fixed size blocks
» Expose page-level locality

Original matrix Reorganized into
(numbers are addresses) 2x2 blocks

0| 4|8 (12 02| 8|10
115|913 1] 3 11
2| 6 |10|14 4 |1 6 (12|13
3|7 |11(15 S| 7 (1415
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summary

e Performance programming on uniprocessors requires
» understanding of fine-grained parallelism in processor
e produce good instruction mix
» understanding of memory system
* levels, costs, sizes
e improve locality

 Blocking (tiling) is a basic approach

» Techniques apply generally, but the details (e.g., block size) are
architecture dependent

e Similar techniques are possible on other data structures and
algorithms

* Now it’s your turn: Homework O (due 6/25/02)

* http://www.cs.berkeley.edu/~richie/bebop/notes/matmul2002
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F|gure 3.4, Page 134 , CA AQA 2e by Patterson and Hennessy

Instruction E : Instr. Decode Execute Memory Write
Fetch i Reg. Fetch : Addr. Calc i Access : Back
Next PC > S R .
Next SEQ PC

RS1

RS2

» Pipelining is also used within arithmetic units
- a fp multiply may have latency 10 cycles, but throughput of 1/cycle

WB Data



Dependences (Data Hazards) Limit Parallelism

« A dependence or data hazard is one of the following:
 true of flow dependence:
« a writes a location that b later reads
 (read-after write or RAW hazard)
e anti-dependence
« areads a location that b later writes
» (write-after-read or WAR hazard)
* output dependence
« a writes a location that b later writes
 (write-after-write or WAW hazard)

true anti output
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Observing a Memory Hierarchy

Dec Alpha, 21064, 150 MHz clock

A A
i DEC WorkstationiMemory Hierarchy

600 T T ; T T T T ; T T T T T
500
2 a0
&
o Mem: 300 ns (45
8 ¢ 300_ _Cycies). ............ >»
g
O
£ 200
|_
100 1L2:512K, 52 ns (8
‘0 cpdregene. S
1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M L1: 8K, 6.7 ns (1
. Stride! (bytes) cycle)
v é
32 byte cache 8 K pages

line
See www.cs.berkeley.edu/~yelick/arvindk/t3d-isca95.ps for details
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