Uniprocessor Optimizations and Matrix Multiplication

BeBOP Summer 2002

http://www.cs.berkeley.edu/~richie/bebop

Applications ...

- Scientific simulation and modeling
 - Weather and earthquakes
 - Cars and buildings
 - The universe
- Signal processing
 - Audio and image compression
 - Machine vision
 - Speech recognition
- Information retrieval
 - Web searching
 - Human genome
- Computer graphics and computational geometry
 - Structural models
 - Films: Final Fantasy, Shrek

... and their Building Blocks (Kernels)

- Scientific simulation and modeling
 - Matrix-vector/matrix-matrix multiply
 - Solving linear systems
- Signal processing
 - Performing fast transforms: Fourier, trigonometric, wavelet
 - Filtering
 - Linear algebra on structured matrices
- Information retrieval
 - Sorting
 - Finding eigenvalues and eigenvectors
- Computer graphics and computational geometry
 - Matrix multiply
 - Computing matrix determinants

Outline

- Parallelism in Modern Processors
- Memory Hierarchies
- Matrix Multiply Cache Optimizations
- Bag of Tricks

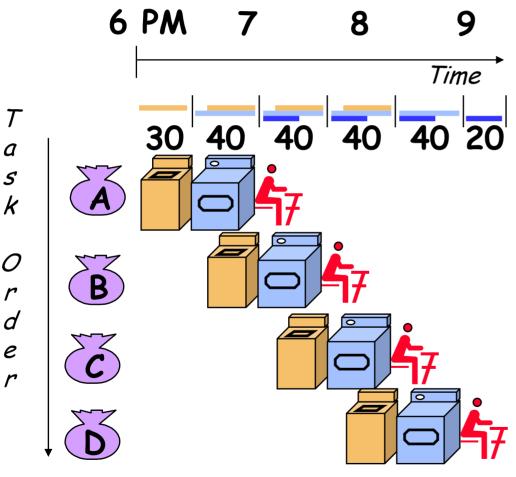
Modern Processors: Theory & Practice

- Idealized Uniprocessor Model
 - Execution order specified by program
 - Operations (load/store, +/*, branch) have roughly the same cost
- Processors in the Real World
 - Registers and caches
 - Small amounts of fast memory
 - Memory ops have widely varying costs
 - Exploit Instruction-Level Parallelism (ILP)
 - Superscalar multiple functional units
 - Pipelined decompose units of execution into parallel stages
 - Different instruction mixes/orders have different costs
- Why is this your problem?
 - In theory, compilers understand all this mumbo-jumbo and optimize your programs; in practice, they don't.

What is Pipelining?

Dave Patterson's Laundry example: 4 people doing laundry

wash (30 min) + dry (40 min) + fold (20 min)



- In this example:
 - Sequential execution takes 4 * 90 min = 6 hours
 - Pipelined execution takes 30+4*40+20 = 3.3 hours
- Pipelining helps throughput, but not latency
- Pipeline rate limited by slowest pipeline stage
- Potential speedup = Number pipe stages
- Time to "fill" pipeline and time to "drain" it reduces speedup

а

5 k

r

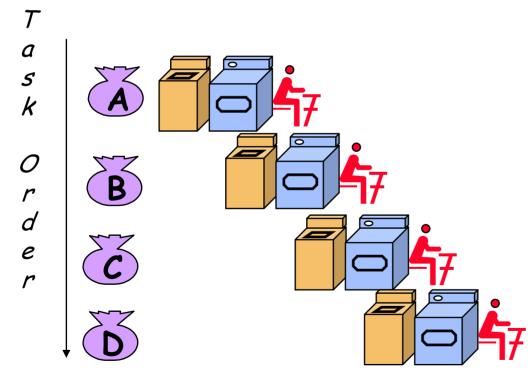
d

е

r

Limits of ILP

Hazards prevent next instruction from executing in its designated clock cycle



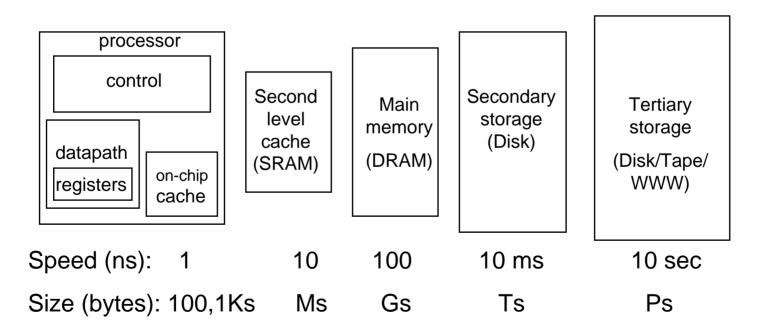
- Structural: single person to fold and put clothes away
- Data: missing socks
- Control: dyed clothes need to be rewashed
- Compiler will try to reduce these, but careful coding helps!

Outline

- Parallelism in Modern Processors
- Memory Hierarchies
- Matrix Multiply Cache Optimizations
- Bag of Tricks

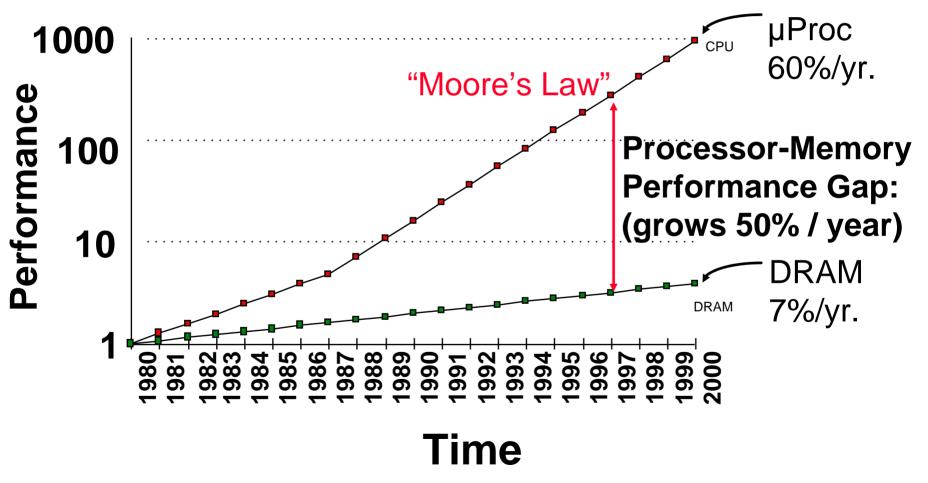
Memory Hierarchy

- Most programs have a high degree of locality in their accesses
 - spatial locality: accessing things nearby previous accesses
 - temporal locality: reusing an item that was previously accessed
- Memory hierarchy tries to exploit locality



Processor-DRAM Gap (latency)

- Memory hierarchies are getting deeper
 - Processors get faster more quickly than memory



CS267 Lecure 2

Cache Basics

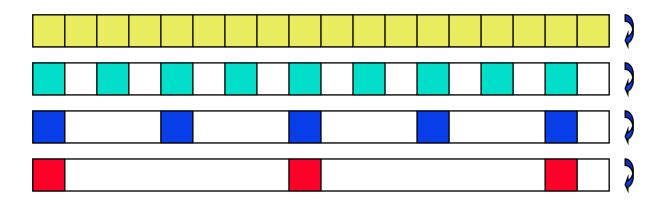
- Cache hit: in-cache memory access—cheap
- Cache miss: non-cached memory access—expensive
- Consider a tiny cache (for illustration only)

X000	X001
X010	X011
X100	X101
X110	X111

- Cache line length: # of bytes loaded together in one entry
- Associativity
 - direct-mapped: only one address (line) in a given range in cache
 - *n*-way: 2 or more lines with different addresses exist

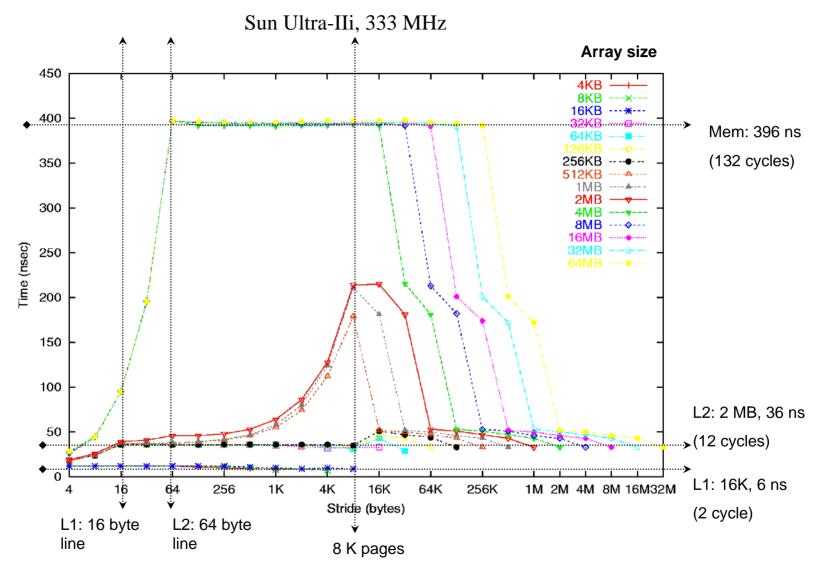
Experimental Study of Memory

• Microbenchmark for memory system performance (Saavedra '92)



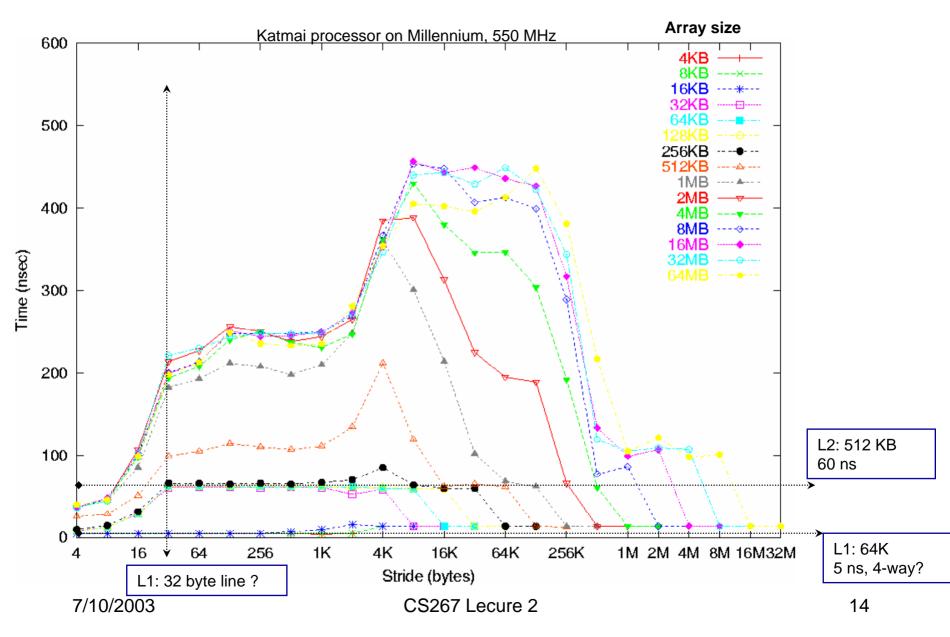
time the following program for each size(A) and stride s
 (repeat to obtain confidence and mitigate timer resolution)
 for array A of size from 4KB to 8MB by 2x
 for stride s from 8 Bytes (1 word) to size(A)/2 by 2x
 for i from 0 to size by s
 load A[i] from memory (8 Bytes)
 (S267 Lecure 2)

Memory Hierarchy on a Sun Ultra-Ili



See www.cs.berkeley.edu/~yelick/arvindk/t3d-isca95.ps for details 7/10/2003 CS267 Lecure 2 13

Memory Hierarchy on a Pentium III



<u>Lessons</u>

- True performance can be a complicated function of the architecture
 - Slight changes in architecture or program change performance significantly
 - To write fast programs, need to consider architecture
 - We would like simple models to help us design efficient algorithms
 - Is this possible?

- Next: Example of improving cache performance: blocking or tiling
 - Idea: decompose problem workload into cache-sized pieces

Outline

- Parallelism in Modern Processors
- Memory Hierarchies
- Matrix Multiply Cache Optimizations
- Bag of Tricks

Note on Matrix Storage

- A matrix is a 2-D array of elements, but memory addresses are "1-D"
- Conventions for matrix layout
 - by column, or "column major" (Fortran default)
 - by row, or "row major" (C default)

Co	lumn	ma	or

	0	5	10	15
	1	6	11	16
↓	2	7	12	17
	3	8	13	18
	4	9	14	19

Row major

0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15
16	17	18	19

Note on "Performance"

- For linear algebra, measure performance as rate of execution:
 - Millions of floating point operations per second (Mflop/s)
 - Higher is better
 - Comparing Mflop/s is not the same as comparing time unless flops are constant!

- Speedup taken wrt time
 - Speedup of A over B = (Running time of B) / (Running time of A)

Using a Simple Model of Memory to Optimize

- Assume just 2 levels in the hierarchy, fast and slow
- All data initially in slow memory
 - m = number of memory elements (words) moved between fast and slow memory
 - t_m = time per slow memory operation
 - f = number of arithmetic operations
 - $t_f = time per arithmetic operation << t_m$
 - q = f / m average number of flops per slow element access
- Minimum possible time = $f^* t_f$ when all data in fast memory $f \cdot t_f + m \cdot t_m = f \cdot t_f \cdot \left(1 + \frac{t_m}{t_f} \cdot \frac{1}{q}\right)$
- Actual time
- Larger q means time closer to minimum $f * t_f$

Key to

machine

efficiency

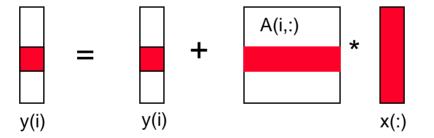
Key to

algorithm

efficiency

Warm up: Matrix-vector multiplication

```
{implements y = y + A^*x}
for i = 1:n
for j = 1:n
y(i) = y(i) + A(i,j)^*x(j)
```



Warm up: Matrix-vector multiplication

{read x(1:n) into fast memory}

```
{read y(1:n) into fast memory}
```

```
for i = 1:n
```

```
{read row i of A into fast memory}
```

```
for j = 1:n
```

 $y(i) = y(i) + A(i,j)^*x(j)$

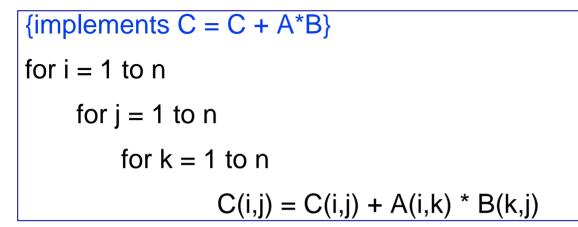
{write y(1:n) back to slow memory}

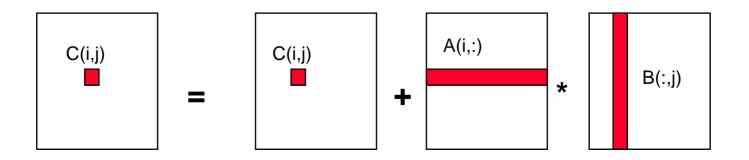
- m = number of slow memory refs = $3n + n^2$
- f = number of arithmetic operations = $2n^2$

•
$$q = f/m \sim = 2$$

• Matrix-vector multiplication limited by slow memory speed

"Naïve" Matrix Multiply

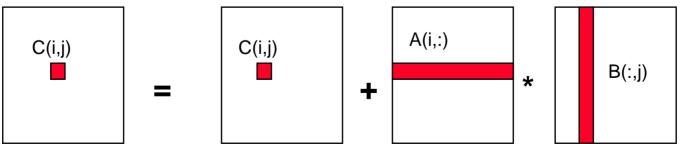




"Naïve" Matrix Multiply

```
{implements C = C + A^*B}
for i = 1 to n
 {read row i of A into fast memory}
 for j = 1 to n
    {read C(i,j) into fast memory}
    {read column j of B into fast memory}
    for k = 1 to n
       C(i,j) = C(i,j) + A(i,k) * B(k,j)
```

{write C(i,j) back to slow memory}



"Naïve" Matrix Multiply

Number of slow memory references on unblocked matrix multiply

 $m = n^3$ read each column of B n times

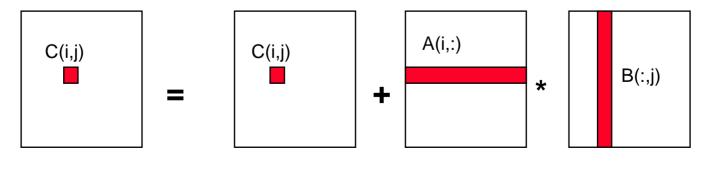
+ n^2 read each row of A once

+ $2n^2$ read and write each element of C once

 $= n^3 + 3n^2$

So
$$q = f/m = 2n^3 / (n^3 + 3n^2)$$

 $\sim = 2$ for large *n*, no improvement over matrix-vector multiply



Blocked (Tiled) Matrix Multiply

Consider A,B,C to be N by N matrices of b by b subblocks where b=n / N is called the block size

for i = 1 to N

for j = 1 to N

{read block C(i,j) into fast memory}

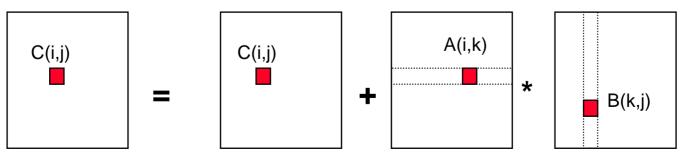
for k = 1 to N

{read block A(i,k) into fast memory}

{read block B(k,j) into fast memory}

 $C(i,j) = C(i,j) + A(i,k) * B(k,j) \{do a matrix multiply on blocks\}$

{write block C(i,j) back to slow memory}



Blocked (Tiled) Matrix Multiply

Recall:

m: # of moves from slow to fast memory

Matrix is $n \ge n$, and $N \ge N$ blocks each of size $b \ge b$

 $f = 2n^3$ for this problem

q = f/m is algorithmic memory efficiency

So:

 $m = N^*n^2$ read each block of $B N^3$ times $(N^3 * n/N * n/N)$ $+ N^*n^2$ read A $+ 2n^2$ read and write each block of C once $= (2N + 2) * n^2$

So
$$q = f/m = 2n^3 / ((2N + 2) * n^2)$$

~= $n / N = b$ for large n

So we can improve performance by increasing the block size b Can be much faster than matrix-vector multiply (q=2)

7/10/2003

CS267 Lecure 2

Limits to Optimizing Matrix Multiply

Blocked algorithm has ratio $q \sim = b$

- Larger block size => faster implementation
- Limit: All three blocks from *A*,*B*,*C* must fit in fast memory (cache):

$$3b^2 \le M$$

So: $q \sim = b \le sqrt(M/3)$

Lower bound:

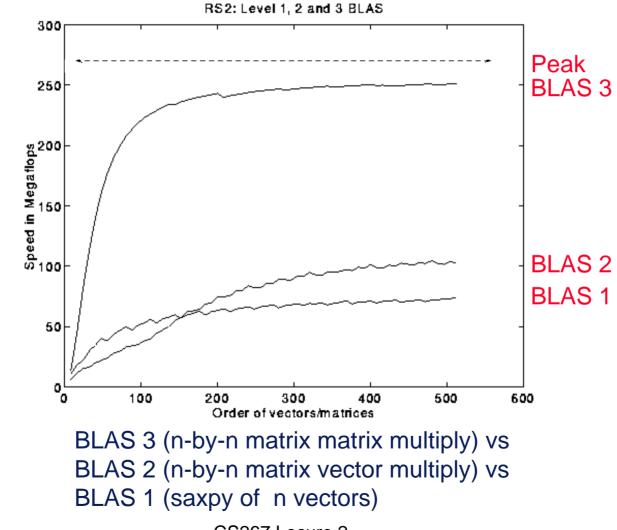
Theorem (Hong & Kung, 1981): Any reorganization of this algorithm (using only algebraic associativity) is limited to: q = O(sqrt(M))

Basic Linear Algebra Subroutines

- Industry standard interface (evolving)
- Hardware vendors, others supply optimized implementations
- History
 - BLAS1 (1970s):
 - vector operations: dot product, saxpy ($y = \alpha^* x + y$), etc
 - *m*=2**n*, *f*=2**n*, *q*~*1* or less
 - BLAS2 (mid 1980s)
 - matrix-vector operations: matrix vector multiply, etc
 - $m=n^2$, $f=2*n^2$, $q\sim 2$, less overhead
 - somewhat faster than BLAS1
 - BLAS3 (late 1980s)
 - matrix-matrix operations: matrix matrix multiply, etc
 - $m \ge 4n^2$, $f=O(n^3)$, so q can possibly be as large as n, so BLAS3 is potentially much faster than BLAS2
- Good algorithms used BLAS3 when possible (LAPACK)
- See www.netlib.org/blas, www.netlib.org/lapack

BLAS speeds on an IBM RS6000/590

Peak speed = 266 Mflops



7/10/2003

CS267 Lecure 2

Locality in Other Algorithms

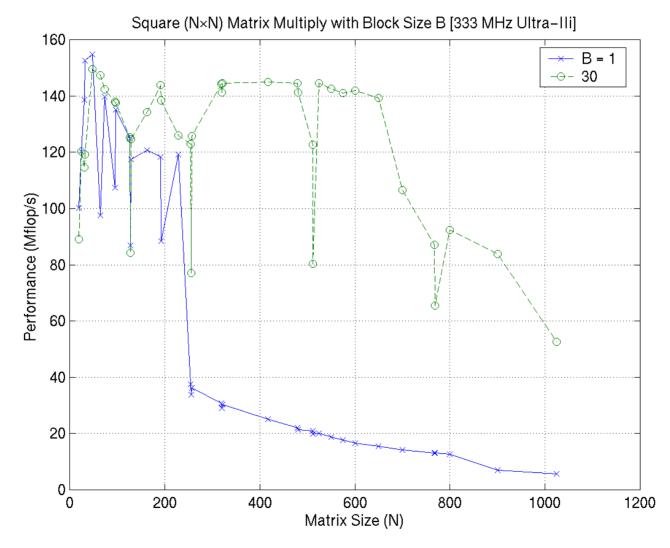
- The performance of any algorithm is limited by q
- \bullet In matrix multiply, we increase \boldsymbol{q} by changing computation order
 - increased temporal locality
- For other algorithms and data structures, even handtransformations are still an open problem
 - sparse matrices (reordering, blocking)
 - trees (B-Trees are for the disk level of the hierarchy)
 - linked lists (some work done here)

Outline

- Parallelism in Modern Processors
- Memory Hierarchies
- Matrix Multiply Cache Optimizations
- Bag of Tricks

Tiling Alone Might Not Be Enough

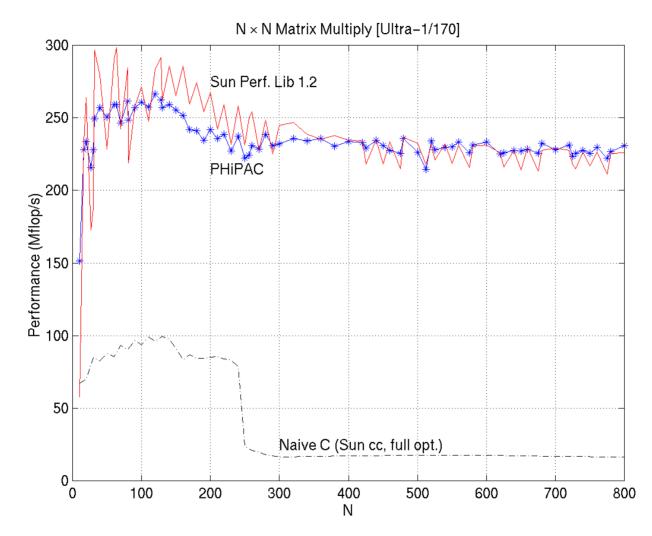
• Naïve and a "naïvely tiled" code



Optimizing in Practice

- Tiling for registers
 - loop unrolling, use of named "register" variables
- Tiling for multiple levels of cache
- Exploiting fine-grained parallelism in processor
 - superscalar; pipelining
- Complicated compiler interactions
- Hard to do by hand (but you'll try)
- Automatic optimization an active research area
 - BeBOP: www.cs.berkeley.edu/~richie/bebop
 - PHiPAC: www.icsi.berkeley.edu/~bilmes/phipac in particular tr-98-035.ps.gz
 - ATLAS: www.netlib.org/atlas

PHiPAC: Portable High Performance ANSI C



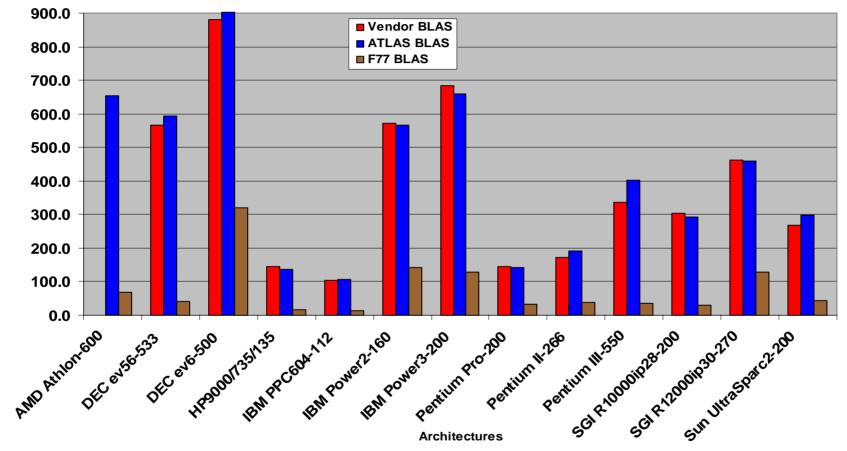
Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops

7/10/2003

CS267 Lecure 2

ATLAS (DGEMM n = 500)

Source: Jack Dongarra



 ATLAS is faster than all other portable BLAS implementations and it is comparable with machine-specific libraries provided by the vendor.

7/10/2003

MFLOPS

CS267 Lecure 2

Removing False Dependencies

Using local variables, reorder operations to remove false dependencies

false read-after-write hazard

between a[i] and b[i+1]

```
a[i] = b[i] + c;
a[i+1] = b[i+1] * d;
float f1 = b[i];
float f2 = b[i+1];
a[i] = f1 + c;
a[i+1] = f2 * d;
```

• With some compilers, you can say explicitly (via flag or pragma) that a and b are not aliased.

Exploit Multiple Registers

 Reduce demands on memory bandwidth by pre-loading into local variables

```
while( ... ) {
   *res++ = filter[0]*signal[0]
             + filter[1]*signal[1]
             + filter[2]*signal[2];
   signal++;
}
float f0 = filter[0];
                                 also: register float f0 = ...;
float f1 = filter[1];
float f_2 = filter[2];
while( ... ) {
    *res++ = f0*signal[0]
              + f1*signal[1]
              + f2*signal[2];
    signal++;
```

7/10/2003

Minimize Pointer Updates

 Replace pointer updates for strided memory addressing with constant array offsets

Loop Unrolling

• Expose instruction-level parallelism

```
float f0 = filter[0], f1 = filter[1], f2 = filter[2];
float s0 = signal[0], s1 = signal[1], s2 = signal[2];
*res++ = f0*s0 + f1*s1 + f2*s2;
do {
   signal += 3;
   s0 = signal[0];
   res[0] = f0*s1 + f1*s2 + f2*s0;
   s1 = signal[1];
   res[1] = f0*s2 + f1*s0 + f2*s1;
   s2 = signal[2];
   res[2] = f0*s0 + f1*s1 + f2*s2;
   res += 3;
} while( ... );
```

Expose Independent Operations

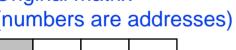
- Hide instruction latency
 - Use local variables to expose independent operations that can execute in parallel or in a pipelined fashion
 - Balance the instruction mix (what functional units are available?)

f1 = f5 * f9; f2 = f6 + f10; f3 = f7 * f11; f4 = f8 + f12;

Copy optimization

- Copy input operands or blocks
 - Reduce cache conflicts
 - Constant array offsets for fixed size blocks
 - Expose page-level locality

Original matrix (numbers are addresses)



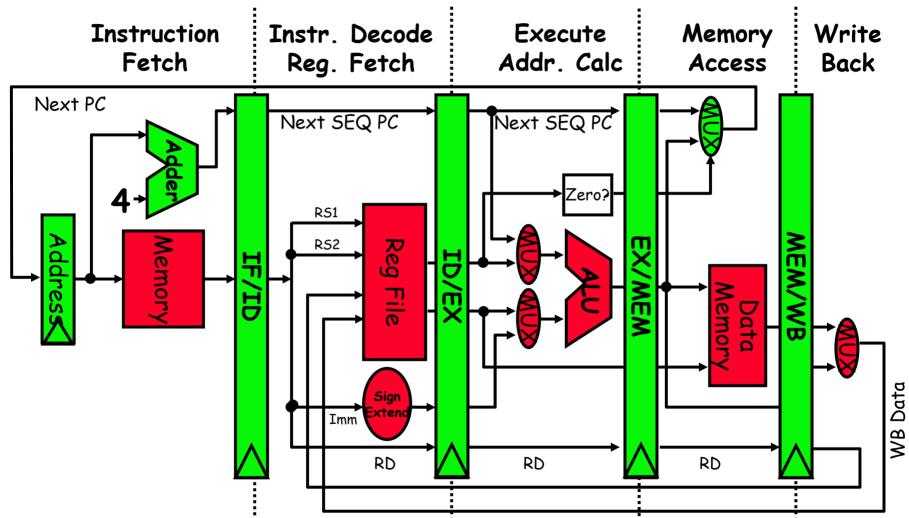
<u>Summary</u>

- Performance programming on uniprocessors requires
 - understanding of fine-grained parallelism in processor
 - produce good instruction mix
 - understanding of memory system
 - levels, costs, sizes
 - improve locality
- Blocking (tiling) is a basic approach
 - Techniques apply generally, but the details (e.g., block size) are architecture dependent
 - Similar techniques are possible on other data structures and algorithms
- Now it's your turn: Homework 0 (due 6/25/02)
 - http://www.cs.berkeley.edu/~richie/bebop/notes/matmul2002

(Extra slides follow)

Example: 5 Steps of MIPS Datapath

Figure 3.4, Page 134, CA: AQA 2e by Patterson and Hennessy



Pipelining is also used within arithmetic units

- a fp multiply may have latency 10 cycles, but throughput of 1/cycle

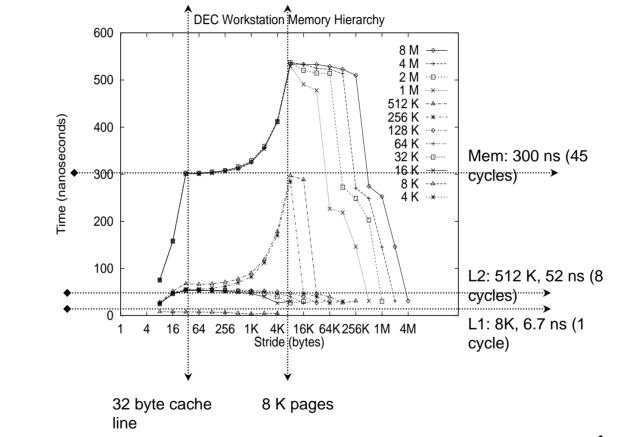
Dependences (Data Hazards) Limit Parallelism

- A dependence or data hazard is one of the following:
 - true of flow dependence:
 - a writes a location that b later reads
 - (read-after write or RAW hazard)
 - anti-dependence
 - a reads a location that b later writes
 - (write-after-read or WAR hazard)
 - output dependence
 - a writes a location that b later writes
 - (write-after-write or WAW hazard)

true	anti	output
a =	= a	a =
= a	a =	a =

Observing a Memory Hierarchy

Dec Alpha, 21064, 150 MHz clock



See www.cs.berkeley.edu/~yelick/arvindk/t3d-isca95.ps for details

7/10/2003

CS267 Lecure 2