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Applications ...
• Scientific simulation and modeling

• Weather and earthquakes
• Cars and buildings
• The universe

• Signal processing
• Audio and image compression
• Machine vision
• Speech recognition

• Information retrieval
• Web searching
• Human genome

• Computer graphics and computational geometry
• Structural models
• Films: Final Fantasy, Shrek
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… and their Building Blocks (Kernels)
• Scientific simulation and modeling

• Matrix-vector/matrix-matrix multiply
• Solving linear systems

• Signal processing
• Performing fast transforms: Fourier, trigonometric, wavelet
• Filtering
• Linear algebra on structured matrices

• Information retrieval
• Sorting
• Finding eigenvalues and eigenvectors

• Computer graphics and computational geometry
• Matrix multiply
• Computing matrix determinants
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Outline
• Parallelism in Modern Processors
• Memory Hierarchies
• Matrix Multiply Cache Optimizations
• Bag of Tricks
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Modern Processors: Theory & Practice
• Idealized Uniprocessor Model

• Execution order specified by program
• Operations (load/store, +/*, branch) have roughly the same cost

• Processors in the Real World
• Registers and caches

• Small amounts of fast memory
• Memory ops have widely varying costs

• Exploit Instruction-Level Parallelism (ILP)
• Superscalar — multiple functional units
• Pipelined — decompose units of execution into parallel stages
• Different instruction mixes/orders have different costs

• Why is this your problem?
• In theory, compilers understand all this mumbo-jumbo and optimize 

your programs; in practice, they don’t.
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What is Pipelining?

• In this example:
• Sequential execution takes    

4 * 90min = 6 hours
• Pipelined execution takes 

30+4*40+20 = 3.3 hours

• Pipelining helps 
throughput, but not latency

• Pipeline rate limited by 
slowest pipeline stage

• Potential speedup = 
Number pipe stages

• Time to “fill” pipeline and 
time to “drain” it reduces 
speedup

A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

Dave Patterson’s Laundry example: 4 people doing laundry

wash (30 min) + dry (40 min) + fold (20 min)
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Limits of ILP
Hazards prevent next instruction from executing in its 
designated clock cycle
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• Structural: single person to 
fold and put clothes away

• Data: missing socks
• Control: dyed clothes need 

to be rewashed

• Compiler will try to reduce 
these, but careful coding 
helps!
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Outline
• Parallelism in Modern Processors
• Memory Hierarchies
• Matrix Multiply Cache Optimizations
• Bag of Tricks
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Memory Hierarchy
• Most programs have a high degree of locality in their accesses

• spatial locality: accessing things nearby previous accesses
• temporal locality: reusing an item that was previously accessed

• Memory hierarchy tries to exploit locality
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Processor-DRAM Gap (latency)
• Memory hierarchies are getting deeper

• Processors get faster more quickly than memory

µProc
60%/yr.

DRAM
7%/yr.
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Cache Basics
• Cache hit: in-cache memory access—cheap
• Cache miss: non-cached memory access—expensive
• Consider a tiny cache (for illustration only)

X000       X001

X010       X011

X100       X101

X110       X111

• Cache line length: # of bytes loaded together in one entry
• Associativity

• direct-mapped: only one address (line) in a given range in cache
• n-way: 2 or more lines with different addresses exist
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Experimental Study of Memory
• Microbenchmark for memory system performance 

(Saavedra ’92)

• time the following program for each size(A) and stride s

(repeat to obtain confidence and mitigate timer resolution)

for array A of size from 4KB to 8MB by 2x

for stride s from 8 Bytes (1 word) to size(A)/2 by 2x

for i from 0 to size by s

load A[i] from memory (8 Bytes)
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Memory Hierarchy on a Sun Ultra-IIi

L2: 2 MB, 36 ns

(12 cycles)

Sun Ultra-IIi, 333 MHz

L2: 64 byte 
line 8 K pages

L1: 16 byte 
line

Array size

Mem: 396 ns

(132 cycles)

L1: 16K, 6 ns

(2 cycle)

See www.cs.berkeley.edu/~yelick/arvindk/t3d-isca95.ps for details
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Memory Hierarchy on a Pentium III

L1: 32 byte line ?

L2: 512 KB 
60 ns

Katmai processor on Millennium, 550 MHz Array size

L1: 64K
5 ns, 4-way?
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Lessons
• True performance can be a complicated function of the 

architecture
• Slight changes in architecture or program change performance 

significantly
• To write fast programs, need to consider architecture
• We would like simple models to help us design efficient algorithms
• Is this possible?

• Next: Example of improving cache performance: 
blocking or tiling

• Idea: decompose problem workload into cache-sized pieces
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Outline
• Parallelism in Modern Processors
• Memory Hierarchies
• Matrix Multiply Cache Optimizations
• Bag of Tricks
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Note on Matrix Storage
• A matrix is a 2-D array of elements, but memory 

addresses are “1-D”
• Conventions for matrix layout

• by column, or “column major” (Fortran default)
• by row, or “row major” (C default)
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Note on “Performance”
• For linear algebra, measure performance as rate of 

execution:
• Millions of floating point operations per second (Mflop/s)
• Higher is better
• Comparing Mflop/s is not the same as comparing time unless flops are 

constant!

• Speedup taken wrt time
• Speedup of A over B = (Running time of B) / (Running time of A)



7/10/2003 CS267 Lecure 2 19

Using a Simple Model of Memory to Optimize
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• Assume just 2 levels in the hierarchy, fast and slow
• All data initially in slow memory

• m = number of memory elements (words) moved between fast and 
slow memory 

• tm = time per slow memory operation
• f = number of arithmetic operations
• tf = time per arithmetic operation << tm

• q = f / m average number of flops per slow element access

• Minimum possible time = f* tf when all data in fast 
memory

• Actual time 

• Larger q means time closer to minimum f * tf

Key to 
algorithm 
efficiency

Key to 
machine 
efficiency 
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Warm up: Matrix-vector multiplication
{implements y = y + A*x}
for i = 1:n

for j = 1:n
y(i) = y(i) + A(i,j)*x(j)

A(i,:)
+= *

y(i)y(i) x(:)
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Warm up: Matrix-vector multiplication
{read x(1:n) into fast memory}
{read y(1:n) into fast memory}
for i = 1:n

{read row i of A into fast memory}
for j = 1:n

y(i) = y(i) + A(i,j)*x(j)
{write y(1:n) back to slow memory}

• m = number of slow memory refs = 3n + n2

• f = number of arithmetic operations = 2n2

• q = f / m ~= 2

• Matrix-vector multiplication limited by slow memory speed
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“Naïve” Matrix Multiply
{implements C = C + A*B}
for i = 1 to n

for j = 1 to n
for k = 1 to n

C(i,j) = C(i,j) + A(i,k) * B(k,j)

= + *
A(i,:)C(i,j) C(i,j)

B(:,j)
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“Naïve” Matrix Multiply
{implements C = C + A*B}
for i = 1 to n
{read row i of A into fast memory}
for j = 1 to n

{read C(i,j) into fast memory}
{read column j of B into fast memory}
for k = 1 to n

C(i,j) = C(i,j) + A(i,k) * B(k,j)
{write C(i,j) back to slow memory}

C(i,j)

= + * B(:,j)

A(i,:)C(i,j)
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“Naïve” Matrix Multiply
Number of slow memory references on unblocked matrix multiply

m = n3 read each column of B  n times
+ n2 read each row of A once 
+ 2n2 read and write each element of C once
= n3 + 3n2

So q = f / m = 2n3 / (n3 + 3n2)
~= 2 for large n, no improvement over matrix-vector multiply

= + *
A(i,:)C(i,j) C(i,j)

B(:,j)
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Blocked (Tiled) Matrix Multiply
Consider A,B,C to be N by N matrices of b by b subblocks where b=n / N is 

called the block size 
for i = 1 to N

for j = 1 to N
{read block C(i,j) into fast memory}
for k = 1 to N

{read block A(i,k) into fast memory}
{read block B(k,j) into fast memory}
C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

{write block C(i,j) back to slow memory}

= + *
A(i,k)C(i,j) C(i,j)

B(k,j)
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Blocked (Tiled) Matrix Multiply
Recall:

m : # of moves from slow to fast memory
Matrix is n x n, and N x N blocks each of size b x b
f = 2n3 for this problem
q = f / m is algorithmic memory efficiency

So:
m =  N*n2 read each block of B  N3 times (N3 * n/N * n/N)

+ N*n2 read A
+ 2n2 read and write each block of C once

=  (2N + 2) * n2

So q = f / m = 2n3 / ((2N + 2) * n2)
~= n / N = b for large n

So we can improve performance by increasing the block size b 
Can be much faster than matrix-vector multiply (q=2)
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Limits to Optimizing Matrix Multiply

Blocked algorithm has ratio q ~= b
• Larger block size => faster implementation
• Limit:   All three blocks from A,B,C must fit in fast 

memory (cache): 
3b2 <= M

So:  q ~= b <= sqrt(M/3)

Lower bound:
Theorem (Hong & Kung, 1981): Any reorganization of 

this algorithm (using only algebraic associativity) is 
limited to: q = O(sqrt(M))
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Basic Linear Algebra Subroutines
• Industry standard interface (evolving)
• Hardware vendors, others supply optimized implementations
• History

• BLAS1 (1970s): 
• vector operations: dot product, saxpy (y=α*x+y), etc
• m=2*n, f=2*n, q ~1 or less

• BLAS2 (mid 1980s)
• matrix-vector operations: matrix vector multiply, etc
• m=n^2, f=2*n^2, q~2, less overhead 
• somewhat faster than BLAS1

• BLAS3 (late 1980s)
• matrix-matrix operations: matrix matrix multiply, etc
• m >= 4n^2, f=O(n^3), so q can possibly be as large as n, so BLAS3 is 

potentially much faster than BLAS2

• Good algorithms used BLAS3 when possible (LAPACK)
• See www.netlib.org/blas, www.netlib.org/lapack
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BLAS speeds on an IBM RS6000/590
Peak speed = 266 Mflops

BLAS 3

BLAS 2
BLAS 1

Peak

BLAS 3 (n-by-n matrix matrix multiply) vs
BLAS 2 (n-by-n matrix vector multiply) vs
BLAS 1 (saxpy of  n vectors)
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Locality in Other Algorithms
• The performance of any algorithm is limited by q
• In matrix multiply, we increase q by changing 

computation order
• increased temporal locality

• For other algorithms and data structures, even hand-
transformations are still an open problem

• sparse matrices (reordering, blocking)
• trees (B-Trees are for the disk level of the hierarchy)
• linked lists (some work done here)
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Outline
• Parallelism in Modern Processors
• Memory Hierarchies
• Matrix Multiply Cache Optimizations
• Bag of Tricks
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Tiling Alone Might Not Be Enough
• Naïve and a “naïvely tiled” code
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Optimizing in Practice
• Tiling for registers

• loop unrolling, use of named “register” variables

• Tiling for multiple levels of cache
• Exploiting fine-grained parallelism in processor

• superscalar; pipelining

• Complicated compiler interactions
• Hard to do by hand (but you’ll try)
• Automatic optimization an active research area

• BeBOP: www.cs.berkeley.edu/~richie/bebop
• PHiPAC: www.icsi.berkeley.edu/~bilmes/phipac

in particular tr-98-035.ps.gz
• ATLAS: www.netlib.org/atlas
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PHiPAC: Portable High Performance ANSI C

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops
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ATLAS (DGEMM n = 500)
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• ATLAS is faster than all other portable BLAS implementations and
it is comparable with machine-specific libraries provided by the 
vendor.
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Removing False Dependencies
• Using local variables, reorder operations to remove false 

dependencies

a[i] = b[i] + c;
a[i+1] = b[i+1] * d;

false read-after-write hazard
between a[i] and b[i+1]

float f1 = b[i];
float f2 = b[i+1];

a[i] = f1 + c;
a[i+1] = f2 * d;

• With some compilers, you can say explicitly (via flag 
or pragma) that a and b are not aliased.
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Exploit Multiple Registers
• Reduce demands on memory bandwidth by pre-loading 

into local variables

while( … ) {
*res++ = filter[0]*signal[0]

+ filter[1]*signal[1]
+ filter[2]*signal[2];

signal++;
}

float f0 = filter[0];
float f1 = filter[1];
float f2 = filter[2];
while( … ) {

*res++ = f0*signal[0]
+ f1*signal[1]
+ f2*signal[2];

signal++;
}

also: register float f0 = …;
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Minimize Pointer Updates
• Replace pointer updates for strided memory addressing 

with constant array offsets

f0 = *r8; r8 += 4;
f1 = *r8; r8 += 4;
f2 = *r8; r8 += 4;

f0 = r8[0];
f1 = r8[4];
f2 = r8[8];
r8 += 12;
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Loop Unrolling
• Expose instruction-level parallelism

float f0 = filter[0], f1 = filter[1], f2 = filter[2];
float s0 = signal[0], s1 = signal[1], s2 = signal[2];
*res++ = f0*s0 + f1*s1 + f2*s2;
do {

signal += 3;
s0 = signal[0];
res[0] = f0*s1 + f1*s2 + f2*s0;

s1 = signal[1];
res[1] = f0*s2 + f1*s0 + f2*s1;

s2 = signal[2];
res[2] = f0*s0 + f1*s1 + f2*s2;

res += 3;
} while( … );
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Expose Independent Operations
• Hide instruction latency

• Use local variables to expose independent operations that can execute 
in parallel or in a pipelined fashion

• Balance the instruction mix (what functional units are available?)

f1 = f5 * f9;
f2 = f6 + f10;
f3 = f7 * f11;
f4 = f8 + f12;
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Copy optimization
• Copy input operands or blocks

• Reduce cache conflicts
• Constant array offsets for fixed size blocks
• Expose page-level locality

Original matrix
(numbers are addresses)

Reorganized into
2x2 blocks

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

0
1
4
5

2
3
6
7

8 10
9 11
12 13
14 15



7/10/2003 CS267 Lecure 2 42

Summary
• Performance programming on uniprocessors requires

• understanding of fine-grained parallelism in processor 
• produce good instruction mix

• understanding of memory system
• levels, costs, sizes
• improve locality

• Blocking (tiling) is a basic approach 
• Techniques apply generally, but the details (e.g., block size) are 

architecture dependent
• Similar techniques are possible on other data structures and 

algorithms

• Now it’s your turn: Homework 0 (due 6/25/02)
• http://www.cs.berkeley.edu/~richie/bebop/notes/matmul2002
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End

(Extra slides follow)
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Example: 5 Steps of MIPS Datapath
Figure 3.4, Page 134 , CA:AQA 2e by Patterson and Hennessy
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Dependences (Data Hazards) Limit Parallelism
• A dependence or data hazard is one of the following:

• true of flow dependence:
• a writes a location that b later reads
• (read-after write or RAW hazard)

• anti-dependence
• a reads a location that b later writes
• (write-after-read or WAR hazard)

• output dependence
• a writes a location that b later writes
• (write-after-write or WAW hazard)

true anti output
a = = a

= a a = 

a = 
a = 



7/10/2003 CS267 Lecure 2 46

Observing a Memory Hierarchy

Dec Alpha, 21064, 150 MHz clock
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See www.cs.berkeley.edu/~yelick/arvindk/t3d-isca95.ps for details
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