
7/10/2003 CS267 Lecure 2 1

Uniprocessor Optimizations
and

Matrix Multiplication

BeBOP Summer 2002
http://www.cs.berkeley.edu/~richie/bebop

7/10/2003 CS267 Lecure 2 2

Applications ...
• Scientific simulation and modeling

• Weather and earthquakes
• Cars and buildings
• The universe

• Signal processing
• Audio and image compression
• Machine vision
• Speech recognition

• Information retrieval
• Web searching
• Human genome

• Computer graphics and computational geometry
• Structural models
• Films: Final Fantasy, Shrek

7/10/2003 CS267 Lecure 2 3

… and their Building Blocks (Kernels)
• Scientific simulation and modeling

• Matrix-vector/matrix-matrix multiply
• Solving linear systems

• Signal processing
• Performing fast transforms: Fourier, trigonometric, wavelet
• Filtering
• Linear algebra on structured matrices

• Information retrieval
• Sorting
• Finding eigenvalues and eigenvectors

• Computer graphics and computational geometry
• Matrix multiply
• Computing matrix determinants

7/10/2003 CS267 Lecure 2 4

Outline
• Parallelism in Modern Processors
• Memory Hierarchies
• Matrix Multiply Cache Optimizations
• Bag of Tricks

7/10/2003 CS267 Lecure 2 5

Modern Processors: Theory & Practice
• Idealized Uniprocessor Model

• Execution order specified by program
• Operations (load/store, +/*, branch) have roughly the same cost

• Processors in the Real World
• Registers and caches

• Small amounts of fast memory
• Memory ops have widely varying costs

• Exploit Instruction-Level Parallelism (ILP)
• Superscalar — multiple functional units
• Pipelined — decompose units of execution into parallel stages
• Different instruction mixes/orders have different costs

• Why is this your problem?
• In theory, compilers understand all this mumbo-jumbo and optimize

your programs; in practice, they don’t.

7/10/2003 CS267 Lecure 2 6

What is Pipelining?

• In this example:
• Sequential execution takes

4 * 90min = 6 hours
• Pipelined execution takes

30+4*40+20 = 3.3 hours

• Pipelining helps
throughput, but not latency

• Pipeline rate limited by
slowest pipeline stage

• Potential speedup =
Number pipe stages

• Time to “fill” pipeline and
time to “drain” it reduces
speedup

A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

Dave Patterson’s Laundry example: 4 people doing laundry

wash (30 min) + dry (40 min) + fold (20 min)

7/10/2003 CS267 Lecure 2 7

Limits of ILP
Hazards prevent next instruction from executing in its
designated clock cycle

T
a
s
k

O
r
d
e
r

• Structural: single person to
fold and put clothes away

• Data: missing socks
• Control: dyed clothes need

to be rewashed

• Compiler will try to reduce
these, but careful coding
helps!

A

B

C

D

7/10/2003 CS267 Lecure 2 8

Outline
• Parallelism in Modern Processors
• Memory Hierarchies
• Matrix Multiply Cache Optimizations
• Bag of Tricks

7/10/2003 CS267 Lecure 2 9

Memory Hierarchy
• Most programs have a high degree of locality in their accesses

• spatial locality: accessing things nearby previous accesses
• temporal locality: reusing an item that was previously accessed

• Memory hierarchy tries to exploit locality

on-chip
cacheregisters

datapath

control

processor

Secondary
storage
(Disk)

Second
level

cache
(SRAM)

Tertiary
storage

(Disk/Tape/
WWW)

Main
memory

(DRAM)

Speed (ns): 1 10 100 10 ms 10 sec

Size (bytes): 100,1Ks Ms Gs Ts Ps

7/10/2003 CS267 Lecure 2 10

Processor-DRAM Gap (latency)
• Memory hierarchies are getting deeper

• Processors get faster more quickly than memory

µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000
19

80
19

81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU
19

82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce

Time

“Moore’s Law”

7/10/2003 CS267 Lecure 2 11

Cache Basics
• Cache hit: in-cache memory access—cheap
• Cache miss: non-cached memory access—expensive
• Consider a tiny cache (for illustration only)

X000 X001

X010 X011

X100 X101

X110 X111

• Cache line length: # of bytes loaded together in one entry
• Associativity

• direct-mapped: only one address (line) in a given range in cache
• n-way: 2 or more lines with different addresses exist

7/10/2003 CS267 Lecure 2 12

Experimental Study of Memory
• Microbenchmark for memory system performance

(Saavedra ’92)

• time the following program for each size(A) and stride s

(repeat to obtain confidence and mitigate timer resolution)

for array A of size from 4KB to 8MB by 2x

for stride s from 8 Bytes (1 word) to size(A)/2 by 2x

for i from 0 to size by s

load A[i] from memory (8 Bytes)

7/10/2003 CS267 Lecure 2 13

Memory Hierarchy on a Sun Ultra-IIi

L2: 2 MB, 36 ns

(12 cycles)

Sun Ultra-IIi, 333 MHz

L2: 64 byte
line 8 K pages

L1: 16 byte
line

Array size

Mem: 396 ns

(132 cycles)

L1: 16K, 6 ns

(2 cycle)

See www.cs.berkeley.edu/~yelick/arvindk/t3d-isca95.ps for details

7/10/2003 CS267 Lecure 2 14

Memory Hierarchy on a Pentium III

L1: 32 byte line ?

L2: 512 KB
60 ns

Katmai processor on Millennium, 550 MHz Array size

L1: 64K
5 ns, 4-way?

7/10/2003 CS267 Lecure 2 15

Lessons
• True performance can be a complicated function of the

architecture
• Slight changes in architecture or program change performance

significantly
• To write fast programs, need to consider architecture
• We would like simple models to help us design efficient algorithms
• Is this possible?

• Next: Example of improving cache performance:
blocking or tiling

• Idea: decompose problem workload into cache-sized pieces

7/10/2003 CS267 Lecure 2 16

Outline
• Parallelism in Modern Processors
• Memory Hierarchies
• Matrix Multiply Cache Optimizations
• Bag of Tricks

7/10/2003 CS267 Lecure 2 17

Note on Matrix Storage
• A matrix is a 2-D array of elements, but memory

addresses are “1-D”
• Conventions for matrix layout

• by column, or “column major” (Fortran default)
• by row, or “row major” (C default)

0
1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18
19

0
4
8
12
16

1
5
9
13
17

2
6
10
14
18

3
7
11
15
19

Row majorColumn major

7/10/2003 CS267 Lecure 2 18

Note on “Performance”
• For linear algebra, measure performance as rate of

execution:
• Millions of floating point operations per second (Mflop/s)
• Higher is better
• Comparing Mflop/s is not the same as comparing time unless flops are

constant!

• Speedup taken wrt time
• Speedup of A over B = (Running time of B) / (Running time of A)

7/10/2003 CS267 Lecure 2 19

Using a Simple Model of Memory to Optimize

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅+⋅⋅=⋅+⋅
qt

ttftmtf
f

m
fmf

11

• Assume just 2 levels in the hierarchy, fast and slow
• All data initially in slow memory

• m = number of memory elements (words) moved between fast and
slow memory

• tm = time per slow memory operation
• f = number of arithmetic operations
• tf = time per arithmetic operation << tm

• q = f / m average number of flops per slow element access

• Minimum possible time = f* tf when all data in fast
memory

• Actual time

• Larger q means time closer to minimum f * tf

Key to
algorithm
efficiency

Key to
machine
efficiency

7/10/2003 CS267 Lecure 2 20

Warm up: Matrix-vector multiplication
{implements y = y + A*x}
for i = 1:n

for j = 1:n
y(i) = y(i) + A(i,j)*x(j)

A(i,:)
+= *

y(i)y(i) x(:)

7/10/2003 CS267 Lecure 2 21

Warm up: Matrix-vector multiplication
{read x(1:n) into fast memory}
{read y(1:n) into fast memory}
for i = 1:n

{read row i of A into fast memory}
for j = 1:n

y(i) = y(i) + A(i,j)*x(j)
{write y(1:n) back to slow memory}

• m = number of slow memory refs = 3n + n2

• f = number of arithmetic operations = 2n2

• q = f / m ~= 2

• Matrix-vector multiplication limited by slow memory speed

7/10/2003 CS267 Lecure 2 22

“Naïve” Matrix Multiply
{implements C = C + A*B}
for i = 1 to n

for j = 1 to n
for k = 1 to n

C(i,j) = C(i,j) + A(i,k) * B(k,j)

= + *
A(i,:)C(i,j) C(i,j)

B(:,j)

7/10/2003 CS267 Lecure 2 23

“Naïve” Matrix Multiply
{implements C = C + A*B}
for i = 1 to n
{read row i of A into fast memory}
for j = 1 to n

{read C(i,j) into fast memory}
{read column j of B into fast memory}
for k = 1 to n

C(i,j) = C(i,j) + A(i,k) * B(k,j)
{write C(i,j) back to slow memory}

C(i,j)

= + * B(:,j)

A(i,:)C(i,j)

7/10/2003 CS267 Lecure 2 24

“Naïve” Matrix Multiply
Number of slow memory references on unblocked matrix multiply

m = n3 read each column of B n times
+ n2 read each row of A once
+ 2n2 read and write each element of C once
= n3 + 3n2

So q = f / m = 2n3 / (n3 + 3n2)
~= 2 for large n, no improvement over matrix-vector multiply

= + *
A(i,:)C(i,j) C(i,j)

B(:,j)

7/10/2003 CS267 Lecure 2 25

Blocked (Tiled) Matrix Multiply
Consider A,B,C to be N by N matrices of b by b subblocks where b=n / N is

called the block size
for i = 1 to N

for j = 1 to N
{read block C(i,j) into fast memory}
for k = 1 to N

{read block A(i,k) into fast memory}
{read block B(k,j) into fast memory}
C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

{write block C(i,j) back to slow memory}

= + *
A(i,k)C(i,j) C(i,j)

B(k,j)

7/10/2003 CS267 Lecure 2 26

Blocked (Tiled) Matrix Multiply
Recall:

m : # of moves from slow to fast memory
Matrix is n x n, and N x N blocks each of size b x b
f = 2n3 for this problem
q = f / m is algorithmic memory efficiency

So:
m = N*n2 read each block of B N3 times (N3 * n/N * n/N)

+ N*n2 read A
+ 2n2 read and write each block of C once

= (2N + 2) * n2

So q = f / m = 2n3 / ((2N + 2) * n2)
~= n / N = b for large n

So we can improve performance by increasing the block size b
Can be much faster than matrix-vector multiply (q=2)

7/10/2003 CS267 Lecure 2 27

Limits to Optimizing Matrix Multiply

Blocked algorithm has ratio q ~= b
• Larger block size => faster implementation
• Limit: All three blocks from A,B,C must fit in fast

memory (cache):
3b2 <= M

So: q ~= b <= sqrt(M/3)

Lower bound:
Theorem (Hong & Kung, 1981): Any reorganization of

this algorithm (using only algebraic associativity) is
limited to: q = O(sqrt(M))

7/10/2003 CS267 Lecure 2 28

Basic Linear Algebra Subroutines
• Industry standard interface (evolving)
• Hardware vendors, others supply optimized implementations
• History

• BLAS1 (1970s):
• vector operations: dot product, saxpy (y=α*x+y), etc
• m=2*n, f=2*n, q ~1 or less

• BLAS2 (mid 1980s)
• matrix-vector operations: matrix vector multiply, etc
• m=n^2, f=2*n^2, q~2, less overhead
• somewhat faster than BLAS1

• BLAS3 (late 1980s)
• matrix-matrix operations: matrix matrix multiply, etc
• m >= 4n^2, f=O(n^3), so q can possibly be as large as n, so BLAS3 is

potentially much faster than BLAS2

• Good algorithms used BLAS3 when possible (LAPACK)
• See www.netlib.org/blas, www.netlib.org/lapack

7/10/2003 CS267 Lecure 2 29

BLAS speeds on an IBM RS6000/590
Peak speed = 266 Mflops

BLAS 3

BLAS 2
BLAS 1

Peak

BLAS 3 (n-by-n matrix matrix multiply) vs
BLAS 2 (n-by-n matrix vector multiply) vs
BLAS 1 (saxpy of n vectors)

7/10/2003 CS267 Lecure 2 30

Locality in Other Algorithms
• The performance of any algorithm is limited by q
• In matrix multiply, we increase q by changing

computation order
• increased temporal locality

• For other algorithms and data structures, even hand-
transformations are still an open problem

• sparse matrices (reordering, blocking)
• trees (B-Trees are for the disk level of the hierarchy)
• linked lists (some work done here)

7/10/2003 CS267 Lecure 2 31

Outline
• Parallelism in Modern Processors
• Memory Hierarchies
• Matrix Multiply Cache Optimizations
• Bag of Tricks

7/10/2003 CS267 Lecure 2 32

Tiling Alone Might Not Be Enough
• Naïve and a “naïvely tiled” code

7/10/2003 CS267 Lecure 2 33

Optimizing in Practice
• Tiling for registers

• loop unrolling, use of named “register” variables

• Tiling for multiple levels of cache
• Exploiting fine-grained parallelism in processor

• superscalar; pipelining

• Complicated compiler interactions
• Hard to do by hand (but you’ll try)
• Automatic optimization an active research area

• BeBOP: www.cs.berkeley.edu/~richie/bebop
• PHiPAC: www.icsi.berkeley.edu/~bilmes/phipac

in particular tr-98-035.ps.gz
• ATLAS: www.netlib.org/atlas

7/10/2003 CS267 Lecure 2 34

PHiPAC: Portable High Performance ANSI C

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops

7/10/2003 CS267 Lecure 2 35

ATLAS (DGEMM n = 500)

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

AMD A
th

lon-6
00

DEC ev
56

-53
3

DEC ev
6-5

00
HP90

00
/73

5/1
35

IB
M PPC60

4-1
12

IB
M Power2

-16
0

IB
M Power3

-20
0

Pen
tiu

m Pro
-20

0
Pen

tiu
m II-

26
6

Pen
tiu

m III
-55

0

SGI R
10

00
0ip

28
-20

0

SGI R
12

00
0ip

30
-27

0

Sun
 U

ltr
aS

parc
2-2

00

Architectures

M
FL

O
PS

Vendor BLAS
ATLAS BLAS
F77 BLAS

Source: Jack Dongarra

• ATLAS is faster than all other portable BLAS implementations and
it is comparable with machine-specific libraries provided by the
vendor.

7/10/2003 CS267 Lecure 2 36

Removing False Dependencies
• Using local variables, reorder operations to remove false

dependencies

a[i] = b[i] + c;
a[i+1] = b[i+1] * d;

false read-after-write hazard
between a[i] and b[i+1]

float f1 = b[i];
float f2 = b[i+1];

a[i] = f1 + c;
a[i+1] = f2 * d;

• With some compilers, you can say explicitly (via flag
or pragma) that a and b are not aliased.

7/10/2003 CS267 Lecure 2 37

Exploit Multiple Registers
• Reduce demands on memory bandwidth by pre-loading

into local variables

while(…) {
*res++ = filter[0]*signal[0]

+ filter[1]*signal[1]
+ filter[2]*signal[2];

signal++;
}

float f0 = filter[0];
float f1 = filter[1];
float f2 = filter[2];
while(…) {

*res++ = f0*signal[0]
+ f1*signal[1]
+ f2*signal[2];

signal++;
}

also: register float f0 = …;

7/10/2003 CS267 Lecure 2 38

Minimize Pointer Updates
• Replace pointer updates for strided memory addressing

with constant array offsets

f0 = *r8; r8 += 4;
f1 = *r8; r8 += 4;
f2 = *r8; r8 += 4;

f0 = r8[0];
f1 = r8[4];
f2 = r8[8];
r8 += 12;

7/10/2003 CS267 Lecure 2 39

Loop Unrolling
• Expose instruction-level parallelism

float f0 = filter[0], f1 = filter[1], f2 = filter[2];
float s0 = signal[0], s1 = signal[1], s2 = signal[2];
*res++ = f0*s0 + f1*s1 + f2*s2;
do {

signal += 3;
s0 = signal[0];
res[0] = f0*s1 + f1*s2 + f2*s0;

s1 = signal[1];
res[1] = f0*s2 + f1*s0 + f2*s1;

s2 = signal[2];
res[2] = f0*s0 + f1*s1 + f2*s2;

res += 3;
} while(…);

7/10/2003 CS267 Lecure 2 40

Expose Independent Operations
• Hide instruction latency

• Use local variables to expose independent operations that can execute
in parallel or in a pipelined fashion

• Balance the instruction mix (what functional units are available?)

f1 = f5 * f9;
f2 = f6 + f10;
f3 = f7 * f11;
f4 = f8 + f12;

7/10/2003 CS267 Lecure 2 41

Copy optimization
• Copy input operands or blocks

• Reduce cache conflicts
• Constant array offsets for fixed size blocks
• Expose page-level locality

Original matrix
(numbers are addresses)

Reorganized into
2x2 blocks

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

0
1
4
5

2
3
6
7

8 10
9 11
12 13
14 15

7/10/2003 CS267 Lecure 2 42

Summary
• Performance programming on uniprocessors requires

• understanding of fine-grained parallelism in processor
• produce good instruction mix

• understanding of memory system
• levels, costs, sizes
• improve locality

• Blocking (tiling) is a basic approach
• Techniques apply generally, but the details (e.g., block size) are

architecture dependent
• Similar techniques are possible on other data structures and

algorithms

• Now it’s your turn: Homework 0 (due 6/25/02)
• http://www.cs.berkeley.edu/~richie/bebop/notes/matmul2002

7/10/2003 CS267 Lecure 2 43

End

(Extra slides follow)

7/10/2003 CS267 Lecure 2 44

Example: 5 Steps of MIPS Datapath
Figure 3.4, Page 134 , CA:AQA 2e by Patterson and Hennessy

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg
File

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/EX

M
EM

/W
B

EX
/M

EM
4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD W
B

D
at

a

• Pipelining is also used within arithmetic units
– a fp multiply may have latency 10 cycles, but throughput of 1/cycle

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

7/10/2003 CS267 Lecure 2 45

Dependences (Data Hazards) Limit Parallelism
• A dependence or data hazard is one of the following:

• true of flow dependence:
• a writes a location that b later reads
• (read-after write or RAW hazard)

• anti-dependence
• a reads a location that b later writes
• (write-after-read or WAR hazard)

• output dependence
• a writes a location that b later writes
• (write-after-write or WAW hazard)

true anti output
a = = a

= a a =

a =
a =

7/10/2003 CS267 Lecure 2 46

Observing a Memory Hierarchy

Dec Alpha, 21064, 150 MHz clock

0

100

200

300

400

500

600

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

T
im

e
 (

n
a

n
o

se
co

n
d

s)

Stride (bytes)

DEC Workstation Memory Hierarchy

8 M
4 M
2 M
1 M

512 K
256 K
128 K
64 K
32 K
16 K
8 K
4 K

L2: 512 K, 52 ns (8
cycles)

L1: 8K, 6.7 ns (1
cycle)

Mem: 300 ns (45
cycles)

32 byte cache
line

8 K pages

See www.cs.berkeley.edu/~yelick/arvindk/t3d-isca95.ps for details

	Uniprocessor Optimizations and Matrix Multiplication
	Applications ...
	… and their Building Blocks (Kernels)
	Outline
	Modern Processors: Theory & Practice
	What is Pipelining?
	Limits of ILP
	Outline
	Memory Hierarchy
	Processor-DRAM Gap (latency)
	Cache Basics
	Experimental Study of Memory
	Memory Hierarchy on a Sun Ultra-IIi
	Memory Hierarchy on a Pentium III
	Lessons
	Outline
	Note on Matrix Storage
	Note on “Performance”
	Using a Simple Model of Memory to Optimize
	Warm up: Matrix-vector multiplication
	Warm up: Matrix-vector multiplication
	“Naïve” Matrix Multiply
	“Naïve” Matrix Multiply
	“Naïve” Matrix Multiply
	Blocked (Tiled) Matrix Multiply
	Blocked (Tiled) Matrix Multiply
	Limits to Optimizing Matrix Multiply
	Basic Linear Algebra Subroutines
	BLAS speeds on an IBM RS6000/590
	Locality in Other Algorithms
	Outline
	Tiling Alone Might Not Be Enough
	Optimizing in Practice
	PHiPAC: Portable High Performance ANSI C
	ATLAS (DGEMM n = 500)
	Removing False Dependencies
	Exploit Multiple Registers
	Minimize Pointer Updates
	Loop Unrolling
	Expose Independent Operations
	Copy optimization
	Summary
	End
	Example: 5 Steps of MIPS DatapathFigure 3.4, Page 134 , CA:AQA 2e by Patterson and Hennessy
	Dependences (Data Hazards) Limit Parallelism
	Observing a Memory Hierarchy

