Uniprocessor Optimizations
and
Matrix Multiplication

BeBOP Summer 2002
http://www.cs.berkeley.edu/~richie/bebop

7/10/2003 CS267 Lecure 2

Applications ...

 Scientific simulation and modeling
* Weather and earthquakes
» Cars and buildings
* The universe

 Signal processing
« Audio and image compression
« Machine vision
» Speech recognition

e Information retrieval
* Web searching
e Human genome

o Computer graphics and computational geometry
 Structural models
» Films: Final Fantasy, Shrek

7/10/2003 CS267 Lecure 2 2

... and their Building Blocks (Kernels)

 Scientific simulation and modeling
« Matrix-vector/matrix-matrix multiply
» Solving linear systems

 Signal processing
» Performing fast transforms: Fourier, trigonometric, wavelet
 Filtering
 Linear algebra on structured matrices

 Information retrieval
« Sorting
« Finding eigenvalues and eigenvectors

o Computer graphics and computational geometry
o Matrix multiply
o Computing matrix determinants

7/10/2003 CS267 Lecure 2 3

QOutline
e Parallelism in Modern Processors

 Memory Hierarchies
« Matrix Multiply Cache Optimizations
e Bag of Tricks

7/10/2003 CS267 Lecure 2

Modern Processors: Theory & Practice

o |dealized Uniprocessor Model
» Execution order specified by program
» Operations (load/store, +/*, branch) have roughly the same cost

e Processors in the Real World

» Registers and caches
« Small amounts of fast memory
« Memory ops have widely varying costs

« Exploit Instruction-Level Parallelism (ILP)
o Superscalar — multiple functional units
* Pipelined — decompose units of execution into parallel stages
« Different instruction mixes/orders have different costs

 Why Is this your problem?

* In theory, compilers understand all this mumbo-jumbo and optimize
your programs; in practice, they don't.

7/10/2003 CS267 Lecure 2 5

N0 QY Q Xt QY

ol ol @

What is Pipelining?
Dave Patterson’s Laundry example: 4 people doing laundry

wash (30 min) + dry (40 min) + fold (20 min)
6 PM 7 8 9 |
| . * Inthis example:

| Time » Sequential execution takes
|— |— |_ |_| 4 * 90min = 6 hours

30 40 40 40 40 20 - Pipelined execution takes

30+4*40+20 = 3.3 hours

‘ ‘C) * Pipelining helps
. j throughput, but not latency

y —

slowest pipeline stage

@
=l * Pipeline rate limited by

y—d ®

« Potential speedup =
- ;[Number pipe stages

— A2 « Time to “fill” pipeline and
‘- ;[time to “drain” it reduces
speedup

7/10/2003 CS267 Lecure 2 6

N0 QY Q Xt QY

ol ol @

Limits of ILP

Hazards prevent next instruction from executing in its
designated clock cycle

7/10/2003

7

T

CS267 Lecure 2

Structural: single person to
fold and put clothes away

Data: missing socks

Control: dyed clothes need
to be rewashed

Compiler will try to reduce
these, but careful coding
helps!

QOutline
e Parallelism in Modern Processors

 Memory Hierarchies
« Matrix Multiply Cache Optimizations
e Bag of Tricks

7/10/2003 CS267 Lecure 2

Memory Hierarchy

* Most programs have a high degree of locality in their accesses
» spatial locality: accessing things nearby previous accesses
» temporal locality: reusing an item that was previously accessed

 Memory hierarchy tries to exploit locality

processor
control
Second Main Secondary Tertiary
level memory storage storage
d h cache (Disk)
atapat . (SRAM) (DRAM) (Disk/Tape/
registers on-chip WWW)
cache
Speed (ns): 1 10 100 10 ms 10 sec
Size (bytes): 100,1Ks Ms Gs Ts Ps

7/10/2003 CS267 Lecure 2 9

Processor-DRAM Gap (latency)

 Memory hierarchies are getting deeper
* Processors get faster more quickly than memory

el
LOOQ | e ~ EIOPOI‘/O/C
11) 7 r-
" Moore’s Law oy
O A
-
s 100
=
| —
o
«— 10
)
al
1 (@I C\IOOQ'LOLOI\OOCDIOIHNOOQ‘LOQDI\OO@O
CO 00 OO OO OWMOWWMOKLWOULWOIOODO OOOOO OO OO O
OO0 OO OO OO OO OOO)LOOOHOOOOO)O)O) OO O
e e e B e B e B e O I I I I I I e I e I IO I s I e B e R B Q|
Time

7/10/2003 CS267 Lecure 2 10

Cache Basics
e Cache hit: in-cache memory access—cheap
e Cache miss: non-cached memory access—expensive

» Consider a tiny cache (for illustration only)

X000 X001
X010 X011
X100 X101
X110 X111

e Cache line length: # of bytes loaded together in one entry

o Associativity
» direct-mapped: only one address (line) in a given range in cache
* n-way: 2 or more lines with different addresses exist

7/10/2003 CS267 Lecure 2

Experimental Study of Memory

* Microbenchmark for memory system performance
(Saavedra '92)

xS «IF I <«

* time the following program for each size(A) and stride s
(repeat to obtain confidence and mitigate timer resolution)
for array A of size from 4KB to 8MB by 2x
for stride s from 8 Bytes (1 word) to size(A)/2 by 2x
for i from O to size by s

load A[i] from memory (8 Bytes)
7/10/2003 CS267 Lecure 2 12

Memory Hierarchy on a Sun Ultra-I|li
Sun Ultra-11i

. 333 MHz
A
Array size
450 | | T T T T T T T T T T
AKB ——
8KB ——-x-—-
: : 16KB ---%---
400 | : & —
e N e SN S . s g Byvrserasgloreseereossarsarsorssnesanernen BB e
¢ PR > Mem: 396 ns
350 | ’ IR D56KB -4~ (132 cycles)
] 512KB -
| 2
300 |- Lo 4MB ---v---
[8MB ---¢---
= AT 16MB e
S 250 v i
3]
£
£
£ 200 .
150 -
100 .
L2: 2 MB, 36 ns
50
. . » (12 cycles)
’0 . v oo | = ; >
4 16 64 256 1K 4K | 16K 64K 256K 1M 2M 4M sM 1emazm L1: 16K, 6ns
v v Stridze (bytes)
L1: 16 byte L2: 64 byte v
line line

8 K pages
7/10/2003

CS267 Lecure 2

(2 cycle)

See www.cs.berkeley.edu/~yelick/arvindk/t3d-isca95.ps for details

13

Memory Hierarchy on a Pentium Il

600 | | I|<atmai processor on MiIIerlmium, 5£|30 MHz | | A”Iay S||Ze |
AKB —+—
5 16KB -
32KB -
500 |

400
D
2
= 300
b
E
|_

200

L2: 512 KB

100 60 ns

64K 256K 1M 2M 4M 8M 16M32M L1: 64K
5 ns, 4-way?

M
>
]
n
op}
—
-
M
-~
> |
-~

L1: 32 byte line ? Stride (bytes)
7/10/2003 CS267 Lecure 2 14

Lessons

e True performance can be a complicated function of the

architecture

 Slight changes in architecture or program change performance
significantly

* To write fast programs, need to consider architecture

* We would like simple models to help us design efficient algorithms

e |s this possible?

* Next: Example of improving cache performance:
blocking or tiling

» |dea: decompose problem workload into cache-sized pieces

7/10/2003 CS267 Lecure 2 15

QOutline
e Parallelism in Modern Processors

 Memory Hierarchies
» Matrix Multiply Cache Optimizations
e Bag of Tricks

7/10/2003 CS267 Lecure 2

16

Note on Matrix Storage

A matrix is a 2-D array of elements, but memory
addresses are “1-D”

e Conventions for matrix layout
e by column, or “column major” (Fortran default)
* by row, or “row major” (C default)

Column major Row major>

0|5 |10]15 P I
J 1|6 |11]16

2| 7 12|17 s o 10111

S |8|13)18 1213|1415

419]14]19 16 |17 | 18| 19

7/10/2003 CS267 Lecure 2 17

Note on “Performance”

 For linear algebra, measure performance as rate of
execution:

» Millions of floating point operations per second (Mflop/s)
» Higher is better

« Comparing Mflop/s is not the same as comparing time unless flops are
constant!

» Speedup taken wrt time
» Speedup of A over B = (Running time of B) / (Running time of A)

7/10/2003 CS267 Lecure 2 18

Using a Simple Model of Memory to Optimize

e Assume just 2 levels in the hierarchy, fast and slow

 All data initially in slow memory

 m = number of memory elements (words) moved between fast and
slow memory

e t_=time per slow memory operation Key to

o f = number of arithmetic operations alg_o_rlthm
_ _ _ _ efficiency

e t. = time per arithmetic operation <<t /

* g =f/ m |average number of flops per slow element access

e Minimum possible time = * t; when all data in fast
memory

. - t |11
Actual time fot,+m-t =f-t 1+

(PN
\ Key to
machine

 Larger g means time closer to minimum f * t

efficiency

7/10/2003 CS267 Lecure 2 19

Warm up: Matrix-vector multiplication

{implements y =y + A*x}

fori=1:n
forj=1:n
y(1) = y() + AQ1,])*Xx0)

AG,)

y(i) y(0) x()

7/10/2003 CS267 Lecure 2 20

Warm up: Matrix-vector multiplication

{read x(1:n) into fast memory}

{read y(1:n) into fast memory}
fori=1:n
{read row i of A into fast memory}
forj=1:n
y(1) = y() + A(L))*()
{write y(1:n) back to slow memory}

em = number of slow memory refs = 3n + n?

o f = number of arithmetic operations = 2n?

°(=f/m~=2

» Matrix-vector multiplication limited by slow memory speed

7/10/2003 CS267 Lecure 2 21

“Naive” Matrix Multiply

{implements C = C + A*B}
fori=1ton
forj=1ton
fork=1ton
C(1,)) = C(i,)) + A(i.k) * B(k,))
C(i.) C(i) All)
] [1 B(:.))

[
+
*

7/10/2003 CS267 Lecure 2 22

“Naive” Matrix Multiply
{implements C = C + A*B}
fori=1ton

{read row i of A into fast memory}

forj=1ton

{read C(i,)) into fast memory}
{read column j of B into fast memory}
fork=1ton
C(1,)) = C(1,)) + A(1,k) * B(k,))
{write C(i,]) back to slow memory}

C(i.) C(i.j) 2l

O O 1 B(:.))

[
+
*

7/10/2003 CS267 Lecure 2 23

“Naive” Matrix Multiply

Number of slow memory references on unblocked matrix multiply
m = n3 read each column of B n times
+ n? read each row of A once
+ 2n? read and write each element of C once
=nd + 3n?
Sog=f/m=2n3/(n®+ 3n?)

~= 2 for large n, no improvement over matrix-vector multiply

C(i.) C(i.j) Ali.))
B(.,)

[
+
*

7/10/2003 CS267 Lecure 2 24

Blocked (Tiled) Matrix Multiply

Consider A,B,C to be N by N matrices of b by b subblocks where b=n/Nis
called the block size

fori=1toN
forj=1to N
{read block C(i,)) into fast memory}
fork=1to N
{read block A(i,k) into fast memory}
{read block B(k,j) into fast memory}
C(i,)) = C(,)) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

{write block C(i,j) back to slow memory}

iy C(i.j) A K)
y S R i— -

[
+
*

m Bk

7/10/2003 CS267 Lecure 2 25

Blocked (Tiled) Matrix Multiply

Recall:
m : # of moves from slow to fast memory
Matrix is n x n, and N x N blocks each of size b x b
f = 2n3 for this problem
q = f/ m is algorithmic memory efficiency

So:
m = N*n?2 read each block of B N2 times (N3 * n/N * n/N)
+ N*n?2 read A
+ 2n?2 read and write each block of C once
= (2N + 2) * n?

Soq=f/m=2n/((2N + 2) * n?)
~=n/N=0Db forlargen

So we can improve performance by increasing the block size b
Can be much faster than matrix-vector multiply (q=2)

7/10/2003 CS267 Lecure 2 26

Limits to Optimizing Matrix Multiply

Blocked algorithm has ratiog~=Db
e Larger block size => faster implementation

« Limit: All three blocks from A,B,C must fit in fast
memory (cache):

3b? <=M
So: q~=b <=sqrt(M/3)

Lower bound:

Theorem (Hong & Kung, 1981): Any reorganization of
this algorithm (using only algebraic associativity) is
limited to: g = O(sqrt(M))

7/10/2003 CS267 Lecure 2 27

Basic Linear Algebra Subroutines

 Industry standard interface (evolving)
« Hardware vendors, others supply optimized implementations

* History

 BLAS1 (1970s):
e vector operations: dot product, saxpy (y=a*x+y), etc
e m=2*n,f=2*n, q~1 orless

 BLAS2 (mid 1980s)
e matrix-vector operations: matrix vector multiply, etc
e m=n"2, f=2*n"2, q~2, less overhead
 somewhat faster than BLAS1

 BLASS3 (late 1980s)
e matrix-matrix operations: matrix matrix multiply, etc
« m>=4n"2, f=0(n"3), so g can possibly be as large as n, so BLAS3 is

potentially much faster than BLAS2

» Good algorithms used BLAS3 when possible (LAPACK)
« See ww.netlib.org/blas, www.netlib.org/lapack

7/10/2003 CS267 Lecure 2 28

BLAS speeds on an IBM RS6000/590

Peak speed = 266 Mflops

Rs2: Level1, 2 and 3 ELAS

300
--- Peak
260} {BLAS 3
EEDD
%155
100 | BLAS 2
BLAS 1
50 —/
uﬂ 1Ll!ﬂ Ef:lﬂ .‘E'-Lliﬂ 4L:!ﬂ 56::- 600

arder of vectarsmatrices

BLAS 3 (n-by-n matrix matrix multiply) vs
BLAS 2 (n-by-n matrix vector multiply) vs
BLAS 1 (saxpy of n vectors)

7/10/2003 CS267 Lecure 2 29

Locality in Other Algorithms

* The performance of any algorithm is limited by g

* In matrix multiply, we increase g by changing
computation order

 increased temporal locality

 For other algorithms and data structures, even hand-
transformations are still an open problem

» sparse matrices (reordering, blocking)
* trees (B-Trees are for the disk level of the hierarchy)
* linked lists (some work done here)

7/10/2003 CS267 Lecure 2 30

QOutline
e Parallelism in Modern Processors

 Memory Hierarchies
« Matrix Multiply Cache Optimizations
e Bag of Tricks

7/10/2003 CS267 Lecure 2

31

Tiling Alone Might Not Be Enough

 Naive and a “naively tiled” code

Square (NxN) Matrix Multiply with Block Size B [333 MHz Ultra-1li]
160 ! ! | | :

—— B

140

120

—
e]
o

o
o

Performance (Mflop/s)
oo
e]

40

20

i I i I i
0 200 400 600 800 1000 1200
Matrix Size (N)

7/10/20UO oLVl LTULUIT 4 L

Optimizing in Practice

e Tiling for registers
 loop unrolling, use of named “register” variables

e Tiling for multiple levels of cache

« Exploiting fine-grained parallelism in processor
 superscalar; pipelining

o Complicated compiler interactions
» Hard to do by hand (but you'll try)

e Automatic optimization an active research area
e BeBOP: ww.cs.berkeley.edu/~richie/bebop
e PHIPAC: www. icsi .berkeley.edu/~bilmes/phipac
In particular tr-98-035.ps.gz
e ATLAS: ww.netlib.org/atlas

7/10/2003 CS267 Lecure 2 33

PHIPAC: Portable High Performance ANSI C

N x N Matrix Multiply [Ultra-1/170]

300

Sun Perf, Lib 1.2

1503}: i

Performance (Mflop/s)

—
o
S
I
%
b
|

50

0 i | i 1 | i
0 100 200 300 400 500 600 700 800
N

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops

7/10/2003 CS267 Lecure 2 34

MFLOPS

ATLAS (cEMM n = 500)

Source: Jack Dongarra

900.0

m Vendor BLAS
800.0 B ATLAS BLAS
mF77 BLAS

700.0

600.0

500.0

400.0

300.0

Q) Q) &
Architectures 9 9 (90

« ATLAS is faster than all other portable BLAS implementations and
itis g,omparable with machine-specific libraries provided by the
vendor.

7/10/2003 CS267 Lecure 2 35

Removing False Dependencies

 Using local variables, reorder operations to remove false
dependencies

afi] = b[1] + c; false read-after-write hazard
a[i+1] = b[i+1] * d; between a[i] and b[i+1]
float 1 = b[i];

float 2 = b[i1+1];

afi] = f1 + c;
a[i1+1] = f2 * d;

« With some compilers, %ou can say explicitly (via flag
or pragma) that a and b are not aliased.

7/10/2003 CS267 Lecure 2 36

Exploit Multiple Reqgisters

 Reduce demands on memory bandwidth by pre-loading
Into local variables

while(C ..) {
*res++ = filter[0]*signal[O]
+ Filter[1]*signal[1]
+ Filter[2]*signal[2];
signal++;
"‘ |
float 10 filter[0];
float f1 i Iter[l]; also: register float O = . ;
float T2 filter[2];
while(.. {
*res++ = TO*signal[O]}
+ Fl*signal[1l]

+ F2*signal[2];
signal++;

N 0 I

}

7/10/2003 CS267 Lecure 2 37

Minimize Pointer Updates

* Replace pointer updates for strided memory addressing
with constant array offsets

0
Tl
2

*r8; r8 += 4;
*r8; r8 += 4;
*r8; r8 += 4;

4—

O = r8[0];
fl = r8[4];
2 = r8[8];
r8 += 12;

7/10/2003 CS267 Lecure 2 38

Loop Unrolling
* EXpose Instruction-level parallelism

float fO = filter[0], f1 = filter[1l], F2
float sO = signal[0], sl signal[1l], s2
*res++ = fO*sO0 + Fl*sl + F2*s2;
do {

signal += 3;

sO = signal[0];

res[O0] = fO*sl + f1*s2 + F2*s0;

filter[2];
signal[2];

sl = signal[1l];
res[l] = fO*s2 + F1*sO0 + f2*sl;

s2 = signal[2];
res[2] = fO*sO + fl*sl + F2*s2;

res += 3;

¥ while(..);

7/10/2003 CS267 Lecure 2 39

Expose Independent Operations

e Hide instruction latency

» Use local variables to expose independent operations that can execute
in parallel or in a pipelined fashion

« Balance the instruction mix (what functional units are available?)

fl = 5 * 19;
2 = f6 + 110;
3 = f7 * f11;
f4 = f8 + T12;

7/10/2003 CS267 Lecure 2 40

Copy optimization

* Copy input operands or blocks
* Reduce cache conflicts
» Constant array offsets for fixed size blocks
» Expose page-level locality

Original matrix Reorganized into
(numbers are addresses) 2x2 blocks

0| 4|8 (12 02| 8|10
115|913 1] 3 11
2| 6 |10|14 4 |1 6 (12|13
3|7 |11(15 S| 7 (1415

7/10/2003 CS267 Lecure 2 41

summary

e Performance programming on uniprocessors requires
» understanding of fine-grained parallelism in processor
e produce good instruction mix
» understanding of memory system
* levels, costs, sizes
e improve locality

 Blocking (tiling) is a basic approach

» Techniques apply generally, but the details (e.g., block size) are
architecture dependent

e Similar techniques are possible on other data structures and
algorithms

* Now it’s your turn: Homework O (due 6/25/02)

* http://www.cs.berkeley.edu/~richie/bebop/notes/matmul2002

7/10/2003 CS267 Lecure 2 42

7/10/2003

End

(Extra slides follow)

CS267 Lecure 2

43

F|gure 3.4, Page 134 , CA AQA 2e by Patterson and Hennessy

Instruction E : Instr. Decode Execute Memory Write
Fetch i Reg. Fetch : Addr. Calc i Access : Back
Next PC > S R .
Next SEQ PC

RS1

RS2

» Pipelining is also used within arithmetic units
- a fp multiply may have latency 10 cycles, but throughput of 1/cycle

WB Data

Dependences (Data Hazards) Limit Parallelism

« A dependence or data hazard is one of the following:
 true of flow dependence:
« a writes a location that b later reads
 (read-after write or RAW hazard)
e anti-dependence
« areads a location that b later writes
» (write-after-read or WAR hazard)
* output dependence
« a writes a location that b later writes
 (write-after-write or WAW hazard)

true anti output

7/10/2003 CS267 Lecure 2 45

Observing a Memory Hierarchy

Dec Alpha, 21064, 150 MHz clock

A A
i DEC WorkstationiMemory Hierarchy

600 T T ; T T T T ; T T T T T
500
2 a0
&
o Mem: 300 ns (45
8 ¢ 300_ _Cycies). >»
g
O
£ 200
|_
100 1L2:512K, 52 ns (8
‘0 cpdregene. S
1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M L1: 8K, 6.7 ns (1
. Stride! (bytes) cycle)
v é
32 byte cache 8 K pages

line
See www.cs.berkeley.edu/~yelick/arvindk/t3d-isca95.ps for details

7/10/2003 CS267 Lecure 2 46

	Uniprocessor Optimizations and Matrix Multiplication
	Applications ...
	… and their Building Blocks (Kernels)
	Outline
	Modern Processors: Theory & Practice
	What is Pipelining?
	Limits of ILP
	Outline
	Memory Hierarchy
	Processor-DRAM Gap (latency)
	Cache Basics
	Experimental Study of Memory
	Memory Hierarchy on a Sun Ultra-IIi
	Memory Hierarchy on a Pentium III
	Lessons
	Outline
	Note on Matrix Storage
	Note on “Performance”
	Using a Simple Model of Memory to Optimize
	Warm up: Matrix-vector multiplication
	Warm up: Matrix-vector multiplication
	“Naïve” Matrix Multiply
	“Naïve” Matrix Multiply
	“Naïve” Matrix Multiply
	Blocked (Tiled) Matrix Multiply
	Blocked (Tiled) Matrix Multiply
	Limits to Optimizing Matrix Multiply
	Basic Linear Algebra Subroutines
	BLAS speeds on an IBM RS6000/590
	Locality in Other Algorithms
	Outline
	Tiling Alone Might Not Be Enough
	Optimizing in Practice
	PHiPAC: Portable High Performance ANSI C
	ATLAS (DGEMM n = 500)
	Removing False Dependencies
	Exploit Multiple Registers
	Minimize Pointer Updates
	Loop Unrolling
	Expose Independent Operations
	Copy optimization
	Summary
	End
	Example: 5 Steps of MIPS DatapathFigure 3.4, Page 134 , CA:AQA 2e by Patterson and Hennessy
	Dependences (Data Hazards) Limit Parallelism
	Observing a Memory Hierarchy

